ieee1394: sbp2: fix rescan-scsi-bus
[safe/jmp/linux-2.6] / drivers / ieee1394 / sbp2.c
1 /*
2  * sbp2.c - SBP-2 protocol driver for IEEE-1394
3  *
4  * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5  * jamesg@filanet.com (JSG)
6  *
7  * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  */
23
24 /*
25  * Brief Description:
26  *
27  * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28  * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29  * driver. It also registers as a SCSI lower-level driver in order to accept
30  * SCSI commands for transport using SBP-2.
31  *
32  * You may access any attached SBP-2 (usually storage devices) as regular
33  * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
34  *
35  * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36  * specification and for where to purchase the official standard.
37  *
38  * TODO:
39  *   - look into possible improvements of the SCSI error handlers
40  *   - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41  *   - handle Logical_Unit_Number.ordered
42  *   - handle src == 1 in status blocks
43  *   - reimplement the DMA mapping in absence of physical DMA so that
44  *     bus_to_virt is no longer required
45  *   - debug the handling of absent physical DMA
46  *   - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47  *     (this is easy but depends on the previous two TODO items)
48  *   - make the parameter serialize_io configurable per device
49  *   - move all requests to fetch agent registers into non-atomic context,
50  *     replace all usages of sbp2util_node_write_no_wait by true transactions
51  * Grep for inline FIXME comments below.
52  */
53
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
76
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
82
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
86
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
92
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
103
104 /*
105  * Module load parameter definitions
106  */
107
108 /*
109  * Change max_speed on module load if you have a bad IEEE-1394
110  * controller that has trouble running 2KB packets at 400mb.
111  *
112  * NOTE: On certain OHCI parts I have seen short packets on async transmit
113  * (probably due to PCI latency/throughput issues with the part). You can
114  * bump down the speed if you are running into problems.
115  */
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Force max speed "
119                  "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
120
121 /*
122  * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123  * This is and always has been buggy in multiple subtle ways. See above TODOs.
124  */
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128                  "(default = Y, faster but buggy = N)");
129
130 /*
131  * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132  * command can transfer at most. Please note that some older SBP-2 bridge
133  * chips are broken for transfers greater or equal to 128KB, therefore
134  * max_sectors used to be a safe 255 sectors for many years. We now have a
135  * default of 0 here which means that we let the SCSI stack choose a limit.
136  *
137  * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138  * module parameter or in the sbp2_workarounds_table[], will override the
139  * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140  * bridge chip which becomes known to need the 255 sectors limit.
141  */
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145                  "(default = 0 = use SCSI stack's default)");
146
147 /*
148  * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149  * do an exclusive login, as it's generally unsafe to have two hosts
150  * talking to a single sbp2 device at the same time (filesystem coherency,
151  * etc.). If you're running an sbp2 device that supports multiple logins,
152  * and you're either running read-only filesystems or some sort of special
153  * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154  * File System, or Lustre, then set exclusive_login to zero.
155  *
156  * So far only bridges from Oxford Semiconductor are known to support
157  * concurrent logins. Depending on firmware, four or two concurrent logins
158  * are possible on OXFW911 and newer Oxsemi bridges.
159  */
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163                  "(default = Y, use N for concurrent initiators)");
164
165 /*
166  * If any of the following workarounds is required for your device to work,
167  * please submit the kernel messages logged by sbp2 to the linux1394-devel
168  * mailing list.
169  *
170  * - 128kB max transfer
171  *   Limit transfer size. Necessary for some old bridges.
172  *
173  * - 36 byte inquiry
174  *   When scsi_mod probes the device, let the inquiry command look like that
175  *   from MS Windows.
176  *
177  * - skip mode page 8
178  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
179  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
180  *
181  * - fix capacity
182  *   Tell sd_mod to correct the last sector number reported by read_capacity.
183  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
184  *   Don't use this with devices which don't have this bug.
185  *
186  * - delay inquiry
187  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
188  *
189  * - override internal blacklist
190  *   Instead of adding to the built-in blacklist, use only the workarounds
191  *   specified in the module load parameter.
192  *   Useful if a blacklist entry interfered with a non-broken device.
193  */
194 static int sbp2_default_workarounds;
195 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
196 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
197         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
198         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
199         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
200         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
201         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
202         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
203         ", or a combination)");
204
205 /*
206  * This influences the format of the sysfs attribute
207  * /sys/bus/scsi/devices/.../ieee1394_id.
208  *
209  * The default format is like in older kernels:  %016Lx:%d:%d
210  * It contains the target's EUI-64, a number given to the logical unit by
211  * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
212  *
213  * The long format is:  %016Lx:%06x:%04x
214  * It contains the target's EUI-64, the unit directory's directory_ID as per
215  * IEEE 1212 clause 7.7.19, and the LUN.  This format comes closest to the
216  * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
217  * Architecture Model) rev.2 to 4 annex A.  Therefore and because it is
218  * independent of the implementation of the ieee1394 nodemgr, the longer format
219  * is recommended for future use.
220  */
221 static int sbp2_long_sysfs_ieee1394_id;
222 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
223 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
224                  "(default = backwards-compatible = N, SAM-conforming = Y)");
225
226
227 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
228 #define SBP2_ERR(fmt, args...)  HPSB_ERR("sbp2: "fmt, ## args)
229
230 /*
231  * Globals
232  */
233 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
234 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
235                                       void (*)(struct scsi_cmnd *));
236 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
237 static int sbp2_start_device(struct sbp2_lu *);
238 static void sbp2_remove_device(struct sbp2_lu *);
239 static int sbp2_login_device(struct sbp2_lu *);
240 static int sbp2_reconnect_device(struct sbp2_lu *);
241 static int sbp2_logout_device(struct sbp2_lu *);
242 static void sbp2_host_reset(struct hpsb_host *);
243 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
244                                     u64, size_t, u16);
245 static int sbp2_agent_reset(struct sbp2_lu *, int);
246 static void sbp2_parse_unit_directory(struct sbp2_lu *,
247                                       struct unit_directory *);
248 static int sbp2_set_busy_timeout(struct sbp2_lu *);
249 static int sbp2_max_speed_and_size(struct sbp2_lu *);
250
251
252 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
253
254 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
255
256 static struct hpsb_highlevel sbp2_highlevel = {
257         .name           = SBP2_DEVICE_NAME,
258         .host_reset     = sbp2_host_reset,
259 };
260
261 static struct hpsb_address_ops sbp2_ops = {
262         .write          = sbp2_handle_status_write
263 };
264
265 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
266 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
267                                      u64, size_t, u16);
268 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
269                                     size_t, u16);
270
271 static struct hpsb_address_ops sbp2_physdma_ops = {
272         .read           = sbp2_handle_physdma_read,
273         .write          = sbp2_handle_physdma_write,
274 };
275 #endif
276
277
278 /*
279  * Interface to driver core and IEEE 1394 core
280  */
281 static struct ieee1394_device_id sbp2_id_table[] = {
282         {
283          .match_flags   = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
284          .specifier_id  = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
285          .version       = SBP2_SW_VERSION_ENTRY & 0xffffff},
286         {}
287 };
288 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
289
290 static int sbp2_probe(struct device *);
291 static int sbp2_remove(struct device *);
292 static int sbp2_update(struct unit_directory *);
293
294 static struct hpsb_protocol_driver sbp2_driver = {
295         .name           = SBP2_DEVICE_NAME,
296         .id_table       = sbp2_id_table,
297         .update         = sbp2_update,
298         .driver         = {
299                 .probe          = sbp2_probe,
300                 .remove         = sbp2_remove,
301         },
302 };
303
304
305 /*
306  * Interface to SCSI core
307  */
308 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
309                                  void (*)(struct scsi_cmnd *));
310 static int sbp2scsi_abort(struct scsi_cmnd *);
311 static int sbp2scsi_reset(struct scsi_cmnd *);
312 static int sbp2scsi_slave_alloc(struct scsi_device *);
313 static int sbp2scsi_slave_configure(struct scsi_device *);
314 static void sbp2scsi_slave_destroy(struct scsi_device *);
315 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
316                                            struct device_attribute *, char *);
317
318 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
319
320 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
321         &dev_attr_ieee1394_id,
322         NULL
323 };
324
325 static struct scsi_host_template sbp2_shost_template = {
326         .module                  = THIS_MODULE,
327         .name                    = "SBP-2 IEEE-1394",
328         .proc_name               = SBP2_DEVICE_NAME,
329         .queuecommand            = sbp2scsi_queuecommand,
330         .eh_abort_handler        = sbp2scsi_abort,
331         .eh_device_reset_handler = sbp2scsi_reset,
332         .slave_alloc             = sbp2scsi_slave_alloc,
333         .slave_configure         = sbp2scsi_slave_configure,
334         .slave_destroy           = sbp2scsi_slave_destroy,
335         .this_id                 = -1,
336         .sg_tablesize            = SG_ALL,
337         .use_clustering          = ENABLE_CLUSTERING,
338         .cmd_per_lun             = SBP2_MAX_CMDS,
339         .can_queue               = SBP2_MAX_CMDS,
340         .sdev_attrs              = sbp2_sysfs_sdev_attrs,
341 };
342
343 /* for match-all entries in sbp2_workarounds_table */
344 #define SBP2_ROM_VALUE_WILDCARD 0x1000000
345
346 /*
347  * List of devices with known bugs.
348  *
349  * The firmware_revision field, masked with 0xffff00, is the best indicator
350  * for the type of bridge chip of a device.  It yields a few false positives
351  * but this did not break correctly behaving devices so far.
352  */
353 static const struct {
354         u32 firmware_revision;
355         u32 model_id;
356         unsigned workarounds;
357 } sbp2_workarounds_table[] = {
358         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
359                 .firmware_revision      = 0x002800,
360                 .model_id               = 0x001010,
361                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
362                                           SBP2_WORKAROUND_MODE_SENSE_8,
363         },
364         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
365                 .firmware_revision      = 0x002800,
366                 .model_id               = 0x000000,
367                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY,
368         },
369         /* Initio bridges, actually only needed for some older ones */ {
370                 .firmware_revision      = 0x000200,
371                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
372                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
373         },
374         /* Symbios bridge */ {
375                 .firmware_revision      = 0xa0b800,
376                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
377                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
378         },
379         /* iPod 4th generation */ {
380                 .firmware_revision      = 0x0a2700,
381                 .model_id               = 0x000021,
382                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
383         },
384         /* iPod mini */ {
385                 .firmware_revision      = 0x0a2700,
386                 .model_id               = 0x000023,
387                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
388         },
389         /* iPod Photo */ {
390                 .firmware_revision      = 0x0a2700,
391                 .model_id               = 0x00007e,
392                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
393         }
394 };
395
396 /**************************************
397  * General utility functions
398  **************************************/
399
400 #ifndef __BIG_ENDIAN
401 /*
402  * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
403  */
404 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
405 {
406         u32 *temp = buffer;
407
408         for (length = (length >> 2); length--; )
409                 temp[length] = be32_to_cpu(temp[length]);
410 }
411
412 /*
413  * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
414  */
415 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
416 {
417         u32 *temp = buffer;
418
419         for (length = (length >> 2); length--; )
420                 temp[length] = cpu_to_be32(temp[length]);
421 }
422 #else /* BIG_ENDIAN */
423 /* Why waste the cpu cycles? */
424 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
425 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
426 #endif
427
428 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
429
430 /*
431  * Waits for completion of an SBP-2 access request.
432  * Returns nonzero if timed out or prematurely interrupted.
433  */
434 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
435 {
436         long leftover;
437
438         leftover = wait_event_interruptible_timeout(
439                         sbp2_access_wq, lu->access_complete, timeout);
440         lu->access_complete = 0;
441         return leftover <= 0;
442 }
443
444 static void sbp2_free_packet(void *packet)
445 {
446         hpsb_free_tlabel(packet);
447         hpsb_free_packet(packet);
448 }
449
450 /*
451  * This is much like hpsb_node_write(), except it ignores the response
452  * subaction and returns immediately. Can be used from atomic context.
453  */
454 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
455                                        quadlet_t *buf, size_t len)
456 {
457         struct hpsb_packet *packet;
458
459         packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
460         if (!packet)
461                 return -ENOMEM;
462
463         hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
464         hpsb_node_fill_packet(ne, packet);
465         if (hpsb_send_packet(packet) < 0) {
466                 sbp2_free_packet(packet);
467                 return -EIO;
468         }
469         return 0;
470 }
471
472 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
473                                         quadlet_t *data, size_t len)
474 {
475         /* There is a small window after a bus reset within which the node
476          * entry's generation is current but the reconnect wasn't completed. */
477         if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
478                 return;
479
480         if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
481                             data, len))
482                 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
483
484         /* Now accept new SCSI commands, unless a bus reset happended during
485          * hpsb_node_write. */
486         if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
487                 scsi_unblock_requests(lu->shost);
488 }
489
490 static void sbp2util_write_orb_pointer(struct work_struct *work)
491 {
492         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
493         quadlet_t data[2];
494
495         data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
496         data[1] = lu->last_orb_dma;
497         sbp2util_cpu_to_be32_buffer(data, 8);
498         sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
499 }
500
501 static void sbp2util_write_doorbell(struct work_struct *work)
502 {
503         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
504
505         sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
506 }
507
508 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
509 {
510         struct sbp2_fwhost_info *hi = lu->hi;
511         struct sbp2_command_info *cmd;
512         int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
513
514         for (i = 0; i < orbs; i++) {
515                 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
516                 if (!cmd)
517                         return -ENOMEM;
518                 cmd->command_orb_dma = dma_map_single(hi->host->device.parent,
519                                                 &cmd->command_orb,
520                                                 sizeof(struct sbp2_command_orb),
521                                                 DMA_TO_DEVICE);
522                 cmd->sge_dma = dma_map_single(hi->host->device.parent,
523                                         &cmd->scatter_gather_element,
524                                         sizeof(cmd->scatter_gather_element),
525                                         DMA_TO_DEVICE);
526                 INIT_LIST_HEAD(&cmd->list);
527                 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
528         }
529         return 0;
530 }
531
532 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
533                                              struct hpsb_host *host)
534 {
535         struct list_head *lh, *next;
536         struct sbp2_command_info *cmd;
537         unsigned long flags;
538
539         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
540         if (!list_empty(&lu->cmd_orb_completed))
541                 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
542                         cmd = list_entry(lh, struct sbp2_command_info, list);
543                         dma_unmap_single(host->device.parent,
544                                          cmd->command_orb_dma,
545                                          sizeof(struct sbp2_command_orb),
546                                          DMA_TO_DEVICE);
547                         dma_unmap_single(host->device.parent, cmd->sge_dma,
548                                          sizeof(cmd->scatter_gather_element),
549                                          DMA_TO_DEVICE);
550                         kfree(cmd);
551                 }
552         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
553         return;
554 }
555
556 /*
557  * Finds the sbp2_command for a given outstanding command ORB.
558  * Only looks at the in-use list.
559  */
560 static struct sbp2_command_info *sbp2util_find_command_for_orb(
561                                 struct sbp2_lu *lu, dma_addr_t orb)
562 {
563         struct sbp2_command_info *cmd;
564         unsigned long flags;
565
566         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
567         if (!list_empty(&lu->cmd_orb_inuse))
568                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
569                         if (cmd->command_orb_dma == orb) {
570                                 spin_unlock_irqrestore(
571                                                 &lu->cmd_orb_lock, flags);
572                                 return cmd;
573                         }
574         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
575         return NULL;
576 }
577
578 /*
579  * Finds the sbp2_command for a given outstanding SCpnt.
580  * Only looks at the in-use list.
581  * Must be called with lu->cmd_orb_lock held.
582  */
583 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
584                                 struct sbp2_lu *lu, void *SCpnt)
585 {
586         struct sbp2_command_info *cmd;
587
588         if (!list_empty(&lu->cmd_orb_inuse))
589                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
590                         if (cmd->Current_SCpnt == SCpnt)
591                                 return cmd;
592         return NULL;
593 }
594
595 static struct sbp2_command_info *sbp2util_allocate_command_orb(
596                                 struct sbp2_lu *lu,
597                                 struct scsi_cmnd *Current_SCpnt,
598                                 void (*Current_done)(struct scsi_cmnd *))
599 {
600         struct list_head *lh;
601         struct sbp2_command_info *cmd = NULL;
602         unsigned long flags;
603
604         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
605         if (!list_empty(&lu->cmd_orb_completed)) {
606                 lh = lu->cmd_orb_completed.next;
607                 list_del(lh);
608                 cmd = list_entry(lh, struct sbp2_command_info, list);
609                 cmd->Current_done = Current_done;
610                 cmd->Current_SCpnt = Current_SCpnt;
611                 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
612         } else
613                 SBP2_ERR("%s: no orbs available", __FUNCTION__);
614         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
615         return cmd;
616 }
617
618 /*
619  * Unmaps the DMAs of a command and moves the command to the completed ORB list.
620  * Must be called with lu->cmd_orb_lock held.
621  */
622 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
623                                             struct sbp2_command_info *cmd)
624 {
625         struct hpsb_host *host = lu->ud->ne->host;
626
627         if (cmd->cmd_dma) {
628                 if (cmd->dma_type == CMD_DMA_SINGLE)
629                         dma_unmap_single(host->device.parent, cmd->cmd_dma,
630                                          cmd->dma_size, cmd->dma_dir);
631                 else if (cmd->dma_type == CMD_DMA_PAGE)
632                         dma_unmap_page(host->device.parent, cmd->cmd_dma,
633                                        cmd->dma_size, cmd->dma_dir);
634                 /* XXX: Check for CMD_DMA_NONE bug */
635                 cmd->dma_type = CMD_DMA_NONE;
636                 cmd->cmd_dma = 0;
637         }
638         if (cmd->sge_buffer) {
639                 dma_unmap_sg(host->device.parent, cmd->sge_buffer,
640                              cmd->dma_size, cmd->dma_dir);
641                 cmd->sge_buffer = NULL;
642         }
643         list_move_tail(&cmd->list, &lu->cmd_orb_completed);
644 }
645
646 /*
647  * Is lu valid? Is the 1394 node still present?
648  */
649 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
650 {
651         return lu && lu->ne && !lu->ne->in_limbo;
652 }
653
654 /*********************************************
655  * IEEE-1394 core driver stack related section
656  *********************************************/
657
658 static int sbp2_probe(struct device *dev)
659 {
660         struct unit_directory *ud;
661         struct sbp2_lu *lu;
662
663         ud = container_of(dev, struct unit_directory, device);
664
665         /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
666          * instead. */
667         if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
668                 return -ENODEV;
669
670         lu = sbp2_alloc_device(ud);
671         if (!lu)
672                 return -ENOMEM;
673
674         sbp2_parse_unit_directory(lu, ud);
675         return sbp2_start_device(lu);
676 }
677
678 static int sbp2_remove(struct device *dev)
679 {
680         struct unit_directory *ud;
681         struct sbp2_lu *lu;
682         struct scsi_device *sdev;
683
684         ud = container_of(dev, struct unit_directory, device);
685         lu = ud->device.driver_data;
686         if (!lu)
687                 return 0;
688
689         if (lu->shost) {
690                 /* Get rid of enqueued commands if there is no chance to
691                  * send them. */
692                 if (!sbp2util_node_is_available(lu))
693                         sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
694                 /* scsi_remove_device() may trigger shutdown functions of SCSI
695                  * highlevel drivers which would deadlock if blocked. */
696                 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
697                 scsi_unblock_requests(lu->shost);
698         }
699         sdev = lu->sdev;
700         if (sdev) {
701                 lu->sdev = NULL;
702                 scsi_remove_device(sdev);
703         }
704
705         sbp2_logout_device(lu);
706         sbp2_remove_device(lu);
707
708         return 0;
709 }
710
711 static int sbp2_update(struct unit_directory *ud)
712 {
713         struct sbp2_lu *lu = ud->device.driver_data;
714
715         if (sbp2_reconnect_device(lu)) {
716                 /* Reconnect has failed. Perhaps we didn't reconnect fast
717                  * enough. Try a regular login, but first log out just in
718                  * case of any weirdness. */
719                 sbp2_logout_device(lu);
720
721                 if (sbp2_login_device(lu)) {
722                         /* Login failed too, just fail, and the backend
723                          * will call our sbp2_remove for us */
724                         SBP2_ERR("Failed to reconnect to sbp2 device!");
725                         return -EBUSY;
726                 }
727         }
728
729         sbp2_set_busy_timeout(lu);
730         sbp2_agent_reset(lu, 1);
731         sbp2_max_speed_and_size(lu);
732
733         /* Complete any pending commands with busy (so they get retried)
734          * and remove them from our queue. */
735         sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
736
737         /* Accept new commands unless there was another bus reset in the
738          * meantime. */
739         if (hpsb_node_entry_valid(lu->ne)) {
740                 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
741                 scsi_unblock_requests(lu->shost);
742         }
743         return 0;
744 }
745
746 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
747 {
748         struct sbp2_fwhost_info *hi;
749         struct Scsi_Host *shost = NULL;
750         struct sbp2_lu *lu = NULL;
751         unsigned long flags;
752
753         lu = kzalloc(sizeof(*lu), GFP_KERNEL);
754         if (!lu) {
755                 SBP2_ERR("failed to create lu");
756                 goto failed_alloc;
757         }
758
759         lu->ne = ud->ne;
760         lu->ud = ud;
761         lu->speed_code = IEEE1394_SPEED_100;
762         lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
763         lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
764         INIT_LIST_HEAD(&lu->cmd_orb_inuse);
765         INIT_LIST_HEAD(&lu->cmd_orb_completed);
766         INIT_LIST_HEAD(&lu->lu_list);
767         spin_lock_init(&lu->cmd_orb_lock);
768         atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
769         INIT_WORK(&lu->protocol_work, NULL);
770
771         ud->device.driver_data = lu;
772
773         hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
774         if (!hi) {
775                 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
776                                           sizeof(*hi));
777                 if (!hi) {
778                         SBP2_ERR("failed to allocate hostinfo");
779                         goto failed_alloc;
780                 }
781                 hi->host = ud->ne->host;
782                 INIT_LIST_HEAD(&hi->logical_units);
783
784 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
785                 /* Handle data movement if physical dma is not
786                  * enabled or not supported on host controller */
787                 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
788                                              &sbp2_physdma_ops,
789                                              0x0ULL, 0xfffffffcULL)) {
790                         SBP2_ERR("failed to register lower 4GB address range");
791                         goto failed_alloc;
792                 }
793 #endif
794         }
795
796         /* Prevent unloading of the 1394 host */
797         if (!try_module_get(hi->host->driver->owner)) {
798                 SBP2_ERR("failed to get a reference on 1394 host driver");
799                 goto failed_alloc;
800         }
801
802         lu->hi = hi;
803
804         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
805         list_add_tail(&lu->lu_list, &hi->logical_units);
806         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
807
808         /* Register the status FIFO address range. We could use the same FIFO
809          * for targets at different nodes. However we need different FIFOs per
810          * target in order to support multi-unit devices.
811          * The FIFO is located out of the local host controller's physical range
812          * but, if possible, within the posted write area. Status writes will
813          * then be performed as unified transactions. This slightly reduces
814          * bandwidth usage, and some Prolific based devices seem to require it.
815          */
816         lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
817                         &sbp2_highlevel, ud->ne->host, &sbp2_ops,
818                         sizeof(struct sbp2_status_block), sizeof(quadlet_t),
819                         ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
820         if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
821                 SBP2_ERR("failed to allocate status FIFO address range");
822                 goto failed_alloc;
823         }
824
825         shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
826         if (!shost) {
827                 SBP2_ERR("failed to register scsi host");
828                 goto failed_alloc;
829         }
830
831         shost->hostdata[0] = (unsigned long)lu;
832
833         if (!scsi_add_host(shost, &ud->device)) {
834                 lu->shost = shost;
835                 return lu;
836         }
837
838         SBP2_ERR("failed to add scsi host");
839         scsi_host_put(shost);
840
841 failed_alloc:
842         sbp2_remove_device(lu);
843         return NULL;
844 }
845
846 static void sbp2_host_reset(struct hpsb_host *host)
847 {
848         struct sbp2_fwhost_info *hi;
849         struct sbp2_lu *lu;
850         unsigned long flags;
851
852         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
853         if (!hi)
854                 return;
855
856         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
857         list_for_each_entry(lu, &hi->logical_units, lu_list)
858                 if (likely(atomic_read(&lu->state) !=
859                            SBP2LU_STATE_IN_SHUTDOWN)) {
860                         atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
861                         scsi_block_requests(lu->shost);
862                 }
863         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
864 }
865
866 static int sbp2_start_device(struct sbp2_lu *lu)
867 {
868         struct sbp2_fwhost_info *hi = lu->hi;
869         int error;
870
871         lu->login_response = dma_alloc_coherent(hi->host->device.parent,
872                                      sizeof(struct sbp2_login_response),
873                                      &lu->login_response_dma, GFP_KERNEL);
874         if (!lu->login_response)
875                 goto alloc_fail;
876
877         lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
878                                      sizeof(struct sbp2_query_logins_orb),
879                                      &lu->query_logins_orb_dma, GFP_KERNEL);
880         if (!lu->query_logins_orb)
881                 goto alloc_fail;
882
883         lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
884                                      sizeof(struct sbp2_query_logins_response),
885                                      &lu->query_logins_response_dma, GFP_KERNEL);
886         if (!lu->query_logins_response)
887                 goto alloc_fail;
888
889         lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
890                                      sizeof(struct sbp2_reconnect_orb),
891                                      &lu->reconnect_orb_dma, GFP_KERNEL);
892         if (!lu->reconnect_orb)
893                 goto alloc_fail;
894
895         lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
896                                      sizeof(struct sbp2_logout_orb),
897                                      &lu->logout_orb_dma, GFP_KERNEL);
898         if (!lu->logout_orb)
899                 goto alloc_fail;
900
901         lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
902                                      sizeof(struct sbp2_login_orb),
903                                      &lu->login_orb_dma, GFP_KERNEL);
904         if (!lu->login_orb)
905                 goto alloc_fail;
906
907         if (sbp2util_create_command_orb_pool(lu))
908                 goto alloc_fail;
909
910         /* Wait a second before trying to log in. Previously logged in
911          * initiators need a chance to reconnect. */
912         if (msleep_interruptible(1000)) {
913                 sbp2_remove_device(lu);
914                 return -EINTR;
915         }
916
917         if (sbp2_login_device(lu)) {
918                 sbp2_remove_device(lu);
919                 return -EBUSY;
920         }
921
922         sbp2_set_busy_timeout(lu);
923         sbp2_agent_reset(lu, 1);
924         sbp2_max_speed_and_size(lu);
925
926         if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
927                 ssleep(SBP2_INQUIRY_DELAY);
928
929         error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
930         if (error) {
931                 SBP2_ERR("scsi_add_device failed");
932                 sbp2_logout_device(lu);
933                 sbp2_remove_device(lu);
934                 return error;
935         }
936
937         return 0;
938
939 alloc_fail:
940         SBP2_ERR("Could not allocate memory for lu");
941         sbp2_remove_device(lu);
942         return -ENOMEM;
943 }
944
945 static void sbp2_remove_device(struct sbp2_lu *lu)
946 {
947         struct sbp2_fwhost_info *hi;
948         unsigned long flags;
949
950         if (!lu)
951                 return;
952         hi = lu->hi;
953         if (!hi)
954                 goto no_hi;
955
956         if (lu->shost) {
957                 scsi_remove_host(lu->shost);
958                 scsi_host_put(lu->shost);
959         }
960         flush_scheduled_work();
961         sbp2util_remove_command_orb_pool(lu, hi->host);
962
963         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
964         list_del(&lu->lu_list);
965         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
966
967         if (lu->login_response)
968                 dma_free_coherent(hi->host->device.parent,
969                                     sizeof(struct sbp2_login_response),
970                                     lu->login_response,
971                                     lu->login_response_dma);
972         if (lu->login_orb)
973                 dma_free_coherent(hi->host->device.parent,
974                                     sizeof(struct sbp2_login_orb),
975                                     lu->login_orb,
976                                     lu->login_orb_dma);
977         if (lu->reconnect_orb)
978                 dma_free_coherent(hi->host->device.parent,
979                                     sizeof(struct sbp2_reconnect_orb),
980                                     lu->reconnect_orb,
981                                     lu->reconnect_orb_dma);
982         if (lu->logout_orb)
983                 dma_free_coherent(hi->host->device.parent,
984                                     sizeof(struct sbp2_logout_orb),
985                                     lu->logout_orb,
986                                     lu->logout_orb_dma);
987         if (lu->query_logins_orb)
988                 dma_free_coherent(hi->host->device.parent,
989                                     sizeof(struct sbp2_query_logins_orb),
990                                     lu->query_logins_orb,
991                                     lu->query_logins_orb_dma);
992         if (lu->query_logins_response)
993                 dma_free_coherent(hi->host->device.parent,
994                                     sizeof(struct sbp2_query_logins_response),
995                                     lu->query_logins_response,
996                                     lu->query_logins_response_dma);
997
998         if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
999                 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1000                                           lu->status_fifo_addr);
1001
1002         lu->ud->device.driver_data = NULL;
1003
1004         module_put(hi->host->driver->owner);
1005 no_hi:
1006         kfree(lu);
1007 }
1008
1009 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1010 /*
1011  * Deal with write requests on adapters which do not support physical DMA or
1012  * have it switched off.
1013  */
1014 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1015                                      int destid, quadlet_t *data, u64 addr,
1016                                      size_t length, u16 flags)
1017 {
1018         memcpy(bus_to_virt((u32) addr), data, length);
1019         return RCODE_COMPLETE;
1020 }
1021
1022 /*
1023  * Deal with read requests on adapters which do not support physical DMA or
1024  * have it switched off.
1025  */
1026 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1027                                     quadlet_t *data, u64 addr, size_t length,
1028                                     u16 flags)
1029 {
1030         memcpy(data, bus_to_virt((u32) addr), length);
1031         return RCODE_COMPLETE;
1032 }
1033 #endif
1034
1035 /**************************************
1036  * SBP-2 protocol related section
1037  **************************************/
1038
1039 static int sbp2_query_logins(struct sbp2_lu *lu)
1040 {
1041         struct sbp2_fwhost_info *hi = lu->hi;
1042         quadlet_t data[2];
1043         int max_logins;
1044         int active_logins;
1045
1046         lu->query_logins_orb->reserved1 = 0x0;
1047         lu->query_logins_orb->reserved2 = 0x0;
1048
1049         lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1050         lu->query_logins_orb->query_response_hi =
1051                         ORB_SET_NODE_ID(hi->host->node_id);
1052         lu->query_logins_orb->lun_misc =
1053                         ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1054         lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1055         lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1056
1057         lu->query_logins_orb->reserved_resp_length =
1058                 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1059                         sizeof(struct sbp2_query_logins_response));
1060
1061         lu->query_logins_orb->status_fifo_hi =
1062                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1063         lu->query_logins_orb->status_fifo_lo =
1064                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1065
1066         sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1067                                     sizeof(struct sbp2_query_logins_orb));
1068
1069         memset(lu->query_logins_response, 0,
1070                sizeof(struct sbp2_query_logins_response));
1071
1072         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1073         data[1] = lu->query_logins_orb_dma;
1074         sbp2util_cpu_to_be32_buffer(data, 8);
1075
1076         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1077
1078         if (sbp2util_access_timeout(lu, 2*HZ)) {
1079                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1080                 return -EIO;
1081         }
1082
1083         if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1084                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1085                 return -EIO;
1086         }
1087
1088         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1089                 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1090                 return -EIO;
1091         }
1092
1093         sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1094                                     sizeof(struct sbp2_query_logins_response));
1095
1096         max_logins = RESPONSE_GET_MAX_LOGINS(
1097                         lu->query_logins_response->length_max_logins);
1098         SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1099
1100         active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1101                         lu->query_logins_response->length_max_logins);
1102         SBP2_INFO("Number of active logins: %d", active_logins);
1103
1104         if (active_logins >= max_logins) {
1105                 return -EIO;
1106         }
1107
1108         return 0;
1109 }
1110
1111 static int sbp2_login_device(struct sbp2_lu *lu)
1112 {
1113         struct sbp2_fwhost_info *hi = lu->hi;
1114         quadlet_t data[2];
1115
1116         if (!lu->login_orb)
1117                 return -EIO;
1118
1119         if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1120                 SBP2_INFO("Device does not support any more concurrent logins");
1121                 return -EIO;
1122         }
1123
1124         /* assume no password */
1125         lu->login_orb->password_hi = 0;
1126         lu->login_orb->password_lo = 0;
1127
1128         lu->login_orb->login_response_lo = lu->login_response_dma;
1129         lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1130         lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1131
1132         /* one second reconnect time */
1133         lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1134         lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1135         lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1136         lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1137
1138         lu->login_orb->passwd_resp_lengths =
1139                 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1140
1141         lu->login_orb->status_fifo_hi =
1142                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1143         lu->login_orb->status_fifo_lo =
1144                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1145
1146         sbp2util_cpu_to_be32_buffer(lu->login_orb,
1147                                     sizeof(struct sbp2_login_orb));
1148
1149         memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1150
1151         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1152         data[1] = lu->login_orb_dma;
1153         sbp2util_cpu_to_be32_buffer(data, 8);
1154
1155         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1156
1157         /* wait up to 20 seconds for login status */
1158         if (sbp2util_access_timeout(lu, 20*HZ)) {
1159                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1160                 return -EIO;
1161         }
1162
1163         /* make sure that the returned status matches the login ORB */
1164         if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1165                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1166                 return -EIO;
1167         }
1168
1169         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1170                 SBP2_ERR("Error logging into SBP-2 device - failed");
1171                 return -EIO;
1172         }
1173
1174         sbp2util_cpu_to_be32_buffer(lu->login_response,
1175                                     sizeof(struct sbp2_login_response));
1176         lu->command_block_agent_addr =
1177                         ((u64)lu->login_response->command_block_agent_hi) << 32;
1178         lu->command_block_agent_addr |=
1179                         ((u64)lu->login_response->command_block_agent_lo);
1180         lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1181
1182         SBP2_INFO("Logged into SBP-2 device");
1183         return 0;
1184 }
1185
1186 static int sbp2_logout_device(struct sbp2_lu *lu)
1187 {
1188         struct sbp2_fwhost_info *hi = lu->hi;
1189         quadlet_t data[2];
1190         int error;
1191
1192         lu->logout_orb->reserved1 = 0x0;
1193         lu->logout_orb->reserved2 = 0x0;
1194         lu->logout_orb->reserved3 = 0x0;
1195         lu->logout_orb->reserved4 = 0x0;
1196
1197         lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1198         lu->logout_orb->login_ID_misc |=
1199                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1200         lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1201
1202         lu->logout_orb->reserved5 = 0x0;
1203         lu->logout_orb->status_fifo_hi =
1204                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1205         lu->logout_orb->status_fifo_lo =
1206                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1207
1208         sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1209                                     sizeof(struct sbp2_logout_orb));
1210
1211         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1212         data[1] = lu->logout_orb_dma;
1213         sbp2util_cpu_to_be32_buffer(data, 8);
1214
1215         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1216         if (error)
1217                 return error;
1218
1219         /* wait up to 1 second for the device to complete logout */
1220         if (sbp2util_access_timeout(lu, HZ))
1221                 return -EIO;
1222
1223         SBP2_INFO("Logged out of SBP-2 device");
1224         return 0;
1225 }
1226
1227 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1228 {
1229         struct sbp2_fwhost_info *hi = lu->hi;
1230         quadlet_t data[2];
1231         int error;
1232
1233         lu->reconnect_orb->reserved1 = 0x0;
1234         lu->reconnect_orb->reserved2 = 0x0;
1235         lu->reconnect_orb->reserved3 = 0x0;
1236         lu->reconnect_orb->reserved4 = 0x0;
1237
1238         lu->reconnect_orb->login_ID_misc =
1239                         ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1240         lu->reconnect_orb->login_ID_misc |=
1241                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1242         lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1243
1244         lu->reconnect_orb->reserved5 = 0x0;
1245         lu->reconnect_orb->status_fifo_hi =
1246                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1247         lu->reconnect_orb->status_fifo_lo =
1248                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1249
1250         sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1251                                     sizeof(struct sbp2_reconnect_orb));
1252
1253         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1254         data[1] = lu->reconnect_orb_dma;
1255         sbp2util_cpu_to_be32_buffer(data, 8);
1256
1257         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1258         if (error)
1259                 return error;
1260
1261         /* wait up to 1 second for reconnect status */
1262         if (sbp2util_access_timeout(lu, HZ)) {
1263                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1264                 return -EIO;
1265         }
1266
1267         /* make sure that the returned status matches the reconnect ORB */
1268         if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1269                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1270                 return -EIO;
1271         }
1272
1273         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1274                 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1275                 return -EIO;
1276         }
1277
1278         SBP2_INFO("Reconnected to SBP-2 device");
1279         return 0;
1280 }
1281
1282 /*
1283  * Set the target node's Single Phase Retry limit. Affects the target's retry
1284  * behaviour if our node is too busy to accept requests.
1285  */
1286 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1287 {
1288         quadlet_t data;
1289
1290         data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1291         if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1292                 SBP2_ERR("%s error", __FUNCTION__);
1293         return 0;
1294 }
1295
1296 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1297                                       struct unit_directory *ud)
1298 {
1299         struct csr1212_keyval *kv;
1300         struct csr1212_dentry *dentry;
1301         u64 management_agent_addr;
1302         u32 unit_characteristics, firmware_revision;
1303         unsigned workarounds;
1304         int i;
1305
1306         management_agent_addr = 0;
1307         unit_characteristics = 0;
1308         firmware_revision = 0;
1309
1310         csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1311                 switch (kv->key.id) {
1312                 case CSR1212_KV_ID_DEPENDENT_INFO:
1313                         if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1314                                 management_agent_addr =
1315                                     CSR1212_REGISTER_SPACE_BASE +
1316                                     (kv->value.csr_offset << 2);
1317
1318                         else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1319                                 lu->lun = ORB_SET_LUN(kv->value.immediate);
1320                         break;
1321
1322                 case SBP2_UNIT_CHARACTERISTICS_KEY:
1323                         /* FIXME: This is ignored so far.
1324                          * See SBP-2 clause 7.4.8. */
1325                         unit_characteristics = kv->value.immediate;
1326                         break;
1327
1328                 case SBP2_FIRMWARE_REVISION_KEY:
1329                         firmware_revision = kv->value.immediate;
1330                         break;
1331
1332                 default:
1333                         /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1334                          * Its "ordered" bit has consequences for command ORB
1335                          * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1336                         break;
1337                 }
1338         }
1339
1340         workarounds = sbp2_default_workarounds;
1341
1342         if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1343                 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1344                         if (sbp2_workarounds_table[i].firmware_revision !=
1345                             SBP2_ROM_VALUE_WILDCARD &&
1346                             sbp2_workarounds_table[i].firmware_revision !=
1347                             (firmware_revision & 0xffff00))
1348                                 continue;
1349                         if (sbp2_workarounds_table[i].model_id !=
1350                             SBP2_ROM_VALUE_WILDCARD &&
1351                             sbp2_workarounds_table[i].model_id != ud->model_id)
1352                                 continue;
1353                         workarounds |= sbp2_workarounds_table[i].workarounds;
1354                         break;
1355                 }
1356
1357         if (workarounds)
1358                 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1359                           "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1360                           " model_id 0x%06x)",
1361                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1362                           workarounds, firmware_revision,
1363                           ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1364                           ud->model_id);
1365
1366         /* We would need one SCSI host template for each target to adjust
1367          * max_sectors on the fly, therefore warn only. */
1368         if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1369             (sbp2_max_sectors * 512) > (128 * 1024))
1370                 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1371                           "max transfer size. WARNING: Current max_sectors "
1372                           "setting is larger than 128KB (%d sectors)",
1373                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1374                           sbp2_max_sectors);
1375
1376         /* If this is a logical unit directory entry, process the parent
1377          * to get the values. */
1378         if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1379                 struct unit_directory *parent_ud = container_of(
1380                         ud->device.parent, struct unit_directory, device);
1381                 sbp2_parse_unit_directory(lu, parent_ud);
1382         } else {
1383                 lu->management_agent_addr = management_agent_addr;
1384                 lu->workarounds = workarounds;
1385                 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1386                         lu->lun = ORB_SET_LUN(ud->lun);
1387         }
1388 }
1389
1390 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1391
1392 /*
1393  * This function is called in order to determine the max speed and packet
1394  * size we can use in our ORBs. Note, that we (the driver and host) only
1395  * initiate the transaction. The SBP-2 device actually transfers the data
1396  * (by reading from the DMA area we tell it). This means that the SBP-2
1397  * device decides the actual maximum data it can transfer. We just tell it
1398  * the speed that it needs to use, and the max_rec the host supports, and
1399  * it takes care of the rest.
1400  */
1401 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1402 {
1403         struct sbp2_fwhost_info *hi = lu->hi;
1404         u8 payload;
1405
1406         lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1407
1408         if (lu->speed_code > sbp2_max_speed) {
1409                 lu->speed_code = sbp2_max_speed;
1410                 SBP2_INFO("Reducing speed to %s",
1411                           hpsb_speedto_str[sbp2_max_speed]);
1412         }
1413
1414         /* Payload size is the lesser of what our speed supports and what
1415          * our host supports.  */
1416         payload = min(sbp2_speedto_max_payload[lu->speed_code],
1417                       (u8) (hi->host->csr.max_rec - 1));
1418
1419         /* If physical DMA is off, work around limitation in ohci1394:
1420          * packet size must not exceed PAGE_SIZE */
1421         if (lu->ne->host->low_addr_space < (1ULL << 32))
1422                 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1423                        payload)
1424                         payload--;
1425
1426         SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1427                   NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1428                   hpsb_speedto_str[lu->speed_code],
1429                   SBP2_PAYLOAD_TO_BYTES(payload));
1430
1431         lu->max_payload_size = payload;
1432         return 0;
1433 }
1434
1435 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1436 {
1437         quadlet_t data;
1438         u64 addr;
1439         int retval;
1440         unsigned long flags;
1441
1442         /* flush lu->protocol_work */
1443         if (wait)
1444                 flush_scheduled_work();
1445
1446         data = ntohl(SBP2_AGENT_RESET_DATA);
1447         addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1448
1449         if (wait)
1450                 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1451         else
1452                 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1453
1454         if (retval < 0) {
1455                 SBP2_ERR("hpsb_node_write failed.\n");
1456                 return -EIO;
1457         }
1458
1459         /* make sure that the ORB_POINTER is written on next command */
1460         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1461         lu->last_orb = NULL;
1462         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1463
1464         return 0;
1465 }
1466
1467 static void sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1468                                      struct sbp2_fwhost_info *hi,
1469                                      struct sbp2_command_info *cmd,
1470                                      unsigned int scsi_use_sg,
1471                                      struct scatterlist *sg,
1472                                      u32 orb_direction,
1473                                      enum dma_data_direction dma_dir)
1474 {
1475         cmd->dma_dir = dma_dir;
1476         orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1477         orb->misc |= ORB_SET_DIRECTION(orb_direction);
1478
1479         /* special case if only one element (and less than 64KB in size) */
1480         if (scsi_use_sg == 1 && sg->length <= SBP2_MAX_SG_ELEMENT_LENGTH) {
1481
1482                 cmd->dma_size = sg->length;
1483                 cmd->dma_type = CMD_DMA_PAGE;
1484                 cmd->cmd_dma = dma_map_page(hi->host->device.parent,
1485                                             sg_page(sg), sg->offset,
1486                                             cmd->dma_size, cmd->dma_dir);
1487
1488                 orb->data_descriptor_lo = cmd->cmd_dma;
1489                 orb->misc |= ORB_SET_DATA_SIZE(cmd->dma_size);
1490
1491         } else {
1492                 struct sbp2_unrestricted_page_table *sg_element =
1493                                                 &cmd->scatter_gather_element[0];
1494                 u32 sg_count, sg_len;
1495                 dma_addr_t sg_addr;
1496                 int i, count = dma_map_sg(hi->host->device.parent, sg,
1497                                           scsi_use_sg, dma_dir);
1498
1499                 cmd->dma_size = scsi_use_sg;
1500                 cmd->sge_buffer = sg;
1501
1502                 /* use page tables (s/g) */
1503                 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1);
1504                 orb->data_descriptor_lo = cmd->sge_dma;
1505
1506                 /* loop through and fill out our SBP-2 page tables
1507                  * (and split up anything too large) */
1508                 for (i = 0, sg_count = 0; i < count; i++, sg = sg_next(sg)) {
1509                         sg_len = sg_dma_len(sg);
1510                         sg_addr = sg_dma_address(sg);
1511                         while (sg_len) {
1512                                 sg_element[sg_count].segment_base_lo = sg_addr;
1513                                 if (sg_len > SBP2_MAX_SG_ELEMENT_LENGTH) {
1514                                         sg_element[sg_count].length_segment_base_hi =
1515                                                 PAGE_TABLE_SET_SEGMENT_LENGTH(SBP2_MAX_SG_ELEMENT_LENGTH);
1516                                         sg_addr += SBP2_MAX_SG_ELEMENT_LENGTH;
1517                                         sg_len -= SBP2_MAX_SG_ELEMENT_LENGTH;
1518                                 } else {
1519                                         sg_element[sg_count].length_segment_base_hi =
1520                                                 PAGE_TABLE_SET_SEGMENT_LENGTH(sg_len);
1521                                         sg_len = 0;
1522                                 }
1523                                 sg_count++;
1524                         }
1525                 }
1526
1527                 orb->misc |= ORB_SET_DATA_SIZE(sg_count);
1528
1529                 sbp2util_cpu_to_be32_buffer(sg_element,
1530                                 (sizeof(struct sbp2_unrestricted_page_table)) *
1531                                 sg_count);
1532         }
1533 }
1534
1535 static void sbp2_create_command_orb(struct sbp2_lu *lu,
1536                                     struct sbp2_command_info *cmd,
1537                                     unchar *scsi_cmd,
1538                                     unsigned int scsi_use_sg,
1539                                     unsigned int scsi_request_bufflen,
1540                                     struct scatterlist *sg,
1541                                     enum dma_data_direction dma_dir)
1542 {
1543         struct sbp2_fwhost_info *hi = lu->hi;
1544         struct sbp2_command_orb *orb = &cmd->command_orb;
1545         u32 orb_direction;
1546
1547         /*
1548          * Set-up our command ORB.
1549          *
1550          * NOTE: We're doing unrestricted page tables (s/g), as this is
1551          * best performance (at least with the devices I have). This means
1552          * that data_size becomes the number of s/g elements, and
1553          * page_size should be zero (for unrestricted).
1554          */
1555         orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1556         orb->next_ORB_lo = 0x0;
1557         orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1558         orb->misc |= ORB_SET_SPEED(lu->speed_code);
1559         orb->misc |= ORB_SET_NOTIFY(1);
1560
1561         if (dma_dir == DMA_NONE)
1562                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1563         else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1564                 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1565         else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1566                 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1567         else {
1568                 SBP2_INFO("Falling back to DMA_NONE");
1569                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1570         }
1571
1572         /* set up our page table stuff */
1573         if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1574                 orb->data_descriptor_hi = 0x0;
1575                 orb->data_descriptor_lo = 0x0;
1576                 orb->misc |= ORB_SET_DIRECTION(1);
1577         } else
1578                 sbp2_prep_command_orb_sg(orb, hi, cmd, scsi_use_sg, sg,
1579                                          orb_direction, dma_dir);
1580
1581         sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1582
1583         memset(orb->cdb, 0, 12);
1584         memcpy(orb->cdb, scsi_cmd, COMMAND_SIZE(*scsi_cmd));
1585 }
1586
1587 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1588                                   struct sbp2_command_info *cmd)
1589 {
1590         struct sbp2_fwhost_info *hi = lu->hi;
1591         struct sbp2_command_orb *last_orb;
1592         dma_addr_t last_orb_dma;
1593         u64 addr = lu->command_block_agent_addr;
1594         quadlet_t data[2];
1595         size_t length;
1596         unsigned long flags;
1597
1598         dma_sync_single_for_device(hi->host->device.parent,
1599                                    cmd->command_orb_dma,
1600                                    sizeof(struct sbp2_command_orb),
1601                                    DMA_TO_DEVICE);
1602         dma_sync_single_for_device(hi->host->device.parent, cmd->sge_dma,
1603                                    sizeof(cmd->scatter_gather_element),
1604                                    DMA_TO_DEVICE);
1605
1606         /* check to see if there are any previous orbs to use */
1607         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1608         last_orb = lu->last_orb;
1609         last_orb_dma = lu->last_orb_dma;
1610         if (!last_orb) {
1611                 /*
1612                  * last_orb == NULL means: We know that the target's fetch agent
1613                  * is not active right now.
1614                  */
1615                 addr += SBP2_ORB_POINTER_OFFSET;
1616                 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1617                 data[1] = cmd->command_orb_dma;
1618                 sbp2util_cpu_to_be32_buffer(data, 8);
1619                 length = 8;
1620         } else {
1621                 /*
1622                  * last_orb != NULL means: We know that the target's fetch agent
1623                  * is (very probably) not dead or in reset state right now.
1624                  * We have an ORB already sent that we can append a new one to.
1625                  * The target's fetch agent may or may not have read this
1626                  * previous ORB yet.
1627                  */
1628                 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1629                                         sizeof(struct sbp2_command_orb),
1630                                         DMA_TO_DEVICE);
1631                 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1632                 wmb();
1633                 /* Tells hardware that this pointer is valid */
1634                 last_orb->next_ORB_hi = 0;
1635                 dma_sync_single_for_device(hi->host->device.parent,
1636                                            last_orb_dma,
1637                                            sizeof(struct sbp2_command_orb),
1638                                            DMA_TO_DEVICE);
1639                 addr += SBP2_DOORBELL_OFFSET;
1640                 data[0] = 0;
1641                 length = 4;
1642         }
1643         lu->last_orb = &cmd->command_orb;
1644         lu->last_orb_dma = cmd->command_orb_dma;
1645         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1646
1647         if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1648                 /*
1649                  * sbp2util_node_write_no_wait failed. We certainly ran out
1650                  * of transaction labels, perhaps just because there were no
1651                  * context switches which gave khpsbpkt a chance to collect
1652                  * free tlabels. Try again in non-atomic context. If necessary,
1653                  * the workqueue job will sleep to guaranteedly get a tlabel.
1654                  * We do not accept new commands until the job is over.
1655                  */
1656                 scsi_block_requests(lu->shost);
1657                 PREPARE_WORK(&lu->protocol_work,
1658                              last_orb ? sbp2util_write_doorbell:
1659                                         sbp2util_write_orb_pointer);
1660                 schedule_work(&lu->protocol_work);
1661         }
1662 }
1663
1664 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1665                              void (*done)(struct scsi_cmnd *))
1666 {
1667         unchar *scsi_cmd = (unchar *)SCpnt->cmnd;
1668         struct sbp2_command_info *cmd;
1669
1670         cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1671         if (!cmd)
1672                 return -EIO;
1673
1674         sbp2_create_command_orb(lu, cmd, scsi_cmd, scsi_sg_count(SCpnt),
1675                                 scsi_bufflen(SCpnt), scsi_sglist(SCpnt),
1676                                 SCpnt->sc_data_direction);
1677         sbp2_link_orb_command(lu, cmd);
1678
1679         return 0;
1680 }
1681
1682 /*
1683  * Translates SBP-2 status into SCSI sense data for check conditions
1684  */
1685 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1686                                               unchar *sense_data)
1687 {
1688         /* OK, it's pretty ugly... ;-) */
1689         sense_data[0] = 0x70;
1690         sense_data[1] = 0x0;
1691         sense_data[2] = sbp2_status[9];
1692         sense_data[3] = sbp2_status[12];
1693         sense_data[4] = sbp2_status[13];
1694         sense_data[5] = sbp2_status[14];
1695         sense_data[6] = sbp2_status[15];
1696         sense_data[7] = 10;
1697         sense_data[8] = sbp2_status[16];
1698         sense_data[9] = sbp2_status[17];
1699         sense_data[10] = sbp2_status[18];
1700         sense_data[11] = sbp2_status[19];
1701         sense_data[12] = sbp2_status[10];
1702         sense_data[13] = sbp2_status[11];
1703         sense_data[14] = sbp2_status[20];
1704         sense_data[15] = sbp2_status[21];
1705
1706         return sbp2_status[8] & 0x3f;
1707 }
1708
1709 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1710                                     int destid, quadlet_t *data, u64 addr,
1711                                     size_t length, u16 fl)
1712 {
1713         struct sbp2_fwhost_info *hi;
1714         struct sbp2_lu *lu = NULL, *lu_tmp;
1715         struct scsi_cmnd *SCpnt = NULL;
1716         struct sbp2_status_block *sb;
1717         u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1718         struct sbp2_command_info *cmd;
1719         unsigned long flags;
1720
1721         if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1722                 SBP2_ERR("Wrong size of status block");
1723                 return RCODE_ADDRESS_ERROR;
1724         }
1725         if (unlikely(!host)) {
1726                 SBP2_ERR("host is NULL - this is bad!");
1727                 return RCODE_ADDRESS_ERROR;
1728         }
1729         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1730         if (unlikely(!hi)) {
1731                 SBP2_ERR("host info is NULL - this is bad!");
1732                 return RCODE_ADDRESS_ERROR;
1733         }
1734
1735         /* Find the unit which wrote the status. */
1736         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1737         list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1738                 if (lu_tmp->ne->nodeid == nodeid &&
1739                     lu_tmp->status_fifo_addr == addr) {
1740                         lu = lu_tmp;
1741                         break;
1742                 }
1743         }
1744         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1745
1746         if (unlikely(!lu)) {
1747                 SBP2_ERR("lu is NULL - device is gone?");
1748                 return RCODE_ADDRESS_ERROR;
1749         }
1750
1751         /* Put response into lu status fifo buffer. The first two bytes
1752          * come in big endian bit order. Often the target writes only a
1753          * truncated status block, minimally the first two quadlets. The rest
1754          * is implied to be zeros. */
1755         sb = &lu->status_block;
1756         memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1757         memcpy(sb, data, length);
1758         sbp2util_be32_to_cpu_buffer(sb, 8);
1759
1760         /* Ignore unsolicited status. Handle command ORB status. */
1761         if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1762                 cmd = NULL;
1763         else
1764                 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1765         if (cmd) {
1766                 dma_sync_single_for_cpu(hi->host->device.parent,
1767                                         cmd->command_orb_dma,
1768                                         sizeof(struct sbp2_command_orb),
1769                                         DMA_TO_DEVICE);
1770                 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1771                                         sizeof(cmd->scatter_gather_element),
1772                                         DMA_TO_DEVICE);
1773                 /* Grab SCSI command pointers and check status. */
1774                 /*
1775                  * FIXME: If the src field in the status is 1, the ORB DMA must
1776                  * not be reused until status for a subsequent ORB is received.
1777                  */
1778                 SCpnt = cmd->Current_SCpnt;
1779                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1780                 sbp2util_mark_command_completed(lu, cmd);
1781                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1782
1783                 if (SCpnt) {
1784                         u32 h = sb->ORB_offset_hi_misc;
1785                         u32 r = STATUS_GET_RESP(h);
1786
1787                         if (r != RESP_STATUS_REQUEST_COMPLETE) {
1788                                 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1789                                           r, STATUS_GET_SBP_STATUS(h));
1790                                 scsi_status =
1791                                         r == RESP_STATUS_TRANSPORT_FAILURE ?
1792                                         SBP2_SCSI_STATUS_BUSY :
1793                                         SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1794                         }
1795
1796                         if (STATUS_GET_LEN(h) > 1)
1797                                 scsi_status = sbp2_status_to_sense_data(
1798                                         (unchar *)sb, SCpnt->sense_buffer);
1799
1800                         if (STATUS_TEST_DEAD(h))
1801                                 sbp2_agent_reset(lu, 0);
1802                 }
1803
1804                 /* Check here to see if there are no commands in-use. If there
1805                  * are none, we know that the fetch agent left the active state
1806                  * _and_ that we did not reactivate it yet. Therefore clear
1807                  * last_orb so that next time we write directly to the
1808                  * ORB_POINTER register. That way the fetch agent does not need
1809                  * to refetch the next_ORB. */
1810                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1811                 if (list_empty(&lu->cmd_orb_inuse))
1812                         lu->last_orb = NULL;
1813                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1814
1815         } else {
1816                 /* It's probably status after a management request. */
1817                 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1818                     (sb->ORB_offset_lo == lu->login_orb_dma) ||
1819                     (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1820                     (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1821                         lu->access_complete = 1;
1822                         wake_up_interruptible(&sbp2_access_wq);
1823                 }
1824         }
1825
1826         if (SCpnt)
1827                 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1828                                           cmd->Current_done);
1829         return RCODE_COMPLETE;
1830 }
1831
1832 /**************************************
1833  * SCSI interface related section
1834  **************************************/
1835
1836 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1837                                  void (*done)(struct scsi_cmnd *))
1838 {
1839         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1840         struct sbp2_fwhost_info *hi;
1841         int result = DID_NO_CONNECT << 16;
1842
1843         if (unlikely(!sbp2util_node_is_available(lu)))
1844                 goto done;
1845
1846         hi = lu->hi;
1847
1848         if (unlikely(!hi)) {
1849                 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1850                 goto done;
1851         }
1852
1853         /* Multiple units are currently represented to the SCSI core as separate
1854          * targets, not as one target with multiple LUs. Therefore return
1855          * selection time-out to any IO directed at non-zero LUNs. */
1856         if (unlikely(SCpnt->device->lun))
1857                 goto done;
1858
1859         if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1860                 SBP2_ERR("Bus reset in progress - rejecting command");
1861                 result = DID_BUS_BUSY << 16;
1862                 goto done;
1863         }
1864
1865         /* Bidirectional commands are not yet implemented,
1866          * and unknown transfer direction not handled. */
1867         if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1868                 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1869                 result = DID_ERROR << 16;
1870                 goto done;
1871         }
1872
1873         if (sbp2_send_command(lu, SCpnt, done)) {
1874                 SBP2_ERR("Error sending SCSI command");
1875                 sbp2scsi_complete_command(lu,
1876                                           SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1877                                           SCpnt, done);
1878         }
1879         return 0;
1880
1881 done:
1882         SCpnt->result = result;
1883         done(SCpnt);
1884         return 0;
1885 }
1886
1887 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1888 {
1889         struct sbp2_fwhost_info *hi = lu->hi;
1890         struct list_head *lh;
1891         struct sbp2_command_info *cmd;
1892         unsigned long flags;
1893
1894         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1895         while (!list_empty(&lu->cmd_orb_inuse)) {
1896                 lh = lu->cmd_orb_inuse.next;
1897                 cmd = list_entry(lh, struct sbp2_command_info, list);
1898                 dma_sync_single_for_cpu(hi->host->device.parent,
1899                                         cmd->command_orb_dma,
1900                                         sizeof(struct sbp2_command_orb),
1901                                         DMA_TO_DEVICE);
1902                 dma_sync_single_for_cpu(hi->host->device.parent, cmd->sge_dma,
1903                                         sizeof(cmd->scatter_gather_element),
1904                                         DMA_TO_DEVICE);
1905                 sbp2util_mark_command_completed(lu, cmd);
1906                 if (cmd->Current_SCpnt) {
1907                         cmd->Current_SCpnt->result = status << 16;
1908                         cmd->Current_done(cmd->Current_SCpnt);
1909                 }
1910         }
1911         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1912
1913         return;
1914 }
1915
1916 /*
1917  * Complete a regular SCSI command. Can be called in atomic context.
1918  */
1919 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1920                                       struct scsi_cmnd *SCpnt,
1921                                       void (*done)(struct scsi_cmnd *))
1922 {
1923         if (!SCpnt) {
1924                 SBP2_ERR("SCpnt is NULL");
1925                 return;
1926         }
1927
1928         switch (scsi_status) {
1929         case SBP2_SCSI_STATUS_GOOD:
1930                 SCpnt->result = DID_OK << 16;
1931                 break;
1932
1933         case SBP2_SCSI_STATUS_BUSY:
1934                 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1935                 SCpnt->result = DID_BUS_BUSY << 16;
1936                 break;
1937
1938         case SBP2_SCSI_STATUS_CHECK_CONDITION:
1939                 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1940                 break;
1941
1942         case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1943                 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1944                 SCpnt->result = DID_NO_CONNECT << 16;
1945                 scsi_print_command(SCpnt);
1946                 break;
1947
1948         case SBP2_SCSI_STATUS_CONDITION_MET:
1949         case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1950         case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1951                 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1952                 SCpnt->result = DID_ERROR << 16;
1953                 scsi_print_command(SCpnt);
1954                 break;
1955
1956         default:
1957                 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1958                 SCpnt->result = DID_ERROR << 16;
1959         }
1960
1961         /* If a bus reset is in progress and there was an error, complete
1962          * the command as busy so that it will get retried. */
1963         if (!hpsb_node_entry_valid(lu->ne)
1964             && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1965                 SBP2_ERR("Completing command with busy (bus reset)");
1966                 SCpnt->result = DID_BUS_BUSY << 16;
1967         }
1968
1969         /* Tell the SCSI stack that we're done with this command. */
1970         done(SCpnt);
1971 }
1972
1973 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1974 {
1975         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1976
1977         if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1978                 return -ENODEV;
1979
1980         lu->sdev = sdev;
1981         sdev->allow_restart = 1;
1982
1983         /*
1984          * Update the dma alignment (minimum alignment requirements for
1985          * start and end of DMA transfers) to be a sector
1986          */
1987         blk_queue_update_dma_alignment(sdev->request_queue, 511);
1988
1989         if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1990                 sdev->inquiry_len = 36;
1991         return 0;
1992 }
1993
1994 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
1995 {
1996         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1997
1998         sdev->use_10_for_rw = 1;
1999
2000         if (sdev->type == TYPE_ROM)
2001                 sdev->use_10_for_ms = 1;
2002         if (sdev->type == TYPE_DISK &&
2003             lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2004                 sdev->skip_ms_page_8 = 1;
2005         if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2006                 sdev->fix_capacity = 1;
2007         if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2008                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2009         return 0;
2010 }
2011
2012 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2013 {
2014         ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2015         return;
2016 }
2017
2018 /*
2019  * Called by scsi stack when something has really gone wrong.
2020  * Usually called when a command has timed-out for some reason.
2021  */
2022 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2023 {
2024         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2025         struct sbp2_fwhost_info *hi = lu->hi;
2026         struct sbp2_command_info *cmd;
2027         unsigned long flags;
2028
2029         SBP2_INFO("aborting sbp2 command");
2030         scsi_print_command(SCpnt);
2031
2032         if (sbp2util_node_is_available(lu)) {
2033                 sbp2_agent_reset(lu, 1);
2034
2035                 /* Return a matching command structure to the free pool. */
2036                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2037                 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2038                 if (cmd) {
2039                         dma_sync_single_for_cpu(hi->host->device.parent,
2040                                         cmd->command_orb_dma,
2041                                         sizeof(struct sbp2_command_orb),
2042                                         DMA_TO_DEVICE);
2043                         dma_sync_single_for_cpu(hi->host->device.parent,
2044                                         cmd->sge_dma,
2045                                         sizeof(cmd->scatter_gather_element),
2046                                         DMA_TO_DEVICE);
2047                         sbp2util_mark_command_completed(lu, cmd);
2048                         if (cmd->Current_SCpnt) {
2049                                 cmd->Current_SCpnt->result = DID_ABORT << 16;
2050                                 cmd->Current_done(cmd->Current_SCpnt);
2051                         }
2052                 }
2053                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2054
2055                 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2056         }
2057
2058         return SUCCESS;
2059 }
2060
2061 /*
2062  * Called by scsi stack when something has really gone wrong.
2063  */
2064 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2065 {
2066         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2067
2068         SBP2_INFO("reset requested");
2069
2070         if (sbp2util_node_is_available(lu)) {
2071                 SBP2_INFO("generating sbp2 fetch agent reset");
2072                 sbp2_agent_reset(lu, 1);
2073         }
2074
2075         return SUCCESS;
2076 }
2077
2078 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2079                                            struct device_attribute *attr,
2080                                            char *buf)
2081 {
2082         struct scsi_device *sdev;
2083         struct sbp2_lu *lu;
2084
2085         if (!(sdev = to_scsi_device(dev)))
2086                 return 0;
2087
2088         if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2089                 return 0;
2090
2091         if (sbp2_long_sysfs_ieee1394_id)
2092                 return sprintf(buf, "%016Lx:%06x:%04x\n",
2093                                 (unsigned long long)lu->ne->guid,
2094                                 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2095         else
2096                 return sprintf(buf, "%016Lx:%d:%d\n",
2097                                 (unsigned long long)lu->ne->guid,
2098                                 lu->ud->id, ORB_SET_LUN(lu->lun));
2099 }
2100
2101 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2102 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2103 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2104 MODULE_LICENSE("GPL");
2105
2106 static int sbp2_module_init(void)
2107 {
2108         int ret;
2109
2110         if (sbp2_serialize_io) {
2111                 sbp2_shost_template.can_queue = 1;
2112                 sbp2_shost_template.cmd_per_lun = 1;
2113         }
2114
2115         sbp2_shost_template.max_sectors = sbp2_max_sectors;
2116
2117         hpsb_register_highlevel(&sbp2_highlevel);
2118         ret = hpsb_register_protocol(&sbp2_driver);
2119         if (ret) {
2120                 SBP2_ERR("Failed to register protocol");
2121                 hpsb_unregister_highlevel(&sbp2_highlevel);
2122                 return ret;
2123         }
2124         return 0;
2125 }
2126
2127 static void __exit sbp2_module_exit(void)
2128 {
2129         hpsb_unregister_protocol(&sbp2_driver);
2130         hpsb_unregister_highlevel(&sbp2_highlevel);
2131 }
2132
2133 module_init(sbp2_module_init);
2134 module_exit(sbp2_module_exit);