md: fix deadlock in md/raid1 and md/raid10 when handling a read error
[safe/jmp/linux-2.6] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24
25 /*
26  * RAID10 provides a combination of RAID0 and RAID1 functionality.
27  * The layout of data is defined by
28  *    chunk_size
29  *    raid_disks
30  *    near_copies (stored in low byte of layout)
31  *    far_copies (stored in second byte of layout)
32  *    far_offset (stored in bit 16 of layout )
33  *
34  * The data to be stored is divided into chunks using chunksize.
35  * Each device is divided into far_copies sections.
36  * In each section, chunks are laid out in a style similar to raid0, but
37  * near_copies copies of each chunk is stored (each on a different drive).
38  * The starting device for each section is offset near_copies from the starting
39  * device of the previous section.
40  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41  * drive.
42  * near_copies and far_copies must be at least one, and their product is at most
43  * raid_disks.
44  *
45  * If far_offset is true, then the far_copies are handled a bit differently.
46  * The copies are still in different stripes, but instead of be very far apart
47  * on disk, there are adjacent stripes.
48  */
49
50 /*
51  * Number of guaranteed r10bios in case of extreme VM load:
52  */
53 #define NR_RAID10_BIOS 256
54
55 static void unplug_slaves(mddev_t *mddev);
56
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62         conf_t *conf = data;
63         r10bio_t *r10_bio;
64         int size = offsetof(struct r10bio_s, devs[conf->copies]);
65
66         /* allocate a r10bio with room for raid_disks entries in the bios array */
67         r10_bio = kzalloc(size, gfp_flags);
68         if (!r10_bio)
69                 unplug_slaves(conf->mddev);
70
71         return r10_bio;
72 }
73
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76         kfree(r10_bio);
77 }
78
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
84
85 /*
86  * When performing a resync, we need to read and compare, so
87  * we need as many pages are there are copies.
88  * When performing a recovery, we need 2 bios, one for read,
89  * one for write (we recover only one drive per r10buf)
90  *
91  */
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94         conf_t *conf = data;
95         struct page *page;
96         r10bio_t *r10_bio;
97         struct bio *bio;
98         int i, j;
99         int nalloc;
100
101         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102         if (!r10_bio) {
103                 unplug_slaves(conf->mddev);
104                 return NULL;
105         }
106
107         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
108                 nalloc = conf->copies; /* resync */
109         else
110                 nalloc = 2; /* recovery */
111
112         /*
113          * Allocate bios.
114          */
115         for (j = nalloc ; j-- ; ) {
116                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
117                 if (!bio)
118                         goto out_free_bio;
119                 r10_bio->devs[j].bio = bio;
120         }
121         /*
122          * Allocate RESYNC_PAGES data pages and attach them
123          * where needed.
124          */
125         for (j = 0 ; j < nalloc; j++) {
126                 bio = r10_bio->devs[j].bio;
127                 for (i = 0; i < RESYNC_PAGES; i++) {
128                         page = alloc_page(gfp_flags);
129                         if (unlikely(!page))
130                                 goto out_free_pages;
131
132                         bio->bi_io_vec[i].bv_page = page;
133                 }
134         }
135
136         return r10_bio;
137
138 out_free_pages:
139         for ( ; i > 0 ; i--)
140                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
141         while (j--)
142                 for (i = 0; i < RESYNC_PAGES ; i++)
143                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
144         j = -1;
145 out_free_bio:
146         while ( ++j < nalloc )
147                 bio_put(r10_bio->devs[j].bio);
148         r10bio_pool_free(r10_bio, conf);
149         return NULL;
150 }
151
152 static void r10buf_pool_free(void *__r10_bio, void *data)
153 {
154         int i;
155         conf_t *conf = data;
156         r10bio_t *r10bio = __r10_bio;
157         int j;
158
159         for (j=0; j < conf->copies; j++) {
160                 struct bio *bio = r10bio->devs[j].bio;
161                 if (bio) {
162                         for (i = 0; i < RESYNC_PAGES; i++) {
163                                 safe_put_page(bio->bi_io_vec[i].bv_page);
164                                 bio->bi_io_vec[i].bv_page = NULL;
165                         }
166                         bio_put(bio);
167                 }
168         }
169         r10bio_pool_free(r10bio, conf);
170 }
171
172 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
173 {
174         int i;
175
176         for (i = 0; i < conf->copies; i++) {
177                 struct bio **bio = & r10_bio->devs[i].bio;
178                 if (*bio && *bio != IO_BLOCKED)
179                         bio_put(*bio);
180                 *bio = NULL;
181         }
182 }
183
184 static void free_r10bio(r10bio_t *r10_bio)
185 {
186         conf_t *conf = mddev_to_conf(r10_bio->mddev);
187
188         /*
189          * Wake up any possible resync thread that waits for the device
190          * to go idle.
191          */
192         allow_barrier(conf);
193
194         put_all_bios(conf, r10_bio);
195         mempool_free(r10_bio, conf->r10bio_pool);
196 }
197
198 static void put_buf(r10bio_t *r10_bio)
199 {
200         conf_t *conf = mddev_to_conf(r10_bio->mddev);
201
202         mempool_free(r10_bio, conf->r10buf_pool);
203
204         lower_barrier(conf);
205 }
206
207 static void reschedule_retry(r10bio_t *r10_bio)
208 {
209         unsigned long flags;
210         mddev_t *mddev = r10_bio->mddev;
211         conf_t *conf = mddev_to_conf(mddev);
212
213         spin_lock_irqsave(&conf->device_lock, flags);
214         list_add(&r10_bio->retry_list, &conf->retry_list);
215         conf->nr_queued ++;
216         spin_unlock_irqrestore(&conf->device_lock, flags);
217
218         md_wakeup_thread(mddev->thread);
219 }
220
221 /*
222  * raid_end_bio_io() is called when we have finished servicing a mirrored
223  * operation and are ready to return a success/failure code to the buffer
224  * cache layer.
225  */
226 static void raid_end_bio_io(r10bio_t *r10_bio)
227 {
228         struct bio *bio = r10_bio->master_bio;
229
230         bio_endio(bio,
231                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
232         free_r10bio(r10_bio);
233 }
234
235 /*
236  * Update disk head position estimator based on IRQ completion info.
237  */
238 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
239 {
240         conf_t *conf = mddev_to_conf(r10_bio->mddev);
241
242         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
243                 r10_bio->devs[slot].addr + (r10_bio->sectors);
244 }
245
246 static void raid10_end_read_request(struct bio *bio, int error)
247 {
248         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
249         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
250         int slot, dev;
251         conf_t *conf = mddev_to_conf(r10_bio->mddev);
252
253
254         slot = r10_bio->read_slot;
255         dev = r10_bio->devs[slot].devnum;
256         /*
257          * this branch is our 'one mirror IO has finished' event handler:
258          */
259         update_head_pos(slot, r10_bio);
260
261         if (uptodate) {
262                 /*
263                  * Set R10BIO_Uptodate in our master bio, so that
264                  * we will return a good error code to the higher
265                  * levels even if IO on some other mirrored buffer fails.
266                  *
267                  * The 'master' represents the composite IO operation to
268                  * user-side. So if something waits for IO, then it will
269                  * wait for the 'master' bio.
270                  */
271                 set_bit(R10BIO_Uptodate, &r10_bio->state);
272                 raid_end_bio_io(r10_bio);
273         } else {
274                 /*
275                  * oops, read error:
276                  */
277                 char b[BDEVNAME_SIZE];
278                 if (printk_ratelimit())
279                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
280                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
281                 reschedule_retry(r10_bio);
282         }
283
284         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
285 }
286
287 static void raid10_end_write_request(struct bio *bio, int error)
288 {
289         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
290         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
291         int slot, dev;
292         conf_t *conf = mddev_to_conf(r10_bio->mddev);
293
294         for (slot = 0; slot < conf->copies; slot++)
295                 if (r10_bio->devs[slot].bio == bio)
296                         break;
297         dev = r10_bio->devs[slot].devnum;
298
299         /*
300          * this branch is our 'one mirror IO has finished' event handler:
301          */
302         if (!uptodate) {
303                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
304                 /* an I/O failed, we can't clear the bitmap */
305                 set_bit(R10BIO_Degraded, &r10_bio->state);
306         } else
307                 /*
308                  * Set R10BIO_Uptodate in our master bio, so that
309                  * we will return a good error code for to the higher
310                  * levels even if IO on some other mirrored buffer fails.
311                  *
312                  * The 'master' represents the composite IO operation to
313                  * user-side. So if something waits for IO, then it will
314                  * wait for the 'master' bio.
315                  */
316                 set_bit(R10BIO_Uptodate, &r10_bio->state);
317
318         update_head_pos(slot, r10_bio);
319
320         /*
321          *
322          * Let's see if all mirrored write operations have finished
323          * already.
324          */
325         if (atomic_dec_and_test(&r10_bio->remaining)) {
326                 /* clear the bitmap if all writes complete successfully */
327                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
328                                 r10_bio->sectors,
329                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
330                                 0);
331                 md_write_end(r10_bio->mddev);
332                 raid_end_bio_io(r10_bio);
333         }
334
335         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
336 }
337
338
339 /*
340  * RAID10 layout manager
341  * Aswell as the chunksize and raid_disks count, there are two
342  * parameters: near_copies and far_copies.
343  * near_copies * far_copies must be <= raid_disks.
344  * Normally one of these will be 1.
345  * If both are 1, we get raid0.
346  * If near_copies == raid_disks, we get raid1.
347  *
348  * Chunks are layed out in raid0 style with near_copies copies of the
349  * first chunk, followed by near_copies copies of the next chunk and
350  * so on.
351  * If far_copies > 1, then after 1/far_copies of the array has been assigned
352  * as described above, we start again with a device offset of near_copies.
353  * So we effectively have another copy of the whole array further down all
354  * the drives, but with blocks on different drives.
355  * With this layout, and block is never stored twice on the one device.
356  *
357  * raid10_find_phys finds the sector offset of a given virtual sector
358  * on each device that it is on.
359  *
360  * raid10_find_virt does the reverse mapping, from a device and a
361  * sector offset to a virtual address
362  */
363
364 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
365 {
366         int n,f;
367         sector_t sector;
368         sector_t chunk;
369         sector_t stripe;
370         int dev;
371
372         int slot = 0;
373
374         /* now calculate first sector/dev */
375         chunk = r10bio->sector >> conf->chunk_shift;
376         sector = r10bio->sector & conf->chunk_mask;
377
378         chunk *= conf->near_copies;
379         stripe = chunk;
380         dev = sector_div(stripe, conf->raid_disks);
381         if (conf->far_offset)
382                 stripe *= conf->far_copies;
383
384         sector += stripe << conf->chunk_shift;
385
386         /* and calculate all the others */
387         for (n=0; n < conf->near_copies; n++) {
388                 int d = dev;
389                 sector_t s = sector;
390                 r10bio->devs[slot].addr = sector;
391                 r10bio->devs[slot].devnum = d;
392                 slot++;
393
394                 for (f = 1; f < conf->far_copies; f++) {
395                         d += conf->near_copies;
396                         if (d >= conf->raid_disks)
397                                 d -= conf->raid_disks;
398                         s += conf->stride;
399                         r10bio->devs[slot].devnum = d;
400                         r10bio->devs[slot].addr = s;
401                         slot++;
402                 }
403                 dev++;
404                 if (dev >= conf->raid_disks) {
405                         dev = 0;
406                         sector += (conf->chunk_mask + 1);
407                 }
408         }
409         BUG_ON(slot != conf->copies);
410 }
411
412 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
413 {
414         sector_t offset, chunk, vchunk;
415
416         offset = sector & conf->chunk_mask;
417         if (conf->far_offset) {
418                 int fc;
419                 chunk = sector >> conf->chunk_shift;
420                 fc = sector_div(chunk, conf->far_copies);
421                 dev -= fc * conf->near_copies;
422                 if (dev < 0)
423                         dev += conf->raid_disks;
424         } else {
425                 while (sector >= conf->stride) {
426                         sector -= conf->stride;
427                         if (dev < conf->near_copies)
428                                 dev += conf->raid_disks - conf->near_copies;
429                         else
430                                 dev -= conf->near_copies;
431                 }
432                 chunk = sector >> conf->chunk_shift;
433         }
434         vchunk = chunk * conf->raid_disks + dev;
435         sector_div(vchunk, conf->near_copies);
436         return (vchunk << conf->chunk_shift) + offset;
437 }
438
439 /**
440  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
441  *      @q: request queue
442  *      @bio: the buffer head that's been built up so far
443  *      @biovec: the request that could be merged to it.
444  *
445  *      Return amount of bytes we can accept at this offset
446  *      If near_copies == raid_disk, there are no striping issues,
447  *      but in that case, the function isn't called at all.
448  */
449 static int raid10_mergeable_bvec(struct request_queue *q, struct bio *bio,
450                                 struct bio_vec *bio_vec)
451 {
452         mddev_t *mddev = q->queuedata;
453         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
454         int max;
455         unsigned int chunk_sectors = mddev->chunk_size >> 9;
456         unsigned int bio_sectors = bio->bi_size >> 9;
457
458         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
459         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
460         if (max <= bio_vec->bv_len && bio_sectors == 0)
461                 return bio_vec->bv_len;
462         else
463                 return max;
464 }
465
466 /*
467  * This routine returns the disk from which the requested read should
468  * be done. There is a per-array 'next expected sequential IO' sector
469  * number - if this matches on the next IO then we use the last disk.
470  * There is also a per-disk 'last know head position' sector that is
471  * maintained from IRQ contexts, both the normal and the resync IO
472  * completion handlers update this position correctly. If there is no
473  * perfect sequential match then we pick the disk whose head is closest.
474  *
475  * If there are 2 mirrors in the same 2 devices, performance degrades
476  * because position is mirror, not device based.
477  *
478  * The rdev for the device selected will have nr_pending incremented.
479  */
480
481 /*
482  * FIXME: possibly should rethink readbalancing and do it differently
483  * depending on near_copies / far_copies geometry.
484  */
485 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
486 {
487         const unsigned long this_sector = r10_bio->sector;
488         int disk, slot, nslot;
489         const int sectors = r10_bio->sectors;
490         sector_t new_distance, current_distance;
491         mdk_rdev_t *rdev;
492
493         raid10_find_phys(conf, r10_bio);
494         rcu_read_lock();
495         /*
496          * Check if we can balance. We can balance on the whole
497          * device if no resync is going on (recovery is ok), or below
498          * the resync window. We take the first readable disk when
499          * above the resync window.
500          */
501         if (conf->mddev->recovery_cp < MaxSector
502             && (this_sector + sectors >= conf->next_resync)) {
503                 /* make sure that disk is operational */
504                 slot = 0;
505                 disk = r10_bio->devs[slot].devnum;
506
507                 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
508                        r10_bio->devs[slot].bio == IO_BLOCKED ||
509                        !test_bit(In_sync, &rdev->flags)) {
510                         slot++;
511                         if (slot == conf->copies) {
512                                 slot = 0;
513                                 disk = -1;
514                                 break;
515                         }
516                         disk = r10_bio->devs[slot].devnum;
517                 }
518                 goto rb_out;
519         }
520
521
522         /* make sure the disk is operational */
523         slot = 0;
524         disk = r10_bio->devs[slot].devnum;
525         while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
526                r10_bio->devs[slot].bio == IO_BLOCKED ||
527                !test_bit(In_sync, &rdev->flags)) {
528                 slot ++;
529                 if (slot == conf->copies) {
530                         disk = -1;
531                         goto rb_out;
532                 }
533                 disk = r10_bio->devs[slot].devnum;
534         }
535
536
537         current_distance = abs(r10_bio->devs[slot].addr -
538                                conf->mirrors[disk].head_position);
539
540         /* Find the disk whose head is closest */
541
542         for (nslot = slot; nslot < conf->copies; nslot++) {
543                 int ndisk = r10_bio->devs[nslot].devnum;
544
545
546                 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
547                     r10_bio->devs[nslot].bio == IO_BLOCKED ||
548                     !test_bit(In_sync, &rdev->flags))
549                         continue;
550
551                 /* This optimisation is debatable, and completely destroys
552                  * sequential read speed for 'far copies' arrays.  So only
553                  * keep it for 'near' arrays, and review those later.
554                  */
555                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
556                         disk = ndisk;
557                         slot = nslot;
558                         break;
559                 }
560                 new_distance = abs(r10_bio->devs[nslot].addr -
561                                    conf->mirrors[ndisk].head_position);
562                 if (new_distance < current_distance) {
563                         current_distance = new_distance;
564                         disk = ndisk;
565                         slot = nslot;
566                 }
567         }
568
569 rb_out:
570         r10_bio->read_slot = slot;
571 /*      conf->next_seq_sect = this_sector + sectors;*/
572
573         if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
574                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
575         else
576                 disk = -1;
577         rcu_read_unlock();
578
579         return disk;
580 }
581
582 static void unplug_slaves(mddev_t *mddev)
583 {
584         conf_t *conf = mddev_to_conf(mddev);
585         int i;
586
587         rcu_read_lock();
588         for (i=0; i<mddev->raid_disks; i++) {
589                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
590                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
591                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
592
593                         atomic_inc(&rdev->nr_pending);
594                         rcu_read_unlock();
595
596                         blk_unplug(r_queue);
597
598                         rdev_dec_pending(rdev, mddev);
599                         rcu_read_lock();
600                 }
601         }
602         rcu_read_unlock();
603 }
604
605 static void raid10_unplug(struct request_queue *q)
606 {
607         mddev_t *mddev = q->queuedata;
608
609         unplug_slaves(q->queuedata);
610         md_wakeup_thread(mddev->thread);
611 }
612
613 static int raid10_congested(void *data, int bits)
614 {
615         mddev_t *mddev = data;
616         conf_t *conf = mddev_to_conf(mddev);
617         int i, ret = 0;
618
619         rcu_read_lock();
620         for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
621                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
622                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
623                         struct request_queue *q = bdev_get_queue(rdev->bdev);
624
625                         ret |= bdi_congested(&q->backing_dev_info, bits);
626                 }
627         }
628         rcu_read_unlock();
629         return ret;
630 }
631
632 static int flush_pending_writes(conf_t *conf)
633 {
634         /* Any writes that have been queued but are awaiting
635          * bitmap updates get flushed here.
636          * We return 1 if any requests were actually submitted.
637          */
638         int rv = 0;
639
640         spin_lock_irq(&conf->device_lock);
641
642         if (conf->pending_bio_list.head) {
643                 struct bio *bio;
644                 bio = bio_list_get(&conf->pending_bio_list);
645                 blk_remove_plug(conf->mddev->queue);
646                 spin_unlock_irq(&conf->device_lock);
647                 /* flush any pending bitmap writes to disk
648                  * before proceeding w/ I/O */
649                 bitmap_unplug(conf->mddev->bitmap);
650
651                 while (bio) { /* submit pending writes */
652                         struct bio *next = bio->bi_next;
653                         bio->bi_next = NULL;
654                         generic_make_request(bio);
655                         bio = next;
656                 }
657                 rv = 1;
658         } else
659                 spin_unlock_irq(&conf->device_lock);
660         return rv;
661 }
662 /* Barriers....
663  * Sometimes we need to suspend IO while we do something else,
664  * either some resync/recovery, or reconfigure the array.
665  * To do this we raise a 'barrier'.
666  * The 'barrier' is a counter that can be raised multiple times
667  * to count how many activities are happening which preclude
668  * normal IO.
669  * We can only raise the barrier if there is no pending IO.
670  * i.e. if nr_pending == 0.
671  * We choose only to raise the barrier if no-one is waiting for the
672  * barrier to go down.  This means that as soon as an IO request
673  * is ready, no other operations which require a barrier will start
674  * until the IO request has had a chance.
675  *
676  * So: regular IO calls 'wait_barrier'.  When that returns there
677  *    is no backgroup IO happening,  It must arrange to call
678  *    allow_barrier when it has finished its IO.
679  * backgroup IO calls must call raise_barrier.  Once that returns
680  *    there is no normal IO happeing.  It must arrange to call
681  *    lower_barrier when the particular background IO completes.
682  */
683 #define RESYNC_DEPTH 32
684
685 static void raise_barrier(conf_t *conf, int force)
686 {
687         BUG_ON(force && !conf->barrier);
688         spin_lock_irq(&conf->resync_lock);
689
690         /* Wait until no block IO is waiting (unless 'force') */
691         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
692                             conf->resync_lock,
693                             raid10_unplug(conf->mddev->queue));
694
695         /* block any new IO from starting */
696         conf->barrier++;
697
698         /* No wait for all pending IO to complete */
699         wait_event_lock_irq(conf->wait_barrier,
700                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
701                             conf->resync_lock,
702                             raid10_unplug(conf->mddev->queue));
703
704         spin_unlock_irq(&conf->resync_lock);
705 }
706
707 static void lower_barrier(conf_t *conf)
708 {
709         unsigned long flags;
710         spin_lock_irqsave(&conf->resync_lock, flags);
711         conf->barrier--;
712         spin_unlock_irqrestore(&conf->resync_lock, flags);
713         wake_up(&conf->wait_barrier);
714 }
715
716 static void wait_barrier(conf_t *conf)
717 {
718         spin_lock_irq(&conf->resync_lock);
719         if (conf->barrier) {
720                 conf->nr_waiting++;
721                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
722                                     conf->resync_lock,
723                                     raid10_unplug(conf->mddev->queue));
724                 conf->nr_waiting--;
725         }
726         conf->nr_pending++;
727         spin_unlock_irq(&conf->resync_lock);
728 }
729
730 static void allow_barrier(conf_t *conf)
731 {
732         unsigned long flags;
733         spin_lock_irqsave(&conf->resync_lock, flags);
734         conf->nr_pending--;
735         spin_unlock_irqrestore(&conf->resync_lock, flags);
736         wake_up(&conf->wait_barrier);
737 }
738
739 static void freeze_array(conf_t *conf)
740 {
741         /* stop syncio and normal IO and wait for everything to
742          * go quiet.
743          * We increment barrier and nr_waiting, and then
744          * wait until barrier+nr_pending match nr_queued+2
745          */
746         spin_lock_irq(&conf->resync_lock);
747         conf->barrier++;
748         conf->nr_waiting++;
749         wait_event_lock_irq(conf->wait_barrier,
750                             conf->barrier+conf->nr_pending == conf->nr_queued+2,
751                             conf->resync_lock,
752                             ({ flush_pending_writes(conf);
753                                raid10_unplug(conf->mddev->queue); }));
754         spin_unlock_irq(&conf->resync_lock);
755 }
756
757 static void unfreeze_array(conf_t *conf)
758 {
759         /* reverse the effect of the freeze */
760         spin_lock_irq(&conf->resync_lock);
761         conf->barrier--;
762         conf->nr_waiting--;
763         wake_up(&conf->wait_barrier);
764         spin_unlock_irq(&conf->resync_lock);
765 }
766
767 static int make_request(struct request_queue *q, struct bio * bio)
768 {
769         mddev_t *mddev = q->queuedata;
770         conf_t *conf = mddev_to_conf(mddev);
771         mirror_info_t *mirror;
772         r10bio_t *r10_bio;
773         struct bio *read_bio;
774         int i;
775         int chunk_sects = conf->chunk_mask + 1;
776         const int rw = bio_data_dir(bio);
777         const int do_sync = bio_sync(bio);
778         struct bio_list bl;
779         unsigned long flags;
780
781         if (unlikely(bio_barrier(bio))) {
782                 bio_endio(bio, -EOPNOTSUPP);
783                 return 0;
784         }
785
786         /* If this request crosses a chunk boundary, we need to
787          * split it.  This will only happen for 1 PAGE (or less) requests.
788          */
789         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
790                       > chunk_sects &&
791                     conf->near_copies < conf->raid_disks)) {
792                 struct bio_pair *bp;
793                 /* Sanity check -- queue functions should prevent this happening */
794                 if (bio->bi_vcnt != 1 ||
795                     bio->bi_idx != 0)
796                         goto bad_map;
797                 /* This is a one page bio that upper layers
798                  * refuse to split for us, so we need to split it.
799                  */
800                 bp = bio_split(bio, bio_split_pool,
801                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
802                 if (make_request(q, &bp->bio1))
803                         generic_make_request(&bp->bio1);
804                 if (make_request(q, &bp->bio2))
805                         generic_make_request(&bp->bio2);
806
807                 bio_pair_release(bp);
808                 return 0;
809         bad_map:
810                 printk("raid10_make_request bug: can't convert block across chunks"
811                        " or bigger than %dk %llu %d\n", chunk_sects/2,
812                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
813
814                 bio_io_error(bio);
815                 return 0;
816         }
817
818         md_write_start(mddev, bio);
819
820         /*
821          * Register the new request and wait if the reconstruction
822          * thread has put up a bar for new requests.
823          * Continue immediately if no resync is active currently.
824          */
825         wait_barrier(conf);
826
827         disk_stat_inc(mddev->gendisk, ios[rw]);
828         disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
829
830         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
831
832         r10_bio->master_bio = bio;
833         r10_bio->sectors = bio->bi_size >> 9;
834
835         r10_bio->mddev = mddev;
836         r10_bio->sector = bio->bi_sector;
837         r10_bio->state = 0;
838
839         if (rw == READ) {
840                 /*
841                  * read balancing logic:
842                  */
843                 int disk = read_balance(conf, r10_bio);
844                 int slot = r10_bio->read_slot;
845                 if (disk < 0) {
846                         raid_end_bio_io(r10_bio);
847                         return 0;
848                 }
849                 mirror = conf->mirrors + disk;
850
851                 read_bio = bio_clone(bio, GFP_NOIO);
852
853                 r10_bio->devs[slot].bio = read_bio;
854
855                 read_bio->bi_sector = r10_bio->devs[slot].addr +
856                         mirror->rdev->data_offset;
857                 read_bio->bi_bdev = mirror->rdev->bdev;
858                 read_bio->bi_end_io = raid10_end_read_request;
859                 read_bio->bi_rw = READ | do_sync;
860                 read_bio->bi_private = r10_bio;
861
862                 generic_make_request(read_bio);
863                 return 0;
864         }
865
866         /*
867          * WRITE:
868          */
869         /* first select target devices under spinlock and
870          * inc refcount on their rdev.  Record them by setting
871          * bios[x] to bio
872          */
873         raid10_find_phys(conf, r10_bio);
874         rcu_read_lock();
875         for (i = 0;  i < conf->copies; i++) {
876                 int d = r10_bio->devs[i].devnum;
877                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
878                 if (rdev &&
879                     !test_bit(Faulty, &rdev->flags)) {
880                         atomic_inc(&rdev->nr_pending);
881                         r10_bio->devs[i].bio = bio;
882                 } else {
883                         r10_bio->devs[i].bio = NULL;
884                         set_bit(R10BIO_Degraded, &r10_bio->state);
885                 }
886         }
887         rcu_read_unlock();
888
889         atomic_set(&r10_bio->remaining, 0);
890
891         bio_list_init(&bl);
892         for (i = 0; i < conf->copies; i++) {
893                 struct bio *mbio;
894                 int d = r10_bio->devs[i].devnum;
895                 if (!r10_bio->devs[i].bio)
896                         continue;
897
898                 mbio = bio_clone(bio, GFP_NOIO);
899                 r10_bio->devs[i].bio = mbio;
900
901                 mbio->bi_sector = r10_bio->devs[i].addr+
902                         conf->mirrors[d].rdev->data_offset;
903                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
904                 mbio->bi_end_io = raid10_end_write_request;
905                 mbio->bi_rw = WRITE | do_sync;
906                 mbio->bi_private = r10_bio;
907
908                 atomic_inc(&r10_bio->remaining);
909                 bio_list_add(&bl, mbio);
910         }
911
912         if (unlikely(!atomic_read(&r10_bio->remaining))) {
913                 /* the array is dead */
914                 md_write_end(mddev);
915                 raid_end_bio_io(r10_bio);
916                 return 0;
917         }
918
919         bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
920         spin_lock_irqsave(&conf->device_lock, flags);
921         bio_list_merge(&conf->pending_bio_list, &bl);
922         blk_plug_device(mddev->queue);
923         spin_unlock_irqrestore(&conf->device_lock, flags);
924
925         /* In case raid10d snuck in to freeze_array */
926         wake_up(&conf->wait_barrier);
927
928         if (do_sync)
929                 md_wakeup_thread(mddev->thread);
930
931         return 0;
932 }
933
934 static void status(struct seq_file *seq, mddev_t *mddev)
935 {
936         conf_t *conf = mddev_to_conf(mddev);
937         int i;
938
939         if (conf->near_copies < conf->raid_disks)
940                 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
941         if (conf->near_copies > 1)
942                 seq_printf(seq, " %d near-copies", conf->near_copies);
943         if (conf->far_copies > 1) {
944                 if (conf->far_offset)
945                         seq_printf(seq, " %d offset-copies", conf->far_copies);
946                 else
947                         seq_printf(seq, " %d far-copies", conf->far_copies);
948         }
949         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
950                                         conf->raid_disks - mddev->degraded);
951         for (i = 0; i < conf->raid_disks; i++)
952                 seq_printf(seq, "%s",
953                               conf->mirrors[i].rdev &&
954                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
955         seq_printf(seq, "]");
956 }
957
958 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
959 {
960         char b[BDEVNAME_SIZE];
961         conf_t *conf = mddev_to_conf(mddev);
962
963         /*
964          * If it is not operational, then we have already marked it as dead
965          * else if it is the last working disks, ignore the error, let the
966          * next level up know.
967          * else mark the drive as failed
968          */
969         if (test_bit(In_sync, &rdev->flags)
970             && conf->raid_disks-mddev->degraded == 1)
971                 /*
972                  * Don't fail the drive, just return an IO error.
973                  * The test should really be more sophisticated than
974                  * "working_disks == 1", but it isn't critical, and
975                  * can wait until we do more sophisticated "is the drive
976                  * really dead" tests...
977                  */
978                 return;
979         if (test_and_clear_bit(In_sync, &rdev->flags)) {
980                 unsigned long flags;
981                 spin_lock_irqsave(&conf->device_lock, flags);
982                 mddev->degraded++;
983                 spin_unlock_irqrestore(&conf->device_lock, flags);
984                 /*
985                  * if recovery is running, make sure it aborts.
986                  */
987                 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
988         }
989         set_bit(Faulty, &rdev->flags);
990         set_bit(MD_CHANGE_DEVS, &mddev->flags);
991         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device. \n"
992                 "       Operation continuing on %d devices\n",
993                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
994 }
995
996 static void print_conf(conf_t *conf)
997 {
998         int i;
999         mirror_info_t *tmp;
1000
1001         printk("RAID10 conf printout:\n");
1002         if (!conf) {
1003                 printk("(!conf)\n");
1004                 return;
1005         }
1006         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1007                 conf->raid_disks);
1008
1009         for (i = 0; i < conf->raid_disks; i++) {
1010                 char b[BDEVNAME_SIZE];
1011                 tmp = conf->mirrors + i;
1012                 if (tmp->rdev)
1013                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1014                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1015                                 !test_bit(Faulty, &tmp->rdev->flags),
1016                                 bdevname(tmp->rdev->bdev,b));
1017         }
1018 }
1019
1020 static void close_sync(conf_t *conf)
1021 {
1022         wait_barrier(conf);
1023         allow_barrier(conf);
1024
1025         mempool_destroy(conf->r10buf_pool);
1026         conf->r10buf_pool = NULL;
1027 }
1028
1029 /* check if there are enough drives for
1030  * every block to appear on atleast one
1031  */
1032 static int enough(conf_t *conf)
1033 {
1034         int first = 0;
1035
1036         do {
1037                 int n = conf->copies;
1038                 int cnt = 0;
1039                 while (n--) {
1040                         if (conf->mirrors[first].rdev)
1041                                 cnt++;
1042                         first = (first+1) % conf->raid_disks;
1043                 }
1044                 if (cnt == 0)
1045                         return 0;
1046         } while (first != 0);
1047         return 1;
1048 }
1049
1050 static int raid10_spare_active(mddev_t *mddev)
1051 {
1052         int i;
1053         conf_t *conf = mddev->private;
1054         mirror_info_t *tmp;
1055
1056         /*
1057          * Find all non-in_sync disks within the RAID10 configuration
1058          * and mark them in_sync
1059          */
1060         for (i = 0; i < conf->raid_disks; i++) {
1061                 tmp = conf->mirrors + i;
1062                 if (tmp->rdev
1063                     && !test_bit(Faulty, &tmp->rdev->flags)
1064                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1065                         unsigned long flags;
1066                         spin_lock_irqsave(&conf->device_lock, flags);
1067                         mddev->degraded--;
1068                         spin_unlock_irqrestore(&conf->device_lock, flags);
1069                 }
1070         }
1071
1072         print_conf(conf);
1073         return 0;
1074 }
1075
1076
1077 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1078 {
1079         conf_t *conf = mddev->private;
1080         int found = 0;
1081         int mirror;
1082         mirror_info_t *p;
1083
1084         if (mddev->recovery_cp < MaxSector)
1085                 /* only hot-add to in-sync arrays, as recovery is
1086                  * very different from resync
1087                  */
1088                 return 0;
1089         if (!enough(conf))
1090                 return 0;
1091
1092         if (rdev->saved_raid_disk >= 0 &&
1093             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1094                 mirror = rdev->saved_raid_disk;
1095         else
1096                 mirror = 0;
1097         for ( ; mirror < mddev->raid_disks; mirror++)
1098                 if ( !(p=conf->mirrors+mirror)->rdev) {
1099
1100                         blk_queue_stack_limits(mddev->queue,
1101                                                rdev->bdev->bd_disk->queue);
1102                         /* as we don't honour merge_bvec_fn, we must never risk
1103                          * violating it, so limit ->max_sector to one PAGE, as
1104                          * a one page request is never in violation.
1105                          */
1106                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1107                             mddev->queue->max_sectors > (PAGE_SIZE>>9))
1108                                 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1109
1110                         p->head_position = 0;
1111                         rdev->raid_disk = mirror;
1112                         found = 1;
1113                         if (rdev->saved_raid_disk != mirror)
1114                                 conf->fullsync = 1;
1115                         rcu_assign_pointer(p->rdev, rdev);
1116                         break;
1117                 }
1118
1119         print_conf(conf);
1120         return found;
1121 }
1122
1123 static int raid10_remove_disk(mddev_t *mddev, int number)
1124 {
1125         conf_t *conf = mddev->private;
1126         int err = 0;
1127         mdk_rdev_t *rdev;
1128         mirror_info_t *p = conf->mirrors+ number;
1129
1130         print_conf(conf);
1131         rdev = p->rdev;
1132         if (rdev) {
1133                 if (test_bit(In_sync, &rdev->flags) ||
1134                     atomic_read(&rdev->nr_pending)) {
1135                         err = -EBUSY;
1136                         goto abort;
1137                 }
1138                 p->rdev = NULL;
1139                 synchronize_rcu();
1140                 if (atomic_read(&rdev->nr_pending)) {
1141                         /* lost the race, try later */
1142                         err = -EBUSY;
1143                         p->rdev = rdev;
1144                 }
1145         }
1146 abort:
1147
1148         print_conf(conf);
1149         return err;
1150 }
1151
1152
1153 static void end_sync_read(struct bio *bio, int error)
1154 {
1155         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1156         conf_t *conf = mddev_to_conf(r10_bio->mddev);
1157         int i,d;
1158
1159         for (i=0; i<conf->copies; i++)
1160                 if (r10_bio->devs[i].bio == bio)
1161                         break;
1162         BUG_ON(i == conf->copies);
1163         update_head_pos(i, r10_bio);
1164         d = r10_bio->devs[i].devnum;
1165
1166         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1167                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1168         else {
1169                 atomic_add(r10_bio->sectors,
1170                            &conf->mirrors[d].rdev->corrected_errors);
1171                 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1172                         md_error(r10_bio->mddev,
1173                                  conf->mirrors[d].rdev);
1174         }
1175
1176         /* for reconstruct, we always reschedule after a read.
1177          * for resync, only after all reads
1178          */
1179         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1180             atomic_dec_and_test(&r10_bio->remaining)) {
1181                 /* we have read all the blocks,
1182                  * do the comparison in process context in raid10d
1183                  */
1184                 reschedule_retry(r10_bio);
1185         }
1186         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1187 }
1188
1189 static void end_sync_write(struct bio *bio, int error)
1190 {
1191         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1192         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1193         mddev_t *mddev = r10_bio->mddev;
1194         conf_t *conf = mddev_to_conf(mddev);
1195         int i,d;
1196
1197         for (i = 0; i < conf->copies; i++)
1198                 if (r10_bio->devs[i].bio == bio)
1199                         break;
1200         d = r10_bio->devs[i].devnum;
1201
1202         if (!uptodate)
1203                 md_error(mddev, conf->mirrors[d].rdev);
1204         update_head_pos(i, r10_bio);
1205
1206         while (atomic_dec_and_test(&r10_bio->remaining)) {
1207                 if (r10_bio->master_bio == NULL) {
1208                         /* the primary of several recovery bios */
1209                         md_done_sync(mddev, r10_bio->sectors, 1);
1210                         put_buf(r10_bio);
1211                         break;
1212                 } else {
1213                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1214                         put_buf(r10_bio);
1215                         r10_bio = r10_bio2;
1216                 }
1217         }
1218         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1219 }
1220
1221 /*
1222  * Note: sync and recover and handled very differently for raid10
1223  * This code is for resync.
1224  * For resync, we read through virtual addresses and read all blocks.
1225  * If there is any error, we schedule a write.  The lowest numbered
1226  * drive is authoritative.
1227  * However requests come for physical address, so we need to map.
1228  * For every physical address there are raid_disks/copies virtual addresses,
1229  * which is always are least one, but is not necessarly an integer.
1230  * This means that a physical address can span multiple chunks, so we may
1231  * have to submit multiple io requests for a single sync request.
1232  */
1233 /*
1234  * We check if all blocks are in-sync and only write to blocks that
1235  * aren't in sync
1236  */
1237 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1238 {
1239         conf_t *conf = mddev_to_conf(mddev);
1240         int i, first;
1241         struct bio *tbio, *fbio;
1242
1243         atomic_set(&r10_bio->remaining, 1);
1244
1245         /* find the first device with a block */
1246         for (i=0; i<conf->copies; i++)
1247                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1248                         break;
1249
1250         if (i == conf->copies)
1251                 goto done;
1252
1253         first = i;
1254         fbio = r10_bio->devs[i].bio;
1255
1256         /* now find blocks with errors */
1257         for (i=0 ; i < conf->copies ; i++) {
1258                 int  j, d;
1259                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1260
1261                 tbio = r10_bio->devs[i].bio;
1262
1263                 if (tbio->bi_end_io != end_sync_read)
1264                         continue;
1265                 if (i == first)
1266                         continue;
1267                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1268                         /* We know that the bi_io_vec layout is the same for
1269                          * both 'first' and 'i', so we just compare them.
1270                          * All vec entries are PAGE_SIZE;
1271                          */
1272                         for (j = 0; j < vcnt; j++)
1273                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1274                                            page_address(tbio->bi_io_vec[j].bv_page),
1275                                            PAGE_SIZE))
1276                                         break;
1277                         if (j == vcnt)
1278                                 continue;
1279                         mddev->resync_mismatches += r10_bio->sectors;
1280                 }
1281                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1282                         /* Don't fix anything. */
1283                         continue;
1284                 /* Ok, we need to write this bio
1285                  * First we need to fixup bv_offset, bv_len and
1286                  * bi_vecs, as the read request might have corrupted these
1287                  */
1288                 tbio->bi_vcnt = vcnt;
1289                 tbio->bi_size = r10_bio->sectors << 9;
1290                 tbio->bi_idx = 0;
1291                 tbio->bi_phys_segments = 0;
1292                 tbio->bi_hw_segments = 0;
1293                 tbio->bi_hw_front_size = 0;
1294                 tbio->bi_hw_back_size = 0;
1295                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1296                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1297                 tbio->bi_next = NULL;
1298                 tbio->bi_rw = WRITE;
1299                 tbio->bi_private = r10_bio;
1300                 tbio->bi_sector = r10_bio->devs[i].addr;
1301
1302                 for (j=0; j < vcnt ; j++) {
1303                         tbio->bi_io_vec[j].bv_offset = 0;
1304                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1305
1306                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1307                                page_address(fbio->bi_io_vec[j].bv_page),
1308                                PAGE_SIZE);
1309                 }
1310                 tbio->bi_end_io = end_sync_write;
1311
1312                 d = r10_bio->devs[i].devnum;
1313                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1314                 atomic_inc(&r10_bio->remaining);
1315                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1316
1317                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1318                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1319                 generic_make_request(tbio);
1320         }
1321
1322 done:
1323         if (atomic_dec_and_test(&r10_bio->remaining)) {
1324                 md_done_sync(mddev, r10_bio->sectors, 1);
1325                 put_buf(r10_bio);
1326         }
1327 }
1328
1329 /*
1330  * Now for the recovery code.
1331  * Recovery happens across physical sectors.
1332  * We recover all non-is_sync drives by finding the virtual address of
1333  * each, and then choose a working drive that also has that virt address.
1334  * There is a separate r10_bio for each non-in_sync drive.
1335  * Only the first two slots are in use. The first for reading,
1336  * The second for writing.
1337  *
1338  */
1339
1340 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1341 {
1342         conf_t *conf = mddev_to_conf(mddev);
1343         int i, d;
1344         struct bio *bio, *wbio;
1345
1346
1347         /* move the pages across to the second bio
1348          * and submit the write request
1349          */
1350         bio = r10_bio->devs[0].bio;
1351         wbio = r10_bio->devs[1].bio;
1352         for (i=0; i < wbio->bi_vcnt; i++) {
1353                 struct page *p = bio->bi_io_vec[i].bv_page;
1354                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1355                 wbio->bi_io_vec[i].bv_page = p;
1356         }
1357         d = r10_bio->devs[1].devnum;
1358
1359         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1360         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1361         if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1362                 generic_make_request(wbio);
1363         else
1364                 bio_endio(wbio, -EIO);
1365 }
1366
1367
1368 /*
1369  * This is a kernel thread which:
1370  *
1371  *      1.      Retries failed read operations on working mirrors.
1372  *      2.      Updates the raid superblock when problems encounter.
1373  *      3.      Performs writes following reads for array synchronising.
1374  */
1375
1376 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1377 {
1378         int sect = 0; /* Offset from r10_bio->sector */
1379         int sectors = r10_bio->sectors;
1380         mdk_rdev_t*rdev;
1381         while(sectors) {
1382                 int s = sectors;
1383                 int sl = r10_bio->read_slot;
1384                 int success = 0;
1385                 int start;
1386
1387                 if (s > (PAGE_SIZE>>9))
1388                         s = PAGE_SIZE >> 9;
1389
1390                 rcu_read_lock();
1391                 do {
1392                         int d = r10_bio->devs[sl].devnum;
1393                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1394                         if (rdev &&
1395                             test_bit(In_sync, &rdev->flags)) {
1396                                 atomic_inc(&rdev->nr_pending);
1397                                 rcu_read_unlock();
1398                                 success = sync_page_io(rdev->bdev,
1399                                                        r10_bio->devs[sl].addr +
1400                                                        sect + rdev->data_offset,
1401                                                        s<<9,
1402                                                        conf->tmppage, READ);
1403                                 rdev_dec_pending(rdev, mddev);
1404                                 rcu_read_lock();
1405                                 if (success)
1406                                         break;
1407                         }
1408                         sl++;
1409                         if (sl == conf->copies)
1410                                 sl = 0;
1411                 } while (!success && sl != r10_bio->read_slot);
1412                 rcu_read_unlock();
1413
1414                 if (!success) {
1415                         /* Cannot read from anywhere -- bye bye array */
1416                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1417                         md_error(mddev, conf->mirrors[dn].rdev);
1418                         break;
1419                 }
1420
1421                 start = sl;
1422                 /* write it back and re-read */
1423                 rcu_read_lock();
1424                 while (sl != r10_bio->read_slot) {
1425                         int d;
1426                         if (sl==0)
1427                                 sl = conf->copies;
1428                         sl--;
1429                         d = r10_bio->devs[sl].devnum;
1430                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1431                         if (rdev &&
1432                             test_bit(In_sync, &rdev->flags)) {
1433                                 atomic_inc(&rdev->nr_pending);
1434                                 rcu_read_unlock();
1435                                 atomic_add(s, &rdev->corrected_errors);
1436                                 if (sync_page_io(rdev->bdev,
1437                                                  r10_bio->devs[sl].addr +
1438                                                  sect + rdev->data_offset,
1439                                                  s<<9, conf->tmppage, WRITE)
1440                                     == 0)
1441                                         /* Well, this device is dead */
1442                                         md_error(mddev, rdev);
1443                                 rdev_dec_pending(rdev, mddev);
1444                                 rcu_read_lock();
1445                         }
1446                 }
1447                 sl = start;
1448                 while (sl != r10_bio->read_slot) {
1449                         int d;
1450                         if (sl==0)
1451                                 sl = conf->copies;
1452                         sl--;
1453                         d = r10_bio->devs[sl].devnum;
1454                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1455                         if (rdev &&
1456                             test_bit(In_sync, &rdev->flags)) {
1457                                 char b[BDEVNAME_SIZE];
1458                                 atomic_inc(&rdev->nr_pending);
1459                                 rcu_read_unlock();
1460                                 if (sync_page_io(rdev->bdev,
1461                                                  r10_bio->devs[sl].addr +
1462                                                  sect + rdev->data_offset,
1463                                                  s<<9, conf->tmppage, READ) == 0)
1464                                         /* Well, this device is dead */
1465                                         md_error(mddev, rdev);
1466                                 else
1467                                         printk(KERN_INFO
1468                                                "raid10:%s: read error corrected"
1469                                                " (%d sectors at %llu on %s)\n",
1470                                                mdname(mddev), s,
1471                                                (unsigned long long)(sect+
1472                                                     rdev->data_offset),
1473                                                bdevname(rdev->bdev, b));
1474
1475                                 rdev_dec_pending(rdev, mddev);
1476                                 rcu_read_lock();
1477                         }
1478                 }
1479                 rcu_read_unlock();
1480
1481                 sectors -= s;
1482                 sect += s;
1483         }
1484 }
1485
1486 static void raid10d(mddev_t *mddev)
1487 {
1488         r10bio_t *r10_bio;
1489         struct bio *bio;
1490         unsigned long flags;
1491         conf_t *conf = mddev_to_conf(mddev);
1492         struct list_head *head = &conf->retry_list;
1493         int unplug=0;
1494         mdk_rdev_t *rdev;
1495
1496         md_check_recovery(mddev);
1497
1498         for (;;) {
1499                 char b[BDEVNAME_SIZE];
1500
1501                 unplug += flush_pending_writes(conf);
1502
1503                 spin_lock_irqsave(&conf->device_lock, flags);
1504                 if (list_empty(head)) {
1505                         spin_unlock_irqrestore(&conf->device_lock, flags);
1506                         break;
1507                 }
1508                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1509                 list_del(head->prev);
1510                 conf->nr_queued--;
1511                 spin_unlock_irqrestore(&conf->device_lock, flags);
1512
1513                 mddev = r10_bio->mddev;
1514                 conf = mddev_to_conf(mddev);
1515                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1516                         sync_request_write(mddev, r10_bio);
1517                         unplug = 1;
1518                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1519                         recovery_request_write(mddev, r10_bio);
1520                         unplug = 1;
1521                 } else {
1522                         int mirror;
1523                         /* we got a read error. Maybe the drive is bad.  Maybe just
1524                          * the block and we can fix it.
1525                          * We freeze all other IO, and try reading the block from
1526                          * other devices.  When we find one, we re-write
1527                          * and check it that fixes the read error.
1528                          * This is all done synchronously while the array is
1529                          * frozen.
1530                          */
1531                         if (mddev->ro == 0) {
1532                                 freeze_array(conf);
1533                                 fix_read_error(conf, mddev, r10_bio);
1534                                 unfreeze_array(conf);
1535                         }
1536
1537                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1538                         r10_bio->devs[r10_bio->read_slot].bio =
1539                                 mddev->ro ? IO_BLOCKED : NULL;
1540                         mirror = read_balance(conf, r10_bio);
1541                         if (mirror == -1) {
1542                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1543                                        " read error for block %llu\n",
1544                                        bdevname(bio->bi_bdev,b),
1545                                        (unsigned long long)r10_bio->sector);
1546                                 raid_end_bio_io(r10_bio);
1547                                 bio_put(bio);
1548                         } else {
1549                                 const int do_sync = bio_sync(r10_bio->master_bio);
1550                                 bio_put(bio);
1551                                 rdev = conf->mirrors[mirror].rdev;
1552                                 if (printk_ratelimit())
1553                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1554                                                " another mirror\n",
1555                                                bdevname(rdev->bdev,b),
1556                                                (unsigned long long)r10_bio->sector);
1557                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1558                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1559                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1560                                         + rdev->data_offset;
1561                                 bio->bi_bdev = rdev->bdev;
1562                                 bio->bi_rw = READ | do_sync;
1563                                 bio->bi_private = r10_bio;
1564                                 bio->bi_end_io = raid10_end_read_request;
1565                                 unplug = 1;
1566                                 generic_make_request(bio);
1567                         }
1568                 }
1569         }
1570         if (unplug)
1571                 unplug_slaves(mddev);
1572 }
1573
1574
1575 static int init_resync(conf_t *conf)
1576 {
1577         int buffs;
1578
1579         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1580         BUG_ON(conf->r10buf_pool);
1581         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1582         if (!conf->r10buf_pool)
1583                 return -ENOMEM;
1584         conf->next_resync = 0;
1585         return 0;
1586 }
1587
1588 /*
1589  * perform a "sync" on one "block"
1590  *
1591  * We need to make sure that no normal I/O request - particularly write
1592  * requests - conflict with active sync requests.
1593  *
1594  * This is achieved by tracking pending requests and a 'barrier' concept
1595  * that can be installed to exclude normal IO requests.
1596  *
1597  * Resync and recovery are handled very differently.
1598  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1599  *
1600  * For resync, we iterate over virtual addresses, read all copies,
1601  * and update if there are differences.  If only one copy is live,
1602  * skip it.
1603  * For recovery, we iterate over physical addresses, read a good
1604  * value for each non-in_sync drive, and over-write.
1605  *
1606  * So, for recovery we may have several outstanding complex requests for a
1607  * given address, one for each out-of-sync device.  We model this by allocating
1608  * a number of r10_bio structures, one for each out-of-sync device.
1609  * As we setup these structures, we collect all bio's together into a list
1610  * which we then process collectively to add pages, and then process again
1611  * to pass to generic_make_request.
1612  *
1613  * The r10_bio structures are linked using a borrowed master_bio pointer.
1614  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1615  * has its remaining count decremented to 0, the whole complex operation
1616  * is complete.
1617  *
1618  */
1619
1620 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1621 {
1622         conf_t *conf = mddev_to_conf(mddev);
1623         r10bio_t *r10_bio;
1624         struct bio *biolist = NULL, *bio;
1625         sector_t max_sector, nr_sectors;
1626         int disk;
1627         int i;
1628         int max_sync;
1629         int sync_blocks;
1630
1631         sector_t sectors_skipped = 0;
1632         int chunks_skipped = 0;
1633
1634         if (!conf->r10buf_pool)
1635                 if (init_resync(conf))
1636                         return 0;
1637
1638  skipped:
1639         max_sector = mddev->size << 1;
1640         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1641                 max_sector = mddev->resync_max_sectors;
1642         if (sector_nr >= max_sector) {
1643                 /* If we aborted, we need to abort the
1644                  * sync on the 'current' bitmap chucks (there can
1645                  * be several when recovering multiple devices).
1646                  * as we may have started syncing it but not finished.
1647                  * We can find the current address in
1648                  * mddev->curr_resync, but for recovery,
1649                  * we need to convert that to several
1650                  * virtual addresses.
1651                  */
1652                 if (mddev->curr_resync < max_sector) { /* aborted */
1653                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1654                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1655                                                 &sync_blocks, 1);
1656                         else for (i=0; i<conf->raid_disks; i++) {
1657                                 sector_t sect =
1658                                         raid10_find_virt(conf, mddev->curr_resync, i);
1659                                 bitmap_end_sync(mddev->bitmap, sect,
1660                                                 &sync_blocks, 1);
1661                         }
1662                 } else /* completed sync */
1663                         conf->fullsync = 0;
1664
1665                 bitmap_close_sync(mddev->bitmap);
1666                 close_sync(conf);
1667                 *skipped = 1;
1668                 return sectors_skipped;
1669         }
1670         if (chunks_skipped >= conf->raid_disks) {
1671                 /* if there has been nothing to do on any drive,
1672                  * then there is nothing to do at all..
1673                  */
1674                 *skipped = 1;
1675                 return (max_sector - sector_nr) + sectors_skipped;
1676         }
1677
1678         if (max_sector > mddev->resync_max)
1679                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1680
1681         /* make sure whole request will fit in a chunk - if chunks
1682          * are meaningful
1683          */
1684         if (conf->near_copies < conf->raid_disks &&
1685             max_sector > (sector_nr | conf->chunk_mask))
1686                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1687         /*
1688          * If there is non-resync activity waiting for us then
1689          * put in a delay to throttle resync.
1690          */
1691         if (!go_faster && conf->nr_waiting)
1692                 msleep_interruptible(1000);
1693
1694         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1695
1696         /* Again, very different code for resync and recovery.
1697          * Both must result in an r10bio with a list of bios that
1698          * have bi_end_io, bi_sector, bi_bdev set,
1699          * and bi_private set to the r10bio.
1700          * For recovery, we may actually create several r10bios
1701          * with 2 bios in each, that correspond to the bios in the main one.
1702          * In this case, the subordinate r10bios link back through a
1703          * borrowed master_bio pointer, and the counter in the master
1704          * includes a ref from each subordinate.
1705          */
1706         /* First, we decide what to do and set ->bi_end_io
1707          * To end_sync_read if we want to read, and
1708          * end_sync_write if we will want to write.
1709          */
1710
1711         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1712         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1713                 /* recovery... the complicated one */
1714                 int i, j, k;
1715                 r10_bio = NULL;
1716
1717                 for (i=0 ; i<conf->raid_disks; i++)
1718                         if (conf->mirrors[i].rdev &&
1719                             !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1720                                 int still_degraded = 0;
1721                                 /* want to reconstruct this device */
1722                                 r10bio_t *rb2 = r10_bio;
1723                                 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1724                                 int must_sync;
1725                                 /* Unless we are doing a full sync, we only need
1726                                  * to recover the block if it is set in the bitmap
1727                                  */
1728                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1729                                                               &sync_blocks, 1);
1730                                 if (sync_blocks < max_sync)
1731                                         max_sync = sync_blocks;
1732                                 if (!must_sync &&
1733                                     !conf->fullsync) {
1734                                         /* yep, skip the sync_blocks here, but don't assume
1735                                          * that there will never be anything to do here
1736                                          */
1737                                         chunks_skipped = -1;
1738                                         continue;
1739                                 }
1740
1741                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1742                                 raise_barrier(conf, rb2 != NULL);
1743                                 atomic_set(&r10_bio->remaining, 0);
1744
1745                                 r10_bio->master_bio = (struct bio*)rb2;
1746                                 if (rb2)
1747                                         atomic_inc(&rb2->remaining);
1748                                 r10_bio->mddev = mddev;
1749                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1750                                 r10_bio->sector = sect;
1751
1752                                 raid10_find_phys(conf, r10_bio);
1753                                 /* Need to check if this section will still be
1754                                  * degraded
1755                                  */
1756                                 for (j=0; j<conf->copies;j++) {
1757                                         int d = r10_bio->devs[j].devnum;
1758                                         if (conf->mirrors[d].rdev == NULL ||
1759                                             test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1760                                                 still_degraded = 1;
1761                                                 break;
1762                                         }
1763                                 }
1764                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1765                                                               &sync_blocks, still_degraded);
1766
1767                                 for (j=0; j<conf->copies;j++) {
1768                                         int d = r10_bio->devs[j].devnum;
1769                                         if (conf->mirrors[d].rdev &&
1770                                             test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1771                                                 /* This is where we read from */
1772                                                 bio = r10_bio->devs[0].bio;
1773                                                 bio->bi_next = biolist;
1774                                                 biolist = bio;
1775                                                 bio->bi_private = r10_bio;
1776                                                 bio->bi_end_io = end_sync_read;
1777                                                 bio->bi_rw = READ;
1778                                                 bio->bi_sector = r10_bio->devs[j].addr +
1779                                                         conf->mirrors[d].rdev->data_offset;
1780                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1781                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1782                                                 atomic_inc(&r10_bio->remaining);
1783                                                 /* and we write to 'i' */
1784
1785                                                 for (k=0; k<conf->copies; k++)
1786                                                         if (r10_bio->devs[k].devnum == i)
1787                                                                 break;
1788                                                 BUG_ON(k == conf->copies);
1789                                                 bio = r10_bio->devs[1].bio;
1790                                                 bio->bi_next = biolist;
1791                                                 biolist = bio;
1792                                                 bio->bi_private = r10_bio;
1793                                                 bio->bi_end_io = end_sync_write;
1794                                                 bio->bi_rw = WRITE;
1795                                                 bio->bi_sector = r10_bio->devs[k].addr +
1796                                                         conf->mirrors[i].rdev->data_offset;
1797                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1798
1799                                                 r10_bio->devs[0].devnum = d;
1800                                                 r10_bio->devs[1].devnum = i;
1801
1802                                                 break;
1803                                         }
1804                                 }
1805                                 if (j == conf->copies) {
1806                                         /* Cannot recover, so abort the recovery */
1807                                         put_buf(r10_bio);
1808                                         r10_bio = rb2;
1809                                         if (!test_and_set_bit(MD_RECOVERY_ERR, &mddev->recovery))
1810                                                 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1811                                                        mdname(mddev));
1812                                         break;
1813                                 }
1814                         }
1815                 if (biolist == NULL) {
1816                         while (r10_bio) {
1817                                 r10bio_t *rb2 = r10_bio;
1818                                 r10_bio = (r10bio_t*) rb2->master_bio;
1819                                 rb2->master_bio = NULL;
1820                                 put_buf(rb2);
1821                         }
1822                         goto giveup;
1823                 }
1824         } else {
1825                 /* resync. Schedule a read for every block at this virt offset */
1826                 int count = 0;
1827
1828                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1829                                        &sync_blocks, mddev->degraded) &&
1830                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1831                         /* We can skip this block */
1832                         *skipped = 1;
1833                         return sync_blocks + sectors_skipped;
1834                 }
1835                 if (sync_blocks < max_sync)
1836                         max_sync = sync_blocks;
1837                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1838
1839                 r10_bio->mddev = mddev;
1840                 atomic_set(&r10_bio->remaining, 0);
1841                 raise_barrier(conf, 0);
1842                 conf->next_resync = sector_nr;
1843
1844                 r10_bio->master_bio = NULL;
1845                 r10_bio->sector = sector_nr;
1846                 set_bit(R10BIO_IsSync, &r10_bio->state);
1847                 raid10_find_phys(conf, r10_bio);
1848                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1849
1850                 for (i=0; i<conf->copies; i++) {
1851                         int d = r10_bio->devs[i].devnum;
1852                         bio = r10_bio->devs[i].bio;
1853                         bio->bi_end_io = NULL;
1854                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
1855                         if (conf->mirrors[d].rdev == NULL ||
1856                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1857                                 continue;
1858                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1859                         atomic_inc(&r10_bio->remaining);
1860                         bio->bi_next = biolist;
1861                         biolist = bio;
1862                         bio->bi_private = r10_bio;
1863                         bio->bi_end_io = end_sync_read;
1864                         bio->bi_rw = READ;
1865                         bio->bi_sector = r10_bio->devs[i].addr +
1866                                 conf->mirrors[d].rdev->data_offset;
1867                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1868                         count++;
1869                 }
1870
1871                 if (count < 2) {
1872                         for (i=0; i<conf->copies; i++) {
1873                                 int d = r10_bio->devs[i].devnum;
1874                                 if (r10_bio->devs[i].bio->bi_end_io)
1875                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1876                         }
1877                         put_buf(r10_bio);
1878                         biolist = NULL;
1879                         goto giveup;
1880                 }
1881         }
1882
1883         for (bio = biolist; bio ; bio=bio->bi_next) {
1884
1885                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1886                 if (bio->bi_end_io)
1887                         bio->bi_flags |= 1 << BIO_UPTODATE;
1888                 bio->bi_vcnt = 0;
1889                 bio->bi_idx = 0;
1890                 bio->bi_phys_segments = 0;
1891                 bio->bi_hw_segments = 0;
1892                 bio->bi_size = 0;
1893         }
1894
1895         nr_sectors = 0;
1896         if (sector_nr + max_sync < max_sector)
1897                 max_sector = sector_nr + max_sync;
1898         do {
1899                 struct page *page;
1900                 int len = PAGE_SIZE;
1901                 disk = 0;
1902                 if (sector_nr + (len>>9) > max_sector)
1903                         len = (max_sector - sector_nr) << 9;
1904                 if (len == 0)
1905                         break;
1906                 for (bio= biolist ; bio ; bio=bio->bi_next) {
1907                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1908                         if (bio_add_page(bio, page, len, 0) == 0) {
1909                                 /* stop here */
1910                                 struct bio *bio2;
1911                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1912                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1913                                         /* remove last page from this bio */
1914                                         bio2->bi_vcnt--;
1915                                         bio2->bi_size -= len;
1916                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1917                                 }
1918                                 goto bio_full;
1919                         }
1920                         disk = i;
1921                 }
1922                 nr_sectors += len>>9;
1923                 sector_nr += len>>9;
1924         } while (biolist->bi_vcnt < RESYNC_PAGES);
1925  bio_full:
1926         r10_bio->sectors = nr_sectors;
1927
1928         while (biolist) {
1929                 bio = biolist;
1930                 biolist = biolist->bi_next;
1931
1932                 bio->bi_next = NULL;
1933                 r10_bio = bio->bi_private;
1934                 r10_bio->sectors = nr_sectors;
1935
1936                 if (bio->bi_end_io == end_sync_read) {
1937                         md_sync_acct(bio->bi_bdev, nr_sectors);
1938                         generic_make_request(bio);
1939                 }
1940         }
1941
1942         if (sectors_skipped)
1943                 /* pretend they weren't skipped, it makes
1944                  * no important difference in this case
1945                  */
1946                 md_done_sync(mddev, sectors_skipped, 1);
1947
1948         return sectors_skipped + nr_sectors;
1949  giveup:
1950         /* There is nowhere to write, so all non-sync
1951          * drives must be failed, so try the next chunk...
1952          */
1953         {
1954         sector_t sec = max_sector - sector_nr;
1955         sectors_skipped += sec;
1956         chunks_skipped ++;
1957         sector_nr = max_sector;
1958         goto skipped;
1959         }
1960 }
1961
1962 static int run(mddev_t *mddev)
1963 {
1964         conf_t *conf;
1965         int i, disk_idx;
1966         mirror_info_t *disk;
1967         mdk_rdev_t *rdev;
1968         struct list_head *tmp;
1969         int nc, fc, fo;
1970         sector_t stride, size;
1971
1972         if (mddev->chunk_size == 0) {
1973                 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
1974                 return -EINVAL;
1975         }
1976
1977         nc = mddev->layout & 255;
1978         fc = (mddev->layout >> 8) & 255;
1979         fo = mddev->layout & (1<<16);
1980         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
1981             (mddev->layout >> 17)) {
1982                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
1983                        mdname(mddev), mddev->layout);
1984                 goto out;
1985         }
1986         /*
1987          * copy the already verified devices into our private RAID10
1988          * bookkeeping area. [whatever we allocate in run(),
1989          * should be freed in stop()]
1990          */
1991         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1992         mddev->private = conf;
1993         if (!conf) {
1994                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
1995                         mdname(mddev));
1996                 goto out;
1997         }
1998         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1999                                  GFP_KERNEL);
2000         if (!conf->mirrors) {
2001                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2002                        mdname(mddev));
2003                 goto out_free_conf;
2004         }
2005
2006         conf->tmppage = alloc_page(GFP_KERNEL);
2007         if (!conf->tmppage)
2008                 goto out_free_conf;
2009
2010         conf->mddev = mddev;
2011         conf->raid_disks = mddev->raid_disks;
2012         conf->near_copies = nc;
2013         conf->far_copies = fc;
2014         conf->copies = nc*fc;
2015         conf->far_offset = fo;
2016         conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2017         conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2018         size = mddev->size >> (conf->chunk_shift-1);
2019         sector_div(size, fc);
2020         size = size * conf->raid_disks;
2021         sector_div(size, nc);
2022         /* 'size' is now the number of chunks in the array */
2023         /* calculate "used chunks per device" in 'stride' */
2024         stride = size * conf->copies;
2025
2026         /* We need to round up when dividing by raid_disks to
2027          * get the stride size.
2028          */
2029         stride += conf->raid_disks - 1;
2030         sector_div(stride, conf->raid_disks);
2031         mddev->size = stride  << (conf->chunk_shift-1);
2032
2033         if (fo)
2034                 stride = 1;
2035         else
2036                 sector_div(stride, fc);
2037         conf->stride = stride << conf->chunk_shift;
2038
2039         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2040                                                 r10bio_pool_free, conf);
2041         if (!conf->r10bio_pool) {
2042                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2043                         mdname(mddev));
2044                 goto out_free_conf;
2045         }
2046
2047         rdev_for_each(rdev, tmp, mddev) {
2048                 disk_idx = rdev->raid_disk;
2049                 if (disk_idx >= mddev->raid_disks
2050                     || disk_idx < 0)
2051                         continue;
2052                 disk = conf->mirrors + disk_idx;
2053
2054                 disk->rdev = rdev;
2055
2056                 blk_queue_stack_limits(mddev->queue,
2057                                        rdev->bdev->bd_disk->queue);
2058                 /* as we don't honour merge_bvec_fn, we must never risk
2059                  * violating it, so limit ->max_sector to one PAGE, as
2060                  * a one page request is never in violation.
2061                  */
2062                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2063                     mddev->queue->max_sectors > (PAGE_SIZE>>9))
2064                         mddev->queue->max_sectors = (PAGE_SIZE>>9);
2065
2066                 disk->head_position = 0;
2067         }
2068         spin_lock_init(&conf->device_lock);
2069         INIT_LIST_HEAD(&conf->retry_list);
2070
2071         spin_lock_init(&conf->resync_lock);
2072         init_waitqueue_head(&conf->wait_barrier);
2073
2074         /* need to check that every block has at least one working mirror */
2075         if (!enough(conf)) {
2076                 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2077                        mdname(mddev));
2078                 goto out_free_conf;
2079         }
2080
2081         mddev->degraded = 0;
2082         for (i = 0; i < conf->raid_disks; i++) {
2083
2084                 disk = conf->mirrors + i;
2085
2086                 if (!disk->rdev ||
2087                     !test_bit(In_sync, &disk->rdev->flags)) {
2088                         disk->head_position = 0;
2089                         mddev->degraded++;
2090                 }
2091         }
2092
2093
2094         mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2095         if (!mddev->thread) {
2096                 printk(KERN_ERR
2097                        "raid10: couldn't allocate thread for %s\n",
2098                        mdname(mddev));
2099                 goto out_free_conf;
2100         }
2101
2102         printk(KERN_INFO
2103                 "raid10: raid set %s active with %d out of %d devices\n",
2104                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2105                 mddev->raid_disks);
2106         /*
2107          * Ok, everything is just fine now
2108          */
2109         mddev->array_size = size << (conf->chunk_shift-1);
2110         mddev->resync_max_sectors = size << conf->chunk_shift;
2111
2112         mddev->queue->unplug_fn = raid10_unplug;
2113         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2114         mddev->queue->backing_dev_info.congested_data = mddev;
2115
2116         /* Calculate max read-ahead size.
2117          * We need to readahead at least twice a whole stripe....
2118          * maybe...
2119          */
2120         {
2121                 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2122                 stripe /= conf->near_copies;
2123                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2124                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2125         }
2126
2127         if (conf->near_copies < mddev->raid_disks)
2128                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2129         return 0;
2130
2131 out_free_conf:
2132         if (conf->r10bio_pool)
2133                 mempool_destroy(conf->r10bio_pool);
2134         safe_put_page(conf->tmppage);
2135         kfree(conf->mirrors);
2136         kfree(conf);
2137         mddev->private = NULL;
2138 out:
2139         return -EIO;
2140 }
2141
2142 static int stop(mddev_t *mddev)
2143 {
2144         conf_t *conf = mddev_to_conf(mddev);
2145
2146         md_unregister_thread(mddev->thread);
2147         mddev->thread = NULL;
2148         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2149         if (conf->r10bio_pool)
2150                 mempool_destroy(conf->r10bio_pool);
2151         kfree(conf->mirrors);
2152         kfree(conf);
2153         mddev->private = NULL;
2154         return 0;
2155 }
2156
2157 static void raid10_quiesce(mddev_t *mddev, int state)
2158 {
2159         conf_t *conf = mddev_to_conf(mddev);
2160
2161         switch(state) {
2162         case 1:
2163                 raise_barrier(conf, 0);
2164                 break;
2165         case 0:
2166                 lower_barrier(conf);
2167                 break;
2168         }
2169         if (mddev->thread) {
2170                 if (mddev->bitmap)
2171                         mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2172                 else
2173                         mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2174                 md_wakeup_thread(mddev->thread);
2175         }
2176 }
2177
2178 static struct mdk_personality raid10_personality =
2179 {
2180         .name           = "raid10",
2181         .level          = 10,
2182         .owner          = THIS_MODULE,
2183         .make_request   = make_request,
2184         .run            = run,
2185         .stop           = stop,
2186         .status         = status,
2187         .error_handler  = error,
2188         .hot_add_disk   = raid10_add_disk,
2189         .hot_remove_disk= raid10_remove_disk,
2190         .spare_active   = raid10_spare_active,
2191         .sync_request   = sync_request,
2192         .quiesce        = raid10_quiesce,
2193 };
2194
2195 static int __init raid_init(void)
2196 {
2197         return register_md_personality(&raid10_personality);
2198 }
2199
2200 static void raid_exit(void)
2201 {
2202         unregister_md_personality(&raid10_personality);
2203 }
2204
2205 module_init(raid_init);
2206 module_exit(raid_exit);
2207 MODULE_LICENSE("GPL");
2208 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2209 MODULE_ALIAS("md-raid10");
2210 MODULE_ALIAS("md-level-10");