ieee1394: sbp2: enforce s/g segment size limit
[safe/jmp/linux-2.6] / drivers / ieee1394 / sbp2.c
1 /*
2  * sbp2.c - SBP-2 protocol driver for IEEE-1394
3  *
4  * Copyright (C) 2000 James Goodwin, Filanet Corporation (www.filanet.com)
5  * jamesg@filanet.com (JSG)
6  *
7  * Copyright (C) 2003 Ben Collins <bcollins@debian.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software Foundation,
21  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22  */
23
24 /*
25  * Brief Description:
26  *
27  * This driver implements the Serial Bus Protocol 2 (SBP-2) over IEEE-1394
28  * under Linux. The SBP-2 driver is implemented as an IEEE-1394 high-level
29  * driver. It also registers as a SCSI lower-level driver in order to accept
30  * SCSI commands for transport using SBP-2.
31  *
32  * You may access any attached SBP-2 (usually storage devices) as regular
33  * SCSI devices. E.g. mount /dev/sda1, fdisk, mkfs, etc..
34  *
35  * See http://www.t10.org/drafts.htm#sbp2 for the final draft of the SBP-2
36  * specification and for where to purchase the official standard.
37  *
38  * TODO:
39  *   - look into possible improvements of the SCSI error handlers
40  *   - handle Unit_Characteristics.mgt_ORB_timeout and .ORB_size
41  *   - handle Logical_Unit_Number.ordered
42  *   - handle src == 1 in status blocks
43  *   - reimplement the DMA mapping in absence of physical DMA so that
44  *     bus_to_virt is no longer required
45  *   - debug the handling of absent physical DMA
46  *   - replace CONFIG_IEEE1394_SBP2_PHYS_DMA by automatic detection
47  *     (this is easy but depends on the previous two TODO items)
48  *   - make the parameter serialize_io configurable per device
49  *   - move all requests to fetch agent registers into non-atomic context,
50  *     replace all usages of sbp2util_node_write_no_wait by true transactions
51  * Grep for inline FIXME comments below.
52  */
53
54 #include <linux/blkdev.h>
55 #include <linux/compiler.h>
56 #include <linux/delay.h>
57 #include <linux/device.h>
58 #include <linux/dma-mapping.h>
59 #include <linux/gfp.h>
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/mm.h>
64 #include <linux/module.h>
65 #include <linux/moduleparam.h>
66 #include <linux/sched.h>
67 #include <linux/slab.h>
68 #include <linux/spinlock.h>
69 #include <linux/stat.h>
70 #include <linux/string.h>
71 #include <linux/stringify.h>
72 #include <linux/types.h>
73 #include <linux/wait.h>
74 #include <linux/workqueue.h>
75 #include <linux/scatterlist.h>
76
77 #include <asm/byteorder.h>
78 #include <asm/errno.h>
79 #include <asm/param.h>
80 #include <asm/system.h>
81 #include <asm/types.h>
82
83 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
84 #include <asm/io.h> /* for bus_to_virt */
85 #endif
86
87 #include <scsi/scsi.h>
88 #include <scsi/scsi_cmnd.h>
89 #include <scsi/scsi_dbg.h>
90 #include <scsi/scsi_device.h>
91 #include <scsi/scsi_host.h>
92
93 #include "csr1212.h"
94 #include "highlevel.h"
95 #include "hosts.h"
96 #include "ieee1394.h"
97 #include "ieee1394_core.h"
98 #include "ieee1394_hotplug.h"
99 #include "ieee1394_transactions.h"
100 #include "ieee1394_types.h"
101 #include "nodemgr.h"
102 #include "sbp2.h"
103
104 /*
105  * Module load parameter definitions
106  */
107
108 /*
109  * Change max_speed on module load if you have a bad IEEE-1394
110  * controller that has trouble running 2KB packets at 400mb.
111  *
112  * NOTE: On certain OHCI parts I have seen short packets on async transmit
113  * (probably due to PCI latency/throughput issues with the part). You can
114  * bump down the speed if you are running into problems.
115  */
116 static int sbp2_max_speed = IEEE1394_SPEED_MAX;
117 module_param_named(max_speed, sbp2_max_speed, int, 0644);
118 MODULE_PARM_DESC(max_speed, "Force max speed "
119                  "(3 = 800Mb/s, 2 = 400Mb/s, 1 = 200Mb/s, 0 = 100Mb/s)");
120
121 /*
122  * Set serialize_io to 0 or N to use dynamically appended lists of command ORBs.
123  * This is and always has been buggy in multiple subtle ways. See above TODOs.
124  */
125 static int sbp2_serialize_io = 1;
126 module_param_named(serialize_io, sbp2_serialize_io, bool, 0444);
127 MODULE_PARM_DESC(serialize_io, "Serialize requests coming from SCSI drivers "
128                  "(default = Y, faster but buggy = N)");
129
130 /*
131  * Adjust max_sectors if you'd like to influence how many sectors each SCSI
132  * command can transfer at most. Please note that some older SBP-2 bridge
133  * chips are broken for transfers greater or equal to 128KB, therefore
134  * max_sectors used to be a safe 255 sectors for many years. We now have a
135  * default of 0 here which means that we let the SCSI stack choose a limit.
136  *
137  * The SBP2_WORKAROUND_128K_MAX_TRANS flag, if set either in the workarounds
138  * module parameter or in the sbp2_workarounds_table[], will override the
139  * value of max_sectors. We should use sbp2_workarounds_table[] to cover any
140  * bridge chip which becomes known to need the 255 sectors limit.
141  */
142 static int sbp2_max_sectors;
143 module_param_named(max_sectors, sbp2_max_sectors, int, 0444);
144 MODULE_PARM_DESC(max_sectors, "Change max sectors per I/O supported "
145                  "(default = 0 = use SCSI stack's default)");
146
147 /*
148  * Exclusive login to sbp2 device? In most cases, the sbp2 driver should
149  * do an exclusive login, as it's generally unsafe to have two hosts
150  * talking to a single sbp2 device at the same time (filesystem coherency,
151  * etc.). If you're running an sbp2 device that supports multiple logins,
152  * and you're either running read-only filesystems or some sort of special
153  * filesystem supporting multiple hosts, e.g. OpenGFS, Oracle Cluster
154  * File System, or Lustre, then set exclusive_login to zero.
155  *
156  * So far only bridges from Oxford Semiconductor are known to support
157  * concurrent logins. Depending on firmware, four or two concurrent logins
158  * are possible on OXFW911 and newer Oxsemi bridges.
159  */
160 static int sbp2_exclusive_login = 1;
161 module_param_named(exclusive_login, sbp2_exclusive_login, bool, 0644);
162 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
163                  "(default = Y, use N for concurrent initiators)");
164
165 /*
166  * If any of the following workarounds is required for your device to work,
167  * please submit the kernel messages logged by sbp2 to the linux1394-devel
168  * mailing list.
169  *
170  * - 128kB max transfer
171  *   Limit transfer size. Necessary for some old bridges.
172  *
173  * - 36 byte inquiry
174  *   When scsi_mod probes the device, let the inquiry command look like that
175  *   from MS Windows.
176  *
177  * - skip mode page 8
178  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
179  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
180  *
181  * - fix capacity
182  *   Tell sd_mod to correct the last sector number reported by read_capacity.
183  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
184  *   Don't use this with devices which don't have this bug.
185  *
186  * - delay inquiry
187  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
188  *
189  * - power condition
190  *   Set the power condition field in the START STOP UNIT commands sent by
191  *   sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
192  *   Some disks need this to spin down or to resume properly.
193  *
194  * - override internal blacklist
195  *   Instead of adding to the built-in blacklist, use only the workarounds
196  *   specified in the module load parameter.
197  *   Useful if a blacklist entry interfered with a non-broken device.
198  */
199 static int sbp2_default_workarounds;
200 module_param_named(workarounds, sbp2_default_workarounds, int, 0644);
201 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
202         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
203         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
204         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
205         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
206         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
207         ", set power condition in start stop unit = "
208                                   __stringify(SBP2_WORKAROUND_POWER_CONDITION)
209         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
210         ", or a combination)");
211
212 /*
213  * This influences the format of the sysfs attribute
214  * /sys/bus/scsi/devices/.../ieee1394_id.
215  *
216  * The default format is like in older kernels:  %016Lx:%d:%d
217  * It contains the target's EUI-64, a number given to the logical unit by
218  * the ieee1394 driver's nodemgr (starting at 0), and the LUN.
219  *
220  * The long format is:  %016Lx:%06x:%04x
221  * It contains the target's EUI-64, the unit directory's directory_ID as per
222  * IEEE 1212 clause 7.7.19, and the LUN.  This format comes closest to the
223  * format of SBP(-3) target port and logical unit identifier as per SAM (SCSI
224  * Architecture Model) rev.2 to 4 annex A.  Therefore and because it is
225  * independent of the implementation of the ieee1394 nodemgr, the longer format
226  * is recommended for future use.
227  */
228 static int sbp2_long_sysfs_ieee1394_id;
229 module_param_named(long_ieee1394_id, sbp2_long_sysfs_ieee1394_id, bool, 0644);
230 MODULE_PARM_DESC(long_ieee1394_id, "8+3+2 bytes format of ieee1394_id in sysfs "
231                  "(default = backwards-compatible = N, SAM-conforming = Y)");
232
233
234 #define SBP2_INFO(fmt, args...) HPSB_INFO("sbp2: "fmt, ## args)
235 #define SBP2_ERR(fmt, args...)  HPSB_ERR("sbp2: "fmt, ## args)
236
237 /*
238  * Globals
239  */
240 static void sbp2scsi_complete_all_commands(struct sbp2_lu *, u32);
241 static void sbp2scsi_complete_command(struct sbp2_lu *, u32, struct scsi_cmnd *,
242                                       void (*)(struct scsi_cmnd *));
243 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *);
244 static int sbp2_start_device(struct sbp2_lu *);
245 static void sbp2_remove_device(struct sbp2_lu *);
246 static int sbp2_login_device(struct sbp2_lu *);
247 static int sbp2_reconnect_device(struct sbp2_lu *);
248 static int sbp2_logout_device(struct sbp2_lu *);
249 static void sbp2_host_reset(struct hpsb_host *);
250 static int sbp2_handle_status_write(struct hpsb_host *, int, int, quadlet_t *,
251                                     u64, size_t, u16);
252 static int sbp2_agent_reset(struct sbp2_lu *, int);
253 static void sbp2_parse_unit_directory(struct sbp2_lu *,
254                                       struct unit_directory *);
255 static int sbp2_set_busy_timeout(struct sbp2_lu *);
256 static int sbp2_max_speed_and_size(struct sbp2_lu *);
257
258
259 static const u8 sbp2_speedto_max_payload[] = { 0x7, 0x8, 0x9, 0xA, 0xB, 0xC };
260
261 static DEFINE_RWLOCK(sbp2_hi_logical_units_lock);
262
263 static struct hpsb_highlevel sbp2_highlevel = {
264         .name           = SBP2_DEVICE_NAME,
265         .host_reset     = sbp2_host_reset,
266 };
267
268 static struct hpsb_address_ops sbp2_ops = {
269         .write          = sbp2_handle_status_write
270 };
271
272 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
273 static int sbp2_handle_physdma_write(struct hpsb_host *, int, int, quadlet_t *,
274                                      u64, size_t, u16);
275 static int sbp2_handle_physdma_read(struct hpsb_host *, int, quadlet_t *, u64,
276                                     size_t, u16);
277
278 static struct hpsb_address_ops sbp2_physdma_ops = {
279         .read           = sbp2_handle_physdma_read,
280         .write          = sbp2_handle_physdma_write,
281 };
282 #endif
283
284
285 /*
286  * Interface to driver core and IEEE 1394 core
287  */
288 static struct ieee1394_device_id sbp2_id_table[] = {
289         {
290          .match_flags   = IEEE1394_MATCH_SPECIFIER_ID | IEEE1394_MATCH_VERSION,
291          .specifier_id  = SBP2_UNIT_SPEC_ID_ENTRY & 0xffffff,
292          .version       = SBP2_SW_VERSION_ENTRY & 0xffffff},
293         {}
294 };
295 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
296
297 static int sbp2_probe(struct device *);
298 static int sbp2_remove(struct device *);
299 static int sbp2_update(struct unit_directory *);
300
301 static struct hpsb_protocol_driver sbp2_driver = {
302         .name           = SBP2_DEVICE_NAME,
303         .id_table       = sbp2_id_table,
304         .update         = sbp2_update,
305         .driver         = {
306                 .probe          = sbp2_probe,
307                 .remove         = sbp2_remove,
308         },
309 };
310
311
312 /*
313  * Interface to SCSI core
314  */
315 static int sbp2scsi_queuecommand(struct scsi_cmnd *,
316                                  void (*)(struct scsi_cmnd *));
317 static int sbp2scsi_abort(struct scsi_cmnd *);
318 static int sbp2scsi_reset(struct scsi_cmnd *);
319 static int sbp2scsi_slave_alloc(struct scsi_device *);
320 static int sbp2scsi_slave_configure(struct scsi_device *);
321 static void sbp2scsi_slave_destroy(struct scsi_device *);
322 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *,
323                                            struct device_attribute *, char *);
324
325 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
326
327 static struct device_attribute *sbp2_sysfs_sdev_attrs[] = {
328         &dev_attr_ieee1394_id,
329         NULL
330 };
331
332 static struct scsi_host_template sbp2_shost_template = {
333         .module                  = THIS_MODULE,
334         .name                    = "SBP-2 IEEE-1394",
335         .proc_name               = SBP2_DEVICE_NAME,
336         .queuecommand            = sbp2scsi_queuecommand,
337         .eh_abort_handler        = sbp2scsi_abort,
338         .eh_device_reset_handler = sbp2scsi_reset,
339         .slave_alloc             = sbp2scsi_slave_alloc,
340         .slave_configure         = sbp2scsi_slave_configure,
341         .slave_destroy           = sbp2scsi_slave_destroy,
342         .this_id                 = -1,
343         .sg_tablesize            = SG_ALL,
344         .use_clustering          = ENABLE_CLUSTERING,
345         .cmd_per_lun             = SBP2_MAX_CMDS,
346         .can_queue               = SBP2_MAX_CMDS,
347         .sdev_attrs              = sbp2_sysfs_sdev_attrs,
348 };
349
350 /* for match-all entries in sbp2_workarounds_table */
351 #define SBP2_ROM_VALUE_WILDCARD 0x1000000
352
353 /*
354  * List of devices with known bugs.
355  *
356  * The firmware_revision field, masked with 0xffff00, is the best indicator
357  * for the type of bridge chip of a device.  It yields a few false positives
358  * but this did not break correctly behaving devices so far.
359  */
360 static const struct {
361         u32 firmware_revision;
362         u32 model_id;
363         unsigned workarounds;
364 } sbp2_workarounds_table[] = {
365         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
366                 .firmware_revision      = 0x002800,
367                 .model_id               = 0x001010,
368                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
369                                           SBP2_WORKAROUND_MODE_SENSE_8 |
370                                           SBP2_WORKAROUND_POWER_CONDITION,
371         },
372         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
373                 .firmware_revision      = 0x002800,
374                 .model_id               = 0x000000,
375                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY |
376                                           SBP2_WORKAROUND_POWER_CONDITION,
377         },
378         /* Initio bridges, actually only needed for some older ones */ {
379                 .firmware_revision      = 0x000200,
380                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
381                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
382         },
383         /* PL-3507 bridge with Prolific firmware */ {
384                 .firmware_revision      = 0x012800,
385                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
386                 .workarounds            = SBP2_WORKAROUND_POWER_CONDITION,
387         },
388         /* Symbios bridge */ {
389                 .firmware_revision      = 0xa0b800,
390                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
391                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
392         },
393         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
394                 .firmware_revision      = 0x002600,
395                 .model_id               = SBP2_ROM_VALUE_WILDCARD,
396                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
397         },
398         /* iPod 4th generation */ {
399                 .firmware_revision      = 0x0a2700,
400                 .model_id               = 0x000021,
401                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
402         },
403         /* iPod mini */ {
404                 .firmware_revision      = 0x0a2700,
405                 .model_id               = 0x000023,
406                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
407         },
408         /* iPod Photo */ {
409                 .firmware_revision      = 0x0a2700,
410                 .model_id               = 0x00007e,
411                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
412         }
413 };
414
415 /**************************************
416  * General utility functions
417  **************************************/
418
419 #ifndef __BIG_ENDIAN
420 /*
421  * Converts a buffer from be32 to cpu byte ordering. Length is in bytes.
422  */
423 static inline void sbp2util_be32_to_cpu_buffer(void *buffer, int length)
424 {
425         u32 *temp = buffer;
426
427         for (length = (length >> 2); length--; )
428                 temp[length] = be32_to_cpu(temp[length]);
429 }
430
431 /*
432  * Converts a buffer from cpu to be32 byte ordering. Length is in bytes.
433  */
434 static inline void sbp2util_cpu_to_be32_buffer(void *buffer, int length)
435 {
436         u32 *temp = buffer;
437
438         for (length = (length >> 2); length--; )
439                 temp[length] = cpu_to_be32(temp[length]);
440 }
441 #else /* BIG_ENDIAN */
442 /* Why waste the cpu cycles? */
443 #define sbp2util_be32_to_cpu_buffer(x,y) do {} while (0)
444 #define sbp2util_cpu_to_be32_buffer(x,y) do {} while (0)
445 #endif
446
447 static DECLARE_WAIT_QUEUE_HEAD(sbp2_access_wq);
448
449 /*
450  * Waits for completion of an SBP-2 access request.
451  * Returns nonzero if timed out or prematurely interrupted.
452  */
453 static int sbp2util_access_timeout(struct sbp2_lu *lu, int timeout)
454 {
455         long leftover;
456
457         leftover = wait_event_interruptible_timeout(
458                         sbp2_access_wq, lu->access_complete, timeout);
459         lu->access_complete = 0;
460         return leftover <= 0;
461 }
462
463 static void sbp2_free_packet(void *packet)
464 {
465         hpsb_free_tlabel(packet);
466         hpsb_free_packet(packet);
467 }
468
469 /*
470  * This is much like hpsb_node_write(), except it ignores the response
471  * subaction and returns immediately. Can be used from atomic context.
472  */
473 static int sbp2util_node_write_no_wait(struct node_entry *ne, u64 addr,
474                                        quadlet_t *buf, size_t len)
475 {
476         struct hpsb_packet *packet;
477
478         packet = hpsb_make_writepacket(ne->host, ne->nodeid, addr, buf, len);
479         if (!packet)
480                 return -ENOMEM;
481
482         hpsb_set_packet_complete_task(packet, sbp2_free_packet, packet);
483         hpsb_node_fill_packet(ne, packet);
484         if (hpsb_send_packet(packet) < 0) {
485                 sbp2_free_packet(packet);
486                 return -EIO;
487         }
488         return 0;
489 }
490
491 static void sbp2util_notify_fetch_agent(struct sbp2_lu *lu, u64 offset,
492                                         quadlet_t *data, size_t len)
493 {
494         /* There is a small window after a bus reset within which the node
495          * entry's generation is current but the reconnect wasn't completed. */
496         if (unlikely(atomic_read(&lu->state) == SBP2LU_STATE_IN_RESET))
497                 return;
498
499         if (hpsb_node_write(lu->ne, lu->command_block_agent_addr + offset,
500                             data, len))
501                 SBP2_ERR("sbp2util_notify_fetch_agent failed.");
502
503         /* Now accept new SCSI commands, unless a bus reset happended during
504          * hpsb_node_write. */
505         if (likely(atomic_read(&lu->state) != SBP2LU_STATE_IN_RESET))
506                 scsi_unblock_requests(lu->shost);
507 }
508
509 static void sbp2util_write_orb_pointer(struct work_struct *work)
510 {
511         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
512         quadlet_t data[2];
513
514         data[0] = ORB_SET_NODE_ID(lu->hi->host->node_id);
515         data[1] = lu->last_orb_dma;
516         sbp2util_cpu_to_be32_buffer(data, 8);
517         sbp2util_notify_fetch_agent(lu, SBP2_ORB_POINTER_OFFSET, data, 8);
518 }
519
520 static void sbp2util_write_doorbell(struct work_struct *work)
521 {
522         struct sbp2_lu *lu = container_of(work, struct sbp2_lu, protocol_work);
523
524         sbp2util_notify_fetch_agent(lu, SBP2_DOORBELL_OFFSET, NULL, 4);
525 }
526
527 static int sbp2util_create_command_orb_pool(struct sbp2_lu *lu)
528 {
529         struct sbp2_command_info *cmd;
530         struct device *dmadev = lu->hi->host->device.parent;
531         int i, orbs = sbp2_serialize_io ? 2 : SBP2_MAX_CMDS;
532
533         for (i = 0; i < orbs; i++) {
534                 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
535                 if (!cmd)
536                         goto failed_alloc;
537
538                 cmd->command_orb_dma =
539                     dma_map_single(dmadev, &cmd->command_orb,
540                                    sizeof(struct sbp2_command_orb),
541                                    DMA_TO_DEVICE);
542                 if (dma_mapping_error(dmadev, cmd->command_orb_dma))
543                         goto failed_orb;
544
545                 cmd->sge_dma =
546                     dma_map_single(dmadev, &cmd->scatter_gather_element,
547                                    sizeof(cmd->scatter_gather_element),
548                                    DMA_TO_DEVICE);
549                 if (dma_mapping_error(dmadev, cmd->sge_dma))
550                         goto failed_sge;
551
552                 INIT_LIST_HEAD(&cmd->list);
553                 list_add_tail(&cmd->list, &lu->cmd_orb_completed);
554         }
555         return 0;
556
557 failed_sge:
558         dma_unmap_single(dmadev, cmd->command_orb_dma,
559                          sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
560 failed_orb:
561         kfree(cmd);
562 failed_alloc:
563         return -ENOMEM;
564 }
565
566 static void sbp2util_remove_command_orb_pool(struct sbp2_lu *lu,
567                                              struct hpsb_host *host)
568 {
569         struct list_head *lh, *next;
570         struct sbp2_command_info *cmd;
571         unsigned long flags;
572
573         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
574         if (!list_empty(&lu->cmd_orb_completed))
575                 list_for_each_safe(lh, next, &lu->cmd_orb_completed) {
576                         cmd = list_entry(lh, struct sbp2_command_info, list);
577                         dma_unmap_single(host->device.parent,
578                                          cmd->command_orb_dma,
579                                          sizeof(struct sbp2_command_orb),
580                                          DMA_TO_DEVICE);
581                         dma_unmap_single(host->device.parent, cmd->sge_dma,
582                                          sizeof(cmd->scatter_gather_element),
583                                          DMA_TO_DEVICE);
584                         kfree(cmd);
585                 }
586         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
587         return;
588 }
589
590 /*
591  * Finds the sbp2_command for a given outstanding command ORB.
592  * Only looks at the in-use list.
593  */
594 static struct sbp2_command_info *sbp2util_find_command_for_orb(
595                                 struct sbp2_lu *lu, dma_addr_t orb)
596 {
597         struct sbp2_command_info *cmd;
598         unsigned long flags;
599
600         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
601         if (!list_empty(&lu->cmd_orb_inuse))
602                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
603                         if (cmd->command_orb_dma == orb) {
604                                 spin_unlock_irqrestore(
605                                                 &lu->cmd_orb_lock, flags);
606                                 return cmd;
607                         }
608         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
609         return NULL;
610 }
611
612 /*
613  * Finds the sbp2_command for a given outstanding SCpnt.
614  * Only looks at the in-use list.
615  * Must be called with lu->cmd_orb_lock held.
616  */
617 static struct sbp2_command_info *sbp2util_find_command_for_SCpnt(
618                                 struct sbp2_lu *lu, void *SCpnt)
619 {
620         struct sbp2_command_info *cmd;
621
622         if (!list_empty(&lu->cmd_orb_inuse))
623                 list_for_each_entry(cmd, &lu->cmd_orb_inuse, list)
624                         if (cmd->Current_SCpnt == SCpnt)
625                                 return cmd;
626         return NULL;
627 }
628
629 static struct sbp2_command_info *sbp2util_allocate_command_orb(
630                                 struct sbp2_lu *lu,
631                                 struct scsi_cmnd *Current_SCpnt,
632                                 void (*Current_done)(struct scsi_cmnd *))
633 {
634         struct list_head *lh;
635         struct sbp2_command_info *cmd = NULL;
636         unsigned long flags;
637
638         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
639         if (!list_empty(&lu->cmd_orb_completed)) {
640                 lh = lu->cmd_orb_completed.next;
641                 list_del(lh);
642                 cmd = list_entry(lh, struct sbp2_command_info, list);
643                 cmd->Current_done = Current_done;
644                 cmd->Current_SCpnt = Current_SCpnt;
645                 list_add_tail(&cmd->list, &lu->cmd_orb_inuse);
646         } else
647                 SBP2_ERR("%s: no orbs available", __func__);
648         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
649         return cmd;
650 }
651
652 /*
653  * Unmaps the DMAs of a command and moves the command to the completed ORB list.
654  * Must be called with lu->cmd_orb_lock held.
655  */
656 static void sbp2util_mark_command_completed(struct sbp2_lu *lu,
657                                             struct sbp2_command_info *cmd)
658 {
659         if (scsi_sg_count(cmd->Current_SCpnt))
660                 dma_unmap_sg(lu->ud->ne->host->device.parent,
661                              scsi_sglist(cmd->Current_SCpnt),
662                              scsi_sg_count(cmd->Current_SCpnt),
663                              cmd->Current_SCpnt->sc_data_direction);
664         list_move_tail(&cmd->list, &lu->cmd_orb_completed);
665 }
666
667 /*
668  * Is lu valid? Is the 1394 node still present?
669  */
670 static inline int sbp2util_node_is_available(struct sbp2_lu *lu)
671 {
672         return lu && lu->ne && !lu->ne->in_limbo;
673 }
674
675 /*********************************************
676  * IEEE-1394 core driver stack related section
677  *********************************************/
678
679 static int sbp2_probe(struct device *dev)
680 {
681         struct unit_directory *ud;
682         struct sbp2_lu *lu;
683
684         ud = container_of(dev, struct unit_directory, device);
685
686         /* Don't probe UD's that have the LUN flag. We'll probe the LUN(s)
687          * instead. */
688         if (ud->flags & UNIT_DIRECTORY_HAS_LUN_DIRECTORY)
689                 return -ENODEV;
690
691         lu = sbp2_alloc_device(ud);
692         if (!lu)
693                 return -ENOMEM;
694
695         sbp2_parse_unit_directory(lu, ud);
696         return sbp2_start_device(lu);
697 }
698
699 static int sbp2_remove(struct device *dev)
700 {
701         struct unit_directory *ud;
702         struct sbp2_lu *lu;
703         struct scsi_device *sdev;
704
705         ud = container_of(dev, struct unit_directory, device);
706         lu = ud->device.driver_data;
707         if (!lu)
708                 return 0;
709
710         if (lu->shost) {
711                 /* Get rid of enqueued commands if there is no chance to
712                  * send them. */
713                 if (!sbp2util_node_is_available(lu))
714                         sbp2scsi_complete_all_commands(lu, DID_NO_CONNECT);
715                 /* scsi_remove_device() may trigger shutdown functions of SCSI
716                  * highlevel drivers which would deadlock if blocked. */
717                 atomic_set(&lu->state, SBP2LU_STATE_IN_SHUTDOWN);
718                 scsi_unblock_requests(lu->shost);
719         }
720         sdev = lu->sdev;
721         if (sdev) {
722                 lu->sdev = NULL;
723                 scsi_remove_device(sdev);
724         }
725
726         sbp2_logout_device(lu);
727         sbp2_remove_device(lu);
728
729         return 0;
730 }
731
732 static int sbp2_update(struct unit_directory *ud)
733 {
734         struct sbp2_lu *lu = ud->device.driver_data;
735
736         if (sbp2_reconnect_device(lu) != 0) {
737                 /*
738                  * Reconnect failed.  If another bus reset happened,
739                  * let nodemgr proceed and call sbp2_update again later
740                  * (or sbp2_remove if this node went away).
741                  */
742                 if (!hpsb_node_entry_valid(lu->ne))
743                         return 0;
744                 /*
745                  * Or the target rejected the reconnect because we weren't
746                  * fast enough.  Try a regular login, but first log out
747                  * just in case of any weirdness.
748                  */
749                 sbp2_logout_device(lu);
750
751                 if (sbp2_login_device(lu) != 0) {
752                         if (!hpsb_node_entry_valid(lu->ne))
753                                 return 0;
754
755                         /* Maybe another initiator won the login. */
756                         SBP2_ERR("Failed to reconnect to sbp2 device!");
757                         return -EBUSY;
758                 }
759         }
760
761         sbp2_set_busy_timeout(lu);
762         sbp2_agent_reset(lu, 1);
763         sbp2_max_speed_and_size(lu);
764
765         /* Complete any pending commands with busy (so they get retried)
766          * and remove them from our queue. */
767         sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
768
769         /* Accept new commands unless there was another bus reset in the
770          * meantime. */
771         if (hpsb_node_entry_valid(lu->ne)) {
772                 atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
773                 scsi_unblock_requests(lu->shost);
774         }
775         return 0;
776 }
777
778 static struct sbp2_lu *sbp2_alloc_device(struct unit_directory *ud)
779 {
780         struct sbp2_fwhost_info *hi;
781         struct Scsi_Host *shost = NULL;
782         struct sbp2_lu *lu = NULL;
783         unsigned long flags;
784
785         lu = kzalloc(sizeof(*lu), GFP_KERNEL);
786         if (!lu) {
787                 SBP2_ERR("failed to create lu");
788                 goto failed_alloc;
789         }
790
791         lu->ne = ud->ne;
792         lu->ud = ud;
793         lu->speed_code = IEEE1394_SPEED_100;
794         lu->max_payload_size = sbp2_speedto_max_payload[IEEE1394_SPEED_100];
795         lu->status_fifo_addr = CSR1212_INVALID_ADDR_SPACE;
796         INIT_LIST_HEAD(&lu->cmd_orb_inuse);
797         INIT_LIST_HEAD(&lu->cmd_orb_completed);
798         INIT_LIST_HEAD(&lu->lu_list);
799         spin_lock_init(&lu->cmd_orb_lock);
800         atomic_set(&lu->state, SBP2LU_STATE_RUNNING);
801         INIT_WORK(&lu->protocol_work, NULL);
802
803         ud->device.driver_data = lu;
804
805         hi = hpsb_get_hostinfo(&sbp2_highlevel, ud->ne->host);
806         if (!hi) {
807                 hi = hpsb_create_hostinfo(&sbp2_highlevel, ud->ne->host,
808                                           sizeof(*hi));
809                 if (!hi) {
810                         SBP2_ERR("failed to allocate hostinfo");
811                         goto failed_alloc;
812                 }
813                 hi->host = ud->ne->host;
814                 INIT_LIST_HEAD(&hi->logical_units);
815
816 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
817                 /* Handle data movement if physical dma is not
818                  * enabled or not supported on host controller */
819                 if (!hpsb_register_addrspace(&sbp2_highlevel, ud->ne->host,
820                                              &sbp2_physdma_ops,
821                                              0x0ULL, 0xfffffffcULL)) {
822                         SBP2_ERR("failed to register lower 4GB address range");
823                         goto failed_alloc;
824                 }
825 #endif
826         }
827
828         if (dma_get_max_seg_size(hi->host->device.parent) > SBP2_MAX_SEG_SIZE)
829                 BUG_ON(dma_set_max_seg_size(hi->host->device.parent,
830                                             SBP2_MAX_SEG_SIZE));
831
832         /* Prevent unloading of the 1394 host */
833         if (!try_module_get(hi->host->driver->owner)) {
834                 SBP2_ERR("failed to get a reference on 1394 host driver");
835                 goto failed_alloc;
836         }
837
838         lu->hi = hi;
839
840         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
841         list_add_tail(&lu->lu_list, &hi->logical_units);
842         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
843
844         /* Register the status FIFO address range. We could use the same FIFO
845          * for targets at different nodes. However we need different FIFOs per
846          * target in order to support multi-unit devices.
847          * The FIFO is located out of the local host controller's physical range
848          * but, if possible, within the posted write area. Status writes will
849          * then be performed as unified transactions. This slightly reduces
850          * bandwidth usage, and some Prolific based devices seem to require it.
851          */
852         lu->status_fifo_addr = hpsb_allocate_and_register_addrspace(
853                         &sbp2_highlevel, ud->ne->host, &sbp2_ops,
854                         sizeof(struct sbp2_status_block), sizeof(quadlet_t),
855                         ud->ne->host->low_addr_space, CSR1212_ALL_SPACE_END);
856         if (lu->status_fifo_addr == CSR1212_INVALID_ADDR_SPACE) {
857                 SBP2_ERR("failed to allocate status FIFO address range");
858                 goto failed_alloc;
859         }
860
861         shost = scsi_host_alloc(&sbp2_shost_template, sizeof(unsigned long));
862         if (!shost) {
863                 SBP2_ERR("failed to register scsi host");
864                 goto failed_alloc;
865         }
866
867         shost->hostdata[0] = (unsigned long)lu;
868
869         if (!scsi_add_host(shost, &ud->device)) {
870                 lu->shost = shost;
871                 return lu;
872         }
873
874         SBP2_ERR("failed to add scsi host");
875         scsi_host_put(shost);
876
877 failed_alloc:
878         sbp2_remove_device(lu);
879         return NULL;
880 }
881
882 static void sbp2_host_reset(struct hpsb_host *host)
883 {
884         struct sbp2_fwhost_info *hi;
885         struct sbp2_lu *lu;
886         unsigned long flags;
887
888         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
889         if (!hi)
890                 return;
891
892         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
893         list_for_each_entry(lu, &hi->logical_units, lu_list)
894                 if (likely(atomic_read(&lu->state) !=
895                            SBP2LU_STATE_IN_SHUTDOWN)) {
896                         atomic_set(&lu->state, SBP2LU_STATE_IN_RESET);
897                         scsi_block_requests(lu->shost);
898                 }
899         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
900 }
901
902 static int sbp2_start_device(struct sbp2_lu *lu)
903 {
904         struct sbp2_fwhost_info *hi = lu->hi;
905         int error;
906
907         lu->login_response = dma_alloc_coherent(hi->host->device.parent,
908                                      sizeof(struct sbp2_login_response),
909                                      &lu->login_response_dma, GFP_KERNEL);
910         if (!lu->login_response)
911                 goto alloc_fail;
912
913         lu->query_logins_orb = dma_alloc_coherent(hi->host->device.parent,
914                                      sizeof(struct sbp2_query_logins_orb),
915                                      &lu->query_logins_orb_dma, GFP_KERNEL);
916         if (!lu->query_logins_orb)
917                 goto alloc_fail;
918
919         lu->query_logins_response = dma_alloc_coherent(hi->host->device.parent,
920                                      sizeof(struct sbp2_query_logins_response),
921                                      &lu->query_logins_response_dma, GFP_KERNEL);
922         if (!lu->query_logins_response)
923                 goto alloc_fail;
924
925         lu->reconnect_orb = dma_alloc_coherent(hi->host->device.parent,
926                                      sizeof(struct sbp2_reconnect_orb),
927                                      &lu->reconnect_orb_dma, GFP_KERNEL);
928         if (!lu->reconnect_orb)
929                 goto alloc_fail;
930
931         lu->logout_orb = dma_alloc_coherent(hi->host->device.parent,
932                                      sizeof(struct sbp2_logout_orb),
933                                      &lu->logout_orb_dma, GFP_KERNEL);
934         if (!lu->logout_orb)
935                 goto alloc_fail;
936
937         lu->login_orb = dma_alloc_coherent(hi->host->device.parent,
938                                      sizeof(struct sbp2_login_orb),
939                                      &lu->login_orb_dma, GFP_KERNEL);
940         if (!lu->login_orb)
941                 goto alloc_fail;
942
943         if (sbp2util_create_command_orb_pool(lu))
944                 goto alloc_fail;
945
946         /* Wait a second before trying to log in. Previously logged in
947          * initiators need a chance to reconnect. */
948         if (msleep_interruptible(1000)) {
949                 sbp2_remove_device(lu);
950                 return -EINTR;
951         }
952
953         if (sbp2_login_device(lu)) {
954                 sbp2_remove_device(lu);
955                 return -EBUSY;
956         }
957
958         sbp2_set_busy_timeout(lu);
959         sbp2_agent_reset(lu, 1);
960         sbp2_max_speed_and_size(lu);
961
962         if (lu->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
963                 ssleep(SBP2_INQUIRY_DELAY);
964
965         error = scsi_add_device(lu->shost, 0, lu->ud->id, 0);
966         if (error) {
967                 SBP2_ERR("scsi_add_device failed");
968                 sbp2_logout_device(lu);
969                 sbp2_remove_device(lu);
970                 return error;
971         }
972
973         return 0;
974
975 alloc_fail:
976         SBP2_ERR("Could not allocate memory for lu");
977         sbp2_remove_device(lu);
978         return -ENOMEM;
979 }
980
981 static void sbp2_remove_device(struct sbp2_lu *lu)
982 {
983         struct sbp2_fwhost_info *hi;
984         unsigned long flags;
985
986         if (!lu)
987                 return;
988         hi = lu->hi;
989         if (!hi)
990                 goto no_hi;
991
992         if (lu->shost) {
993                 scsi_remove_host(lu->shost);
994                 scsi_host_put(lu->shost);
995         }
996         flush_scheduled_work();
997         sbp2util_remove_command_orb_pool(lu, hi->host);
998
999         write_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1000         list_del(&lu->lu_list);
1001         write_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1002
1003         if (lu->login_response)
1004                 dma_free_coherent(hi->host->device.parent,
1005                                     sizeof(struct sbp2_login_response),
1006                                     lu->login_response,
1007                                     lu->login_response_dma);
1008         if (lu->login_orb)
1009                 dma_free_coherent(hi->host->device.parent,
1010                                     sizeof(struct sbp2_login_orb),
1011                                     lu->login_orb,
1012                                     lu->login_orb_dma);
1013         if (lu->reconnect_orb)
1014                 dma_free_coherent(hi->host->device.parent,
1015                                     sizeof(struct sbp2_reconnect_orb),
1016                                     lu->reconnect_orb,
1017                                     lu->reconnect_orb_dma);
1018         if (lu->logout_orb)
1019                 dma_free_coherent(hi->host->device.parent,
1020                                     sizeof(struct sbp2_logout_orb),
1021                                     lu->logout_orb,
1022                                     lu->logout_orb_dma);
1023         if (lu->query_logins_orb)
1024                 dma_free_coherent(hi->host->device.parent,
1025                                     sizeof(struct sbp2_query_logins_orb),
1026                                     lu->query_logins_orb,
1027                                     lu->query_logins_orb_dma);
1028         if (lu->query_logins_response)
1029                 dma_free_coherent(hi->host->device.parent,
1030                                     sizeof(struct sbp2_query_logins_response),
1031                                     lu->query_logins_response,
1032                                     lu->query_logins_response_dma);
1033
1034         if (lu->status_fifo_addr != CSR1212_INVALID_ADDR_SPACE)
1035                 hpsb_unregister_addrspace(&sbp2_highlevel, hi->host,
1036                                           lu->status_fifo_addr);
1037
1038         lu->ud->device.driver_data = NULL;
1039
1040         module_put(hi->host->driver->owner);
1041 no_hi:
1042         kfree(lu);
1043 }
1044
1045 #ifdef CONFIG_IEEE1394_SBP2_PHYS_DMA
1046 /*
1047  * Deal with write requests on adapters which do not support physical DMA or
1048  * have it switched off.
1049  */
1050 static int sbp2_handle_physdma_write(struct hpsb_host *host, int nodeid,
1051                                      int destid, quadlet_t *data, u64 addr,
1052                                      size_t length, u16 flags)
1053 {
1054         memcpy(bus_to_virt((u32) addr), data, length);
1055         return RCODE_COMPLETE;
1056 }
1057
1058 /*
1059  * Deal with read requests on adapters which do not support physical DMA or
1060  * have it switched off.
1061  */
1062 static int sbp2_handle_physdma_read(struct hpsb_host *host, int nodeid,
1063                                     quadlet_t *data, u64 addr, size_t length,
1064                                     u16 flags)
1065 {
1066         memcpy(data, bus_to_virt((u32) addr), length);
1067         return RCODE_COMPLETE;
1068 }
1069 #endif
1070
1071 /**************************************
1072  * SBP-2 protocol related section
1073  **************************************/
1074
1075 static int sbp2_query_logins(struct sbp2_lu *lu)
1076 {
1077         struct sbp2_fwhost_info *hi = lu->hi;
1078         quadlet_t data[2];
1079         int max_logins;
1080         int active_logins;
1081
1082         lu->query_logins_orb->reserved1 = 0x0;
1083         lu->query_logins_orb->reserved2 = 0x0;
1084
1085         lu->query_logins_orb->query_response_lo = lu->query_logins_response_dma;
1086         lu->query_logins_orb->query_response_hi =
1087                         ORB_SET_NODE_ID(hi->host->node_id);
1088         lu->query_logins_orb->lun_misc =
1089                         ORB_SET_FUNCTION(SBP2_QUERY_LOGINS_REQUEST);
1090         lu->query_logins_orb->lun_misc |= ORB_SET_NOTIFY(1);
1091         lu->query_logins_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1092
1093         lu->query_logins_orb->reserved_resp_length =
1094                 ORB_SET_QUERY_LOGINS_RESP_LENGTH(
1095                         sizeof(struct sbp2_query_logins_response));
1096
1097         lu->query_logins_orb->status_fifo_hi =
1098                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1099         lu->query_logins_orb->status_fifo_lo =
1100                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1101
1102         sbp2util_cpu_to_be32_buffer(lu->query_logins_orb,
1103                                     sizeof(struct sbp2_query_logins_orb));
1104
1105         memset(lu->query_logins_response, 0,
1106                sizeof(struct sbp2_query_logins_response));
1107
1108         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1109         data[1] = lu->query_logins_orb_dma;
1110         sbp2util_cpu_to_be32_buffer(data, 8);
1111
1112         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1113
1114         if (sbp2util_access_timeout(lu, 2*HZ)) {
1115                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1116                 return -EIO;
1117         }
1118
1119         if (lu->status_block.ORB_offset_lo != lu->query_logins_orb_dma) {
1120                 SBP2_INFO("Error querying logins to SBP-2 device - timed out");
1121                 return -EIO;
1122         }
1123
1124         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1125                 SBP2_INFO("Error querying logins to SBP-2 device - failed");
1126                 return -EIO;
1127         }
1128
1129         sbp2util_cpu_to_be32_buffer(lu->query_logins_response,
1130                                     sizeof(struct sbp2_query_logins_response));
1131
1132         max_logins = RESPONSE_GET_MAX_LOGINS(
1133                         lu->query_logins_response->length_max_logins);
1134         SBP2_INFO("Maximum concurrent logins supported: %d", max_logins);
1135
1136         active_logins = RESPONSE_GET_ACTIVE_LOGINS(
1137                         lu->query_logins_response->length_max_logins);
1138         SBP2_INFO("Number of active logins: %d", active_logins);
1139
1140         if (active_logins >= max_logins) {
1141                 return -EIO;
1142         }
1143
1144         return 0;
1145 }
1146
1147 static int sbp2_login_device(struct sbp2_lu *lu)
1148 {
1149         struct sbp2_fwhost_info *hi = lu->hi;
1150         quadlet_t data[2];
1151
1152         if (!lu->login_orb)
1153                 return -EIO;
1154
1155         if (!sbp2_exclusive_login && sbp2_query_logins(lu)) {
1156                 SBP2_INFO("Device does not support any more concurrent logins");
1157                 return -EIO;
1158         }
1159
1160         /* assume no password */
1161         lu->login_orb->password_hi = 0;
1162         lu->login_orb->password_lo = 0;
1163
1164         lu->login_orb->login_response_lo = lu->login_response_dma;
1165         lu->login_orb->login_response_hi = ORB_SET_NODE_ID(hi->host->node_id);
1166         lu->login_orb->lun_misc = ORB_SET_FUNCTION(SBP2_LOGIN_REQUEST);
1167
1168         /* one second reconnect time */
1169         lu->login_orb->lun_misc |= ORB_SET_RECONNECT(0);
1170         lu->login_orb->lun_misc |= ORB_SET_EXCLUSIVE(sbp2_exclusive_login);
1171         lu->login_orb->lun_misc |= ORB_SET_NOTIFY(1);
1172         lu->login_orb->lun_misc |= ORB_SET_LUN(lu->lun);
1173
1174         lu->login_orb->passwd_resp_lengths =
1175                 ORB_SET_LOGIN_RESP_LENGTH(sizeof(struct sbp2_login_response));
1176
1177         lu->login_orb->status_fifo_hi =
1178                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1179         lu->login_orb->status_fifo_lo =
1180                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1181
1182         sbp2util_cpu_to_be32_buffer(lu->login_orb,
1183                                     sizeof(struct sbp2_login_orb));
1184
1185         memset(lu->login_response, 0, sizeof(struct sbp2_login_response));
1186
1187         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1188         data[1] = lu->login_orb_dma;
1189         sbp2util_cpu_to_be32_buffer(data, 8);
1190
1191         hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1192
1193         /* wait up to 20 seconds for login status */
1194         if (sbp2util_access_timeout(lu, 20*HZ)) {
1195                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1196                 return -EIO;
1197         }
1198
1199         /* make sure that the returned status matches the login ORB */
1200         if (lu->status_block.ORB_offset_lo != lu->login_orb_dma) {
1201                 SBP2_ERR("Error logging into SBP-2 device - timed out");
1202                 return -EIO;
1203         }
1204
1205         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1206                 SBP2_ERR("Error logging into SBP-2 device - failed");
1207                 return -EIO;
1208         }
1209
1210         sbp2util_cpu_to_be32_buffer(lu->login_response,
1211                                     sizeof(struct sbp2_login_response));
1212         lu->command_block_agent_addr =
1213                         ((u64)lu->login_response->command_block_agent_hi) << 32;
1214         lu->command_block_agent_addr |=
1215                         ((u64)lu->login_response->command_block_agent_lo);
1216         lu->command_block_agent_addr &= 0x0000ffffffffffffULL;
1217
1218         SBP2_INFO("Logged into SBP-2 device");
1219         return 0;
1220 }
1221
1222 static int sbp2_logout_device(struct sbp2_lu *lu)
1223 {
1224         struct sbp2_fwhost_info *hi = lu->hi;
1225         quadlet_t data[2];
1226         int error;
1227
1228         lu->logout_orb->reserved1 = 0x0;
1229         lu->logout_orb->reserved2 = 0x0;
1230         lu->logout_orb->reserved3 = 0x0;
1231         lu->logout_orb->reserved4 = 0x0;
1232
1233         lu->logout_orb->login_ID_misc = ORB_SET_FUNCTION(SBP2_LOGOUT_REQUEST);
1234         lu->logout_orb->login_ID_misc |=
1235                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1236         lu->logout_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1237
1238         lu->logout_orb->reserved5 = 0x0;
1239         lu->logout_orb->status_fifo_hi =
1240                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1241         lu->logout_orb->status_fifo_lo =
1242                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1243
1244         sbp2util_cpu_to_be32_buffer(lu->logout_orb,
1245                                     sizeof(struct sbp2_logout_orb));
1246
1247         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1248         data[1] = lu->logout_orb_dma;
1249         sbp2util_cpu_to_be32_buffer(data, 8);
1250
1251         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1252         if (error)
1253                 return error;
1254
1255         /* wait up to 1 second for the device to complete logout */
1256         if (sbp2util_access_timeout(lu, HZ))
1257                 return -EIO;
1258
1259         SBP2_INFO("Logged out of SBP-2 device");
1260         return 0;
1261 }
1262
1263 static int sbp2_reconnect_device(struct sbp2_lu *lu)
1264 {
1265         struct sbp2_fwhost_info *hi = lu->hi;
1266         quadlet_t data[2];
1267         int error;
1268
1269         lu->reconnect_orb->reserved1 = 0x0;
1270         lu->reconnect_orb->reserved2 = 0x0;
1271         lu->reconnect_orb->reserved3 = 0x0;
1272         lu->reconnect_orb->reserved4 = 0x0;
1273
1274         lu->reconnect_orb->login_ID_misc =
1275                         ORB_SET_FUNCTION(SBP2_RECONNECT_REQUEST);
1276         lu->reconnect_orb->login_ID_misc |=
1277                         ORB_SET_LOGIN_ID(lu->login_response->length_login_ID);
1278         lu->reconnect_orb->login_ID_misc |= ORB_SET_NOTIFY(1);
1279
1280         lu->reconnect_orb->reserved5 = 0x0;
1281         lu->reconnect_orb->status_fifo_hi =
1282                 ORB_SET_STATUS_FIFO_HI(lu->status_fifo_addr, hi->host->node_id);
1283         lu->reconnect_orb->status_fifo_lo =
1284                 ORB_SET_STATUS_FIFO_LO(lu->status_fifo_addr);
1285
1286         sbp2util_cpu_to_be32_buffer(lu->reconnect_orb,
1287                                     sizeof(struct sbp2_reconnect_orb));
1288
1289         data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1290         data[1] = lu->reconnect_orb_dma;
1291         sbp2util_cpu_to_be32_buffer(data, 8);
1292
1293         error = hpsb_node_write(lu->ne, lu->management_agent_addr, data, 8);
1294         if (error)
1295                 return error;
1296
1297         /* wait up to 1 second for reconnect status */
1298         if (sbp2util_access_timeout(lu, HZ)) {
1299                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1300                 return -EIO;
1301         }
1302
1303         /* make sure that the returned status matches the reconnect ORB */
1304         if (lu->status_block.ORB_offset_lo != lu->reconnect_orb_dma) {
1305                 SBP2_ERR("Error reconnecting to SBP-2 device - timed out");
1306                 return -EIO;
1307         }
1308
1309         if (STATUS_TEST_RDS(lu->status_block.ORB_offset_hi_misc)) {
1310                 SBP2_ERR("Error reconnecting to SBP-2 device - failed");
1311                 return -EIO;
1312         }
1313
1314         SBP2_INFO("Reconnected to SBP-2 device");
1315         return 0;
1316 }
1317
1318 /*
1319  * Set the target node's Single Phase Retry limit. Affects the target's retry
1320  * behaviour if our node is too busy to accept requests.
1321  */
1322 static int sbp2_set_busy_timeout(struct sbp2_lu *lu)
1323 {
1324         quadlet_t data;
1325
1326         data = cpu_to_be32(SBP2_BUSY_TIMEOUT_VALUE);
1327         if (hpsb_node_write(lu->ne, SBP2_BUSY_TIMEOUT_ADDRESS, &data, 4))
1328                 SBP2_ERR("%s error", __func__);
1329         return 0;
1330 }
1331
1332 static void sbp2_parse_unit_directory(struct sbp2_lu *lu,
1333                                       struct unit_directory *ud)
1334 {
1335         struct csr1212_keyval *kv;
1336         struct csr1212_dentry *dentry;
1337         u64 management_agent_addr;
1338         u32 unit_characteristics, firmware_revision;
1339         unsigned workarounds;
1340         int i;
1341
1342         management_agent_addr = 0;
1343         unit_characteristics = 0;
1344         firmware_revision = 0;
1345
1346         csr1212_for_each_dir_entry(ud->ne->csr, kv, ud->ud_kv, dentry) {
1347                 switch (kv->key.id) {
1348                 case CSR1212_KV_ID_DEPENDENT_INFO:
1349                         if (kv->key.type == CSR1212_KV_TYPE_CSR_OFFSET)
1350                                 management_agent_addr =
1351                                     CSR1212_REGISTER_SPACE_BASE +
1352                                     (kv->value.csr_offset << 2);
1353
1354                         else if (kv->key.type == CSR1212_KV_TYPE_IMMEDIATE)
1355                                 lu->lun = ORB_SET_LUN(kv->value.immediate);
1356                         break;
1357
1358                 case SBP2_UNIT_CHARACTERISTICS_KEY:
1359                         /* FIXME: This is ignored so far.
1360                          * See SBP-2 clause 7.4.8. */
1361                         unit_characteristics = kv->value.immediate;
1362                         break;
1363
1364                 case SBP2_FIRMWARE_REVISION_KEY:
1365                         firmware_revision = kv->value.immediate;
1366                         break;
1367
1368                 default:
1369                         /* FIXME: Check for SBP2_DEVICE_TYPE_AND_LUN_KEY.
1370                          * Its "ordered" bit has consequences for command ORB
1371                          * list handling. See SBP-2 clauses 4.6, 7.4.11, 10.2 */
1372                         break;
1373                 }
1374         }
1375
1376         workarounds = sbp2_default_workarounds;
1377
1378         if (!(workarounds & SBP2_WORKAROUND_OVERRIDE))
1379                 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1380                         if (sbp2_workarounds_table[i].firmware_revision !=
1381                             SBP2_ROM_VALUE_WILDCARD &&
1382                             sbp2_workarounds_table[i].firmware_revision !=
1383                             (firmware_revision & 0xffff00))
1384                                 continue;
1385                         if (sbp2_workarounds_table[i].model_id !=
1386                             SBP2_ROM_VALUE_WILDCARD &&
1387                             sbp2_workarounds_table[i].model_id != ud->model_id)
1388                                 continue;
1389                         workarounds |= sbp2_workarounds_table[i].workarounds;
1390                         break;
1391                 }
1392
1393         if (workarounds)
1394                 SBP2_INFO("Workarounds for node " NODE_BUS_FMT ": 0x%x "
1395                           "(firmware_revision 0x%06x, vendor_id 0x%06x,"
1396                           " model_id 0x%06x)",
1397                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1398                           workarounds, firmware_revision,
1399                           ud->vendor_id ? ud->vendor_id : ud->ne->vendor_id,
1400                           ud->model_id);
1401
1402         /* We would need one SCSI host template for each target to adjust
1403          * max_sectors on the fly, therefore warn only. */
1404         if (workarounds & SBP2_WORKAROUND_128K_MAX_TRANS &&
1405             (sbp2_max_sectors * 512) > (128 * 1024))
1406                 SBP2_INFO("Node " NODE_BUS_FMT ": Bridge only supports 128KB "
1407                           "max transfer size. WARNING: Current max_sectors "
1408                           "setting is larger than 128KB (%d sectors)",
1409                           NODE_BUS_ARGS(ud->ne->host, ud->ne->nodeid),
1410                           sbp2_max_sectors);
1411
1412         /* If this is a logical unit directory entry, process the parent
1413          * to get the values. */
1414         if (ud->flags & UNIT_DIRECTORY_LUN_DIRECTORY) {
1415                 struct unit_directory *parent_ud = container_of(
1416                         ud->device.parent, struct unit_directory, device);
1417                 sbp2_parse_unit_directory(lu, parent_ud);
1418         } else {
1419                 lu->management_agent_addr = management_agent_addr;
1420                 lu->workarounds = workarounds;
1421                 if (ud->flags & UNIT_DIRECTORY_HAS_LUN)
1422                         lu->lun = ORB_SET_LUN(ud->lun);
1423         }
1424 }
1425
1426 #define SBP2_PAYLOAD_TO_BYTES(p) (1 << ((p) + 2))
1427
1428 /*
1429  * This function is called in order to determine the max speed and packet
1430  * size we can use in our ORBs. Note, that we (the driver and host) only
1431  * initiate the transaction. The SBP-2 device actually transfers the data
1432  * (by reading from the DMA area we tell it). This means that the SBP-2
1433  * device decides the actual maximum data it can transfer. We just tell it
1434  * the speed that it needs to use, and the max_rec the host supports, and
1435  * it takes care of the rest.
1436  */
1437 static int sbp2_max_speed_and_size(struct sbp2_lu *lu)
1438 {
1439         struct sbp2_fwhost_info *hi = lu->hi;
1440         u8 payload;
1441
1442         lu->speed_code = hi->host->speed[NODEID_TO_NODE(lu->ne->nodeid)];
1443
1444         if (lu->speed_code > sbp2_max_speed) {
1445                 lu->speed_code = sbp2_max_speed;
1446                 SBP2_INFO("Reducing speed to %s",
1447                           hpsb_speedto_str[sbp2_max_speed]);
1448         }
1449
1450         /* Payload size is the lesser of what our speed supports and what
1451          * our host supports.  */
1452         payload = min(sbp2_speedto_max_payload[lu->speed_code],
1453                       (u8) (hi->host->csr.max_rec - 1));
1454
1455         /* If physical DMA is off, work around limitation in ohci1394:
1456          * packet size must not exceed PAGE_SIZE */
1457         if (lu->ne->host->low_addr_space < (1ULL << 32))
1458                 while (SBP2_PAYLOAD_TO_BYTES(payload) + 24 > PAGE_SIZE &&
1459                        payload)
1460                         payload--;
1461
1462         SBP2_INFO("Node " NODE_BUS_FMT ": Max speed [%s] - Max payload [%u]",
1463                   NODE_BUS_ARGS(hi->host, lu->ne->nodeid),
1464                   hpsb_speedto_str[lu->speed_code],
1465                   SBP2_PAYLOAD_TO_BYTES(payload));
1466
1467         lu->max_payload_size = payload;
1468         return 0;
1469 }
1470
1471 static int sbp2_agent_reset(struct sbp2_lu *lu, int wait)
1472 {
1473         quadlet_t data;
1474         u64 addr;
1475         int retval;
1476         unsigned long flags;
1477
1478         /* flush lu->protocol_work */
1479         if (wait)
1480                 flush_scheduled_work();
1481
1482         data = ntohl(SBP2_AGENT_RESET_DATA);
1483         addr = lu->command_block_agent_addr + SBP2_AGENT_RESET_OFFSET;
1484
1485         if (wait)
1486                 retval = hpsb_node_write(lu->ne, addr, &data, 4);
1487         else
1488                 retval = sbp2util_node_write_no_wait(lu->ne, addr, &data, 4);
1489
1490         if (retval < 0) {
1491                 SBP2_ERR("hpsb_node_write failed.\n");
1492                 return -EIO;
1493         }
1494
1495         /* make sure that the ORB_POINTER is written on next command */
1496         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1497         lu->last_orb = NULL;
1498         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1499
1500         return 0;
1501 }
1502
1503 static int sbp2_prep_command_orb_sg(struct sbp2_command_orb *orb,
1504                                     struct sbp2_fwhost_info *hi,
1505                                     struct sbp2_command_info *cmd,
1506                                     unsigned int sg_count,
1507                                     struct scatterlist *sg,
1508                                     u32 orb_direction,
1509                                     enum dma_data_direction dma_dir)
1510 {
1511         struct device *dmadev = hi->host->device.parent;
1512         struct sbp2_unrestricted_page_table *pt;
1513         int i, n;
1514
1515         n = dma_map_sg(dmadev, sg, sg_count, dma_dir);
1516         if (n == 0)
1517                 return -ENOMEM;
1518
1519         orb->data_descriptor_hi = ORB_SET_NODE_ID(hi->host->node_id);
1520         orb->misc |= ORB_SET_DIRECTION(orb_direction);
1521
1522         /* special case if only one element (and less than 64KB in size) */
1523         if (n == 1) {
1524                 orb->misc |= ORB_SET_DATA_SIZE(sg_dma_len(sg));
1525                 orb->data_descriptor_lo = sg_dma_address(sg);
1526         } else {
1527                 pt = &cmd->scatter_gather_element[0];
1528
1529                 dma_sync_single_for_cpu(dmadev, cmd->sge_dma,
1530                                         sizeof(cmd->scatter_gather_element),
1531                                         DMA_TO_DEVICE);
1532
1533                 for_each_sg(sg, sg, n, i) {
1534                         pt[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1535                         pt[i].low = cpu_to_be32(sg_dma_address(sg));
1536                 }
1537
1538                 orb->misc |= ORB_SET_PAGE_TABLE_PRESENT(0x1) |
1539                              ORB_SET_DATA_SIZE(n);
1540                 orb->data_descriptor_lo = cmd->sge_dma;
1541
1542                 dma_sync_single_for_device(dmadev, cmd->sge_dma,
1543                                            sizeof(cmd->scatter_gather_element),
1544                                            DMA_TO_DEVICE);
1545         }
1546         return 0;
1547 }
1548
1549 static int sbp2_create_command_orb(struct sbp2_lu *lu,
1550                                    struct sbp2_command_info *cmd,
1551                                    struct scsi_cmnd *SCpnt)
1552 {
1553         struct device *dmadev = lu->hi->host->device.parent;
1554         struct sbp2_command_orb *orb = &cmd->command_orb;
1555         unsigned int scsi_request_bufflen = scsi_bufflen(SCpnt);
1556         enum dma_data_direction dma_dir = SCpnt->sc_data_direction;
1557         u32 orb_direction;
1558         int ret;
1559
1560         dma_sync_single_for_cpu(dmadev, cmd->command_orb_dma,
1561                                 sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1562         /*
1563          * Set-up our command ORB.
1564          *
1565          * NOTE: We're doing unrestricted page tables (s/g), as this is
1566          * best performance (at least with the devices I have). This means
1567          * that data_size becomes the number of s/g elements, and
1568          * page_size should be zero (for unrestricted).
1569          */
1570         orb->next_ORB_hi = ORB_SET_NULL_PTR(1);
1571         orb->next_ORB_lo = 0x0;
1572         orb->misc = ORB_SET_MAX_PAYLOAD(lu->max_payload_size);
1573         orb->misc |= ORB_SET_SPEED(lu->speed_code);
1574         orb->misc |= ORB_SET_NOTIFY(1);
1575
1576         if (dma_dir == DMA_NONE)
1577                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1578         else if (dma_dir == DMA_TO_DEVICE && scsi_request_bufflen)
1579                 orb_direction = ORB_DIRECTION_WRITE_TO_MEDIA;
1580         else if (dma_dir == DMA_FROM_DEVICE && scsi_request_bufflen)
1581                 orb_direction = ORB_DIRECTION_READ_FROM_MEDIA;
1582         else {
1583                 SBP2_INFO("Falling back to DMA_NONE");
1584                 orb_direction = ORB_DIRECTION_NO_DATA_TRANSFER;
1585         }
1586
1587         /* set up our page table stuff */
1588         if (orb_direction == ORB_DIRECTION_NO_DATA_TRANSFER) {
1589                 orb->data_descriptor_hi = 0x0;
1590                 orb->data_descriptor_lo = 0x0;
1591                 orb->misc |= ORB_SET_DIRECTION(1);
1592                 ret = 0;
1593         } else {
1594                 ret = sbp2_prep_command_orb_sg(orb, lu->hi, cmd,
1595                                                scsi_sg_count(SCpnt),
1596                                                scsi_sglist(SCpnt),
1597                                                orb_direction, dma_dir);
1598         }
1599         sbp2util_cpu_to_be32_buffer(orb, sizeof(*orb));
1600
1601         memset(orb->cdb, 0, sizeof(orb->cdb));
1602         memcpy(orb->cdb, SCpnt->cmnd, SCpnt->cmd_len);
1603
1604         dma_sync_single_for_device(dmadev, cmd->command_orb_dma,
1605                         sizeof(struct sbp2_command_orb), DMA_TO_DEVICE);
1606         return ret;
1607 }
1608
1609 static void sbp2_link_orb_command(struct sbp2_lu *lu,
1610                                   struct sbp2_command_info *cmd)
1611 {
1612         struct sbp2_fwhost_info *hi = lu->hi;
1613         struct sbp2_command_orb *last_orb;
1614         dma_addr_t last_orb_dma;
1615         u64 addr = lu->command_block_agent_addr;
1616         quadlet_t data[2];
1617         size_t length;
1618         unsigned long flags;
1619
1620         /* check to see if there are any previous orbs to use */
1621         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1622         last_orb = lu->last_orb;
1623         last_orb_dma = lu->last_orb_dma;
1624         if (!last_orb) {
1625                 /*
1626                  * last_orb == NULL means: We know that the target's fetch agent
1627                  * is not active right now.
1628                  */
1629                 addr += SBP2_ORB_POINTER_OFFSET;
1630                 data[0] = ORB_SET_NODE_ID(hi->host->node_id);
1631                 data[1] = cmd->command_orb_dma;
1632                 sbp2util_cpu_to_be32_buffer(data, 8);
1633                 length = 8;
1634         } else {
1635                 /*
1636                  * last_orb != NULL means: We know that the target's fetch agent
1637                  * is (very probably) not dead or in reset state right now.
1638                  * We have an ORB already sent that we can append a new one to.
1639                  * The target's fetch agent may or may not have read this
1640                  * previous ORB yet.
1641                  */
1642                 dma_sync_single_for_cpu(hi->host->device.parent, last_orb_dma,
1643                                         sizeof(struct sbp2_command_orb),
1644                                         DMA_TO_DEVICE);
1645                 last_orb->next_ORB_lo = cpu_to_be32(cmd->command_orb_dma);
1646                 wmb();
1647                 /* Tells hardware that this pointer is valid */
1648                 last_orb->next_ORB_hi = 0;
1649                 dma_sync_single_for_device(hi->host->device.parent,
1650                                            last_orb_dma,
1651                                            sizeof(struct sbp2_command_orb),
1652                                            DMA_TO_DEVICE);
1653                 addr += SBP2_DOORBELL_OFFSET;
1654                 data[0] = 0;
1655                 length = 4;
1656         }
1657         lu->last_orb = &cmd->command_orb;
1658         lu->last_orb_dma = cmd->command_orb_dma;
1659         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1660
1661         if (sbp2util_node_write_no_wait(lu->ne, addr, data, length)) {
1662                 /*
1663                  * sbp2util_node_write_no_wait failed. We certainly ran out
1664                  * of transaction labels, perhaps just because there were no
1665                  * context switches which gave khpsbpkt a chance to collect
1666                  * free tlabels. Try again in non-atomic context. If necessary,
1667                  * the workqueue job will sleep to guaranteedly get a tlabel.
1668                  * We do not accept new commands until the job is over.
1669                  */
1670                 scsi_block_requests(lu->shost);
1671                 PREPARE_WORK(&lu->protocol_work,
1672                              last_orb ? sbp2util_write_doorbell:
1673                                         sbp2util_write_orb_pointer);
1674                 schedule_work(&lu->protocol_work);
1675         }
1676 }
1677
1678 static int sbp2_send_command(struct sbp2_lu *lu, struct scsi_cmnd *SCpnt,
1679                              void (*done)(struct scsi_cmnd *))
1680 {
1681         struct sbp2_command_info *cmd;
1682
1683         cmd = sbp2util_allocate_command_orb(lu, SCpnt, done);
1684         if (!cmd)
1685                 return -EIO;
1686
1687         if (sbp2_create_command_orb(lu, cmd, SCpnt))
1688                 return -ENOMEM;
1689
1690         sbp2_link_orb_command(lu, cmd);
1691         return 0;
1692 }
1693
1694 /*
1695  * Translates SBP-2 status into SCSI sense data for check conditions
1696  */
1697 static unsigned int sbp2_status_to_sense_data(unchar *sbp2_status,
1698                                               unchar *sense_data)
1699 {
1700         /* OK, it's pretty ugly... ;-) */
1701         sense_data[0] = 0x70;
1702         sense_data[1] = 0x0;
1703         sense_data[2] = sbp2_status[9];
1704         sense_data[3] = sbp2_status[12];
1705         sense_data[4] = sbp2_status[13];
1706         sense_data[5] = sbp2_status[14];
1707         sense_data[6] = sbp2_status[15];
1708         sense_data[7] = 10;
1709         sense_data[8] = sbp2_status[16];
1710         sense_data[9] = sbp2_status[17];
1711         sense_data[10] = sbp2_status[18];
1712         sense_data[11] = sbp2_status[19];
1713         sense_data[12] = sbp2_status[10];
1714         sense_data[13] = sbp2_status[11];
1715         sense_data[14] = sbp2_status[20];
1716         sense_data[15] = sbp2_status[21];
1717
1718         return sbp2_status[8] & 0x3f;
1719 }
1720
1721 static int sbp2_handle_status_write(struct hpsb_host *host, int nodeid,
1722                                     int destid, quadlet_t *data, u64 addr,
1723                                     size_t length, u16 fl)
1724 {
1725         struct sbp2_fwhost_info *hi;
1726         struct sbp2_lu *lu = NULL, *lu_tmp;
1727         struct scsi_cmnd *SCpnt = NULL;
1728         struct sbp2_status_block *sb;
1729         u32 scsi_status = SBP2_SCSI_STATUS_GOOD;
1730         struct sbp2_command_info *cmd;
1731         unsigned long flags;
1732
1733         if (unlikely(length < 8 || length > sizeof(struct sbp2_status_block))) {
1734                 SBP2_ERR("Wrong size of status block");
1735                 return RCODE_ADDRESS_ERROR;
1736         }
1737         if (unlikely(!host)) {
1738                 SBP2_ERR("host is NULL - this is bad!");
1739                 return RCODE_ADDRESS_ERROR;
1740         }
1741         hi = hpsb_get_hostinfo(&sbp2_highlevel, host);
1742         if (unlikely(!hi)) {
1743                 SBP2_ERR("host info is NULL - this is bad!");
1744                 return RCODE_ADDRESS_ERROR;
1745         }
1746
1747         /* Find the unit which wrote the status. */
1748         read_lock_irqsave(&sbp2_hi_logical_units_lock, flags);
1749         list_for_each_entry(lu_tmp, &hi->logical_units, lu_list) {
1750                 if (lu_tmp->ne->nodeid == nodeid &&
1751                     lu_tmp->status_fifo_addr == addr) {
1752                         lu = lu_tmp;
1753                         break;
1754                 }
1755         }
1756         read_unlock_irqrestore(&sbp2_hi_logical_units_lock, flags);
1757
1758         if (unlikely(!lu)) {
1759                 SBP2_ERR("lu is NULL - device is gone?");
1760                 return RCODE_ADDRESS_ERROR;
1761         }
1762
1763         /* Put response into lu status fifo buffer. The first two bytes
1764          * come in big endian bit order. Often the target writes only a
1765          * truncated status block, minimally the first two quadlets. The rest
1766          * is implied to be zeros. */
1767         sb = &lu->status_block;
1768         memset(sb->command_set_dependent, 0, sizeof(sb->command_set_dependent));
1769         memcpy(sb, data, length);
1770         sbp2util_be32_to_cpu_buffer(sb, 8);
1771
1772         /* Ignore unsolicited status. Handle command ORB status. */
1773         if (unlikely(STATUS_GET_SRC(sb->ORB_offset_hi_misc) == 2))
1774                 cmd = NULL;
1775         else
1776                 cmd = sbp2util_find_command_for_orb(lu, sb->ORB_offset_lo);
1777         if (cmd) {
1778                 /* Grab SCSI command pointers and check status. */
1779                 /*
1780                  * FIXME: If the src field in the status is 1, the ORB DMA must
1781                  * not be reused until status for a subsequent ORB is received.
1782                  */
1783                 SCpnt = cmd->Current_SCpnt;
1784                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1785                 sbp2util_mark_command_completed(lu, cmd);
1786                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1787
1788                 if (SCpnt) {
1789                         u32 h = sb->ORB_offset_hi_misc;
1790                         u32 r = STATUS_GET_RESP(h);
1791
1792                         if (r != RESP_STATUS_REQUEST_COMPLETE) {
1793                                 SBP2_INFO("resp 0x%x, sbp_status 0x%x",
1794                                           r, STATUS_GET_SBP_STATUS(h));
1795                                 scsi_status =
1796                                         r == RESP_STATUS_TRANSPORT_FAILURE ?
1797                                         SBP2_SCSI_STATUS_BUSY :
1798                                         SBP2_SCSI_STATUS_COMMAND_TERMINATED;
1799                         }
1800
1801                         if (STATUS_GET_LEN(h) > 1)
1802                                 scsi_status = sbp2_status_to_sense_data(
1803                                         (unchar *)sb, SCpnt->sense_buffer);
1804
1805                         if (STATUS_TEST_DEAD(h))
1806                                 sbp2_agent_reset(lu, 0);
1807                 }
1808
1809                 /* Check here to see if there are no commands in-use. If there
1810                  * are none, we know that the fetch agent left the active state
1811                  * _and_ that we did not reactivate it yet. Therefore clear
1812                  * last_orb so that next time we write directly to the
1813                  * ORB_POINTER register. That way the fetch agent does not need
1814                  * to refetch the next_ORB. */
1815                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1816                 if (list_empty(&lu->cmd_orb_inuse))
1817                         lu->last_orb = NULL;
1818                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1819
1820         } else {
1821                 /* It's probably status after a management request. */
1822                 if ((sb->ORB_offset_lo == lu->reconnect_orb_dma) ||
1823                     (sb->ORB_offset_lo == lu->login_orb_dma) ||
1824                     (sb->ORB_offset_lo == lu->query_logins_orb_dma) ||
1825                     (sb->ORB_offset_lo == lu->logout_orb_dma)) {
1826                         lu->access_complete = 1;
1827                         wake_up_interruptible(&sbp2_access_wq);
1828                 }
1829         }
1830
1831         if (SCpnt)
1832                 sbp2scsi_complete_command(lu, scsi_status, SCpnt,
1833                                           cmd->Current_done);
1834         return RCODE_COMPLETE;
1835 }
1836
1837 /**************************************
1838  * SCSI interface related section
1839  **************************************/
1840
1841 static int sbp2scsi_queuecommand(struct scsi_cmnd *SCpnt,
1842                                  void (*done)(struct scsi_cmnd *))
1843 {
1844         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
1845         struct sbp2_fwhost_info *hi;
1846         int result = DID_NO_CONNECT << 16;
1847
1848         if (unlikely(!sbp2util_node_is_available(lu)))
1849                 goto done;
1850
1851         hi = lu->hi;
1852
1853         if (unlikely(!hi)) {
1854                 SBP2_ERR("sbp2_fwhost_info is NULL - this is bad!");
1855                 goto done;
1856         }
1857
1858         /* Multiple units are currently represented to the SCSI core as separate
1859          * targets, not as one target with multiple LUs. Therefore return
1860          * selection time-out to any IO directed at non-zero LUNs. */
1861         if (unlikely(SCpnt->device->lun))
1862                 goto done;
1863
1864         if (unlikely(!hpsb_node_entry_valid(lu->ne))) {
1865                 SBP2_ERR("Bus reset in progress - rejecting command");
1866                 result = DID_BUS_BUSY << 16;
1867                 goto done;
1868         }
1869
1870         /* Bidirectional commands are not yet implemented,
1871          * and unknown transfer direction not handled. */
1872         if (unlikely(SCpnt->sc_data_direction == DMA_BIDIRECTIONAL)) {
1873                 SBP2_ERR("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
1874                 result = DID_ERROR << 16;
1875                 goto done;
1876         }
1877
1878         if (sbp2_send_command(lu, SCpnt, done)) {
1879                 SBP2_ERR("Error sending SCSI command");
1880                 sbp2scsi_complete_command(lu,
1881                                           SBP2_SCSI_STATUS_SELECTION_TIMEOUT,
1882                                           SCpnt, done);
1883         }
1884         return 0;
1885
1886 done:
1887         SCpnt->result = result;
1888         done(SCpnt);
1889         return 0;
1890 }
1891
1892 static void sbp2scsi_complete_all_commands(struct sbp2_lu *lu, u32 status)
1893 {
1894         struct list_head *lh;
1895         struct sbp2_command_info *cmd;
1896         unsigned long flags;
1897
1898         spin_lock_irqsave(&lu->cmd_orb_lock, flags);
1899         while (!list_empty(&lu->cmd_orb_inuse)) {
1900                 lh = lu->cmd_orb_inuse.next;
1901                 cmd = list_entry(lh, struct sbp2_command_info, list);
1902                 sbp2util_mark_command_completed(lu, cmd);
1903                 if (cmd->Current_SCpnt) {
1904                         cmd->Current_SCpnt->result = status << 16;
1905                         cmd->Current_done(cmd->Current_SCpnt);
1906                 }
1907         }
1908         spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
1909
1910         return;
1911 }
1912
1913 /*
1914  * Complete a regular SCSI command. Can be called in atomic context.
1915  */
1916 static void sbp2scsi_complete_command(struct sbp2_lu *lu, u32 scsi_status,
1917                                       struct scsi_cmnd *SCpnt,
1918                                       void (*done)(struct scsi_cmnd *))
1919 {
1920         if (!SCpnt) {
1921                 SBP2_ERR("SCpnt is NULL");
1922                 return;
1923         }
1924
1925         switch (scsi_status) {
1926         case SBP2_SCSI_STATUS_GOOD:
1927                 SCpnt->result = DID_OK << 16;
1928                 break;
1929
1930         case SBP2_SCSI_STATUS_BUSY:
1931                 SBP2_ERR("SBP2_SCSI_STATUS_BUSY");
1932                 SCpnt->result = DID_BUS_BUSY << 16;
1933                 break;
1934
1935         case SBP2_SCSI_STATUS_CHECK_CONDITION:
1936                 SCpnt->result = CHECK_CONDITION << 1 | DID_OK << 16;
1937                 break;
1938
1939         case SBP2_SCSI_STATUS_SELECTION_TIMEOUT:
1940                 SBP2_ERR("SBP2_SCSI_STATUS_SELECTION_TIMEOUT");
1941                 SCpnt->result = DID_NO_CONNECT << 16;
1942                 scsi_print_command(SCpnt);
1943                 break;
1944
1945         case SBP2_SCSI_STATUS_CONDITION_MET:
1946         case SBP2_SCSI_STATUS_RESERVATION_CONFLICT:
1947         case SBP2_SCSI_STATUS_COMMAND_TERMINATED:
1948                 SBP2_ERR("Bad SCSI status = %x", scsi_status);
1949                 SCpnt->result = DID_ERROR << 16;
1950                 scsi_print_command(SCpnt);
1951                 break;
1952
1953         default:
1954                 SBP2_ERR("Unsupported SCSI status = %x", scsi_status);
1955                 SCpnt->result = DID_ERROR << 16;
1956         }
1957
1958         /* If a bus reset is in progress and there was an error, complete
1959          * the command as busy so that it will get retried. */
1960         if (!hpsb_node_entry_valid(lu->ne)
1961             && (scsi_status != SBP2_SCSI_STATUS_GOOD)) {
1962                 SBP2_ERR("Completing command with busy (bus reset)");
1963                 SCpnt->result = DID_BUS_BUSY << 16;
1964         }
1965
1966         /* Tell the SCSI stack that we're done with this command. */
1967         done(SCpnt);
1968 }
1969
1970 static int sbp2scsi_slave_alloc(struct scsi_device *sdev)
1971 {
1972         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1973
1974         if (sdev->lun != 0 || sdev->id != lu->ud->id || sdev->channel != 0)
1975                 return -ENODEV;
1976
1977         lu->sdev = sdev;
1978         sdev->allow_restart = 1;
1979
1980         /* SBP-2 requires quadlet alignment of the data buffers. */
1981         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1982
1983         if (lu->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1984                 sdev->inquiry_len = 36;
1985         return 0;
1986 }
1987
1988 static int sbp2scsi_slave_configure(struct scsi_device *sdev)
1989 {
1990         struct sbp2_lu *lu = (struct sbp2_lu *)sdev->host->hostdata[0];
1991
1992         sdev->use_10_for_rw = 1;
1993
1994         if (sbp2_exclusive_login)
1995                 sdev->manage_start_stop = 1;
1996         if (sdev->type == TYPE_ROM)
1997                 sdev->use_10_for_ms = 1;
1998         if (sdev->type == TYPE_DISK &&
1999             lu->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
2000                 sdev->skip_ms_page_8 = 1;
2001         if (lu->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
2002                 sdev->fix_capacity = 1;
2003         if (lu->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
2004                 sdev->start_stop_pwr_cond = 1;
2005         if (lu->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
2006                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
2007
2008         blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
2009         return 0;
2010 }
2011
2012 static void sbp2scsi_slave_destroy(struct scsi_device *sdev)
2013 {
2014         ((struct sbp2_lu *)sdev->host->hostdata[0])->sdev = NULL;
2015         return;
2016 }
2017
2018 /*
2019  * Called by scsi stack when something has really gone wrong.
2020  * Usually called when a command has timed-out for some reason.
2021  */
2022 static int sbp2scsi_abort(struct scsi_cmnd *SCpnt)
2023 {
2024         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2025         struct sbp2_command_info *cmd;
2026         unsigned long flags;
2027
2028         SBP2_INFO("aborting sbp2 command");
2029         scsi_print_command(SCpnt);
2030
2031         if (sbp2util_node_is_available(lu)) {
2032                 sbp2_agent_reset(lu, 1);
2033
2034                 /* Return a matching command structure to the free pool. */
2035                 spin_lock_irqsave(&lu->cmd_orb_lock, flags);
2036                 cmd = sbp2util_find_command_for_SCpnt(lu, SCpnt);
2037                 if (cmd) {
2038                         sbp2util_mark_command_completed(lu, cmd);
2039                         if (cmd->Current_SCpnt) {
2040                                 cmd->Current_SCpnt->result = DID_ABORT << 16;
2041                                 cmd->Current_done(cmd->Current_SCpnt);
2042                         }
2043                 }
2044                 spin_unlock_irqrestore(&lu->cmd_orb_lock, flags);
2045
2046                 sbp2scsi_complete_all_commands(lu, DID_BUS_BUSY);
2047         }
2048
2049         return SUCCESS;
2050 }
2051
2052 /*
2053  * Called by scsi stack when something has really gone wrong.
2054  */
2055 static int sbp2scsi_reset(struct scsi_cmnd *SCpnt)
2056 {
2057         struct sbp2_lu *lu = (struct sbp2_lu *)SCpnt->device->host->hostdata[0];
2058
2059         SBP2_INFO("reset requested");
2060
2061         if (sbp2util_node_is_available(lu)) {
2062                 SBP2_INFO("generating sbp2 fetch agent reset");
2063                 sbp2_agent_reset(lu, 1);
2064         }
2065
2066         return SUCCESS;
2067 }
2068
2069 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
2070                                            struct device_attribute *attr,
2071                                            char *buf)
2072 {
2073         struct scsi_device *sdev;
2074         struct sbp2_lu *lu;
2075
2076         if (!(sdev = to_scsi_device(dev)))
2077                 return 0;
2078
2079         if (!(lu = (struct sbp2_lu *)sdev->host->hostdata[0]))
2080                 return 0;
2081
2082         if (sbp2_long_sysfs_ieee1394_id)
2083                 return sprintf(buf, "%016Lx:%06x:%04x\n",
2084                                 (unsigned long long)lu->ne->guid,
2085                                 lu->ud->directory_id, ORB_SET_LUN(lu->lun));
2086         else
2087                 return sprintf(buf, "%016Lx:%d:%d\n",
2088                                 (unsigned long long)lu->ne->guid,
2089                                 lu->ud->id, ORB_SET_LUN(lu->lun));
2090 }
2091
2092 MODULE_AUTHOR("Ben Collins <bcollins@debian.org>");
2093 MODULE_DESCRIPTION("IEEE-1394 SBP-2 protocol driver");
2094 MODULE_SUPPORTED_DEVICE(SBP2_DEVICE_NAME);
2095 MODULE_LICENSE("GPL");
2096
2097 static int sbp2_module_init(void)
2098 {
2099         int ret;
2100
2101         if (sbp2_serialize_io) {
2102                 sbp2_shost_template.can_queue = 1;
2103                 sbp2_shost_template.cmd_per_lun = 1;
2104         }
2105
2106         sbp2_shost_template.max_sectors = sbp2_max_sectors;
2107
2108         hpsb_register_highlevel(&sbp2_highlevel);
2109         ret = hpsb_register_protocol(&sbp2_driver);
2110         if (ret) {
2111                 SBP2_ERR("Failed to register protocol");
2112                 hpsb_unregister_highlevel(&sbp2_highlevel);
2113                 return ret;
2114         }
2115         return 0;
2116 }
2117
2118 static void __exit sbp2_module_exit(void)
2119 {
2120         hpsb_unregister_protocol(&sbp2_driver);
2121         hpsb_unregister_highlevel(&sbp2_highlevel);
2122 }
2123
2124 module_init(sbp2_module_init);
2125 module_exit(sbp2_module_exit);