mISDN: Reduce stack size in dsp_cmx_send()
[safe/jmp/linux-2.6] / drivers / isdn / hardware / mISDN / hfcmulti.c
1 /*
2  * hfcmulti.c  low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3  *
4  * Author       Andreas Eversberg (jolly@eversberg.eu)
5  * ported to mqueue mechanism:
6  *              Peter Sprenger (sprengermoving-bytes.de)
7  *
8  * inspired by existing hfc-pci driver:
9  * Copyright 1999  by Werner Cornelius (werner@isdn-development.de)
10  * Copyright 2008  by Karsten Keil (kkeil@suse.de)
11  * Copyright 2008  by Andreas Eversberg (jolly@eversberg.eu)
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; if not, write to the Free Software
25  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  *
28  * Thanks to Cologne Chip AG for this great controller!
29  */
30
31 /*
32  * module parameters:
33  * type:
34  *      By default (0), the card is automatically detected.
35  *      Or use the following combinations:
36  *      Bit 0-7   = 0x00001 = HFC-E1 (1 port)
37  * or   Bit 0-7   = 0x00004 = HFC-4S (4 ports)
38  * or   Bit 0-7   = 0x00008 = HFC-8S (8 ports)
39  *      Bit 8     = 0x00100 = uLaw (instead of aLaw)
40  *      Bit 9     = 0x00200 = Disable DTMF detect on all B-channels via hardware
41  *      Bit 10    = spare
42  *      Bit 11    = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43  * or   Bit 12    = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44  *      Bit 13    = spare
45  *      Bit 14    = 0x04000 = Use external ram (128K)
46  *      Bit 15    = 0x08000 = Use external ram (512K)
47  *      Bit 16    = 0x10000 = Use 64 timeslots instead of 32
48  * or   Bit 17    = 0x20000 = Use 128 timeslots instead of anything else
49  *      Bit 18    = spare
50  *      Bit 19    = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51  * (all other bits are reserved and shall be 0)
52  *      example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53  *               bus (PCM master)
54  *
55  * port: (optional or required for all ports on all installed cards)
56  *      HFC-4S/HFC-8S only bits:
57  *      Bit 0     = 0x001 = Use master clock for this S/T interface
58  *                          (ony once per chip).
59  *      Bit 1     = 0x002 = transmitter line setup (non capacitive mode)
60  *                          Don't use this unless you know what you are doing!
61  *      Bit 2     = 0x004 = Disable E-channel. (No E-channel processing)
62  *      example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63  *               received from port 1
64  *
65  *      HFC-E1 only bits:
66  *      Bit 0     = 0x0001 = interface: 0=copper, 1=optical
67  *      Bit 1     = 0x0002 = reserved (later for 32 B-channels transparent mode)
68  *      Bit 2     = 0x0004 = Report LOS
69  *      Bit 3     = 0x0008 = Report AIS
70  *      Bit 4     = 0x0010 = Report SLIP
71  *      Bit 5     = 0x0020 = Report RDI
72  *      Bit 8     = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73  *                           mode instead.
74  *      Bit 9     = 0x0200 = Force get clock from interface, even in NT mode.
75  * or   Bit 10    = 0x0400 = Force put clock to interface, even in TE mode.
76  *      Bit 11    = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77  *                           (E1 only)
78  *      Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79  *                           for default.
80  * (all other bits are reserved and shall be 0)
81  *
82  * debug:
83  *      NOTE: only one debug value must be given for all cards
84  *      enable debugging (see hfc_multi.h for debug options)
85  *
86  * poll:
87  *      NOTE: only one poll value must be given for all cards
88  *      Give the number of samples for each fifo process.
89  *      By default 128 is used. Decrease to reduce delay, increase to
90  *      reduce cpu load. If unsure, don't mess with it!
91  *      Valid is 8, 16, 32, 64, 128, 256.
92  *
93  * pcm:
94  *      NOTE: only one pcm value must be given for every card.
95  *      The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96  *      By default (0), the PCM bus id is 100 for the card that is PCM master.
97  *      If multiple cards are PCM master (because they are not interconnected),
98  *      each card with PCM master will have increasing PCM id.
99  *      All PCM busses with the same ID are expected to be connected and have
100  *      common time slots slots.
101  *      Only one chip of the PCM bus must be master, the others slave.
102  *      -1 means no support of PCM bus not even.
103  *      Omit this value, if all cards are interconnected or none is connected.
104  *      If unsure, don't give this parameter.
105  *
106  * dslot:
107  *      NOTE: only one dslot value must be given for every card.
108  *      Also this value must be given for non-E1 cards. If omitted, the E1
109  *      card has D-channel on time slot 16, which is default.
110  *      If 1..15 or 17..31, an alternate time slot is used for D-channel.
111  *      In this case, the application must be able to handle this.
112  *      If -1 is given, the D-channel is disabled and all 31 slots can be used
113  *      for B-channel. (only for specific applications)
114  *      If you don't know how to use it, you don't need it!
115  *
116  * iomode:
117  *      NOTE: only one mode value must be given for every card.
118  *      -> See hfc_multi.h for HFC_IO_MODE_* values
119  *      By default, the IO mode is pci memory IO (MEMIO).
120  *      Some cards requre specific IO mode, so it cannot be changed.
121  *      It may be usefull to set IO mode to register io (REGIO) to solve
122  *      PCI bridge problems.
123  *      If unsure, don't give this parameter.
124  *
125  * clockdelay_nt:
126  *      NOTE: only one clockdelay_nt value must be given once for all cards.
127  *      Give the value of the clock control register (A_ST_CLK_DLY)
128  *      of the S/T interfaces in NT mode.
129  *      This register is needed for the TBR3 certification, so don't change it.
130  *
131  * clockdelay_te:
132  *      NOTE: only one clockdelay_te value must be given once
133  *      Give the value of the clock control register (A_ST_CLK_DLY)
134  *      of the S/T interfaces in TE mode.
135  *      This register is needed for the TBR3 certification, so don't change it.
136  *
137  * clock:
138  *      NOTE: only one clock value must be given once
139  *      Selects interface with clock source for mISDN and applications.
140  *      Set to card number starting with 1. Set to -1 to disable.
141  *      By default, the first card is used as clock source.
142  */
143
144 /*
145  * debug register access (never use this, it will flood your system log)
146  * #define HFC_REGISTER_DEBUG
147  */
148
149 #define HFC_MULTI_VERSION       "2.03"
150
151 #include <linux/module.h>
152 #include <linux/pci.h>
153 #include <linux/delay.h>
154 #include <linux/mISDNhw.h>
155 #include <linux/mISDNdsp.h>
156
157 /*
158 #define IRQCOUNT_DEBUG
159 #define IRQ_DEBUG
160 */
161
162 #include "hfc_multi.h"
163 #ifdef ECHOPREP
164 #include "gaintab.h"
165 #endif
166
167 #define MAX_CARDS       8
168 #define MAX_PORTS       (8 * MAX_CARDS)
169
170 static LIST_HEAD(HFClist);
171 static spinlock_t HFClock; /* global hfc list lock */
172
173 static void ph_state_change(struct dchannel *);
174
175 static struct hfc_multi *syncmaster;
176 static int plxsd_master; /* if we have a master card (yet) */
177 static spinlock_t plx_lock; /* may not acquire other lock inside */
178
179 #define TYP_E1          1
180 #define TYP_4S          4
181 #define TYP_8S          8
182
183 static int poll_timer = 6;      /* default = 128 samples = 16ms */
184 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
185 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30  };
186 #define CLKDEL_TE       0x0f    /* CLKDEL in TE mode */
187 #define CLKDEL_NT       0x6c    /* CLKDEL in NT mode
188                                    (0x60 MUST be included!) */
189
190 #define DIP_4S  0x1             /* DIP Switches for Beronet 1S/2S/4S cards */
191 #define DIP_8S  0x2             /* DIP Switches for Beronet 8S+ cards */
192 #define DIP_E1  0x3             /* DIP Switches for Beronet E1 cards */
193
194 /*
195  * module stuff
196  */
197
198 static uint     type[MAX_CARDS];
199 static int      pcm[MAX_CARDS];
200 static int      dslot[MAX_CARDS];
201 static uint     iomode[MAX_CARDS];
202 static uint     port[MAX_PORTS];
203 static uint     debug;
204 static uint     poll;
205 static int      clock;
206 static uint     timer;
207 static uint     clockdelay_te = CLKDEL_TE;
208 static uint     clockdelay_nt = CLKDEL_NT;
209
210 static int      HFC_cnt, Port_cnt, PCM_cnt = 99;
211
212 MODULE_AUTHOR("Andreas Eversberg");
213 MODULE_LICENSE("GPL");
214 MODULE_VERSION(HFC_MULTI_VERSION);
215 module_param(debug, uint, S_IRUGO | S_IWUSR);
216 module_param(poll, uint, S_IRUGO | S_IWUSR);
217 module_param(clock, int, S_IRUGO | S_IWUSR);
218 module_param(timer, uint, S_IRUGO | S_IWUSR);
219 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
220 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
221 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
222 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
223 module_param_array(dslot, int, NULL, S_IRUGO | S_IWUSR);
224 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
225 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
226
227 #ifdef HFC_REGISTER_DEBUG
228 #define HFC_outb(hc, reg, val) \
229         (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
230 #define HFC_outb_nodebug(hc, reg, val) \
231         (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
232 #define HFC_inb(hc, reg) \
233         (hc->HFC_inb(hc, reg, __func__, __LINE__))
234 #define HFC_inb_nodebug(hc, reg) \
235         (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
236 #define HFC_inw(hc, reg) \
237         (hc->HFC_inw(hc, reg, __func__, __LINE__))
238 #define HFC_inw_nodebug(hc, reg) \
239         (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
240 #define HFC_wait(hc) \
241         (hc->HFC_wait(hc, __func__, __LINE__))
242 #define HFC_wait_nodebug(hc) \
243         (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
244 #else
245 #define HFC_outb(hc, reg, val)          (hc->HFC_outb(hc, reg, val))
246 #define HFC_outb_nodebug(hc, reg, val)  (hc->HFC_outb_nodebug(hc, reg, val))
247 #define HFC_inb(hc, reg)                (hc->HFC_inb(hc, reg))
248 #define HFC_inb_nodebug(hc, reg)        (hc->HFC_inb_nodebug(hc, reg))
249 #define HFC_inw(hc, reg)                (hc->HFC_inw(hc, reg))
250 #define HFC_inw_nodebug(hc, reg)        (hc->HFC_inw_nodebug(hc, reg))
251 #define HFC_wait(hc)                    (hc->HFC_wait(hc))
252 #define HFC_wait_nodebug(hc)            (hc->HFC_wait_nodebug(hc))
253 #endif
254
255 /* HFC_IO_MODE_PCIMEM */
256 static void
257 #ifdef HFC_REGISTER_DEBUG
258 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
259                 const char *function, int line)
260 #else
261 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
262 #endif
263 {
264         writeb(val, (hc->pci_membase)+reg);
265 }
266 static u_char
267 #ifdef HFC_REGISTER_DEBUG
268 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
269 #else
270 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
271 #endif
272 {
273         return readb((hc->pci_membase)+reg);
274 }
275 static u_short
276 #ifdef HFC_REGISTER_DEBUG
277 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
278 #else
279 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
280 #endif
281 {
282         return readw((hc->pci_membase)+reg);
283 }
284 static void
285 #ifdef HFC_REGISTER_DEBUG
286 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
287 #else
288 HFC_wait_pcimem(struct hfc_multi *hc)
289 #endif
290 {
291         while (readb((hc->pci_membase)+R_STATUS) & V_BUSY);
292 }
293
294 /* HFC_IO_MODE_REGIO */
295 static void
296 #ifdef HFC_REGISTER_DEBUG
297 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
298         const char *function, int line)
299 #else
300 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
301 #endif
302 {
303         outb(reg, (hc->pci_iobase)+4);
304         outb(val, hc->pci_iobase);
305 }
306 static u_char
307 #ifdef HFC_REGISTER_DEBUG
308 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
309 #else
310 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
311 #endif
312 {
313         outb(reg, (hc->pci_iobase)+4);
314         return inb(hc->pci_iobase);
315 }
316 static u_short
317 #ifdef HFC_REGISTER_DEBUG
318 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
319 #else
320 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
321 #endif
322 {
323         outb(reg, (hc->pci_iobase)+4);
324         return inw(hc->pci_iobase);
325 }
326 static void
327 #ifdef HFC_REGISTER_DEBUG
328 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
329 #else
330 HFC_wait_regio(struct hfc_multi *hc)
331 #endif
332 {
333         outb(R_STATUS, (hc->pci_iobase)+4);
334         while (inb(hc->pci_iobase) & V_BUSY);
335 }
336
337 #ifdef HFC_REGISTER_DEBUG
338 static void
339 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
340                 const char *function, int line)
341 {
342         char regname[256] = "", bits[9] = "xxxxxxxx";
343         int i;
344
345         i = -1;
346         while (hfc_register_names[++i].name) {
347                 if (hfc_register_names[i].reg == reg)
348                         strcat(regname, hfc_register_names[i].name);
349         }
350         if (regname[0] == '\0')
351                 strcpy(regname, "register");
352
353         bits[7] = '0'+(!!(val&1));
354         bits[6] = '0'+(!!(val&2));
355         bits[5] = '0'+(!!(val&4));
356         bits[4] = '0'+(!!(val&8));
357         bits[3] = '0'+(!!(val&16));
358         bits[2] = '0'+(!!(val&32));
359         bits[1] = '0'+(!!(val&64));
360         bits[0] = '0'+(!!(val&128));
361         printk(KERN_DEBUG
362             "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
363             hc->id, reg, regname, val, bits, function, line);
364         HFC_outb_nodebug(hc, reg, val);
365 }
366 static u_char
367 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
368 {
369         char regname[256] = "", bits[9] = "xxxxxxxx";
370         u_char val = HFC_inb_nodebug(hc, reg);
371         int i;
372
373         i = 0;
374         while (hfc_register_names[i++].name)
375                 ;
376         while (hfc_register_names[++i].name) {
377                 if (hfc_register_names[i].reg == reg)
378                         strcat(regname, hfc_register_names[i].name);
379         }
380         if (regname[0] == '\0')
381                 strcpy(regname, "register");
382
383         bits[7] = '0'+(!!(val&1));
384         bits[6] = '0'+(!!(val&2));
385         bits[5] = '0'+(!!(val&4));
386         bits[4] = '0'+(!!(val&8));
387         bits[3] = '0'+(!!(val&16));
388         bits[2] = '0'+(!!(val&32));
389         bits[1] = '0'+(!!(val&64));
390         bits[0] = '0'+(!!(val&128));
391         printk(KERN_DEBUG
392             "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
393             hc->id, reg, regname, val, bits, function, line);
394         return val;
395 }
396 static u_short
397 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
398 {
399         char regname[256] = "";
400         u_short val = HFC_inw_nodebug(hc, reg);
401         int i;
402
403         i = 0;
404         while (hfc_register_names[i++].name)
405                 ;
406         while (hfc_register_names[++i].name) {
407                 if (hfc_register_names[i].reg == reg)
408                         strcat(regname, hfc_register_names[i].name);
409         }
410         if (regname[0] == '\0')
411                 strcpy(regname, "register");
412
413         printk(KERN_DEBUG
414             "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
415             hc->id, reg, regname, val, function, line);
416         return val;
417 }
418 static void
419 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
420 {
421         printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
422             hc->id, function, line);
423         HFC_wait_nodebug(hc);
424 }
425 #endif
426
427 /* write fifo data (REGIO) */
428 static void
429 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
430 {
431         outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
432         while (len>>2) {
433                 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
434                 data += 4;
435                 len -= 4;
436         }
437         while (len>>1) {
438                 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
439                 data += 2;
440                 len -= 2;
441         }
442         while (len) {
443                 outb(*data, hc->pci_iobase);
444                 data++;
445                 len--;
446         }
447 }
448 /* write fifo data (PCIMEM) */
449 static void
450 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
451 {
452         while (len>>2) {
453                 writel(cpu_to_le32(*(u32 *)data),
454                         hc->pci_membase + A_FIFO_DATA0);
455                 data += 4;
456                 len -= 4;
457         }
458         while (len>>1) {
459                 writew(cpu_to_le16(*(u16 *)data),
460                         hc->pci_membase + A_FIFO_DATA0);
461                 data += 2;
462                 len -= 2;
463         }
464         while (len) {
465                 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
466                 data++;
467                 len--;
468         }
469 }
470 /* read fifo data (REGIO) */
471 static void
472 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
473 {
474         outb(A_FIFO_DATA0, (hc->pci_iobase)+4);
475         while (len>>2) {
476                 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
477                 data += 4;
478                 len -= 4;
479         }
480         while (len>>1) {
481                 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
482                 data += 2;
483                 len -= 2;
484         }
485         while (len) {
486                 *data = inb(hc->pci_iobase);
487                 data++;
488                 len--;
489         }
490 }
491
492 /* read fifo data (PCIMEM) */
493 static void
494 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
495 {
496         while (len>>2) {
497                 *(u32 *)data =
498                         le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
499                 data += 4;
500                 len -= 4;
501         }
502         while (len>>1) {
503                 *(u16 *)data =
504                         le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
505                 data += 2;
506                 len -= 2;
507         }
508         while (len) {
509                 *data = readb(hc->pci_membase + A_FIFO_DATA0);
510                 data++;
511                 len--;
512         }
513 }
514
515
516 static void
517 enable_hwirq(struct hfc_multi *hc)
518 {
519         hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
520         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
521 }
522
523 static void
524 disable_hwirq(struct hfc_multi *hc)
525 {
526         hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
527         HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
528 }
529
530 #define NUM_EC 2
531 #define MAX_TDM_CHAN 32
532
533
534 inline void
535 enablepcibridge(struct hfc_multi *c)
536 {
537         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
538 }
539
540 inline void
541 disablepcibridge(struct hfc_multi *c)
542 {
543         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
544 }
545
546 inline unsigned char
547 readpcibridge(struct hfc_multi *hc, unsigned char address)
548 {
549         unsigned short cipv;
550         unsigned char data;
551
552         if (!hc->pci_iobase)
553                 return 0;
554
555         /* slow down a PCI read access by 1 PCI clock cycle */
556         HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
557
558         if (address == 0)
559                 cipv = 0x4000;
560         else
561                 cipv = 0x5800;
562
563         /* select local bridge port address by writing to CIP port */
564         /* data = HFC_inb(c, cipv); * was _io before */
565         outw(cipv, hc->pci_iobase + 4);
566         data = inb(hc->pci_iobase);
567
568         /* restore R_CTRL for normal PCI read cycle speed */
569         HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
570
571         return data;
572 }
573
574 inline void
575 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
576 {
577         unsigned short cipv;
578         unsigned int datav;
579
580         if (!hc->pci_iobase)
581                 return;
582
583         if (address == 0)
584                 cipv = 0x4000;
585         else
586                 cipv = 0x5800;
587
588         /* select local bridge port address by writing to CIP port */
589         outw(cipv, hc->pci_iobase + 4);
590         /* define a 32 bit dword with 4 identical bytes for write sequence */
591         datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
592             ((__u32) data << 24);
593
594         /*
595          * write this 32 bit dword to the bridge data port
596          * this will initiate a write sequence of up to 4 writes to the same
597          * address on the local bus interface the number of write accesses
598          * is undefined but >=1 and depends on the next PCI transaction
599          * during write sequence on the local bus
600          */
601         outl(datav, hc->pci_iobase);
602 }
603
604 inline void
605 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
606 {
607         /* Do data pin read low byte */
608         HFC_outb(hc, R_GPIO_OUT1, reg);
609 }
610
611 inline void
612 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
613 {
614         cpld_set_reg(hc, reg);
615
616         enablepcibridge(hc);
617         writepcibridge(hc, 1, val);
618         disablepcibridge(hc);
619
620         return;
621 }
622
623 inline unsigned char
624 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
625 {
626         unsigned char bytein;
627
628         cpld_set_reg(hc, reg);
629
630         /* Do data pin read low byte */
631         HFC_outb(hc, R_GPIO_OUT1, reg);
632
633         enablepcibridge(hc);
634         bytein = readpcibridge(hc, 1);
635         disablepcibridge(hc);
636
637         return bytein;
638 }
639
640 inline void
641 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
642 {
643         cpld_write_reg(hc, 0, 0xff & addr);
644         cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
645 }
646
647 inline unsigned short
648 vpm_read_address(struct hfc_multi *c)
649 {
650         unsigned short addr;
651         unsigned short highbit;
652
653         addr = cpld_read_reg(c, 0);
654         highbit = cpld_read_reg(c, 1);
655
656         addr = addr | (highbit << 8);
657
658         return addr & 0x1ff;
659 }
660
661 inline unsigned char
662 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
663 {
664         unsigned char res;
665
666         vpm_write_address(c, addr);
667
668         if (!which)
669                 cpld_set_reg(c, 2);
670         else
671                 cpld_set_reg(c, 3);
672
673         enablepcibridge(c);
674         res = readpcibridge(c, 1);
675         disablepcibridge(c);
676
677         cpld_set_reg(c, 0);
678
679         return res;
680 }
681
682 inline void
683 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
684     unsigned char data)
685 {
686         vpm_write_address(c, addr);
687
688         enablepcibridge(c);
689
690         if (!which)
691                 cpld_set_reg(c, 2);
692         else
693                 cpld_set_reg(c, 3);
694
695         writepcibridge(c, 1, data);
696
697         cpld_set_reg(c, 0);
698
699         disablepcibridge(c);
700
701         {
702         unsigned char regin;
703         regin = vpm_in(c, which, addr);
704         if (regin != data)
705                 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
706                         "0x%x\n", data, addr, regin);
707         }
708
709 }
710
711
712 static void
713 vpm_init(struct hfc_multi *wc)
714 {
715         unsigned char reg;
716         unsigned int mask;
717         unsigned int i, x, y;
718         unsigned int ver;
719
720         for (x = 0; x < NUM_EC; x++) {
721                 /* Setup GPIO's */
722                 if (!x) {
723                         ver = vpm_in(wc, x, 0x1a0);
724                         printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
725                 }
726
727                 for (y = 0; y < 4; y++) {
728                         vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
729                         vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
730                         vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
731                 }
732
733                 /* Setup TDM path - sets fsync and tdm_clk as inputs */
734                 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
735                 vpm_out(wc, x, 0x1a3, reg & ~2);
736
737                 /* Setup Echo length (256 taps) */
738                 vpm_out(wc, x, 0x022, 1);
739                 vpm_out(wc, x, 0x023, 0xff);
740
741                 /* Setup timeslots */
742                 vpm_out(wc, x, 0x02f, 0x00);
743                 mask = 0x02020202 << (x * 4);
744
745                 /* Setup the tdm channel masks for all chips */
746                 for (i = 0; i < 4; i++)
747                         vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
748
749                 /* Setup convergence rate */
750                 printk(KERN_DEBUG "VPM: A-law mode\n");
751                 reg = 0x00 | 0x10 | 0x01;
752                 vpm_out(wc, x, 0x20, reg);
753                 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
754                 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
755
756                 vpm_out(wc, x, 0x24, 0x02);
757                 reg = vpm_in(wc, x, 0x24);
758                 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
759
760                 /* Initialize echo cans */
761                 for (i = 0; i < MAX_TDM_CHAN; i++) {
762                         if (mask & (0x00000001 << i))
763                                 vpm_out(wc, x, i, 0x00);
764                 }
765
766                 /*
767                  * ARM arch at least disallows a udelay of
768                  * more than 2ms... it gives a fake "__bad_udelay"
769                  * reference at link-time.
770                  * long delays in kernel code are pretty sucky anyway
771                  * for now work around it using 5 x 2ms instead of 1 x 10ms
772                  */
773
774                 udelay(2000);
775                 udelay(2000);
776                 udelay(2000);
777                 udelay(2000);
778                 udelay(2000);
779
780                 /* Put in bypass mode */
781                 for (i = 0; i < MAX_TDM_CHAN; i++) {
782                         if (mask & (0x00000001 << i))
783                                 vpm_out(wc, x, i, 0x01);
784                 }
785
786                 /* Enable bypass */
787                 for (i = 0; i < MAX_TDM_CHAN; i++) {
788                         if (mask & (0x00000001 << i))
789                                 vpm_out(wc, x, 0x78 + i, 0x01);
790                 }
791
792         }
793 }
794
795 #ifdef UNUSED
796 static void
797 vpm_check(struct hfc_multi *hctmp)
798 {
799         unsigned char gpi2;
800
801         gpi2 = HFC_inb(hctmp, R_GPI_IN2);
802
803         if ((gpi2 & 0x3) != 0x3)
804                 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
805 }
806 #endif /* UNUSED */
807
808
809 /*
810  * Interface to enable/disable the HW Echocan
811  *
812  * these functions are called within a spin_lock_irqsave on
813  * the channel instance lock, so we are not disturbed by irqs
814  *
815  * we can later easily change the interface to make  other
816  * things configurable, for now we configure the taps
817  *
818  */
819
820 static void
821 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
822 {
823         unsigned int timeslot;
824         unsigned int unit;
825         struct bchannel *bch = hc->chan[ch].bch;
826 #ifdef TXADJ
827         int txadj = -4;
828         struct sk_buff *skb;
829 #endif
830         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
831                 return;
832
833         if (!bch)
834                 return;
835
836 #ifdef TXADJ
837         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
838                 sizeof(int), &txadj, GFP_ATOMIC);
839         if (skb)
840                 recv_Bchannel_skb(bch, skb);
841 #endif
842
843         timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
844         unit = ch % 4;
845
846         printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
847             taps, timeslot);
848
849         vpm_out(hc, unit, timeslot, 0x7e);
850 }
851
852 static void
853 vpm_echocan_off(struct hfc_multi *hc, int ch)
854 {
855         unsigned int timeslot;
856         unsigned int unit;
857         struct bchannel *bch = hc->chan[ch].bch;
858 #ifdef TXADJ
859         int txadj = 0;
860         struct sk_buff *skb;
861 #endif
862
863         if (hc->chan[ch].protocol != ISDN_P_B_RAW)
864                 return;
865
866         if (!bch)
867                 return;
868
869 #ifdef TXADJ
870         skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
871                 sizeof(int), &txadj, GFP_ATOMIC);
872         if (skb)
873                 recv_Bchannel_skb(bch, skb);
874 #endif
875
876         timeslot = ((ch/4)*8) + ((ch%4)*4) + 1;
877         unit = ch % 4;
878
879         printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
880             timeslot);
881         /* FILLME */
882         vpm_out(hc, unit, timeslot, 0x01);
883 }
884
885
886 /*
887  * Speech Design resync feature
888  * NOTE: This is called sometimes outside interrupt handler.
889  * We must lock irqsave, so no other interrupt (other card) will occurr!
890  * Also multiple interrupts may nest, so must lock each access (lists, card)!
891  */
892 static inline void
893 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
894 {
895         struct hfc_multi *hc, *next, *pcmmaster = NULL;
896         void __iomem *plx_acc_32;
897         u_int pv;
898         u_long flags;
899
900         spin_lock_irqsave(&HFClock, flags);
901         spin_lock(&plx_lock); /* must be locked inside other locks */
902
903         if (debug & DEBUG_HFCMULTI_PLXSD)
904                 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
905                         __func__, syncmaster);
906
907         /* select new master */
908         if (newmaster) {
909                 if (debug & DEBUG_HFCMULTI_PLXSD)
910                         printk(KERN_DEBUG "using provided controller\n");
911         } else {
912                 list_for_each_entry_safe(hc, next, &HFClist, list) {
913                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
914                                 if (hc->syncronized) {
915                                         newmaster = hc;
916                                         break;
917                                 }
918                         }
919                 }
920         }
921
922         /* Disable sync of all cards */
923         list_for_each_entry_safe(hc, next, &HFClist, list) {
924                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
925                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
926                         pv = readl(plx_acc_32);
927                         pv &= ~PLX_SYNC_O_EN;
928                         writel(pv, plx_acc_32);
929                         if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
930                                 pcmmaster = hc;
931                                 if (hc->type == 1) {
932                                         if (debug & DEBUG_HFCMULTI_PLXSD)
933                                                 printk(KERN_DEBUG
934                                                         "Schedule SYNC_I\n");
935                                         hc->e1_resync |= 1; /* get SYNC_I */
936                                 }
937                         }
938                 }
939         }
940
941         if (newmaster) {
942                 hc = newmaster;
943                 if (debug & DEBUG_HFCMULTI_PLXSD)
944                         printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
945                                 "interface.\n", hc->id, hc);
946                 /* Enable new sync master */
947                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
948                 pv = readl(plx_acc_32);
949                 pv |= PLX_SYNC_O_EN;
950                 writel(pv, plx_acc_32);
951                 /* switch to jatt PLL, if not disabled by RX_SYNC */
952                 if (hc->type == 1 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
953                         if (debug & DEBUG_HFCMULTI_PLXSD)
954                                 printk(KERN_DEBUG "Schedule jatt PLL\n");
955                         hc->e1_resync |= 2; /* switch to jatt */
956                 }
957         } else {
958                 if (pcmmaster) {
959                         hc = pcmmaster;
960                         if (debug & DEBUG_HFCMULTI_PLXSD)
961                                 printk(KERN_DEBUG
962                                         "id=%d (0x%p) = PCM master syncronized "
963                                         "with QUARTZ\n", hc->id, hc);
964                         if (hc->type == 1) {
965                                 /* Use the crystal clock for the PCM
966                                    master card */
967                                 if (debug & DEBUG_HFCMULTI_PLXSD)
968                                         printk(KERN_DEBUG
969                                             "Schedule QUARTZ for HFC-E1\n");
970                                 hc->e1_resync |= 4; /* switch quartz */
971                         } else {
972                                 if (debug & DEBUG_HFCMULTI_PLXSD)
973                                         printk(KERN_DEBUG
974                                             "QUARTZ is automatically "
975                                             "enabled by HFC-%dS\n", hc->type);
976                         }
977                         plx_acc_32 = hc->plx_membase + PLX_GPIOC;
978                         pv = readl(plx_acc_32);
979                         pv |= PLX_SYNC_O_EN;
980                         writel(pv, plx_acc_32);
981                 } else
982                         if (!rm)
983                                 printk(KERN_ERR "%s no pcm master, this MUST "
984                                         "not happen!\n", __func__);
985         }
986         syncmaster = newmaster;
987
988         spin_unlock(&plx_lock);
989         spin_unlock_irqrestore(&HFClock, flags);
990 }
991
992 /* This must be called AND hc must be locked irqsave!!! */
993 inline void
994 plxsd_checksync(struct hfc_multi *hc, int rm)
995 {
996         if (hc->syncronized) {
997                 if (syncmaster == NULL) {
998                         if (debug & DEBUG_HFCMULTI_PLXSD)
999                                 printk(KERN_WARNING "%s: GOT sync on card %d"
1000                                         " (id=%d)\n", __func__, hc->id + 1,
1001                                         hc->id);
1002                         hfcmulti_resync(hc, hc, rm);
1003                 }
1004         } else {
1005                 if (syncmaster == hc) {
1006                         if (debug & DEBUG_HFCMULTI_PLXSD)
1007                                 printk(KERN_WARNING "%s: LOST sync on card %d"
1008                                         " (id=%d)\n", __func__, hc->id + 1,
1009                                         hc->id);
1010                         hfcmulti_resync(hc, NULL, rm);
1011                 }
1012         }
1013 }
1014
1015
1016 /*
1017  * free hardware resources used by driver
1018  */
1019 static void
1020 release_io_hfcmulti(struct hfc_multi *hc)
1021 {
1022         void __iomem *plx_acc_32;
1023         u_int   pv;
1024         u_long  plx_flags;
1025
1026         if (debug & DEBUG_HFCMULTI_INIT)
1027                 printk(KERN_DEBUG "%s: entered\n", __func__);
1028
1029         /* soft reset also masks all interrupts */
1030         hc->hw.r_cirm |= V_SRES;
1031         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1032         udelay(1000);
1033         hc->hw.r_cirm &= ~V_SRES;
1034         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1035         udelay(1000); /* instead of 'wait' that may cause locking */
1036
1037         /* release Speech Design card, if PLX was initialized */
1038         if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1039                 if (debug & DEBUG_HFCMULTI_PLXSD)
1040                         printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1041                             __func__, hc->id + 1);
1042                 spin_lock_irqsave(&plx_lock, plx_flags);
1043                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1044                 writel(PLX_GPIOC_INIT, plx_acc_32);
1045                 pv = readl(plx_acc_32);
1046                 /* Termination off */
1047                 pv &= ~PLX_TERM_ON;
1048                 /* Disconnect the PCM */
1049                 pv |= PLX_SLAVE_EN_N;
1050                 pv &= ~PLX_MASTER_EN;
1051                 pv &= ~PLX_SYNC_O_EN;
1052                 /* Put the DSP in Reset */
1053                 pv &= ~PLX_DSP_RES_N;
1054                 writel(pv, plx_acc_32);
1055                 if (debug & DEBUG_HFCMULTI_INIT)
1056                         printk(KERN_WARNING "%s: PCM off: PLX_GPIO=%x\n",
1057                                 __func__, pv);
1058                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1059         }
1060
1061         /* disable memory mapped ports / io ports */
1062         test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1063         pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1064         if (hc->pci_membase)
1065                 iounmap(hc->pci_membase);
1066         if (hc->plx_membase)
1067                 iounmap(hc->plx_membase);
1068         if (hc->pci_iobase)
1069                 release_region(hc->pci_iobase, 8);
1070
1071         if (hc->pci_dev) {
1072                 pci_disable_device(hc->pci_dev);
1073                 pci_set_drvdata(hc->pci_dev, NULL);
1074         }
1075         if (debug & DEBUG_HFCMULTI_INIT)
1076                 printk(KERN_DEBUG "%s: done\n", __func__);
1077 }
1078
1079 /*
1080  * function called to reset the HFC chip. A complete software reset of chip
1081  * and fifos is done. All configuration of the chip is done.
1082  */
1083
1084 static int
1085 init_chip(struct hfc_multi *hc)
1086 {
1087         u_long                  flags, val, val2 = 0, rev;
1088         int                     i, err = 0;
1089         u_char                  r_conf_en, rval;
1090         void __iomem            *plx_acc_32;
1091         u_int                   pv;
1092         u_long                  plx_flags, hfc_flags;
1093         int                     plx_count;
1094         struct hfc_multi        *pos, *next, *plx_last_hc;
1095
1096         spin_lock_irqsave(&hc->lock, flags);
1097         /* reset all registers */
1098         memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1099
1100         /* revision check */
1101         if (debug & DEBUG_HFCMULTI_INIT)
1102                 printk(KERN_DEBUG "%s: entered\n", __func__);
1103         val = HFC_inb(hc, R_CHIP_ID)>>4;
1104         if (val != 0x8 && val != 0xc && val != 0xe) {
1105                 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1106                 err = -EIO;
1107                 goto out;
1108         }
1109         rev = HFC_inb(hc, R_CHIP_RV);
1110         printk(KERN_INFO
1111             "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1112             val, rev, (rev == 0) ? " (old FIFO handling)" : "");
1113         if (rev == 0) {
1114                 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1115                 printk(KERN_WARNING
1116                     "HFC_multi: NOTE: Your chip is revision 0, "
1117                     "ask Cologne Chip for update. Newer chips "
1118                     "have a better FIFO handling. Old chips "
1119                     "still work but may have slightly lower "
1120                     "HDLC transmit performance.\n");
1121         }
1122         if (rev > 1) {
1123                 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1124                     "consider chip revision = %ld. The chip / "
1125                     "bridge may not work.\n", rev);
1126         }
1127
1128         /* set s-ram size */
1129         hc->Flen = 0x10;
1130         hc->Zmin = 0x80;
1131         hc->Zlen = 384;
1132         hc->DTMFbase = 0x1000;
1133         if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1134                 if (debug & DEBUG_HFCMULTI_INIT)
1135                         printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1136                             __func__);
1137                 hc->hw.r_ctrl |= V_EXT_RAM;
1138                 hc->hw.r_ram_sz = 1;
1139                 hc->Flen = 0x20;
1140                 hc->Zmin = 0xc0;
1141                 hc->Zlen = 1856;
1142                 hc->DTMFbase = 0x2000;
1143         }
1144         if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1145                 if (debug & DEBUG_HFCMULTI_INIT)
1146                         printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1147                             __func__);
1148                 hc->hw.r_ctrl |= V_EXT_RAM;
1149                 hc->hw.r_ram_sz = 2;
1150                 hc->Flen = 0x20;
1151                 hc->Zmin = 0xc0;
1152                 hc->Zlen = 8000;
1153                 hc->DTMFbase = 0x2000;
1154         }
1155         hc->max_trans = poll << 1;
1156         if (hc->max_trans > hc->Zlen)
1157                 hc->max_trans = hc->Zlen;
1158
1159         /* Speech Design PLX bridge */
1160         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1161                 if (debug & DEBUG_HFCMULTI_PLXSD)
1162                         printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1163                             __func__, hc->id + 1);
1164                 spin_lock_irqsave(&plx_lock, plx_flags);
1165                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1166                 writel(PLX_GPIOC_INIT, plx_acc_32);
1167                 pv = readl(plx_acc_32);
1168                 /* The first and the last cards are terminating the PCM bus */
1169                 pv |= PLX_TERM_ON; /* hc is currently the last */
1170                 /* Disconnect the PCM */
1171                 pv |= PLX_SLAVE_EN_N;
1172                 pv &= ~PLX_MASTER_EN;
1173                 pv &= ~PLX_SYNC_O_EN;
1174                 /* Put the DSP in Reset */
1175                 pv &= ~PLX_DSP_RES_N;
1176                 writel(pv, plx_acc_32);
1177                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1178                 if (debug & DEBUG_HFCMULTI_INIT)
1179                         printk(KERN_WARNING "%s: slave/term: PLX_GPIO=%x\n",
1180                                 __func__, pv);
1181                 /*
1182                  * If we are the 3rd PLXSD card or higher, we must turn
1183                  * termination of last PLXSD card off.
1184                  */
1185                 spin_lock_irqsave(&HFClock, hfc_flags);
1186                 plx_count = 0;
1187                 plx_last_hc = NULL;
1188                 list_for_each_entry_safe(pos, next, &HFClist, list) {
1189                         if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1190                                 plx_count++;
1191                                 if (pos != hc)
1192                                         plx_last_hc = pos;
1193                         }
1194                 }
1195                 if (plx_count >= 3) {
1196                         if (debug & DEBUG_HFCMULTI_PLXSD)
1197                                 printk(KERN_DEBUG "%s: card %d is between, so "
1198                                         "we disable termination\n",
1199                                     __func__, plx_last_hc->id + 1);
1200                         spin_lock_irqsave(&plx_lock, plx_flags);
1201                         plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1202                         pv = readl(plx_acc_32);
1203                         pv &= ~PLX_TERM_ON;
1204                         writel(pv, plx_acc_32);
1205                         spin_unlock_irqrestore(&plx_lock, plx_flags);
1206                         if (debug & DEBUG_HFCMULTI_INIT)
1207                             printk(KERN_WARNING "%s: term off: PLX_GPIO=%x\n",
1208                                         __func__, pv);
1209                 }
1210                 spin_unlock_irqrestore(&HFClock, hfc_flags);
1211                 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1212         }
1213
1214         /* we only want the real Z2 read-pointer for revision > 0 */
1215         if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1216                 hc->hw.r_ram_sz |= V_FZ_MD;
1217
1218         /* select pcm mode */
1219         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1220                 if (debug & DEBUG_HFCMULTI_INIT)
1221                         printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1222                             __func__);
1223         } else
1224         if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1225                 if (debug & DEBUG_HFCMULTI_INIT)
1226                         printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1227                             __func__);
1228                 hc->hw.r_pcm_md0 |= V_PCM_MD;
1229         } else {
1230                 if (debug & DEBUG_HFCMULTI_INIT)
1231                         printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1232                             __func__);
1233         }
1234
1235         /* soft reset */
1236         HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1237         HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1238         HFC_outb(hc, R_FIFO_MD, 0);
1239         hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES | V_RLD_EPR;
1240         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1241         udelay(100);
1242         hc->hw.r_cirm = 0;
1243         HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1244         udelay(100);
1245         HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1246
1247         /* Speech Design PLX bridge pcm and sync mode */
1248         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1249                 spin_lock_irqsave(&plx_lock, plx_flags);
1250                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1251                 pv = readl(plx_acc_32);
1252                 /* Connect PCM */
1253                 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1254                         pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1255                         pv |= PLX_SYNC_O_EN;
1256                         if (debug & DEBUG_HFCMULTI_INIT)
1257                                 printk(KERN_WARNING "%s: master: PLX_GPIO=%x\n",
1258                                         __func__, pv);
1259                 } else {
1260                         pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1261                         pv &= ~PLX_SYNC_O_EN;
1262                         if (debug & DEBUG_HFCMULTI_INIT)
1263                                 printk(KERN_WARNING "%s: slave: PLX_GPIO=%x\n",
1264                                         __func__, pv);
1265                 }
1266                 writel(pv, plx_acc_32);
1267                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1268         }
1269
1270         /* PCM setup */
1271         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1272         if (hc->slots == 32)
1273                 HFC_outb(hc, R_PCM_MD1, 0x00);
1274         if (hc->slots == 64)
1275                 HFC_outb(hc, R_PCM_MD1, 0x10);
1276         if (hc->slots == 128)
1277                 HFC_outb(hc, R_PCM_MD1, 0x20);
1278         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1279         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1280                 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1281         else
1282                 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1283         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1284         for (i = 0; i < 256; i++) {
1285                 HFC_outb_nodebug(hc, R_SLOT, i);
1286                 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1287                 HFC_outb_nodebug(hc, A_CONF, 0);
1288                 hc->slot_owner[i] = -1;
1289         }
1290
1291         /* set clock speed */
1292         if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1293                 if (debug & DEBUG_HFCMULTI_INIT)
1294                         printk(KERN_DEBUG
1295                             "%s: setting double clock\n", __func__);
1296                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1297         }
1298
1299         /* B410P GPIO */
1300         if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1301                 printk(KERN_NOTICE "Setting GPIOs\n");
1302                 HFC_outb(hc, R_GPIO_SEL, 0x30);
1303                 HFC_outb(hc, R_GPIO_EN1, 0x3);
1304                 udelay(1000);
1305                 printk(KERN_NOTICE "calling vpm_init\n");
1306                 vpm_init(hc);
1307         }
1308
1309         /* check if R_F0_CNT counts (8 kHz frame count) */
1310         val = HFC_inb(hc, R_F0_CNTL);
1311         val += HFC_inb(hc, R_F0_CNTH) << 8;
1312         if (debug & DEBUG_HFCMULTI_INIT)
1313                 printk(KERN_DEBUG
1314                     "HFC_multi F0_CNT %ld after reset\n", val);
1315         spin_unlock_irqrestore(&hc->lock, flags);
1316         set_current_state(TASK_UNINTERRUPTIBLE);
1317         schedule_timeout((HZ/100)?:1); /* Timeout minimum 10ms */
1318         spin_lock_irqsave(&hc->lock, flags);
1319         val2 = HFC_inb(hc, R_F0_CNTL);
1320         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1321         if (debug & DEBUG_HFCMULTI_INIT)
1322                 printk(KERN_DEBUG
1323                         "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1324                     val2);
1325         if (val2 >= val+8) { /* 1 ms */
1326                 /* it counts, so we keep the pcm mode */
1327                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1328                         printk(KERN_INFO "controller is PCM bus MASTER\n");
1329                 else
1330                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1331                         printk(KERN_INFO "controller is PCM bus SLAVE\n");
1332                 else {
1333                         test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1334                         printk(KERN_INFO "controller is PCM bus SLAVE "
1335                                 "(auto detected)\n");
1336                 }
1337         } else {
1338                 /* does not count */
1339                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1340 controller_fail:
1341                         printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1342                             "pulse. Seems that controller fails.\n");
1343                         err = -EIO;
1344                         goto out;
1345                 }
1346                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1347                         printk(KERN_INFO "controller is PCM bus SLAVE "
1348                                 "(ignoring missing PCM clock)\n");
1349                 } else {
1350                         /* only one pcm master */
1351                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1352                                 && plxsd_master) {
1353                                 printk(KERN_ERR "HFC_multi ERROR, no clock "
1354                                     "on another Speech Design card found. "
1355                                     "Please be sure to connect PCM cable.\n");
1356                                 err = -EIO;
1357                                 goto out;
1358                         }
1359                         /* retry with master clock */
1360                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1361                                 spin_lock_irqsave(&plx_lock, plx_flags);
1362                                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1363                                 pv = readl(plx_acc_32);
1364                                 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1365                                 pv |= PLX_SYNC_O_EN;
1366                                 writel(pv, plx_acc_32);
1367                                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1368                                 if (debug & DEBUG_HFCMULTI_INIT)
1369                                     printk(KERN_WARNING "%s: master: PLX_GPIO"
1370                                         "=%x\n", __func__, pv);
1371                         }
1372                         hc->hw.r_pcm_md0 |= V_PCM_MD;
1373                         HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1374                         spin_unlock_irqrestore(&hc->lock, flags);
1375                         set_current_state(TASK_UNINTERRUPTIBLE);
1376                         schedule_timeout((HZ/100)?:1); /* Timeout min. 10ms */
1377                         spin_lock_irqsave(&hc->lock, flags);
1378                         val2 = HFC_inb(hc, R_F0_CNTL);
1379                         val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1380                         if (debug & DEBUG_HFCMULTI_INIT)
1381                                 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1382                                         "10 ms (2nd try)\n", val2);
1383                         if (val2 >= val+8) { /* 1 ms */
1384                                 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1385                                         &hc->chip);
1386                                 printk(KERN_INFO "controller is PCM bus MASTER "
1387                                         "(auto detected)\n");
1388                         } else
1389                                 goto controller_fail;
1390                 }
1391         }
1392
1393         /* Release the DSP Reset */
1394         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1395                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1396                         plxsd_master = 1;
1397                 spin_lock_irqsave(&plx_lock, plx_flags);
1398                 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1399                 pv = readl(plx_acc_32);
1400                 pv |=  PLX_DSP_RES_N;
1401                 writel(pv, plx_acc_32);
1402                 spin_unlock_irqrestore(&plx_lock, plx_flags);
1403                 if (debug & DEBUG_HFCMULTI_INIT)
1404                         printk(KERN_WARNING "%s: reset off: PLX_GPIO=%x\n",
1405                                 __func__, pv);
1406         }
1407
1408         /* pcm id */
1409         if (hc->pcm)
1410                 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1411                         hc->pcm);
1412         else {
1413                 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1414                  || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1415                         PCM_cnt++; /* SD has proprietary bridging */
1416                 }
1417                 hc->pcm = PCM_cnt;
1418                 printk(KERN_INFO "controller has PCM BUS ID %d "
1419                         "(auto selected)\n", hc->pcm);
1420         }
1421
1422         /* set up timer */
1423         HFC_outb(hc, R_TI_WD, poll_timer);
1424         hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1425
1426         /* set E1 state machine IRQ */
1427         if (hc->type == 1)
1428                 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1429
1430         /* set DTMF detection */
1431         if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1432                 if (debug & DEBUG_HFCMULTI_INIT)
1433                         printk(KERN_DEBUG "%s: enabling DTMF detection "
1434                             "for all B-channel\n", __func__);
1435                 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1436                 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1437                         hc->hw.r_dtmf |= V_ULAW_SEL;
1438                 HFC_outb(hc, R_DTMF_N, 102 - 1);
1439                 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1440         }
1441
1442         /* conference engine */
1443         if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1444                 r_conf_en = V_CONF_EN | V_ULAW;
1445         else
1446                 r_conf_en = V_CONF_EN;
1447         HFC_outb(hc, R_CONF_EN, r_conf_en);
1448
1449         /* setting leds */
1450         switch (hc->leds) {
1451         case 1: /* HFC-E1 OEM */
1452                 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1453                         HFC_outb(hc, R_GPIO_SEL, 0x32);
1454                 else
1455                         HFC_outb(hc, R_GPIO_SEL, 0x30);
1456
1457                 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1458                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1459
1460                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1461                 break;
1462
1463         case 2: /* HFC-4S OEM */
1464         case 3:
1465                 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1466                 HFC_outb(hc, R_GPIO_EN1, 0xff);
1467                 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1468                 break;
1469         }
1470
1471         /* set master clock */
1472         if (hc->masterclk >= 0) {
1473                 if (debug & DEBUG_HFCMULTI_INIT)
1474                         printk(KERN_DEBUG "%s: setting ST master clock "
1475                             "to port %d (0..%d)\n",
1476                             __func__, hc->masterclk, hc->ports-1);
1477                 hc->hw.r_st_sync = hc->masterclk | V_AUTO_SYNC;
1478                 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1479         }
1480
1481         /* setting misc irq */
1482         HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1483         if (debug & DEBUG_HFCMULTI_INIT)
1484                 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1485                     hc->hw.r_irqmsk_misc);
1486
1487         /* RAM access test */
1488         HFC_outb(hc, R_RAM_ADDR0, 0);
1489         HFC_outb(hc, R_RAM_ADDR1, 0);
1490         HFC_outb(hc, R_RAM_ADDR2, 0);
1491         for (i = 0; i < 256; i++) {
1492                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1493                 HFC_outb_nodebug(hc, R_RAM_DATA, ((i*3)&0xff));
1494         }
1495         for (i = 0; i < 256; i++) {
1496                 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1497                 HFC_inb_nodebug(hc, R_RAM_DATA);
1498                 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1499                 if (rval != ((i * 3) & 0xff)) {
1500                         printk(KERN_DEBUG
1501                             "addr:%x val:%x should:%x\n", i, rval,
1502                             (i * 3) & 0xff);
1503                         err++;
1504                 }
1505         }
1506         if (err) {
1507                 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1508                 err = -EIO;
1509                 goto out;
1510         }
1511
1512         if (debug & DEBUG_HFCMULTI_INIT)
1513                 printk(KERN_DEBUG "%s: done\n", __func__);
1514 out:
1515         spin_unlock_irqrestore(&hc->lock, flags);
1516         return err;
1517 }
1518
1519
1520 /*
1521  * control the watchdog
1522  */
1523 static void
1524 hfcmulti_watchdog(struct hfc_multi *hc)
1525 {
1526         hc->wdcount++;
1527
1528         if (hc->wdcount > 10) {
1529                 hc->wdcount = 0;
1530                 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1531                     V_GPIO_OUT3 : V_GPIO_OUT2;
1532
1533         /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1534                 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1535                 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1536         }
1537 }
1538
1539
1540
1541 /*
1542  * output leds
1543  */
1544 static void
1545 hfcmulti_leds(struct hfc_multi *hc)
1546 {
1547         unsigned long lled;
1548         unsigned long leddw;
1549         int i, state, active, leds;
1550         struct dchannel *dch;
1551         int led[4];
1552
1553         hc->ledcount += poll;
1554         if (hc->ledcount > 4096) {
1555                 hc->ledcount -= 4096;
1556                 hc->ledstate = 0xAFFEAFFE;
1557         }
1558
1559         switch (hc->leds) {
1560         case 1: /* HFC-E1 OEM */
1561                 /* 2 red blinking: NT mode deactivate
1562                  * 2 red steady:   TE mode deactivate
1563                  * left green:     L1 active
1564                  * left red:       frame sync, but no L1
1565                  * right green:    L2 active
1566                  */
1567                 if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1568                         if (hc->chan[hc->dslot].dch->dev.D.protocol
1569                                 != ISDN_P_NT_E1) {
1570                                 led[0] = 1;
1571                                 led[1] = 1;
1572                         } else if (hc->ledcount>>11) {
1573                                 led[0] = 1;
1574                                 led[1] = 1;
1575                         } else {
1576                                 led[0] = 0;
1577                                 led[1] = 0;
1578                         }
1579                         led[2] = 0;
1580                         led[3] = 0;
1581                 } else { /* with frame sync */
1582                         /* TODO make it work */
1583                         led[0] = 0;
1584                         led[1] = 0;
1585                         led[2] = 0;
1586                         led[3] = 1;
1587                 }
1588                 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1589                         /* leds are inverted */
1590                 if (leds != (int)hc->ledstate) {
1591                         HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1592                         hc->ledstate = leds;
1593                 }
1594                 break;
1595
1596         case 2: /* HFC-4S OEM */
1597                 /* red blinking = PH_DEACTIVATE NT Mode
1598                  * red steady   = PH_DEACTIVATE TE Mode
1599                  * green steady = PH_ACTIVATE
1600                  */
1601                 for (i = 0; i < 4; i++) {
1602                         state = 0;
1603                         active = -1;
1604                         dch = hc->chan[(i << 2) | 2].dch;
1605                         if (dch) {
1606                                 state = dch->state;
1607                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1608                                         active = 3;
1609                                 else
1610                                         active = 7;
1611                         }
1612                         if (state) {
1613                                 if (state == active) {
1614                                         led[i] = 1; /* led green */
1615                                 } else
1616                                         if (dch->dev.D.protocol == ISDN_P_TE_S0)
1617                                                 /* TE mode: led red */
1618                                                 led[i] = 2;
1619                                         else
1620                                                 if (hc->ledcount>>11)
1621                                                         /* led red */
1622                                                         led[i] = 2;
1623                                                 else
1624                                                         /* led off */
1625                                                         led[i] = 0;
1626                         } else
1627                                 led[i] = 0; /* led off */
1628                 }
1629                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1630                         leds = 0;
1631                         for (i = 0; i < 4; i++) {
1632                                 if (led[i] == 1) {
1633                                         /*green*/
1634                                         leds |= (0x2 << (i * 2));
1635                                 } else if (led[i] == 2) {
1636                                         /*red*/
1637                                         leds |= (0x1 << (i * 2));
1638                                 }
1639                         }
1640                         if (leds != (int)hc->ledstate) {
1641                                 vpm_out(hc, 0, 0x1a8 + 3, leds);
1642                                 hc->ledstate = leds;
1643                         }
1644                 } else {
1645                         leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1646                             ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1647                             ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1648                             ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1649                         if (leds != (int)hc->ledstate) {
1650                                 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1651                                 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1652                                 hc->ledstate = leds;
1653                         }
1654                 }
1655                 break;
1656
1657         case 3: /* HFC 1S/2S Beronet */
1658                 /* red blinking = PH_DEACTIVATE NT Mode
1659                  * red steady   = PH_DEACTIVATE TE Mode
1660                  * green steady = PH_ACTIVATE
1661                  */
1662                 for (i = 0; i < 2; i++) {
1663                         state = 0;
1664                         active = -1;
1665                         dch = hc->chan[(i << 2) | 2].dch;
1666                         if (dch) {
1667                                 state = dch->state;
1668                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1669                                         active = 3;
1670                                 else
1671                                         active = 7;
1672                         }
1673                         if (state) {
1674                                 if (state == active) {
1675                                         led[i] = 1; /* led green */
1676                                 } else
1677                                         if (dch->dev.D.protocol == ISDN_P_TE_S0)
1678                                                 /* TE mode: led red */
1679                                                 led[i] = 2;
1680                                         else
1681                                                 if (hc->ledcount >> 11)
1682                                                         /* led red */
1683                                                         led[i] = 2;
1684                                                 else
1685                                                         /* led off */
1686                                                         led[i] = 0;
1687                         } else
1688                                 led[i] = 0; /* led off */
1689                 }
1690
1691
1692                 leds = (led[0] > 0) | ((led[1] > 0)<<1) | ((led[0]&1)<<2)
1693                         | ((led[1]&1)<<3);
1694                 if (leds != (int)hc->ledstate) {
1695                         HFC_outb_nodebug(hc, R_GPIO_EN1,
1696                             ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1697                         HFC_outb_nodebug(hc, R_GPIO_OUT1,
1698                             ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1699                         hc->ledstate = leds;
1700                 }
1701                 break;
1702         case 8: /* HFC 8S+ Beronet */
1703                 lled = 0;
1704
1705                 for (i = 0; i < 8; i++) {
1706                         state = 0;
1707                         active = -1;
1708                         dch = hc->chan[(i << 2) | 2].dch;
1709                         if (dch) {
1710                                 state = dch->state;
1711                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1712                                         active = 3;
1713                                 else
1714                                         active = 7;
1715                         }
1716                         if (state) {
1717                                 if (state == active) {
1718                                         lled |= 0 << i;
1719                                 } else
1720                                         if (hc->ledcount >> 11)
1721                                                 lled |= 0 << i;
1722                                         else
1723                                                 lled |= 1 << i;
1724                         } else
1725                                 lled |= 1 << i;
1726                 }
1727                 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1728                 if (leddw != hc->ledstate) {
1729                         /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1730                         HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1731                         /* was _io before */
1732                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1733                         outw(0x4000, hc->pci_iobase + 4);
1734                         outl(leddw, hc->pci_iobase);
1735                         HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1736                         hc->ledstate = leddw;
1737                 }
1738                 break;
1739         }
1740 }
1741 /*
1742  * read dtmf coefficients
1743  */
1744
1745 static void
1746 hfcmulti_dtmf(struct hfc_multi *hc)
1747 {
1748         s32             *coeff;
1749         u_int           mantissa;
1750         int             co, ch;
1751         struct bchannel *bch = NULL;
1752         u8              exponent;
1753         int             dtmf = 0;
1754         int             addr;
1755         u16             w_float;
1756         struct sk_buff  *skb;
1757         struct mISDNhead *hh;
1758
1759         if (debug & DEBUG_HFCMULTI_DTMF)
1760                 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1761         for (ch = 0; ch <= 31; ch++) {
1762                 /* only process enabled B-channels */
1763                 bch = hc->chan[ch].bch;
1764                 if (!bch)
1765                         continue;
1766                 if (!hc->created[hc->chan[ch].port])
1767                         continue;
1768                 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1769                         continue;
1770                 if (debug & DEBUG_HFCMULTI_DTMF)
1771                         printk(KERN_DEBUG "%s: dtmf channel %d:",
1772                                 __func__, ch);
1773                 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1774                 dtmf = 1;
1775                 for (co = 0; co < 8; co++) {
1776                         /* read W(n-1) coefficient */
1777                         addr = hc->DTMFbase + ((co<<7) | (ch<<2));
1778                         HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1779                         HFC_outb_nodebug(hc, R_RAM_ADDR1, addr>>8);
1780                         HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr>>16)
1781                                 | V_ADDR_INC);
1782                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1783                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1784                         if (debug & DEBUG_HFCMULTI_DTMF)
1785                                 printk(" %04x", w_float);
1786
1787                         /* decode float (see chip doc) */
1788                         mantissa = w_float & 0x0fff;
1789                         if (w_float & 0x8000)
1790                                 mantissa |= 0xfffff000;
1791                         exponent = (w_float>>12) & 0x7;
1792                         if (exponent) {
1793                                 mantissa ^= 0x1000;
1794                                 mantissa <<= (exponent-1);
1795                         }
1796
1797                         /* store coefficient */
1798                         coeff[co<<1] = mantissa;
1799
1800                         /* read W(n) coefficient */
1801                         w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1802                         w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1803                         if (debug & DEBUG_HFCMULTI_DTMF)
1804                                 printk(" %04x", w_float);
1805
1806                         /* decode float (see chip doc) */
1807                         mantissa = w_float & 0x0fff;
1808                         if (w_float & 0x8000)
1809                                 mantissa |= 0xfffff000;
1810                         exponent = (w_float>>12) & 0x7;
1811                         if (exponent) {
1812                                 mantissa ^= 0x1000;
1813                                 mantissa <<= (exponent-1);
1814                         }
1815
1816                         /* store coefficient */
1817                         coeff[(co<<1)|1] = mantissa;
1818                 }
1819                 if (debug & DEBUG_HFCMULTI_DTMF)
1820                         printk("%s: DTMF ready %08x %08x %08x %08x "
1821                             "%08x %08x %08x %08x\n", __func__,
1822                             coeff[0], coeff[1], coeff[2], coeff[3],
1823                             coeff[4], coeff[5], coeff[6], coeff[7]);
1824                 hc->chan[ch].coeff_count++;
1825                 if (hc->chan[ch].coeff_count == 8) {
1826                         hc->chan[ch].coeff_count = 0;
1827                         skb = mI_alloc_skb(512, GFP_ATOMIC);
1828                         if (!skb) {
1829                                 printk(KERN_WARNING "%s: No memory for skb\n",
1830                                     __func__);
1831                                 continue;
1832                         }
1833                         hh = mISDN_HEAD_P(skb);
1834                         hh->prim = PH_CONTROL_IND;
1835                         hh->id = DTMF_HFC_COEF;
1836                         memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1837                         recv_Bchannel_skb(bch, skb);
1838                 }
1839         }
1840
1841         /* restart DTMF processing */
1842         hc->dtmf = dtmf;
1843         if (dtmf)
1844                 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1845 }
1846
1847
1848 /*
1849  * fill fifo as much as possible
1850  */
1851
1852 static void
1853 hfcmulti_tx(struct hfc_multi *hc, int ch)
1854 {
1855         int i, ii, temp, len = 0;
1856         int Zspace, z1, z2; /* must be int for calculation */
1857         int Fspace, f1, f2;
1858         u_char *d;
1859         int *txpending, slot_tx;
1860         struct  bchannel *bch;
1861         struct  dchannel *dch;
1862         struct  sk_buff **sp = NULL;
1863         int *idxp;
1864
1865         bch = hc->chan[ch].bch;
1866         dch = hc->chan[ch].dch;
1867         if ((!dch) && (!bch))
1868                 return;
1869
1870         txpending = &hc->chan[ch].txpending;
1871         slot_tx = hc->chan[ch].slot_tx;
1872         if (dch) {
1873                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1874                         return;
1875                 sp = &dch->tx_skb;
1876                 idxp = &dch->tx_idx;
1877         } else {
1878                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1879                         return;
1880                 sp = &bch->tx_skb;
1881                 idxp = &bch->tx_idx;
1882         }
1883         if (*sp)
1884                 len = (*sp)->len;
1885
1886         if ((!len) && *txpending != 1)
1887                 return; /* no data */
1888
1889         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1890             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1891             (hc->chan[ch].slot_rx < 0) &&
1892             (hc->chan[ch].slot_tx < 0))
1893                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1894         else
1895                 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1896         HFC_wait_nodebug(hc);
1897
1898         if (*txpending == 2) {
1899                 /* reset fifo */
1900                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1901                 HFC_wait_nodebug(hc);
1902                 HFC_outb(hc, A_SUBCH_CFG, 0);
1903                 *txpending = 1;
1904         }
1905 next_frame:
1906         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1907                 f1 = HFC_inb_nodebug(hc, A_F1);
1908                 f2 = HFC_inb_nodebug(hc, A_F2);
1909                 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1910                         if (debug & DEBUG_HFCMULTI_FIFO)
1911                                 printk(KERN_DEBUG
1912                                     "%s(card %d): reread f2 because %d!=%d\n",
1913                                     __func__, hc->id + 1, temp, f2);
1914                         f2 = temp; /* repeat until F2 is equal */
1915                 }
1916                 Fspace = f2 - f1 - 1;
1917                 if (Fspace < 0)
1918                         Fspace += hc->Flen;
1919                 /*
1920                  * Old FIFO handling doesn't give us the current Z2 read
1921                  * pointer, so we cannot send the next frame before the fifo
1922                  * is empty. It makes no difference except for a slightly
1923                  * lower performance.
1924                  */
1925                 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1926                         if (f1 != f2)
1927                                 Fspace = 0;
1928                         else
1929                                 Fspace = 1;
1930                 }
1931                 /* one frame only for ST D-channels, to allow resending */
1932                 if (hc->type != 1 && dch) {
1933                         if (f1 != f2)
1934                                 Fspace = 0;
1935                 }
1936                 /* F-counter full condition */
1937                 if (Fspace == 0)
1938                         return;
1939         }
1940         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1941         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1942         while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
1943                 if (debug & DEBUG_HFCMULTI_FIFO)
1944                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
1945                                 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
1946                 z2 = temp; /* repeat unti Z2 is equal */
1947         }
1948         hc->chan[ch].Zfill = z1 - z2;
1949         if (hc->chan[ch].Zfill < 0)
1950                 hc->chan[ch].Zfill += hc->Zlen;
1951         Zspace = z2 - z1;
1952         if (Zspace <= 0)
1953                 Zspace += hc->Zlen;
1954         Zspace -= 4; /* keep not too full, so pointers will not overrun */
1955         /* fill transparent data only to maxinum transparent load (minus 4) */
1956         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
1957                 Zspace = Zspace - hc->Zlen + hc->max_trans;
1958         if (Zspace <= 0) /* no space of 4 bytes */
1959                 return;
1960
1961         /* if no data */
1962         if (!len) {
1963                 if (z1 == z2) { /* empty */
1964                         /* if done with FIFO audio data during PCM connection */
1965                         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
1966                             *txpending && slot_tx >= 0) {
1967                                 if (debug & DEBUG_HFCMULTI_MODE)
1968                                         printk(KERN_DEBUG
1969                                             "%s: reconnecting PCM due to no "
1970                                             "more FIFO data: channel %d "
1971                                             "slot_tx %d\n",
1972                                             __func__, ch, slot_tx);
1973                                 /* connect slot */
1974                                 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1975                                     V_HDLC_TRP | V_IFF);
1976                                 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
1977                                 HFC_wait_nodebug(hc);
1978                                 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
1979                                     V_HDLC_TRP | V_IFF);
1980                                 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
1981                                 HFC_wait_nodebug(hc);
1982                         }
1983                         *txpending = 0;
1984                 }
1985                 return; /* no data */
1986         }
1987
1988         /* "fill fifo if empty" feature */
1989         if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
1990                 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
1991                 if (debug & DEBUG_HFCMULTI_FILL)
1992                         printk(KERN_DEBUG "%s: buffer empty, so we have "
1993                                 "underrun\n", __func__);
1994                 /* fill buffer, to prevent future underrun */
1995                 hc->write_fifo(hc, hc->silence_data, poll >> 1);
1996                 Zspace -= (poll >> 1);
1997         }
1998
1999         /* if audio data and connected slot */
2000         if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2001                 && slot_tx >= 0) {
2002                 if (debug & DEBUG_HFCMULTI_MODE)
2003                         printk(KERN_DEBUG "%s: disconnecting PCM due to "
2004                             "FIFO data: channel %d slot_tx %d\n",
2005                             __func__, ch, slot_tx);
2006                 /* disconnect slot */
2007                 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2008                 HFC_outb_nodebug(hc, R_FIFO, ch<<1 | 1);
2009                 HFC_wait_nodebug(hc);
2010                 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 | V_HDLC_TRP | V_IFF);
2011                 HFC_outb_nodebug(hc, R_FIFO, ch<<1);
2012                 HFC_wait_nodebug(hc);
2013         }
2014         *txpending = 1;
2015
2016         /* show activity */
2017         hc->activity[hc->chan[ch].port] = 1;
2018
2019         /* fill fifo to what we have left */
2020         ii = len;
2021         if (dch || test_bit(FLG_HDLC, &bch->Flags))
2022                 temp = 1;
2023         else
2024                 temp = 0;
2025         i = *idxp;
2026         d = (*sp)->data + i;
2027         if (ii - i > Zspace)
2028                 ii = Zspace + i;
2029         if (debug & DEBUG_HFCMULTI_FIFO)
2030                 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2031                     "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2032                         __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2033                         temp ? "HDLC":"TRANS");
2034
2035         /* Have to prep the audio data */
2036         hc->write_fifo(hc, d, ii - i);
2037         hc->chan[ch].Zfill += ii - i;
2038         *idxp = ii;
2039
2040         /* if not all data has been written */
2041         if (ii != len) {
2042                 /* NOTE: fifo is started by the calling function */
2043                 return;
2044         }
2045
2046         /* if all data has been written, terminate frame */
2047         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2048                 /* increment f-counter */
2049                 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2050                 HFC_wait_nodebug(hc);
2051         }
2052
2053         /* send confirm, since get_net_bframe will not do it with trans */
2054         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2055                 confirm_Bsend(bch);
2056
2057         /* check for next frame */
2058         dev_kfree_skb(*sp);
2059         if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2060                 len = (*sp)->len;
2061                 goto next_frame;
2062         }
2063         if (dch && get_next_dframe(dch)) {
2064                 len = (*sp)->len;
2065                 goto next_frame;
2066         }
2067
2068         /*
2069          * now we have no more data, so in case of transparent,
2070          * we set the last byte in fifo to 'silence' in case we will get
2071          * no more data at all. this prevents sending an undefined value.
2072          */
2073         if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2074                 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2075 }
2076
2077
2078 /* NOTE: only called if E1 card is in active state */
2079 static void
2080 hfcmulti_rx(struct hfc_multi *hc, int ch)
2081 {
2082         int temp;
2083         int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2084         int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2085         int again = 0;
2086         struct  bchannel *bch;
2087         struct  dchannel *dch;
2088         struct sk_buff  *skb, **sp = NULL;
2089         int     maxlen;
2090
2091         bch = hc->chan[ch].bch;
2092         dch = hc->chan[ch].dch;
2093         if ((!dch) && (!bch))
2094                 return;
2095         if (dch) {
2096                 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2097                         return;
2098                 sp = &dch->rx_skb;
2099                 maxlen = dch->maxlen;
2100         } else {
2101                 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2102                         return;
2103                 sp = &bch->rx_skb;
2104                 maxlen = bch->maxlen;
2105         }
2106 next_frame:
2107         /* on first AND before getting next valid frame, R_FIFO must be written
2108            to. */
2109         if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2110             (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2111             (hc->chan[ch].slot_rx < 0) &&
2112             (hc->chan[ch].slot_tx < 0))
2113                 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch<<1) | 1);
2114         else
2115                 HFC_outb_nodebug(hc, R_FIFO, (ch<<1)|1);
2116         HFC_wait_nodebug(hc);
2117
2118         /* ignore if rx is off BUT change fifo (above) to start pending TX */
2119         if (hc->chan[ch].rx_off)
2120                 return;
2121
2122         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2123                 f1 = HFC_inb_nodebug(hc, A_F1);
2124                 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2125                         if (debug & DEBUG_HFCMULTI_FIFO)
2126                                 printk(KERN_DEBUG
2127                                     "%s(card %d): reread f1 because %d!=%d\n",
2128                                     __func__, hc->id + 1, temp, f1);
2129                         f1 = temp; /* repeat until F1 is equal */
2130                 }
2131                 f2 = HFC_inb_nodebug(hc, A_F2);
2132         }
2133         z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2134         while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2135                 if (debug & DEBUG_HFCMULTI_FIFO)
2136                         printk(KERN_DEBUG "%s(card %d): reread z2 because "
2137                                 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2138                 z1 = temp; /* repeat until Z1 is equal */
2139         }
2140         z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2141         Zsize = z1 - z2;
2142         if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2143                 /* complete hdlc frame */
2144                 Zsize++;
2145         if (Zsize < 0)
2146                 Zsize += hc->Zlen;
2147         /* if buffer is empty */
2148         if (Zsize <= 0)
2149                 return;
2150
2151         if (*sp == NULL) {
2152                 *sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2153                 if (*sp == NULL) {
2154                         printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2155                             __func__);
2156                         return;
2157                 }
2158         }
2159         /* show activity */
2160         hc->activity[hc->chan[ch].port] = 1;
2161
2162         /* empty fifo with what we have */
2163         if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2164                 if (debug & DEBUG_HFCMULTI_FIFO)
2165                         printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2166                             "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2167                             "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2168                             Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2169                             f1, f2, Zsize + (*sp)->len, again);
2170                 /* HDLC */
2171                 if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2172                         if (debug & DEBUG_HFCMULTI_FIFO)
2173                                 printk(KERN_DEBUG
2174                                     "%s(card %d): hdlc-frame too large.\n",
2175                                     __func__, hc->id + 1);
2176                         skb_trim(*sp, 0);
2177                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2178                         HFC_wait_nodebug(hc);
2179                         return;
2180                 }
2181
2182                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2183
2184                 if (f1 != f2) {
2185                         /* increment Z2,F2-counter */
2186                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2187                         HFC_wait_nodebug(hc);
2188                         /* check size */
2189                         if ((*sp)->len < 4) {
2190                                 if (debug & DEBUG_HFCMULTI_FIFO)
2191                                         printk(KERN_DEBUG
2192                                             "%s(card %d): Frame below minimum "
2193                                             "size\n", __func__, hc->id + 1);
2194                                 skb_trim(*sp, 0);
2195                                 goto next_frame;
2196                         }
2197                         /* there is at least one complete frame, check crc */
2198                         if ((*sp)->data[(*sp)->len - 1]) {
2199                                 if (debug & DEBUG_HFCMULTI_CRC)
2200                                         printk(KERN_DEBUG
2201                                             "%s: CRC-error\n", __func__);
2202                                 skb_trim(*sp, 0);
2203                                 goto next_frame;
2204                         }
2205                         skb_trim(*sp, (*sp)->len - 3);
2206                         if ((*sp)->len < MISDN_COPY_SIZE) {
2207                                 skb = *sp;
2208                                 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2209                                 if (*sp) {
2210                                         memcpy(skb_put(*sp, skb->len),
2211                                             skb->data, skb->len);
2212                                         skb_trim(skb, 0);
2213                                 } else {
2214                                         printk(KERN_DEBUG "%s: No mem\n",
2215                                             __func__);
2216                                         *sp = skb;
2217                                         skb = NULL;
2218                                 }
2219                         } else {
2220                                 skb = NULL;
2221                         }
2222                         if (debug & DEBUG_HFCMULTI_FIFO) {
2223                                 printk(KERN_DEBUG "%s(card %d):",
2224                                         __func__, hc->id + 1);
2225                                 temp = 0;
2226                                 while (temp < (*sp)->len)
2227                                         printk(" %02x", (*sp)->data[temp++]);
2228                                 printk("\n");
2229                         }
2230                         if (dch)
2231                                 recv_Dchannel(dch);
2232                         else
2233                                 recv_Bchannel(bch, MISDN_ID_ANY);
2234                         *sp = skb;
2235                         again++;
2236                         goto next_frame;
2237                 }
2238                 /* there is an incomplete frame */
2239         } else {
2240                 /* transparent */
2241                 if (Zsize > skb_tailroom(*sp))
2242                         Zsize = skb_tailroom(*sp);
2243                 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2244                 if (((*sp)->len) < MISDN_COPY_SIZE) {
2245                         skb = *sp;
2246                         *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2247                         if (*sp) {
2248                                 memcpy(skb_put(*sp, skb->len),
2249                                     skb->data, skb->len);
2250                                 skb_trim(skb, 0);
2251                         } else {
2252                                 printk(KERN_DEBUG "%s: No mem\n", __func__);
2253                                 *sp = skb;
2254                                 skb = NULL;
2255                         }
2256                 } else {
2257                         skb = NULL;
2258                 }
2259                 if (debug & DEBUG_HFCMULTI_FIFO)
2260                         printk(KERN_DEBUG
2261                             "%s(card %d): fifo(%d) reading %d bytes "
2262                             "(z1=%04x, z2=%04x) TRANS\n",
2263                                 __func__, hc->id + 1, ch, Zsize, z1, z2);
2264                 /* only bch is transparent */
2265                 recv_Bchannel(bch, hc->chan[ch].Zfill);
2266                 *sp = skb;
2267         }
2268 }
2269
2270
2271 /*
2272  * Interrupt handler
2273  */
2274 static void
2275 signal_state_up(struct dchannel *dch, int info, char *msg)
2276 {
2277         struct sk_buff  *skb;
2278         int             id, data = info;
2279
2280         if (debug & DEBUG_HFCMULTI_STATE)
2281                 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2282
2283         id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2284
2285         skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2286                 GFP_ATOMIC);
2287         if (!skb)
2288                 return;
2289         recv_Dchannel_skb(dch, skb);
2290 }
2291
2292 static inline void
2293 handle_timer_irq(struct hfc_multi *hc)
2294 {
2295         int             ch, temp;
2296         struct dchannel *dch;
2297         u_long          flags;
2298
2299         /* process queued resync jobs */
2300         if (hc->e1_resync) {
2301                 /* lock, so e1_resync gets not changed */
2302                 spin_lock_irqsave(&HFClock, flags);
2303                 if (hc->e1_resync & 1) {
2304                         if (debug & DEBUG_HFCMULTI_PLXSD)
2305                                 printk(KERN_DEBUG "Enable SYNC_I\n");
2306                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2307                         /* disable JATT, if RX_SYNC is set */
2308                         if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2309                                 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2310                 }
2311                 if (hc->e1_resync & 2) {
2312                         if (debug & DEBUG_HFCMULTI_PLXSD)
2313                                 printk(KERN_DEBUG "Enable jatt PLL\n");
2314                         HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2315                 }
2316                 if (hc->e1_resync & 4) {
2317                         if (debug & DEBUG_HFCMULTI_PLXSD)
2318                                 printk(KERN_DEBUG
2319                                     "Enable QUARTZ for HFC-E1\n");
2320                         /* set jatt to quartz */
2321                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2322                                 | V_JATT_OFF);
2323                         /* switch to JATT, in case it is not already */
2324                         HFC_outb(hc, R_SYNC_OUT, 0);
2325                 }
2326                 hc->e1_resync = 0;
2327                 spin_unlock_irqrestore(&HFClock, flags);
2328         }
2329
2330         if (hc->type != 1 || hc->e1_state == 1)
2331                 for (ch = 0; ch <= 31; ch++) {
2332                         if (hc->created[hc->chan[ch].port]) {
2333                                 hfcmulti_tx(hc, ch);
2334                                 /* fifo is started when switching to rx-fifo */
2335                                 hfcmulti_rx(hc, ch);
2336                                 if (hc->chan[ch].dch &&
2337                                     hc->chan[ch].nt_timer > -1) {
2338                                         dch = hc->chan[ch].dch;
2339                                         if (!(--hc->chan[ch].nt_timer)) {
2340                                                 schedule_event(dch,
2341                                                     FLG_PHCHANGE);
2342                                                 if (debug &
2343                                                     DEBUG_HFCMULTI_STATE)
2344                                                         printk(KERN_DEBUG
2345                                                             "%s: nt_timer at "
2346                                                             "state %x\n",
2347                                                             __func__,
2348                                                             dch->state);
2349                                         }
2350                                 }
2351                         }
2352                 }
2353         if (hc->type == 1 && hc->created[0]) {
2354                 dch = hc->chan[hc->dslot].dch;
2355                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2356                         /* LOS */
2357                         temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2358                         if (!temp && hc->chan[hc->dslot].los)
2359                                 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2360                                     "LOS detected");
2361                         if (temp && !hc->chan[hc->dslot].los)
2362                                 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2363                                     "LOS gone");
2364                         hc->chan[hc->dslot].los = temp;
2365                 }
2366                 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2367                         /* AIS */
2368                         temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2369                         if (!temp && hc->chan[hc->dslot].ais)
2370                                 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2371                                     "AIS detected");
2372                         if (temp && !hc->chan[hc->dslot].ais)
2373                                 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2374                                     "AIS gone");
2375                         hc->chan[hc->dslot].ais = temp;
2376                 }
2377                 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2378                         /* SLIP */
2379                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2380                         if (!temp && hc->chan[hc->dslot].slip_rx)
2381                                 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2382                                     " bit SLIP detected RX");
2383                         hc->chan[hc->dslot].slip_rx = temp;
2384                         temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2385                         if (!temp && hc->chan[hc->dslot].slip_tx)
2386                                 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2387                                     " bit SLIP detected TX");
2388                         hc->chan[hc->dslot].slip_tx = temp;
2389                 }
2390                 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2391                         /* RDI */
2392                         temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2393                         if (!temp && hc->chan[hc->dslot].rdi)
2394                                 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2395                                     "RDI detected");
2396                         if (temp && !hc->chan[hc->dslot].rdi)
2397                                 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2398                                     "RDI gone");
2399                         hc->chan[hc->dslot].rdi = temp;
2400                 }
2401                 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2402                 switch (hc->chan[hc->dslot].sync) {
2403                 case 0:
2404                         if ((temp & 0x60) == 0x60) {
2405                                 if (debug & DEBUG_HFCMULTI_SYNC)
2406                                         printk(KERN_DEBUG
2407                                             "%s: (id=%d) E1 now "
2408                                             "in clock sync\n",
2409                                             __func__, hc->id);
2410                                 HFC_outb(hc, R_RX_OFF,
2411                                     hc->chan[hc->dslot].jitter | V_RX_INIT);
2412                                 HFC_outb(hc, R_TX_OFF,
2413                                     hc->chan[hc->dslot].jitter | V_RX_INIT);
2414                                 hc->chan[hc->dslot].sync = 1;
2415                                 goto check_framesync;
2416                         }
2417                         break;
2418                 case 1:
2419                         if ((temp & 0x60) != 0x60) {
2420                                 if (debug & DEBUG_HFCMULTI_SYNC)
2421                                         printk(KERN_DEBUG
2422                                             "%s: (id=%d) E1 "
2423                                             "lost clock sync\n",
2424                                             __func__, hc->id);
2425                                 hc->chan[hc->dslot].sync = 0;
2426                                 break;
2427                         }
2428 check_framesync:
2429                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2430                         if (temp == 0x27) {
2431                                 if (debug & DEBUG_HFCMULTI_SYNC)
2432                                         printk(KERN_DEBUG
2433                                             "%s: (id=%d) E1 "
2434                                             "now in frame sync\n",
2435                                             __func__, hc->id);
2436                                 hc->chan[hc->dslot].sync = 2;
2437                         }
2438                         break;
2439                 case 2:
2440                         if ((temp & 0x60) != 0x60) {
2441                                 if (debug & DEBUG_HFCMULTI_SYNC)
2442                                         printk(KERN_DEBUG
2443                                             "%s: (id=%d) E1 lost "
2444                                             "clock & frame sync\n",
2445                                             __func__, hc->id);
2446                                 hc->chan[hc->dslot].sync = 0;
2447                                 break;
2448                         }
2449                         temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2450                         if (temp != 0x27) {
2451                                 if (debug & DEBUG_HFCMULTI_SYNC)
2452                                         printk(KERN_DEBUG
2453                                             "%s: (id=%d) E1 "
2454                                             "lost frame sync\n",
2455                                             __func__, hc->id);
2456                                 hc->chan[hc->dslot].sync = 1;
2457                         }
2458                         break;
2459                 }
2460         }
2461
2462         if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2463                 hfcmulti_watchdog(hc);
2464
2465         if (hc->leds)
2466                 hfcmulti_leds(hc);
2467 }
2468
2469 static void
2470 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2471 {
2472         struct dchannel *dch;
2473         int             ch;
2474         int             active;
2475         u_char          st_status, temp;
2476
2477         /* state machine */
2478         for (ch = 0; ch <= 31; ch++) {
2479                 if (hc->chan[ch].dch) {
2480                         dch = hc->chan[ch].dch;
2481                         if (r_irq_statech & 1) {
2482                                 HFC_outb_nodebug(hc, R_ST_SEL,
2483                                         hc->chan[ch].port);
2484                                 /* undocumented: delay after R_ST_SEL */
2485                                 udelay(1);
2486                                 /* undocumented: status changes during read */
2487                                 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2488                                 while (st_status != (temp =
2489                                         HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2490                                         if (debug & DEBUG_HFCMULTI_STATE)
2491                                                 printk(KERN_DEBUG "%s: reread "
2492                                                     "STATE because %d!=%d\n",
2493                                                     __func__, temp,
2494                                                     st_status);
2495                                         st_status = temp; /* repeat */
2496                                 }
2497
2498                                 /* Speech Design TE-sync indication */
2499                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2500                                         dch->dev.D.protocol == ISDN_P_TE_S0) {
2501                                         if (st_status & V_FR_SYNC_ST)
2502                                                 hc->syncronized |=
2503                                                     (1 << hc->chan[ch].port);
2504                                         else
2505                                                 hc->syncronized &=
2506                                                    ~(1 << hc->chan[ch].port);
2507                                 }
2508                                 dch->state = st_status & 0x0f;
2509                                 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2510                                         active = 3;
2511                                 else
2512                                         active = 7;
2513                                 if (dch->state == active) {
2514                                         HFC_outb_nodebug(hc, R_FIFO,
2515                                                 (ch << 1) | 1);
2516                                         HFC_wait_nodebug(hc);
2517                                         HFC_outb_nodebug(hc,
2518                                                 R_INC_RES_FIFO, V_RES_F);
2519                                         HFC_wait_nodebug(hc);
2520                                         dch->tx_idx = 0;
2521                                 }
2522                                 schedule_event(dch, FLG_PHCHANGE);
2523                                 if (debug & DEBUG_HFCMULTI_STATE)
2524                                         printk(KERN_DEBUG
2525                                             "%s: S/T newstate %x port %d\n",
2526                                             __func__, dch->state,
2527                                             hc->chan[ch].port);
2528                         }
2529                         r_irq_statech >>= 1;
2530                 }
2531         }
2532         if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2533                 plxsd_checksync(hc, 0);
2534 }
2535
2536 static void
2537 fifo_irq(struct hfc_multi *hc, int block)
2538 {
2539         int     ch, j;
2540         struct dchannel *dch;
2541         struct bchannel *bch;
2542         u_char r_irq_fifo_bl;
2543
2544         r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2545         j = 0;
2546         while (j < 8) {
2547                 ch = (block << 2) + (j >> 1);
2548                 dch = hc->chan[ch].dch;
2549                 bch = hc->chan[ch].bch;
2550                 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2551                         j += 2;
2552                         continue;
2553                 }
2554                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2555                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2556                         hfcmulti_tx(hc, ch);
2557                         /* start fifo */
2558                         HFC_outb_nodebug(hc, R_FIFO, 0);
2559                         HFC_wait_nodebug(hc);
2560                 }
2561                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2562                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2563                         hfcmulti_tx(hc, ch);
2564                         /* start fifo */
2565                         HFC_outb_nodebug(hc, R_FIFO, 0);
2566                         HFC_wait_nodebug(hc);
2567                 }
2568                 j++;
2569                 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2570                     test_bit(FLG_ACTIVE, &dch->Flags)) {
2571                         hfcmulti_rx(hc, ch);
2572                 }
2573                 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2574                     test_bit(FLG_ACTIVE, &bch->Flags)) {
2575                         hfcmulti_rx(hc, ch);
2576                 }
2577                 j++;
2578         }
2579 }
2580
2581 #ifdef IRQ_DEBUG
2582 int irqsem;
2583 #endif
2584 static irqreturn_t
2585 hfcmulti_interrupt(int intno, void *dev_id)
2586 {
2587 #ifdef IRQCOUNT_DEBUG
2588         static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2589             iq5 = 0, iq6 = 0, iqcnt = 0;
2590 #endif
2591         struct hfc_multi        *hc = dev_id;
2592         struct dchannel         *dch;
2593         u_char                  r_irq_statech, status, r_irq_misc, r_irq_oview;
2594         int                     i;
2595         void __iomem            *plx_acc;
2596         u_short                 wval;
2597         u_char                  e1_syncsta, temp;
2598         u_long                  flags;
2599
2600         if (!hc) {
2601                 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2602                 return IRQ_NONE;
2603         }
2604
2605         spin_lock(&hc->lock);
2606
2607 #ifdef IRQ_DEBUG
2608         if (irqsem)
2609                 printk(KERN_ERR "irq for card %d during irq from "
2610                 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2611         irqsem = hc->id + 1;
2612 #endif
2613
2614         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2615                 spin_lock_irqsave(&plx_lock, flags);
2616                 plx_acc = hc->plx_membase + PLX_INTCSR;
2617                 wval = readw(plx_acc);
2618                 spin_unlock_irqrestore(&plx_lock, flags);
2619                 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2620                         goto irq_notforus;
2621         }
2622
2623         status = HFC_inb_nodebug(hc, R_STATUS);
2624         r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2625 #ifdef IRQCOUNT_DEBUG
2626         if (r_irq_statech)
2627                 iq1++;
2628         if (status & V_DTMF_STA)
2629                 iq2++;
2630         if (status & V_LOST_STA)
2631                 iq3++;
2632         if (status & V_EXT_IRQSTA)
2633                 iq4++;
2634         if (status & V_MISC_IRQSTA)
2635                 iq5++;
2636         if (status & V_FR_IRQSTA)
2637                 iq6++;
2638         if (iqcnt++ > 5000) {
2639                 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2640                     iq1, iq2, iq3, iq4, iq5, iq6);
2641                 iqcnt = 0;
2642         }
2643 #endif
2644
2645         if (!r_irq_statech &&
2646             !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2647             V_MISC_IRQSTA | V_FR_IRQSTA))) {
2648                 /* irq is not for us */
2649                 goto irq_notforus;
2650         }
2651         hc->irqcnt++;
2652         if (r_irq_statech) {
2653                 if (hc->type != 1)
2654                         ph_state_irq(hc, r_irq_statech);
2655         }
2656         if (status & V_EXT_IRQSTA)
2657                 ; /* external IRQ */
2658         if (status & V_LOST_STA) {
2659                 /* LOST IRQ */
2660                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2661         }
2662         if (status & V_MISC_IRQSTA) {
2663                 /* misc IRQ */
2664                 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2665                 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2666                 if (r_irq_misc & V_STA_IRQ) {
2667                         if (hc->type == 1) {
2668                                 /* state machine */
2669                                 dch = hc->chan[hc->dslot].dch;
2670                                 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2671                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2672                                  && hc->e1_getclock) {
2673                                         if (e1_syncsta & V_FR_SYNC_E1)
2674                                                 hc->syncronized = 1;
2675                                         else
2676                                                 hc->syncronized = 0;
2677                                 }
2678                                 /* undocumented: status changes during read */
2679                                 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2680                                 while (dch->state != (temp =
2681                                         HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2682                                         if (debug & DEBUG_HFCMULTI_STATE)
2683                                                 printk(KERN_DEBUG "%s: reread "
2684                                                     "STATE because %d!=%d\n",
2685                                                     __func__, temp,
2686                                                     dch->state);
2687                                         dch->state = temp; /* repeat */
2688                                 }
2689                                 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2690                                         & 0x7;
2691                                 schedule_event(dch, FLG_PHCHANGE);
2692                                 if (debug & DEBUG_HFCMULTI_STATE)
2693                                         printk(KERN_DEBUG
2694                                             "%s: E1 (id=%d) newstate %x\n",
2695                                             __func__, hc->id, dch->state);
2696                                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2697                                         plxsd_checksync(hc, 0);
2698                         }
2699                 }
2700                 if (r_irq_misc & V_TI_IRQ) {
2701                         if (hc->iclock_on)
2702                                 mISDN_clock_update(hc->iclock, poll, NULL);
2703                         handle_timer_irq(hc);
2704                 }
2705
2706                 if (r_irq_misc & V_DTMF_IRQ) {
2707                         hfcmulti_dtmf(hc);
2708                 }
2709                 if (r_irq_misc & V_IRQ_PROC) {
2710                         static int irq_proc_cnt;
2711                         if (!irq_proc_cnt++)
2712                                 printk(KERN_WARNING "%s: got V_IRQ_PROC -"
2713                                     " this should not happen\n", __func__);
2714                 }
2715
2716         }
2717         if (status & V_FR_IRQSTA) {
2718                 /* FIFO IRQ */
2719                 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2720                 for (i = 0; i < 8; i++) {
2721                         if (r_irq_oview & (1 << i))
2722                                 fifo_irq(hc, i);
2723                 }
2724         }
2725
2726 #ifdef IRQ_DEBUG
2727         irqsem = 0;
2728 #endif
2729         spin_unlock(&hc->lock);
2730         return IRQ_HANDLED;
2731
2732 irq_notforus:
2733 #ifdef IRQ_DEBUG
2734         irqsem = 0;
2735 #endif
2736         spin_unlock(&hc->lock);
2737         return IRQ_NONE;
2738 }
2739
2740
2741 /*
2742  * timer callback for D-chan busy resolution. Currently no function
2743  */
2744
2745 static void
2746 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2747 {
2748 }
2749
2750
2751 /*
2752  * activate/deactivate hardware for selected channels and mode
2753  *
2754  * configure B-channel with the given protocol
2755  * ch eqals to the HFC-channel (0-31)
2756  * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2757  * for S/T, 1-31 for E1)
2758  * the hdlc interrupts will be set/unset
2759  */
2760 static int
2761 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2762     int bank_tx, int slot_rx, int bank_rx)
2763 {
2764         int flow_tx = 0, flow_rx = 0, routing = 0;
2765         int oslot_tx, oslot_rx;
2766         int conf;
2767
2768         if (ch < 0 || ch > 31)
2769                 return EINVAL;
2770         oslot_tx = hc->chan[ch].slot_tx;
2771         oslot_rx = hc->chan[ch].slot_rx;
2772         conf = hc->chan[ch].conf;
2773
2774         if (debug & DEBUG_HFCMULTI_MODE)
2775                 printk(KERN_DEBUG
2776                     "%s: card %d channel %d protocol %x slot old=%d new=%d "
2777                     "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2778                     __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2779                     bank_tx, oslot_rx, slot_rx, bank_rx);
2780
2781         if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2782                 /* remove from slot */
2783                 if (debug & DEBUG_HFCMULTI_MODE)
2784                         printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2785                             __func__, oslot_tx);
2786                 if (hc->slot_owner[oslot_tx<<1] == ch) {
2787                         HFC_outb(hc, R_SLOT, oslot_tx << 1);
2788                         HFC_outb(hc, A_SL_CFG, 0);
2789                         HFC_outb(hc, A_CONF, 0);
2790                         hc->slot_owner[oslot_tx<<1] = -1;
2791                 } else {
2792                         if (debug & DEBUG_HFCMULTI_MODE)
2793                                 printk(KERN_DEBUG
2794                                     "%s: we are not owner of this tx slot "
2795                                     "anymore, channel %d is.\n",
2796                                     __func__, hc->slot_owner[oslot_tx<<1]);
2797                 }
2798         }
2799
2800         if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2801                 /* remove from slot */
2802                 if (debug & DEBUG_HFCMULTI_MODE)
2803                         printk(KERN_DEBUG
2804                             "%s: remove from slot %d (RX)\n",
2805                             __func__, oslot_rx);
2806                 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2807                         HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2808                         HFC_outb(hc, A_SL_CFG, 0);
2809                         hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2810                 } else {
2811                         if (debug & DEBUG_HFCMULTI_MODE)
2812                                 printk(KERN_DEBUG
2813                                     "%s: we are not owner of this rx slot "
2814                                     "anymore, channel %d is.\n",
2815                                     __func__,
2816                                     hc->slot_owner[(oslot_rx << 1) | 1]);
2817                 }
2818         }
2819
2820         if (slot_tx < 0) {
2821                 flow_tx = 0x80; /* FIFO->ST */
2822                 /* disable pcm slot */
2823                 hc->chan[ch].slot_tx = -1;
2824                 hc->chan[ch].bank_tx = 0;
2825         } else {
2826                 /* set pcm slot */
2827                 if (hc->chan[ch].txpending)
2828                         flow_tx = 0x80; /* FIFO->ST */
2829                 else
2830                         flow_tx = 0xc0; /* PCM->ST */
2831                 /* put on slot */
2832                 routing = bank_tx ? 0xc0 : 0x80;
2833                 if (conf >= 0 || bank_tx > 1)
2834                         routing = 0x40; /* loop */
2835                 if (debug & DEBUG_HFCMULTI_MODE)
2836                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2837                             " %d flow %02x routing %02x conf %d (TX)\n",
2838                             __func__, ch, slot_tx, bank_tx,
2839                             flow_tx, routing, conf);
2840                 HFC_outb(hc, R_SLOT, slot_tx << 1);
2841                 HFC_outb(hc, A_SL_CFG, (ch<<1) | routing);
2842                 HFC_outb(hc, A_CONF, (conf < 0) ? 0 : (conf | V_CONF_SL));
2843                 hc->slot_owner[slot_tx << 1] = ch;
2844                 hc->chan[ch].slot_tx = slot_tx;
2845                 hc->chan[ch].bank_tx = bank_tx;
2846         }
2847         if (slot_rx < 0) {
2848                 /* disable pcm slot */
2849                 flow_rx = 0x80; /* ST->FIFO */
2850                 hc->chan[ch].slot_rx = -1;
2851                 hc->chan[ch].bank_rx = 0;
2852         } else {
2853                 /* set pcm slot */
2854                 if (hc->chan[ch].txpending)
2855                         flow_rx = 0x80; /* ST->FIFO */
2856                 else
2857                         flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2858                 /* put on slot */
2859                 routing = bank_rx?0x80:0xc0; /* reversed */
2860                 if (conf >= 0 || bank_rx > 1)
2861                         routing = 0x40; /* loop */
2862                 if (debug & DEBUG_HFCMULTI_MODE)
2863                         printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2864                             " %d flow %02x routing %02x conf %d (RX)\n",
2865                             __func__, ch, slot_rx, bank_rx,
2866                             flow_rx, routing, conf);
2867                 HFC_outb(hc, R_SLOT, (slot_rx<<1) | V_SL_DIR);
2868                 HFC_outb(hc, A_SL_CFG, (ch<<1) | V_CH_DIR | routing);
2869                 hc->slot_owner[(slot_rx<<1)|1] = ch;
2870                 hc->chan[ch].slot_rx = slot_rx;
2871                 hc->chan[ch].bank_rx = bank_rx;
2872         }
2873
2874         switch (protocol) {
2875         case (ISDN_P_NONE):
2876                 /* disable TX fifo */
2877                 HFC_outb(hc, R_FIFO, ch << 1);
2878                 HFC_wait(hc);
2879                 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2880                 HFC_outb(hc, A_SUBCH_CFG, 0);
2881                 HFC_outb(hc, A_IRQ_MSK, 0);
2882                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2883                 HFC_wait(hc);
2884                 /* disable RX fifo */
2885                 HFC_outb(hc, R_FIFO, (ch<<1)|1);
2886                 HFC_wait(hc);
2887                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2888                 HFC_outb(hc, A_SUBCH_CFG, 0);
2889                 HFC_outb(hc, A_IRQ_MSK, 0);
2890                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2891                 HFC_wait(hc);
2892                 if (hc->chan[ch].bch && hc->type != 1) {
2893                         hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2894                             ((ch & 0x3) == 0)? ~V_B1_EN: ~V_B2_EN;
2895                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2896                         /* undocumented: delay after R_ST_SEL */
2897                         udelay(1);
2898                         HFC_outb(hc, A_ST_CTRL0,
2899                             hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2900                 }
2901                 if (hc->chan[ch].bch) {
2902                         test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2903                         test_and_clear_bit(FLG_TRANSPARENT,
2904                             &hc->chan[ch].bch->Flags);
2905                 }
2906                 break;
2907         case (ISDN_P_B_RAW): /* B-channel */
2908
2909                 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2910                     (hc->chan[ch].slot_rx < 0) &&
2911                     (hc->chan[ch].slot_tx < 0)) {
2912
2913                         printk(KERN_DEBUG
2914                             "Setting B-channel %d to echo cancelable "
2915                             "state on PCM slot %d\n", ch,
2916                             ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
2917                         printk(KERN_DEBUG
2918                             "Enabling pass through for channel\n");
2919                         vpm_out(hc, ch, ((ch / 4) * 8) +
2920                             ((ch % 4) * 4) + 1, 0x01);
2921                         /* rx path */
2922                         /* S/T -> PCM */
2923                         HFC_outb(hc, R_FIFO, (ch << 1));
2924                         HFC_wait(hc);
2925                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2926                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2927                             ((ch % 4) * 4) + 1) << 1);
2928                         HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
2929
2930                         /* PCM -> FIFO */
2931                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2932                         HFC_wait(hc);
2933                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2934                         HFC_outb(hc, A_SUBCH_CFG, 0);
2935                         HFC_outb(hc, A_IRQ_MSK, 0);
2936                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2937                         HFC_wait(hc);
2938                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2939                             ((ch % 4) * 4) + 1) << 1) | 1);
2940                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
2941
2942                         /* tx path */
2943                         /* PCM -> S/T */
2944                         HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2945                         HFC_wait(hc);
2946                         HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
2947                         HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
2948                             ((ch % 4) * 4)) << 1) | 1);
2949                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
2950
2951                         /* FIFO -> PCM */
2952                         HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
2953                         HFC_wait(hc);
2954                         HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
2955                         HFC_outb(hc, A_SUBCH_CFG, 0);
2956                         HFC_outb(hc, A_IRQ_MSK, 0);
2957                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2958                         HFC_wait(hc);
2959                         /* tx silence */
2960                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2961                         HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
2962                             ((ch % 4) * 4)) << 1);
2963                         HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
2964                 } else {
2965                         /* enable TX fifo */
2966                         HFC_outb(hc, R_FIFO, ch << 1);
2967                         HFC_wait(hc);
2968                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
2969                             V_HDLC_TRP | V_IFF);
2970                         HFC_outb(hc, A_SUBCH_CFG, 0);
2971                         HFC_outb(hc, A_IRQ_MSK, 0);
2972                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2973                         HFC_wait(hc);
2974                         /* tx silence */
2975                         HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2976                         /* enable RX fifo */
2977                         HFC_outb(hc, R_FIFO, (ch<<1)|1);
2978                         HFC_wait(hc);
2979                         HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 | V_HDLC_TRP);
2980                         HFC_outb(hc, A_SUBCH_CFG, 0);
2981                         HFC_outb(hc, A_IRQ_MSK, 0);
2982                         HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2983                         HFC_wait(hc);
2984                 }
2985                 if (hc->type != 1) {
2986                         hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
2987                             ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
2988                         HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2989                         /* undocumented: delay after R_ST_SEL */
2990                         udelay(1);
2991                         HFC_outb(hc, A_ST_CTRL0,
2992                             hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2993                 }
2994                 if (hc->chan[ch].bch)
2995                         test_and_set_bit(FLG_TRANSPARENT,
2996                             &hc->chan[ch].bch->Flags);
2997                 break;
2998         case (ISDN_P_B_HDLC): /* B-channel */
2999         case (ISDN_P_TE_S0): /* D-channel */
3000         case (ISDN_P_NT_S0):
3001         case (ISDN_P_TE_E1):
3002         case (ISDN_P_NT_E1):
3003                 /* enable TX fifo */
3004                 HFC_outb(hc, R_FIFO, ch<<1);
3005                 HFC_wait(hc);
3006                 if (hc->type == 1 || hc->chan[ch].bch) {
3007                         /* E1 or B-channel */
3008                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3009                         HFC_outb(hc, A_SUBCH_CFG, 0);
3010                 } else {
3011                         /* D-Channel without HDLC fill flags */
3012                         HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3013                         HFC_outb(hc, A_SUBCH_CFG, 2);
3014                 }
3015                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3016                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3017                 HFC_wait(hc);
3018                 /* enable RX fifo */
3019                 HFC_outb(hc, R_FIFO, (ch<<1)|1);
3020                 HFC_wait(hc);
3021                 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3022                 if (hc->type == 1 || hc->chan[ch].bch)
3023                         HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3024                 else
3025                         HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3026                 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3027                 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3028                 HFC_wait(hc);
3029                 if (hc->chan[ch].bch) {
3030                         test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3031                         if (hc->type != 1) {
3032                                 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3033                                   ((ch&0x3) == 0) ? V_B1_EN : V_B2_EN;
3034                                 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3035                                 /* undocumented: delay after R_ST_SEL */
3036                                 udelay(1);
3037                                 HFC_outb(hc, A_ST_CTRL0,
3038                                   hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3039                         }
3040                 }
3041                 break;
3042         default:
3043                 printk(KERN_DEBUG "%s: protocol not known %x\n",
3044                     __func__, protocol);
3045                 hc->chan[ch].protocol = ISDN_P_NONE;
3046                 return -ENOPROTOOPT;
3047         }
3048         hc->chan[ch].protocol = protocol;
3049         return 0;
3050 }
3051
3052
3053 /*
3054  * connect/disconnect PCM
3055  */
3056
3057 static void
3058 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3059     int slot_rx, int bank_rx)
3060 {
3061         if (slot_rx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3062                 /* disable PCM */
3063                 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3064                 return;
3065         }
3066
3067         /* enable pcm */
3068         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3069                 slot_rx, bank_rx);
3070 }
3071
3072 /*
3073  * set/disable conference
3074  */
3075
3076 static void
3077 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3078 {
3079         if (num >= 0 && num <= 7)
3080                 hc->chan[ch].conf = num;
3081         else
3082                 hc->chan[ch].conf = -1;
3083         mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3084             hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3085             hc->chan[ch].bank_rx);
3086 }
3087
3088
3089 /*
3090  * set/disable sample loop
3091  */
3092
3093 /* NOTE: this function is experimental and therefore disabled */
3094
3095 /*
3096  * Layer 1 callback function
3097  */
3098 static int
3099 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3100 {
3101         struct hfc_multi        *hc = dch->hw;
3102         u_long  flags;
3103
3104         switch (cmd) {
3105         case INFO3_P8:
3106         case INFO3_P10:
3107                 break;
3108         case HW_RESET_REQ:
3109                 /* start activation */
3110                 spin_lock_irqsave(&hc->lock, flags);
3111                 if (hc->type == 1) {
3112                         if (debug & DEBUG_HFCMULTI_MSG)
3113                                 printk(KERN_DEBUG
3114                                     "%s: HW_RESET_REQ no BRI\n",
3115                                     __func__);
3116                 } else {
3117                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3118                         /* undocumented: delay after R_ST_SEL */
3119                         udelay(1);
3120                         HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3121                         udelay(6); /* wait at least 5,21us */
3122                         HFC_outb(hc, A_ST_WR_STATE, 3);
3123                         HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT*3));
3124                                 /* activate */
3125                 }
3126                 spin_unlock_irqrestore(&hc->lock, flags);
3127                 l1_event(dch->l1, HW_POWERUP_IND);
3128                 break;
3129         case HW_DEACT_REQ:
3130                 /* start deactivation */
3131                 spin_lock_irqsave(&hc->lock, flags);
3132                 if (hc->type == 1) {
3133                         if (debug & DEBUG_HFCMULTI_MSG)
3134                                 printk(KERN_DEBUG
3135                                     "%s: HW_DEACT_REQ no BRI\n",
3136                                     __func__);
3137                 } else {
3138                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3139                         /* undocumented: delay after R_ST_SEL */
3140                         udelay(1);
3141                         HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT*2);
3142                                 /* deactivate */
3143                         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3144                                 hc->syncronized &=
3145                                    ~(1 << hc->chan[dch->slot].port);
3146                                 plxsd_checksync(hc, 0);
3147                         }
3148                 }
3149                 skb_queue_purge(&dch->squeue);
3150                 if (dch->tx_skb) {
3151                         dev_kfree_skb(dch->tx_skb);
3152                         dch->tx_skb = NULL;
3153                 }
3154                 dch->tx_idx = 0;
3155                 if (dch->rx_skb) {
3156                         dev_kfree_skb(dch->rx_skb);
3157                         dch->rx_skb = NULL;
3158                 }
3159                 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3160                 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3161                         del_timer(&dch->timer);
3162                 spin_unlock_irqrestore(&hc->lock, flags);
3163                 break;
3164         case HW_POWERUP_REQ:
3165                 spin_lock_irqsave(&hc->lock, flags);
3166                 if (hc->type == 1) {
3167                         if (debug & DEBUG_HFCMULTI_MSG)
3168                                 printk(KERN_DEBUG
3169                                     "%s: HW_POWERUP_REQ no BRI\n",
3170                                     __func__);
3171                 } else {
3172                         HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3173                         /* undocumented: delay after R_ST_SEL */
3174                         udelay(1);
3175                         HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3176                         udelay(6); /* wait at least 5,21us */
3177                         HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3178                 }
3179                 spin_unlock_irqrestore(&hc->lock, flags);
3180                 break;
3181         case PH_ACTIVATE_IND:
3182                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3183                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3184                         GFP_ATOMIC);
3185                 break;
3186         case PH_DEACTIVATE_IND:
3187                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3188                 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3189                         GFP_ATOMIC);
3190                 break;
3191         default:
3192                 if (dch->debug & DEBUG_HW)
3193                         printk(KERN_DEBUG "%s: unknown command %x\n",
3194                             __func__, cmd);
3195                 return -1;
3196         }
3197         return 0;
3198 }
3199
3200 /*
3201  * Layer2 -> Layer 1 Transfer
3202  */
3203
3204 static int
3205 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3206 {
3207         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
3208         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
3209         struct hfc_multi        *hc = dch->hw;
3210         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3211         int                     ret = -EINVAL;
3212         unsigned int            id;
3213         u_long                  flags;
3214
3215         switch (hh->prim) {
3216         case PH_DATA_REQ:
3217                 if (skb->len < 1)
3218                         break;
3219                 spin_lock_irqsave(&hc->lock, flags);
3220                 ret = dchannel_senddata(dch, skb);
3221                 if (ret > 0) { /* direct TX */
3222                         id = hh->id; /* skb can be freed */
3223                         hfcmulti_tx(hc, dch->slot);
3224                         ret = 0;
3225                         /* start fifo */
3226                         HFC_outb(hc, R_FIFO, 0);
3227                         HFC_wait(hc);
3228                         spin_unlock_irqrestore(&hc->lock, flags);
3229                         queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3230                 } else
3231                         spin_unlock_irqrestore(&hc->lock, flags);
3232                 return ret;
3233         case PH_ACTIVATE_REQ:
3234                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3235                         spin_lock_irqsave(&hc->lock, flags);
3236                         ret = 0;
3237                         if (debug & DEBUG_HFCMULTI_MSG)
3238                                 printk(KERN_DEBUG
3239                                     "%s: PH_ACTIVATE port %d (0..%d)\n",
3240                                     __func__, hc->chan[dch->slot].port,
3241                                     hc->ports-1);
3242                         /* start activation */
3243                         if (hc->type == 1) {
3244                                 ph_state_change(dch);
3245                                 if (debug & DEBUG_HFCMULTI_STATE)
3246                                         printk(KERN_DEBUG
3247                                             "%s: E1 report state %x \n",
3248                                             __func__, dch->state);
3249                         } else {
3250                                 HFC_outb(hc, R_ST_SEL,
3251                                     hc->chan[dch->slot].port);
3252                                 /* undocumented: delay after R_ST_SEL */
3253                                 udelay(1);
3254                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3255                                     /* G1 */
3256                                 udelay(6); /* wait at least 5,21us */
3257                                 HFC_outb(hc, A_ST_WR_STATE, 1);
3258                                 HFC_outb(hc, A_ST_WR_STATE, 1 |
3259                                     (V_ST_ACT*3)); /* activate */
3260                                 dch->state = 1;
3261                         }
3262                         spin_unlock_irqrestore(&hc->lock, flags);
3263                 } else
3264                         ret = l1_event(dch->l1, hh->prim);
3265                 break;
3266         case PH_DEACTIVATE_REQ:
3267                 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3268                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3269                         spin_lock_irqsave(&hc->lock, flags);
3270                         if (debug & DEBUG_HFCMULTI_MSG)
3271                                 printk(KERN_DEBUG
3272                                     "%s: PH_DEACTIVATE port %d (0..%d)\n",
3273                                     __func__, hc->chan[dch->slot].port,
3274                                     hc->ports-1);
3275                         /* start deactivation */
3276                         if (hc->type == 1) {
3277                                 if (debug & DEBUG_HFCMULTI_MSG)
3278                                         printk(KERN_DEBUG
3279                                             "%s: PH_DEACTIVATE no BRI\n",
3280                                             __func__);
3281                         } else {
3282                                 HFC_outb(hc, R_ST_SEL,
3283                                     hc->chan[dch->slot].port);
3284                                 /* undocumented: delay after R_ST_SEL */
3285                                 udelay(1);
3286                                 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3287                                     /* deactivate */
3288                                 dch->state = 1;
3289                         }
3290                         skb_queue_purge(&dch->squeue);
3291                         if (dch->tx_skb) {
3292                                 dev_kfree_skb(dch->tx_skb);
3293                                 dch->tx_skb = NULL;
3294                         }
3295                         dch->tx_idx = 0;
3296                         if (dch->rx_skb) {
3297                                 dev_kfree_skb(dch->rx_skb);
3298                                 dch->rx_skb = NULL;
3299                         }
3300                         test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3301                         if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3302                                 del_timer(&dch->timer);
3303 #ifdef FIXME
3304                         if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3305                                 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3306 #endif
3307                         ret = 0;
3308                         spin_unlock_irqrestore(&hc->lock, flags);
3309                 } else
3310                         ret = l1_event(dch->l1, hh->prim);
3311                 break;
3312         }
3313         if (!ret)
3314                 dev_kfree_skb(skb);
3315         return ret;
3316 }
3317
3318 static void
3319 deactivate_bchannel(struct bchannel *bch)
3320 {
3321         struct hfc_multi        *hc = bch->hw;
3322         u_long                  flags;
3323
3324         spin_lock_irqsave(&hc->lock, flags);
3325         if (test_and_clear_bit(FLG_TX_NEXT, &bch->Flags)) {
3326                 dev_kfree_skb(bch->next_skb);
3327                 bch->next_skb = NULL;
3328         }
3329         if (bch->tx_skb) {
3330                 dev_kfree_skb(bch->tx_skb);
3331                 bch->tx_skb = NULL;
3332         }
3333         bch->tx_idx = 0;
3334         if (bch->rx_skb) {
3335                 dev_kfree_skb(bch->rx_skb);
3336                 bch->rx_skb = NULL;
3337         }
3338         hc->chan[bch->slot].coeff_count = 0;
3339         test_and_clear_bit(FLG_ACTIVE, &bch->Flags);
3340         test_and_clear_bit(FLG_TX_BUSY, &bch->Flags);
3341         hc->chan[bch->slot].rx_off = 0;
3342         hc->chan[bch->slot].conf = -1;
3343         mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3344         spin_unlock_irqrestore(&hc->lock, flags);
3345 }
3346
3347 static int
3348 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3349 {
3350         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3351         struct hfc_multi        *hc = bch->hw;
3352         int                     ret = -EINVAL;
3353         struct mISDNhead        *hh = mISDN_HEAD_P(skb);
3354         unsigned int            id;
3355         u_long                  flags;
3356
3357         switch (hh->prim) {
3358         case PH_DATA_REQ:
3359                 if (!skb->len)
3360                         break;
3361                 spin_lock_irqsave(&hc->lock, flags);
3362                 ret = bchannel_senddata(bch, skb);
3363                 if (ret > 0) { /* direct TX */
3364                         id = hh->id; /* skb can be freed */
3365                         hfcmulti_tx(hc, bch->slot);
3366                         ret = 0;
3367                         /* start fifo */
3368                         HFC_outb_nodebug(hc, R_FIFO, 0);
3369                         HFC_wait_nodebug(hc);
3370                         if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3371                                 spin_unlock_irqrestore(&hc->lock, flags);
3372                                 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3373                         } else
3374                                 spin_unlock_irqrestore(&hc->lock, flags);
3375                 } else
3376                         spin_unlock_irqrestore(&hc->lock, flags);
3377                 return ret;
3378         case PH_ACTIVATE_REQ:
3379                 if (debug & DEBUG_HFCMULTI_MSG)
3380                         printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3381                                 __func__, bch->slot);
3382                 spin_lock_irqsave(&hc->lock, flags);
3383                 /* activate B-channel if not already activated */
3384                 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3385                         hc->chan[bch->slot].txpending = 0;
3386                         ret = mode_hfcmulti(hc, bch->slot,
3387                                 ch->protocol,
3388                                 hc->chan[bch->slot].slot_tx,
3389                                 hc->chan[bch->slot].bank_tx,
3390                                 hc->chan[bch->slot].slot_rx,
3391                                 hc->chan[bch->slot].bank_rx);
3392                         if (!ret) {
3393                                 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3394                                         && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3395                                         /* start decoder */
3396                                         hc->dtmf = 1;
3397                                         if (debug & DEBUG_HFCMULTI_DTMF)
3398                                                 printk(KERN_DEBUG
3399                                                     "%s: start dtmf decoder\n",
3400                                                         __func__);
3401                                         HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3402                                             V_RST_DTMF);
3403                                 }
3404                         }
3405                 } else
3406                         ret = 0;
3407                 spin_unlock_irqrestore(&hc->lock, flags);
3408                 if (!ret)
3409                         _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3410                                 GFP_KERNEL);
3411                 break;
3412         case PH_CONTROL_REQ:
3413                 spin_lock_irqsave(&hc->lock, flags);
3414                 switch (hh->id) {
3415                 case HFC_SPL_LOOP_ON: /* set sample loop */
3416                         if (debug & DEBUG_HFCMULTI_MSG)
3417                         printk(KERN_DEBUG
3418                             "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3419                             __func__, skb->len);
3420                         ret = 0;
3421                         break;
3422                 case HFC_SPL_LOOP_OFF: /* set silence */
3423                         if (debug & DEBUG_HFCMULTI_MSG)
3424                                 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3425                                     __func__);
3426                         ret = 0;
3427                         break;
3428                 default:
3429                         printk(KERN_ERR
3430                              "%s: unknown PH_CONTROL_REQ info %x\n",
3431                              __func__, hh->id);
3432                         ret = -EINVAL;
3433                 }
3434                 spin_unlock_irqrestore(&hc->lock, flags);
3435                 break;
3436         case PH_DEACTIVATE_REQ:
3437                 deactivate_bchannel(bch); /* locked there */
3438                 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3439                         GFP_KERNEL);
3440                 ret = 0;
3441                 break;
3442         }
3443         if (!ret)
3444                 dev_kfree_skb(skb);
3445         return ret;
3446 }
3447
3448 /*
3449  * bchannel control function
3450  */
3451 static int
3452 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3453 {
3454         int                     ret = 0;
3455         struct dsp_features     *features =
3456                 (struct dsp_features *)(*((u_long *)&cq->p1));
3457         struct hfc_multi        *hc = bch->hw;
3458         int                     slot_tx;
3459         int                     bank_tx;
3460         int                     slot_rx;
3461         int                     bank_rx;
3462         int                     num;
3463
3464         switch (cq->op) {
3465         case MISDN_CTRL_GETOP:
3466                 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3467                         | MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
3468                 break;
3469         case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3470                 hc->chan[bch->slot].rx_off = !!cq->p1;
3471                 if (!hc->chan[bch->slot].rx_off) {
3472                         /* reset fifo on rx on */
3473                         HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3474                         HFC_wait_nodebug(hc);
3475                         HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3476                         HFC_wait_nodebug(hc);
3477                 }
3478                 if (debug & DEBUG_HFCMULTI_MSG)
3479                         printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3480                             __func__, bch->nr, hc->chan[bch->slot].rx_off);
3481                 break;
3482         case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
3483                 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
3484                 if (debug & DEBUG_HFCMULTI_MSG)
3485                         printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
3486                                 "off=%d)\n", __func__, bch->nr, !!cq->p1);
3487                 break;
3488         case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3489                 if (debug & DEBUG_HFCMULTI_MSG)
3490                         printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3491                             __func__);
3492                 /* create confirm */
3493                 features->hfc_id = hc->id;
3494                 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3495                         features->hfc_dtmf = 1;
3496                 features->hfc_loops = 0;
3497                 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3498                         features->hfc_echocanhw = 1;
3499                 } else {
3500                         features->pcm_id = hc->pcm;
3501                         features->pcm_slots = hc->slots;
3502                         features->pcm_banks = 2;
3503                 }
3504                 break;
3505         case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3506                 slot_tx = cq->p1 & 0xff;
3507                 bank_tx = cq->p1 >> 8;
3508                 slot_rx = cq->p2 & 0xff;
3509                 bank_rx = cq->p2 >> 8;
3510                 if (debug & DEBUG_HFCMULTI_MSG)
3511                         printk(KERN_DEBUG
3512                             "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3513                             "slot %d bank %d (RX)\n",
3514                             __func__, slot_tx, bank_tx,
3515                             slot_rx, bank_rx);
3516                 if (slot_tx < hc->slots && bank_tx <= 2 &&
3517                     slot_rx < hc->slots && bank_rx <= 2)
3518                         hfcmulti_pcm(hc, bch->slot,
3519                             slot_tx, bank_tx, slot_rx, bank_rx);
3520                 else {
3521                         printk(KERN_WARNING
3522                             "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3523                             "slot %d bank %d (RX) out of range\n",
3524                             __func__, slot_tx, bank_tx,
3525                             slot_rx, bank_rx);
3526                         ret = -EINVAL;
3527                 }
3528                 break;
3529         case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3530                 if (debug & DEBUG_HFCMULTI_MSG)
3531                         printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3532                             __func__);
3533                 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3534                 break;
3535         case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3536                 num = cq->p1 & 0xff;
3537                 if (debug & DEBUG_HFCMULTI_MSG)
3538                         printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3539                             __func__, num);
3540                 if (num <= 7)
3541                         hfcmulti_conf(hc, bch->slot, num);
3542                 else {
3543                         printk(KERN_WARNING
3544                             "%s: HW_CONF_JOIN conf %d out of range\n",
3545                             __func__, num);
3546                         ret = -EINVAL;
3547                 }
3548                 break;
3549         case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3550                 if (debug & DEBUG_HFCMULTI_MSG)
3551                         printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3552                 hfcmulti_conf(hc, bch->slot, -1);
3553                 break;
3554         case MISDN_CTRL_HFC_ECHOCAN_ON:
3555                 if (debug & DEBUG_HFCMULTI_MSG)
3556                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3557                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3558                         vpm_echocan_on(hc, bch->slot, cq->p1);
3559                 else
3560                         ret = -EINVAL;
3561                 break;
3562
3563         case MISDN_CTRL_HFC_ECHOCAN_OFF:
3564                 if (debug & DEBUG_HFCMULTI_MSG)
3565                         printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3566                                 __func__);
3567                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3568                         vpm_echocan_off(hc, bch->slot);
3569                 else
3570                         ret = -EINVAL;
3571                 break;
3572         default:
3573                 printk(KERN_WARNING "%s: unknown Op %x\n",
3574                     __func__, cq->op);
3575                 ret = -EINVAL;
3576                 break;
3577         }
3578         return ret;
3579 }
3580
3581 static int
3582 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3583 {
3584         struct bchannel         *bch = container_of(ch, struct bchannel, ch);
3585         struct hfc_multi        *hc = bch->hw;
3586         int                     err = -EINVAL;
3587         u_long  flags;
3588
3589         if (bch->debug & DEBUG_HW)
3590                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3591                     __func__, cmd, arg);
3592         switch (cmd) {
3593         case CLOSE_CHANNEL:
3594                 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3595                 if (test_bit(FLG_ACTIVE, &bch->Flags))
3596                         deactivate_bchannel(bch); /* locked there */
3597                 ch->protocol = ISDN_P_NONE;
3598                 ch->peer = NULL;
3599                 module_put(THIS_MODULE);
3600                 err = 0;
3601                 break;
3602         case CONTROL_CHANNEL:
3603                 spin_lock_irqsave(&hc->lock, flags);
3604                 err = channel_bctrl(bch, arg);
3605                 spin_unlock_irqrestore(&hc->lock, flags);
3606                 break;
3607         default:
3608                 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3609                         __func__, cmd);
3610         }
3611         return err;
3612 }
3613
3614 /*
3615  * handle D-channel events
3616  *
3617  * handle state change event
3618  */
3619 static void
3620 ph_state_change(struct dchannel *dch)
3621 {
3622         struct hfc_multi *hc;
3623         int ch, i;
3624
3625         if (!dch) {
3626                 printk(KERN_WARNING "%s: ERROR given dch is NULL\n",
3627                     __func__);
3628                 return;
3629         }
3630         hc = dch->hw;
3631         ch = dch->slot;
3632
3633         if (hc->type == 1) {
3634                 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3635                         if (debug & DEBUG_HFCMULTI_STATE)
3636                                 printk(KERN_DEBUG
3637                                     "%s: E1 TE (id=%d) newstate %x\n",
3638                                     __func__, hc->id, dch->state);
3639                 } else {
3640                         if (debug & DEBUG_HFCMULTI_STATE)
3641                                 printk(KERN_DEBUG
3642                                     "%s: E1 NT (id=%d) newstate %x\n",
3643                                     __func__, hc->id, dch->state);
3644                 }
3645                 switch (dch->state) {
3646                 case (1):
3647                         if (hc->e1_state != 1) {
3648                             for (i = 1; i <= 31; i++) {
3649                                 /* reset fifos on e1 activation */
3650                                 HFC_outb_nodebug(hc, R_FIFO, (i << 1) | 1);
3651                                 HFC_wait_nodebug(hc);
3652                                 HFC_outb_nodebug(hc,
3653                                         R_INC_RES_FIFO, V_RES_F);
3654                                 HFC_wait_nodebug(hc);
3655                             }
3656                         }
3657                         test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3658                         _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3659                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3660                         break;
3661
3662                 default:
3663                         if (hc->e1_state != 1)
3664                                 return;
3665                         test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3666                         _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3667                             MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3668                 }
3669                 hc->e1_state = dch->state;
3670         } else {
3671                 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3672                         if (debug & DEBUG_HFCMULTI_STATE)
3673                                 printk(KERN_DEBUG
3674                                     "%s: S/T TE newstate %x\n",
3675                                     __func__, dch->state);
3676                         switch (dch->state) {
3677                         case (0):
3678                                 l1_event(dch->l1, HW_RESET_IND);
3679                                 break;
3680                         case (3):
3681                                 l1_event(dch->l1, HW_DEACT_IND);
3682                                 break;
3683                         case (5):
3684                         case (8):
3685                                 l1_event(dch->l1, ANYSIGNAL);
3686                                 break;
3687                         case (6):
3688                                 l1_event(dch->l1, INFO2);
3689                                 break;
3690                         case (7):
3691                                 l1_event(dch->l1, INFO4_P8);
3692                                 break;
3693                         }
3694                 } else {
3695                         if (debug & DEBUG_HFCMULTI_STATE)
3696                                 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3697                                     __func__, dch->state);
3698                         switch (dch->state) {
3699                         case (2):
3700                                 if (hc->chan[ch].nt_timer == 0) {
3701                                         hc->chan[ch].nt_timer = -1;
3702                                         HFC_outb(hc, R_ST_SEL,
3703                                             hc->chan[ch].port);
3704                                         /* undocumented: delay after R_ST_SEL */
3705                                         udelay(1);
3706                                         HFC_outb(hc, A_ST_WR_STATE, 4 |
3707                                             V_ST_LD_STA); /* G4 */
3708                                         udelay(6); /* wait at least 5,21us */
3709                                         HFC_outb(hc, A_ST_WR_STATE, 4);
3710                                         dch->state = 4;
3711                                 } else {
3712                                         /* one extra count for the next event */
3713                                         hc->chan[ch].nt_timer =
3714                                             nt_t1_count[poll_timer] + 1;
3715                                         HFC_outb(hc, R_ST_SEL,
3716                                             hc->chan[ch].port);
3717                                         /* undocumented: delay after R_ST_SEL */
3718                                         udelay(1);
3719                                         /* allow G2 -> G3 transition */
3720                                         HFC_outb(hc, A_ST_WR_STATE, 2 |
3721                                             V_SET_G2_G3);
3722                                 }
3723                                 break;
3724                         case (1):
3725                                 hc->chan[ch].nt_timer = -1;
3726                                 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3727                                 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3728                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3729                                 break;
3730                         case (4):
3731                                 hc->chan[ch].nt_timer = -1;
3732                                 break;
3733                         case (3):
3734                                 hc->chan[ch].nt_timer = -1;
3735                                 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3736                                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3737                                     MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3738                                 break;
3739                         }
3740                 }
3741         }
3742 }
3743
3744 /*
3745  * called for card mode init message
3746  */
3747
3748 static void
3749 hfcmulti_initmode(struct dchannel *dch)
3750 {
3751         struct hfc_multi *hc = dch->hw;
3752         u_char          a_st_wr_state, r_e1_wr_sta;
3753         int             i, pt;
3754
3755         if (debug & DEBUG_HFCMULTI_INIT)
3756                 printk(KERN_DEBUG "%s: entered\n", __func__);
3757
3758         if (hc->type == 1) {
3759                 hc->chan[hc->dslot].slot_tx = -1;
3760                 hc->chan[hc->dslot].slot_rx = -1;
3761                 hc->chan[hc->dslot].conf = -1;
3762                 if (hc->dslot) {
3763                         mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3764                                 -1, 0, -1, 0);
3765                         dch->timer.function = (void *) hfcmulti_dbusy_timer;
3766                         dch->timer.data = (long) dch;
3767                         init_timer(&dch->timer);
3768                 }
3769                 for (i = 1; i <= 31; i++) {
3770                         if (i == hc->dslot)
3771                                 continue;
3772                         hc->chan[i].slot_tx = -1;
3773                         hc->chan[i].slot_rx = -1;
3774                         hc->chan[i].conf = -1;
3775                         mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3776                 }
3777                 /* E1 */
3778                 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3779                         HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3780                         HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3781                 }
3782                 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3783                         HFC_outb(hc, R_RX0, 0);
3784                         hc->hw.r_tx0 = 0 | V_OUT_EN;
3785                 } else {
3786                         HFC_outb(hc, R_RX0, 1);
3787                         hc->hw.r_tx0 = 1 | V_OUT_EN;
3788                 }
3789                 hc->hw.r_tx1 = V_ATX | V_NTRI;
3790                 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3791                 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3792                 HFC_outb(hc, R_TX_FR0, 0x00);
3793                 HFC_outb(hc, R_TX_FR1, 0xf8);
3794
3795                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3796                         HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3797
3798                 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3799
3800                 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3801                         HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3802
3803                 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3804                         if (debug & DEBUG_HFCMULTI_INIT)
3805                                 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3806                                     __func__);
3807                         r_e1_wr_sta = 0; /* G0 */
3808                         hc->e1_getclock = 0;
3809                 } else {
3810                         if (debug & DEBUG_HFCMULTI_INIT)
3811                                 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3812                                     __func__);
3813                         r_e1_wr_sta = 0; /* F0 */
3814                         hc->e1_getclock = 1;
3815                 }
3816                 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3817                         HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3818                 else
3819                         HFC_outb(hc, R_SYNC_OUT, 0);
3820                 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3821                         hc->e1_getclock = 1;
3822                 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3823                         hc->e1_getclock = 0;
3824                 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3825                         /* SLAVE (clock master) */
3826                         if (debug & DEBUG_HFCMULTI_INIT)
3827                                 printk(KERN_DEBUG
3828                                     "%s: E1 port is clock master "
3829                                     "(clock from PCM)\n", __func__);
3830                         HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3831                 } else {
3832                         if (hc->e1_getclock) {
3833                                 /* MASTER (clock slave) */
3834                                 if (debug & DEBUG_HFCMULTI_INIT)
3835                                         printk(KERN_DEBUG
3836                                             "%s: E1 port is clock slave "
3837                                             "(clock to PCM)\n", __func__);
3838                                 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3839                         } else {
3840                                 /* MASTER (clock master) */
3841                                 if (debug & DEBUG_HFCMULTI_INIT)
3842                                         printk(KERN_DEBUG "%s: E1 port is "
3843                                             "clock master "
3844                                             "(clock from QUARTZ)\n",
3845                                             __func__);
3846                                 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3847                                     V_PCM_SYNC | V_JATT_OFF);
3848                                 HFC_outb(hc, R_SYNC_OUT, 0);
3849                         }
3850                 }
3851                 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3852                 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3853                 HFC_outb(hc, R_PWM0, 0x50);
3854                 HFC_outb(hc, R_PWM1, 0xff);
3855                 /* state machine setup */
3856                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3857                 udelay(6); /* wait at least 5,21us */
3858                 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3859                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3860                         hc->syncronized = 0;
3861                         plxsd_checksync(hc, 0);
3862                 }
3863         } else {
3864                 i = dch->slot;
3865                 hc->chan[i].slot_tx = -1;
3866                 hc->chan[i].slot_rx = -1;
3867                 hc->chan[i].conf = -1;
3868                 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3869                 dch->timer.function = (void *)hfcmulti_dbusy_timer;
3870                 dch->timer.data = (long) dch;
3871                 init_timer(&dch->timer);
3872                 hc->chan[i - 2].slot_tx = -1;
3873                 hc->chan[i - 2].slot_rx = -1;
3874                 hc->chan[i - 2].conf = -1;
3875                 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3876                 hc->chan[i - 1].slot_tx = -1;
3877                 hc->chan[i - 1].slot_rx = -1;
3878                 hc->chan[i - 1].conf = -1;
3879                 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3880                 /* ST */
3881                 pt = hc->chan[i].port;
3882                 /* select interface */
3883                 HFC_outb(hc, R_ST_SEL, pt);
3884                 /* undocumented: delay after R_ST_SEL */
3885                 udelay(1);
3886                 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3887                         if (debug & DEBUG_HFCMULTI_INIT)
3888                                 printk(KERN_DEBUG
3889                                     "%s: ST port %d is NT-mode\n",
3890                                     __func__, pt);
3891                         /* clock delay */
3892                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3893                         a_st_wr_state = 1; /* G1 */
3894                         hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3895                 } else {
3896                         if (debug & DEBUG_HFCMULTI_INIT)
3897                                 printk(KERN_DEBUG
3898                                     "%s: ST port %d is TE-mode\n",
3899                                     __func__, pt);
3900                         /* clock delay */
3901                         HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3902                         a_st_wr_state = 2; /* F2 */
3903                         hc->hw.a_st_ctrl0[pt] = 0;
3904                 }
3905                 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3906                         hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3907                 /* line setup */
3908                 HFC_outb(hc, A_ST_CTRL0,  hc->hw.a_st_ctrl0[pt]);
3909                 /* disable E-channel */
3910                 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
3911                     test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
3912                         HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
3913                 else
3914                         HFC_outb(hc, A_ST_CTRL1, 0);
3915                 /* enable B-channel receive */
3916                 HFC_outb(hc, A_ST_CTRL2,  V_B1_RX_EN | V_B2_RX_EN);
3917                 /* state machine setup */
3918                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
3919                 udelay(6); /* wait at least 5,21us */
3920                 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
3921                 hc->hw.r_sci_msk |= 1 << pt;
3922                 /* state machine interrupts */
3923                 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
3924                 /* unset sync on port */
3925                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3926                         hc->syncronized &=
3927                            ~(1 << hc->chan[dch->slot].port);
3928                         plxsd_checksync(hc, 0);
3929                 }
3930         }
3931         if (debug & DEBUG_HFCMULTI_INIT)
3932                 printk("%s: done\n", __func__);
3933 }
3934
3935
3936 static int
3937 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
3938     struct channel_req *rq)
3939 {
3940         int     err = 0;
3941         u_long  flags;
3942
3943         if (debug & DEBUG_HW_OPEN)
3944                 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
3945                     dch->dev.id, __builtin_return_address(0));
3946         if (rq->protocol == ISDN_P_NONE)
3947                 return -EINVAL;
3948         if ((dch->dev.D.protocol != ISDN_P_NONE) &&
3949             (dch->dev.D.protocol != rq->protocol)) {
3950             if (debug & DEBUG_HFCMULTI_MODE)
3951                 printk(KERN_WARNING "%s: change protocol %x to %x\n",
3952                     __func__, dch->dev.D.protocol, rq->protocol);
3953         }
3954         if ((dch->dev.D.protocol == ISDN_P_TE_S0)
3955          && (rq->protocol != ISDN_P_TE_S0))
3956                 l1_event(dch->l1, CLOSE_CHANNEL);
3957         if (dch->dev.D.protocol != rq->protocol) {
3958                 if (rq->protocol == ISDN_P_TE_S0) {
3959                         err = create_l1(dch, hfcm_l1callback);
3960                         if (err)
3961                                 return err;
3962                 }
3963                 dch->dev.D.protocol = rq->protocol;
3964                 spin_lock_irqsave(&hc->lock, flags);
3965                 hfcmulti_initmode(dch);
3966                 spin_unlock_irqrestore(&hc->lock, flags);
3967         }
3968
3969         if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
3970             ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
3971             ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
3972             ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
3973                 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
3974                     0, NULL, GFP_KERNEL);
3975         }
3976         rq->ch = &dch->dev.D;
3977         if (!try_module_get(THIS_MODULE))
3978                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
3979         return 0;
3980 }
3981
3982 static int
3983 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
3984     struct channel_req *rq)
3985 {
3986         struct bchannel *bch;
3987         int             ch;
3988
3989         if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
3990                 return -EINVAL;
3991         if (rq->protocol == ISDN_P_NONE)
3992                 return -EINVAL;
3993         if (hc->type == 1)
3994                 ch = rq->adr.channel;
3995         else
3996                 ch = (rq->adr.channel - 1) + (dch->slot - 2);
3997         bch = hc->chan[ch].bch;
3998         if (!bch) {
3999                 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4000                     __func__, ch);
4001                 return -EINVAL;
4002         }
4003         if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4004                 return -EBUSY; /* b-channel can be only open once */
4005         test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
4006         bch->ch.protocol = rq->protocol;
4007         hc->chan[ch].rx_off = 0;
4008         rq->ch = &bch->ch;
4009         if (!try_module_get(THIS_MODULE))
4010                 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4011         return 0;
4012 }
4013
4014 /*
4015  * device control function
4016  */
4017 static int
4018 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4019 {
4020         struct hfc_multi        *hc = dch->hw;
4021         int     ret = 0;
4022         int     wd_mode, wd_cnt;
4023
4024         switch (cq->op) {
4025         case MISDN_CTRL_GETOP:
4026                 cq->op = MISDN_CTRL_HFC_OP;
4027                 break;
4028         case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4029                 wd_cnt = cq->p1 & 0xf;
4030                 wd_mode = !!(cq->p1 >> 4);
4031                 if (debug & DEBUG_HFCMULTI_MSG)
4032                         printk(KERN_DEBUG
4033                             "%s: MISDN_CTRL_HFC_WD_INIT mode %s counter 0x%x\n",
4034                             __func__, wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4035                 /* set the watchdog timer */
4036                 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4037                 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4038                 if (hc->ctype == HFC_TYPE_XHFC)
4039                         hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4040                 /* init the watchdog register and reset the counter */
4041                 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4042                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4043                         /* enable the watchdog output for Speech-Design */
4044                         HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
4045                         HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
4046                         HFC_outb(hc, R_GPIO_OUT1, 0);
4047                         HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4048                 }
4049                 break;
4050         case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4051                 if (debug & DEBUG_HFCMULTI_MSG)
4052                         printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4053                             __func__);
4054                 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4055                 break;
4056         default:
4057                 printk(KERN_WARNING "%s: unknown Op %x\n",
4058                     __func__, cq->op);
4059                 ret = -EINVAL;
4060                 break;
4061         }
4062         return ret;
4063 }
4064
4065 static int
4066 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4067 {
4068         struct mISDNdevice      *dev = container_of(ch, struct mISDNdevice, D);
4069         struct dchannel         *dch = container_of(dev, struct dchannel, dev);
4070         struct hfc_multi        *hc = dch->hw;
4071         struct channel_req      *rq;
4072         int                     err = 0;
4073         u_long                  flags;
4074
4075         if (dch->debug & DEBUG_HW)
4076                 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4077                     __func__, cmd, arg);
4078         switch (cmd) {
4079         case OPEN_CHANNEL:
4080                 rq = arg;
4081                 switch (rq->protocol) {
4082                 case ISDN_P_TE_S0:
4083                 case ISDN_P_NT_S0:
4084                         if (hc->type == 1) {
4085                                 err = -EINVAL;
4086                                 break;
4087                         }
4088                         err = open_dchannel(hc, dch, rq); /* locked there */
4089                         break;
4090                 case ISDN_P_TE_E1:
4091                 case ISDN_P_NT_E1:
4092                         if (hc->type != 1) {
4093                                 err = -EINVAL;
4094                                 break;
4095                         }
4096                         err = open_dchannel(hc, dch, rq); /* locked there */
4097                         break;
4098                 default:
4099                         spin_lock_irqsave(&hc->lock, flags);
4100                         err = open_bchannel(hc, dch, rq);
4101                         spin_unlock_irqrestore(&hc->lock, flags);
4102                 }
4103                 break;
4104         case CLOSE_CHANNEL:
4105                 if (debug & DEBUG_HW_OPEN)
4106                         printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4107                             __func__, dch->dev.id,
4108                             __builtin_return_address(0));
4109                 module_put(THIS_MODULE);
4110                 break;
4111         case CONTROL_CHANNEL:
4112                 spin_lock_irqsave(&hc->lock, flags);
4113                 err = channel_dctrl(dch, arg);
4114                 spin_unlock_irqrestore(&hc->lock, flags);
4115                 break;
4116         default:
4117                 if (dch->debug & DEBUG_HW)
4118                         printk(KERN_DEBUG "%s: unknown command %x\n",
4119                             __func__, cmd);
4120                 err = -EINVAL;
4121         }
4122         return err;
4123 }
4124
4125 static int
4126 clockctl(void *priv, int enable)
4127 {
4128         struct hfc_multi *hc = priv;
4129
4130         hc->iclock_on = enable;
4131         return 0;
4132 }
4133
4134 /*
4135  * initialize the card
4136  */
4137
4138 /*
4139  * start timer irq, wait some time and check if we have interrupts.
4140  * if not, reset chip and try again.
4141  */
4142 static int
4143 init_card(struct hfc_multi *hc)
4144 {
4145         int     err = -EIO;
4146         u_long  flags;
4147         void    __iomem *plx_acc;
4148         u_long  plx_flags;
4149
4150         if (debug & DEBUG_HFCMULTI_INIT)
4151                 printk(KERN_DEBUG "%s: entered\n", __func__);
4152
4153         spin_lock_irqsave(&hc->lock, flags);
4154         /* set interrupts but leave global interrupt disabled */
4155         hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4156         disable_hwirq(hc);
4157         spin_unlock_irqrestore(&hc->lock, flags);
4158
4159         if (request_irq(hc->pci_dev->irq, hfcmulti_interrupt, IRQF_SHARED,
4160             "HFC-multi", hc)) {
4161                 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4162                     hc->pci_dev->irq);
4163                 return -EIO;
4164         }
4165         hc->irq = hc->pci_dev->irq;
4166
4167         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4168                 spin_lock_irqsave(&plx_lock, plx_flags);
4169                 plx_acc = hc->plx_membase + PLX_INTCSR;
4170                 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4171                         plx_acc); /* enable PCI & LINT1 irq */
4172                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4173         }
4174
4175         if (debug & DEBUG_HFCMULTI_INIT)
4176                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4177                     __func__, hc->irq, hc->irqcnt);
4178         err = init_chip(hc);
4179         if (err)
4180                 goto error;
4181         /*
4182          * Finally enable IRQ output
4183          * this is only allowed, if an IRQ routine is allready
4184          * established for this HFC, so don't do that earlier
4185          */
4186         spin_lock_irqsave(&hc->lock, flags);
4187         enable_hwirq(hc);
4188         spin_unlock_irqrestore(&hc->lock, flags);
4189         /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4190         set_current_state(TASK_UNINTERRUPTIBLE);
4191         schedule_timeout((100*HZ)/1000); /* Timeout 100ms */
4192         /* turn IRQ off until chip is completely initialized */
4193         spin_lock_irqsave(&hc->lock, flags);
4194         disable_hwirq(hc);
4195         spin_unlock_irqrestore(&hc->lock, flags);
4196         if (debug & DEBUG_HFCMULTI_INIT)
4197                 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4198                     __func__, hc->irq, hc->irqcnt);
4199         if (hc->irqcnt) {
4200                 if (debug & DEBUG_HFCMULTI_INIT)
4201                         printk(KERN_DEBUG "%s: done\n", __func__);
4202
4203                 return 0;
4204         }
4205         if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4206                 printk(KERN_INFO "ignoring missing interrupts\n");
4207                 return 0;
4208         }
4209
4210         printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4211                 hc->irq);
4212
4213         err = -EIO;
4214
4215 error:
4216         if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4217                 spin_lock_irqsave(&plx_lock, plx_flags);
4218                 plx_acc = hc->plx_membase + PLX_INTCSR;
4219                 writew(0x00, plx_acc); /*disable IRQs*/
4220                 spin_unlock_irqrestore(&plx_lock, plx_flags);
4221         }
4222
4223         if (debug & DEBUG_HFCMULTI_INIT)
4224                 printk(KERN_WARNING "%s: free irq %d\n", __func__, hc->irq);
4225         if (hc->irq) {
4226                 free_irq(hc->irq, hc);
4227                 hc->irq = 0;
4228         }
4229
4230         if (debug & DEBUG_HFCMULTI_INIT)
4231                 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4232         return err;
4233 }
4234
4235 /*
4236  * find pci device and set it up
4237  */
4238
4239 static int
4240 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4241                 const struct pci_device_id *ent)
4242 {
4243         struct hm_map   *m = (struct hm_map *)ent->driver_data;
4244
4245         printk(KERN_INFO
4246             "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4247             m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4248
4249         hc->pci_dev = pdev;
4250         if (m->clock2)
4251                 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4252
4253         if (ent->device == 0xB410) {
4254                 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4255                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4256                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4257                 hc->slots = 32;
4258         }
4259
4260         if (hc->pci_dev->irq <= 0) {
4261                 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4262                 return -EIO;
4263         }
4264         if (pci_enable_device(hc->pci_dev)) {
4265                 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4266                 return -EIO;
4267         }
4268         hc->leds = m->leds;
4269         hc->ledstate = 0xAFFEAFFE;
4270         hc->opticalsupport = m->opticalsupport;
4271
4272         /* set memory access methods */
4273         if (m->io_mode) /* use mode from card config */
4274                 hc->io_mode = m->io_mode;
4275         switch (hc->io_mode) {
4276         case HFC_IO_MODE_PLXSD:
4277                 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4278                 hc->slots = 128; /* required */
4279                 /* fall through */
4280         case HFC_IO_MODE_PCIMEM:
4281                 hc->HFC_outb = HFC_outb_pcimem;
4282                 hc->HFC_inb = HFC_inb_pcimem;
4283                 hc->HFC_inw = HFC_inw_pcimem;
4284                 hc->HFC_wait = HFC_wait_pcimem;
4285                 hc->read_fifo = read_fifo_pcimem;
4286                 hc->write_fifo = write_fifo_pcimem;
4287                 break;
4288         case HFC_IO_MODE_REGIO:
4289                 hc->HFC_outb = HFC_outb_regio;
4290                 hc->HFC_inb = HFC_inb_regio;
4291                 hc->HFC_inw = HFC_inw_regio;
4292                 hc->HFC_wait = HFC_wait_regio;
4293                 hc->read_fifo = read_fifo_regio;
4294                 hc->write_fifo = write_fifo_regio;
4295                 break;
4296         default:
4297                 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4298                 pci_disable_device(hc->pci_dev);
4299                 return -EIO;
4300         }
4301         hc->HFC_outb_nodebug = hc->HFC_outb;
4302         hc->HFC_inb_nodebug = hc->HFC_inb;
4303         hc->HFC_inw_nodebug = hc->HFC_inw;
4304         hc->HFC_wait_nodebug = hc->HFC_wait;
4305 #ifdef HFC_REGISTER_DEBUG
4306         hc->HFC_outb = HFC_outb_debug;
4307         hc->HFC_inb = HFC_inb_debug;
4308         hc->HFC_inw = HFC_inw_debug;
4309         hc->HFC_wait = HFC_wait_debug;
4310 #endif
4311         hc->pci_iobase = 0;
4312         hc->pci_membase = NULL;
4313         hc->plx_membase = NULL;
4314
4315         switch (hc->io_mode) {
4316         case HFC_IO_MODE_PLXSD:
4317                 hc->plx_origmembase =  hc->pci_dev->resource[0].start;
4318                 /* MEMBASE 1 is PLX PCI Bridge */
4319
4320                 if (!hc->plx_origmembase) {
4321                         printk(KERN_WARNING
4322                           "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4323                         pci_disable_device(hc->pci_dev);
4324                         return -EIO;
4325                 }
4326
4327                 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4328                 if (!hc->plx_membase) {
4329                         printk(KERN_WARNING
4330                             "HFC-multi: failed to remap plx address space. "
4331                             "(internal error)\n");
4332                         pci_disable_device(hc->pci_dev);
4333                         return -EIO;
4334                 }
4335                 printk(KERN_INFO
4336                     "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4337                     (u_long)hc->plx_membase, hc->plx_origmembase);
4338
4339                 hc->pci_origmembase =  hc->pci_dev->resource[2].start;
4340                     /* MEMBASE 1 is PLX PCI Bridge */
4341                 if (!hc->pci_origmembase) {
4342                         printk(KERN_WARNING
4343                             "HFC-multi: No IO-Memory for PCI card found\n");
4344                         pci_disable_device(hc->pci_dev);
4345                         return -EIO;
4346                 }
4347
4348                 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4349                 if (!hc->pci_membase) {
4350                         printk(KERN_WARNING "HFC-multi: failed to remap io "
4351                             "address space. (internal error)\n");
4352                         pci_disable_device(hc->pci_dev);
4353                         return -EIO;
4354                 }
4355
4356                 printk(KERN_INFO
4357                     "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4358                     "leds-type %d\n",
4359                     hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4360                     hc->pci_dev->irq, HZ, hc->leds);
4361                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4362                 break;
4363         case HFC_IO_MODE_PCIMEM:
4364                 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4365                 if (!hc->pci_origmembase) {
4366                         printk(KERN_WARNING
4367                             "HFC-multi: No IO-Memory for PCI card found\n");
4368                         pci_disable_device(hc->pci_dev);
4369                         return -EIO;
4370                 }
4371
4372                 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4373                 if (!hc->pci_membase) {
4374                         printk(KERN_WARNING
4375                             "HFC-multi: failed to remap io address space. "
4376                             "(internal error)\n");
4377                         pci_disable_device(hc->pci_dev);
4378                         return -EIO;
4379                 }
4380                 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d "
4381                     "HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4382                     hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4383                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4384                 break;
4385         case HFC_IO_MODE_REGIO:
4386                 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4387                 if (!hc->pci_iobase) {
4388                         printk(KERN_WARNING
4389                                 "HFC-multi: No IO for PCI card found\n");
4390                         pci_disable_device(hc->pci_dev);
4391                         return -EIO;
4392                 }
4393
4394                 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4395                         printk(KERN_WARNING "HFC-multi: failed to request "
4396                             "address space at 0x%08lx (internal error)\n",
4397                             hc->pci_iobase);
4398                         pci_disable_device(hc->pci_dev);
4399                         return -EIO;
4400                 }
4401
4402                 printk(KERN_INFO
4403                     "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4404                     m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4405                     hc->pci_dev->irq, HZ, hc->leds);
4406                 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4407                 break;
4408         default:
4409                 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4410                 pci_disable_device(hc->pci_dev);
4411                 return -EIO;
4412         }
4413
4414         pci_set_drvdata(hc->pci_dev, hc);
4415
4416         /* At this point the needed PCI config is done */
4417         /* fifos are still not enabled */
4418         return 0;
4419 }
4420
4421
4422 /*
4423  * remove port
4424  */
4425
4426 static void
4427 release_port(struct hfc_multi *hc, struct dchannel *dch)
4428 {
4429         int     pt, ci, i = 0;
4430         u_long  flags;
4431         struct bchannel *pb;
4432
4433         ci = dch->slot;
4434         pt = hc->chan[ci].port;
4435
4436         if (debug & DEBUG_HFCMULTI_INIT)
4437                 printk(KERN_DEBUG "%s: entered for port %d\n",
4438                         __func__, pt + 1);
4439
4440         if (pt >= hc->ports) {
4441                 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4442                      __func__, pt + 1);
4443                 return;
4444         }
4445
4446         if (debug & DEBUG_HFCMULTI_INIT)
4447                 printk(KERN_DEBUG "%s: releasing port=%d\n",
4448                     __func__, pt + 1);
4449
4450         if (dch->dev.D.protocol == ISDN_P_TE_S0)
4451                 l1_event(dch->l1, CLOSE_CHANNEL);
4452
4453         hc->chan[ci].dch = NULL;
4454
4455         if (hc->created[pt]) {
4456                 hc->created[pt] = 0;
4457                 mISDN_unregister_device(&dch->dev);
4458         }
4459
4460         spin_lock_irqsave(&hc->lock, flags);
4461
4462         if (dch->timer.function) {
4463                 del_timer(&dch->timer);
4464                 dch->timer.function = NULL;
4465         }
4466
4467         if (hc->type == 1) { /* E1 */
4468                 /* remove sync */
4469                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4470                         hc->syncronized = 0;
4471                         plxsd_checksync(hc, 1);
4472                 }
4473                 /* free channels */
4474                 for (i = 0; i <= 31; i++) {
4475                         if (hc->chan[i].bch) {
4476                                 if (debug & DEBUG_HFCMULTI_INIT)
4477                                         printk(KERN_DEBUG
4478                                             "%s: free port %d channel %d\n",
4479                                             __func__, hc->chan[i].port+1, i);
4480                                 pb = hc->chan[i].bch;
4481                                 hc->chan[i].bch = NULL;
4482                                 spin_unlock_irqrestore(&hc->lock, flags);
4483                                 mISDN_freebchannel(pb);
4484                                 kfree(pb);
4485                                 kfree(hc->chan[i].coeff);
4486                                 spin_lock_irqsave(&hc->lock, flags);
4487                         }
4488                 }
4489         } else {
4490                 /* remove sync */
4491                 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4492                         hc->syncronized &=
4493                            ~(1 << hc->chan[ci].port);
4494                         plxsd_checksync(hc, 1);
4495                 }
4496                 /* free channels */
4497                 if (hc->chan[ci - 2].bch) {
4498                         if (debug & DEBUG_HFCMULTI_INIT)
4499                                 printk(KERN_DEBUG
4500                                     "%s: free port %d channel %d\n",
4501                                     __func__, hc->chan[ci - 2].port+1,
4502                                     ci - 2);
4503                         pb = hc->chan[ci - 2].bch;
4504                         hc->chan[ci - 2].bch = NULL;
4505                         spin_unlock_irqrestore(&hc->lock, flags);
4506                         mISDN_freebchannel(pb);
4507                         kfree(pb);
4508                         kfree(hc->chan[ci - 2].coeff);
4509                         spin_lock_irqsave(&hc->lock, flags);
4510                 }
4511                 if (hc->chan[ci - 1].bch) {
4512                         if (debug & DEBUG_HFCMULTI_INIT)
4513                                 printk(KERN_DEBUG
4514                                     "%s: free port %d channel %d\n",
4515                                     __func__, hc->chan[ci - 1].port+1,
4516                                     ci - 1);
4517                         pb = hc->chan[ci - 1].bch;
4518                         hc->chan[ci - 1].bch = NULL;
4519                         spin_unlock_irqrestore(&hc->lock, flags);
4520                         mISDN_freebchannel(pb);
4521                         kfree(pb);
4522                         kfree(hc->chan[ci - 1].coeff);
4523                         spin_lock_irqsave(&hc->lock, flags);
4524                 }
4525         }
4526
4527         spin_unlock_irqrestore(&hc->lock, flags);
4528
4529         if (debug & DEBUG_HFCMULTI_INIT)
4530                 printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4531         mISDN_freedchannel(dch);
4532         kfree(dch);
4533
4534         if (debug & DEBUG_HFCMULTI_INIT)
4535                 printk(KERN_DEBUG "%s: done!\n", __func__);
4536 }
4537
4538 static void
4539 release_card(struct hfc_multi *hc)
4540 {
4541         u_long  flags;
4542         int     ch;
4543
4544         if (debug & DEBUG_HFCMULTI_INIT)
4545                 printk(KERN_WARNING "%s: release card (%d) entered\n",
4546                     __func__, hc->id);
4547
4548         /* unregister clock source */
4549         if (hc->iclock)
4550                 mISDN_unregister_clock(hc->iclock);
4551
4552         /* disable irq */
4553         spin_lock_irqsave(&hc->lock, flags);
4554         disable_hwirq(hc);
4555         spin_unlock_irqrestore(&hc->lock, flags);
4556         udelay(1000);
4557
4558         /* dimm leds */
4559         if (hc->leds)
4560                 hfcmulti_leds(hc);
4561
4562         /* disable D-channels & B-channels */
4563         if (debug & DEBUG_HFCMULTI_INIT)
4564                 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4565                     __func__);
4566         for (ch = 0; ch <= 31; ch++) {
4567                 if (hc->chan[ch].dch)
4568                         release_port(hc, hc->chan[ch].dch);
4569         }
4570
4571         /* release hardware & irq */
4572         if (hc->irq) {
4573                 if (debug & DEBUG_HFCMULTI_INIT)
4574                         printk(KERN_WARNING "%s: free irq %d\n",
4575                             __func__, hc->irq);
4576                 free_irq(hc->irq, hc);
4577                 hc->irq = 0;
4578
4579         }
4580         release_io_hfcmulti(hc);
4581
4582         if (debug & DEBUG_HFCMULTI_INIT)
4583                 printk(KERN_WARNING "%s: remove instance from list\n",
4584                      __func__);
4585         list_del(&hc->list);
4586
4587         if (debug & DEBUG_HFCMULTI_INIT)
4588                 printk(KERN_WARNING "%s: delete instance\n", __func__);
4589         if (hc == syncmaster)
4590                 syncmaster = NULL;
4591         kfree(hc);
4592         if (debug & DEBUG_HFCMULTI_INIT)
4593                 printk(KERN_WARNING "%s: card successfully removed\n",
4594                     __func__);
4595 }
4596
4597 static int
4598 init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4599 {
4600         struct dchannel *dch;
4601         struct bchannel *bch;
4602         int             ch, ret = 0;
4603         char            name[MISDN_MAX_IDLEN];
4604
4605         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4606         if (!dch)
4607                 return -ENOMEM;
4608         dch->debug = debug;
4609         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4610         dch->hw = hc;
4611         dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4612         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4613             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4614         dch->dev.D.send = handle_dmsg;
4615         dch->dev.D.ctrl = hfcm_dctrl;
4616         dch->dev.nrbchan = (hc->dslot)?30:31;
4617         dch->slot = hc->dslot;
4618         hc->chan[hc->dslot].dch = dch;
4619         hc->chan[hc->dslot].port = 0;
4620         hc->chan[hc->dslot].nt_timer = -1;
4621         for (ch = 1; ch <= 31; ch++) {
4622                 if (ch == hc->dslot) /* skip dchannel */
4623                         continue;
4624                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4625                 if (!bch) {
4626                         printk(KERN_ERR "%s: no memory for bchannel\n",
4627                             __func__);
4628                         ret = -ENOMEM;
4629                         goto free_chan;
4630                 }
4631                 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4632                 if (!hc->chan[ch].coeff) {
4633                         printk(KERN_ERR "%s: no memory for coeffs\n",
4634                             __func__);
4635                         ret = -ENOMEM;
4636                         kfree(bch);
4637                         goto free_chan;
4638                 }
4639                 bch->nr = ch;
4640                 bch->slot = ch;
4641                 bch->debug = debug;
4642                 mISDN_initbchannel(bch, MAX_DATA_MEM);
4643                 bch->hw = hc;
4644                 bch->ch.send = handle_bmsg;
4645                 bch->ch.ctrl = hfcm_bctrl;
4646                 bch->ch.nr = ch;
4647                 list_add(&bch->ch.list, &dch->dev.bchannels);
4648                 hc->chan[ch].bch = bch;
4649                 hc->chan[ch].port = 0;
4650                 set_channelmap(bch->nr, dch->dev.channelmap);
4651         }
4652         /* set optical line type */
4653         if (port[Port_cnt] & 0x001) {
4654                 if (!m->opticalsupport)  {
4655                         printk(KERN_INFO
4656                             "This board has no optical "
4657                             "support\n");
4658                 } else {
4659                         if (debug & DEBUG_HFCMULTI_INIT)
4660                                 printk(KERN_DEBUG
4661                                     "%s: PORT set optical "
4662                                     "interfacs: card(%d) "
4663                                     "port(%d)\n",
4664                                     __func__,
4665                                     HFC_cnt + 1, 1);
4666                         test_and_set_bit(HFC_CFG_OPTICAL,
4667                             &hc->chan[hc->dslot].cfg);
4668                 }
4669         }
4670         /* set LOS report */
4671         if (port[Port_cnt] & 0x004) {
4672                 if (debug & DEBUG_HFCMULTI_INIT)
4673                         printk(KERN_DEBUG "%s: PORT set "
4674                             "LOS report: card(%d) port(%d)\n",
4675                             __func__, HFC_cnt + 1, 1);
4676                 test_and_set_bit(HFC_CFG_REPORT_LOS,
4677                     &hc->chan[hc->dslot].cfg);
4678         }
4679         /* set AIS report */
4680         if (port[Port_cnt] & 0x008) {
4681                 if (debug & DEBUG_HFCMULTI_INIT)
4682                         printk(KERN_DEBUG "%s: PORT set "
4683                             "AIS report: card(%d) port(%d)\n",
4684                             __func__, HFC_cnt + 1, 1);
4685                 test_and_set_bit(HFC_CFG_REPORT_AIS,
4686                     &hc->chan[hc->dslot].cfg);
4687         }
4688         /* set SLIP report */
4689         if (port[Port_cnt] & 0x010) {
4690                 if (debug & DEBUG_HFCMULTI_INIT)
4691                         printk(KERN_DEBUG
4692                             "%s: PORT set SLIP report: "
4693                             "card(%d) port(%d)\n",
4694                             __func__, HFC_cnt + 1, 1);
4695                 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4696                     &hc->chan[hc->dslot].cfg);
4697         }
4698         /* set RDI report */
4699         if (port[Port_cnt] & 0x020) {
4700                 if (debug & DEBUG_HFCMULTI_INIT)
4701                         printk(KERN_DEBUG
4702                             "%s: PORT set RDI report: "
4703                             "card(%d) port(%d)\n",
4704                             __func__, HFC_cnt + 1, 1);
4705                 test_and_set_bit(HFC_CFG_REPORT_RDI,
4706                     &hc->chan[hc->dslot].cfg);
4707         }
4708         /* set CRC-4 Mode */
4709         if (!(port[Port_cnt] & 0x100)) {
4710                 if (debug & DEBUG_HFCMULTI_INIT)
4711                         printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4712                                 " card(%d) port(%d)\n",
4713                                 __func__, HFC_cnt + 1, 1);
4714                 test_and_set_bit(HFC_CFG_CRC4,
4715                     &hc->chan[hc->dslot].cfg);
4716         } else {
4717                 if (debug & DEBUG_HFCMULTI_INIT)
4718                         printk(KERN_DEBUG "%s: PORT turn off CRC4"
4719                                 " report: card(%d) port(%d)\n",
4720                                 __func__, HFC_cnt + 1, 1);
4721         }
4722         /* set forced clock */
4723         if (port[Port_cnt] & 0x0200) {
4724                 if (debug & DEBUG_HFCMULTI_INIT)
4725                         printk(KERN_DEBUG "%s: PORT force getting clock from "
4726                                 "E1: card(%d) port(%d)\n",
4727                                 __func__, HFC_cnt + 1, 1);
4728                 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4729         } else
4730         if (port[Port_cnt] & 0x0400) {
4731                 if (debug & DEBUG_HFCMULTI_INIT)
4732                         printk(KERN_DEBUG "%s: PORT force putting clock to "
4733                                 "E1: card(%d) port(%d)\n",
4734                                 __func__, HFC_cnt + 1, 1);
4735                 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4736         }
4737         /* set JATT PLL */
4738         if (port[Port_cnt] & 0x0800) {
4739                 if (debug & DEBUG_HFCMULTI_INIT)
4740                         printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4741                                 "E1: card(%d) port(%d)\n",
4742                                 __func__, HFC_cnt + 1, 1);
4743                 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4744         }
4745         /* set elastic jitter buffer */
4746         if (port[Port_cnt] & 0x3000) {
4747                 hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4748                 if (debug & DEBUG_HFCMULTI_INIT)
4749                         printk(KERN_DEBUG
4750                             "%s: PORT set elastic "
4751                             "buffer to %d: card(%d) port(%d)\n",
4752                             __func__, hc->chan[hc->dslot].jitter,
4753                             HFC_cnt + 1, 1);
4754         } else
4755                 hc->chan[hc->dslot].jitter = 2; /* default */
4756         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4757         ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4758         if (ret)
4759                 goto free_chan;
4760         hc->created[0] = 1;
4761         return ret;
4762 free_chan:
4763         release_port(hc, dch);
4764         return ret;
4765 }
4766
4767 static int
4768 init_multi_port(struct hfc_multi *hc, int pt)
4769 {
4770         struct dchannel *dch;
4771         struct bchannel *bch;
4772         int             ch, i, ret = 0;
4773         char            name[MISDN_MAX_IDLEN];
4774
4775         dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4776         if (!dch)
4777                 return -ENOMEM;
4778         dch->debug = debug;
4779         mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4780         dch->hw = hc;
4781         dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4782         dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4783             (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4784         dch->dev.D.send = handle_dmsg;
4785         dch->dev.D.ctrl = hfcm_dctrl;
4786         dch->dev.nrbchan = 2;
4787         i = pt << 2;
4788         dch->slot = i + 2;
4789         hc->chan[i + 2].dch = dch;
4790         hc->chan[i + 2].port = pt;
4791         hc->chan[i + 2].nt_timer = -1;
4792         for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4793                 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4794                 if (!bch) {
4795                         printk(KERN_ERR "%s: no memory for bchannel\n",
4796                             __func__);
4797                         ret = -ENOMEM;
4798                         goto free_chan;
4799                 }
4800                 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4801                 if (!hc->chan[i + ch].coeff) {
4802                         printk(KERN_ERR "%s: no memory for coeffs\n",
4803                             __func__);
4804                         ret = -ENOMEM;
4805                         kfree(bch);
4806                         goto free_chan;
4807                 }
4808                 bch->nr = ch + 1;
4809                 bch->slot = i + ch;
4810                 bch->debug = debug;
4811                 mISDN_initbchannel(bch, MAX_DATA_MEM);
4812                 bch->hw = hc;
4813                 bch->ch.send = handle_bmsg;
4814                 bch->ch.ctrl = hfcm_bctrl;
4815                 bch->ch.nr = ch + 1;
4816                 list_add(&bch->ch.list, &dch->dev.bchannels);
4817                 hc->chan[i + ch].bch = bch;
4818                 hc->chan[i + ch].port = pt;
4819                 set_channelmap(bch->nr, dch->dev.channelmap);
4820         }
4821         /* set master clock */
4822         if (port[Port_cnt] & 0x001) {
4823                 if (debug & DEBUG_HFCMULTI_INIT)
4824                         printk(KERN_DEBUG
4825                             "%s: PROTOCOL set master clock: "
4826                             "card(%d) port(%d)\n",
4827                             __func__, HFC_cnt + 1, pt + 1);
4828                 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4829                         printk(KERN_ERR "Error: Master clock "
4830                             "for port(%d) of card(%d) is only"
4831                             " possible with TE-mode\n",
4832                             pt + 1, HFC_cnt + 1);
4833                         ret = -EINVAL;
4834                         goto free_chan;
4835                 }
4836                 if (hc->masterclk >= 0) {
4837                         printk(KERN_ERR "Error: Master clock "
4838                             "for port(%d) of card(%d) already "
4839                             "defined for port(%d)\n",
4840                             pt + 1, HFC_cnt + 1, hc->masterclk+1);
4841                         ret = -EINVAL;
4842                         goto free_chan;
4843                 }
4844                 hc->masterclk = pt;
4845         }
4846         /* set transmitter line to non capacitive */
4847         if (port[Port_cnt] & 0x002) {
4848                 if (debug & DEBUG_HFCMULTI_INIT)
4849                         printk(KERN_DEBUG
4850                             "%s: PROTOCOL set non capacitive "
4851                             "transmitter: card(%d) port(%d)\n",
4852                             __func__, HFC_cnt + 1, pt + 1);
4853                 test_and_set_bit(HFC_CFG_NONCAP_TX,
4854                     &hc->chan[i + 2].cfg);
4855         }
4856         /* disable E-channel */
4857         if (port[Port_cnt] & 0x004) {
4858         if (debug & DEBUG_HFCMULTI_INIT)
4859                         printk(KERN_DEBUG
4860                             "%s: PROTOCOL disable E-channel: "
4861                             "card(%d) port(%d)\n",
4862                             __func__, HFC_cnt + 1, pt + 1);
4863                 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4864                     &hc->chan[i + 2].cfg);
4865         }
4866         snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4867                 hc->type, HFC_cnt + 1, pt + 1);
4868         ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4869         if (ret)
4870                 goto free_chan;
4871         hc->created[pt] = 1;
4872         return ret;
4873 free_chan:
4874         release_port(hc, dch);
4875         return ret;
4876 }
4877
4878 static int
4879 hfcmulti_init(struct pci_dev *pdev, const struct pci_device_id *ent)
4880 {
4881         struct hm_map   *m = (struct hm_map *)ent->driver_data;
4882         int             ret_err = 0;
4883         int             pt;
4884         struct hfc_multi        *hc;
4885         u_long          flags;
4886         u_char          dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4887         int             i;
4888
4889         if (HFC_cnt >= MAX_CARDS) {
4890                 printk(KERN_ERR "too many cards (max=%d).\n",
4891                         MAX_CARDS);
4892                 return -EINVAL;
4893         }
4894         if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4895                 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4896                     "type[%d] %d was supplied as module parameter\n",
4897                     m->vendor_name, m->card_name, m->type, HFC_cnt,
4898                     type[HFC_cnt] & 0xff);
4899                 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4900                         "first, to see cards and their types.");
4901                 return -EINVAL;
4902         }
4903         if (debug & DEBUG_HFCMULTI_INIT)
4904                 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4905                     __func__, m->vendor_name, m->card_name, m->type,
4906                     type[HFC_cnt]);
4907
4908         /* allocate card+fifo structure */
4909         hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4910         if (!hc) {
4911                 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4912                 return -ENOMEM;
4913         }
4914         spin_lock_init(&hc->lock);
4915         hc->mtyp = m;
4916         hc->type =  m->type;
4917         hc->ports = m->ports;
4918         hc->id = HFC_cnt;
4919         hc->pcm = pcm[HFC_cnt];
4920         hc->io_mode = iomode[HFC_cnt];
4921         if (dslot[HFC_cnt] < 0 && hc->type == 1) {
4922                 hc->dslot = 0;
4923                 printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
4924                         "31 B-channels\n");
4925         } if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32 && hc->type == 1) {
4926                 hc->dslot = dslot[HFC_cnt];
4927                 printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
4928                         "time slot %d\n", dslot[HFC_cnt]);
4929         } else
4930                 hc->dslot = 16;
4931
4932         /* set chip specific features */
4933         hc->masterclk = -1;
4934         if (type[HFC_cnt] & 0x100) {
4935                 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
4936                 hc->silence = 0xff; /* ulaw silence */
4937         } else
4938                 hc->silence = 0x2a; /* alaw silence */
4939         if ((poll >> 1) > sizeof(hc->silence_data)) {
4940                 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
4941                         "please fix\n");
4942                 return -EINVAL;
4943         }
4944         for (i = 0; i < (poll >> 1); i++)
4945                 hc->silence_data[i] = hc->silence;
4946
4947         if (!(type[HFC_cnt] & 0x200))
4948                 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
4949
4950         if (type[HFC_cnt] & 0x800)
4951                 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4952         if (type[HFC_cnt] & 0x1000) {
4953                 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4954                 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4955         }
4956         if (type[HFC_cnt] & 0x4000)
4957                 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
4958         if (type[HFC_cnt] & 0x8000)
4959                 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
4960         hc->slots = 32;
4961         if (type[HFC_cnt] & 0x10000)
4962                 hc->slots = 64;
4963         if (type[HFC_cnt] & 0x20000)
4964                 hc->slots = 128;
4965         if (type[HFC_cnt] & 0x80000) {
4966                 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
4967                 hc->wdcount = 0;
4968                 hc->wdbyte = V_GPIO_OUT2;
4969                 printk(KERN_NOTICE "Watchdog enabled\n");
4970         }
4971
4972         /* setup pci, hc->slots may change due to PLXSD */
4973         ret_err = setup_pci(hc, pdev, ent);
4974         if (ret_err) {
4975                 if (hc == syncmaster)
4976                         syncmaster = NULL;
4977                 kfree(hc);
4978                 return ret_err;
4979         }
4980
4981         /* crate channels */
4982         for (pt = 0; pt < hc->ports; pt++) {
4983                 if (Port_cnt >= MAX_PORTS) {
4984                         printk(KERN_ERR "too many ports (max=%d).\n",
4985                                 MAX_PORTS);
4986                         ret_err = -EINVAL;
4987                         goto free_card;
4988                 }
4989                 if (hc->type == 1)
4990                         ret_err = init_e1_port(hc, m);
4991                 else
4992                         ret_err = init_multi_port(hc, pt);
4993                 if (debug & DEBUG_HFCMULTI_INIT)
4994                         printk(KERN_DEBUG
4995                             "%s: Registering D-channel, card(%d) port(%d)"
4996                             "result %d\n",
4997                             __func__, HFC_cnt + 1, pt, ret_err);
4998
4999                 if (ret_err) {
5000                         while (pt) { /* release already registered ports */
5001                                 pt--;
5002                                 release_port(hc, hc->chan[(pt << 2) + 2].dch);
5003                         }
5004                         goto free_card;
5005                 }
5006                 Port_cnt++;
5007         }
5008
5009         /* disp switches */
5010         switch (m->dip_type) {
5011         case DIP_4S:
5012                 /*
5013                  * Get DIP setting for beroNet 1S/2S/4S cards
5014                  * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5015                  * GPI 19/23 (R_GPI_IN2))
5016                  */
5017                 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5018                         ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5019                         (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5020
5021                 /* Port mode (TE/NT) jumpers */
5022                 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4)  & 0xf);
5023
5024                 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5025                         pmj = ~pmj & 0xf;
5026
5027                 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5028                         m->vendor_name, m->card_name, dips, pmj);
5029                 break;
5030         case DIP_8S:
5031                 /*
5032                  * Get DIP Setting for beroNet 8S0+ cards
5033                  * Enable PCI auxbridge function
5034                  */
5035                 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5036                 /* prepare access to auxport */
5037                 outw(0x4000, hc->pci_iobase + 4);
5038                 /*
5039                  * some dummy reads are required to
5040                  * read valid DIP switch data
5041                  */
5042                 dips = inb(hc->pci_iobase);
5043                 dips = inb(hc->pci_iobase);
5044                 dips = inb(hc->pci_iobase);
5045                 dips = ~inb(hc->pci_iobase) & 0x3F;
5046                 outw(0x0, hc->pci_iobase + 4);
5047                 /* disable PCI auxbridge function */
5048                 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5049                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5050                     m->vendor_name, m->card_name, dips);
5051                 break;
5052         case DIP_E1:
5053                 /*
5054                  * get DIP Setting for beroNet E1 cards
5055                  * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5056                  */
5057                 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0)>>4;
5058                 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5059                     m->vendor_name, m->card_name, dips);
5060                 break;
5061         }
5062
5063         /* add to list */
5064         spin_lock_irqsave(&HFClock, flags);
5065         list_add_tail(&hc->list, &HFClist);
5066         spin_unlock_irqrestore(&HFClock, flags);
5067
5068         /* use as clock source */
5069         if (clock == HFC_cnt + 1)
5070                 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5071
5072         /* initialize hardware */
5073         ret_err = init_card(hc);
5074         if (ret_err) {
5075                 printk(KERN_ERR "init card returns %d\n", ret_err);
5076                 release_card(hc);
5077                 return ret_err;
5078         }
5079
5080         /* start IRQ and return */
5081         spin_lock_irqsave(&hc->lock, flags);
5082         enable_hwirq(hc);
5083         spin_unlock_irqrestore(&hc->lock, flags);
5084         return 0;
5085
5086 free_card:
5087         release_io_hfcmulti(hc);
5088         if (hc == syncmaster)
5089                 syncmaster = NULL;
5090         kfree(hc);
5091         return ret_err;
5092 }
5093
5094 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5095 {
5096         struct hfc_multi        *card = pci_get_drvdata(pdev);
5097         u_long                  flags;
5098
5099         if (debug)
5100                 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5101                     "device:%x subvendor:%x subdevice:%x\n",
5102                     pdev->vendor, pdev->device,
5103                     pdev->subsystem_vendor, pdev->subsystem_device);
5104
5105         if (card) {
5106                 spin_lock_irqsave(&HFClock, flags);
5107                 release_card(card);
5108                 spin_unlock_irqrestore(&HFClock, flags);
5109         }  else {
5110                 if (debug)
5111                         printk(KERN_WARNING "%s: drvdata allready removed\n",
5112                             __func__);
5113         }
5114 }
5115
5116 #define VENDOR_CCD      "Cologne Chip AG"
5117 #define VENDOR_BN       "beroNet GmbH"
5118 #define VENDOR_DIG      "Digium Inc."
5119 #define VENDOR_JH       "Junghanns.NET GmbH"
5120 #define VENDOR_PRIM     "PrimuX"
5121
5122 static const struct hm_map hfcm_map[] = {
5123 /*0*/   {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0},
5124 /*1*/   {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0},
5125 /*2*/   {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0},
5126 /*3*/   {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0},
5127 /*4*/   {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0},
5128 /*5*/   {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0},
5129 /*6*/   {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0},
5130 /*7*/   {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0},
5131 /*8*/   {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO},
5132 /*9*/   {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0},
5133 /*10*/  {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0},
5134 /*11*/  {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0},
5135
5136 /*12*/  {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0},
5137 /*13*/  {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5138                 HFC_IO_MODE_REGIO},
5139 /*14*/  {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0},
5140 /*15*/  {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0},
5141
5142 /*16*/  {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0},
5143 /*17*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5144 /*18*/  {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0},
5145
5146 /*19*/  {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0},
5147 /*20*/  {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0},
5148 /*21*/  {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5149 /*22*/  {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0},
5150
5151 /*23*/  {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0},
5152 /*24*/  {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0},
5153 /*25*/  {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0},
5154
5155 /*26*/  {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5156                 HFC_IO_MODE_PLXSD},
5157 /*27*/  {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5158                 HFC_IO_MODE_PLXSD},
5159 /*28*/  {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0},
5160 /*29*/  {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0},
5161 /*30*/  {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0},
5162 };
5163
5164 #undef H
5165 #define H(x)    ((unsigned long)&hfcm_map[x])
5166 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5167
5168         /* Cards with HFC-4S Chip */
5169         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5170                 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5171         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5172                 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5173         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5174                 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5175         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5176                 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5177         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5178                 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5179         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5180                 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5181         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5182                 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5183         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5184                 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5185         { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5186                 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5187         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5188                 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5189         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5190                 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5191         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5192                 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5193         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5194                 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5195         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5196                 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5197
5198         /* Cards with HFC-8S Chip */
5199         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5200         PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5201         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5202         PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5203         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5204         PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5205         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5206         PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5207         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5208                 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST  */
5209         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5210                 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST  */
5211         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5212                 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5213         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5214                 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5215
5216
5217         /* Cards with HFC-E1 Chip */
5218         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5219                 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5220         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5221                 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5222         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5223                 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5224         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5225                 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5226
5227         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5228                 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5229         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5230                 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5231         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5232                 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5233
5234         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5235                 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5236         { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5237                 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5238         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_ANY_ID, PCI_ANY_ID,
5239                 0, 0, 0},
5240         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_ANY_ID, PCI_ANY_ID,
5241                 0, 0, 0},
5242         { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_ANY_ID, PCI_ANY_ID,
5243                 0, 0, 0},
5244         {0, }
5245 };
5246 #undef H
5247
5248 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5249
5250 static int
5251 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5252 {
5253         struct hm_map   *m = (struct hm_map *)ent->driver_data;
5254         int             ret;
5255
5256         if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5257             ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5258             ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5259             ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5260                 printk(KERN_ERR
5261                     "Unknown HFC multiport controller (vendor:%x device:%x "
5262                     "subvendor:%x subdevice:%x)\n", ent->vendor, ent->device,
5263                     ent->subvendor, ent->subdevice);
5264                 printk(KERN_ERR
5265                     "Please contact the driver maintainer for support.\n");
5266                 return -ENODEV;
5267         }
5268         ret = hfcmulti_init(pdev, ent);
5269         if (ret)
5270                 return ret;
5271         HFC_cnt++;
5272         printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5273         return 0;
5274 }
5275
5276 static struct pci_driver hfcmultipci_driver = {
5277         .name           = "hfc_multi",
5278         .probe          = hfcmulti_probe,
5279         .remove         = __devexit_p(hfc_remove_pci),
5280         .id_table       = hfmultipci_ids,
5281 };
5282
5283 static void __exit
5284 HFCmulti_cleanup(void)
5285 {
5286         struct hfc_multi *card, *next;
5287
5288         /* get rid of all devices of this driver */
5289         list_for_each_entry_safe(card, next, &HFClist, list)
5290                 release_card(card);
5291         pci_unregister_driver(&hfcmultipci_driver);
5292 }
5293
5294 static int __init
5295 HFCmulti_init(void)
5296 {
5297         int err;
5298
5299         printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5300
5301 #ifdef IRQ_DEBUG
5302         printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5303 #endif
5304
5305         spin_lock_init(&HFClock);
5306         spin_lock_init(&plx_lock);
5307
5308         if (debug & DEBUG_HFCMULTI_INIT)
5309                 printk(KERN_DEBUG "%s: init entered\n", __func__);
5310
5311         switch (poll) {
5312         case 0:
5313                 poll_timer = 6;
5314                 poll = 128;
5315                 break;
5316         case 8:
5317                 poll_timer = 2;
5318                 break;
5319         case 16:
5320                 poll_timer = 3;
5321                 break;
5322         case 32:
5323                 poll_timer = 4;
5324                 break;
5325         case 64:
5326                 poll_timer = 5;
5327                 break;
5328         case 128:
5329                 poll_timer = 6;
5330                 break;
5331         case 256:
5332                 poll_timer = 7;
5333                 break;
5334         default:
5335                 printk(KERN_ERR
5336                     "%s: Wrong poll value (%d).\n", __func__, poll);
5337                 err = -EINVAL;
5338                 return err;
5339
5340         }
5341
5342         if (!clock)
5343                 clock = 1;
5344
5345         err = pci_register_driver(&hfcmultipci_driver);
5346         if (err < 0) {
5347                 printk(KERN_ERR "error registering pci driver: %x\n", err);
5348                 return err;
5349         }
5350         return 0;
5351 }
5352
5353
5354 module_init(HFCmulti_init);
5355 module_exit(HFCmulti_cleanup);