[PATCH] KVM: MMU: Detect oom conditions and propagate error to userspace
[safe/jmp/linux-2.6] / drivers / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  *
9  * Authors:
10  *   Avi Kivity   <avi@qumranet.com>
11  *   Yaniv Kamay  <yaniv@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17
18 #include "kvm.h"
19 #include "vmx.h"
20 #include "kvm_vmx.h"
21 #include <linux/module.h>
22 #include <linux/mm.h>
23 #include <linux/highmem.h>
24 #include <asm/io.h>
25 #include <asm/desc.h>
26
27 #include "segment_descriptor.h"
28
29
30 MODULE_AUTHOR("Qumranet");
31 MODULE_LICENSE("GPL");
32
33 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
34 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
35
36 #ifdef CONFIG_X86_64
37 #define HOST_IS_64 1
38 #else
39 #define HOST_IS_64 0
40 #endif
41
42 static struct vmcs_descriptor {
43         int size;
44         int order;
45         u32 revision_id;
46 } vmcs_descriptor;
47
48 #define VMX_SEGMENT_FIELD(seg)                                  \
49         [VCPU_SREG_##seg] = {                                   \
50                 .selector = GUEST_##seg##_SELECTOR,             \
51                 .base = GUEST_##seg##_BASE,                     \
52                 .limit = GUEST_##seg##_LIMIT,                   \
53                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
54         }
55
56 static struct kvm_vmx_segment_field {
57         unsigned selector;
58         unsigned base;
59         unsigned limit;
60         unsigned ar_bytes;
61 } kvm_vmx_segment_fields[] = {
62         VMX_SEGMENT_FIELD(CS),
63         VMX_SEGMENT_FIELD(DS),
64         VMX_SEGMENT_FIELD(ES),
65         VMX_SEGMENT_FIELD(FS),
66         VMX_SEGMENT_FIELD(GS),
67         VMX_SEGMENT_FIELD(SS),
68         VMX_SEGMENT_FIELD(TR),
69         VMX_SEGMENT_FIELD(LDTR),
70 };
71
72 static const u32 vmx_msr_index[] = {
73 #ifdef CONFIG_X86_64
74         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
75 #endif
76         MSR_EFER, MSR_K6_STAR,
77 };
78 #define NR_VMX_MSR (sizeof(vmx_msr_index) / sizeof(*vmx_msr_index))
79
80 static inline int is_page_fault(u32 intr_info)
81 {
82         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
83                              INTR_INFO_VALID_MASK)) ==
84                 (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
85 }
86
87 static inline int is_external_interrupt(u32 intr_info)
88 {
89         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
90                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
91 }
92
93 static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
94 {
95         int i;
96
97         for (i = 0; i < vcpu->nmsrs; ++i)
98                 if (vcpu->guest_msrs[i].index == msr)
99                         return &vcpu->guest_msrs[i];
100         return 0;
101 }
102
103 static void vmcs_clear(struct vmcs *vmcs)
104 {
105         u64 phys_addr = __pa(vmcs);
106         u8 error;
107
108         asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
109                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
110                       : "cc", "memory");
111         if (error)
112                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
113                        vmcs, phys_addr);
114 }
115
116 static void __vcpu_clear(void *arg)
117 {
118         struct kvm_vcpu *vcpu = arg;
119         int cpu = raw_smp_processor_id();
120
121         if (vcpu->cpu == cpu)
122                 vmcs_clear(vcpu->vmcs);
123         if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
124                 per_cpu(current_vmcs, cpu) = NULL;
125 }
126
127 static unsigned long vmcs_readl(unsigned long field)
128 {
129         unsigned long value;
130
131         asm volatile (ASM_VMX_VMREAD_RDX_RAX
132                       : "=a"(value) : "d"(field) : "cc");
133         return value;
134 }
135
136 static u16 vmcs_read16(unsigned long field)
137 {
138         return vmcs_readl(field);
139 }
140
141 static u32 vmcs_read32(unsigned long field)
142 {
143         return vmcs_readl(field);
144 }
145
146 static u64 vmcs_read64(unsigned long field)
147 {
148 #ifdef CONFIG_X86_64
149         return vmcs_readl(field);
150 #else
151         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
152 #endif
153 }
154
155 static void vmcs_writel(unsigned long field, unsigned long value)
156 {
157         u8 error;
158
159         asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
160                        : "=q"(error) : "a"(value), "d"(field) : "cc" );
161         if (error)
162                 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
163                        field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
164 }
165
166 static void vmcs_write16(unsigned long field, u16 value)
167 {
168         vmcs_writel(field, value);
169 }
170
171 static void vmcs_write32(unsigned long field, u32 value)
172 {
173         vmcs_writel(field, value);
174 }
175
176 static void vmcs_write64(unsigned long field, u64 value)
177 {
178 #ifdef CONFIG_X86_64
179         vmcs_writel(field, value);
180 #else
181         vmcs_writel(field, value);
182         asm volatile ("");
183         vmcs_writel(field+1, value >> 32);
184 #endif
185 }
186
187 /*
188  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
189  * vcpu mutex is already taken.
190  */
191 static struct kvm_vcpu *vmx_vcpu_load(struct kvm_vcpu *vcpu)
192 {
193         u64 phys_addr = __pa(vcpu->vmcs);
194         int cpu;
195
196         cpu = get_cpu();
197
198         if (vcpu->cpu != cpu) {
199                 smp_call_function(__vcpu_clear, vcpu, 0, 1);
200                 vcpu->launched = 0;
201         }
202
203         if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
204                 u8 error;
205
206                 per_cpu(current_vmcs, cpu) = vcpu->vmcs;
207                 asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
208                               : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
209                               : "cc");
210                 if (error)
211                         printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
212                                vcpu->vmcs, phys_addr);
213         }
214
215         if (vcpu->cpu != cpu) {
216                 struct descriptor_table dt;
217                 unsigned long sysenter_esp;
218
219                 vcpu->cpu = cpu;
220                 /*
221                  * Linux uses per-cpu TSS and GDT, so set these when switching
222                  * processors.
223                  */
224                 vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
225                 get_gdt(&dt);
226                 vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */
227
228                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
229                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
230         }
231         return vcpu;
232 }
233
234 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
235 {
236         put_cpu();
237 }
238
239 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
240 {
241         return vmcs_readl(GUEST_RFLAGS);
242 }
243
244 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
245 {
246         vmcs_writel(GUEST_RFLAGS, rflags);
247 }
248
249 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
250 {
251         unsigned long rip;
252         u32 interruptibility;
253
254         rip = vmcs_readl(GUEST_RIP);
255         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
256         vmcs_writel(GUEST_RIP, rip);
257
258         /*
259          * We emulated an instruction, so temporary interrupt blocking
260          * should be removed, if set.
261          */
262         interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
263         if (interruptibility & 3)
264                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
265                              interruptibility & ~3);
266         vcpu->interrupt_window_open = 1;
267 }
268
269 static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
270 {
271         printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
272                vmcs_readl(GUEST_RIP));
273         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
274         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
275                      GP_VECTOR |
276                      INTR_TYPE_EXCEPTION |
277                      INTR_INFO_DELIEVER_CODE_MASK |
278                      INTR_INFO_VALID_MASK);
279 }
280
281 /*
282  * reads and returns guest's timestamp counter "register"
283  * guest_tsc = host_tsc + tsc_offset    -- 21.3
284  */
285 static u64 guest_read_tsc(void)
286 {
287         u64 host_tsc, tsc_offset;
288
289         rdtscll(host_tsc);
290         tsc_offset = vmcs_read64(TSC_OFFSET);
291         return host_tsc + tsc_offset;
292 }
293
294 /*
295  * writes 'guest_tsc' into guest's timestamp counter "register"
296  * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
297  */
298 static void guest_write_tsc(u64 guest_tsc)
299 {
300         u64 host_tsc;
301
302         rdtscll(host_tsc);
303         vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
304 }
305
306 static void reload_tss(void)
307 {
308 #ifndef CONFIG_X86_64
309
310         /*
311          * VT restores TR but not its size.  Useless.
312          */
313         struct descriptor_table gdt;
314         struct segment_descriptor *descs;
315
316         get_gdt(&gdt);
317         descs = (void *)gdt.base;
318         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
319         load_TR_desc();
320 #endif
321 }
322
323 /*
324  * Reads an msr value (of 'msr_index') into 'pdata'.
325  * Returns 0 on success, non-0 otherwise.
326  * Assumes vcpu_load() was already called.
327  */
328 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
329 {
330         u64 data;
331         struct vmx_msr_entry *msr;
332
333         if (!pdata) {
334                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
335                 return -EINVAL;
336         }
337
338         switch (msr_index) {
339 #ifdef CONFIG_X86_64
340         case MSR_FS_BASE:
341                 data = vmcs_readl(GUEST_FS_BASE);
342                 break;
343         case MSR_GS_BASE:
344                 data = vmcs_readl(GUEST_GS_BASE);
345                 break;
346         case MSR_EFER:
347                 return kvm_get_msr_common(vcpu, msr_index, pdata);
348 #endif
349         case MSR_IA32_TIME_STAMP_COUNTER:
350                 data = guest_read_tsc();
351                 break;
352         case MSR_IA32_SYSENTER_CS:
353                 data = vmcs_read32(GUEST_SYSENTER_CS);
354                 break;
355         case MSR_IA32_SYSENTER_EIP:
356                 data = vmcs_read32(GUEST_SYSENTER_EIP);
357                 break;
358         case MSR_IA32_SYSENTER_ESP:
359                 data = vmcs_read32(GUEST_SYSENTER_ESP);
360                 break;
361         default:
362                 msr = find_msr_entry(vcpu, msr_index);
363                 if (msr) {
364                         data = msr->data;
365                         break;
366                 }
367                 return kvm_get_msr_common(vcpu, msr_index, pdata);
368         }
369
370         *pdata = data;
371         return 0;
372 }
373
374 /*
375  * Writes msr value into into the appropriate "register".
376  * Returns 0 on success, non-0 otherwise.
377  * Assumes vcpu_load() was already called.
378  */
379 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
380 {
381         struct vmx_msr_entry *msr;
382         switch (msr_index) {
383 #ifdef CONFIG_X86_64
384         case MSR_EFER:
385                 return kvm_set_msr_common(vcpu, msr_index, data);
386         case MSR_FS_BASE:
387                 vmcs_writel(GUEST_FS_BASE, data);
388                 break;
389         case MSR_GS_BASE:
390                 vmcs_writel(GUEST_GS_BASE, data);
391                 break;
392 #endif
393         case MSR_IA32_SYSENTER_CS:
394                 vmcs_write32(GUEST_SYSENTER_CS, data);
395                 break;
396         case MSR_IA32_SYSENTER_EIP:
397                 vmcs_write32(GUEST_SYSENTER_EIP, data);
398                 break;
399         case MSR_IA32_SYSENTER_ESP:
400                 vmcs_write32(GUEST_SYSENTER_ESP, data);
401                 break;
402         case MSR_IA32_TIME_STAMP_COUNTER: {
403                 guest_write_tsc(data);
404                 break;
405         }
406         default:
407                 msr = find_msr_entry(vcpu, msr_index);
408                 if (msr) {
409                         msr->data = data;
410                         break;
411                 }
412                 return kvm_set_msr_common(vcpu, msr_index, data);
413                 msr->data = data;
414                 break;
415         }
416
417         return 0;
418 }
419
420 /*
421  * Sync the rsp and rip registers into the vcpu structure.  This allows
422  * registers to be accessed by indexing vcpu->regs.
423  */
424 static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
425 {
426         vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
427         vcpu->rip = vmcs_readl(GUEST_RIP);
428 }
429
430 /*
431  * Syncs rsp and rip back into the vmcs.  Should be called after possible
432  * modification.
433  */
434 static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
435 {
436         vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
437         vmcs_writel(GUEST_RIP, vcpu->rip);
438 }
439
440 static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
441 {
442         unsigned long dr7 = 0x400;
443         u32 exception_bitmap;
444         int old_singlestep;
445
446         exception_bitmap = vmcs_read32(EXCEPTION_BITMAP);
447         old_singlestep = vcpu->guest_debug.singlestep;
448
449         vcpu->guest_debug.enabled = dbg->enabled;
450         if (vcpu->guest_debug.enabled) {
451                 int i;
452
453                 dr7 |= 0x200;  /* exact */
454                 for (i = 0; i < 4; ++i) {
455                         if (!dbg->breakpoints[i].enabled)
456                                 continue;
457                         vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
458                         dr7 |= 2 << (i*2);    /* global enable */
459                         dr7 |= 0 << (i*4+16); /* execution breakpoint */
460                 }
461
462                 exception_bitmap |= (1u << 1);  /* Trap debug exceptions */
463
464                 vcpu->guest_debug.singlestep = dbg->singlestep;
465         } else {
466                 exception_bitmap &= ~(1u << 1); /* Ignore debug exceptions */
467                 vcpu->guest_debug.singlestep = 0;
468         }
469
470         if (old_singlestep && !vcpu->guest_debug.singlestep) {
471                 unsigned long flags;
472
473                 flags = vmcs_readl(GUEST_RFLAGS);
474                 flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
475                 vmcs_writel(GUEST_RFLAGS, flags);
476         }
477
478         vmcs_write32(EXCEPTION_BITMAP, exception_bitmap);
479         vmcs_writel(GUEST_DR7, dr7);
480
481         return 0;
482 }
483
484 static __init int cpu_has_kvm_support(void)
485 {
486         unsigned long ecx = cpuid_ecx(1);
487         return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
488 }
489
490 static __init int vmx_disabled_by_bios(void)
491 {
492         u64 msr;
493
494         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
495         return (msr & 5) == 1; /* locked but not enabled */
496 }
497
498 static __init void hardware_enable(void *garbage)
499 {
500         int cpu = raw_smp_processor_id();
501         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
502         u64 old;
503
504         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
505         if ((old & 5) != 5)
506                 /* enable and lock */
507                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
508         write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
509         asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
510                       : "memory", "cc");
511 }
512
513 static void hardware_disable(void *garbage)
514 {
515         asm volatile (ASM_VMX_VMXOFF : : : "cc");
516 }
517
518 static __init void setup_vmcs_descriptor(void)
519 {
520         u32 vmx_msr_low, vmx_msr_high;
521
522         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
523         vmcs_descriptor.size = vmx_msr_high & 0x1fff;
524         vmcs_descriptor.order = get_order(vmcs_descriptor.size);
525         vmcs_descriptor.revision_id = vmx_msr_low;
526 }
527
528 static struct vmcs *alloc_vmcs_cpu(int cpu)
529 {
530         int node = cpu_to_node(cpu);
531         struct page *pages;
532         struct vmcs *vmcs;
533
534         pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
535         if (!pages)
536                 return NULL;
537         vmcs = page_address(pages);
538         memset(vmcs, 0, vmcs_descriptor.size);
539         vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
540         return vmcs;
541 }
542
543 static struct vmcs *alloc_vmcs(void)
544 {
545         return alloc_vmcs_cpu(raw_smp_processor_id());
546 }
547
548 static void free_vmcs(struct vmcs *vmcs)
549 {
550         free_pages((unsigned long)vmcs, vmcs_descriptor.order);
551 }
552
553 static __exit void free_kvm_area(void)
554 {
555         int cpu;
556
557         for_each_online_cpu(cpu)
558                 free_vmcs(per_cpu(vmxarea, cpu));
559 }
560
561 extern struct vmcs *alloc_vmcs_cpu(int cpu);
562
563 static __init int alloc_kvm_area(void)
564 {
565         int cpu;
566
567         for_each_online_cpu(cpu) {
568                 struct vmcs *vmcs;
569
570                 vmcs = alloc_vmcs_cpu(cpu);
571                 if (!vmcs) {
572                         free_kvm_area();
573                         return -ENOMEM;
574                 }
575
576                 per_cpu(vmxarea, cpu) = vmcs;
577         }
578         return 0;
579 }
580
581 static __init int hardware_setup(void)
582 {
583         setup_vmcs_descriptor();
584         return alloc_kvm_area();
585 }
586
587 static __exit void hardware_unsetup(void)
588 {
589         free_kvm_area();
590 }
591
592 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
593 {
594         if (vcpu->rmode.active)
595                 vmcs_write32(EXCEPTION_BITMAP, ~0);
596         else
597                 vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
598 }
599
600 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
601 {
602         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
603
604         if (vmcs_readl(sf->base) == save->base) {
605                 vmcs_write16(sf->selector, save->selector);
606                 vmcs_writel(sf->base, save->base);
607                 vmcs_write32(sf->limit, save->limit);
608                 vmcs_write32(sf->ar_bytes, save->ar);
609         } else {
610                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
611                         << AR_DPL_SHIFT;
612                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
613         }
614 }
615
616 static void enter_pmode(struct kvm_vcpu *vcpu)
617 {
618         unsigned long flags;
619
620         vcpu->rmode.active = 0;
621
622         vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
623         vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
624         vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
625
626         flags = vmcs_readl(GUEST_RFLAGS);
627         flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
628         flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
629         vmcs_writel(GUEST_RFLAGS, flags);
630
631         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
632                         (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
633
634         update_exception_bitmap(vcpu);
635
636         fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
637         fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
638         fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
639         fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
640
641         vmcs_write16(GUEST_SS_SELECTOR, 0);
642         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
643
644         vmcs_write16(GUEST_CS_SELECTOR,
645                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
646         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
647 }
648
649 static int rmode_tss_base(struct kvm* kvm)
650 {
651         gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
652         return base_gfn << PAGE_SHIFT;
653 }
654
655 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
656 {
657         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
658
659         save->selector = vmcs_read16(sf->selector);
660         save->base = vmcs_readl(sf->base);
661         save->limit = vmcs_read32(sf->limit);
662         save->ar = vmcs_read32(sf->ar_bytes);
663         vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
664         vmcs_write32(sf->limit, 0xffff);
665         vmcs_write32(sf->ar_bytes, 0xf3);
666 }
667
668 static void enter_rmode(struct kvm_vcpu *vcpu)
669 {
670         unsigned long flags;
671
672         vcpu->rmode.active = 1;
673
674         vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
675         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
676
677         vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
678         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
679
680         vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
681         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
682
683         flags = vmcs_readl(GUEST_RFLAGS);
684         vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
685
686         flags |= IOPL_MASK | X86_EFLAGS_VM;
687
688         vmcs_writel(GUEST_RFLAGS, flags);
689         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
690         update_exception_bitmap(vcpu);
691
692         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
693         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
694         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
695
696         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
697         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
698         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
699
700         fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
701         fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
702         fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
703         fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
704 }
705
706 #ifdef CONFIG_X86_64
707
708 static void enter_lmode(struct kvm_vcpu *vcpu)
709 {
710         u32 guest_tr_ar;
711
712         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
713         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
714                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
715                        __FUNCTION__);
716                 vmcs_write32(GUEST_TR_AR_BYTES,
717                              (guest_tr_ar & ~AR_TYPE_MASK)
718                              | AR_TYPE_BUSY_64_TSS);
719         }
720
721         vcpu->shadow_efer |= EFER_LMA;
722
723         find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
724         vmcs_write32(VM_ENTRY_CONTROLS,
725                      vmcs_read32(VM_ENTRY_CONTROLS)
726                      | VM_ENTRY_CONTROLS_IA32E_MASK);
727 }
728
729 static void exit_lmode(struct kvm_vcpu *vcpu)
730 {
731         vcpu->shadow_efer &= ~EFER_LMA;
732
733         vmcs_write32(VM_ENTRY_CONTROLS,
734                      vmcs_read32(VM_ENTRY_CONTROLS)
735                      & ~VM_ENTRY_CONTROLS_IA32E_MASK);
736 }
737
738 #endif
739
740 static void vmx_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu)
741 {
742         vcpu->cr0 &= KVM_GUEST_CR0_MASK;
743         vcpu->cr0 |= vmcs_readl(GUEST_CR0) & ~KVM_GUEST_CR0_MASK;
744
745         vcpu->cr4 &= KVM_GUEST_CR4_MASK;
746         vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
747 }
748
749 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
750 {
751         if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
752                 enter_pmode(vcpu);
753
754         if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
755                 enter_rmode(vcpu);
756
757 #ifdef CONFIG_X86_64
758         if (vcpu->shadow_efer & EFER_LME) {
759                 if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
760                         enter_lmode(vcpu);
761                 if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
762                         exit_lmode(vcpu);
763         }
764 #endif
765
766         vmcs_writel(CR0_READ_SHADOW, cr0);
767         vmcs_writel(GUEST_CR0,
768                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
769         vcpu->cr0 = cr0;
770 }
771
772 /*
773  * Used when restoring the VM to avoid corrupting segment registers
774  */
775 static void vmx_set_cr0_no_modeswitch(struct kvm_vcpu *vcpu, unsigned long cr0)
776 {
777         vcpu->rmode.active = ((cr0 & CR0_PE_MASK) == 0);
778         update_exception_bitmap(vcpu);
779         vmcs_writel(CR0_READ_SHADOW, cr0);
780         vmcs_writel(GUEST_CR0,
781                     (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
782         vcpu->cr0 = cr0;
783 }
784
785 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
786 {
787         vmcs_writel(GUEST_CR3, cr3);
788 }
789
790 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
791 {
792         vmcs_writel(CR4_READ_SHADOW, cr4);
793         vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
794                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
795         vcpu->cr4 = cr4;
796 }
797
798 #ifdef CONFIG_X86_64
799
800 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
801 {
802         struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
803
804         vcpu->shadow_efer = efer;
805         if (efer & EFER_LMA) {
806                 vmcs_write32(VM_ENTRY_CONTROLS,
807                                      vmcs_read32(VM_ENTRY_CONTROLS) |
808                                      VM_ENTRY_CONTROLS_IA32E_MASK);
809                 msr->data = efer;
810
811         } else {
812                 vmcs_write32(VM_ENTRY_CONTROLS,
813                                      vmcs_read32(VM_ENTRY_CONTROLS) &
814                                      ~VM_ENTRY_CONTROLS_IA32E_MASK);
815
816                 msr->data = efer & ~EFER_LME;
817         }
818 }
819
820 #endif
821
822 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
823 {
824         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
825
826         return vmcs_readl(sf->base);
827 }
828
829 static void vmx_get_segment(struct kvm_vcpu *vcpu,
830                             struct kvm_segment *var, int seg)
831 {
832         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
833         u32 ar;
834
835         var->base = vmcs_readl(sf->base);
836         var->limit = vmcs_read32(sf->limit);
837         var->selector = vmcs_read16(sf->selector);
838         ar = vmcs_read32(sf->ar_bytes);
839         if (ar & AR_UNUSABLE_MASK)
840                 ar = 0;
841         var->type = ar & 15;
842         var->s = (ar >> 4) & 1;
843         var->dpl = (ar >> 5) & 3;
844         var->present = (ar >> 7) & 1;
845         var->avl = (ar >> 12) & 1;
846         var->l = (ar >> 13) & 1;
847         var->db = (ar >> 14) & 1;
848         var->g = (ar >> 15) & 1;
849         var->unusable = (ar >> 16) & 1;
850 }
851
852 static void vmx_set_segment(struct kvm_vcpu *vcpu,
853                             struct kvm_segment *var, int seg)
854 {
855         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
856         u32 ar;
857
858         vmcs_writel(sf->base, var->base);
859         vmcs_write32(sf->limit, var->limit);
860         vmcs_write16(sf->selector, var->selector);
861         if (var->unusable)
862                 ar = 1 << 16;
863         else {
864                 ar = var->type & 15;
865                 ar |= (var->s & 1) << 4;
866                 ar |= (var->dpl & 3) << 5;
867                 ar |= (var->present & 1) << 7;
868                 ar |= (var->avl & 1) << 12;
869                 ar |= (var->l & 1) << 13;
870                 ar |= (var->db & 1) << 14;
871                 ar |= (var->g & 1) << 15;
872         }
873         if (ar == 0) /* a 0 value means unusable */
874                 ar = AR_UNUSABLE_MASK;
875         vmcs_write32(sf->ar_bytes, ar);
876 }
877
878 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
879 {
880         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
881
882         *db = (ar >> 14) & 1;
883         *l = (ar >> 13) & 1;
884 }
885
886 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
887 {
888         dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
889         dt->base = vmcs_readl(GUEST_IDTR_BASE);
890 }
891
892 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
893 {
894         vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
895         vmcs_writel(GUEST_IDTR_BASE, dt->base);
896 }
897
898 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
899 {
900         dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
901         dt->base = vmcs_readl(GUEST_GDTR_BASE);
902 }
903
904 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
905 {
906         vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
907         vmcs_writel(GUEST_GDTR_BASE, dt->base);
908 }
909
910 static int init_rmode_tss(struct kvm* kvm)
911 {
912         struct page *p1, *p2, *p3;
913         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
914         char *page;
915
916         p1 = _gfn_to_page(kvm, fn++);
917         p2 = _gfn_to_page(kvm, fn++);
918         p3 = _gfn_to_page(kvm, fn);
919
920         if (!p1 || !p2 || !p3) {
921                 kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
922                 return 0;
923         }
924
925         page = kmap_atomic(p1, KM_USER0);
926         memset(page, 0, PAGE_SIZE);
927         *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
928         kunmap_atomic(page, KM_USER0);
929
930         page = kmap_atomic(p2, KM_USER0);
931         memset(page, 0, PAGE_SIZE);
932         kunmap_atomic(page, KM_USER0);
933
934         page = kmap_atomic(p3, KM_USER0);
935         memset(page, 0, PAGE_SIZE);
936         *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
937         kunmap_atomic(page, KM_USER0);
938
939         return 1;
940 }
941
942 static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
943 {
944         u32 msr_high, msr_low;
945
946         rdmsr(msr, msr_low, msr_high);
947
948         val &= msr_high;
949         val |= msr_low;
950         vmcs_write32(vmcs_field, val);
951 }
952
953 static void seg_setup(int seg)
954 {
955         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
956
957         vmcs_write16(sf->selector, 0);
958         vmcs_writel(sf->base, 0);
959         vmcs_write32(sf->limit, 0xffff);
960         vmcs_write32(sf->ar_bytes, 0x93);
961 }
962
963 /*
964  * Sets up the vmcs for emulated real mode.
965  */
966 static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
967 {
968         u32 host_sysenter_cs;
969         u32 junk;
970         unsigned long a;
971         struct descriptor_table dt;
972         int i;
973         int ret = 0;
974         int nr_good_msrs;
975         extern asmlinkage void kvm_vmx_return(void);
976
977         if (!init_rmode_tss(vcpu->kvm)) {
978                 ret = -ENOMEM;
979                 goto out;
980         }
981
982         memset(vcpu->regs, 0, sizeof(vcpu->regs));
983         vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
984         vcpu->cr8 = 0;
985         vcpu->apic_base = 0xfee00000 |
986                         /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
987                         MSR_IA32_APICBASE_ENABLE;
988
989         fx_init(vcpu);
990
991         /*
992          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
993          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
994          */
995         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
996         vmcs_writel(GUEST_CS_BASE, 0x000f0000);
997         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
998         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
999
1000         seg_setup(VCPU_SREG_DS);
1001         seg_setup(VCPU_SREG_ES);
1002         seg_setup(VCPU_SREG_FS);
1003         seg_setup(VCPU_SREG_GS);
1004         seg_setup(VCPU_SREG_SS);
1005
1006         vmcs_write16(GUEST_TR_SELECTOR, 0);
1007         vmcs_writel(GUEST_TR_BASE, 0);
1008         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
1009         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1010
1011         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
1012         vmcs_writel(GUEST_LDTR_BASE, 0);
1013         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
1014         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
1015
1016         vmcs_write32(GUEST_SYSENTER_CS, 0);
1017         vmcs_writel(GUEST_SYSENTER_ESP, 0);
1018         vmcs_writel(GUEST_SYSENTER_EIP, 0);
1019
1020         vmcs_writel(GUEST_RFLAGS, 0x02);
1021         vmcs_writel(GUEST_RIP, 0xfff0);
1022         vmcs_writel(GUEST_RSP, 0);
1023
1024         vmcs_writel(GUEST_CR3, 0);
1025
1026         //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
1027         vmcs_writel(GUEST_DR7, 0x400);
1028
1029         vmcs_writel(GUEST_GDTR_BASE, 0);
1030         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
1031
1032         vmcs_writel(GUEST_IDTR_BASE, 0);
1033         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
1034
1035         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
1036         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
1037         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
1038
1039         /* I/O */
1040         vmcs_write64(IO_BITMAP_A, 0);
1041         vmcs_write64(IO_BITMAP_B, 0);
1042
1043         guest_write_tsc(0);
1044
1045         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
1046
1047         /* Special registers */
1048         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
1049
1050         /* Control */
1051         vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
1052                                PIN_BASED_VM_EXEC_CONTROL,
1053                                PIN_BASED_EXT_INTR_MASK   /* 20.6.1 */
1054                                | PIN_BASED_NMI_EXITING   /* 20.6.1 */
1055                         );
1056         vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
1057                                CPU_BASED_VM_EXEC_CONTROL,
1058                                CPU_BASED_HLT_EXITING         /* 20.6.2 */
1059                                | CPU_BASED_CR8_LOAD_EXITING    /* 20.6.2 */
1060                                | CPU_BASED_CR8_STORE_EXITING   /* 20.6.2 */
1061                                | CPU_BASED_UNCOND_IO_EXITING   /* 20.6.2 */
1062                                | CPU_BASED_MOV_DR_EXITING
1063                                | CPU_BASED_USE_TSC_OFFSETING   /* 21.3 */
1064                         );
1065
1066         vmcs_write32(EXCEPTION_BITMAP, 1 << PF_VECTOR);
1067         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
1068         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
1069         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
1070
1071         vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */
1072         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
1073         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
1074
1075         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
1076         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1077         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1078         vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */
1079         vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */
1080         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
1081 #ifdef CONFIG_X86_64
1082         rdmsrl(MSR_FS_BASE, a);
1083         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
1084         rdmsrl(MSR_GS_BASE, a);
1085         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
1086 #else
1087         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
1088         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
1089 #endif
1090
1091         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
1092
1093         get_idt(&dt);
1094         vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */
1095
1096
1097         vmcs_writel(HOST_RIP, (unsigned long)kvm_vmx_return); /* 22.2.5 */
1098
1099         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
1100         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
1101         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
1102         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
1103         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
1104         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
1105
1106         for (i = 0; i < NR_VMX_MSR; ++i) {
1107                 u32 index = vmx_msr_index[i];
1108                 u32 data_low, data_high;
1109                 u64 data;
1110                 int j = vcpu->nmsrs;
1111
1112                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
1113                         continue;
1114                 data = data_low | ((u64)data_high << 32);
1115                 vcpu->host_msrs[j].index = index;
1116                 vcpu->host_msrs[j].reserved = 0;
1117                 vcpu->host_msrs[j].data = data;
1118                 vcpu->guest_msrs[j] = vcpu->host_msrs[j];
1119                 ++vcpu->nmsrs;
1120         }
1121         printk(KERN_DEBUG "kvm: msrs: %d\n", vcpu->nmsrs);
1122
1123         nr_good_msrs = vcpu->nmsrs - NR_BAD_MSRS;
1124         vmcs_writel(VM_ENTRY_MSR_LOAD_ADDR,
1125                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1126         vmcs_writel(VM_EXIT_MSR_STORE_ADDR,
1127                     virt_to_phys(vcpu->guest_msrs + NR_BAD_MSRS));
1128         vmcs_writel(VM_EXIT_MSR_LOAD_ADDR,
1129                     virt_to_phys(vcpu->host_msrs + NR_BAD_MSRS));
1130         vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
1131                                (HOST_IS_64 << 9));  /* 22.2,1, 20.7.1 */
1132         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, nr_good_msrs); /* 22.2.2 */
1133         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, nr_good_msrs);  /* 22.2.2 */
1134         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, nr_good_msrs); /* 22.2.2 */
1135
1136
1137         /* 22.2.1, 20.8.1 */
1138         vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
1139                                VM_ENTRY_CONTROLS, 0);
1140         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
1141
1142 #ifdef CONFIG_X86_64
1143         vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
1144         vmcs_writel(TPR_THRESHOLD, 0);
1145 #endif
1146
1147         vmcs_writel(CR0_GUEST_HOST_MASK, KVM_GUEST_CR0_MASK);
1148         vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
1149
1150         vcpu->cr0 = 0x60000010;
1151         vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
1152         vmx_set_cr4(vcpu, 0);
1153 #ifdef CONFIG_X86_64
1154         vmx_set_efer(vcpu, 0);
1155 #endif
1156
1157         return 0;
1158
1159 out:
1160         return ret;
1161 }
1162
1163 static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
1164 {
1165         u16 ent[2];
1166         u16 cs;
1167         u16 ip;
1168         unsigned long flags;
1169         unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
1170         u16 sp =  vmcs_readl(GUEST_RSP);
1171         u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
1172
1173         if (sp > ss_limit || sp - 6 > sp) {
1174                 vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
1175                             __FUNCTION__,
1176                             vmcs_readl(GUEST_RSP),
1177                             vmcs_readl(GUEST_SS_BASE),
1178                             vmcs_read32(GUEST_SS_LIMIT));
1179                 return;
1180         }
1181
1182         if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
1183                                                                 sizeof(ent)) {
1184                 vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
1185                 return;
1186         }
1187
1188         flags =  vmcs_readl(GUEST_RFLAGS);
1189         cs =  vmcs_readl(GUEST_CS_BASE) >> 4;
1190         ip =  vmcs_readl(GUEST_RIP);
1191
1192
1193         if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
1194             kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
1195             kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
1196                 vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
1197                 return;
1198         }
1199
1200         vmcs_writel(GUEST_RFLAGS, flags &
1201                     ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
1202         vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
1203         vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
1204         vmcs_writel(GUEST_RIP, ent[0]);
1205         vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
1206 }
1207
1208 static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
1209 {
1210         int word_index = __ffs(vcpu->irq_summary);
1211         int bit_index = __ffs(vcpu->irq_pending[word_index]);
1212         int irq = word_index * BITS_PER_LONG + bit_index;
1213
1214         clear_bit(bit_index, &vcpu->irq_pending[word_index]);
1215         if (!vcpu->irq_pending[word_index])
1216                 clear_bit(word_index, &vcpu->irq_summary);
1217
1218         if (vcpu->rmode.active) {
1219                 inject_rmode_irq(vcpu, irq);
1220                 return;
1221         }
1222         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1223                         irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1224 }
1225
1226
1227 static void do_interrupt_requests(struct kvm_vcpu *vcpu,
1228                                        struct kvm_run *kvm_run)
1229 {
1230         u32 cpu_based_vm_exec_control;
1231
1232         vcpu->interrupt_window_open =
1233                 ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
1234                  (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
1235
1236         if (vcpu->interrupt_window_open &&
1237             vcpu->irq_summary &&
1238             !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
1239                 /*
1240                  * If interrupts enabled, and not blocked by sti or mov ss. Good.
1241                  */
1242                 kvm_do_inject_irq(vcpu);
1243
1244         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
1245         if (!vcpu->interrupt_window_open &&
1246             (vcpu->irq_summary || kvm_run->request_interrupt_window))
1247                 /*
1248                  * Interrupts blocked.  Wait for unblock.
1249                  */
1250                 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
1251         else
1252                 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
1253         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
1254 }
1255
1256 static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
1257 {
1258         struct kvm_guest_debug *dbg = &vcpu->guest_debug;
1259
1260         set_debugreg(dbg->bp[0], 0);
1261         set_debugreg(dbg->bp[1], 1);
1262         set_debugreg(dbg->bp[2], 2);
1263         set_debugreg(dbg->bp[3], 3);
1264
1265         if (dbg->singlestep) {
1266                 unsigned long flags;
1267
1268                 flags = vmcs_readl(GUEST_RFLAGS);
1269                 flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
1270                 vmcs_writel(GUEST_RFLAGS, flags);
1271         }
1272 }
1273
1274 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
1275                                   int vec, u32 err_code)
1276 {
1277         if (!vcpu->rmode.active)
1278                 return 0;
1279
1280         if (vec == GP_VECTOR && err_code == 0)
1281                 if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
1282                         return 1;
1283         return 0;
1284 }
1285
1286 static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1287 {
1288         u32 intr_info, error_code;
1289         unsigned long cr2, rip;
1290         u32 vect_info;
1291         enum emulation_result er;
1292         int r;
1293
1294         vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1295         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
1296
1297         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
1298                                                 !is_page_fault(intr_info)) {
1299                 printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
1300                        "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
1301         }
1302
1303         if (is_external_interrupt(vect_info)) {
1304                 int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
1305                 set_bit(irq, vcpu->irq_pending);
1306                 set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
1307         }
1308
1309         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
1310                 asm ("int $2");
1311                 return 1;
1312         }
1313         error_code = 0;
1314         rip = vmcs_readl(GUEST_RIP);
1315         if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
1316                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
1317         if (is_page_fault(intr_info)) {
1318                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1319
1320                 spin_lock(&vcpu->kvm->lock);
1321                 r = kvm_mmu_page_fault(vcpu, cr2, error_code);
1322                 if (r < 0) {
1323                         spin_unlock(&vcpu->kvm->lock);
1324                         return r;
1325                 }
1326                 if (!r) {
1327                         spin_unlock(&vcpu->kvm->lock);
1328                         return 1;
1329                 }
1330
1331                 er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
1332                 spin_unlock(&vcpu->kvm->lock);
1333
1334                 switch (er) {
1335                 case EMULATE_DONE:
1336                         return 1;
1337                 case EMULATE_DO_MMIO:
1338                         ++kvm_stat.mmio_exits;
1339                         kvm_run->exit_reason = KVM_EXIT_MMIO;
1340                         return 0;
1341                  case EMULATE_FAIL:
1342                         vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
1343                         break;
1344                 default:
1345                         BUG();
1346                 }
1347         }
1348
1349         if (vcpu->rmode.active &&
1350             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
1351                                                                 error_code))
1352                 return 1;
1353
1354         if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
1355                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1356                 return 0;
1357         }
1358         kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
1359         kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
1360         kvm_run->ex.error_code = error_code;
1361         return 0;
1362 }
1363
1364 static int handle_external_interrupt(struct kvm_vcpu *vcpu,
1365                                      struct kvm_run *kvm_run)
1366 {
1367         ++kvm_stat.irq_exits;
1368         return 1;
1369 }
1370
1371
1372 static int get_io_count(struct kvm_vcpu *vcpu, u64 *count)
1373 {
1374         u64 inst;
1375         gva_t rip;
1376         int countr_size;
1377         int i, n;
1378
1379         if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
1380                 countr_size = 2;
1381         } else {
1382                 u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
1383
1384                 countr_size = (cs_ar & AR_L_MASK) ? 8:
1385                               (cs_ar & AR_DB_MASK) ? 4: 2;
1386         }
1387
1388         rip =  vmcs_readl(GUEST_RIP);
1389         if (countr_size != 8)
1390                 rip += vmcs_readl(GUEST_CS_BASE);
1391
1392         n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
1393
1394         for (i = 0; i < n; i++) {
1395                 switch (((u8*)&inst)[i]) {
1396                 case 0xf0:
1397                 case 0xf2:
1398                 case 0xf3:
1399                 case 0x2e:
1400                 case 0x36:
1401                 case 0x3e:
1402                 case 0x26:
1403                 case 0x64:
1404                 case 0x65:
1405                 case 0x66:
1406                         break;
1407                 case 0x67:
1408                         countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
1409                 default:
1410                         goto done;
1411                 }
1412         }
1413         return 0;
1414 done:
1415         countr_size *= 8;
1416         *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
1417         return 1;
1418 }
1419
1420 static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1421 {
1422         u64 exit_qualification;
1423
1424         ++kvm_stat.io_exits;
1425         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1426         kvm_run->exit_reason = KVM_EXIT_IO;
1427         if (exit_qualification & 8)
1428                 kvm_run->io.direction = KVM_EXIT_IO_IN;
1429         else
1430                 kvm_run->io.direction = KVM_EXIT_IO_OUT;
1431         kvm_run->io.size = (exit_qualification & 7) + 1;
1432         kvm_run->io.string = (exit_qualification & 16) != 0;
1433         kvm_run->io.string_down
1434                 = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
1435         kvm_run->io.rep = (exit_qualification & 32) != 0;
1436         kvm_run->io.port = exit_qualification >> 16;
1437         if (kvm_run->io.string) {
1438                 if (!get_io_count(vcpu, &kvm_run->io.count))
1439                         return 1;
1440                 kvm_run->io.address = vmcs_readl(GUEST_LINEAR_ADDRESS);
1441         } else
1442                 kvm_run->io.value = vcpu->regs[VCPU_REGS_RAX]; /* rax */
1443         return 0;
1444 }
1445
1446 static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1447 {
1448         u64 exit_qualification;
1449         int cr;
1450         int reg;
1451
1452         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1453         cr = exit_qualification & 15;
1454         reg = (exit_qualification >> 8) & 15;
1455         switch ((exit_qualification >> 4) & 3) {
1456         case 0: /* mov to cr */
1457                 switch (cr) {
1458                 case 0:
1459                         vcpu_load_rsp_rip(vcpu);
1460                         set_cr0(vcpu, vcpu->regs[reg]);
1461                         skip_emulated_instruction(vcpu);
1462                         return 1;
1463                 case 3:
1464                         vcpu_load_rsp_rip(vcpu);
1465                         set_cr3(vcpu, vcpu->regs[reg]);
1466                         skip_emulated_instruction(vcpu);
1467                         return 1;
1468                 case 4:
1469                         vcpu_load_rsp_rip(vcpu);
1470                         set_cr4(vcpu, vcpu->regs[reg]);
1471                         skip_emulated_instruction(vcpu);
1472                         return 1;
1473                 case 8:
1474                         vcpu_load_rsp_rip(vcpu);
1475                         set_cr8(vcpu, vcpu->regs[reg]);
1476                         skip_emulated_instruction(vcpu);
1477                         return 1;
1478                 };
1479                 break;
1480         case 1: /*mov from cr*/
1481                 switch (cr) {
1482                 case 3:
1483                         vcpu_load_rsp_rip(vcpu);
1484                         vcpu->regs[reg] = vcpu->cr3;
1485                         vcpu_put_rsp_rip(vcpu);
1486                         skip_emulated_instruction(vcpu);
1487                         return 1;
1488                 case 8:
1489                         printk(KERN_DEBUG "handle_cr: read CR8 "
1490                                "cpu erratum AA15\n");
1491                         vcpu_load_rsp_rip(vcpu);
1492                         vcpu->regs[reg] = vcpu->cr8;
1493                         vcpu_put_rsp_rip(vcpu);
1494                         skip_emulated_instruction(vcpu);
1495                         return 1;
1496                 }
1497                 break;
1498         case 3: /* lmsw */
1499                 lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
1500
1501                 skip_emulated_instruction(vcpu);
1502                 return 1;
1503         default:
1504                 break;
1505         }
1506         kvm_run->exit_reason = 0;
1507         printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
1508                (int)(exit_qualification >> 4) & 3, cr);
1509         return 0;
1510 }
1511
1512 static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1513 {
1514         u64 exit_qualification;
1515         unsigned long val;
1516         int dr, reg;
1517
1518         /*
1519          * FIXME: this code assumes the host is debugging the guest.
1520          *        need to deal with guest debugging itself too.
1521          */
1522         exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
1523         dr = exit_qualification & 7;
1524         reg = (exit_qualification >> 8) & 15;
1525         vcpu_load_rsp_rip(vcpu);
1526         if (exit_qualification & 16) {
1527                 /* mov from dr */
1528                 switch (dr) {
1529                 case 6:
1530                         val = 0xffff0ff0;
1531                         break;
1532                 case 7:
1533                         val = 0x400;
1534                         break;
1535                 default:
1536                         val = 0;
1537                 }
1538                 vcpu->regs[reg] = val;
1539         } else {
1540                 /* mov to dr */
1541         }
1542         vcpu_put_rsp_rip(vcpu);
1543         skip_emulated_instruction(vcpu);
1544         return 1;
1545 }
1546
1547 static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1548 {
1549         kvm_run->exit_reason = KVM_EXIT_CPUID;
1550         return 0;
1551 }
1552
1553 static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1554 {
1555         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1556         u64 data;
1557
1558         if (vmx_get_msr(vcpu, ecx, &data)) {
1559                 vmx_inject_gp(vcpu, 0);
1560                 return 1;
1561         }
1562
1563         /* FIXME: handling of bits 32:63 of rax, rdx */
1564         vcpu->regs[VCPU_REGS_RAX] = data & -1u;
1565         vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
1566         skip_emulated_instruction(vcpu);
1567         return 1;
1568 }
1569
1570 static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1571 {
1572         u32 ecx = vcpu->regs[VCPU_REGS_RCX];
1573         u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
1574                 | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
1575
1576         if (vmx_set_msr(vcpu, ecx, data) != 0) {
1577                 vmx_inject_gp(vcpu, 0);
1578                 return 1;
1579         }
1580
1581         skip_emulated_instruction(vcpu);
1582         return 1;
1583 }
1584
1585 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
1586                               struct kvm_run *kvm_run)
1587 {
1588         kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
1589         kvm_run->cr8 = vcpu->cr8;
1590         kvm_run->apic_base = vcpu->apic_base;
1591         kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
1592                                                   vcpu->irq_summary == 0);
1593 }
1594
1595 static int handle_interrupt_window(struct kvm_vcpu *vcpu,
1596                                    struct kvm_run *kvm_run)
1597 {
1598         /*
1599          * If the user space waits to inject interrupts, exit as soon as
1600          * possible
1601          */
1602         if (kvm_run->request_interrupt_window &&
1603             !vcpu->irq_summary &&
1604             (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF)) {
1605                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
1606                 ++kvm_stat.irq_window_exits;
1607                 return 0;
1608         }
1609         return 1;
1610 }
1611
1612 static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1613 {
1614         skip_emulated_instruction(vcpu);
1615         if (vcpu->irq_summary)
1616                 return 1;
1617
1618         kvm_run->exit_reason = KVM_EXIT_HLT;
1619         ++kvm_stat.halt_exits;
1620         return 0;
1621 }
1622
1623 /*
1624  * The exit handlers return 1 if the exit was handled fully and guest execution
1625  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
1626  * to be done to userspace and return 0.
1627  */
1628 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
1629                                       struct kvm_run *kvm_run) = {
1630         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
1631         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
1632         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
1633         [EXIT_REASON_CR_ACCESS]               = handle_cr,
1634         [EXIT_REASON_DR_ACCESS]               = handle_dr,
1635         [EXIT_REASON_CPUID]                   = handle_cpuid,
1636         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
1637         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
1638         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
1639         [EXIT_REASON_HLT]                     = handle_halt,
1640 };
1641
1642 static const int kvm_vmx_max_exit_handlers =
1643         sizeof(kvm_vmx_exit_handlers) / sizeof(*kvm_vmx_exit_handlers);
1644
1645 /*
1646  * The guest has exited.  See if we can fix it or if we need userspace
1647  * assistance.
1648  */
1649 static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
1650 {
1651         u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1652         u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
1653
1654         if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
1655                                 exit_reason != EXIT_REASON_EXCEPTION_NMI )
1656                 printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
1657                        "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
1658         kvm_run->instruction_length = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1659         if (exit_reason < kvm_vmx_max_exit_handlers
1660             && kvm_vmx_exit_handlers[exit_reason])
1661                 return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
1662         else {
1663                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
1664                 kvm_run->hw.hardware_exit_reason = exit_reason;
1665         }
1666         return 0;
1667 }
1668
1669 /*
1670  * Check if userspace requested an interrupt window, and that the
1671  * interrupt window is open.
1672  *
1673  * No need to exit to userspace if we already have an interrupt queued.
1674  */
1675 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
1676                                           struct kvm_run *kvm_run)
1677 {
1678         return (!vcpu->irq_summary &&
1679                 kvm_run->request_interrupt_window &&
1680                 vcpu->interrupt_window_open &&
1681                 (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
1682 }
1683
1684 static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
1685 {
1686         u8 fail;
1687         u16 fs_sel, gs_sel, ldt_sel;
1688         int fs_gs_ldt_reload_needed;
1689         int r;
1690
1691 again:
1692         /*
1693          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1694          * allow segment selectors with cpl > 0 or ti == 1.
1695          */
1696         fs_sel = read_fs();
1697         gs_sel = read_gs();
1698         ldt_sel = read_ldt();
1699         fs_gs_ldt_reload_needed = (fs_sel & 7) | (gs_sel & 7) | ldt_sel;
1700         if (!fs_gs_ldt_reload_needed) {
1701                 vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1702                 vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1703         } else {
1704                 vmcs_write16(HOST_FS_SELECTOR, 0);
1705                 vmcs_write16(HOST_GS_SELECTOR, 0);
1706         }
1707
1708 #ifdef CONFIG_X86_64
1709         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1710         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1711 #else
1712         vmcs_writel(HOST_FS_BASE, segment_base(fs_sel));
1713         vmcs_writel(HOST_GS_BASE, segment_base(gs_sel));
1714 #endif
1715
1716         do_interrupt_requests(vcpu, kvm_run);
1717
1718         if (vcpu->guest_debug.enabled)
1719                 kvm_guest_debug_pre(vcpu);
1720
1721         fx_save(vcpu->host_fx_image);
1722         fx_restore(vcpu->guest_fx_image);
1723
1724         save_msrs(vcpu->host_msrs, vcpu->nmsrs);
1725         load_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1726
1727         asm (
1728                 /* Store host registers */
1729                 "pushf \n\t"
1730 #ifdef CONFIG_X86_64
1731                 "push %%rax; push %%rbx; push %%rdx;"
1732                 "push %%rsi; push %%rdi; push %%rbp;"
1733                 "push %%r8;  push %%r9;  push %%r10; push %%r11;"
1734                 "push %%r12; push %%r13; push %%r14; push %%r15;"
1735                 "push %%rcx \n\t"
1736                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1737 #else
1738                 "pusha; push %%ecx \n\t"
1739                 ASM_VMX_VMWRITE_RSP_RDX "\n\t"
1740 #endif
1741                 /* Check if vmlaunch of vmresume is needed */
1742                 "cmp $0, %1 \n\t"
1743                 /* Load guest registers.  Don't clobber flags. */
1744 #ifdef CONFIG_X86_64
1745                 "mov %c[cr2](%3), %%rax \n\t"
1746                 "mov %%rax, %%cr2 \n\t"
1747                 "mov %c[rax](%3), %%rax \n\t"
1748                 "mov %c[rbx](%3), %%rbx \n\t"
1749                 "mov %c[rdx](%3), %%rdx \n\t"
1750                 "mov %c[rsi](%3), %%rsi \n\t"
1751                 "mov %c[rdi](%3), %%rdi \n\t"
1752                 "mov %c[rbp](%3), %%rbp \n\t"
1753                 "mov %c[r8](%3),  %%r8  \n\t"
1754                 "mov %c[r9](%3),  %%r9  \n\t"
1755                 "mov %c[r10](%3), %%r10 \n\t"
1756                 "mov %c[r11](%3), %%r11 \n\t"
1757                 "mov %c[r12](%3), %%r12 \n\t"
1758                 "mov %c[r13](%3), %%r13 \n\t"
1759                 "mov %c[r14](%3), %%r14 \n\t"
1760                 "mov %c[r15](%3), %%r15 \n\t"
1761                 "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
1762 #else
1763                 "mov %c[cr2](%3), %%eax \n\t"
1764                 "mov %%eax,   %%cr2 \n\t"
1765                 "mov %c[rax](%3), %%eax \n\t"
1766                 "mov %c[rbx](%3), %%ebx \n\t"
1767                 "mov %c[rdx](%3), %%edx \n\t"
1768                 "mov %c[rsi](%3), %%esi \n\t"
1769                 "mov %c[rdi](%3), %%edi \n\t"
1770                 "mov %c[rbp](%3), %%ebp \n\t"
1771                 "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
1772 #endif
1773                 /* Enter guest mode */
1774                 "jne launched \n\t"
1775                 ASM_VMX_VMLAUNCH "\n\t"
1776                 "jmp kvm_vmx_return \n\t"
1777                 "launched: " ASM_VMX_VMRESUME "\n\t"
1778                 ".globl kvm_vmx_return \n\t"
1779                 "kvm_vmx_return: "
1780                 /* Save guest registers, load host registers, keep flags */
1781 #ifdef CONFIG_X86_64
1782                 "xchg %3,     0(%%rsp) \n\t"
1783                 "mov %%rax, %c[rax](%3) \n\t"
1784                 "mov %%rbx, %c[rbx](%3) \n\t"
1785                 "pushq 0(%%rsp); popq %c[rcx](%3) \n\t"
1786                 "mov %%rdx, %c[rdx](%3) \n\t"
1787                 "mov %%rsi, %c[rsi](%3) \n\t"
1788                 "mov %%rdi, %c[rdi](%3) \n\t"
1789                 "mov %%rbp, %c[rbp](%3) \n\t"
1790                 "mov %%r8,  %c[r8](%3) \n\t"
1791                 "mov %%r9,  %c[r9](%3) \n\t"
1792                 "mov %%r10, %c[r10](%3) \n\t"
1793                 "mov %%r11, %c[r11](%3) \n\t"
1794                 "mov %%r12, %c[r12](%3) \n\t"
1795                 "mov %%r13, %c[r13](%3) \n\t"
1796                 "mov %%r14, %c[r14](%3) \n\t"
1797                 "mov %%r15, %c[r15](%3) \n\t"
1798                 "mov %%cr2, %%rax   \n\t"
1799                 "mov %%rax, %c[cr2](%3) \n\t"
1800                 "mov 0(%%rsp), %3 \n\t"
1801
1802                 "pop  %%rcx; pop  %%r15; pop  %%r14; pop  %%r13; pop  %%r12;"
1803                 "pop  %%r11; pop  %%r10; pop  %%r9;  pop  %%r8;"
1804                 "pop  %%rbp; pop  %%rdi; pop  %%rsi;"
1805                 "pop  %%rdx; pop  %%rbx; pop  %%rax \n\t"
1806 #else
1807                 "xchg %3, 0(%%esp) \n\t"
1808                 "mov %%eax, %c[rax](%3) \n\t"
1809                 "mov %%ebx, %c[rbx](%3) \n\t"
1810                 "pushl 0(%%esp); popl %c[rcx](%3) \n\t"
1811                 "mov %%edx, %c[rdx](%3) \n\t"
1812                 "mov %%esi, %c[rsi](%3) \n\t"
1813                 "mov %%edi, %c[rdi](%3) \n\t"
1814                 "mov %%ebp, %c[rbp](%3) \n\t"
1815                 "mov %%cr2, %%eax  \n\t"
1816                 "mov %%eax, %c[cr2](%3) \n\t"
1817                 "mov 0(%%esp), %3 \n\t"
1818
1819                 "pop %%ecx; popa \n\t"
1820 #endif
1821                 "setbe %0 \n\t"
1822                 "popf \n\t"
1823               : "=g" (fail)
1824               : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
1825                 "c"(vcpu),
1826                 [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
1827                 [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
1828                 [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
1829                 [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
1830                 [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
1831                 [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
1832                 [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
1833 #ifdef CONFIG_X86_64
1834                 [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
1835                 [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
1836                 [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
1837                 [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
1838                 [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
1839                 [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
1840                 [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
1841                 [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
1842 #endif
1843                 [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
1844               : "cc", "memory" );
1845
1846         ++kvm_stat.exits;
1847
1848         save_msrs(vcpu->guest_msrs, NR_BAD_MSRS);
1849         load_msrs(vcpu->host_msrs, NR_BAD_MSRS);
1850
1851         fx_save(vcpu->guest_fx_image);
1852         fx_restore(vcpu->host_fx_image);
1853         vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
1854
1855 #ifndef CONFIG_X86_64
1856         asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
1857 #endif
1858
1859         kvm_run->exit_type = 0;
1860         if (fail) {
1861                 kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY;
1862                 kvm_run->exit_reason = vmcs_read32(VM_INSTRUCTION_ERROR);
1863                 r = 0;
1864         } else {
1865                 if (fs_gs_ldt_reload_needed) {
1866                         load_ldt(ldt_sel);
1867                         load_fs(fs_sel);
1868                         /*
1869                          * If we have to reload gs, we must take care to
1870                          * preserve our gs base.
1871                          */
1872                         local_irq_disable();
1873                         load_gs(gs_sel);
1874 #ifdef CONFIG_X86_64
1875                         wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
1876 #endif
1877                         local_irq_enable();
1878
1879                         reload_tss();
1880                 }
1881                 vcpu->launched = 1;
1882                 kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT;
1883                 r = kvm_handle_exit(kvm_run, vcpu);
1884                 if (r > 0) {
1885                         /* Give scheduler a change to reschedule. */
1886                         if (signal_pending(current)) {
1887                                 ++kvm_stat.signal_exits;
1888                                 post_kvm_run_save(vcpu, kvm_run);
1889                                 return -EINTR;
1890                         }
1891
1892                         if (dm_request_for_irq_injection(vcpu, kvm_run)) {
1893                                 ++kvm_stat.request_irq_exits;
1894                                 post_kvm_run_save(vcpu, kvm_run);
1895                                 return -EINTR;
1896                         }
1897
1898                         kvm_resched(vcpu);
1899                         goto again;
1900                 }
1901         }
1902
1903         post_kvm_run_save(vcpu, kvm_run);
1904         return r;
1905 }
1906
1907 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1908 {
1909         vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
1910 }
1911
1912 static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
1913                                   unsigned long addr,
1914                                   u32 err_code)
1915 {
1916         u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
1917
1918         ++kvm_stat.pf_guest;
1919
1920         if (is_page_fault(vect_info)) {
1921                 printk(KERN_DEBUG "inject_page_fault: "
1922                        "double fault 0x%lx @ 0x%lx\n",
1923                        addr, vmcs_readl(GUEST_RIP));
1924                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
1925                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1926                              DF_VECTOR |
1927                              INTR_TYPE_EXCEPTION |
1928                              INTR_INFO_DELIEVER_CODE_MASK |
1929                              INTR_INFO_VALID_MASK);
1930                 return;
1931         }
1932         vcpu->cr2 = addr;
1933         vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
1934         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
1935                      PF_VECTOR |
1936                      INTR_TYPE_EXCEPTION |
1937                      INTR_INFO_DELIEVER_CODE_MASK |
1938                      INTR_INFO_VALID_MASK);
1939
1940 }
1941
1942 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
1943 {
1944         if (vcpu->vmcs) {
1945                 on_each_cpu(__vcpu_clear, vcpu, 0, 1);
1946                 free_vmcs(vcpu->vmcs);
1947                 vcpu->vmcs = NULL;
1948         }
1949 }
1950
1951 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
1952 {
1953         vmx_free_vmcs(vcpu);
1954 }
1955
1956 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
1957 {
1958         struct vmcs *vmcs;
1959
1960         vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1961         if (!vcpu->guest_msrs)
1962                 return -ENOMEM;
1963
1964         vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
1965         if (!vcpu->host_msrs)
1966                 goto out_free_guest_msrs;
1967
1968         vmcs = alloc_vmcs();
1969         if (!vmcs)
1970                 goto out_free_msrs;
1971
1972         vmcs_clear(vmcs);
1973         vcpu->vmcs = vmcs;
1974         vcpu->launched = 0;
1975
1976         return 0;
1977
1978 out_free_msrs:
1979         kfree(vcpu->host_msrs);
1980         vcpu->host_msrs = NULL;
1981
1982 out_free_guest_msrs:
1983         kfree(vcpu->guest_msrs);
1984         vcpu->guest_msrs = NULL;
1985
1986         return -ENOMEM;
1987 }
1988
1989 static struct kvm_arch_ops vmx_arch_ops = {
1990         .cpu_has_kvm_support = cpu_has_kvm_support,
1991         .disabled_by_bios = vmx_disabled_by_bios,
1992         .hardware_setup = hardware_setup,
1993         .hardware_unsetup = hardware_unsetup,
1994         .hardware_enable = hardware_enable,
1995         .hardware_disable = hardware_disable,
1996
1997         .vcpu_create = vmx_create_vcpu,
1998         .vcpu_free = vmx_free_vcpu,
1999
2000         .vcpu_load = vmx_vcpu_load,
2001         .vcpu_put = vmx_vcpu_put,
2002
2003         .set_guest_debug = set_guest_debug,
2004         .get_msr = vmx_get_msr,
2005         .set_msr = vmx_set_msr,
2006         .get_segment_base = vmx_get_segment_base,
2007         .get_segment = vmx_get_segment,
2008         .set_segment = vmx_set_segment,
2009         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
2010         .decache_cr0_cr4_guest_bits = vmx_decache_cr0_cr4_guest_bits,
2011         .set_cr0 = vmx_set_cr0,
2012         .set_cr0_no_modeswitch = vmx_set_cr0_no_modeswitch,
2013         .set_cr3 = vmx_set_cr3,
2014         .set_cr4 = vmx_set_cr4,
2015 #ifdef CONFIG_X86_64
2016         .set_efer = vmx_set_efer,
2017 #endif
2018         .get_idt = vmx_get_idt,
2019         .set_idt = vmx_set_idt,
2020         .get_gdt = vmx_get_gdt,
2021         .set_gdt = vmx_set_gdt,
2022         .cache_regs = vcpu_load_rsp_rip,
2023         .decache_regs = vcpu_put_rsp_rip,
2024         .get_rflags = vmx_get_rflags,
2025         .set_rflags = vmx_set_rflags,
2026
2027         .tlb_flush = vmx_flush_tlb,
2028         .inject_page_fault = vmx_inject_page_fault,
2029
2030         .inject_gp = vmx_inject_gp,
2031
2032         .run = vmx_vcpu_run,
2033         .skip_emulated_instruction = skip_emulated_instruction,
2034         .vcpu_setup = vmx_vcpu_setup,
2035 };
2036
2037 static int __init vmx_init(void)
2038 {
2039         return kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
2040 }
2041
2042 static void __exit vmx_exit(void)
2043 {
2044         kvm_exit_arch();
2045 }
2046
2047 module_init(vmx_init)
2048 module_exit(vmx_exit)