drm/radeon/kms/evergreen: fix LUT setup
[safe/jmp/linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "raid1.h"
39 #include "bitmap.h"
40
41 #define DEBUG 0
42 #if DEBUG
43 #define PRINTK(x...) printk(x)
44 #else
45 #define PRINTK(x...)
46 #endif
47
48 /*
49  * Number of guaranteed r1bios in case of extreme VM load:
50  */
51 #define NR_RAID1_BIOS 256
52
53
54 static void unplug_slaves(mddev_t *mddev);
55
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
58
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 {
61         struct pool_info *pi = data;
62         r1bio_t *r1_bio;
63         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
64
65         /* allocate a r1bio with room for raid_disks entries in the bios array */
66         r1_bio = kzalloc(size, gfp_flags);
67         if (!r1_bio && pi->mddev)
68                 unplug_slaves(pi->mddev);
69
70         return r1_bio;
71 }
72
73 static void r1bio_pool_free(void *r1_bio, void *data)
74 {
75         kfree(r1_bio);
76 }
77
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
83
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86         struct pool_info *pi = data;
87         struct page *page;
88         r1bio_t *r1_bio;
89         struct bio *bio;
90         int i, j;
91
92         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93         if (!r1_bio) {
94                 unplug_slaves(pi->mddev);
95                 return NULL;
96         }
97
98         /*
99          * Allocate bios : 1 for reading, n-1 for writing
100          */
101         for (j = pi->raid_disks ; j-- ; ) {
102                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103                 if (!bio)
104                         goto out_free_bio;
105                 r1_bio->bios[j] = bio;
106         }
107         /*
108          * Allocate RESYNC_PAGES data pages and attach them to
109          * the first bio.
110          * If this is a user-requested check/repair, allocate
111          * RESYNC_PAGES for each bio.
112          */
113         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114                 j = pi->raid_disks;
115         else
116                 j = 1;
117         while(j--) {
118                 bio = r1_bio->bios[j];
119                 for (i = 0; i < RESYNC_PAGES; i++) {
120                         page = alloc_page(gfp_flags);
121                         if (unlikely(!page))
122                                 goto out_free_pages;
123
124                         bio->bi_io_vec[i].bv_page = page;
125                         bio->bi_vcnt = i+1;
126                 }
127         }
128         /* If not user-requests, copy the page pointers to all bios */
129         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130                 for (i=0; i<RESYNC_PAGES ; i++)
131                         for (j=1; j<pi->raid_disks; j++)
132                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
133                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
134         }
135
136         r1_bio->master_bio = NULL;
137
138         return r1_bio;
139
140 out_free_pages:
141         for (j=0 ; j < pi->raid_disks; j++)
142                 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143                         put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
144         j = -1;
145 out_free_bio:
146         while ( ++j < pi->raid_disks )
147                 bio_put(r1_bio->bios[j]);
148         r1bio_pool_free(r1_bio, data);
149         return NULL;
150 }
151
152 static void r1buf_pool_free(void *__r1_bio, void *data)
153 {
154         struct pool_info *pi = data;
155         int i,j;
156         r1bio_t *r1bio = __r1_bio;
157
158         for (i = 0; i < RESYNC_PAGES; i++)
159                 for (j = pi->raid_disks; j-- ;) {
160                         if (j == 0 ||
161                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
162                             r1bio->bios[0]->bi_io_vec[i].bv_page)
163                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
164                 }
165         for (i=0 ; i < pi->raid_disks; i++)
166                 bio_put(r1bio->bios[i]);
167
168         r1bio_pool_free(r1bio, data);
169 }
170
171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
172 {
173         int i;
174
175         for (i = 0; i < conf->raid_disks; i++) {
176                 struct bio **bio = r1_bio->bios + i;
177                 if (*bio && *bio != IO_BLOCKED)
178                         bio_put(*bio);
179                 *bio = NULL;
180         }
181 }
182
183 static void free_r1bio(r1bio_t *r1_bio)
184 {
185         conf_t *conf = r1_bio->mddev->private;
186
187         /*
188          * Wake up any possible resync thread that waits for the device
189          * to go idle.
190          */
191         allow_barrier(conf);
192
193         put_all_bios(conf, r1_bio);
194         mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(r1bio_t *r1_bio)
198 {
199         conf_t *conf = r1_bio->mddev->private;
200         int i;
201
202         for (i=0; i<conf->raid_disks; i++) {
203                 struct bio *bio = r1_bio->bios[i];
204                 if (bio->bi_end_io)
205                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206         }
207
208         mempool_free(r1_bio, conf->r1buf_pool);
209
210         lower_barrier(conf);
211 }
212
213 static void reschedule_retry(r1bio_t *r1_bio)
214 {
215         unsigned long flags;
216         mddev_t *mddev = r1_bio->mddev;
217         conf_t *conf = mddev->private;
218
219         spin_lock_irqsave(&conf->device_lock, flags);
220         list_add(&r1_bio->retry_list, &conf->retry_list);
221         conf->nr_queued ++;
222         spin_unlock_irqrestore(&conf->device_lock, flags);
223
224         wake_up(&conf->wait_barrier);
225         md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void raid_end_bio_io(r1bio_t *r1_bio)
234 {
235         struct bio *bio = r1_bio->master_bio;
236
237         /* if nobody has done the final endio yet, do it now */
238         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
241                         (unsigned long long) bio->bi_sector,
242                         (unsigned long long) bio->bi_sector +
243                                 (bio->bi_size >> 9) - 1);
244
245                 bio_endio(bio,
246                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
247         }
248         free_r1bio(r1_bio);
249 }
250
251 /*
252  * Update disk head position estimator based on IRQ completion info.
253  */
254 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
255 {
256         conf_t *conf = r1_bio->mddev->private;
257
258         conf->mirrors[disk].head_position =
259                 r1_bio->sector + (r1_bio->sectors);
260 }
261
262 static void raid1_end_read_request(struct bio *bio, int error)
263 {
264         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266         int mirror;
267         conf_t *conf = r1_bio->mddev->private;
268
269         mirror = r1_bio->read_disk;
270         /*
271          * this branch is our 'one mirror IO has finished' event handler:
272          */
273         update_head_pos(mirror, r1_bio);
274
275         if (uptodate)
276                 set_bit(R1BIO_Uptodate, &r1_bio->state);
277         else {
278                 /* If all other devices have failed, we want to return
279                  * the error upwards rather than fail the last device.
280                  * Here we redefine "uptodate" to mean "Don't want to retry"
281                  */
282                 unsigned long flags;
283                 spin_lock_irqsave(&conf->device_lock, flags);
284                 if (r1_bio->mddev->degraded == conf->raid_disks ||
285                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287                         uptodate = 1;
288                 spin_unlock_irqrestore(&conf->device_lock, flags);
289         }
290
291         if (uptodate)
292                 raid_end_bio_io(r1_bio);
293         else {
294                 /*
295                  * oops, read error:
296                  */
297                 char b[BDEVNAME_SIZE];
298                 if (printk_ratelimit())
299                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301                 reschedule_retry(r1_bio);
302         }
303
304         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
305 }
306
307 static void raid1_end_write_request(struct bio *bio, int error)
308 {
309         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312         conf_t *conf = r1_bio->mddev->private;
313         struct bio *to_put = NULL;
314
315
316         for (mirror = 0; mirror < conf->raid_disks; mirror++)
317                 if (r1_bio->bios[mirror] == bio)
318                         break;
319
320         if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323                 r1_bio->mddev->barriers_work = 0;
324                 /* Don't rdev_dec_pending in this branch - keep it for the retry */
325         } else {
326                 /*
327                  * this branch is our 'one mirror IO has finished' event handler:
328                  */
329                 r1_bio->bios[mirror] = NULL;
330                 to_put = bio;
331                 if (!uptodate) {
332                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333                         /* an I/O failed, we can't clear the bitmap */
334                         set_bit(R1BIO_Degraded, &r1_bio->state);
335                 } else
336                         /*
337                          * Set R1BIO_Uptodate in our master bio, so that
338                          * we will return a good error code for to the higher
339                          * levels even if IO on some other mirrored buffer fails.
340                          *
341                          * The 'master' represents the composite IO operation to
342                          * user-side. So if something waits for IO, then it will
343                          * wait for the 'master' bio.
344                          */
345                         set_bit(R1BIO_Uptodate, &r1_bio->state);
346
347                 update_head_pos(mirror, r1_bio);
348
349                 if (behind) {
350                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351                                 atomic_dec(&r1_bio->behind_remaining);
352
353                         /* In behind mode, we ACK the master bio once the I/O has safely
354                          * reached all non-writemostly disks. Setting the Returned bit
355                          * ensures that this gets done only once -- we don't ever want to
356                          * return -EIO here, instead we'll wait */
357
358                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360                                 /* Maybe we can return now */
361                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362                                         struct bio *mbio = r1_bio->master_bio;
363                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364                                                (unsigned long long) mbio->bi_sector,
365                                                (unsigned long long) mbio->bi_sector +
366                                                (mbio->bi_size >> 9) - 1);
367                                         bio_endio(mbio, 0);
368                                 }
369                         }
370                 }
371                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
372         }
373         /*
374          *
375          * Let's see if all mirrored write operations have finished
376          * already.
377          */
378         if (atomic_dec_and_test(&r1_bio->remaining)) {
379                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
380                         reschedule_retry(r1_bio);
381                 else {
382                         /* it really is the end of this request */
383                         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384                                 /* free extra copy of the data pages */
385                                 int i = bio->bi_vcnt;
386                                 while (i--)
387                                         safe_put_page(bio->bi_io_vec[i].bv_page);
388                         }
389                         /* clear the bitmap if all writes complete successfully */
390                         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391                                         r1_bio->sectors,
392                                         !test_bit(R1BIO_Degraded, &r1_bio->state),
393                                         behind);
394                         md_write_end(r1_bio->mddev);
395                         raid_end_bio_io(r1_bio);
396                 }
397         }
398
399         if (to_put)
400                 bio_put(to_put);
401 }
402
403
404 /*
405  * This routine returns the disk from which the requested read should
406  * be done. There is a per-array 'next expected sequential IO' sector
407  * number - if this matches on the next IO then we use the last disk.
408  * There is also a per-disk 'last know head position' sector that is
409  * maintained from IRQ contexts, both the normal and the resync IO
410  * completion handlers update this position correctly. If there is no
411  * perfect sequential match then we pick the disk whose head is closest.
412  *
413  * If there are 2 mirrors in the same 2 devices, performance degrades
414  * because position is mirror, not device based.
415  *
416  * The rdev for the device selected will have nr_pending incremented.
417  */
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
419 {
420         const unsigned long this_sector = r1_bio->sector;
421         int new_disk = conf->last_used, disk = new_disk;
422         int wonly_disk = -1;
423         const int sectors = r1_bio->sectors;
424         sector_t new_distance, current_distance;
425         mdk_rdev_t *rdev;
426
427         rcu_read_lock();
428         /*
429          * Check if we can balance. We can balance on the whole
430          * device if no resync is going on, or below the resync window.
431          * We take the first readable disk when above the resync window.
432          */
433  retry:
434         if (conf->mddev->recovery_cp < MaxSector &&
435             (this_sector + sectors >= conf->next_resync)) {
436                 /* Choose the first operation device, for consistancy */
437                 new_disk = 0;
438
439                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440                      r1_bio->bios[new_disk] == IO_BLOCKED ||
441                      !rdev || !test_bit(In_sync, &rdev->flags)
442                              || test_bit(WriteMostly, &rdev->flags);
443                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
444
445                         if (rdev && test_bit(In_sync, &rdev->flags) &&
446                                 r1_bio->bios[new_disk] != IO_BLOCKED)
447                                 wonly_disk = new_disk;
448
449                         if (new_disk == conf->raid_disks - 1) {
450                                 new_disk = wonly_disk;
451                                 break;
452                         }
453                 }
454                 goto rb_out;
455         }
456
457
458         /* make sure the disk is operational */
459         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460              r1_bio->bios[new_disk] == IO_BLOCKED ||
461              !rdev || !test_bit(In_sync, &rdev->flags) ||
462                      test_bit(WriteMostly, &rdev->flags);
463              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
464
465                 if (rdev && test_bit(In_sync, &rdev->flags) &&
466                     r1_bio->bios[new_disk] != IO_BLOCKED)
467                         wonly_disk = new_disk;
468
469                 if (new_disk <= 0)
470                         new_disk = conf->raid_disks;
471                 new_disk--;
472                 if (new_disk == disk) {
473                         new_disk = wonly_disk;
474                         break;
475                 }
476         }
477
478         if (new_disk < 0)
479                 goto rb_out;
480
481         disk = new_disk;
482         /* now disk == new_disk == starting point for search */
483
484         /*
485          * Don't change to another disk for sequential reads:
486          */
487         if (conf->next_seq_sect == this_sector)
488                 goto rb_out;
489         if (this_sector == conf->mirrors[new_disk].head_position)
490                 goto rb_out;
491
492         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
493
494         /* Find the disk whose head is closest */
495
496         do {
497                 if (disk <= 0)
498                         disk = conf->raid_disks;
499                 disk--;
500
501                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
502
503                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504                     !test_bit(In_sync, &rdev->flags) ||
505                     test_bit(WriteMostly, &rdev->flags))
506                         continue;
507
508                 if (!atomic_read(&rdev->nr_pending)) {
509                         new_disk = disk;
510                         break;
511                 }
512                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513                 if (new_distance < current_distance) {
514                         current_distance = new_distance;
515                         new_disk = disk;
516                 }
517         } while (disk != conf->last_used);
518
519  rb_out:
520
521
522         if (new_disk >= 0) {
523                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524                 if (!rdev)
525                         goto retry;
526                 atomic_inc(&rdev->nr_pending);
527                 if (!test_bit(In_sync, &rdev->flags)) {
528                         /* cannot risk returning a device that failed
529                          * before we inc'ed nr_pending
530                          */
531                         rdev_dec_pending(rdev, conf->mddev);
532                         goto retry;
533                 }
534                 conf->next_seq_sect = this_sector + sectors;
535                 conf->last_used = new_disk;
536         }
537         rcu_read_unlock();
538
539         return new_disk;
540 }
541
542 static void unplug_slaves(mddev_t *mddev)
543 {
544         conf_t *conf = mddev->private;
545         int i;
546
547         rcu_read_lock();
548         for (i=0; i<mddev->raid_disks; i++) {
549                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
552
553                         atomic_inc(&rdev->nr_pending);
554                         rcu_read_unlock();
555
556                         blk_unplug(r_queue);
557
558                         rdev_dec_pending(rdev, mddev);
559                         rcu_read_lock();
560                 }
561         }
562         rcu_read_unlock();
563 }
564
565 static void raid1_unplug(struct request_queue *q)
566 {
567         mddev_t *mddev = q->queuedata;
568
569         unplug_slaves(mddev);
570         md_wakeup_thread(mddev->thread);
571 }
572
573 static int raid1_congested(void *data, int bits)
574 {
575         mddev_t *mddev = data;
576         conf_t *conf = mddev->private;
577         int i, ret = 0;
578
579         if (mddev_congested(mddev, bits))
580                 return 1;
581
582         rcu_read_lock();
583         for (i = 0; i < mddev->raid_disks; i++) {
584                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
585                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
586                         struct request_queue *q = bdev_get_queue(rdev->bdev);
587
588                         /* Note the '|| 1' - when read_balance prefers
589                          * non-congested targets, it can be removed
590                          */
591                         if ((bits & (1<<BDI_async_congested)) || 1)
592                                 ret |= bdi_congested(&q->backing_dev_info, bits);
593                         else
594                                 ret &= bdi_congested(&q->backing_dev_info, bits);
595                 }
596         }
597         rcu_read_unlock();
598         return ret;
599 }
600
601
602 static int flush_pending_writes(conf_t *conf)
603 {
604         /* Any writes that have been queued but are awaiting
605          * bitmap updates get flushed here.
606          * We return 1 if any requests were actually submitted.
607          */
608         int rv = 0;
609
610         spin_lock_irq(&conf->device_lock);
611
612         if (conf->pending_bio_list.head) {
613                 struct bio *bio;
614                 bio = bio_list_get(&conf->pending_bio_list);
615                 blk_remove_plug(conf->mddev->queue);
616                 spin_unlock_irq(&conf->device_lock);
617                 /* flush any pending bitmap writes to
618                  * disk before proceeding w/ I/O */
619                 bitmap_unplug(conf->mddev->bitmap);
620
621                 while (bio) { /* submit pending writes */
622                         struct bio *next = bio->bi_next;
623                         bio->bi_next = NULL;
624                         generic_make_request(bio);
625                         bio = next;
626                 }
627                 rv = 1;
628         } else
629                 spin_unlock_irq(&conf->device_lock);
630         return rv;
631 }
632
633 /* Barriers....
634  * Sometimes we need to suspend IO while we do something else,
635  * either some resync/recovery, or reconfigure the array.
636  * To do this we raise a 'barrier'.
637  * The 'barrier' is a counter that can be raised multiple times
638  * to count how many activities are happening which preclude
639  * normal IO.
640  * We can only raise the barrier if there is no pending IO.
641  * i.e. if nr_pending == 0.
642  * We choose only to raise the barrier if no-one is waiting for the
643  * barrier to go down.  This means that as soon as an IO request
644  * is ready, no other operations which require a barrier will start
645  * until the IO request has had a chance.
646  *
647  * So: regular IO calls 'wait_barrier'.  When that returns there
648  *    is no backgroup IO happening,  It must arrange to call
649  *    allow_barrier when it has finished its IO.
650  * backgroup IO calls must call raise_barrier.  Once that returns
651  *    there is no normal IO happeing.  It must arrange to call
652  *    lower_barrier when the particular background IO completes.
653  */
654 #define RESYNC_DEPTH 32
655
656 static void raise_barrier(conf_t *conf)
657 {
658         spin_lock_irq(&conf->resync_lock);
659
660         /* Wait until no block IO is waiting */
661         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
662                             conf->resync_lock,
663                             raid1_unplug(conf->mddev->queue));
664
665         /* block any new IO from starting */
666         conf->barrier++;
667
668         /* No wait for all pending IO to complete */
669         wait_event_lock_irq(conf->wait_barrier,
670                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
671                             conf->resync_lock,
672                             raid1_unplug(conf->mddev->queue));
673
674         spin_unlock_irq(&conf->resync_lock);
675 }
676
677 static void lower_barrier(conf_t *conf)
678 {
679         unsigned long flags;
680         BUG_ON(conf->barrier <= 0);
681         spin_lock_irqsave(&conf->resync_lock, flags);
682         conf->barrier--;
683         spin_unlock_irqrestore(&conf->resync_lock, flags);
684         wake_up(&conf->wait_barrier);
685 }
686
687 static void wait_barrier(conf_t *conf)
688 {
689         spin_lock_irq(&conf->resync_lock);
690         if (conf->barrier) {
691                 conf->nr_waiting++;
692                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
693                                     conf->resync_lock,
694                                     raid1_unplug(conf->mddev->queue));
695                 conf->nr_waiting--;
696         }
697         conf->nr_pending++;
698         spin_unlock_irq(&conf->resync_lock);
699 }
700
701 static void allow_barrier(conf_t *conf)
702 {
703         unsigned long flags;
704         spin_lock_irqsave(&conf->resync_lock, flags);
705         conf->nr_pending--;
706         spin_unlock_irqrestore(&conf->resync_lock, flags);
707         wake_up(&conf->wait_barrier);
708 }
709
710 static void freeze_array(conf_t *conf)
711 {
712         /* stop syncio and normal IO and wait for everything to
713          * go quite.
714          * We increment barrier and nr_waiting, and then
715          * wait until nr_pending match nr_queued+1
716          * This is called in the context of one normal IO request
717          * that has failed. Thus any sync request that might be pending
718          * will be blocked by nr_pending, and we need to wait for
719          * pending IO requests to complete or be queued for re-try.
720          * Thus the number queued (nr_queued) plus this request (1)
721          * must match the number of pending IOs (nr_pending) before
722          * we continue.
723          */
724         spin_lock_irq(&conf->resync_lock);
725         conf->barrier++;
726         conf->nr_waiting++;
727         wait_event_lock_irq(conf->wait_barrier,
728                             conf->nr_pending == conf->nr_queued+1,
729                             conf->resync_lock,
730                             ({ flush_pending_writes(conf);
731                                raid1_unplug(conf->mddev->queue); }));
732         spin_unlock_irq(&conf->resync_lock);
733 }
734 static void unfreeze_array(conf_t *conf)
735 {
736         /* reverse the effect of the freeze */
737         spin_lock_irq(&conf->resync_lock);
738         conf->barrier--;
739         conf->nr_waiting--;
740         wake_up(&conf->wait_barrier);
741         spin_unlock_irq(&conf->resync_lock);
742 }
743
744
745 /* duplicate the data pages for behind I/O */
746 static struct page **alloc_behind_pages(struct bio *bio)
747 {
748         int i;
749         struct bio_vec *bvec;
750         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
751                                         GFP_NOIO);
752         if (unlikely(!pages))
753                 goto do_sync_io;
754
755         bio_for_each_segment(bvec, bio, i) {
756                 pages[i] = alloc_page(GFP_NOIO);
757                 if (unlikely(!pages[i]))
758                         goto do_sync_io;
759                 memcpy(kmap(pages[i]) + bvec->bv_offset,
760                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
761                 kunmap(pages[i]);
762                 kunmap(bvec->bv_page);
763         }
764
765         return pages;
766
767 do_sync_io:
768         if (pages)
769                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
770                         put_page(pages[i]);
771         kfree(pages);
772         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
773         return NULL;
774 }
775
776 static int make_request(struct request_queue *q, struct bio * bio)
777 {
778         mddev_t *mddev = q->queuedata;
779         conf_t *conf = mddev->private;
780         mirror_info_t *mirror;
781         r1bio_t *r1_bio;
782         struct bio *read_bio;
783         int i, targets = 0, disks;
784         struct bitmap *bitmap;
785         unsigned long flags;
786         struct bio_list bl;
787         struct page **behind_pages = NULL;
788         const int rw = bio_data_dir(bio);
789         const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
790         int cpu;
791         bool do_barriers;
792         mdk_rdev_t *blocked_rdev;
793
794         /*
795          * Register the new request and wait if the reconstruction
796          * thread has put up a bar for new requests.
797          * Continue immediately if no resync is active currently.
798          * We test barriers_work *after* md_write_start as md_write_start
799          * may cause the first superblock write, and that will check out
800          * if barriers work.
801          */
802
803         md_write_start(mddev, bio); /* wait on superblock update early */
804
805         if (bio_data_dir(bio) == WRITE &&
806             bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
807             bio->bi_sector < mddev->suspend_hi) {
808                 /* As the suspend_* range is controlled by
809                  * userspace, we want an interruptible
810                  * wait.
811                  */
812                 DEFINE_WAIT(w);
813                 for (;;) {
814                         flush_signals(current);
815                         prepare_to_wait(&conf->wait_barrier,
816                                         &w, TASK_INTERRUPTIBLE);
817                         if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
818                             bio->bi_sector >= mddev->suspend_hi)
819                                 break;
820                         schedule();
821                 }
822                 finish_wait(&conf->wait_barrier, &w);
823         }
824         if (unlikely(!mddev->barriers_work &&
825                      bio_rw_flagged(bio, BIO_RW_BARRIER))) {
826                 if (rw == WRITE)
827                         md_write_end(mddev);
828                 bio_endio(bio, -EOPNOTSUPP);
829                 return 0;
830         }
831
832         wait_barrier(conf);
833
834         bitmap = mddev->bitmap;
835
836         cpu = part_stat_lock();
837         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
838         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
839                       bio_sectors(bio));
840         part_stat_unlock();
841
842         /*
843          * make_request() can abort the operation when READA is being
844          * used and no empty request is available.
845          *
846          */
847         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
848
849         r1_bio->master_bio = bio;
850         r1_bio->sectors = bio->bi_size >> 9;
851         r1_bio->state = 0;
852         r1_bio->mddev = mddev;
853         r1_bio->sector = bio->bi_sector;
854
855         if (rw == READ) {
856                 /*
857                  * read balancing logic:
858                  */
859                 int rdisk = read_balance(conf, r1_bio);
860
861                 if (rdisk < 0) {
862                         /* couldn't find anywhere to read from */
863                         raid_end_bio_io(r1_bio);
864                         return 0;
865                 }
866                 mirror = conf->mirrors + rdisk;
867
868                 r1_bio->read_disk = rdisk;
869
870                 read_bio = bio_clone(bio, GFP_NOIO);
871
872                 r1_bio->bios[rdisk] = read_bio;
873
874                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
875                 read_bio->bi_bdev = mirror->rdev->bdev;
876                 read_bio->bi_end_io = raid1_end_read_request;
877                 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
878                 read_bio->bi_private = r1_bio;
879
880                 generic_make_request(read_bio);
881                 return 0;
882         }
883
884         /*
885          * WRITE:
886          */
887         /* first select target devices under spinlock and
888          * inc refcount on their rdev.  Record them by setting
889          * bios[x] to bio
890          */
891         disks = conf->raid_disks;
892 #if 0
893         { static int first=1;
894         if (first) printk("First Write sector %llu disks %d\n",
895                           (unsigned long long)r1_bio->sector, disks);
896         first = 0;
897         }
898 #endif
899  retry_write:
900         blocked_rdev = NULL;
901         rcu_read_lock();
902         for (i = 0;  i < disks; i++) {
903                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
904                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
905                         atomic_inc(&rdev->nr_pending);
906                         blocked_rdev = rdev;
907                         break;
908                 }
909                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
910                         atomic_inc(&rdev->nr_pending);
911                         if (test_bit(Faulty, &rdev->flags)) {
912                                 rdev_dec_pending(rdev, mddev);
913                                 r1_bio->bios[i] = NULL;
914                         } else
915                                 r1_bio->bios[i] = bio;
916                         targets++;
917                 } else
918                         r1_bio->bios[i] = NULL;
919         }
920         rcu_read_unlock();
921
922         if (unlikely(blocked_rdev)) {
923                 /* Wait for this device to become unblocked */
924                 int j;
925
926                 for (j = 0; j < i; j++)
927                         if (r1_bio->bios[j])
928                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
929
930                 allow_barrier(conf);
931                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
932                 wait_barrier(conf);
933                 goto retry_write;
934         }
935
936         BUG_ON(targets == 0); /* we never fail the last device */
937
938         if (targets < conf->raid_disks) {
939                 /* array is degraded, we will not clear the bitmap
940                  * on I/O completion (see raid1_end_write_request) */
941                 set_bit(R1BIO_Degraded, &r1_bio->state);
942         }
943
944         /* do behind I/O ? */
945         if (bitmap &&
946             (atomic_read(&bitmap->behind_writes)
947              < mddev->bitmap_info.max_write_behind) &&
948             (behind_pages = alloc_behind_pages(bio)) != NULL)
949                 set_bit(R1BIO_BehindIO, &r1_bio->state);
950
951         atomic_set(&r1_bio->remaining, 0);
952         atomic_set(&r1_bio->behind_remaining, 0);
953
954         do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
955         if (do_barriers)
956                 set_bit(R1BIO_Barrier, &r1_bio->state);
957
958         bio_list_init(&bl);
959         for (i = 0; i < disks; i++) {
960                 struct bio *mbio;
961                 if (!r1_bio->bios[i])
962                         continue;
963
964                 mbio = bio_clone(bio, GFP_NOIO);
965                 r1_bio->bios[i] = mbio;
966
967                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
968                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
969                 mbio->bi_end_io = raid1_end_write_request;
970                 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
971                         (do_sync << BIO_RW_SYNCIO);
972                 mbio->bi_private = r1_bio;
973
974                 if (behind_pages) {
975                         struct bio_vec *bvec;
976                         int j;
977
978                         /* Yes, I really want the '__' version so that
979                          * we clear any unused pointer in the io_vec, rather
980                          * than leave them unchanged.  This is important
981                          * because when we come to free the pages, we won't
982                          * know the originial bi_idx, so we just free
983                          * them all
984                          */
985                         __bio_for_each_segment(bvec, mbio, j, 0)
986                                 bvec->bv_page = behind_pages[j];
987                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
988                                 atomic_inc(&r1_bio->behind_remaining);
989                 }
990
991                 atomic_inc(&r1_bio->remaining);
992
993                 bio_list_add(&bl, mbio);
994         }
995         kfree(behind_pages); /* the behind pages are attached to the bios now */
996
997         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
998                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
999         spin_lock_irqsave(&conf->device_lock, flags);
1000         bio_list_merge(&conf->pending_bio_list, &bl);
1001         bio_list_init(&bl);
1002
1003         blk_plug_device(mddev->queue);
1004         spin_unlock_irqrestore(&conf->device_lock, flags);
1005
1006         /* In case raid1d snuck into freeze_array */
1007         wake_up(&conf->wait_barrier);
1008
1009         if (do_sync)
1010                 md_wakeup_thread(mddev->thread);
1011 #if 0
1012         while ((bio = bio_list_pop(&bl)) != NULL)
1013                 generic_make_request(bio);
1014 #endif
1015
1016         return 0;
1017 }
1018
1019 static void status(struct seq_file *seq, mddev_t *mddev)
1020 {
1021         conf_t *conf = mddev->private;
1022         int i;
1023
1024         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1025                    conf->raid_disks - mddev->degraded);
1026         rcu_read_lock();
1027         for (i = 0; i < conf->raid_disks; i++) {
1028                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1029                 seq_printf(seq, "%s",
1030                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1031         }
1032         rcu_read_unlock();
1033         seq_printf(seq, "]");
1034 }
1035
1036
1037 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1038 {
1039         char b[BDEVNAME_SIZE];
1040         conf_t *conf = mddev->private;
1041
1042         /*
1043          * If it is not operational, then we have already marked it as dead
1044          * else if it is the last working disks, ignore the error, let the
1045          * next level up know.
1046          * else mark the drive as failed
1047          */
1048         if (test_bit(In_sync, &rdev->flags)
1049             && (conf->raid_disks - mddev->degraded) == 1) {
1050                 /*
1051                  * Don't fail the drive, act as though we were just a
1052                  * normal single drive.
1053                  * However don't try a recovery from this drive as
1054                  * it is very likely to fail.
1055                  */
1056                 mddev->recovery_disabled = 1;
1057                 return;
1058         }
1059         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1060                 unsigned long flags;
1061                 spin_lock_irqsave(&conf->device_lock, flags);
1062                 mddev->degraded++;
1063                 set_bit(Faulty, &rdev->flags);
1064                 spin_unlock_irqrestore(&conf->device_lock, flags);
1065                 /*
1066                  * if recovery is running, make sure it aborts.
1067                  */
1068                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1069         } else
1070                 set_bit(Faulty, &rdev->flags);
1071         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1072         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1073                 "raid1: Operation continuing on %d devices.\n",
1074                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1075 }
1076
1077 static void print_conf(conf_t *conf)
1078 {
1079         int i;
1080
1081         printk("RAID1 conf printout:\n");
1082         if (!conf) {
1083                 printk("(!conf)\n");
1084                 return;
1085         }
1086         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1087                 conf->raid_disks);
1088
1089         rcu_read_lock();
1090         for (i = 0; i < conf->raid_disks; i++) {
1091                 char b[BDEVNAME_SIZE];
1092                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1093                 if (rdev)
1094                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1095                                i, !test_bit(In_sync, &rdev->flags),
1096                                !test_bit(Faulty, &rdev->flags),
1097                                bdevname(rdev->bdev,b));
1098         }
1099         rcu_read_unlock();
1100 }
1101
1102 static void close_sync(conf_t *conf)
1103 {
1104         wait_barrier(conf);
1105         allow_barrier(conf);
1106
1107         mempool_destroy(conf->r1buf_pool);
1108         conf->r1buf_pool = NULL;
1109 }
1110
1111 static int raid1_spare_active(mddev_t *mddev)
1112 {
1113         int i;
1114         conf_t *conf = mddev->private;
1115
1116         /*
1117          * Find all failed disks within the RAID1 configuration 
1118          * and mark them readable.
1119          * Called under mddev lock, so rcu protection not needed.
1120          */
1121         for (i = 0; i < conf->raid_disks; i++) {
1122                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1123                 if (rdev
1124                     && !test_bit(Faulty, &rdev->flags)
1125                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1126                         unsigned long flags;
1127                         spin_lock_irqsave(&conf->device_lock, flags);
1128                         mddev->degraded--;
1129                         spin_unlock_irqrestore(&conf->device_lock, flags);
1130                 }
1131         }
1132
1133         print_conf(conf);
1134         return 0;
1135 }
1136
1137
1138 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1139 {
1140         conf_t *conf = mddev->private;
1141         int err = -EEXIST;
1142         int mirror = 0;
1143         mirror_info_t *p;
1144         int first = 0;
1145         int last = mddev->raid_disks - 1;
1146
1147         if (rdev->raid_disk >= 0)
1148                 first = last = rdev->raid_disk;
1149
1150         for (mirror = first; mirror <= last; mirror++)
1151                 if ( !(p=conf->mirrors+mirror)->rdev) {
1152
1153                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1154                                           rdev->data_offset << 9);
1155                         /* as we don't honour merge_bvec_fn, we must
1156                          * never risk violating it, so limit
1157                          * ->max_segments to one lying with a single
1158                          * page, as a one page request is never in
1159                          * violation.
1160                          */
1161                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1162                                 blk_queue_max_segments(mddev->queue, 1);
1163                                 blk_queue_segment_boundary(mddev->queue,
1164                                                            PAGE_CACHE_SIZE - 1);
1165                         }
1166
1167                         p->head_position = 0;
1168                         rdev->raid_disk = mirror;
1169                         err = 0;
1170                         /* As all devices are equivalent, we don't need a full recovery
1171                          * if this was recently any drive of the array
1172                          */
1173                         if (rdev->saved_raid_disk < 0)
1174                                 conf->fullsync = 1;
1175                         rcu_assign_pointer(p->rdev, rdev);
1176                         break;
1177                 }
1178         md_integrity_add_rdev(rdev, mddev);
1179         print_conf(conf);
1180         return err;
1181 }
1182
1183 static int raid1_remove_disk(mddev_t *mddev, int number)
1184 {
1185         conf_t *conf = mddev->private;
1186         int err = 0;
1187         mdk_rdev_t *rdev;
1188         mirror_info_t *p = conf->mirrors+ number;
1189
1190         print_conf(conf);
1191         rdev = p->rdev;
1192         if (rdev) {
1193                 if (test_bit(In_sync, &rdev->flags) ||
1194                     atomic_read(&rdev->nr_pending)) {
1195                         err = -EBUSY;
1196                         goto abort;
1197                 }
1198                 /* Only remove non-faulty devices is recovery
1199                  * is not possible.
1200                  */
1201                 if (!test_bit(Faulty, &rdev->flags) &&
1202                     mddev->degraded < conf->raid_disks) {
1203                         err = -EBUSY;
1204                         goto abort;
1205                 }
1206                 p->rdev = NULL;
1207                 synchronize_rcu();
1208                 if (atomic_read(&rdev->nr_pending)) {
1209                         /* lost the race, try later */
1210                         err = -EBUSY;
1211                         p->rdev = rdev;
1212                         goto abort;
1213                 }
1214                 md_integrity_register(mddev);
1215         }
1216 abort:
1217
1218         print_conf(conf);
1219         return err;
1220 }
1221
1222
1223 static void end_sync_read(struct bio *bio, int error)
1224 {
1225         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1226         int i;
1227
1228         for (i=r1_bio->mddev->raid_disks; i--; )
1229                 if (r1_bio->bios[i] == bio)
1230                         break;
1231         BUG_ON(i < 0);
1232         update_head_pos(i, r1_bio);
1233         /*
1234          * we have read a block, now it needs to be re-written,
1235          * or re-read if the read failed.
1236          * We don't do much here, just schedule handling by raid1d
1237          */
1238         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1239                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1240
1241         if (atomic_dec_and_test(&r1_bio->remaining))
1242                 reschedule_retry(r1_bio);
1243 }
1244
1245 static void end_sync_write(struct bio *bio, int error)
1246 {
1247         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1248         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1249         mddev_t *mddev = r1_bio->mddev;
1250         conf_t *conf = mddev->private;
1251         int i;
1252         int mirror=0;
1253
1254         for (i = 0; i < conf->raid_disks; i++)
1255                 if (r1_bio->bios[i] == bio) {
1256                         mirror = i;
1257                         break;
1258                 }
1259         if (!uptodate) {
1260                 int sync_blocks = 0;
1261                 sector_t s = r1_bio->sector;
1262                 long sectors_to_go = r1_bio->sectors;
1263                 /* make sure these bits doesn't get cleared. */
1264                 do {
1265                         bitmap_end_sync(mddev->bitmap, s,
1266                                         &sync_blocks, 1);
1267                         s += sync_blocks;
1268                         sectors_to_go -= sync_blocks;
1269                 } while (sectors_to_go > 0);
1270                 md_error(mddev, conf->mirrors[mirror].rdev);
1271         }
1272
1273         update_head_pos(mirror, r1_bio);
1274
1275         if (atomic_dec_and_test(&r1_bio->remaining)) {
1276                 sector_t s = r1_bio->sectors;
1277                 put_buf(r1_bio);
1278                 md_done_sync(mddev, s, uptodate);
1279         }
1280 }
1281
1282 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1283 {
1284         conf_t *conf = mddev->private;
1285         int i;
1286         int disks = conf->raid_disks;
1287         struct bio *bio, *wbio;
1288
1289         bio = r1_bio->bios[r1_bio->read_disk];
1290
1291
1292         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1293                 /* We have read all readable devices.  If we haven't
1294                  * got the block, then there is no hope left.
1295                  * If we have, then we want to do a comparison
1296                  * and skip the write if everything is the same.
1297                  * If any blocks failed to read, then we need to
1298                  * attempt an over-write
1299                  */
1300                 int primary;
1301                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1302                         for (i=0; i<mddev->raid_disks; i++)
1303                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1304                                         md_error(mddev, conf->mirrors[i].rdev);
1305
1306                         md_done_sync(mddev, r1_bio->sectors, 1);
1307                         put_buf(r1_bio);
1308                         return;
1309                 }
1310                 for (primary=0; primary<mddev->raid_disks; primary++)
1311                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1312                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1313                                 r1_bio->bios[primary]->bi_end_io = NULL;
1314                                 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1315                                 break;
1316                         }
1317                 r1_bio->read_disk = primary;
1318                 for (i=0; i<mddev->raid_disks; i++)
1319                         if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1320                                 int j;
1321                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1322                                 struct bio *pbio = r1_bio->bios[primary];
1323                                 struct bio *sbio = r1_bio->bios[i];
1324
1325                                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1326                                         for (j = vcnt; j-- ; ) {
1327                                                 struct page *p, *s;
1328                                                 p = pbio->bi_io_vec[j].bv_page;
1329                                                 s = sbio->bi_io_vec[j].bv_page;
1330                                                 if (memcmp(page_address(p),
1331                                                            page_address(s),
1332                                                            PAGE_SIZE))
1333                                                         break;
1334                                         }
1335                                 } else
1336                                         j = 0;
1337                                 if (j >= 0)
1338                                         mddev->resync_mismatches += r1_bio->sectors;
1339                                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1340                                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1341                                         sbio->bi_end_io = NULL;
1342                                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1343                                 } else {
1344                                         /* fixup the bio for reuse */
1345                                         int size;
1346                                         sbio->bi_vcnt = vcnt;
1347                                         sbio->bi_size = r1_bio->sectors << 9;
1348                                         sbio->bi_idx = 0;
1349                                         sbio->bi_phys_segments = 0;
1350                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1351                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1352                                         sbio->bi_next = NULL;
1353                                         sbio->bi_sector = r1_bio->sector +
1354                                                 conf->mirrors[i].rdev->data_offset;
1355                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1356                                         size = sbio->bi_size;
1357                                         for (j = 0; j < vcnt ; j++) {
1358                                                 struct bio_vec *bi;
1359                                                 bi = &sbio->bi_io_vec[j];
1360                                                 bi->bv_offset = 0;
1361                                                 if (size > PAGE_SIZE)
1362                                                         bi->bv_len = PAGE_SIZE;
1363                                                 else
1364                                                         bi->bv_len = size;
1365                                                 size -= PAGE_SIZE;
1366                                                 memcpy(page_address(bi->bv_page),
1367                                                        page_address(pbio->bi_io_vec[j].bv_page),
1368                                                        PAGE_SIZE);
1369                                         }
1370
1371                                 }
1372                         }
1373         }
1374         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1375                 /* ouch - failed to read all of that.
1376                  * Try some synchronous reads of other devices to get
1377                  * good data, much like with normal read errors.  Only
1378                  * read into the pages we already have so we don't
1379                  * need to re-issue the read request.
1380                  * We don't need to freeze the array, because being in an
1381                  * active sync request, there is no normal IO, and
1382                  * no overlapping syncs.
1383                  */
1384                 sector_t sect = r1_bio->sector;
1385                 int sectors = r1_bio->sectors;
1386                 int idx = 0;
1387
1388                 while(sectors) {
1389                         int s = sectors;
1390                         int d = r1_bio->read_disk;
1391                         int success = 0;
1392                         mdk_rdev_t *rdev;
1393
1394                         if (s > (PAGE_SIZE>>9))
1395                                 s = PAGE_SIZE >> 9;
1396                         do {
1397                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1398                                         /* No rcu protection needed here devices
1399                                          * can only be removed when no resync is
1400                                          * active, and resync is currently active
1401                                          */
1402                                         rdev = conf->mirrors[d].rdev;
1403                                         if (sync_page_io(rdev->bdev,
1404                                                          sect + rdev->data_offset,
1405                                                          s<<9,
1406                                                          bio->bi_io_vec[idx].bv_page,
1407                                                          READ)) {
1408                                                 success = 1;
1409                                                 break;
1410                                         }
1411                                 }
1412                                 d++;
1413                                 if (d == conf->raid_disks)
1414                                         d = 0;
1415                         } while (!success && d != r1_bio->read_disk);
1416
1417                         if (success) {
1418                                 int start = d;
1419                                 /* write it back and re-read */
1420                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1421                                 while (d != r1_bio->read_disk) {
1422                                         if (d == 0)
1423                                                 d = conf->raid_disks;
1424                                         d--;
1425                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1426                                                 continue;
1427                                         rdev = conf->mirrors[d].rdev;
1428                                         atomic_add(s, &rdev->corrected_errors);
1429                                         if (sync_page_io(rdev->bdev,
1430                                                          sect + rdev->data_offset,
1431                                                          s<<9,
1432                                                          bio->bi_io_vec[idx].bv_page,
1433                                                          WRITE) == 0)
1434                                                 md_error(mddev, rdev);
1435                                 }
1436                                 d = start;
1437                                 while (d != r1_bio->read_disk) {
1438                                         if (d == 0)
1439                                                 d = conf->raid_disks;
1440                                         d--;
1441                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1442                                                 continue;
1443                                         rdev = conf->mirrors[d].rdev;
1444                                         if (sync_page_io(rdev->bdev,
1445                                                          sect + rdev->data_offset,
1446                                                          s<<9,
1447                                                          bio->bi_io_vec[idx].bv_page,
1448                                                          READ) == 0)
1449                                                 md_error(mddev, rdev);
1450                                 }
1451                         } else {
1452                                 char b[BDEVNAME_SIZE];
1453                                 /* Cannot read from anywhere, array is toast */
1454                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1455                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1456                                        " for block %llu\n",
1457                                        bdevname(bio->bi_bdev,b),
1458                                        (unsigned long long)r1_bio->sector);
1459                                 md_done_sync(mddev, r1_bio->sectors, 0);
1460                                 put_buf(r1_bio);
1461                                 return;
1462                         }
1463                         sectors -= s;
1464                         sect += s;
1465                         idx ++;
1466                 }
1467         }
1468
1469         /*
1470          * schedule writes
1471          */
1472         atomic_set(&r1_bio->remaining, 1);
1473         for (i = 0; i < disks ; i++) {
1474                 wbio = r1_bio->bios[i];
1475                 if (wbio->bi_end_io == NULL ||
1476                     (wbio->bi_end_io == end_sync_read &&
1477                      (i == r1_bio->read_disk ||
1478                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1479                         continue;
1480
1481                 wbio->bi_rw = WRITE;
1482                 wbio->bi_end_io = end_sync_write;
1483                 atomic_inc(&r1_bio->remaining);
1484                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1485
1486                 generic_make_request(wbio);
1487         }
1488
1489         if (atomic_dec_and_test(&r1_bio->remaining)) {
1490                 /* if we're here, all write(s) have completed, so clean up */
1491                 md_done_sync(mddev, r1_bio->sectors, 1);
1492                 put_buf(r1_bio);
1493         }
1494 }
1495
1496 /*
1497  * This is a kernel thread which:
1498  *
1499  *      1.      Retries failed read operations on working mirrors.
1500  *      2.      Updates the raid superblock when problems encounter.
1501  *      3.      Performs writes following reads for array syncronising.
1502  */
1503
1504 static void fix_read_error(conf_t *conf, int read_disk,
1505                            sector_t sect, int sectors)
1506 {
1507         mddev_t *mddev = conf->mddev;
1508         while(sectors) {
1509                 int s = sectors;
1510                 int d = read_disk;
1511                 int success = 0;
1512                 int start;
1513                 mdk_rdev_t *rdev;
1514
1515                 if (s > (PAGE_SIZE>>9))
1516                         s = PAGE_SIZE >> 9;
1517
1518                 do {
1519                         /* Note: no rcu protection needed here
1520                          * as this is synchronous in the raid1d thread
1521                          * which is the thread that might remove
1522                          * a device.  If raid1d ever becomes multi-threaded....
1523                          */
1524                         rdev = conf->mirrors[d].rdev;
1525                         if (rdev &&
1526                             test_bit(In_sync, &rdev->flags) &&
1527                             sync_page_io(rdev->bdev,
1528                                          sect + rdev->data_offset,
1529                                          s<<9,
1530                                          conf->tmppage, READ))
1531                                 success = 1;
1532                         else {
1533                                 d++;
1534                                 if (d == conf->raid_disks)
1535                                         d = 0;
1536                         }
1537                 } while (!success && d != read_disk);
1538
1539                 if (!success) {
1540                         /* Cannot read from anywhere -- bye bye array */
1541                         md_error(mddev, conf->mirrors[read_disk].rdev);
1542                         break;
1543                 }
1544                 /* write it back and re-read */
1545                 start = d;
1546                 while (d != read_disk) {
1547                         if (d==0)
1548                                 d = conf->raid_disks;
1549                         d--;
1550                         rdev = conf->mirrors[d].rdev;
1551                         if (rdev &&
1552                             test_bit(In_sync, &rdev->flags)) {
1553                                 if (sync_page_io(rdev->bdev,
1554                                                  sect + rdev->data_offset,
1555                                                  s<<9, conf->tmppage, WRITE)
1556                                     == 0)
1557                                         /* Well, this device is dead */
1558                                         md_error(mddev, rdev);
1559                         }
1560                 }
1561                 d = start;
1562                 while (d != read_disk) {
1563                         char b[BDEVNAME_SIZE];
1564                         if (d==0)
1565                                 d = conf->raid_disks;
1566                         d--;
1567                         rdev = conf->mirrors[d].rdev;
1568                         if (rdev &&
1569                             test_bit(In_sync, &rdev->flags)) {
1570                                 if (sync_page_io(rdev->bdev,
1571                                                  sect + rdev->data_offset,
1572                                                  s<<9, conf->tmppage, READ)
1573                                     == 0)
1574                                         /* Well, this device is dead */
1575                                         md_error(mddev, rdev);
1576                                 else {
1577                                         atomic_add(s, &rdev->corrected_errors);
1578                                         printk(KERN_INFO
1579                                                "raid1:%s: read error corrected "
1580                                                "(%d sectors at %llu on %s)\n",
1581                                                mdname(mddev), s,
1582                                                (unsigned long long)(sect +
1583                                                    rdev->data_offset),
1584                                                bdevname(rdev->bdev, b));
1585                                 }
1586                         }
1587                 }
1588                 sectors -= s;
1589                 sect += s;
1590         }
1591 }
1592
1593 static void raid1d(mddev_t *mddev)
1594 {
1595         r1bio_t *r1_bio;
1596         struct bio *bio;
1597         unsigned long flags;
1598         conf_t *conf = mddev->private;
1599         struct list_head *head = &conf->retry_list;
1600         int unplug=0;
1601         mdk_rdev_t *rdev;
1602
1603         md_check_recovery(mddev);
1604         
1605         for (;;) {
1606                 char b[BDEVNAME_SIZE];
1607
1608                 unplug += flush_pending_writes(conf);
1609
1610                 spin_lock_irqsave(&conf->device_lock, flags);
1611                 if (list_empty(head)) {
1612                         spin_unlock_irqrestore(&conf->device_lock, flags);
1613                         break;
1614                 }
1615                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1616                 list_del(head->prev);
1617                 conf->nr_queued--;
1618                 spin_unlock_irqrestore(&conf->device_lock, flags);
1619
1620                 mddev = r1_bio->mddev;
1621                 conf = mddev->private;
1622                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1623                         sync_request_write(mddev, r1_bio);
1624                         unplug = 1;
1625                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1626                         /* some requests in the r1bio were BIO_RW_BARRIER
1627                          * requests which failed with -EOPNOTSUPP.  Hohumm..
1628                          * Better resubmit without the barrier.
1629                          * We know which devices to resubmit for, because
1630                          * all others have had their bios[] entry cleared.
1631                          * We already have a nr_pending reference on these rdevs.
1632                          */
1633                         int i;
1634                         const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1635                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1636                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1637                         for (i=0; i < conf->raid_disks; i++)
1638                                 if (r1_bio->bios[i])
1639                                         atomic_inc(&r1_bio->remaining);
1640                         for (i=0; i < conf->raid_disks; i++)
1641                                 if (r1_bio->bios[i]) {
1642                                         struct bio_vec *bvec;
1643                                         int j;
1644
1645                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1646                                         /* copy pages from the failed bio, as
1647                                          * this might be a write-behind device */
1648                                         __bio_for_each_segment(bvec, bio, j, 0)
1649                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1650                                         bio_put(r1_bio->bios[i]);
1651                                         bio->bi_sector = r1_bio->sector +
1652                                                 conf->mirrors[i].rdev->data_offset;
1653                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1654                                         bio->bi_end_io = raid1_end_write_request;
1655                                         bio->bi_rw = WRITE |
1656                                                 (do_sync << BIO_RW_SYNCIO);
1657                                         bio->bi_private = r1_bio;
1658                                         r1_bio->bios[i] = bio;
1659                                         generic_make_request(bio);
1660                                 }
1661                 } else {
1662                         int disk;
1663
1664                         /* we got a read error. Maybe the drive is bad.  Maybe just
1665                          * the block and we can fix it.
1666                          * We freeze all other IO, and try reading the block from
1667                          * other devices.  When we find one, we re-write
1668                          * and check it that fixes the read error.
1669                          * This is all done synchronously while the array is
1670                          * frozen
1671                          */
1672                         if (mddev->ro == 0) {
1673                                 freeze_array(conf);
1674                                 fix_read_error(conf, r1_bio->read_disk,
1675                                                r1_bio->sector,
1676                                                r1_bio->sectors);
1677                                 unfreeze_array(conf);
1678                         } else
1679                                 md_error(mddev,
1680                                          conf->mirrors[r1_bio->read_disk].rdev);
1681
1682                         bio = r1_bio->bios[r1_bio->read_disk];
1683                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1684                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1685                                        " read error for block %llu\n",
1686                                        bdevname(bio->bi_bdev,b),
1687                                        (unsigned long long)r1_bio->sector);
1688                                 raid_end_bio_io(r1_bio);
1689                         } else {
1690                                 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1691                                 r1_bio->bios[r1_bio->read_disk] =
1692                                         mddev->ro ? IO_BLOCKED : NULL;
1693                                 r1_bio->read_disk = disk;
1694                                 bio_put(bio);
1695                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1696                                 r1_bio->bios[r1_bio->read_disk] = bio;
1697                                 rdev = conf->mirrors[disk].rdev;
1698                                 if (printk_ratelimit())
1699                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1700                                                " another mirror\n",
1701                                                bdevname(rdev->bdev,b),
1702                                                (unsigned long long)r1_bio->sector);
1703                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1704                                 bio->bi_bdev = rdev->bdev;
1705                                 bio->bi_end_io = raid1_end_read_request;
1706                                 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1707                                 bio->bi_private = r1_bio;
1708                                 unplug = 1;
1709                                 generic_make_request(bio);
1710                         }
1711                 }
1712                 cond_resched();
1713         }
1714         if (unplug)
1715                 unplug_slaves(mddev);
1716 }
1717
1718
1719 static int init_resync(conf_t *conf)
1720 {
1721         int buffs;
1722
1723         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1724         BUG_ON(conf->r1buf_pool);
1725         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1726                                           conf->poolinfo);
1727         if (!conf->r1buf_pool)
1728                 return -ENOMEM;
1729         conf->next_resync = 0;
1730         return 0;
1731 }
1732
1733 /*
1734  * perform a "sync" on one "block"
1735  *
1736  * We need to make sure that no normal I/O request - particularly write
1737  * requests - conflict with active sync requests.
1738  *
1739  * This is achieved by tracking pending requests and a 'barrier' concept
1740  * that can be installed to exclude normal IO requests.
1741  */
1742
1743 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1744 {
1745         conf_t *conf = mddev->private;
1746         r1bio_t *r1_bio;
1747         struct bio *bio;
1748         sector_t max_sector, nr_sectors;
1749         int disk = -1;
1750         int i;
1751         int wonly = -1;
1752         int write_targets = 0, read_targets = 0;
1753         int sync_blocks;
1754         int still_degraded = 0;
1755
1756         if (!conf->r1buf_pool)
1757         {
1758 /*
1759                 printk("sync start - bitmap %p\n", mddev->bitmap);
1760 */
1761                 if (init_resync(conf))
1762                         return 0;
1763         }
1764
1765         max_sector = mddev->dev_sectors;
1766         if (sector_nr >= max_sector) {
1767                 /* If we aborted, we need to abort the
1768                  * sync on the 'current' bitmap chunk (there will
1769                  * only be one in raid1 resync.
1770                  * We can find the current addess in mddev->curr_resync
1771                  */
1772                 if (mddev->curr_resync < max_sector) /* aborted */
1773                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1774                                                 &sync_blocks, 1);
1775                 else /* completed sync */
1776                         conf->fullsync = 0;
1777
1778                 bitmap_close_sync(mddev->bitmap);
1779                 close_sync(conf);
1780                 return 0;
1781         }
1782
1783         if (mddev->bitmap == NULL &&
1784             mddev->recovery_cp == MaxSector &&
1785             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1786             conf->fullsync == 0) {
1787                 *skipped = 1;
1788                 return max_sector - sector_nr;
1789         }
1790         /* before building a request, check if we can skip these blocks..
1791          * This call the bitmap_start_sync doesn't actually record anything
1792          */
1793         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1794             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1795                 /* We can skip this block, and probably several more */
1796                 *skipped = 1;
1797                 return sync_blocks;
1798         }
1799         /*
1800          * If there is non-resync activity waiting for a turn,
1801          * and resync is going fast enough,
1802          * then let it though before starting on this new sync request.
1803          */
1804         if (!go_faster && conf->nr_waiting)
1805                 msleep_interruptible(1000);
1806
1807         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1808         raise_barrier(conf);
1809
1810         conf->next_resync = sector_nr;
1811
1812         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1813         rcu_read_lock();
1814         /*
1815          * If we get a correctably read error during resync or recovery,
1816          * we might want to read from a different device.  So we
1817          * flag all drives that could conceivably be read from for READ,
1818          * and any others (which will be non-In_sync devices) for WRITE.
1819          * If a read fails, we try reading from something else for which READ
1820          * is OK.
1821          */
1822
1823         r1_bio->mddev = mddev;
1824         r1_bio->sector = sector_nr;
1825         r1_bio->state = 0;
1826         set_bit(R1BIO_IsSync, &r1_bio->state);
1827
1828         for (i=0; i < conf->raid_disks; i++) {
1829                 mdk_rdev_t *rdev;
1830                 bio = r1_bio->bios[i];
1831
1832                 /* take from bio_init */
1833                 bio->bi_next = NULL;
1834                 bio->bi_flags |= 1 << BIO_UPTODATE;
1835                 bio->bi_rw = READ;
1836                 bio->bi_vcnt = 0;
1837                 bio->bi_idx = 0;
1838                 bio->bi_phys_segments = 0;
1839                 bio->bi_size = 0;
1840                 bio->bi_end_io = NULL;
1841                 bio->bi_private = NULL;
1842
1843                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1844                 if (rdev == NULL ||
1845                            test_bit(Faulty, &rdev->flags)) {
1846                         still_degraded = 1;
1847                         continue;
1848                 } else if (!test_bit(In_sync, &rdev->flags)) {
1849                         bio->bi_rw = WRITE;
1850                         bio->bi_end_io = end_sync_write;
1851                         write_targets ++;
1852                 } else {
1853                         /* may need to read from here */
1854                         bio->bi_rw = READ;
1855                         bio->bi_end_io = end_sync_read;
1856                         if (test_bit(WriteMostly, &rdev->flags)) {
1857                                 if (wonly < 0)
1858                                         wonly = i;
1859                         } else {
1860                                 if (disk < 0)
1861                                         disk = i;
1862                         }
1863                         read_targets++;
1864                 }
1865                 atomic_inc(&rdev->nr_pending);
1866                 bio->bi_sector = sector_nr + rdev->data_offset;
1867                 bio->bi_bdev = rdev->bdev;
1868                 bio->bi_private = r1_bio;
1869         }
1870         rcu_read_unlock();
1871         if (disk < 0)
1872                 disk = wonly;
1873         r1_bio->read_disk = disk;
1874
1875         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1876                 /* extra read targets are also write targets */
1877                 write_targets += read_targets-1;
1878
1879         if (write_targets == 0 || read_targets == 0) {
1880                 /* There is nowhere to write, so all non-sync
1881                  * drives must be failed - so we are finished
1882                  */
1883                 sector_t rv = max_sector - sector_nr;
1884                 *skipped = 1;
1885                 put_buf(r1_bio);
1886                 return rv;
1887         }
1888
1889         if (max_sector > mddev->resync_max)
1890                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1891         nr_sectors = 0;
1892         sync_blocks = 0;
1893         do {
1894                 struct page *page;
1895                 int len = PAGE_SIZE;
1896                 if (sector_nr + (len>>9) > max_sector)
1897                         len = (max_sector - sector_nr) << 9;
1898                 if (len == 0)
1899                         break;
1900                 if (sync_blocks == 0) {
1901                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1902                                                &sync_blocks, still_degraded) &&
1903                             !conf->fullsync &&
1904                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1905                                 break;
1906                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1907                         if (len > (sync_blocks<<9))
1908                                 len = sync_blocks<<9;
1909                 }
1910
1911                 for (i=0 ; i < conf->raid_disks; i++) {
1912                         bio = r1_bio->bios[i];
1913                         if (bio->bi_end_io) {
1914                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1915                                 if (bio_add_page(bio, page, len, 0) == 0) {
1916                                         /* stop here */
1917                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1918                                         while (i > 0) {
1919                                                 i--;
1920                                                 bio = r1_bio->bios[i];
1921                                                 if (bio->bi_end_io==NULL)
1922                                                         continue;
1923                                                 /* remove last page from this bio */
1924                                                 bio->bi_vcnt--;
1925                                                 bio->bi_size -= len;
1926                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1927                                         }
1928                                         goto bio_full;
1929                                 }
1930                         }
1931                 }
1932                 nr_sectors += len>>9;
1933                 sector_nr += len>>9;
1934                 sync_blocks -= (len>>9);
1935         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1936  bio_full:
1937         r1_bio->sectors = nr_sectors;
1938
1939         /* For a user-requested sync, we read all readable devices and do a
1940          * compare
1941          */
1942         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1943                 atomic_set(&r1_bio->remaining, read_targets);
1944                 for (i=0; i<conf->raid_disks; i++) {
1945                         bio = r1_bio->bios[i];
1946                         if (bio->bi_end_io == end_sync_read) {
1947                                 md_sync_acct(bio->bi_bdev, nr_sectors);
1948                                 generic_make_request(bio);
1949                         }
1950                 }
1951         } else {
1952                 atomic_set(&r1_bio->remaining, 1);
1953                 bio = r1_bio->bios[r1_bio->read_disk];
1954                 md_sync_acct(bio->bi_bdev, nr_sectors);
1955                 generic_make_request(bio);
1956
1957         }
1958         return nr_sectors;
1959 }
1960
1961 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1962 {
1963         if (sectors)
1964                 return sectors;
1965
1966         return mddev->dev_sectors;
1967 }
1968
1969 static conf_t *setup_conf(mddev_t *mddev)
1970 {
1971         conf_t *conf;
1972         int i;
1973         mirror_info_t *disk;
1974         mdk_rdev_t *rdev;
1975         int err = -ENOMEM;
1976
1977         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1978         if (!conf)
1979                 goto abort;
1980
1981         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1982                                  GFP_KERNEL);
1983         if (!conf->mirrors)
1984                 goto abort;
1985
1986         conf->tmppage = alloc_page(GFP_KERNEL);
1987         if (!conf->tmppage)
1988                 goto abort;
1989
1990         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1991         if (!conf->poolinfo)
1992                 goto abort;
1993         conf->poolinfo->raid_disks = mddev->raid_disks;
1994         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1995                                           r1bio_pool_free,
1996                                           conf->poolinfo);
1997         if (!conf->r1bio_pool)
1998                 goto abort;
1999
2000         conf->poolinfo->mddev = mddev;
2001
2002         spin_lock_init(&conf->device_lock);
2003         list_for_each_entry(rdev, &mddev->disks, same_set) {
2004                 int disk_idx = rdev->raid_disk;
2005                 if (disk_idx >= mddev->raid_disks
2006                     || disk_idx < 0)
2007                         continue;
2008                 disk = conf->mirrors + disk_idx;
2009
2010                 disk->rdev = rdev;
2011
2012                 disk->head_position = 0;
2013         }
2014         conf->raid_disks = mddev->raid_disks;
2015         conf->mddev = mddev;
2016         INIT_LIST_HEAD(&conf->retry_list);
2017
2018         spin_lock_init(&conf->resync_lock);
2019         init_waitqueue_head(&conf->wait_barrier);
2020
2021         bio_list_init(&conf->pending_bio_list);
2022         bio_list_init(&conf->flushing_bio_list);
2023
2024         conf->last_used = -1;
2025         for (i = 0; i < conf->raid_disks; i++) {
2026
2027                 disk = conf->mirrors + i;
2028
2029                 if (!disk->rdev ||
2030                     !test_bit(In_sync, &disk->rdev->flags)) {
2031                         disk->head_position = 0;
2032                         if (disk->rdev)
2033                                 conf->fullsync = 1;
2034                 } else if (conf->last_used < 0)
2035                         /*
2036                          * The first working device is used as a
2037                          * starting point to read balancing.
2038                          */
2039                         conf->last_used = i;
2040         }
2041
2042         err = -EIO;
2043         if (conf->last_used < 0) {
2044                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2045                        mdname(mddev));
2046                 goto abort;
2047         }
2048         err = -ENOMEM;
2049         conf->thread = md_register_thread(raid1d, mddev, NULL);
2050         if (!conf->thread) {
2051                 printk(KERN_ERR
2052                        "raid1: couldn't allocate thread for %s\n",
2053                        mdname(mddev));
2054                 goto abort;
2055         }
2056
2057         return conf;
2058
2059  abort:
2060         if (conf) {
2061                 if (conf->r1bio_pool)
2062                         mempool_destroy(conf->r1bio_pool);
2063                 kfree(conf->mirrors);
2064                 safe_put_page(conf->tmppage);
2065                 kfree(conf->poolinfo);
2066                 kfree(conf);
2067         }
2068         return ERR_PTR(err);
2069 }
2070
2071 static int run(mddev_t *mddev)
2072 {
2073         conf_t *conf;
2074         int i;
2075         mdk_rdev_t *rdev;
2076
2077         if (mddev->level != 1) {
2078                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
2079                        mdname(mddev), mddev->level);
2080                 return -EIO;
2081         }
2082         if (mddev->reshape_position != MaxSector) {
2083                 printk("raid1: %s: reshape_position set but not supported\n",
2084                        mdname(mddev));
2085                 return -EIO;
2086         }
2087         /*
2088          * copy the already verified devices into our private RAID1
2089          * bookkeeping area. [whatever we allocate in run(),
2090          * should be freed in stop()]
2091          */
2092         if (mddev->private == NULL)
2093                 conf = setup_conf(mddev);
2094         else
2095                 conf = mddev->private;
2096
2097         if (IS_ERR(conf))
2098                 return PTR_ERR(conf);
2099
2100         mddev->queue->queue_lock = &conf->device_lock;
2101         list_for_each_entry(rdev, &mddev->disks, same_set) {
2102                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2103                                   rdev->data_offset << 9);
2104                 /* as we don't honour merge_bvec_fn, we must never risk
2105                  * violating it, so limit ->max_segments to 1 lying within
2106                  * a single page, as a one page request is never in violation.
2107                  */
2108                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2109                         blk_queue_max_segments(mddev->queue, 1);
2110                         blk_queue_segment_boundary(mddev->queue,
2111                                                    PAGE_CACHE_SIZE - 1);
2112                 }
2113         }
2114
2115         mddev->degraded = 0;
2116         for (i=0; i < conf->raid_disks; i++)
2117                 if (conf->mirrors[i].rdev == NULL ||
2118                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2119                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2120                         mddev->degraded++;
2121
2122         if (conf->raid_disks - mddev->degraded == 1)
2123                 mddev->recovery_cp = MaxSector;
2124
2125         if (mddev->recovery_cp != MaxSector)
2126                 printk(KERN_NOTICE "raid1: %s is not clean"
2127                        " -- starting background reconstruction\n",
2128                        mdname(mddev));
2129         printk(KERN_INFO 
2130                 "raid1: raid set %s active with %d out of %d mirrors\n",
2131                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2132                 mddev->raid_disks);
2133
2134         /*
2135          * Ok, everything is just fine now
2136          */
2137         mddev->thread = conf->thread;
2138         conf->thread = NULL;
2139         mddev->private = conf;
2140
2141         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2142
2143         mddev->queue->unplug_fn = raid1_unplug;
2144         mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2145         mddev->queue->backing_dev_info.congested_data = mddev;
2146         md_integrity_register(mddev);
2147         return 0;
2148 }
2149
2150 static int stop(mddev_t *mddev)
2151 {
2152         conf_t *conf = mddev->private;
2153         struct bitmap *bitmap = mddev->bitmap;
2154         int behind_wait = 0;
2155
2156         /* wait for behind writes to complete */
2157         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2158                 behind_wait++;
2159                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2160                 set_current_state(TASK_UNINTERRUPTIBLE);
2161                 schedule_timeout(HZ); /* wait a second */
2162                 /* need to kick something here to make sure I/O goes? */
2163         }
2164
2165         raise_barrier(conf);
2166         lower_barrier(conf);
2167
2168         md_unregister_thread(mddev->thread);
2169         mddev->thread = NULL;
2170         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2171         if (conf->r1bio_pool)
2172                 mempool_destroy(conf->r1bio_pool);
2173         kfree(conf->mirrors);
2174         kfree(conf->poolinfo);
2175         kfree(conf);
2176         mddev->private = NULL;
2177         return 0;
2178 }
2179
2180 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2181 {
2182         /* no resync is happening, and there is enough space
2183          * on all devices, so we can resize.
2184          * We need to make sure resync covers any new space.
2185          * If the array is shrinking we should possibly wait until
2186          * any io in the removed space completes, but it hardly seems
2187          * worth it.
2188          */
2189         md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2190         if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2191                 return -EINVAL;
2192         set_capacity(mddev->gendisk, mddev->array_sectors);
2193         mddev->changed = 1;
2194         revalidate_disk(mddev->gendisk);
2195         if (sectors > mddev->dev_sectors &&
2196             mddev->recovery_cp == MaxSector) {
2197                 mddev->recovery_cp = mddev->dev_sectors;
2198                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2199         }
2200         mddev->dev_sectors = sectors;
2201         mddev->resync_max_sectors = sectors;
2202         return 0;
2203 }
2204
2205 static int raid1_reshape(mddev_t *mddev)
2206 {
2207         /* We need to:
2208          * 1/ resize the r1bio_pool
2209          * 2/ resize conf->mirrors
2210          *
2211          * We allocate a new r1bio_pool if we can.
2212          * Then raise a device barrier and wait until all IO stops.
2213          * Then resize conf->mirrors and swap in the new r1bio pool.
2214          *
2215          * At the same time, we "pack" the devices so that all the missing
2216          * devices have the higher raid_disk numbers.
2217          */
2218         mempool_t *newpool, *oldpool;
2219         struct pool_info *newpoolinfo;
2220         mirror_info_t *newmirrors;
2221         conf_t *conf = mddev->private;
2222         int cnt, raid_disks;
2223         unsigned long flags;
2224         int d, d2, err;
2225
2226         /* Cannot change chunk_size, layout, or level */
2227         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2228             mddev->layout != mddev->new_layout ||
2229             mddev->level != mddev->new_level) {
2230                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2231                 mddev->new_layout = mddev->layout;
2232                 mddev->new_level = mddev->level;
2233                 return -EINVAL;
2234         }
2235
2236         err = md_allow_write(mddev);
2237         if (err)
2238                 return err;
2239
2240         raid_disks = mddev->raid_disks + mddev->delta_disks;
2241
2242         if (raid_disks < conf->raid_disks) {
2243                 cnt=0;
2244                 for (d= 0; d < conf->raid_disks; d++)
2245                         if (conf->mirrors[d].rdev)
2246                                 cnt++;
2247                 if (cnt > raid_disks)
2248                         return -EBUSY;
2249         }
2250
2251         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2252         if (!newpoolinfo)
2253                 return -ENOMEM;
2254         newpoolinfo->mddev = mddev;
2255         newpoolinfo->raid_disks = raid_disks;
2256
2257         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2258                                  r1bio_pool_free, newpoolinfo);
2259         if (!newpool) {
2260                 kfree(newpoolinfo);
2261                 return -ENOMEM;
2262         }
2263         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2264         if (!newmirrors) {
2265                 kfree(newpoolinfo);
2266                 mempool_destroy(newpool);
2267                 return -ENOMEM;
2268         }
2269
2270         raise_barrier(conf);
2271
2272         /* ok, everything is stopped */
2273         oldpool = conf->r1bio_pool;
2274         conf->r1bio_pool = newpool;
2275
2276         for (d = d2 = 0; d < conf->raid_disks; d++) {
2277                 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2278                 if (rdev && rdev->raid_disk != d2) {
2279                         char nm[20];
2280                         sprintf(nm, "rd%d", rdev->raid_disk);
2281                         sysfs_remove_link(&mddev->kobj, nm);
2282                         rdev->raid_disk = d2;
2283                         sprintf(nm, "rd%d", rdev->raid_disk);
2284                         sysfs_remove_link(&mddev->kobj, nm);
2285                         if (sysfs_create_link(&mddev->kobj,
2286                                               &rdev->kobj, nm))
2287                                 printk(KERN_WARNING
2288                                        "md/raid1: cannot register "
2289                                        "%s for %s\n",
2290                                        nm, mdname(mddev));
2291                 }
2292                 if (rdev)
2293                         newmirrors[d2++].rdev = rdev;
2294         }
2295         kfree(conf->mirrors);
2296         conf->mirrors = newmirrors;
2297         kfree(conf->poolinfo);
2298         conf->poolinfo = newpoolinfo;
2299
2300         spin_lock_irqsave(&conf->device_lock, flags);
2301         mddev->degraded += (raid_disks - conf->raid_disks);
2302         spin_unlock_irqrestore(&conf->device_lock, flags);
2303         conf->raid_disks = mddev->raid_disks = raid_disks;
2304         mddev->delta_disks = 0;
2305
2306         conf->last_used = 0; /* just make sure it is in-range */
2307         lower_barrier(conf);
2308
2309         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2310         md_wakeup_thread(mddev->thread);
2311
2312         mempool_destroy(oldpool);
2313         return 0;
2314 }
2315
2316 static void raid1_quiesce(mddev_t *mddev, int state)
2317 {
2318         conf_t *conf = mddev->private;
2319
2320         switch(state) {
2321         case 2: /* wake for suspend */
2322                 wake_up(&conf->wait_barrier);
2323                 break;
2324         case 1:
2325                 raise_barrier(conf);
2326                 break;
2327         case 0:
2328                 lower_barrier(conf);
2329                 break;
2330         }
2331 }
2332
2333 static void *raid1_takeover(mddev_t *mddev)
2334 {
2335         /* raid1 can take over:
2336          *  raid5 with 2 devices, any layout or chunk size
2337          */
2338         if (mddev->level == 5 && mddev->raid_disks == 2) {
2339                 conf_t *conf;
2340                 mddev->new_level = 1;
2341                 mddev->new_layout = 0;
2342                 mddev->new_chunk_sectors = 0;
2343                 conf = setup_conf(mddev);
2344                 if (!IS_ERR(conf))
2345                         conf->barrier = 1;
2346                 return conf;
2347         }
2348         return ERR_PTR(-EINVAL);
2349 }
2350
2351 static struct mdk_personality raid1_personality =
2352 {
2353         .name           = "raid1",
2354         .level          = 1,
2355         .owner          = THIS_MODULE,
2356         .make_request   = make_request,
2357         .run            = run,
2358         .stop           = stop,
2359         .status         = status,
2360         .error_handler  = error,
2361         .hot_add_disk   = raid1_add_disk,
2362         .hot_remove_disk= raid1_remove_disk,
2363         .spare_active   = raid1_spare_active,
2364         .sync_request   = sync_request,
2365         .resize         = raid1_resize,
2366         .size           = raid1_size,
2367         .check_reshape  = raid1_reshape,
2368         .quiesce        = raid1_quiesce,
2369         .takeover       = raid1_takeover,
2370 };
2371
2372 static int __init raid_init(void)
2373 {
2374         return register_md_personality(&raid1_personality);
2375 }
2376
2377 static void raid_exit(void)
2378 {
2379         unregister_md_personality(&raid1_personality);
2380 }
2381
2382 module_init(raid_init);
2383 module_exit(raid_exit);
2384 MODULE_LICENSE("GPL");
2385 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2386 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2387 MODULE_ALIAS("md-raid1");
2388 MODULE_ALIAS("md-level-1");