string: factorize skip_spaces and export it to be generally available
[safe/jmp/linux-2.6] / drivers / md / raid1.c
1 /*
2  * raid1.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5  *
6  * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7  *
8  * RAID-1 management functions.
9  *
10  * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11  *
12  * Fixes to reconstruction by Jakob Ã˜stergaard" <jakob@ostenfeld.dk>
13  * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14  *
15  * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16  * bitmapped intelligence in resync:
17  *
18  *      - bitmap marked during normal i/o
19  *      - bitmap used to skip nondirty blocks during sync
20  *
21  * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22  * - persistent bitmap code
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2, or (at your option)
27  * any later version.
28  *
29  * You should have received a copy of the GNU General Public License
30  * (for example /usr/src/linux/COPYING); if not, write to the Free
31  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32  */
33
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "raid1.h"
39 #include "bitmap.h"
40
41 #define DEBUG 0
42 #if DEBUG
43 #define PRINTK(x...) printk(x)
44 #else
45 #define PRINTK(x...)
46 #endif
47
48 /*
49  * Number of guaranteed r1bios in case of extreme VM load:
50  */
51 #define NR_RAID1_BIOS 256
52
53
54 static void unplug_slaves(mddev_t *mddev);
55
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
58
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
60 {
61         struct pool_info *pi = data;
62         r1bio_t *r1_bio;
63         int size = offsetof(r1bio_t, bios[pi->raid_disks]);
64
65         /* allocate a r1bio with room for raid_disks entries in the bios array */
66         r1_bio = kzalloc(size, gfp_flags);
67         if (!r1_bio && pi->mddev)
68                 unplug_slaves(pi->mddev);
69
70         return r1_bio;
71 }
72
73 static void r1bio_pool_free(void *r1_bio, void *data)
74 {
75         kfree(r1_bio);
76 }
77
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
83
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
85 {
86         struct pool_info *pi = data;
87         struct page *page;
88         r1bio_t *r1_bio;
89         struct bio *bio;
90         int i, j;
91
92         r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93         if (!r1_bio) {
94                 unplug_slaves(pi->mddev);
95                 return NULL;
96         }
97
98         /*
99          * Allocate bios : 1 for reading, n-1 for writing
100          */
101         for (j = pi->raid_disks ; j-- ; ) {
102                 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103                 if (!bio)
104                         goto out_free_bio;
105                 r1_bio->bios[j] = bio;
106         }
107         /*
108          * Allocate RESYNC_PAGES data pages and attach them to
109          * the first bio.
110          * If this is a user-requested check/repair, allocate
111          * RESYNC_PAGES for each bio.
112          */
113         if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114                 j = pi->raid_disks;
115         else
116                 j = 1;
117         while(j--) {
118                 bio = r1_bio->bios[j];
119                 for (i = 0; i < RESYNC_PAGES; i++) {
120                         page = alloc_page(gfp_flags);
121                         if (unlikely(!page))
122                                 goto out_free_pages;
123
124                         bio->bi_io_vec[i].bv_page = page;
125                         bio->bi_vcnt = i+1;
126                 }
127         }
128         /* If not user-requests, copy the page pointers to all bios */
129         if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130                 for (i=0; i<RESYNC_PAGES ; i++)
131                         for (j=1; j<pi->raid_disks; j++)
132                                 r1_bio->bios[j]->bi_io_vec[i].bv_page =
133                                         r1_bio->bios[0]->bi_io_vec[i].bv_page;
134         }
135
136         r1_bio->master_bio = NULL;
137
138         return r1_bio;
139
140 out_free_pages:
141         for (j=0 ; j < pi->raid_disks; j++)
142                 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143                         put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
144         j = -1;
145 out_free_bio:
146         while ( ++j < pi->raid_disks )
147                 bio_put(r1_bio->bios[j]);
148         r1bio_pool_free(r1_bio, data);
149         return NULL;
150 }
151
152 static void r1buf_pool_free(void *__r1_bio, void *data)
153 {
154         struct pool_info *pi = data;
155         int i,j;
156         r1bio_t *r1bio = __r1_bio;
157
158         for (i = 0; i < RESYNC_PAGES; i++)
159                 for (j = pi->raid_disks; j-- ;) {
160                         if (j == 0 ||
161                             r1bio->bios[j]->bi_io_vec[i].bv_page !=
162                             r1bio->bios[0]->bi_io_vec[i].bv_page)
163                                 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
164                 }
165         for (i=0 ; i < pi->raid_disks; i++)
166                 bio_put(r1bio->bios[i]);
167
168         r1bio_pool_free(r1bio, data);
169 }
170
171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
172 {
173         int i;
174
175         for (i = 0; i < conf->raid_disks; i++) {
176                 struct bio **bio = r1_bio->bios + i;
177                 if (*bio && *bio != IO_BLOCKED)
178                         bio_put(*bio);
179                 *bio = NULL;
180         }
181 }
182
183 static void free_r1bio(r1bio_t *r1_bio)
184 {
185         conf_t *conf = r1_bio->mddev->private;
186
187         /*
188          * Wake up any possible resync thread that waits for the device
189          * to go idle.
190          */
191         allow_barrier(conf);
192
193         put_all_bios(conf, r1_bio);
194         mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(r1bio_t *r1_bio)
198 {
199         conf_t *conf = r1_bio->mddev->private;
200         int i;
201
202         for (i=0; i<conf->raid_disks; i++) {
203                 struct bio *bio = r1_bio->bios[i];
204                 if (bio->bi_end_io)
205                         rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206         }
207
208         mempool_free(r1_bio, conf->r1buf_pool);
209
210         lower_barrier(conf);
211 }
212
213 static void reschedule_retry(r1bio_t *r1_bio)
214 {
215         unsigned long flags;
216         mddev_t *mddev = r1_bio->mddev;
217         conf_t *conf = mddev->private;
218
219         spin_lock_irqsave(&conf->device_lock, flags);
220         list_add(&r1_bio->retry_list, &conf->retry_list);
221         conf->nr_queued ++;
222         spin_unlock_irqrestore(&conf->device_lock, flags);
223
224         wake_up(&conf->wait_barrier);
225         md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229  * raid_end_bio_io() is called when we have finished servicing a mirrored
230  * operation and are ready to return a success/failure code to the buffer
231  * cache layer.
232  */
233 static void raid_end_bio_io(r1bio_t *r1_bio)
234 {
235         struct bio *bio = r1_bio->master_bio;
236
237         /* if nobody has done the final endio yet, do it now */
238         if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239                 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240                         (bio_data_dir(bio) == WRITE) ? "write" : "read",
241                         (unsigned long long) bio->bi_sector,
242                         (unsigned long long) bio->bi_sector +
243                                 (bio->bi_size >> 9) - 1);
244
245                 bio_endio(bio,
246                         test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
247         }
248         free_r1bio(r1_bio);
249 }
250
251 /*
252  * Update disk head position estimator based on IRQ completion info.
253  */
254 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
255 {
256         conf_t *conf = r1_bio->mddev->private;
257
258         conf->mirrors[disk].head_position =
259                 r1_bio->sector + (r1_bio->sectors);
260 }
261
262 static void raid1_end_read_request(struct bio *bio, int error)
263 {
264         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266         int mirror;
267         conf_t *conf = r1_bio->mddev->private;
268
269         mirror = r1_bio->read_disk;
270         /*
271          * this branch is our 'one mirror IO has finished' event handler:
272          */
273         update_head_pos(mirror, r1_bio);
274
275         if (uptodate)
276                 set_bit(R1BIO_Uptodate, &r1_bio->state);
277         else {
278                 /* If all other devices have failed, we want to return
279                  * the error upwards rather than fail the last device.
280                  * Here we redefine "uptodate" to mean "Don't want to retry"
281                  */
282                 unsigned long flags;
283                 spin_lock_irqsave(&conf->device_lock, flags);
284                 if (r1_bio->mddev->degraded == conf->raid_disks ||
285                     (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286                      !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287                         uptodate = 1;
288                 spin_unlock_irqrestore(&conf->device_lock, flags);
289         }
290
291         if (uptodate)
292                 raid_end_bio_io(r1_bio);
293         else {
294                 /*
295                  * oops, read error:
296                  */
297                 char b[BDEVNAME_SIZE];
298                 if (printk_ratelimit())
299                         printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300                                bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301                 reschedule_retry(r1_bio);
302         }
303
304         rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
305 }
306
307 static void raid1_end_write_request(struct bio *bio, int error)
308 {
309         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311         int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312         conf_t *conf = r1_bio->mddev->private;
313         struct bio *to_put = NULL;
314
315
316         for (mirror = 0; mirror < conf->raid_disks; mirror++)
317                 if (r1_bio->bios[mirror] == bio)
318                         break;
319
320         if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321                 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322                 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323                 r1_bio->mddev->barriers_work = 0;
324                 /* Don't rdev_dec_pending in this branch - keep it for the retry */
325         } else {
326                 /*
327                  * this branch is our 'one mirror IO has finished' event handler:
328                  */
329                 r1_bio->bios[mirror] = NULL;
330                 to_put = bio;
331                 if (!uptodate) {
332                         md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333                         /* an I/O failed, we can't clear the bitmap */
334                         set_bit(R1BIO_Degraded, &r1_bio->state);
335                 } else
336                         /*
337                          * Set R1BIO_Uptodate in our master bio, so that
338                          * we will return a good error code for to the higher
339                          * levels even if IO on some other mirrored buffer fails.
340                          *
341                          * The 'master' represents the composite IO operation to
342                          * user-side. So if something waits for IO, then it will
343                          * wait for the 'master' bio.
344                          */
345                         set_bit(R1BIO_Uptodate, &r1_bio->state);
346
347                 update_head_pos(mirror, r1_bio);
348
349                 if (behind) {
350                         if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351                                 atomic_dec(&r1_bio->behind_remaining);
352
353                         /* In behind mode, we ACK the master bio once the I/O has safely
354                          * reached all non-writemostly disks. Setting the Returned bit
355                          * ensures that this gets done only once -- we don't ever want to
356                          * return -EIO here, instead we'll wait */
357
358                         if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359                             test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360                                 /* Maybe we can return now */
361                                 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362                                         struct bio *mbio = r1_bio->master_bio;
363                                         PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364                                                (unsigned long long) mbio->bi_sector,
365                                                (unsigned long long) mbio->bi_sector +
366                                                (mbio->bi_size >> 9) - 1);
367                                         bio_endio(mbio, 0);
368                                 }
369                         }
370                 }
371                 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
372         }
373         /*
374          *
375          * Let's see if all mirrored write operations have finished
376          * already.
377          */
378         if (atomic_dec_and_test(&r1_bio->remaining)) {
379                 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
380                         reschedule_retry(r1_bio);
381                 else {
382                         /* it really is the end of this request */
383                         if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384                                 /* free extra copy of the data pages */
385                                 int i = bio->bi_vcnt;
386                                 while (i--)
387                                         safe_put_page(bio->bi_io_vec[i].bv_page);
388                         }
389                         /* clear the bitmap if all writes complete successfully */
390                         bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391                                         r1_bio->sectors,
392                                         !test_bit(R1BIO_Degraded, &r1_bio->state),
393                                         behind);
394                         md_write_end(r1_bio->mddev);
395                         raid_end_bio_io(r1_bio);
396                 }
397         }
398
399         if (to_put)
400                 bio_put(to_put);
401 }
402
403
404 /*
405  * This routine returns the disk from which the requested read should
406  * be done. There is a per-array 'next expected sequential IO' sector
407  * number - if this matches on the next IO then we use the last disk.
408  * There is also a per-disk 'last know head position' sector that is
409  * maintained from IRQ contexts, both the normal and the resync IO
410  * completion handlers update this position correctly. If there is no
411  * perfect sequential match then we pick the disk whose head is closest.
412  *
413  * If there are 2 mirrors in the same 2 devices, performance degrades
414  * because position is mirror, not device based.
415  *
416  * The rdev for the device selected will have nr_pending incremented.
417  */
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
419 {
420         const unsigned long this_sector = r1_bio->sector;
421         int new_disk = conf->last_used, disk = new_disk;
422         int wonly_disk = -1;
423         const int sectors = r1_bio->sectors;
424         sector_t new_distance, current_distance;
425         mdk_rdev_t *rdev;
426
427         rcu_read_lock();
428         /*
429          * Check if we can balance. We can balance on the whole
430          * device if no resync is going on, or below the resync window.
431          * We take the first readable disk when above the resync window.
432          */
433  retry:
434         if (conf->mddev->recovery_cp < MaxSector &&
435             (this_sector + sectors >= conf->next_resync)) {
436                 /* Choose the first operation device, for consistancy */
437                 new_disk = 0;
438
439                 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440                      r1_bio->bios[new_disk] == IO_BLOCKED ||
441                      !rdev || !test_bit(In_sync, &rdev->flags)
442                              || test_bit(WriteMostly, &rdev->flags);
443                      rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
444
445                         if (rdev && test_bit(In_sync, &rdev->flags) &&
446                                 r1_bio->bios[new_disk] != IO_BLOCKED)
447                                 wonly_disk = new_disk;
448
449                         if (new_disk == conf->raid_disks - 1) {
450                                 new_disk = wonly_disk;
451                                 break;
452                         }
453                 }
454                 goto rb_out;
455         }
456
457
458         /* make sure the disk is operational */
459         for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460              r1_bio->bios[new_disk] == IO_BLOCKED ||
461              !rdev || !test_bit(In_sync, &rdev->flags) ||
462                      test_bit(WriteMostly, &rdev->flags);
463              rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
464
465                 if (rdev && test_bit(In_sync, &rdev->flags) &&
466                     r1_bio->bios[new_disk] != IO_BLOCKED)
467                         wonly_disk = new_disk;
468
469                 if (new_disk <= 0)
470                         new_disk = conf->raid_disks;
471                 new_disk--;
472                 if (new_disk == disk) {
473                         new_disk = wonly_disk;
474                         break;
475                 }
476         }
477
478         if (new_disk < 0)
479                 goto rb_out;
480
481         disk = new_disk;
482         /* now disk == new_disk == starting point for search */
483
484         /*
485          * Don't change to another disk for sequential reads:
486          */
487         if (conf->next_seq_sect == this_sector)
488                 goto rb_out;
489         if (this_sector == conf->mirrors[new_disk].head_position)
490                 goto rb_out;
491
492         current_distance = abs(this_sector - conf->mirrors[disk].head_position);
493
494         /* Find the disk whose head is closest */
495
496         do {
497                 if (disk <= 0)
498                         disk = conf->raid_disks;
499                 disk--;
500
501                 rdev = rcu_dereference(conf->mirrors[disk].rdev);
502
503                 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504                     !test_bit(In_sync, &rdev->flags) ||
505                     test_bit(WriteMostly, &rdev->flags))
506                         continue;
507
508                 if (!atomic_read(&rdev->nr_pending)) {
509                         new_disk = disk;
510                         break;
511                 }
512                 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513                 if (new_distance < current_distance) {
514                         current_distance = new_distance;
515                         new_disk = disk;
516                 }
517         } while (disk != conf->last_used);
518
519  rb_out:
520
521
522         if (new_disk >= 0) {
523                 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524                 if (!rdev)
525                         goto retry;
526                 atomic_inc(&rdev->nr_pending);
527                 if (!test_bit(In_sync, &rdev->flags)) {
528                         /* cannot risk returning a device that failed
529                          * before we inc'ed nr_pending
530                          */
531                         rdev_dec_pending(rdev, conf->mddev);
532                         goto retry;
533                 }
534                 conf->next_seq_sect = this_sector + sectors;
535                 conf->last_used = new_disk;
536         }
537         rcu_read_unlock();
538
539         return new_disk;
540 }
541
542 static void unplug_slaves(mddev_t *mddev)
543 {
544         conf_t *conf = mddev->private;
545         int i;
546
547         rcu_read_lock();
548         for (i=0; i<mddev->raid_disks; i++) {
549                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550                 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551                         struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
552
553                         atomic_inc(&rdev->nr_pending);
554                         rcu_read_unlock();
555
556                         blk_unplug(r_queue);
557
558                         rdev_dec_pending(rdev, mddev);
559                         rcu_read_lock();
560                 }
561         }
562         rcu_read_unlock();
563 }
564
565 static void raid1_unplug(struct request_queue *q)
566 {
567         mddev_t *mddev = q->queuedata;
568
569         unplug_slaves(mddev);
570         md_wakeup_thread(mddev->thread);
571 }
572
573 static int raid1_congested(void *data, int bits)
574 {
575         mddev_t *mddev = data;
576         conf_t *conf = mddev->private;
577         int i, ret = 0;
578
579         if (mddev_congested(mddev, bits))
580                 return 1;
581
582         rcu_read_lock();
583         for (i = 0; i < mddev->raid_disks; i++) {
584                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
585                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
586                         struct request_queue *q = bdev_get_queue(rdev->bdev);
587
588                         /* Note the '|| 1' - when read_balance prefers
589                          * non-congested targets, it can be removed
590                          */
591                         if ((bits & (1<<BDI_async_congested)) || 1)
592                                 ret |= bdi_congested(&q->backing_dev_info, bits);
593                         else
594                                 ret &= bdi_congested(&q->backing_dev_info, bits);
595                 }
596         }
597         rcu_read_unlock();
598         return ret;
599 }
600
601
602 static int flush_pending_writes(conf_t *conf)
603 {
604         /* Any writes that have been queued but are awaiting
605          * bitmap updates get flushed here.
606          * We return 1 if any requests were actually submitted.
607          */
608         int rv = 0;
609
610         spin_lock_irq(&conf->device_lock);
611
612         if (conf->pending_bio_list.head) {
613                 struct bio *bio;
614                 bio = bio_list_get(&conf->pending_bio_list);
615                 blk_remove_plug(conf->mddev->queue);
616                 spin_unlock_irq(&conf->device_lock);
617                 /* flush any pending bitmap writes to
618                  * disk before proceeding w/ I/O */
619                 bitmap_unplug(conf->mddev->bitmap);
620
621                 while (bio) { /* submit pending writes */
622                         struct bio *next = bio->bi_next;
623                         bio->bi_next = NULL;
624                         generic_make_request(bio);
625                         bio = next;
626                 }
627                 rv = 1;
628         } else
629                 spin_unlock_irq(&conf->device_lock);
630         return rv;
631 }
632
633 /* Barriers....
634  * Sometimes we need to suspend IO while we do something else,
635  * either some resync/recovery, or reconfigure the array.
636  * To do this we raise a 'barrier'.
637  * The 'barrier' is a counter that can be raised multiple times
638  * to count how many activities are happening which preclude
639  * normal IO.
640  * We can only raise the barrier if there is no pending IO.
641  * i.e. if nr_pending == 0.
642  * We choose only to raise the barrier if no-one is waiting for the
643  * barrier to go down.  This means that as soon as an IO request
644  * is ready, no other operations which require a barrier will start
645  * until the IO request has had a chance.
646  *
647  * So: regular IO calls 'wait_barrier'.  When that returns there
648  *    is no backgroup IO happening,  It must arrange to call
649  *    allow_barrier when it has finished its IO.
650  * backgroup IO calls must call raise_barrier.  Once that returns
651  *    there is no normal IO happeing.  It must arrange to call
652  *    lower_barrier when the particular background IO completes.
653  */
654 #define RESYNC_DEPTH 32
655
656 static void raise_barrier(conf_t *conf)
657 {
658         spin_lock_irq(&conf->resync_lock);
659
660         /* Wait until no block IO is waiting */
661         wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
662                             conf->resync_lock,
663                             raid1_unplug(conf->mddev->queue));
664
665         /* block any new IO from starting */
666         conf->barrier++;
667
668         /* No wait for all pending IO to complete */
669         wait_event_lock_irq(conf->wait_barrier,
670                             !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
671                             conf->resync_lock,
672                             raid1_unplug(conf->mddev->queue));
673
674         spin_unlock_irq(&conf->resync_lock);
675 }
676
677 static void lower_barrier(conf_t *conf)
678 {
679         unsigned long flags;
680         BUG_ON(conf->barrier <= 0);
681         spin_lock_irqsave(&conf->resync_lock, flags);
682         conf->barrier--;
683         spin_unlock_irqrestore(&conf->resync_lock, flags);
684         wake_up(&conf->wait_barrier);
685 }
686
687 static void wait_barrier(conf_t *conf)
688 {
689         spin_lock_irq(&conf->resync_lock);
690         if (conf->barrier) {
691                 conf->nr_waiting++;
692                 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
693                                     conf->resync_lock,
694                                     raid1_unplug(conf->mddev->queue));
695                 conf->nr_waiting--;
696         }
697         conf->nr_pending++;
698         spin_unlock_irq(&conf->resync_lock);
699 }
700
701 static void allow_barrier(conf_t *conf)
702 {
703         unsigned long flags;
704         spin_lock_irqsave(&conf->resync_lock, flags);
705         conf->nr_pending--;
706         spin_unlock_irqrestore(&conf->resync_lock, flags);
707         wake_up(&conf->wait_barrier);
708 }
709
710 static void freeze_array(conf_t *conf)
711 {
712         /* stop syncio and normal IO and wait for everything to
713          * go quite.
714          * We increment barrier and nr_waiting, and then
715          * wait until nr_pending match nr_queued+1
716          * This is called in the context of one normal IO request
717          * that has failed. Thus any sync request that might be pending
718          * will be blocked by nr_pending, and we need to wait for
719          * pending IO requests to complete or be queued for re-try.
720          * Thus the number queued (nr_queued) plus this request (1)
721          * must match the number of pending IOs (nr_pending) before
722          * we continue.
723          */
724         spin_lock_irq(&conf->resync_lock);
725         conf->barrier++;
726         conf->nr_waiting++;
727         wait_event_lock_irq(conf->wait_barrier,
728                             conf->nr_pending == conf->nr_queued+1,
729                             conf->resync_lock,
730                             ({ flush_pending_writes(conf);
731                                raid1_unplug(conf->mddev->queue); }));
732         spin_unlock_irq(&conf->resync_lock);
733 }
734 static void unfreeze_array(conf_t *conf)
735 {
736         /* reverse the effect of the freeze */
737         spin_lock_irq(&conf->resync_lock);
738         conf->barrier--;
739         conf->nr_waiting--;
740         wake_up(&conf->wait_barrier);
741         spin_unlock_irq(&conf->resync_lock);
742 }
743
744
745 /* duplicate the data pages for behind I/O */
746 static struct page **alloc_behind_pages(struct bio *bio)
747 {
748         int i;
749         struct bio_vec *bvec;
750         struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
751                                         GFP_NOIO);
752         if (unlikely(!pages))
753                 goto do_sync_io;
754
755         bio_for_each_segment(bvec, bio, i) {
756                 pages[i] = alloc_page(GFP_NOIO);
757                 if (unlikely(!pages[i]))
758                         goto do_sync_io;
759                 memcpy(kmap(pages[i]) + bvec->bv_offset,
760                         kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
761                 kunmap(pages[i]);
762                 kunmap(bvec->bv_page);
763         }
764
765         return pages;
766
767 do_sync_io:
768         if (pages)
769                 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
770                         put_page(pages[i]);
771         kfree(pages);
772         PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
773         return NULL;
774 }
775
776 static int make_request(struct request_queue *q, struct bio * bio)
777 {
778         mddev_t *mddev = q->queuedata;
779         conf_t *conf = mddev->private;
780         mirror_info_t *mirror;
781         r1bio_t *r1_bio;
782         struct bio *read_bio;
783         int i, targets = 0, disks;
784         struct bitmap *bitmap;
785         unsigned long flags;
786         struct bio_list bl;
787         struct page **behind_pages = NULL;
788         const int rw = bio_data_dir(bio);
789         const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
790         int cpu;
791         bool do_barriers;
792         mdk_rdev_t *blocked_rdev;
793
794         /*
795          * Register the new request and wait if the reconstruction
796          * thread has put up a bar for new requests.
797          * Continue immediately if no resync is active currently.
798          * We test barriers_work *after* md_write_start as md_write_start
799          * may cause the first superblock write, and that will check out
800          * if barriers work.
801          */
802
803         md_write_start(mddev, bio); /* wait on superblock update early */
804
805         if (bio_data_dir(bio) == WRITE &&
806             bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
807             bio->bi_sector < mddev->suspend_hi) {
808                 /* As the suspend_* range is controlled by
809                  * userspace, we want an interruptible
810                  * wait.
811                  */
812                 DEFINE_WAIT(w);
813                 for (;;) {
814                         flush_signals(current);
815                         prepare_to_wait(&conf->wait_barrier,
816                                         &w, TASK_INTERRUPTIBLE);
817                         if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
818                             bio->bi_sector >= mddev->suspend_hi)
819                                 break;
820                         schedule();
821                 }
822                 finish_wait(&conf->wait_barrier, &w);
823         }
824         if (unlikely(!mddev->barriers_work &&
825                      bio_rw_flagged(bio, BIO_RW_BARRIER))) {
826                 if (rw == WRITE)
827                         md_write_end(mddev);
828                 bio_endio(bio, -EOPNOTSUPP);
829                 return 0;
830         }
831
832         wait_barrier(conf);
833
834         bitmap = mddev->bitmap;
835
836         cpu = part_stat_lock();
837         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
838         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
839                       bio_sectors(bio));
840         part_stat_unlock();
841
842         /*
843          * make_request() can abort the operation when READA is being
844          * used and no empty request is available.
845          *
846          */
847         r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
848
849         r1_bio->master_bio = bio;
850         r1_bio->sectors = bio->bi_size >> 9;
851         r1_bio->state = 0;
852         r1_bio->mddev = mddev;
853         r1_bio->sector = bio->bi_sector;
854
855         if (rw == READ) {
856                 /*
857                  * read balancing logic:
858                  */
859                 int rdisk = read_balance(conf, r1_bio);
860
861                 if (rdisk < 0) {
862                         /* couldn't find anywhere to read from */
863                         raid_end_bio_io(r1_bio);
864                         return 0;
865                 }
866                 mirror = conf->mirrors + rdisk;
867
868                 r1_bio->read_disk = rdisk;
869
870                 read_bio = bio_clone(bio, GFP_NOIO);
871
872                 r1_bio->bios[rdisk] = read_bio;
873
874                 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
875                 read_bio->bi_bdev = mirror->rdev->bdev;
876                 read_bio->bi_end_io = raid1_end_read_request;
877                 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
878                 read_bio->bi_private = r1_bio;
879
880                 generic_make_request(read_bio);
881                 return 0;
882         }
883
884         /*
885          * WRITE:
886          */
887         /* first select target devices under spinlock and
888          * inc refcount on their rdev.  Record them by setting
889          * bios[x] to bio
890          */
891         disks = conf->raid_disks;
892 #if 0
893         { static int first=1;
894         if (first) printk("First Write sector %llu disks %d\n",
895                           (unsigned long long)r1_bio->sector, disks);
896         first = 0;
897         }
898 #endif
899  retry_write:
900         blocked_rdev = NULL;
901         rcu_read_lock();
902         for (i = 0;  i < disks; i++) {
903                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
904                 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
905                         atomic_inc(&rdev->nr_pending);
906                         blocked_rdev = rdev;
907                         break;
908                 }
909                 if (rdev && !test_bit(Faulty, &rdev->flags)) {
910                         atomic_inc(&rdev->nr_pending);
911                         if (test_bit(Faulty, &rdev->flags)) {
912                                 rdev_dec_pending(rdev, mddev);
913                                 r1_bio->bios[i] = NULL;
914                         } else
915                                 r1_bio->bios[i] = bio;
916                         targets++;
917                 } else
918                         r1_bio->bios[i] = NULL;
919         }
920         rcu_read_unlock();
921
922         if (unlikely(blocked_rdev)) {
923                 /* Wait for this device to become unblocked */
924                 int j;
925
926                 for (j = 0; j < i; j++)
927                         if (r1_bio->bios[j])
928                                 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
929
930                 allow_barrier(conf);
931                 md_wait_for_blocked_rdev(blocked_rdev, mddev);
932                 wait_barrier(conf);
933                 goto retry_write;
934         }
935
936         BUG_ON(targets == 0); /* we never fail the last device */
937
938         if (targets < conf->raid_disks) {
939                 /* array is degraded, we will not clear the bitmap
940                  * on I/O completion (see raid1_end_write_request) */
941                 set_bit(R1BIO_Degraded, &r1_bio->state);
942         }
943
944         /* do behind I/O ? */
945         if (bitmap &&
946             (atomic_read(&bitmap->behind_writes)
947              < mddev->bitmap_info.max_write_behind) &&
948             (behind_pages = alloc_behind_pages(bio)) != NULL)
949                 set_bit(R1BIO_BehindIO, &r1_bio->state);
950
951         atomic_set(&r1_bio->remaining, 0);
952         atomic_set(&r1_bio->behind_remaining, 0);
953
954         do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
955         if (do_barriers)
956                 set_bit(R1BIO_Barrier, &r1_bio->state);
957
958         bio_list_init(&bl);
959         for (i = 0; i < disks; i++) {
960                 struct bio *mbio;
961                 if (!r1_bio->bios[i])
962                         continue;
963
964                 mbio = bio_clone(bio, GFP_NOIO);
965                 r1_bio->bios[i] = mbio;
966
967                 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
968                 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
969                 mbio->bi_end_io = raid1_end_write_request;
970                 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
971                         (do_sync << BIO_RW_SYNCIO);
972                 mbio->bi_private = r1_bio;
973
974                 if (behind_pages) {
975                         struct bio_vec *bvec;
976                         int j;
977
978                         /* Yes, I really want the '__' version so that
979                          * we clear any unused pointer in the io_vec, rather
980                          * than leave them unchanged.  This is important
981                          * because when we come to free the pages, we won't
982                          * know the originial bi_idx, so we just free
983                          * them all
984                          */
985                         __bio_for_each_segment(bvec, mbio, j, 0)
986                                 bvec->bv_page = behind_pages[j];
987                         if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
988                                 atomic_inc(&r1_bio->behind_remaining);
989                 }
990
991                 atomic_inc(&r1_bio->remaining);
992
993                 bio_list_add(&bl, mbio);
994         }
995         kfree(behind_pages); /* the behind pages are attached to the bios now */
996
997         bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
998                                 test_bit(R1BIO_BehindIO, &r1_bio->state));
999         spin_lock_irqsave(&conf->device_lock, flags);
1000         bio_list_merge(&conf->pending_bio_list, &bl);
1001         bio_list_init(&bl);
1002
1003         blk_plug_device(mddev->queue);
1004         spin_unlock_irqrestore(&conf->device_lock, flags);
1005
1006         /* In case raid1d snuck into freeze_array */
1007         wake_up(&conf->wait_barrier);
1008
1009         if (do_sync)
1010                 md_wakeup_thread(mddev->thread);
1011 #if 0
1012         while ((bio = bio_list_pop(&bl)) != NULL)
1013                 generic_make_request(bio);
1014 #endif
1015
1016         return 0;
1017 }
1018
1019 static void status(struct seq_file *seq, mddev_t *mddev)
1020 {
1021         conf_t *conf = mddev->private;
1022         int i;
1023
1024         seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1025                    conf->raid_disks - mddev->degraded);
1026         rcu_read_lock();
1027         for (i = 0; i < conf->raid_disks; i++) {
1028                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1029                 seq_printf(seq, "%s",
1030                            rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1031         }
1032         rcu_read_unlock();
1033         seq_printf(seq, "]");
1034 }
1035
1036
1037 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1038 {
1039         char b[BDEVNAME_SIZE];
1040         conf_t *conf = mddev->private;
1041
1042         /*
1043          * If it is not operational, then we have already marked it as dead
1044          * else if it is the last working disks, ignore the error, let the
1045          * next level up know.
1046          * else mark the drive as failed
1047          */
1048         if (test_bit(In_sync, &rdev->flags)
1049             && (conf->raid_disks - mddev->degraded) == 1) {
1050                 /*
1051                  * Don't fail the drive, act as though we were just a
1052                  * normal single drive.
1053                  * However don't try a recovery from this drive as
1054                  * it is very likely to fail.
1055                  */
1056                 mddev->recovery_disabled = 1;
1057                 return;
1058         }
1059         if (test_and_clear_bit(In_sync, &rdev->flags)) {
1060                 unsigned long flags;
1061                 spin_lock_irqsave(&conf->device_lock, flags);
1062                 mddev->degraded++;
1063                 set_bit(Faulty, &rdev->flags);
1064                 spin_unlock_irqrestore(&conf->device_lock, flags);
1065                 /*
1066                  * if recovery is running, make sure it aborts.
1067                  */
1068                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1069         } else
1070                 set_bit(Faulty, &rdev->flags);
1071         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1072         printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1073                 "raid1: Operation continuing on %d devices.\n",
1074                 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1075 }
1076
1077 static void print_conf(conf_t *conf)
1078 {
1079         int i;
1080
1081         printk("RAID1 conf printout:\n");
1082         if (!conf) {
1083                 printk("(!conf)\n");
1084                 return;
1085         }
1086         printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1087                 conf->raid_disks);
1088
1089         rcu_read_lock();
1090         for (i = 0; i < conf->raid_disks; i++) {
1091                 char b[BDEVNAME_SIZE];
1092                 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1093                 if (rdev)
1094                         printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1095                                i, !test_bit(In_sync, &rdev->flags),
1096                                !test_bit(Faulty, &rdev->flags),
1097                                bdevname(rdev->bdev,b));
1098         }
1099         rcu_read_unlock();
1100 }
1101
1102 static void close_sync(conf_t *conf)
1103 {
1104         wait_barrier(conf);
1105         allow_barrier(conf);
1106
1107         mempool_destroy(conf->r1buf_pool);
1108         conf->r1buf_pool = NULL;
1109 }
1110
1111 static int raid1_spare_active(mddev_t *mddev)
1112 {
1113         int i;
1114         conf_t *conf = mddev->private;
1115
1116         /*
1117          * Find all failed disks within the RAID1 configuration 
1118          * and mark them readable.
1119          * Called under mddev lock, so rcu protection not needed.
1120          */
1121         for (i = 0; i < conf->raid_disks; i++) {
1122                 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1123                 if (rdev
1124                     && !test_bit(Faulty, &rdev->flags)
1125                     && !test_and_set_bit(In_sync, &rdev->flags)) {
1126                         unsigned long flags;
1127                         spin_lock_irqsave(&conf->device_lock, flags);
1128                         mddev->degraded--;
1129                         spin_unlock_irqrestore(&conf->device_lock, flags);
1130                 }
1131         }
1132
1133         print_conf(conf);
1134         return 0;
1135 }
1136
1137
1138 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1139 {
1140         conf_t *conf = mddev->private;
1141         int err = -EEXIST;
1142         int mirror = 0;
1143         mirror_info_t *p;
1144         int first = 0;
1145         int last = mddev->raid_disks - 1;
1146
1147         if (rdev->raid_disk >= 0)
1148                 first = last = rdev->raid_disk;
1149
1150         for (mirror = first; mirror <= last; mirror++)
1151                 if ( !(p=conf->mirrors+mirror)->rdev) {
1152
1153                         disk_stack_limits(mddev->gendisk, rdev->bdev,
1154                                           rdev->data_offset << 9);
1155                         /* as we don't honour merge_bvec_fn, we must never risk
1156                          * violating it, so limit ->max_sector to one PAGE, as
1157                          * a one page request is never in violation.
1158                          */
1159                         if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1160                             queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1161                                 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1162
1163                         p->head_position = 0;
1164                         rdev->raid_disk = mirror;
1165                         err = 0;
1166                         /* As all devices are equivalent, we don't need a full recovery
1167                          * if this was recently any drive of the array
1168                          */
1169                         if (rdev->saved_raid_disk < 0)
1170                                 conf->fullsync = 1;
1171                         rcu_assign_pointer(p->rdev, rdev);
1172                         break;
1173                 }
1174         md_integrity_add_rdev(rdev, mddev);
1175         print_conf(conf);
1176         return err;
1177 }
1178
1179 static int raid1_remove_disk(mddev_t *mddev, int number)
1180 {
1181         conf_t *conf = mddev->private;
1182         int err = 0;
1183         mdk_rdev_t *rdev;
1184         mirror_info_t *p = conf->mirrors+ number;
1185
1186         print_conf(conf);
1187         rdev = p->rdev;
1188         if (rdev) {
1189                 if (test_bit(In_sync, &rdev->flags) ||
1190                     atomic_read(&rdev->nr_pending)) {
1191                         err = -EBUSY;
1192                         goto abort;
1193                 }
1194                 /* Only remove non-faulty devices is recovery
1195                  * is not possible.
1196                  */
1197                 if (!test_bit(Faulty, &rdev->flags) &&
1198                     mddev->degraded < conf->raid_disks) {
1199                         err = -EBUSY;
1200                         goto abort;
1201                 }
1202                 p->rdev = NULL;
1203                 synchronize_rcu();
1204                 if (atomic_read(&rdev->nr_pending)) {
1205                         /* lost the race, try later */
1206                         err = -EBUSY;
1207                         p->rdev = rdev;
1208                         goto abort;
1209                 }
1210                 md_integrity_register(mddev);
1211         }
1212 abort:
1213
1214         print_conf(conf);
1215         return err;
1216 }
1217
1218
1219 static void end_sync_read(struct bio *bio, int error)
1220 {
1221         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1222         int i;
1223
1224         for (i=r1_bio->mddev->raid_disks; i--; )
1225                 if (r1_bio->bios[i] == bio)
1226                         break;
1227         BUG_ON(i < 0);
1228         update_head_pos(i, r1_bio);
1229         /*
1230          * we have read a block, now it needs to be re-written,
1231          * or re-read if the read failed.
1232          * We don't do much here, just schedule handling by raid1d
1233          */
1234         if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1235                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1236
1237         if (atomic_dec_and_test(&r1_bio->remaining))
1238                 reschedule_retry(r1_bio);
1239 }
1240
1241 static void end_sync_write(struct bio *bio, int error)
1242 {
1243         int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1244         r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1245         mddev_t *mddev = r1_bio->mddev;
1246         conf_t *conf = mddev->private;
1247         int i;
1248         int mirror=0;
1249
1250         for (i = 0; i < conf->raid_disks; i++)
1251                 if (r1_bio->bios[i] == bio) {
1252                         mirror = i;
1253                         break;
1254                 }
1255         if (!uptodate) {
1256                 int sync_blocks = 0;
1257                 sector_t s = r1_bio->sector;
1258                 long sectors_to_go = r1_bio->sectors;
1259                 /* make sure these bits doesn't get cleared. */
1260                 do {
1261                         bitmap_end_sync(mddev->bitmap, s,
1262                                         &sync_blocks, 1);
1263                         s += sync_blocks;
1264                         sectors_to_go -= sync_blocks;
1265                 } while (sectors_to_go > 0);
1266                 md_error(mddev, conf->mirrors[mirror].rdev);
1267         }
1268
1269         update_head_pos(mirror, r1_bio);
1270
1271         if (atomic_dec_and_test(&r1_bio->remaining)) {
1272                 sector_t s = r1_bio->sectors;
1273                 put_buf(r1_bio);
1274                 md_done_sync(mddev, s, uptodate);
1275         }
1276 }
1277
1278 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1279 {
1280         conf_t *conf = mddev->private;
1281         int i;
1282         int disks = conf->raid_disks;
1283         struct bio *bio, *wbio;
1284
1285         bio = r1_bio->bios[r1_bio->read_disk];
1286
1287
1288         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1289                 /* We have read all readable devices.  If we haven't
1290                  * got the block, then there is no hope left.
1291                  * If we have, then we want to do a comparison
1292                  * and skip the write if everything is the same.
1293                  * If any blocks failed to read, then we need to
1294                  * attempt an over-write
1295                  */
1296                 int primary;
1297                 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1298                         for (i=0; i<mddev->raid_disks; i++)
1299                                 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1300                                         md_error(mddev, conf->mirrors[i].rdev);
1301
1302                         md_done_sync(mddev, r1_bio->sectors, 1);
1303                         put_buf(r1_bio);
1304                         return;
1305                 }
1306                 for (primary=0; primary<mddev->raid_disks; primary++)
1307                         if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1308                             test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1309                                 r1_bio->bios[primary]->bi_end_io = NULL;
1310                                 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1311                                 break;
1312                         }
1313                 r1_bio->read_disk = primary;
1314                 for (i=0; i<mddev->raid_disks; i++)
1315                         if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1316                                 int j;
1317                                 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1318                                 struct bio *pbio = r1_bio->bios[primary];
1319                                 struct bio *sbio = r1_bio->bios[i];
1320
1321                                 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1322                                         for (j = vcnt; j-- ; ) {
1323                                                 struct page *p, *s;
1324                                                 p = pbio->bi_io_vec[j].bv_page;
1325                                                 s = sbio->bi_io_vec[j].bv_page;
1326                                                 if (memcmp(page_address(p),
1327                                                            page_address(s),
1328                                                            PAGE_SIZE))
1329                                                         break;
1330                                         }
1331                                 } else
1332                                         j = 0;
1333                                 if (j >= 0)
1334                                         mddev->resync_mismatches += r1_bio->sectors;
1335                                 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1336                                               && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1337                                         sbio->bi_end_io = NULL;
1338                                         rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1339                                 } else {
1340                                         /* fixup the bio for reuse */
1341                                         int size;
1342                                         sbio->bi_vcnt = vcnt;
1343                                         sbio->bi_size = r1_bio->sectors << 9;
1344                                         sbio->bi_idx = 0;
1345                                         sbio->bi_phys_segments = 0;
1346                                         sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1347                                         sbio->bi_flags |= 1 << BIO_UPTODATE;
1348                                         sbio->bi_next = NULL;
1349                                         sbio->bi_sector = r1_bio->sector +
1350                                                 conf->mirrors[i].rdev->data_offset;
1351                                         sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1352                                         size = sbio->bi_size;
1353                                         for (j = 0; j < vcnt ; j++) {
1354                                                 struct bio_vec *bi;
1355                                                 bi = &sbio->bi_io_vec[j];
1356                                                 bi->bv_offset = 0;
1357                                                 if (size > PAGE_SIZE)
1358                                                         bi->bv_len = PAGE_SIZE;
1359                                                 else
1360                                                         bi->bv_len = size;
1361                                                 size -= PAGE_SIZE;
1362                                                 memcpy(page_address(bi->bv_page),
1363                                                        page_address(pbio->bi_io_vec[j].bv_page),
1364                                                        PAGE_SIZE);
1365                                         }
1366
1367                                 }
1368                         }
1369         }
1370         if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1371                 /* ouch - failed to read all of that.
1372                  * Try some synchronous reads of other devices to get
1373                  * good data, much like with normal read errors.  Only
1374                  * read into the pages we already have so we don't
1375                  * need to re-issue the read request.
1376                  * We don't need to freeze the array, because being in an
1377                  * active sync request, there is no normal IO, and
1378                  * no overlapping syncs.
1379                  */
1380                 sector_t sect = r1_bio->sector;
1381                 int sectors = r1_bio->sectors;
1382                 int idx = 0;
1383
1384                 while(sectors) {
1385                         int s = sectors;
1386                         int d = r1_bio->read_disk;
1387                         int success = 0;
1388                         mdk_rdev_t *rdev;
1389
1390                         if (s > (PAGE_SIZE>>9))
1391                                 s = PAGE_SIZE >> 9;
1392                         do {
1393                                 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1394                                         /* No rcu protection needed here devices
1395                                          * can only be removed when no resync is
1396                                          * active, and resync is currently active
1397                                          */
1398                                         rdev = conf->mirrors[d].rdev;
1399                                         if (sync_page_io(rdev->bdev,
1400                                                          sect + rdev->data_offset,
1401                                                          s<<9,
1402                                                          bio->bi_io_vec[idx].bv_page,
1403                                                          READ)) {
1404                                                 success = 1;
1405                                                 break;
1406                                         }
1407                                 }
1408                                 d++;
1409                                 if (d == conf->raid_disks)
1410                                         d = 0;
1411                         } while (!success && d != r1_bio->read_disk);
1412
1413                         if (success) {
1414                                 int start = d;
1415                                 /* write it back and re-read */
1416                                 set_bit(R1BIO_Uptodate, &r1_bio->state);
1417                                 while (d != r1_bio->read_disk) {
1418                                         if (d == 0)
1419                                                 d = conf->raid_disks;
1420                                         d--;
1421                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1422                                                 continue;
1423                                         rdev = conf->mirrors[d].rdev;
1424                                         atomic_add(s, &rdev->corrected_errors);
1425                                         if (sync_page_io(rdev->bdev,
1426                                                          sect + rdev->data_offset,
1427                                                          s<<9,
1428                                                          bio->bi_io_vec[idx].bv_page,
1429                                                          WRITE) == 0)
1430                                                 md_error(mddev, rdev);
1431                                 }
1432                                 d = start;
1433                                 while (d != r1_bio->read_disk) {
1434                                         if (d == 0)
1435                                                 d = conf->raid_disks;
1436                                         d--;
1437                                         if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1438                                                 continue;
1439                                         rdev = conf->mirrors[d].rdev;
1440                                         if (sync_page_io(rdev->bdev,
1441                                                          sect + rdev->data_offset,
1442                                                          s<<9,
1443                                                          bio->bi_io_vec[idx].bv_page,
1444                                                          READ) == 0)
1445                                                 md_error(mddev, rdev);
1446                                 }
1447                         } else {
1448                                 char b[BDEVNAME_SIZE];
1449                                 /* Cannot read from anywhere, array is toast */
1450                                 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1451                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1452                                        " for block %llu\n",
1453                                        bdevname(bio->bi_bdev,b),
1454                                        (unsigned long long)r1_bio->sector);
1455                                 md_done_sync(mddev, r1_bio->sectors, 0);
1456                                 put_buf(r1_bio);
1457                                 return;
1458                         }
1459                         sectors -= s;
1460                         sect += s;
1461                         idx ++;
1462                 }
1463         }
1464
1465         /*
1466          * schedule writes
1467          */
1468         atomic_set(&r1_bio->remaining, 1);
1469         for (i = 0; i < disks ; i++) {
1470                 wbio = r1_bio->bios[i];
1471                 if (wbio->bi_end_io == NULL ||
1472                     (wbio->bi_end_io == end_sync_read &&
1473                      (i == r1_bio->read_disk ||
1474                       !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1475                         continue;
1476
1477                 wbio->bi_rw = WRITE;
1478                 wbio->bi_end_io = end_sync_write;
1479                 atomic_inc(&r1_bio->remaining);
1480                 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1481
1482                 generic_make_request(wbio);
1483         }
1484
1485         if (atomic_dec_and_test(&r1_bio->remaining)) {
1486                 /* if we're here, all write(s) have completed, so clean up */
1487                 md_done_sync(mddev, r1_bio->sectors, 1);
1488                 put_buf(r1_bio);
1489         }
1490 }
1491
1492 /*
1493  * This is a kernel thread which:
1494  *
1495  *      1.      Retries failed read operations on working mirrors.
1496  *      2.      Updates the raid superblock when problems encounter.
1497  *      3.      Performs writes following reads for array syncronising.
1498  */
1499
1500 static void fix_read_error(conf_t *conf, int read_disk,
1501                            sector_t sect, int sectors)
1502 {
1503         mddev_t *mddev = conf->mddev;
1504         while(sectors) {
1505                 int s = sectors;
1506                 int d = read_disk;
1507                 int success = 0;
1508                 int start;
1509                 mdk_rdev_t *rdev;
1510
1511                 if (s > (PAGE_SIZE>>9))
1512                         s = PAGE_SIZE >> 9;
1513
1514                 do {
1515                         /* Note: no rcu protection needed here
1516                          * as this is synchronous in the raid1d thread
1517                          * which is the thread that might remove
1518                          * a device.  If raid1d ever becomes multi-threaded....
1519                          */
1520                         rdev = conf->mirrors[d].rdev;
1521                         if (rdev &&
1522                             test_bit(In_sync, &rdev->flags) &&
1523                             sync_page_io(rdev->bdev,
1524                                          sect + rdev->data_offset,
1525                                          s<<9,
1526                                          conf->tmppage, READ))
1527                                 success = 1;
1528                         else {
1529                                 d++;
1530                                 if (d == conf->raid_disks)
1531                                         d = 0;
1532                         }
1533                 } while (!success && d != read_disk);
1534
1535                 if (!success) {
1536                         /* Cannot read from anywhere -- bye bye array */
1537                         md_error(mddev, conf->mirrors[read_disk].rdev);
1538                         break;
1539                 }
1540                 /* write it back and re-read */
1541                 start = d;
1542                 while (d != read_disk) {
1543                         if (d==0)
1544                                 d = conf->raid_disks;
1545                         d--;
1546                         rdev = conf->mirrors[d].rdev;
1547                         if (rdev &&
1548                             test_bit(In_sync, &rdev->flags)) {
1549                                 if (sync_page_io(rdev->bdev,
1550                                                  sect + rdev->data_offset,
1551                                                  s<<9, conf->tmppage, WRITE)
1552                                     == 0)
1553                                         /* Well, this device is dead */
1554                                         md_error(mddev, rdev);
1555                         }
1556                 }
1557                 d = start;
1558                 while (d != read_disk) {
1559                         char b[BDEVNAME_SIZE];
1560                         if (d==0)
1561                                 d = conf->raid_disks;
1562                         d--;
1563                         rdev = conf->mirrors[d].rdev;
1564                         if (rdev &&
1565                             test_bit(In_sync, &rdev->flags)) {
1566                                 if (sync_page_io(rdev->bdev,
1567                                                  sect + rdev->data_offset,
1568                                                  s<<9, conf->tmppage, READ)
1569                                     == 0)
1570                                         /* Well, this device is dead */
1571                                         md_error(mddev, rdev);
1572                                 else {
1573                                         atomic_add(s, &rdev->corrected_errors);
1574                                         printk(KERN_INFO
1575                                                "raid1:%s: read error corrected "
1576                                                "(%d sectors at %llu on %s)\n",
1577                                                mdname(mddev), s,
1578                                                (unsigned long long)(sect +
1579                                                    rdev->data_offset),
1580                                                bdevname(rdev->bdev, b));
1581                                 }
1582                         }
1583                 }
1584                 sectors -= s;
1585                 sect += s;
1586         }
1587 }
1588
1589 static void raid1d(mddev_t *mddev)
1590 {
1591         r1bio_t *r1_bio;
1592         struct bio *bio;
1593         unsigned long flags;
1594         conf_t *conf = mddev->private;
1595         struct list_head *head = &conf->retry_list;
1596         int unplug=0;
1597         mdk_rdev_t *rdev;
1598
1599         md_check_recovery(mddev);
1600         
1601         for (;;) {
1602                 char b[BDEVNAME_SIZE];
1603
1604                 unplug += flush_pending_writes(conf);
1605
1606                 spin_lock_irqsave(&conf->device_lock, flags);
1607                 if (list_empty(head)) {
1608                         spin_unlock_irqrestore(&conf->device_lock, flags);
1609                         break;
1610                 }
1611                 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1612                 list_del(head->prev);
1613                 conf->nr_queued--;
1614                 spin_unlock_irqrestore(&conf->device_lock, flags);
1615
1616                 mddev = r1_bio->mddev;
1617                 conf = mddev->private;
1618                 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1619                         sync_request_write(mddev, r1_bio);
1620                         unplug = 1;
1621                 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1622                         /* some requests in the r1bio were BIO_RW_BARRIER
1623                          * requests which failed with -EOPNOTSUPP.  Hohumm..
1624                          * Better resubmit without the barrier.
1625                          * We know which devices to resubmit for, because
1626                          * all others have had their bios[] entry cleared.
1627                          * We already have a nr_pending reference on these rdevs.
1628                          */
1629                         int i;
1630                         const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1631                         clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1632                         clear_bit(R1BIO_Barrier, &r1_bio->state);
1633                         for (i=0; i < conf->raid_disks; i++)
1634                                 if (r1_bio->bios[i])
1635                                         atomic_inc(&r1_bio->remaining);
1636                         for (i=0; i < conf->raid_disks; i++)
1637                                 if (r1_bio->bios[i]) {
1638                                         struct bio_vec *bvec;
1639                                         int j;
1640
1641                                         bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1642                                         /* copy pages from the failed bio, as
1643                                          * this might be a write-behind device */
1644                                         __bio_for_each_segment(bvec, bio, j, 0)
1645                                                 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1646                                         bio_put(r1_bio->bios[i]);
1647                                         bio->bi_sector = r1_bio->sector +
1648                                                 conf->mirrors[i].rdev->data_offset;
1649                                         bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1650                                         bio->bi_end_io = raid1_end_write_request;
1651                                         bio->bi_rw = WRITE |
1652                                                 (do_sync << BIO_RW_SYNCIO);
1653                                         bio->bi_private = r1_bio;
1654                                         r1_bio->bios[i] = bio;
1655                                         generic_make_request(bio);
1656                                 }
1657                 } else {
1658                         int disk;
1659
1660                         /* we got a read error. Maybe the drive is bad.  Maybe just
1661                          * the block and we can fix it.
1662                          * We freeze all other IO, and try reading the block from
1663                          * other devices.  When we find one, we re-write
1664                          * and check it that fixes the read error.
1665                          * This is all done synchronously while the array is
1666                          * frozen
1667                          */
1668                         if (mddev->ro == 0) {
1669                                 freeze_array(conf);
1670                                 fix_read_error(conf, r1_bio->read_disk,
1671                                                r1_bio->sector,
1672                                                r1_bio->sectors);
1673                                 unfreeze_array(conf);
1674                         } else
1675                                 md_error(mddev,
1676                                          conf->mirrors[r1_bio->read_disk].rdev);
1677
1678                         bio = r1_bio->bios[r1_bio->read_disk];
1679                         if ((disk=read_balance(conf, r1_bio)) == -1) {
1680                                 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1681                                        " read error for block %llu\n",
1682                                        bdevname(bio->bi_bdev,b),
1683                                        (unsigned long long)r1_bio->sector);
1684                                 raid_end_bio_io(r1_bio);
1685                         } else {
1686                                 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1687                                 r1_bio->bios[r1_bio->read_disk] =
1688                                         mddev->ro ? IO_BLOCKED : NULL;
1689                                 r1_bio->read_disk = disk;
1690                                 bio_put(bio);
1691                                 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1692                                 r1_bio->bios[r1_bio->read_disk] = bio;
1693                                 rdev = conf->mirrors[disk].rdev;
1694                                 if (printk_ratelimit())
1695                                         printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1696                                                " another mirror\n",
1697                                                bdevname(rdev->bdev,b),
1698                                                (unsigned long long)r1_bio->sector);
1699                                 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1700                                 bio->bi_bdev = rdev->bdev;
1701                                 bio->bi_end_io = raid1_end_read_request;
1702                                 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1703                                 bio->bi_private = r1_bio;
1704                                 unplug = 1;
1705                                 generic_make_request(bio);
1706                         }
1707                 }
1708                 cond_resched();
1709         }
1710         if (unplug)
1711                 unplug_slaves(mddev);
1712 }
1713
1714
1715 static int init_resync(conf_t *conf)
1716 {
1717         int buffs;
1718
1719         buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1720         BUG_ON(conf->r1buf_pool);
1721         conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1722                                           conf->poolinfo);
1723         if (!conf->r1buf_pool)
1724                 return -ENOMEM;
1725         conf->next_resync = 0;
1726         return 0;
1727 }
1728
1729 /*
1730  * perform a "sync" on one "block"
1731  *
1732  * We need to make sure that no normal I/O request - particularly write
1733  * requests - conflict with active sync requests.
1734  *
1735  * This is achieved by tracking pending requests and a 'barrier' concept
1736  * that can be installed to exclude normal IO requests.
1737  */
1738
1739 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1740 {
1741         conf_t *conf = mddev->private;
1742         r1bio_t *r1_bio;
1743         struct bio *bio;
1744         sector_t max_sector, nr_sectors;
1745         int disk = -1;
1746         int i;
1747         int wonly = -1;
1748         int write_targets = 0, read_targets = 0;
1749         int sync_blocks;
1750         int still_degraded = 0;
1751
1752         if (!conf->r1buf_pool)
1753         {
1754 /*
1755                 printk("sync start - bitmap %p\n", mddev->bitmap);
1756 */
1757                 if (init_resync(conf))
1758                         return 0;
1759         }
1760
1761         max_sector = mddev->dev_sectors;
1762         if (sector_nr >= max_sector) {
1763                 /* If we aborted, we need to abort the
1764                  * sync on the 'current' bitmap chunk (there will
1765                  * only be one in raid1 resync.
1766                  * We can find the current addess in mddev->curr_resync
1767                  */
1768                 if (mddev->curr_resync < max_sector) /* aborted */
1769                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1770                                                 &sync_blocks, 1);
1771                 else /* completed sync */
1772                         conf->fullsync = 0;
1773
1774                 bitmap_close_sync(mddev->bitmap);
1775                 close_sync(conf);
1776                 return 0;
1777         }
1778
1779         if (mddev->bitmap == NULL &&
1780             mddev->recovery_cp == MaxSector &&
1781             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1782             conf->fullsync == 0) {
1783                 *skipped = 1;
1784                 return max_sector - sector_nr;
1785         }
1786         /* before building a request, check if we can skip these blocks..
1787          * This call the bitmap_start_sync doesn't actually record anything
1788          */
1789         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1790             !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1791                 /* We can skip this block, and probably several more */
1792                 *skipped = 1;
1793                 return sync_blocks;
1794         }
1795         /*
1796          * If there is non-resync activity waiting for a turn,
1797          * and resync is going fast enough,
1798          * then let it though before starting on this new sync request.
1799          */
1800         if (!go_faster && conf->nr_waiting)
1801                 msleep_interruptible(1000);
1802
1803         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1804         raise_barrier(conf);
1805
1806         conf->next_resync = sector_nr;
1807
1808         r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1809         rcu_read_lock();
1810         /*
1811          * If we get a correctably read error during resync or recovery,
1812          * we might want to read from a different device.  So we
1813          * flag all drives that could conceivably be read from for READ,
1814          * and any others (which will be non-In_sync devices) for WRITE.
1815          * If a read fails, we try reading from something else for which READ
1816          * is OK.
1817          */
1818
1819         r1_bio->mddev = mddev;
1820         r1_bio->sector = sector_nr;
1821         r1_bio->state = 0;
1822         set_bit(R1BIO_IsSync, &r1_bio->state);
1823
1824         for (i=0; i < conf->raid_disks; i++) {
1825                 mdk_rdev_t *rdev;
1826                 bio = r1_bio->bios[i];
1827
1828                 /* take from bio_init */
1829                 bio->bi_next = NULL;
1830                 bio->bi_flags |= 1 << BIO_UPTODATE;
1831                 bio->bi_rw = READ;
1832                 bio->bi_vcnt = 0;
1833                 bio->bi_idx = 0;
1834                 bio->bi_phys_segments = 0;
1835                 bio->bi_size = 0;
1836                 bio->bi_end_io = NULL;
1837                 bio->bi_private = NULL;
1838
1839                 rdev = rcu_dereference(conf->mirrors[i].rdev);
1840                 if (rdev == NULL ||
1841                            test_bit(Faulty, &rdev->flags)) {
1842                         still_degraded = 1;
1843                         continue;
1844                 } else if (!test_bit(In_sync, &rdev->flags)) {
1845                         bio->bi_rw = WRITE;
1846                         bio->bi_end_io = end_sync_write;
1847                         write_targets ++;
1848                 } else {
1849                         /* may need to read from here */
1850                         bio->bi_rw = READ;
1851                         bio->bi_end_io = end_sync_read;
1852                         if (test_bit(WriteMostly, &rdev->flags)) {
1853                                 if (wonly < 0)
1854                                         wonly = i;
1855                         } else {
1856                                 if (disk < 0)
1857                                         disk = i;
1858                         }
1859                         read_targets++;
1860                 }
1861                 atomic_inc(&rdev->nr_pending);
1862                 bio->bi_sector = sector_nr + rdev->data_offset;
1863                 bio->bi_bdev = rdev->bdev;
1864                 bio->bi_private = r1_bio;
1865         }
1866         rcu_read_unlock();
1867         if (disk < 0)
1868                 disk = wonly;
1869         r1_bio->read_disk = disk;
1870
1871         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1872                 /* extra read targets are also write targets */
1873                 write_targets += read_targets-1;
1874
1875         if (write_targets == 0 || read_targets == 0) {
1876                 /* There is nowhere to write, so all non-sync
1877                  * drives must be failed - so we are finished
1878                  */
1879                 sector_t rv = max_sector - sector_nr;
1880                 *skipped = 1;
1881                 put_buf(r1_bio);
1882                 return rv;
1883         }
1884
1885         if (max_sector > mddev->resync_max)
1886                 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1887         nr_sectors = 0;
1888         sync_blocks = 0;
1889         do {
1890                 struct page *page;
1891                 int len = PAGE_SIZE;
1892                 if (sector_nr + (len>>9) > max_sector)
1893                         len = (max_sector - sector_nr) << 9;
1894                 if (len == 0)
1895                         break;
1896                 if (sync_blocks == 0) {
1897                         if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1898                                                &sync_blocks, still_degraded) &&
1899                             !conf->fullsync &&
1900                             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1901                                 break;
1902                         BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1903                         if (len > (sync_blocks<<9))
1904                                 len = sync_blocks<<9;
1905                 }
1906
1907                 for (i=0 ; i < conf->raid_disks; i++) {
1908                         bio = r1_bio->bios[i];
1909                         if (bio->bi_end_io) {
1910                                 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1911                                 if (bio_add_page(bio, page, len, 0) == 0) {
1912                                         /* stop here */
1913                                         bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1914                                         while (i > 0) {
1915                                                 i--;
1916                                                 bio = r1_bio->bios[i];
1917                                                 if (bio->bi_end_io==NULL)
1918                                                         continue;
1919                                                 /* remove last page from this bio */
1920                                                 bio->bi_vcnt--;
1921                                                 bio->bi_size -= len;
1922                                                 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1923                                         }
1924                                         goto bio_full;
1925                                 }
1926                         }
1927                 }
1928                 nr_sectors += len>>9;
1929                 sector_nr += len>>9;
1930                 sync_blocks -= (len>>9);
1931         } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1932  bio_full:
1933         r1_bio->sectors = nr_sectors;
1934
1935         /* For a user-requested sync, we read all readable devices and do a
1936          * compare
1937          */
1938         if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1939                 atomic_set(&r1_bio->remaining, read_targets);
1940                 for (i=0; i<conf->raid_disks; i++) {
1941                         bio = r1_bio->bios[i];
1942                         if (bio->bi_end_io == end_sync_read) {
1943                                 md_sync_acct(bio->bi_bdev, nr_sectors);
1944                                 generic_make_request(bio);
1945                         }
1946                 }
1947         } else {
1948                 atomic_set(&r1_bio->remaining, 1);
1949                 bio = r1_bio->bios[r1_bio->read_disk];
1950                 md_sync_acct(bio->bi_bdev, nr_sectors);
1951                 generic_make_request(bio);
1952
1953         }
1954         return nr_sectors;
1955 }
1956
1957 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1958 {
1959         if (sectors)
1960                 return sectors;
1961
1962         return mddev->dev_sectors;
1963 }
1964
1965 static conf_t *setup_conf(mddev_t *mddev)
1966 {
1967         conf_t *conf;
1968         int i;
1969         mirror_info_t *disk;
1970         mdk_rdev_t *rdev;
1971         int err = -ENOMEM;
1972
1973         conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1974         if (!conf)
1975                 goto abort;
1976
1977         conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1978                                  GFP_KERNEL);
1979         if (!conf->mirrors)
1980                 goto abort;
1981
1982         conf->tmppage = alloc_page(GFP_KERNEL);
1983         if (!conf->tmppage)
1984                 goto abort;
1985
1986         conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1987         if (!conf->poolinfo)
1988                 goto abort;
1989         conf->poolinfo->raid_disks = mddev->raid_disks;
1990         conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1991                                           r1bio_pool_free,
1992                                           conf->poolinfo);
1993         if (!conf->r1bio_pool)
1994                 goto abort;
1995
1996         conf->poolinfo->mddev = mddev;
1997
1998         spin_lock_init(&conf->device_lock);
1999         list_for_each_entry(rdev, &mddev->disks, same_set) {
2000                 int disk_idx = rdev->raid_disk;
2001                 if (disk_idx >= mddev->raid_disks
2002                     || disk_idx < 0)
2003                         continue;
2004                 disk = conf->mirrors + disk_idx;
2005
2006                 disk->rdev = rdev;
2007
2008                 disk->head_position = 0;
2009         }
2010         conf->raid_disks = mddev->raid_disks;
2011         conf->mddev = mddev;
2012         INIT_LIST_HEAD(&conf->retry_list);
2013
2014         spin_lock_init(&conf->resync_lock);
2015         init_waitqueue_head(&conf->wait_barrier);
2016
2017         bio_list_init(&conf->pending_bio_list);
2018         bio_list_init(&conf->flushing_bio_list);
2019
2020         conf->last_used = -1;
2021         for (i = 0; i < conf->raid_disks; i++) {
2022
2023                 disk = conf->mirrors + i;
2024
2025                 if (!disk->rdev ||
2026                     !test_bit(In_sync, &disk->rdev->flags)) {
2027                         disk->head_position = 0;
2028                         if (disk->rdev)
2029                                 conf->fullsync = 1;
2030                 } else if (conf->last_used < 0)
2031                         /*
2032                          * The first working device is used as a
2033                          * starting point to read balancing.
2034                          */
2035                         conf->last_used = i;
2036         }
2037
2038         err = -EIO;
2039         if (conf->last_used < 0) {
2040                 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2041                        mdname(mddev));
2042                 goto abort;
2043         }
2044         err = -ENOMEM;
2045         conf->thread = md_register_thread(raid1d, mddev, NULL);
2046         if (!conf->thread) {
2047                 printk(KERN_ERR
2048                        "raid1: couldn't allocate thread for %s\n",
2049                        mdname(mddev));
2050                 goto abort;
2051         }
2052
2053         return conf;
2054
2055  abort:
2056         if (conf) {
2057                 if (conf->r1bio_pool)
2058                         mempool_destroy(conf->r1bio_pool);
2059                 kfree(conf->mirrors);
2060                 safe_put_page(conf->tmppage);
2061                 kfree(conf->poolinfo);
2062                 kfree(conf);
2063         }
2064         return ERR_PTR(err);
2065 }
2066
2067 static int run(mddev_t *mddev)
2068 {
2069         conf_t *conf;
2070         int i;
2071         mdk_rdev_t *rdev;
2072
2073         if (mddev->level != 1) {
2074                 printk("raid1: %s: raid level not set to mirroring (%d)\n",
2075                        mdname(mddev), mddev->level);
2076                 return -EIO;
2077         }
2078         if (mddev->reshape_position != MaxSector) {
2079                 printk("raid1: %s: reshape_position set but not supported\n",
2080                        mdname(mddev));
2081                 return -EIO;
2082         }
2083         /*
2084          * copy the already verified devices into our private RAID1
2085          * bookkeeping area. [whatever we allocate in run(),
2086          * should be freed in stop()]
2087          */
2088         if (mddev->private == NULL)
2089                 conf = setup_conf(mddev);
2090         else
2091                 conf = mddev->private;
2092
2093         if (IS_ERR(conf))
2094                 return PTR_ERR(conf);
2095
2096         mddev->queue->queue_lock = &conf->device_lock;
2097         list_for_each_entry(rdev, &mddev->disks, same_set) {
2098                 disk_stack_limits(mddev->gendisk, rdev->bdev,
2099                                   rdev->data_offset << 9);
2100                 /* as we don't honour merge_bvec_fn, we must never risk
2101                  * violating it, so limit ->max_sector to one PAGE, as
2102                  * a one page request is never in violation.
2103                  */
2104                 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2105                     queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2106                         blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2107         }
2108
2109         mddev->degraded = 0;
2110         for (i=0; i < conf->raid_disks; i++)
2111                 if (conf->mirrors[i].rdev == NULL ||
2112                     !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2113                     test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2114                         mddev->degraded++;
2115
2116         if (conf->raid_disks - mddev->degraded == 1)
2117                 mddev->recovery_cp = MaxSector;
2118
2119         if (mddev->recovery_cp != MaxSector)
2120                 printk(KERN_NOTICE "raid1: %s is not clean"
2121                        " -- starting background reconstruction\n",
2122                        mdname(mddev));
2123         printk(KERN_INFO 
2124                 "raid1: raid set %s active with %d out of %d mirrors\n",
2125                 mdname(mddev), mddev->raid_disks - mddev->degraded, 
2126                 mddev->raid_disks);
2127
2128         /*
2129          * Ok, everything is just fine now
2130          */
2131         mddev->thread = conf->thread;
2132         conf->thread = NULL;
2133         mddev->private = conf;
2134
2135         md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2136
2137         mddev->queue->unplug_fn = raid1_unplug;
2138         mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2139         mddev->queue->backing_dev_info.congested_data = mddev;
2140         md_integrity_register(mddev);
2141         return 0;
2142 }
2143
2144 static int stop(mddev_t *mddev)
2145 {
2146         conf_t *conf = mddev->private;
2147         struct bitmap *bitmap = mddev->bitmap;
2148         int behind_wait = 0;
2149
2150         /* wait for behind writes to complete */
2151         while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2152                 behind_wait++;
2153                 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2154                 set_current_state(TASK_UNINTERRUPTIBLE);
2155                 schedule_timeout(HZ); /* wait a second */
2156                 /* need to kick something here to make sure I/O goes? */
2157         }
2158
2159         raise_barrier(conf);
2160         lower_barrier(conf);
2161
2162         md_unregister_thread(mddev->thread);
2163         mddev->thread = NULL;
2164         blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2165         if (conf->r1bio_pool)
2166                 mempool_destroy(conf->r1bio_pool);
2167         kfree(conf->mirrors);
2168         kfree(conf->poolinfo);
2169         kfree(conf);
2170         mddev->private = NULL;
2171         return 0;
2172 }
2173
2174 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2175 {
2176         /* no resync is happening, and there is enough space
2177          * on all devices, so we can resize.
2178          * We need to make sure resync covers any new space.
2179          * If the array is shrinking we should possibly wait until
2180          * any io in the removed space completes, but it hardly seems
2181          * worth it.
2182          */
2183         md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2184         if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2185                 return -EINVAL;
2186         set_capacity(mddev->gendisk, mddev->array_sectors);
2187         mddev->changed = 1;
2188         revalidate_disk(mddev->gendisk);
2189         if (sectors > mddev->dev_sectors &&
2190             mddev->recovery_cp == MaxSector) {
2191                 mddev->recovery_cp = mddev->dev_sectors;
2192                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2193         }
2194         mddev->dev_sectors = sectors;
2195         mddev->resync_max_sectors = sectors;
2196         return 0;
2197 }
2198
2199 static int raid1_reshape(mddev_t *mddev)
2200 {
2201         /* We need to:
2202          * 1/ resize the r1bio_pool
2203          * 2/ resize conf->mirrors
2204          *
2205          * We allocate a new r1bio_pool if we can.
2206          * Then raise a device barrier and wait until all IO stops.
2207          * Then resize conf->mirrors and swap in the new r1bio pool.
2208          *
2209          * At the same time, we "pack" the devices so that all the missing
2210          * devices have the higher raid_disk numbers.
2211          */
2212         mempool_t *newpool, *oldpool;
2213         struct pool_info *newpoolinfo;
2214         mirror_info_t *newmirrors;
2215         conf_t *conf = mddev->private;
2216         int cnt, raid_disks;
2217         unsigned long flags;
2218         int d, d2, err;
2219
2220         /* Cannot change chunk_size, layout, or level */
2221         if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2222             mddev->layout != mddev->new_layout ||
2223             mddev->level != mddev->new_level) {
2224                 mddev->new_chunk_sectors = mddev->chunk_sectors;
2225                 mddev->new_layout = mddev->layout;
2226                 mddev->new_level = mddev->level;
2227                 return -EINVAL;
2228         }
2229
2230         err = md_allow_write(mddev);
2231         if (err)
2232                 return err;
2233
2234         raid_disks = mddev->raid_disks + mddev->delta_disks;
2235
2236         if (raid_disks < conf->raid_disks) {
2237                 cnt=0;
2238                 for (d= 0; d < conf->raid_disks; d++)
2239                         if (conf->mirrors[d].rdev)
2240                                 cnt++;
2241                 if (cnt > raid_disks)
2242                         return -EBUSY;
2243         }
2244
2245         newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2246         if (!newpoolinfo)
2247                 return -ENOMEM;
2248         newpoolinfo->mddev = mddev;
2249         newpoolinfo->raid_disks = raid_disks;
2250
2251         newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2252                                  r1bio_pool_free, newpoolinfo);
2253         if (!newpool) {
2254                 kfree(newpoolinfo);
2255                 return -ENOMEM;
2256         }
2257         newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2258         if (!newmirrors) {
2259                 kfree(newpoolinfo);
2260                 mempool_destroy(newpool);
2261                 return -ENOMEM;
2262         }
2263
2264         raise_barrier(conf);
2265
2266         /* ok, everything is stopped */
2267         oldpool = conf->r1bio_pool;
2268         conf->r1bio_pool = newpool;
2269
2270         for (d = d2 = 0; d < conf->raid_disks; d++) {
2271                 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2272                 if (rdev && rdev->raid_disk != d2) {
2273                         char nm[20];
2274                         sprintf(nm, "rd%d", rdev->raid_disk);
2275                         sysfs_remove_link(&mddev->kobj, nm);
2276                         rdev->raid_disk = d2;
2277                         sprintf(nm, "rd%d", rdev->raid_disk);
2278                         sysfs_remove_link(&mddev->kobj, nm);
2279                         if (sysfs_create_link(&mddev->kobj,
2280                                               &rdev->kobj, nm))
2281                                 printk(KERN_WARNING
2282                                        "md/raid1: cannot register "
2283                                        "%s for %s\n",
2284                                        nm, mdname(mddev));
2285                 }
2286                 if (rdev)
2287                         newmirrors[d2++].rdev = rdev;
2288         }
2289         kfree(conf->mirrors);
2290         conf->mirrors = newmirrors;
2291         kfree(conf->poolinfo);
2292         conf->poolinfo = newpoolinfo;
2293
2294         spin_lock_irqsave(&conf->device_lock, flags);
2295         mddev->degraded += (raid_disks - conf->raid_disks);
2296         spin_unlock_irqrestore(&conf->device_lock, flags);
2297         conf->raid_disks = mddev->raid_disks = raid_disks;
2298         mddev->delta_disks = 0;
2299
2300         conf->last_used = 0; /* just make sure it is in-range */
2301         lower_barrier(conf);
2302
2303         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2304         md_wakeup_thread(mddev->thread);
2305
2306         mempool_destroy(oldpool);
2307         return 0;
2308 }
2309
2310 static void raid1_quiesce(mddev_t *mddev, int state)
2311 {
2312         conf_t *conf = mddev->private;
2313
2314         switch(state) {
2315         case 2: /* wake for suspend */
2316                 wake_up(&conf->wait_barrier);
2317                 break;
2318         case 1:
2319                 raise_barrier(conf);
2320                 break;
2321         case 0:
2322                 lower_barrier(conf);
2323                 break;
2324         }
2325 }
2326
2327 static void *raid1_takeover(mddev_t *mddev)
2328 {
2329         /* raid1 can take over:
2330          *  raid5 with 2 devices, any layout or chunk size
2331          */
2332         if (mddev->level == 5 && mddev->raid_disks == 2) {
2333                 conf_t *conf;
2334                 mddev->new_level = 1;
2335                 mddev->new_layout = 0;
2336                 mddev->new_chunk_sectors = 0;
2337                 conf = setup_conf(mddev);
2338                 if (!IS_ERR(conf))
2339                         conf->barrier = 1;
2340                 return conf;
2341         }
2342         return ERR_PTR(-EINVAL);
2343 }
2344
2345 static struct mdk_personality raid1_personality =
2346 {
2347         .name           = "raid1",
2348         .level          = 1,
2349         .owner          = THIS_MODULE,
2350         .make_request   = make_request,
2351         .run            = run,
2352         .stop           = stop,
2353         .status         = status,
2354         .error_handler  = error,
2355         .hot_add_disk   = raid1_add_disk,
2356         .hot_remove_disk= raid1_remove_disk,
2357         .spare_active   = raid1_spare_active,
2358         .sync_request   = sync_request,
2359         .resize         = raid1_resize,
2360         .size           = raid1_size,
2361         .check_reshape  = raid1_reshape,
2362         .quiesce        = raid1_quiesce,
2363         .takeover       = raid1_takeover,
2364 };
2365
2366 static int __init raid_init(void)
2367 {
2368         return register_md_personality(&raid1_personality);
2369 }
2370
2371 static void raid_exit(void)
2372 {
2373         unregister_md_personality(&raid1_personality);
2374 }
2375
2376 module_init(raid_init);
2377 module_exit(raid_exit);
2378 MODULE_LICENSE("GPL");
2379 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2380 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2381 MODULE_ALIAS("md-raid1");
2382 MODULE_ALIAS("md-level-1");