md: deal with merge_bvec_fn in component devices better.
[safe/jmp/linux-2.6] / drivers / md / raid10.c
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for futher copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 #include <linux/delay.h>
22 #include <linux/blkdev.h>
23 #include <linux/seq_file.h>
24 #include "md.h"
25 #include "raid10.h"
26 #include "bitmap.h"
27
28 /*
29  * RAID10 provides a combination of RAID0 and RAID1 functionality.
30  * The layout of data is defined by
31  *    chunk_size
32  *    raid_disks
33  *    near_copies (stored in low byte of layout)
34  *    far_copies (stored in second byte of layout)
35  *    far_offset (stored in bit 16 of layout )
36  *
37  * The data to be stored is divided into chunks using chunksize.
38  * Each device is divided into far_copies sections.
39  * In each section, chunks are laid out in a style similar to raid0, but
40  * near_copies copies of each chunk is stored (each on a different drive).
41  * The starting device for each section is offset near_copies from the starting
42  * device of the previous section.
43  * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
44  * drive.
45  * near_copies and far_copies must be at least one, and their product is at most
46  * raid_disks.
47  *
48  * If far_offset is true, then the far_copies are handled a bit differently.
49  * The copies are still in different stripes, but instead of be very far apart
50  * on disk, there are adjacent stripes.
51  */
52
53 /*
54  * Number of guaranteed r10bios in case of extreme VM load:
55  */
56 #define NR_RAID10_BIOS 256
57
58 static void unplug_slaves(mddev_t *mddev);
59
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
62
63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
64 {
65         conf_t *conf = data;
66         r10bio_t *r10_bio;
67         int size = offsetof(struct r10bio_s, devs[conf->copies]);
68
69         /* allocate a r10bio with room for raid_disks entries in the bios array */
70         r10_bio = kzalloc(size, gfp_flags);
71         if (!r10_bio && conf->mddev)
72                 unplug_slaves(conf->mddev);
73
74         return r10_bio;
75 }
76
77 static void r10bio_pool_free(void *r10_bio, void *data)
78 {
79         kfree(r10_bio);
80 }
81
82 /* Maximum size of each resync request */
83 #define RESYNC_BLOCK_SIZE (64*1024)
84 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
85 /* amount of memory to reserve for resync requests */
86 #define RESYNC_WINDOW (1024*1024)
87 /* maximum number of concurrent requests, memory permitting */
88 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
89
90 /*
91  * When performing a resync, we need to read and compare, so
92  * we need as many pages are there are copies.
93  * When performing a recovery, we need 2 bios, one for read,
94  * one for write (we recover only one drive per r10buf)
95  *
96  */
97 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99         conf_t *conf = data;
100         struct page *page;
101         r10bio_t *r10_bio;
102         struct bio *bio;
103         int i, j;
104         int nalloc;
105
106         r10_bio = r10bio_pool_alloc(gfp_flags, conf);
107         if (!r10_bio) {
108                 unplug_slaves(conf->mddev);
109                 return NULL;
110         }
111
112         if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
113                 nalloc = conf->copies; /* resync */
114         else
115                 nalloc = 2; /* recovery */
116
117         /*
118          * Allocate bios.
119          */
120         for (j = nalloc ; j-- ; ) {
121                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
122                 if (!bio)
123                         goto out_free_bio;
124                 r10_bio->devs[j].bio = bio;
125         }
126         /*
127          * Allocate RESYNC_PAGES data pages and attach them
128          * where needed.
129          */
130         for (j = 0 ; j < nalloc; j++) {
131                 bio = r10_bio->devs[j].bio;
132                 for (i = 0; i < RESYNC_PAGES; i++) {
133                         page = alloc_page(gfp_flags);
134                         if (unlikely(!page))
135                                 goto out_free_pages;
136
137                         bio->bi_io_vec[i].bv_page = page;
138                 }
139         }
140
141         return r10_bio;
142
143 out_free_pages:
144         for ( ; i > 0 ; i--)
145                 safe_put_page(bio->bi_io_vec[i-1].bv_page);
146         while (j--)
147                 for (i = 0; i < RESYNC_PAGES ; i++)
148                         safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
149         j = -1;
150 out_free_bio:
151         while ( ++j < nalloc )
152                 bio_put(r10_bio->devs[j].bio);
153         r10bio_pool_free(r10_bio, conf);
154         return NULL;
155 }
156
157 static void r10buf_pool_free(void *__r10_bio, void *data)
158 {
159         int i;
160         conf_t *conf = data;
161         r10bio_t *r10bio = __r10_bio;
162         int j;
163
164         for (j=0; j < conf->copies; j++) {
165                 struct bio *bio = r10bio->devs[j].bio;
166                 if (bio) {
167                         for (i = 0; i < RESYNC_PAGES; i++) {
168                                 safe_put_page(bio->bi_io_vec[i].bv_page);
169                                 bio->bi_io_vec[i].bv_page = NULL;
170                         }
171                         bio_put(bio);
172                 }
173         }
174         r10bio_pool_free(r10bio, conf);
175 }
176
177 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
178 {
179         int i;
180
181         for (i = 0; i < conf->copies; i++) {
182                 struct bio **bio = & r10_bio->devs[i].bio;
183                 if (*bio && *bio != IO_BLOCKED)
184                         bio_put(*bio);
185                 *bio = NULL;
186         }
187 }
188
189 static void free_r10bio(r10bio_t *r10_bio)
190 {
191         conf_t *conf = r10_bio->mddev->private;
192
193         /*
194          * Wake up any possible resync thread that waits for the device
195          * to go idle.
196          */
197         allow_barrier(conf);
198
199         put_all_bios(conf, r10_bio);
200         mempool_free(r10_bio, conf->r10bio_pool);
201 }
202
203 static void put_buf(r10bio_t *r10_bio)
204 {
205         conf_t *conf = r10_bio->mddev->private;
206
207         mempool_free(r10_bio, conf->r10buf_pool);
208
209         lower_barrier(conf);
210 }
211
212 static void reschedule_retry(r10bio_t *r10_bio)
213 {
214         unsigned long flags;
215         mddev_t *mddev = r10_bio->mddev;
216         conf_t *conf = mddev->private;
217
218         spin_lock_irqsave(&conf->device_lock, flags);
219         list_add(&r10_bio->retry_list, &conf->retry_list);
220         conf->nr_queued ++;
221         spin_unlock_irqrestore(&conf->device_lock, flags);
222
223         /* wake up frozen array... */
224         wake_up(&conf->wait_barrier);
225
226         md_wakeup_thread(mddev->thread);
227 }
228
229 /*
230  * raid_end_bio_io() is called when we have finished servicing a mirrored
231  * operation and are ready to return a success/failure code to the buffer
232  * cache layer.
233  */
234 static void raid_end_bio_io(r10bio_t *r10_bio)
235 {
236         struct bio *bio = r10_bio->master_bio;
237
238         bio_endio(bio,
239                 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
240         free_r10bio(r10_bio);
241 }
242
243 /*
244  * Update disk head position estimator based on IRQ completion info.
245  */
246 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
247 {
248         conf_t *conf = r10_bio->mddev->private;
249
250         conf->mirrors[r10_bio->devs[slot].devnum].head_position =
251                 r10_bio->devs[slot].addr + (r10_bio->sectors);
252 }
253
254 static void raid10_end_read_request(struct bio *bio, int error)
255 {
256         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
258         int slot, dev;
259         conf_t *conf = r10_bio->mddev->private;
260
261
262         slot = r10_bio->read_slot;
263         dev = r10_bio->devs[slot].devnum;
264         /*
265          * this branch is our 'one mirror IO has finished' event handler:
266          */
267         update_head_pos(slot, r10_bio);
268
269         if (uptodate) {
270                 /*
271                  * Set R10BIO_Uptodate in our master bio, so that
272                  * we will return a good error code to the higher
273                  * levels even if IO on some other mirrored buffer fails.
274                  *
275                  * The 'master' represents the composite IO operation to
276                  * user-side. So if something waits for IO, then it will
277                  * wait for the 'master' bio.
278                  */
279                 set_bit(R10BIO_Uptodate, &r10_bio->state);
280                 raid_end_bio_io(r10_bio);
281         } else {
282                 /*
283                  * oops, read error:
284                  */
285                 char b[BDEVNAME_SIZE];
286                 if (printk_ratelimit())
287                         printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
288                                bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
289                 reschedule_retry(r10_bio);
290         }
291
292         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
293 }
294
295 static void raid10_end_write_request(struct bio *bio, int error)
296 {
297         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
298         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
299         int slot, dev;
300         conf_t *conf = r10_bio->mddev->private;
301
302         for (slot = 0; slot < conf->copies; slot++)
303                 if (r10_bio->devs[slot].bio == bio)
304                         break;
305         dev = r10_bio->devs[slot].devnum;
306
307         /*
308          * this branch is our 'one mirror IO has finished' event handler:
309          */
310         if (!uptodate) {
311                 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
312                 /* an I/O failed, we can't clear the bitmap */
313                 set_bit(R10BIO_Degraded, &r10_bio->state);
314         } else
315                 /*
316                  * Set R10BIO_Uptodate in our master bio, so that
317                  * we will return a good error code for to the higher
318                  * levels even if IO on some other mirrored buffer fails.
319                  *
320                  * The 'master' represents the composite IO operation to
321                  * user-side. So if something waits for IO, then it will
322                  * wait for the 'master' bio.
323                  */
324                 set_bit(R10BIO_Uptodate, &r10_bio->state);
325
326         update_head_pos(slot, r10_bio);
327
328         /*
329          *
330          * Let's see if all mirrored write operations have finished
331          * already.
332          */
333         if (atomic_dec_and_test(&r10_bio->remaining)) {
334                 /* clear the bitmap if all writes complete successfully */
335                 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
336                                 r10_bio->sectors,
337                                 !test_bit(R10BIO_Degraded, &r10_bio->state),
338                                 0);
339                 md_write_end(r10_bio->mddev);
340                 raid_end_bio_io(r10_bio);
341         }
342
343         rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
344 }
345
346
347 /*
348  * RAID10 layout manager
349  * Aswell as the chunksize and raid_disks count, there are two
350  * parameters: near_copies and far_copies.
351  * near_copies * far_copies must be <= raid_disks.
352  * Normally one of these will be 1.
353  * If both are 1, we get raid0.
354  * If near_copies == raid_disks, we get raid1.
355  *
356  * Chunks are layed out in raid0 style with near_copies copies of the
357  * first chunk, followed by near_copies copies of the next chunk and
358  * so on.
359  * If far_copies > 1, then after 1/far_copies of the array has been assigned
360  * as described above, we start again with a device offset of near_copies.
361  * So we effectively have another copy of the whole array further down all
362  * the drives, but with blocks on different drives.
363  * With this layout, and block is never stored twice on the one device.
364  *
365  * raid10_find_phys finds the sector offset of a given virtual sector
366  * on each device that it is on.
367  *
368  * raid10_find_virt does the reverse mapping, from a device and a
369  * sector offset to a virtual address
370  */
371
372 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
373 {
374         int n,f;
375         sector_t sector;
376         sector_t chunk;
377         sector_t stripe;
378         int dev;
379
380         int slot = 0;
381
382         /* now calculate first sector/dev */
383         chunk = r10bio->sector >> conf->chunk_shift;
384         sector = r10bio->sector & conf->chunk_mask;
385
386         chunk *= conf->near_copies;
387         stripe = chunk;
388         dev = sector_div(stripe, conf->raid_disks);
389         if (conf->far_offset)
390                 stripe *= conf->far_copies;
391
392         sector += stripe << conf->chunk_shift;
393
394         /* and calculate all the others */
395         for (n=0; n < conf->near_copies; n++) {
396                 int d = dev;
397                 sector_t s = sector;
398                 r10bio->devs[slot].addr = sector;
399                 r10bio->devs[slot].devnum = d;
400                 slot++;
401
402                 for (f = 1; f < conf->far_copies; f++) {
403                         d += conf->near_copies;
404                         if (d >= conf->raid_disks)
405                                 d -= conf->raid_disks;
406                         s += conf->stride;
407                         r10bio->devs[slot].devnum = d;
408                         r10bio->devs[slot].addr = s;
409                         slot++;
410                 }
411                 dev++;
412                 if (dev >= conf->raid_disks) {
413                         dev = 0;
414                         sector += (conf->chunk_mask + 1);
415                 }
416         }
417         BUG_ON(slot != conf->copies);
418 }
419
420 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
421 {
422         sector_t offset, chunk, vchunk;
423
424         offset = sector & conf->chunk_mask;
425         if (conf->far_offset) {
426                 int fc;
427                 chunk = sector >> conf->chunk_shift;
428                 fc = sector_div(chunk, conf->far_copies);
429                 dev -= fc * conf->near_copies;
430                 if (dev < 0)
431                         dev += conf->raid_disks;
432         } else {
433                 while (sector >= conf->stride) {
434                         sector -= conf->stride;
435                         if (dev < conf->near_copies)
436                                 dev += conf->raid_disks - conf->near_copies;
437                         else
438                                 dev -= conf->near_copies;
439                 }
440                 chunk = sector >> conf->chunk_shift;
441         }
442         vchunk = chunk * conf->raid_disks + dev;
443         sector_div(vchunk, conf->near_copies);
444         return (vchunk << conf->chunk_shift) + offset;
445 }
446
447 /**
448  *      raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
449  *      @q: request queue
450  *      @bvm: properties of new bio
451  *      @biovec: the request that could be merged to it.
452  *
453  *      Return amount of bytes we can accept at this offset
454  *      If near_copies == raid_disk, there are no striping issues,
455  *      but in that case, the function isn't called at all.
456  */
457 static int raid10_mergeable_bvec(struct request_queue *q,
458                                  struct bvec_merge_data *bvm,
459                                  struct bio_vec *biovec)
460 {
461         mddev_t *mddev = q->queuedata;
462         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
463         int max;
464         unsigned int chunk_sectors = mddev->chunk_sectors;
465         unsigned int bio_sectors = bvm->bi_size >> 9;
466
467         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
468         if (max < 0) max = 0; /* bio_add cannot handle a negative return */
469         if (max <= biovec->bv_len && bio_sectors == 0)
470                 return biovec->bv_len;
471         else
472                 return max;
473 }
474
475 /*
476  * This routine returns the disk from which the requested read should
477  * be done. There is a per-array 'next expected sequential IO' sector
478  * number - if this matches on the next IO then we use the last disk.
479  * There is also a per-disk 'last know head position' sector that is
480  * maintained from IRQ contexts, both the normal and the resync IO
481  * completion handlers update this position correctly. If there is no
482  * perfect sequential match then we pick the disk whose head is closest.
483  *
484  * If there are 2 mirrors in the same 2 devices, performance degrades
485  * because position is mirror, not device based.
486  *
487  * The rdev for the device selected will have nr_pending incremented.
488  */
489
490 /*
491  * FIXME: possibly should rethink readbalancing and do it differently
492  * depending on near_copies / far_copies geometry.
493  */
494 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
495 {
496         const unsigned long this_sector = r10_bio->sector;
497         int disk, slot, nslot;
498         const int sectors = r10_bio->sectors;
499         sector_t new_distance, current_distance;
500         mdk_rdev_t *rdev;
501
502         raid10_find_phys(conf, r10_bio);
503         rcu_read_lock();
504         /*
505          * Check if we can balance. We can balance on the whole
506          * device if no resync is going on (recovery is ok), or below
507          * the resync window. We take the first readable disk when
508          * above the resync window.
509          */
510         if (conf->mddev->recovery_cp < MaxSector
511             && (this_sector + sectors >= conf->next_resync)) {
512                 /* make sure that disk is operational */
513                 slot = 0;
514                 disk = r10_bio->devs[slot].devnum;
515
516                 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
517                        r10_bio->devs[slot].bio == IO_BLOCKED ||
518                        !test_bit(In_sync, &rdev->flags)) {
519                         slot++;
520                         if (slot == conf->copies) {
521                                 slot = 0;
522                                 disk = -1;
523                                 break;
524                         }
525                         disk = r10_bio->devs[slot].devnum;
526                 }
527                 goto rb_out;
528         }
529
530
531         /* make sure the disk is operational */
532         slot = 0;
533         disk = r10_bio->devs[slot].devnum;
534         while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
535                r10_bio->devs[slot].bio == IO_BLOCKED ||
536                !test_bit(In_sync, &rdev->flags)) {
537                 slot ++;
538                 if (slot == conf->copies) {
539                         disk = -1;
540                         goto rb_out;
541                 }
542                 disk = r10_bio->devs[slot].devnum;
543         }
544
545
546         current_distance = abs(r10_bio->devs[slot].addr -
547                                conf->mirrors[disk].head_position);
548
549         /* Find the disk whose head is closest,
550          * or - for far > 1 - find the closest to partition beginning */
551
552         for (nslot = slot; nslot < conf->copies; nslot++) {
553                 int ndisk = r10_bio->devs[nslot].devnum;
554
555
556                 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
557                     r10_bio->devs[nslot].bio == IO_BLOCKED ||
558                     !test_bit(In_sync, &rdev->flags))
559                         continue;
560
561                 /* This optimisation is debatable, and completely destroys
562                  * sequential read speed for 'far copies' arrays.  So only
563                  * keep it for 'near' arrays, and review those later.
564                  */
565                 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
566                         disk = ndisk;
567                         slot = nslot;
568                         break;
569                 }
570
571                 /* for far > 1 always use the lowest address */
572                 if (conf->far_copies > 1)
573                         new_distance = r10_bio->devs[nslot].addr;
574                 else
575                         new_distance = abs(r10_bio->devs[nslot].addr -
576                                            conf->mirrors[ndisk].head_position);
577                 if (new_distance < current_distance) {
578                         current_distance = new_distance;
579                         disk = ndisk;
580                         slot = nslot;
581                 }
582         }
583
584 rb_out:
585         r10_bio->read_slot = slot;
586 /*      conf->next_seq_sect = this_sector + sectors;*/
587
588         if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
589                 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
590         else
591                 disk = -1;
592         rcu_read_unlock();
593
594         return disk;
595 }
596
597 static void unplug_slaves(mddev_t *mddev)
598 {
599         conf_t *conf = mddev->private;
600         int i;
601
602         rcu_read_lock();
603         for (i=0; i<mddev->raid_disks; i++) {
604                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
605                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
606                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
607
608                         atomic_inc(&rdev->nr_pending);
609                         rcu_read_unlock();
610
611                         blk_unplug(r_queue);
612
613                         rdev_dec_pending(rdev, mddev);
614                         rcu_read_lock();
615                 }
616         }
617         rcu_read_unlock();
618 }
619
620 static void raid10_unplug(struct request_queue *q)
621 {
622         mddev_t *mddev = q->queuedata;
623
624         unplug_slaves(q->queuedata);
625         md_wakeup_thread(mddev->thread);
626 }
627
628 static int raid10_congested(void *data, int bits)
629 {
630         mddev_t *mddev = data;
631         conf_t *conf = mddev->private;
632         int i, ret = 0;
633
634         if (mddev_congested(mddev, bits))
635                 return 1;
636         rcu_read_lock();
637         for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
638                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
639                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
640                         struct request_queue *q = bdev_get_queue(rdev->bdev);
641
642                         ret |= bdi_congested(&q->backing_dev_info, bits);
643                 }
644         }
645         rcu_read_unlock();
646         return ret;
647 }
648
649 static int flush_pending_writes(conf_t *conf)
650 {
651         /* Any writes that have been queued but are awaiting
652          * bitmap updates get flushed here.
653          * We return 1 if any requests were actually submitted.
654          */
655         int rv = 0;
656
657         spin_lock_irq(&conf->device_lock);
658
659         if (conf->pending_bio_list.head) {
660                 struct bio *bio;
661                 bio = bio_list_get(&conf->pending_bio_list);
662                 blk_remove_plug(conf->mddev->queue);
663                 spin_unlock_irq(&conf->device_lock);
664                 /* flush any pending bitmap writes to disk
665                  * before proceeding w/ I/O */
666                 bitmap_unplug(conf->mddev->bitmap);
667
668                 while (bio) { /* submit pending writes */
669                         struct bio *next = bio->bi_next;
670                         bio->bi_next = NULL;
671                         generic_make_request(bio);
672                         bio = next;
673                 }
674                 rv = 1;
675         } else
676                 spin_unlock_irq(&conf->device_lock);
677         return rv;
678 }
679 /* Barriers....
680  * Sometimes we need to suspend IO while we do something else,
681  * either some resync/recovery, or reconfigure the array.
682  * To do this we raise a 'barrier'.
683  * The 'barrier' is a counter that can be raised multiple times
684  * to count how many activities are happening which preclude
685  * normal IO.
686  * We can only raise the barrier if there is no pending IO.
687  * i.e. if nr_pending == 0.
688  * We choose only to raise the barrier if no-one is waiting for the
689  * barrier to go down.  This means that as soon as an IO request
690  * is ready, no other operations which require a barrier will start
691  * until the IO request has had a chance.
692  *
693  * So: regular IO calls 'wait_barrier'.  When that returns there
694  *    is no backgroup IO happening,  It must arrange to call
695  *    allow_barrier when it has finished its IO.
696  * backgroup IO calls must call raise_barrier.  Once that returns
697  *    there is no normal IO happeing.  It must arrange to call
698  *    lower_barrier when the particular background IO completes.
699  */
700
701 static void raise_barrier(conf_t *conf, int force)
702 {
703         BUG_ON(force && !conf->barrier);
704         spin_lock_irq(&conf->resync_lock);
705
706         /* Wait until no block IO is waiting (unless 'force') */
707         wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
708                             conf->resync_lock,
709                             raid10_unplug(conf->mddev->queue));
710
711         /* block any new IO from starting */
712         conf->barrier++;
713
714         /* No wait for all pending IO to complete */
715         wait_event_lock_irq(conf->wait_barrier,
716                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
717                             conf->resync_lock,
718                             raid10_unplug(conf->mddev->queue));
719
720         spin_unlock_irq(&conf->resync_lock);
721 }
722
723 static void lower_barrier(conf_t *conf)
724 {
725         unsigned long flags;
726         spin_lock_irqsave(&conf->resync_lock, flags);
727         conf->barrier--;
728         spin_unlock_irqrestore(&conf->resync_lock, flags);
729         wake_up(&conf->wait_barrier);
730 }
731
732 static void wait_barrier(conf_t *conf)
733 {
734         spin_lock_irq(&conf->resync_lock);
735         if (conf->barrier) {
736                 conf->nr_waiting++;
737                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
738                                     conf->resync_lock,
739                                     raid10_unplug(conf->mddev->queue));
740                 conf->nr_waiting--;
741         }
742         conf->nr_pending++;
743         spin_unlock_irq(&conf->resync_lock);
744 }
745
746 static void allow_barrier(conf_t *conf)
747 {
748         unsigned long flags;
749         spin_lock_irqsave(&conf->resync_lock, flags);
750         conf->nr_pending--;
751         spin_unlock_irqrestore(&conf->resync_lock, flags);
752         wake_up(&conf->wait_barrier);
753 }
754
755 static void freeze_array(conf_t *conf)
756 {
757         /* stop syncio and normal IO and wait for everything to
758          * go quiet.
759          * We increment barrier and nr_waiting, and then
760          * wait until nr_pending match nr_queued+1
761          * This is called in the context of one normal IO request
762          * that has failed. Thus any sync request that might be pending
763          * will be blocked by nr_pending, and we need to wait for
764          * pending IO requests to complete or be queued for re-try.
765          * Thus the number queued (nr_queued) plus this request (1)
766          * must match the number of pending IOs (nr_pending) before
767          * we continue.
768          */
769         spin_lock_irq(&conf->resync_lock);
770         conf->barrier++;
771         conf->nr_waiting++;
772         wait_event_lock_irq(conf->wait_barrier,
773                             conf->nr_pending == conf->nr_queued+1,
774                             conf->resync_lock,
775                             ({ flush_pending_writes(conf);
776                                raid10_unplug(conf->mddev->queue); }));
777         spin_unlock_irq(&conf->resync_lock);
778 }
779
780 static void unfreeze_array(conf_t *conf)
781 {
782         /* reverse the effect of the freeze */
783         spin_lock_irq(&conf->resync_lock);
784         conf->barrier--;
785         conf->nr_waiting--;
786         wake_up(&conf->wait_barrier);
787         spin_unlock_irq(&conf->resync_lock);
788 }
789
790 static int make_request(struct request_queue *q, struct bio * bio)
791 {
792         mddev_t *mddev = q->queuedata;
793         conf_t *conf = mddev->private;
794         mirror_info_t *mirror;
795         r10bio_t *r10_bio;
796         struct bio *read_bio;
797         int cpu;
798         int i;
799         int chunk_sects = conf->chunk_mask + 1;
800         const int rw = bio_data_dir(bio);
801         const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
802         struct bio_list bl;
803         unsigned long flags;
804         mdk_rdev_t *blocked_rdev;
805
806         if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER))) {
807                 md_barrier_request(mddev, bio);
808                 return 0;
809         }
810
811         /* If this request crosses a chunk boundary, we need to
812          * split it.  This will only happen for 1 PAGE (or less) requests.
813          */
814         if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
815                       > chunk_sects &&
816                     conf->near_copies < conf->raid_disks)) {
817                 struct bio_pair *bp;
818                 /* Sanity check -- queue functions should prevent this happening */
819                 if (bio->bi_vcnt != 1 ||
820                     bio->bi_idx != 0)
821                         goto bad_map;
822                 /* This is a one page bio that upper layers
823                  * refuse to split for us, so we need to split it.
824                  */
825                 bp = bio_split(bio,
826                                chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
827                 if (make_request(q, &bp->bio1))
828                         generic_make_request(&bp->bio1);
829                 if (make_request(q, &bp->bio2))
830                         generic_make_request(&bp->bio2);
831
832                 bio_pair_release(bp);
833                 return 0;
834         bad_map:
835                 printk("raid10_make_request bug: can't convert block across chunks"
836                        " or bigger than %dk %llu %d\n", chunk_sects/2,
837                        (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
838
839                 bio_io_error(bio);
840                 return 0;
841         }
842
843         md_write_start(mddev, bio);
844
845         /*
846          * Register the new request and wait if the reconstruction
847          * thread has put up a bar for new requests.
848          * Continue immediately if no resync is active currently.
849          */
850         wait_barrier(conf);
851
852         cpu = part_stat_lock();
853         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
854         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
855                       bio_sectors(bio));
856         part_stat_unlock();
857
858         r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
859
860         r10_bio->master_bio = bio;
861         r10_bio->sectors = bio->bi_size >> 9;
862
863         r10_bio->mddev = mddev;
864         r10_bio->sector = bio->bi_sector;
865         r10_bio->state = 0;
866
867         if (rw == READ) {
868                 /*
869                  * read balancing logic:
870                  */
871                 int disk = read_balance(conf, r10_bio);
872                 int slot = r10_bio->read_slot;
873                 if (disk < 0) {
874                         raid_end_bio_io(r10_bio);
875                         return 0;
876                 }
877                 mirror = conf->mirrors + disk;
878
879                 read_bio = bio_clone(bio, GFP_NOIO);
880
881                 r10_bio->devs[slot].bio = read_bio;
882
883                 read_bio->bi_sector = r10_bio->devs[slot].addr +
884                         mirror->rdev->data_offset;
885                 read_bio->bi_bdev = mirror->rdev->bdev;
886                 read_bio->bi_end_io = raid10_end_read_request;
887                 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
888                 read_bio->bi_private = r10_bio;
889
890                 generic_make_request(read_bio);
891                 return 0;
892         }
893
894         /*
895          * WRITE:
896          */
897         /* first select target devices under rcu_lock and
898          * inc refcount on their rdev.  Record them by setting
899          * bios[x] to bio
900          */
901         raid10_find_phys(conf, r10_bio);
902  retry_write:
903         blocked_rdev = NULL;
904         rcu_read_lock();
905         for (i = 0;  i < conf->copies; i++) {
906                 int d = r10_bio->devs[i].devnum;
907                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
908                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
909                         atomic_inc(&rdev->nr_pending);
910                         blocked_rdev = rdev;
911                         break;
912                 }
913                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
914                         atomic_inc(&rdev->nr_pending);
915                         r10_bio->devs[i].bio = bio;
916                 } else {
917                         r10_bio->devs[i].bio = NULL;
918                         set_bit(R10BIO_Degraded, &r10_bio->state);
919                 }
920         }
921         rcu_read_unlock();
922
923         if (unlikely(blocked_rdev)) {
924                 /* Have to wait for this device to get unblocked, then retry */
925                 int j;
926                 int d;
927
928                 for (j = 0; j < i; j++)
929                         if (r10_bio->devs[j].bio) {
930                                 d = r10_bio->devs[j].devnum;
931                                 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
932                         }
933                 allow_barrier(conf);
934                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
935                 wait_barrier(conf);
936                 goto retry_write;
937         }
938
939         atomic_set(&r10_bio->remaining, 0);
940
941         bio_list_init(&bl);
942         for (i = 0; i < conf->copies; i++) {
943                 struct bio *mbio;
944                 int d = r10_bio->devs[i].devnum;
945                 if (!r10_bio->devs[i].bio)
946                         continue;
947
948                 mbio = bio_clone(bio, GFP_NOIO);
949                 r10_bio->devs[i].bio = mbio;
950
951                 mbio->bi_sector = r10_bio->devs[i].addr+
952                         conf->mirrors[d].rdev->data_offset;
953                 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
954                 mbio->bi_end_io = raid10_end_write_request;
955                 mbio->bi_rw = WRITE | (do_sync << BIO_RW_SYNCIO);
956                 mbio->bi_private = r10_bio;
957
958                 atomic_inc(&r10_bio->remaining);
959                 bio_list_add(&bl, mbio);
960         }
961
962         if (unlikely(!atomic_read(&r10_bio->remaining))) {
963                 /* the array is dead */
964                 md_write_end(mddev);
965                 raid_end_bio_io(r10_bio);
966                 return 0;
967         }
968
969         bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
970         spin_lock_irqsave(&conf->device_lock, flags);
971         bio_list_merge(&conf->pending_bio_list, &bl);
972         blk_plug_device(mddev->queue);
973         spin_unlock_irqrestore(&conf->device_lock, flags);
974
975         /* In case raid10d snuck in to freeze_array */
976         wake_up(&conf->wait_barrier);
977
978         if (do_sync)
979                 md_wakeup_thread(mddev->thread);
980
981         return 0;
982 }
983
984 static void status(struct seq_file *seq, mddev_t *mddev)
985 {
986         conf_t *conf = mddev->private;
987         int i;
988
989         if (conf->near_copies < conf->raid_disks)
990                 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
991         if (conf->near_copies > 1)
992                 seq_printf(seq, " %d near-copies", conf->near_copies);
993         if (conf->far_copies > 1) {
994                 if (conf->far_offset)
995                         seq_printf(seq, " %d offset-copies", conf->far_copies);
996                 else
997                         seq_printf(seq, " %d far-copies", conf->far_copies);
998         }
999         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1000                                         conf->raid_disks - mddev->degraded);
1001         for (i = 0; i < conf->raid_disks; i++)
1002                 seq_printf(seq, "%s",
1003                               conf->mirrors[i].rdev &&
1004                               test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1005         seq_printf(seq, "]");
1006 }
1007
1008 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1009 {
1010         char b[BDEVNAME_SIZE];
1011         conf_t *conf = mddev->private;
1012
1013         /*
1014          * If it is not operational, then we have already marked it as dead
1015          * else if it is the last working disks, ignore the error, let the
1016          * next level up know.
1017          * else mark the drive as failed
1018          */
1019         if (test_bit(In_sync, &rdev->flags)
1020             && conf->raid_disks-mddev->degraded == 1)
1021                 /*
1022                  * Don't fail the drive, just return an IO error.
1023                  * The test should really be more sophisticated than
1024                  * "working_disks == 1", but it isn't critical, and
1025                  * can wait until we do more sophisticated "is the drive
1026                  * really dead" tests...
1027                  */
1028                 return;
1029         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1030                 unsigned long flags;
1031                 spin_lock_irqsave(&conf->device_lock, flags);
1032                 mddev->degraded++;
1033                 spin_unlock_irqrestore(&conf->device_lock, flags);
1034                 /*
1035                  * if recovery is running, make sure it aborts.
1036                  */
1037                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1038         }
1039         set_bit(Faulty, &rdev->flags);
1040         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1041         printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1042                 "raid10: Operation continuing on %d devices.\n",
1043                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1044 }
1045
1046 static void print_conf(conf_t *conf)
1047 {
1048         int i;
1049         mirror_info_t *tmp;
1050
1051         printk("RAID10 conf printout:\n");
1052         if (!conf) {
1053                 printk("(!conf)\n");
1054                 return;
1055         }
1056         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1057                 conf->raid_disks);
1058
1059         for (i = 0; i < conf->raid_disks; i++) {
1060                 char b[BDEVNAME_SIZE];
1061                 tmp = conf->mirrors + i;
1062                 if (tmp->rdev)
1063                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1064                                 i, !test_bit(In_sync, &tmp->rdev->flags),
1065                                 !test_bit(Faulty, &tmp->rdev->flags),
1066                                 bdevname(tmp->rdev->bdev,b));
1067         }
1068 }
1069
1070 static void close_sync(conf_t *conf)
1071 {
1072         wait_barrier(conf);
1073         allow_barrier(conf);
1074
1075         mempool_destroy(conf->r10buf_pool);
1076         conf->r10buf_pool = NULL;
1077 }
1078
1079 /* check if there are enough drives for
1080  * every block to appear on atleast one
1081  */
1082 static int enough(conf_t *conf)
1083 {
1084         int first = 0;
1085
1086         do {
1087                 int n = conf->copies;
1088                 int cnt = 0;
1089                 while (n--) {
1090                         if (conf->mirrors[first].rdev)
1091                                 cnt++;
1092                         first = (first+1) % conf->raid_disks;
1093                 }
1094                 if (cnt == 0)
1095                         return 0;
1096         } while (first != 0);
1097         return 1;
1098 }
1099
1100 static int raid10_spare_active(mddev_t *mddev)
1101 {
1102         int i;
1103         conf_t *conf = mddev->private;
1104         mirror_info_t *tmp;
1105
1106         /*
1107          * Find all non-in_sync disks within the RAID10 configuration
1108          * and mark them in_sync
1109          */
1110         for (i = 0; i < conf->raid_disks; i++) {
1111                 tmp = conf->mirrors + i;
1112                 if (tmp->rdev
1113                     && !test_bit(Faulty, &tmp->rdev->flags)
1114                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1115                         unsigned long flags;
1116                         spin_lock_irqsave(&conf->device_lock, flags);
1117                         mddev->degraded--;
1118                         spin_unlock_irqrestore(&conf->device_lock, flags);
1119                 }
1120         }
1121
1122         print_conf(conf);
1123         return 0;
1124 }
1125
1126
1127 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1128 {
1129         conf_t *conf = mddev->private;
1130         int err = -EEXIST;
1131         int mirror;
1132         mirror_info_t *p;
1133         int first = 0;
1134         int last = mddev->raid_disks - 1;
1135
1136         if (mddev->recovery_cp < MaxSector)
1137                 /* only hot-add to in-sync arrays, as recovery is
1138                  * very different from resync
1139                  */
1140                 return -EBUSY;
1141         if (!enough(conf))
1142                 return -EINVAL;
1143
1144         if (rdev->raid_disk >= 0)
1145                 first = last = rdev->raid_disk;
1146
1147         if (rdev->saved_raid_disk >= 0 &&
1148             rdev->saved_raid_disk >= first &&
1149             conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1150                 mirror = rdev->saved_raid_disk;
1151         else
1152                 mirror = first;
1153         for ( ; mirror <= last ; mirror++)
1154                 if ( !(p=conf->mirrors+mirror)->rdev) {
1155
1156                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1157                                           rdev->data_offset << 9);
1158                         /* as we don't honour merge_bvec_fn, we must
1159                          * never risk violating it, so limit
1160                          * ->max_segments to one lying with a single
1161                          * page, as a one page request is never in
1162                          * violation.
1163                          */
1164                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1165                                 blk_queue_max_segments(mddev->queue, 1);
1166                                 blk_queue_segment_boundary(mddev->queue,
1167                                                            PAGE_CACHE_SIZE - 1);
1168                         }
1169
1170                         p->head_position = 0;
1171                         rdev->raid_disk = mirror;
1172                         err = 0;
1173                         if (rdev->saved_raid_disk != mirror)
1174                                 conf->fullsync = 1;
1175                         rcu_assign_pointer(p->rdev, rdev);
1176                         break;
1177                 }
1178
1179         md_integrity_add_rdev(rdev, mddev);
1180         print_conf(conf);
1181         return err;
1182 }
1183
1184 static int raid10_remove_disk(mddev_t *mddev, int number)
1185 {
1186         conf_t *conf = mddev->private;
1187         int err = 0;
1188         mdk_rdev_t *rdev;
1189         mirror_info_t *p = conf->mirrors+ number;
1190
1191         print_conf(conf);
1192         rdev = p->rdev;
1193         if (rdev) {
1194                 if (test_bit(In_sync, &rdev->flags) ||
1195                     atomic_read(&rdev->nr_pending)) {
1196                         err = -EBUSY;
1197                         goto abort;
1198                 }
1199                 /* Only remove faulty devices in recovery
1200                  * is not possible.
1201                  */
1202                 if (!test_bit(Faulty, &rdev->flags) &&
1203                     enough(conf)) {
1204                         err = -EBUSY;
1205                         goto abort;
1206                 }
1207                 p->rdev = NULL;
1208                 synchronize_rcu();
1209                 if (atomic_read(&rdev->nr_pending)) {
1210                         /* lost the race, try later */
1211                         err = -EBUSY;
1212                         p->rdev = rdev;
1213                         goto abort;
1214                 }
1215                 md_integrity_register(mddev);
1216         }
1217 abort:
1218
1219         print_conf(conf);
1220         return err;
1221 }
1222
1223
1224 static void end_sync_read(struct bio *bio, int error)
1225 {
1226         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1227         conf_t *conf = r10_bio->mddev->private;
1228         int i,d;
1229
1230         for (i=0; i<conf->copies; i++)
1231                 if (r10_bio->devs[i].bio == bio)
1232                         break;
1233         BUG_ON(i == conf->copies);
1234         update_head_pos(i, r10_bio);
1235         d = r10_bio->devs[i].devnum;
1236
1237         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1238                 set_bit(R10BIO_Uptodate, &r10_bio->state);
1239         else {
1240                 atomic_add(r10_bio->sectors,
1241                            &conf->mirrors[d].rdev->corrected_errors);
1242                 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1243                         md_error(r10_bio->mddev,
1244                                  conf->mirrors[d].rdev);
1245         }
1246
1247         /* for reconstruct, we always reschedule after a read.
1248          * for resync, only after all reads
1249          */
1250         rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1251         if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1252             atomic_dec_and_test(&r10_bio->remaining)) {
1253                 /* we have read all the blocks,
1254                  * do the comparison in process context in raid10d
1255                  */
1256                 reschedule_retry(r10_bio);
1257         }
1258 }
1259
1260 static void end_sync_write(struct bio *bio, int error)
1261 {
1262         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1263         r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1264         mddev_t *mddev = r10_bio->mddev;
1265         conf_t *conf = mddev->private;
1266         int i,d;
1267
1268         for (i = 0; i < conf->copies; i++)
1269                 if (r10_bio->devs[i].bio == bio)
1270                         break;
1271         d = r10_bio->devs[i].devnum;
1272
1273         if (!uptodate)
1274                 md_error(mddev, conf->mirrors[d].rdev);
1275
1276         update_head_pos(i, r10_bio);
1277
1278         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1279         while (atomic_dec_and_test(&r10_bio->remaining)) {
1280                 if (r10_bio->master_bio == NULL) {
1281                         /* the primary of several recovery bios */
1282                         sector_t s = r10_bio->sectors;
1283                         put_buf(r10_bio);
1284                         md_done_sync(mddev, s, 1);
1285                         break;
1286                 } else {
1287                         r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1288                         put_buf(r10_bio);
1289                         r10_bio = r10_bio2;
1290                 }
1291         }
1292 }
1293
1294 /*
1295  * Note: sync and recover and handled very differently for raid10
1296  * This code is for resync.
1297  * For resync, we read through virtual addresses and read all blocks.
1298  * If there is any error, we schedule a write.  The lowest numbered
1299  * drive is authoritative.
1300  * However requests come for physical address, so we need to map.
1301  * For every physical address there are raid_disks/copies virtual addresses,
1302  * which is always are least one, but is not necessarly an integer.
1303  * This means that a physical address can span multiple chunks, so we may
1304  * have to submit multiple io requests for a single sync request.
1305  */
1306 /*
1307  * We check if all blocks are in-sync and only write to blocks that
1308  * aren't in sync
1309  */
1310 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1311 {
1312         conf_t *conf = mddev->private;
1313         int i, first;
1314         struct bio *tbio, *fbio;
1315
1316         atomic_set(&r10_bio->remaining, 1);
1317
1318         /* find the first device with a block */
1319         for (i=0; i<conf->copies; i++)
1320                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1321                         break;
1322
1323         if (i == conf->copies)
1324                 goto done;
1325
1326         first = i;
1327         fbio = r10_bio->devs[i].bio;
1328
1329         /* now find blocks with errors */
1330         for (i=0 ; i < conf->copies ; i++) {
1331                 int  j, d;
1332                 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1333
1334                 tbio = r10_bio->devs[i].bio;
1335
1336                 if (tbio->bi_end_io != end_sync_read)
1337                         continue;
1338                 if (i == first)
1339                         continue;
1340                 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1341                         /* We know that the bi_io_vec layout is the same for
1342                          * both 'first' and 'i', so we just compare them.
1343                          * All vec entries are PAGE_SIZE;
1344                          */
1345                         for (j = 0; j < vcnt; j++)
1346                                 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1347                                            page_address(tbio->bi_io_vec[j].bv_page),
1348                                            PAGE_SIZE))
1349                                         break;
1350                         if (j == vcnt)
1351                                 continue;
1352                         mddev->resync_mismatches += r10_bio->sectors;
1353                 }
1354                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1355                         /* Don't fix anything. */
1356                         continue;
1357                 /* Ok, we need to write this bio
1358                  * First we need to fixup bv_offset, bv_len and
1359                  * bi_vecs, as the read request might have corrupted these
1360                  */
1361                 tbio->bi_vcnt = vcnt;
1362                 tbio->bi_size = r10_bio->sectors << 9;
1363                 tbio->bi_idx = 0;
1364                 tbio->bi_phys_segments = 0;
1365                 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1366                 tbio->bi_flags |= 1 << BIO_UPTODATE;
1367                 tbio->bi_next = NULL;
1368                 tbio->bi_rw = WRITE;
1369                 tbio->bi_private = r10_bio;
1370                 tbio->bi_sector = r10_bio->devs[i].addr;
1371
1372                 for (j=0; j < vcnt ; j++) {
1373                         tbio->bi_io_vec[j].bv_offset = 0;
1374                         tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1375
1376                         memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1377                                page_address(fbio->bi_io_vec[j].bv_page),
1378                                PAGE_SIZE);
1379                 }
1380                 tbio->bi_end_io = end_sync_write;
1381
1382                 d = r10_bio->devs[i].devnum;
1383                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1384                 atomic_inc(&r10_bio->remaining);
1385                 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1386
1387                 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1388                 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1389                 generic_make_request(tbio);
1390         }
1391
1392 done:
1393         if (atomic_dec_and_test(&r10_bio->remaining)) {
1394                 md_done_sync(mddev, r10_bio->sectors, 1);
1395                 put_buf(r10_bio);
1396         }
1397 }
1398
1399 /*
1400  * Now for the recovery code.
1401  * Recovery happens across physical sectors.
1402  * We recover all non-is_sync drives by finding the virtual address of
1403  * each, and then choose a working drive that also has that virt address.
1404  * There is a separate r10_bio for each non-in_sync drive.
1405  * Only the first two slots are in use. The first for reading,
1406  * The second for writing.
1407  *
1408  */
1409
1410 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1411 {
1412         conf_t *conf = mddev->private;
1413         int i, d;
1414         struct bio *bio, *wbio;
1415
1416
1417         /* move the pages across to the second bio
1418          * and submit the write request
1419          */
1420         bio = r10_bio->devs[0].bio;
1421         wbio = r10_bio->devs[1].bio;
1422         for (i=0; i < wbio->bi_vcnt; i++) {
1423                 struct page *p = bio->bi_io_vec[i].bv_page;
1424                 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1425                 wbio->bi_io_vec[i].bv_page = p;
1426         }
1427         d = r10_bio->devs[1].devnum;
1428
1429         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1430         md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1431         if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1432                 generic_make_request(wbio);
1433         else
1434                 bio_endio(wbio, -EIO);
1435 }
1436
1437
1438 /*
1439  * Used by fix_read_error() to decay the per rdev read_errors.
1440  * We halve the read error count for every hour that has elapsed
1441  * since the last recorded read error.
1442  *
1443  */
1444 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1445 {
1446         struct timespec cur_time_mon;
1447         unsigned long hours_since_last;
1448         unsigned int read_errors = atomic_read(&rdev->read_errors);
1449
1450         ktime_get_ts(&cur_time_mon);
1451
1452         if (rdev->last_read_error.tv_sec == 0 &&
1453             rdev->last_read_error.tv_nsec == 0) {
1454                 /* first time we've seen a read error */
1455                 rdev->last_read_error = cur_time_mon;
1456                 return;
1457         }
1458
1459         hours_since_last = (cur_time_mon.tv_sec -
1460                             rdev->last_read_error.tv_sec) / 3600;
1461
1462         rdev->last_read_error = cur_time_mon;
1463
1464         /*
1465          * if hours_since_last is > the number of bits in read_errors
1466          * just set read errors to 0. We do this to avoid
1467          * overflowing the shift of read_errors by hours_since_last.
1468          */
1469         if (hours_since_last >= 8 * sizeof(read_errors))
1470                 atomic_set(&rdev->read_errors, 0);
1471         else
1472                 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1473 }
1474
1475 /*
1476  * This is a kernel thread which:
1477  *
1478  *      1.      Retries failed read operations on working mirrors.
1479  *      2.      Updates the raid superblock when problems encounter.
1480  *      3.      Performs writes following reads for array synchronising.
1481  */
1482
1483 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1484 {
1485         int sect = 0; /* Offset from r10_bio->sector */
1486         int sectors = r10_bio->sectors;
1487         mdk_rdev_t*rdev;
1488         int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1489
1490         rcu_read_lock();
1491         {
1492                 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1493                 char b[BDEVNAME_SIZE];
1494                 int cur_read_error_count = 0;
1495
1496                 rdev = rcu_dereference(conf->mirrors[d].rdev);
1497                 bdevname(rdev->bdev, b);
1498
1499                 if (test_bit(Faulty, &rdev->flags)) {
1500                         rcu_read_unlock();
1501                         /* drive has already been failed, just ignore any
1502                            more fix_read_error() attempts */
1503                         return;
1504                 }
1505
1506                 check_decay_read_errors(mddev, rdev);
1507                 atomic_inc(&rdev->read_errors);
1508                 cur_read_error_count = atomic_read(&rdev->read_errors);
1509                 if (cur_read_error_count > max_read_errors) {
1510                         rcu_read_unlock();
1511                         printk(KERN_NOTICE
1512                                "raid10: %s: Raid device exceeded "
1513                                "read_error threshold "
1514                                "[cur %d:max %d]\n",
1515                                b, cur_read_error_count, max_read_errors);
1516                         printk(KERN_NOTICE
1517                                "raid10: %s: Failing raid "
1518                                "device\n", b);
1519                         md_error(mddev, conf->mirrors[d].rdev);
1520                         return;
1521                 }
1522         }
1523         rcu_read_unlock();
1524
1525         while(sectors) {
1526                 int s = sectors;
1527                 int sl = r10_bio->read_slot;
1528                 int success = 0;
1529                 int start;
1530
1531                 if (s > (PAGE_SIZE>>9))
1532                         s = PAGE_SIZE >> 9;
1533
1534                 rcu_read_lock();
1535                 do {
1536                         int d = r10_bio->devs[sl].devnum;
1537                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1538                         if (rdev &&
1539                             test_bit(In_sync, &rdev->flags)) {
1540                                 atomic_inc(&rdev->nr_pending);
1541                                 rcu_read_unlock();
1542                                 success = sync_page_io(rdev->bdev,
1543                                                        r10_bio->devs[sl].addr +
1544                                                        sect + rdev->data_offset,
1545                                                        s<<9,
1546                                                        conf->tmppage, READ);
1547                                 rdev_dec_pending(rdev, mddev);
1548                                 rcu_read_lock();
1549                                 if (success)
1550                                         break;
1551                         }
1552                         sl++;
1553                         if (sl == conf->copies)
1554                                 sl = 0;
1555                 } while (!success && sl != r10_bio->read_slot);
1556                 rcu_read_unlock();
1557
1558                 if (!success) {
1559                         /* Cannot read from anywhere -- bye bye array */
1560                         int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1561                         md_error(mddev, conf->mirrors[dn].rdev);
1562                         break;
1563                 }
1564
1565                 start = sl;
1566                 /* write it back and re-read */
1567                 rcu_read_lock();
1568                 while (sl != r10_bio->read_slot) {
1569                         char b[BDEVNAME_SIZE];
1570                         int d;
1571                         if (sl==0)
1572                                 sl = conf->copies;
1573                         sl--;
1574                         d = r10_bio->devs[sl].devnum;
1575                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1576                         if (rdev &&
1577                             test_bit(In_sync, &rdev->flags)) {
1578                                 atomic_inc(&rdev->nr_pending);
1579                                 rcu_read_unlock();
1580                                 atomic_add(s, &rdev->corrected_errors);
1581                                 if (sync_page_io(rdev->bdev,
1582                                                  r10_bio->devs[sl].addr +
1583                                                  sect + rdev->data_offset,
1584                                                  s<<9, conf->tmppage, WRITE)
1585                                     == 0) {
1586                                         /* Well, this device is dead */
1587                                         printk(KERN_NOTICE
1588                                                "raid10:%s: read correction "
1589                                                "write failed"
1590                                                " (%d sectors at %llu on %s)\n",
1591                                                mdname(mddev), s,
1592                                                (unsigned long long)(sect+
1593                                                rdev->data_offset),
1594                                                bdevname(rdev->bdev, b));
1595                                         printk(KERN_NOTICE "raid10:%s: failing "
1596                                                "drive\n",
1597                                                bdevname(rdev->bdev, b));
1598                                         md_error(mddev, rdev);
1599                                 }
1600                                 rdev_dec_pending(rdev, mddev);
1601                                 rcu_read_lock();
1602                         }
1603                 }
1604                 sl = start;
1605                 while (sl != r10_bio->read_slot) {
1606                         int d;
1607                         if (sl==0)
1608                                 sl = conf->copies;
1609                         sl--;
1610                         d = r10_bio->devs[sl].devnum;
1611                         rdev = rcu_dereference(conf->mirrors[d].rdev);
1612                         if (rdev &&
1613                             test_bit(In_sync, &rdev->flags)) {
1614                                 char b[BDEVNAME_SIZE];
1615                                 atomic_inc(&rdev->nr_pending);
1616                                 rcu_read_unlock();
1617                                 if (sync_page_io(rdev->bdev,
1618                                                  r10_bio->devs[sl].addr +
1619                                                  sect + rdev->data_offset,
1620                                                  s<<9, conf->tmppage,
1621                                                  READ) == 0) {
1622                                         /* Well, this device is dead */
1623                                         printk(KERN_NOTICE
1624                                                "raid10:%s: unable to read back "
1625                                                "corrected sectors"
1626                                                " (%d sectors at %llu on %s)\n",
1627                                                mdname(mddev), s,
1628                                                (unsigned long long)(sect+
1629                                                     rdev->data_offset),
1630                                                bdevname(rdev->bdev, b));
1631                                         printk(KERN_NOTICE "raid10:%s: failing drive\n",
1632                                                bdevname(rdev->bdev, b));
1633
1634                                         md_error(mddev, rdev);
1635                                 } else {
1636                                         printk(KERN_INFO
1637                                                "raid10:%s: read error corrected"
1638                                                " (%d sectors at %llu on %s)\n",
1639                                                mdname(mddev), s,
1640                                                (unsigned long long)(sect+
1641                                                     rdev->data_offset),
1642                                                bdevname(rdev->bdev, b));
1643                                 }
1644
1645                                 rdev_dec_pending(rdev, mddev);
1646                                 rcu_read_lock();
1647                         }
1648                 }
1649                 rcu_read_unlock();
1650
1651                 sectors -= s;
1652                 sect += s;
1653         }
1654 }
1655
1656 static void raid10d(mddev_t *mddev)
1657 {
1658         r10bio_t *r10_bio;
1659         struct bio *bio;
1660         unsigned long flags;
1661         conf_t *conf = mddev->private;
1662         struct list_head *head = &conf->retry_list;
1663         int unplug=0;
1664         mdk_rdev_t *rdev;
1665
1666         md_check_recovery(mddev);
1667
1668         for (;;) {
1669                 char b[BDEVNAME_SIZE];
1670
1671                 unplug += flush_pending_writes(conf);
1672
1673                 spin_lock_irqsave(&conf->device_lock, flags);
1674                 if (list_empty(head)) {
1675                         spin_unlock_irqrestore(&conf->device_lock, flags);
1676                         break;
1677                 }
1678                 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1679                 list_del(head->prev);
1680                 conf->nr_queued--;
1681                 spin_unlock_irqrestore(&conf->device_lock, flags);
1682
1683                 mddev = r10_bio->mddev;
1684                 conf = mddev->private;
1685                 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1686                         sync_request_write(mddev, r10_bio);
1687                         unplug = 1;
1688                 } else  if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1689                         recovery_request_write(mddev, r10_bio);
1690                         unplug = 1;
1691                 } else {
1692                         int mirror;
1693                         /* we got a read error. Maybe the drive is bad.  Maybe just
1694                          * the block and we can fix it.
1695                          * We freeze all other IO, and try reading the block from
1696                          * other devices.  When we find one, we re-write
1697                          * and check it that fixes the read error.
1698                          * This is all done synchronously while the array is
1699                          * frozen.
1700                          */
1701                         if (mddev->ro == 0) {
1702                                 freeze_array(conf);
1703                                 fix_read_error(conf, mddev, r10_bio);
1704                                 unfreeze_array(conf);
1705                         }
1706
1707                         bio = r10_bio->devs[r10_bio->read_slot].bio;
1708                         r10_bio->devs[r10_bio->read_slot].bio =
1709                                 mddev->ro ? IO_BLOCKED : NULL;
1710                         mirror = read_balance(conf, r10_bio);
1711                         if (mirror == -1) {
1712                                 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1713                                        " read error for block %llu\n",
1714                                        bdevname(bio->bi_bdev,b),
1715                                        (unsigned long long)r10_bio->sector);
1716                                 raid_end_bio_io(r10_bio);
1717                                 bio_put(bio);
1718                         } else {
1719                                 const bool do_sync = bio_rw_flagged(r10_bio->master_bio, BIO_RW_SYNCIO);
1720                                 bio_put(bio);
1721                                 rdev = conf->mirrors[mirror].rdev;
1722                                 if (printk_ratelimit())
1723                                         printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1724                                                " another mirror\n",
1725                                                bdevname(rdev->bdev,b),
1726                                                (unsigned long long)r10_bio->sector);
1727                                 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1728                                 r10_bio->devs[r10_bio->read_slot].bio = bio;
1729                                 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1730                                         + rdev->data_offset;
1731                                 bio->bi_bdev = rdev->bdev;
1732                                 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1733                                 bio->bi_private = r10_bio;
1734                                 bio->bi_end_io = raid10_end_read_request;
1735                                 unplug = 1;
1736                                 generic_make_request(bio);
1737                         }
1738                 }
1739                 cond_resched();
1740         }
1741         if (unplug)
1742                 unplug_slaves(mddev);
1743 }
1744
1745
1746 static int init_resync(conf_t *conf)
1747 {
1748         int buffs;
1749
1750         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1751         BUG_ON(conf->r10buf_pool);
1752         conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1753         if (!conf->r10buf_pool)
1754                 return -ENOMEM;
1755         conf->next_resync = 0;
1756         return 0;
1757 }
1758
1759 /*
1760  * perform a "sync" on one "block"
1761  *
1762  * We need to make sure that no normal I/O request - particularly write
1763  * requests - conflict with active sync requests.
1764  *
1765  * This is achieved by tracking pending requests and a 'barrier' concept
1766  * that can be installed to exclude normal IO requests.
1767  *
1768  * Resync and recovery are handled very differently.
1769  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1770  *
1771  * For resync, we iterate over virtual addresses, read all copies,
1772  * and update if there are differences.  If only one copy is live,
1773  * skip it.
1774  * For recovery, we iterate over physical addresses, read a good
1775  * value for each non-in_sync drive, and over-write.
1776  *
1777  * So, for recovery we may have several outstanding complex requests for a
1778  * given address, one for each out-of-sync device.  We model this by allocating
1779  * a number of r10_bio structures, one for each out-of-sync device.
1780  * As we setup these structures, we collect all bio's together into a list
1781  * which we then process collectively to add pages, and then process again
1782  * to pass to generic_make_request.
1783  *
1784  * The r10_bio structures are linked using a borrowed master_bio pointer.
1785  * This link is counted in ->remaining.  When the r10_bio that points to NULL
1786  * has its remaining count decremented to 0, the whole complex operation
1787  * is complete.
1788  *
1789  */
1790
1791 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1792 {
1793         conf_t *conf = mddev->private;
1794         r10bio_t *r10_bio;
1795         struct bio *biolist = NULL, *bio;
1796         sector_t max_sector, nr_sectors;
1797         int disk;
1798         int i;
1799         int max_sync;
1800         int sync_blocks;
1801
1802         sector_t sectors_skipped = 0;
1803         int chunks_skipped = 0;
1804
1805         if (!conf->r10buf_pool)
1806                 if (init_resync(conf))
1807                         return 0;
1808
1809  skipped:
1810         max_sector = mddev->dev_sectors;
1811         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1812                 max_sector = mddev->resync_max_sectors;
1813         if (sector_nr >= max_sector) {
1814                 /* If we aborted, we need to abort the
1815                  * sync on the 'current' bitmap chucks (there can
1816                  * be several when recovering multiple devices).
1817                  * as we may have started syncing it but not finished.
1818                  * We can find the current address in
1819                  * mddev->curr_resync, but for recovery,
1820                  * we need to convert that to several
1821                  * virtual addresses.
1822                  */
1823                 if (mddev->curr_resync < max_sector) { /* aborted */
1824                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1825                                 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1826                                                 &sync_blocks, 1);
1827                         else for (i=0; i<conf->raid_disks; i++) {
1828                                 sector_t sect =
1829                                         raid10_find_virt(conf, mddev->curr_resync, i);
1830                                 bitmap_end_sync(mddev->bitmap, sect,
1831                                                 &sync_blocks, 1);
1832                         }
1833                 } else /* completed sync */
1834                         conf->fullsync = 0;
1835
1836                 bitmap_close_sync(mddev->bitmap);
1837                 close_sync(conf);
1838                 *skipped = 1;
1839                 return sectors_skipped;
1840         }
1841         if (chunks_skipped >= conf->raid_disks) {
1842                 /* if there has been nothing to do on any drive,
1843                  * then there is nothing to do at all..
1844                  */
1845                 *skipped = 1;
1846                 return (max_sector - sector_nr) + sectors_skipped;
1847         }
1848
1849         if (max_sector > mddev->resync_max)
1850                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1851
1852         /* make sure whole request will fit in a chunk - if chunks
1853          * are meaningful
1854          */
1855         if (conf->near_copies < conf->raid_disks &&
1856             max_sector > (sector_nr | conf->chunk_mask))
1857                 max_sector = (sector_nr | conf->chunk_mask) + 1;
1858         /*
1859          * If there is non-resync activity waiting for us then
1860          * put in a delay to throttle resync.
1861          */
1862         if (!go_faster && conf->nr_waiting)
1863                 msleep_interruptible(1000);
1864
1865         /* Again, very different code for resync and recovery.
1866          * Both must result in an r10bio with a list of bios that
1867          * have bi_end_io, bi_sector, bi_bdev set,
1868          * and bi_private set to the r10bio.
1869          * For recovery, we may actually create several r10bios
1870          * with 2 bios in each, that correspond to the bios in the main one.
1871          * In this case, the subordinate r10bios link back through a
1872          * borrowed master_bio pointer, and the counter in the master
1873          * includes a ref from each subordinate.
1874          */
1875         /* First, we decide what to do and set ->bi_end_io
1876          * To end_sync_read if we want to read, and
1877          * end_sync_write if we will want to write.
1878          */
1879
1880         max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1881         if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1882                 /* recovery... the complicated one */
1883                 int j, k;
1884                 r10_bio = NULL;
1885
1886                 for (i=0 ; i<conf->raid_disks; i++)
1887                         if (conf->mirrors[i].rdev &&
1888                             !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1889                                 int still_degraded = 0;
1890                                 /* want to reconstruct this device */
1891                                 r10bio_t *rb2 = r10_bio;
1892                                 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1893                                 int must_sync;
1894                                 /* Unless we are doing a full sync, we only need
1895                                  * to recover the block if it is set in the bitmap
1896                                  */
1897                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1898                                                               &sync_blocks, 1);
1899                                 if (sync_blocks < max_sync)
1900                                         max_sync = sync_blocks;
1901                                 if (!must_sync &&
1902                                     !conf->fullsync) {
1903                                         /* yep, skip the sync_blocks here, but don't assume
1904                                          * that there will never be anything to do here
1905                                          */
1906                                         chunks_skipped = -1;
1907                                         continue;
1908                                 }
1909
1910                                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1911                                 raise_barrier(conf, rb2 != NULL);
1912                                 atomic_set(&r10_bio->remaining, 0);
1913
1914                                 r10_bio->master_bio = (struct bio*)rb2;
1915                                 if (rb2)
1916                                         atomic_inc(&rb2->remaining);
1917                                 r10_bio->mddev = mddev;
1918                                 set_bit(R10BIO_IsRecover, &r10_bio->state);
1919                                 r10_bio->sector = sect;
1920
1921                                 raid10_find_phys(conf, r10_bio);
1922
1923                                 /* Need to check if the array will still be
1924                                  * degraded
1925                                  */
1926                                 for (j=0; j<conf->raid_disks; j++)
1927                                         if (conf->mirrors[j].rdev == NULL ||
1928                                             test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1929                                                 still_degraded = 1;
1930                                                 break;
1931                                         }
1932
1933                                 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1934                                                               &sync_blocks, still_degraded);
1935
1936                                 for (j=0; j<conf->copies;j++) {
1937                                         int d = r10_bio->devs[j].devnum;
1938                                         if (conf->mirrors[d].rdev &&
1939                                             test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1940                                                 /* This is where we read from */
1941                                                 bio = r10_bio->devs[0].bio;
1942                                                 bio->bi_next = biolist;
1943                                                 biolist = bio;
1944                                                 bio->bi_private = r10_bio;
1945                                                 bio->bi_end_io = end_sync_read;
1946                                                 bio->bi_rw = READ;
1947                                                 bio->bi_sector = r10_bio->devs[j].addr +
1948                                                         conf->mirrors[d].rdev->data_offset;
1949                                                 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1950                                                 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1951                                                 atomic_inc(&r10_bio->remaining);
1952                                                 /* and we write to 'i' */
1953
1954                                                 for (k=0; k<conf->copies; k++)
1955                                                         if (r10_bio->devs[k].devnum == i)
1956                                                                 break;
1957                                                 BUG_ON(k == conf->copies);
1958                                                 bio = r10_bio->devs[1].bio;
1959                                                 bio->bi_next = biolist;
1960                                                 biolist = bio;
1961                                                 bio->bi_private = r10_bio;
1962                                                 bio->bi_end_io = end_sync_write;
1963                                                 bio->bi_rw = WRITE;
1964                                                 bio->bi_sector = r10_bio->devs[k].addr +
1965                                                         conf->mirrors[i].rdev->data_offset;
1966                                                 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1967
1968                                                 r10_bio->devs[0].devnum = d;
1969                                                 r10_bio->devs[1].devnum = i;
1970
1971                                                 break;
1972                                         }
1973                                 }
1974                                 if (j == conf->copies) {
1975                                         /* Cannot recover, so abort the recovery */
1976                                         put_buf(r10_bio);
1977                                         if (rb2)
1978                                                 atomic_dec(&rb2->remaining);
1979                                         r10_bio = rb2;
1980                                         if (!test_and_set_bit(MD_RECOVERY_INTR,
1981                                                               &mddev->recovery))
1982                                                 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1983                                                        mdname(mddev));
1984                                         break;
1985                                 }
1986                         }
1987                 if (biolist == NULL) {
1988                         while (r10_bio) {
1989                                 r10bio_t *rb2 = r10_bio;
1990                                 r10_bio = (r10bio_t*) rb2->master_bio;
1991                                 rb2->master_bio = NULL;
1992                                 put_buf(rb2);
1993                         }
1994                         goto giveup;
1995                 }
1996         } else {
1997                 /* resync. Schedule a read for every block at this virt offset */
1998                 int count = 0;
1999
2000                 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2001
2002                 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2003                                        &sync_blocks, mddev->degraded) &&
2004                     !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2005                         /* We can skip this block */
2006                         *skipped = 1;
2007                         return sync_blocks + sectors_skipped;
2008                 }
2009                 if (sync_blocks < max_sync)
2010                         max_sync = sync_blocks;
2011                 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2012
2013                 r10_bio->mddev = mddev;
2014                 atomic_set(&r10_bio->remaining, 0);
2015                 raise_barrier(conf, 0);
2016                 conf->next_resync = sector_nr;
2017
2018                 r10_bio->master_bio = NULL;
2019                 r10_bio->sector = sector_nr;
2020                 set_bit(R10BIO_IsSync, &r10_bio->state);
2021                 raid10_find_phys(conf, r10_bio);
2022                 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2023
2024                 for (i=0; i<conf->copies; i++) {
2025                         int d = r10_bio->devs[i].devnum;
2026                         bio = r10_bio->devs[i].bio;
2027                         bio->bi_end_io = NULL;
2028                         clear_bit(BIO_UPTODATE, &bio->bi_flags);
2029                         if (conf->mirrors[d].rdev == NULL ||
2030                             test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2031                                 continue;
2032                         atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2033                         atomic_inc(&r10_bio->remaining);
2034                         bio->bi_next = biolist;
2035                         biolist = bio;
2036                         bio->bi_private = r10_bio;
2037                         bio->bi_end_io = end_sync_read;
2038                         bio->bi_rw = READ;
2039                         bio->bi_sector = r10_bio->devs[i].addr +
2040                                 conf->mirrors[d].rdev->data_offset;
2041                         bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2042                         count++;
2043                 }
2044
2045                 if (count < 2) {
2046                         for (i=0; i<conf->copies; i++) {
2047                                 int d = r10_bio->devs[i].devnum;
2048                                 if (r10_bio->devs[i].bio->bi_end_io)
2049                                         rdev_dec_pending(conf->mirrors[d].rdev, mddev);
2050                         }
2051                         put_buf(r10_bio);
2052                         biolist = NULL;
2053                         goto giveup;
2054                 }
2055         }
2056
2057         for (bio = biolist; bio ; bio=bio->bi_next) {
2058
2059                 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2060                 if (bio->bi_end_io)
2061                         bio->bi_flags |= 1 << BIO_UPTODATE;
2062                 bio->bi_vcnt = 0;
2063                 bio->bi_idx = 0;
2064                 bio->bi_phys_segments = 0;
2065                 bio->bi_size = 0;
2066         }
2067
2068         nr_sectors = 0;
2069         if (sector_nr + max_sync < max_sector)
2070                 max_sector = sector_nr + max_sync;
2071         do {
2072                 struct page *page;
2073                 int len = PAGE_SIZE;
2074                 disk = 0;
2075                 if (sector_nr + (len>>9) > max_sector)
2076                         len = (max_sector - sector_nr) << 9;
2077                 if (len == 0)
2078                         break;
2079                 for (bio= biolist ; bio ; bio=bio->bi_next) {
2080                         page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2081                         if (bio_add_page(bio, page, len, 0) == 0) {
2082                                 /* stop here */
2083                                 struct bio *bio2;
2084                                 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2085                                 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
2086                                         /* remove last page from this bio */
2087                                         bio2->bi_vcnt--;
2088                                         bio2->bi_size -= len;
2089                                         bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2090                                 }
2091                                 goto bio_full;
2092                         }
2093                         disk = i;
2094                 }
2095                 nr_sectors += len>>9;
2096                 sector_nr += len>>9;
2097         } while (biolist->bi_vcnt < RESYNC_PAGES);
2098  bio_full:
2099         r10_bio->sectors = nr_sectors;
2100
2101         while (biolist) {
2102                 bio = biolist;
2103                 biolist = biolist->bi_next;
2104
2105                 bio->bi_next = NULL;
2106                 r10_bio = bio->bi_private;
2107                 r10_bio->sectors = nr_sectors;
2108
2109                 if (bio->bi_end_io == end_sync_read) {
2110                         md_sync_acct(bio->bi_bdev, nr_sectors);
2111                         generic_make_request(bio);
2112                 }
2113         }
2114
2115         if (sectors_skipped)
2116                 /* pretend they weren't skipped, it makes
2117                  * no important difference in this case
2118                  */
2119                 md_done_sync(mddev, sectors_skipped, 1);
2120
2121         return sectors_skipped + nr_sectors;
2122  giveup:
2123         /* There is nowhere to write, so all non-sync
2124          * drives must be failed, so try the next chunk...
2125          */
2126         if (sector_nr + max_sync < max_sector)
2127                 max_sector = sector_nr + max_sync;
2128
2129         sectors_skipped += (max_sector - sector_nr);
2130         chunks_skipped ++;
2131         sector_nr = max_sector;
2132         goto skipped;
2133 }
2134
2135 static sector_t
2136 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2137 {
2138         sector_t size;
2139         conf_t *conf = mddev->private;
2140
2141         if (!raid_disks)
2142                 raid_disks = mddev->raid_disks;
2143         if (!sectors)
2144                 sectors = mddev->dev_sectors;
2145
2146         size = sectors >> conf->chunk_shift;
2147         sector_div(size, conf->far_copies);
2148         size = size * raid_disks;
2149         sector_div(size, conf->near_copies);
2150
2151         return size << conf->chunk_shift;
2152 }
2153
2154 static int run(mddev_t *mddev)
2155 {
2156         conf_t *conf;
2157         int i, disk_idx, chunk_size;
2158         mirror_info_t *disk;
2159         mdk_rdev_t *rdev;
2160         int nc, fc, fo;
2161         sector_t stride, size;
2162
2163         if (mddev->chunk_sectors < (PAGE_SIZE >> 9) ||
2164             !is_power_of_2(mddev->chunk_sectors)) {
2165                 printk(KERN_ERR "md/raid10: chunk size must be "
2166                        "at least PAGE_SIZE(%ld) and be a power of 2.\n", PAGE_SIZE);
2167                 return -EINVAL;
2168         }
2169
2170         nc = mddev->layout & 255;
2171         fc = (mddev->layout >> 8) & 255;
2172         fo = mddev->layout & (1<<16);
2173         if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2174             (mddev->layout >> 17)) {
2175                 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2176                        mdname(mddev), mddev->layout);
2177                 goto out;
2178         }
2179         /*
2180          * copy the already verified devices into our private RAID10
2181          * bookkeeping area. [whatever we allocate in run(),
2182          * should be freed in stop()]
2183          */
2184         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2185         mddev->private = conf;
2186         if (!conf) {
2187                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2188                         mdname(mddev));
2189                 goto out;
2190         }
2191         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2192                                  GFP_KERNEL);
2193         if (!conf->mirrors) {
2194                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2195                        mdname(mddev));
2196                 goto out_free_conf;
2197         }
2198
2199         conf->tmppage = alloc_page(GFP_KERNEL);
2200         if (!conf->tmppage)
2201                 goto out_free_conf;
2202
2203         conf->raid_disks = mddev->raid_disks;
2204         conf->near_copies = nc;
2205         conf->far_copies = fc;
2206         conf->copies = nc*fc;
2207         conf->far_offset = fo;
2208         conf->chunk_mask = mddev->chunk_sectors - 1;
2209         conf->chunk_shift = ffz(~mddev->chunk_sectors);
2210         size = mddev->dev_sectors >> conf->chunk_shift;
2211         sector_div(size, fc);
2212         size = size * conf->raid_disks;
2213         sector_div(size, nc);
2214         /* 'size' is now the number of chunks in the array */
2215         /* calculate "used chunks per device" in 'stride' */
2216         stride = size * conf->copies;
2217
2218         /* We need to round up when dividing by raid_disks to
2219          * get the stride size.
2220          */
2221         stride += conf->raid_disks - 1;
2222         sector_div(stride, conf->raid_disks);
2223         mddev->dev_sectors = stride << conf->chunk_shift;
2224
2225         if (fo)
2226                 stride = 1;
2227         else
2228                 sector_div(stride, fc);
2229         conf->stride = stride << conf->chunk_shift;
2230
2231         conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2232                                                 r10bio_pool_free, conf);
2233         if (!conf->r10bio_pool) {
2234                 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2235                         mdname(mddev));
2236                 goto out_free_conf;
2237         }
2238
2239         conf->mddev = mddev;
2240         spin_lock_init(&conf->device_lock);
2241         mddev->queue->queue_lock = &conf->device_lock;
2242
2243         chunk_size = mddev->chunk_sectors << 9;
2244         blk_queue_io_min(mddev->queue, chunk_size);
2245         if (conf->raid_disks % conf->near_copies)
2246                 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2247         else
2248                 blk_queue_io_opt(mddev->queue, chunk_size *
2249                                  (conf->raid_disks / conf->near_copies));
2250
2251         list_for_each_entry(rdev, &mddev->disks, same_set) {
2252                 disk_idx = rdev->raid_disk;
2253                 if (disk_idx >= mddev->raid_disks
2254                     || disk_idx < 0)
2255                         continue;
2256                 disk = conf->mirrors + disk_idx;
2257
2258                 disk->rdev = rdev;
2259                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2260                                   rdev->data_offset << 9);
2261                 /* as we don't honour merge_bvec_fn, we must never risk
2262                  * violating it, so limit max_segments to 1 lying
2263                  * within a single page.
2264                  */
2265                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2266                         blk_queue_max_segments(mddev->queue, 1);
2267                         blk_queue_segment_boundary(mddev->queue,
2268                                                    PAGE_CACHE_SIZE - 1);
2269                 }
2270
2271                 disk->head_position = 0;
2272         }
2273         INIT_LIST_HEAD(&conf->retry_list);
2274
2275         spin_lock_init(&conf->resync_lock);
2276         init_waitqueue_head(&conf->wait_barrier);
2277
2278         /* need to check that every block has at least one working mirror */
2279         if (!enough(conf)) {
2280                 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2281                        mdname(mddev));
2282                 goto out_free_conf;
2283         }
2284
2285         mddev->degraded = 0;
2286         for (i = 0; i < conf->raid_disks; i++) {
2287
2288                 disk = conf->mirrors + i;
2289
2290                 if (!disk->rdev ||
2291                     !test_bit(In_sync, &disk->rdev->flags)) {
2292                         disk->head_position = 0;
2293                         mddev->degraded++;
2294                         if (disk->rdev)
2295                                 conf->fullsync = 1;
2296                 }
2297         }
2298
2299
2300         mddev->thread = md_register_thread(raid10d, mddev, NULL);
2301         if (!mddev->thread) {
2302                 printk(KERN_ERR
2303                        "raid10: couldn't allocate thread for %s\n",
2304                        mdname(mddev));
2305                 goto out_free_conf;
2306         }
2307
2308         if (mddev->recovery_cp != MaxSector)
2309                 printk(KERN_NOTICE "raid10: %s is not clean"
2310                        " -- starting background reconstruction\n",
2311                        mdname(mddev));
2312         printk(KERN_INFO
2313                 "raid10: raid set %s active with %d out of %d devices\n",
2314                 mdname(mddev), mddev->raid_disks - mddev->degraded,
2315                 mddev->raid_disks);
2316         /*
2317          * Ok, everything is just fine now
2318          */
2319         md_set_array_sectors(mddev, raid10_size(mddev, 0, 0));
2320         mddev->resync_max_sectors = raid10_size(mddev, 0, 0);
2321
2322         mddev->queue->unplug_fn = raid10_unplug;
2323         mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2324         mddev->queue->backing_dev_info.congested_data = mddev;
2325
2326         /* Calculate max read-ahead size.
2327          * We need to readahead at least twice a whole stripe....
2328          * maybe...
2329          */
2330         {
2331                 int stripe = conf->raid_disks *
2332                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2333                 stripe /= conf->near_copies;
2334                 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2335                         mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2336         }
2337
2338         if (conf->near_copies < mddev->raid_disks)
2339                 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2340         md_integrity_register(mddev);
2341         return 0;
2342
2343 out_free_conf:
2344         if (conf->r10bio_pool)
2345                 mempool_destroy(conf->r10bio_pool);
2346         safe_put_page(conf->tmppage);
2347         kfree(conf->mirrors);
2348         kfree(conf);
2349         mddev->private = NULL;
2350 out:
2351         return -EIO;
2352 }
2353
2354 static int stop(mddev_t *mddev)
2355 {
2356         conf_t *conf = mddev->private;
2357
2358         raise_barrier(conf, 0);
2359         lower_barrier(conf);
2360
2361         md_unregister_thread(mddev->thread);
2362         mddev->thread = NULL;
2363         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2364         if (conf->r10bio_pool)
2365                 mempool_destroy(conf->r10bio_pool);
2366         kfree(conf->mirrors);
2367         kfree(conf);
2368         mddev->private = NULL;
2369         return 0;
2370 }
2371
2372 static void raid10_quiesce(mddev_t *mddev, int state)
2373 {
2374         conf_t *conf = mddev->private;
2375
2376         switch(state) {
2377         case 1:
2378                 raise_barrier(conf, 0);
2379                 break;
2380         case 0:
2381                 lower_barrier(conf);
2382                 break;
2383         }
2384 }
2385
2386 static struct mdk_personality raid10_personality =
2387 {
2388         .name           = "raid10",
2389         .level          = 10,
2390         .owner          = THIS_MODULE,
2391         .make_request   = make_request,
2392         .run            = run,
2393         .stop           = stop,
2394         .status         = status,
2395         .error_handler  = error,
2396         .hot_add_disk   = raid10_add_disk,
2397         .hot_remove_disk= raid10_remove_disk,
2398         .spare_active   = raid10_spare_active,
2399         .sync_request   = sync_request,
2400         .quiesce        = raid10_quiesce,
2401         .size           = raid10_size,
2402 };
2403
2404 static int __init raid_init(void)
2405 {
2406         return register_md_personality(&raid10_personality);
2407 }
2408
2409 static void raid_exit(void)
2410 {
2411         unregister_md_personality(&raid10_personality);
2412 }
2413
2414 module_init(raid_init);
2415 module_exit(raid_exit);
2416 MODULE_LICENSE("GPL");
2417 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2418 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2419 MODULE_ALIAS("md-raid10");
2420 MODULE_ALIAS("md-level-10");