Freezer: make kernel threads nonfreezable by default
[safe/jmp/linux-2.6] / drivers / ieee1394 / ieee1394_core.c
1 /*
2  * IEEE 1394 for Linux
3  *
4  * Core support: hpsb_packet management, packet handling and forwarding to
5  *               highlevel or lowlevel code
6  *
7  * Copyright (C) 1999, 2000 Andreas E. Bombe
8  *                     2002 Manfred Weihs <weihs@ict.tuwien.ac.at>
9  *
10  * This code is licensed under the GPL.  See the file COPYING in the root
11  * directory of the kernel sources for details.
12  *
13  *
14  * Contributions:
15  *
16  * Manfred Weihs <weihs@ict.tuwien.ac.at>
17  *        loopback functionality in hpsb_send_packet
18  *        allow highlevel drivers to disable automatic response generation
19  *              and to generate responses themselves (deferred)
20  *
21  */
22
23 #include <linux/kernel.h>
24 #include <linux/list.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/bitops.h>
32 #include <linux/kdev_t.h>
33 #include <linux/freezer.h>
34 #include <linux/suspend.h>
35 #include <linux/kthread.h>
36 #include <linux/preempt.h>
37 #include <linux/time.h>
38
39 #include <asm/system.h>
40 #include <asm/byteorder.h>
41
42 #include "ieee1394_types.h"
43 #include "ieee1394.h"
44 #include "hosts.h"
45 #include "ieee1394_core.h"
46 #include "highlevel.h"
47 #include "ieee1394_transactions.h"
48 #include "csr.h"
49 #include "nodemgr.h"
50 #include "dma.h"
51 #include "iso.h"
52 #include "config_roms.h"
53
54 /*
55  * Disable the nodemgr detection and config rom reading functionality.
56  */
57 static int disable_nodemgr;
58 module_param(disable_nodemgr, int, 0444);
59 MODULE_PARM_DESC(disable_nodemgr, "Disable nodemgr functionality.");
60
61 /* Disable Isochronous Resource Manager functionality */
62 int hpsb_disable_irm = 0;
63 module_param_named(disable_irm, hpsb_disable_irm, bool, 0444);
64 MODULE_PARM_DESC(disable_irm,
65                  "Disable Isochronous Resource Manager functionality.");
66
67 /* We are GPL, so treat us special */
68 MODULE_LICENSE("GPL");
69
70 /* Some globals used */
71 const char *hpsb_speedto_str[] = { "S100", "S200", "S400", "S800", "S1600", "S3200" };
72 struct class *hpsb_protocol_class;
73
74 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
75 static void dump_packet(const char *text, quadlet_t *data, int size, int speed)
76 {
77         int i;
78
79         size /= 4;
80         size = (size > 4 ? 4 : size);
81
82         printk(KERN_DEBUG "ieee1394: %s", text);
83         if (speed > -1 && speed < 6)
84                 printk(" at %s", hpsb_speedto_str[speed]);
85         printk(":");
86         for (i = 0; i < size; i++)
87                 printk(" %08x", data[i]);
88         printk("\n");
89 }
90 #else
91 #define dump_packet(a,b,c,d) do {} while (0)
92 #endif
93
94 static void abort_requests(struct hpsb_host *host);
95 static void queue_packet_complete(struct hpsb_packet *packet);
96
97
98 /**
99  * hpsb_set_packet_complete_task - set task that runs when a packet completes
100  * @packet: the packet whose completion we want the task added to
101  * @routine: function to call
102  * @data: data (if any) to pass to the above function
103  *
104  * Set the task that runs when a packet completes. You cannot call this more
105  * than once on a single packet before it is sent.
106  *
107  * Typically, the complete @routine is responsible to call hpsb_free_packet().
108  */
109 void hpsb_set_packet_complete_task(struct hpsb_packet *packet,
110                                    void (*routine)(void *), void *data)
111 {
112         WARN_ON(packet->complete_routine != NULL);
113         packet->complete_routine = routine;
114         packet->complete_data = data;
115         return;
116 }
117
118 /**
119  * hpsb_alloc_packet - allocate new packet structure
120  * @data_size: size of the data block to be allocated, in bytes
121  *
122  * This function allocates, initializes and returns a new &struct hpsb_packet.
123  * It can be used in interrupt context.  A header block is always included and
124  * initialized with zeros.  Its size is big enough to contain all possible 1394
125  * headers.  The data block is only allocated if @data_size is not zero.
126  *
127  * For packets for which responses will be received the @data_size has to be big
128  * enough to contain the response's data block since no further allocation
129  * occurs at response matching time.
130  *
131  * The packet's generation value will be set to the current generation number
132  * for ease of use.  Remember to overwrite it with your own recorded generation
133  * number if you can not be sure that your code will not race with a bus reset.
134  *
135  * Return value: A pointer to a &struct hpsb_packet or NULL on allocation
136  * failure.
137  */
138 struct hpsb_packet *hpsb_alloc_packet(size_t data_size)
139 {
140         struct hpsb_packet *packet;
141
142         data_size = ((data_size + 3) & ~3);
143
144         packet = kzalloc(sizeof(*packet) + data_size, GFP_ATOMIC);
145         if (!packet)
146                 return NULL;
147
148         packet->state = hpsb_unused;
149         packet->generation = -1;
150         INIT_LIST_HEAD(&packet->driver_list);
151         INIT_LIST_HEAD(&packet->queue);
152         atomic_set(&packet->refcnt, 1);
153
154         if (data_size) {
155                 packet->data = packet->embedded_data;
156                 packet->allocated_data_size = data_size;
157         }
158         return packet;
159 }
160
161 /**
162  * hpsb_free_packet - free packet and data associated with it
163  * @packet: packet to free (is NULL safe)
164  *
165  * Frees @packet->data only if it was allocated through hpsb_alloc_packet().
166  */
167 void hpsb_free_packet(struct hpsb_packet *packet)
168 {
169         if (packet && atomic_dec_and_test(&packet->refcnt)) {
170                 BUG_ON(!list_empty(&packet->driver_list) ||
171                        !list_empty(&packet->queue));
172                 kfree(packet);
173         }
174 }
175
176 /**
177  * hpsb_reset_bus - initiate bus reset on the given host
178  * @host: host controller whose bus to reset
179  * @type: one of enum reset_types
180  *
181  * Returns 1 if bus reset already in progress, 0 otherwise.
182  */
183 int hpsb_reset_bus(struct hpsb_host *host, int type)
184 {
185         if (!host->in_bus_reset) {
186                 host->driver->devctl(host, RESET_BUS, type);
187                 return 0;
188         } else {
189                 return 1;
190         }
191 }
192
193 /**
194  * hpsb_read_cycle_timer - read cycle timer register and system time
195  * @host: host whose isochronous cycle timer register is read
196  * @cycle_timer: address of bitfield to return the register contents
197  * @local_time: address to return the system time
198  *
199  * The format of * @cycle_timer, is described in OHCI 1.1 clause 5.13. This
200  * format is also read from non-OHCI controllers. * @local_time contains the
201  * system time in microseconds since the Epoch, read at the moment when the
202  * cycle timer was read.
203  *
204  * Return value: 0 for success or error number otherwise.
205  */
206 int hpsb_read_cycle_timer(struct hpsb_host *host, u32 *cycle_timer,
207                           u64 *local_time)
208 {
209         int ctr;
210         struct timeval tv;
211         unsigned long flags;
212
213         if (!host || !cycle_timer || !local_time)
214                 return -EINVAL;
215
216         preempt_disable();
217         local_irq_save(flags);
218
219         ctr = host->driver->devctl(host, GET_CYCLE_COUNTER, 0);
220         if (ctr)
221                 do_gettimeofday(&tv);
222
223         local_irq_restore(flags);
224         preempt_enable();
225
226         if (!ctr)
227                 return -EIO;
228         *cycle_timer = ctr;
229         *local_time = tv.tv_sec * 1000000ULL + tv.tv_usec;
230         return 0;
231 }
232
233 /**
234  * hpsb_bus_reset - notify a bus reset to the core
235  *
236  * For host driver module usage.  Safe to use in interrupt context, although
237  * quite complex; so you may want to run it in the bottom rather than top half.
238  *
239  * Returns 1 if bus reset already in progress, 0 otherwise.
240  */
241 int hpsb_bus_reset(struct hpsb_host *host)
242 {
243         if (host->in_bus_reset) {
244                 HPSB_NOTICE("%s called while bus reset already in progress",
245                             __FUNCTION__);
246                 return 1;
247         }
248
249         abort_requests(host);
250         host->in_bus_reset = 1;
251         host->irm_id = -1;
252         host->is_irm = 0;
253         host->busmgr_id = -1;
254         host->is_busmgr = 0;
255         host->is_cycmst = 0;
256         host->node_count = 0;
257         host->selfid_count = 0;
258
259         return 0;
260 }
261
262
263 /*
264  * Verify num_of_selfids SelfIDs and return number of nodes.  Return zero in
265  * case verification failed.
266  */
267 static int check_selfids(struct hpsb_host *host)
268 {
269         int nodeid = -1;
270         int rest_of_selfids = host->selfid_count;
271         struct selfid *sid = (struct selfid *)host->topology_map;
272         struct ext_selfid *esid;
273         int esid_seq = 23;
274
275         host->nodes_active = 0;
276
277         while (rest_of_selfids--) {
278                 if (!sid->extended) {
279                         nodeid++;
280                         esid_seq = 0;
281
282                         if (sid->phy_id != nodeid) {
283                                 HPSB_INFO("SelfIDs failed monotony check with "
284                                           "%d", sid->phy_id);
285                                 return 0;
286                         }
287
288                         if (sid->link_active) {
289                                 host->nodes_active++;
290                                 if (sid->contender)
291                                         host->irm_id = LOCAL_BUS | sid->phy_id;
292                         }
293                 } else {
294                         esid = (struct ext_selfid *)sid;
295
296                         if ((esid->phy_id != nodeid)
297                             || (esid->seq_nr != esid_seq)) {
298                                 HPSB_INFO("SelfIDs failed monotony check with "
299                                           "%d/%d", esid->phy_id, esid->seq_nr);
300                                 return 0;
301                         }
302                         esid_seq++;
303                 }
304                 sid++;
305         }
306
307         esid = (struct ext_selfid *)(sid - 1);
308         while (esid->extended) {
309                 if ((esid->porta == SELFID_PORT_PARENT) ||
310                     (esid->portb == SELFID_PORT_PARENT) ||
311                     (esid->portc == SELFID_PORT_PARENT) ||
312                     (esid->portd == SELFID_PORT_PARENT) ||
313                     (esid->porte == SELFID_PORT_PARENT) ||
314                     (esid->portf == SELFID_PORT_PARENT) ||
315                     (esid->portg == SELFID_PORT_PARENT) ||
316                     (esid->porth == SELFID_PORT_PARENT)) {
317                         HPSB_INFO("SelfIDs failed root check on "
318                                   "extended SelfID");
319                         return 0;
320                 }
321                 esid--;
322         }
323
324         sid = (struct selfid *)esid;
325         if ((sid->port0 == SELFID_PORT_PARENT) ||
326             (sid->port1 == SELFID_PORT_PARENT) ||
327             (sid->port2 == SELFID_PORT_PARENT)) {
328                 HPSB_INFO("SelfIDs failed root check");
329                 return 0;
330         }
331
332         host->node_count = nodeid + 1;
333         return 1;
334 }
335
336 static void build_speed_map(struct hpsb_host *host, int nodecount)
337 {
338         u8 cldcnt[nodecount];
339         u8 *map = host->speed_map;
340         u8 *speedcap = host->speed;
341         struct selfid *sid;
342         struct ext_selfid *esid;
343         int i, j, n;
344
345         for (i = 0; i < (nodecount * 64); i += 64) {
346                 for (j = 0; j < nodecount; j++) {
347                         map[i+j] = IEEE1394_SPEED_MAX;
348                 }
349         }
350
351         for (i = 0; i < nodecount; i++) {
352                 cldcnt[i] = 0;
353         }
354
355         /* find direct children count and speed */
356         for (sid = (struct selfid *)&host->topology_map[host->selfid_count-1],
357                      n = nodecount - 1;
358              (void *)sid >= (void *)host->topology_map; sid--) {
359                 if (sid->extended) {
360                         esid = (struct ext_selfid *)sid;
361
362                         if (esid->porta == SELFID_PORT_CHILD) cldcnt[n]++;
363                         if (esid->portb == SELFID_PORT_CHILD) cldcnt[n]++;
364                         if (esid->portc == SELFID_PORT_CHILD) cldcnt[n]++;
365                         if (esid->portd == SELFID_PORT_CHILD) cldcnt[n]++;
366                         if (esid->porte == SELFID_PORT_CHILD) cldcnt[n]++;
367                         if (esid->portf == SELFID_PORT_CHILD) cldcnt[n]++;
368                         if (esid->portg == SELFID_PORT_CHILD) cldcnt[n]++;
369                         if (esid->porth == SELFID_PORT_CHILD) cldcnt[n]++;
370                 } else {
371                         if (sid->port0 == SELFID_PORT_CHILD) cldcnt[n]++;
372                         if (sid->port1 == SELFID_PORT_CHILD) cldcnt[n]++;
373                         if (sid->port2 == SELFID_PORT_CHILD) cldcnt[n]++;
374
375                         speedcap[n] = sid->speed;
376                         n--;
377                 }
378         }
379
380         /* set self mapping */
381         for (i = 0; i < nodecount; i++) {
382                 map[64*i + i] = speedcap[i];
383         }
384
385         /* fix up direct children count to total children count;
386          * also fix up speedcaps for sibling and parent communication */
387         for (i = 1; i < nodecount; i++) {
388                 for (j = cldcnt[i], n = i - 1; j > 0; j--) {
389                         cldcnt[i] += cldcnt[n];
390                         speedcap[n] = min(speedcap[n], speedcap[i]);
391                         n -= cldcnt[n] + 1;
392                 }
393         }
394
395         for (n = 0; n < nodecount; n++) {
396                 for (i = n - cldcnt[n]; i <= n; i++) {
397                         for (j = 0; j < (n - cldcnt[n]); j++) {
398                                 map[j*64 + i] = map[i*64 + j] =
399                                         min(map[i*64 + j], speedcap[n]);
400                         }
401                         for (j = n + 1; j < nodecount; j++) {
402                                 map[j*64 + i] = map[i*64 + j] =
403                                         min(map[i*64 + j], speedcap[n]);
404                         }
405                 }
406         }
407
408 #if SELFID_SPEED_UNKNOWN != IEEE1394_SPEED_MAX
409         /* assume maximum speed for 1394b PHYs, nodemgr will correct it */
410         for (n = 0; n < nodecount; n++)
411                 if (speedcap[n] == SELFID_SPEED_UNKNOWN)
412                         speedcap[n] = IEEE1394_SPEED_MAX;
413 #endif
414 }
415
416
417 /**
418  * hpsb_selfid_received - hand over received selfid packet to the core
419  *
420  * For host driver module usage.  Safe to use in interrupt context.
421  *
422  * The host driver should have done a successful complement check (second
423  * quadlet is complement of first) beforehand.
424  */
425 void hpsb_selfid_received(struct hpsb_host *host, quadlet_t sid)
426 {
427         if (host->in_bus_reset) {
428                 HPSB_VERBOSE("Including SelfID 0x%x", sid);
429                 host->topology_map[host->selfid_count++] = sid;
430         } else {
431                 HPSB_NOTICE("Spurious SelfID packet (0x%08x) received from bus %d",
432                             sid, NODEID_TO_BUS(host->node_id));
433         }
434 }
435
436 /**
437  * hpsb_selfid_complete - notify completion of SelfID stage to the core
438  *
439  * For host driver module usage.  Safe to use in interrupt context, although
440  * quite complex; so you may want to run it in the bottom rather than top half.
441  *
442  * Notify completion of SelfID stage to the core and report new physical ID
443  * and whether host is root now.
444  */
445 void hpsb_selfid_complete(struct hpsb_host *host, int phyid, int isroot)
446 {
447         if (!host->in_bus_reset)
448                 HPSB_NOTICE("SelfID completion called outside of bus reset!");
449
450         host->node_id = LOCAL_BUS | phyid;
451         host->is_root = isroot;
452
453         if (!check_selfids(host)) {
454                 if (host->reset_retries++ < 20) {
455                         /* selfid stage did not complete without error */
456                         HPSB_NOTICE("Error in SelfID stage, resetting");
457                         host->in_bus_reset = 0;
458                         /* this should work from ohci1394 now... */
459                         hpsb_reset_bus(host, LONG_RESET);
460                         return;
461                 } else {
462                         HPSB_NOTICE("Stopping out-of-control reset loop");
463                         HPSB_NOTICE("Warning - topology map and speed map will not be valid");
464                         host->reset_retries = 0;
465                 }
466         } else {
467                 host->reset_retries = 0;
468                 build_speed_map(host, host->node_count);
469         }
470
471         HPSB_VERBOSE("selfid_complete called with successful SelfID stage "
472                      "... irm_id: 0x%X node_id: 0x%X",host->irm_id,host->node_id);
473
474         /* irm_id is kept up to date by check_selfids() */
475         if (host->irm_id == host->node_id) {
476                 host->is_irm = 1;
477         } else {
478                 host->is_busmgr = 0;
479                 host->is_irm = 0;
480         }
481
482         if (isroot) {
483                 host->driver->devctl(host, ACT_CYCLE_MASTER, 1);
484                 host->is_cycmst = 1;
485         }
486         atomic_inc(&host->generation);
487         host->in_bus_reset = 0;
488         highlevel_host_reset(host);
489 }
490
491 static spinlock_t pending_packets_lock = SPIN_LOCK_UNLOCKED;
492
493 /**
494  * hpsb_packet_sent - notify core of sending a packet
495  *
496  * For host driver module usage.  Safe to call from within a transmit packet
497  * routine.
498  *
499  * Notify core of sending a packet.  Ackcode is the ack code returned for async
500  * transmits or ACKX_SEND_ERROR if the transmission failed completely; ACKX_NONE
501  * for other cases (internal errors that don't justify a panic).
502  */
503 void hpsb_packet_sent(struct hpsb_host *host, struct hpsb_packet *packet,
504                       int ackcode)
505 {
506         unsigned long flags;
507
508         spin_lock_irqsave(&pending_packets_lock, flags);
509
510         packet->ack_code = ackcode;
511
512         if (packet->no_waiter || packet->state == hpsb_complete) {
513                 /* if packet->no_waiter, must not have a tlabel allocated */
514                 spin_unlock_irqrestore(&pending_packets_lock, flags);
515                 hpsb_free_packet(packet);
516                 return;
517         }
518
519         atomic_dec(&packet->refcnt);    /* drop HC's reference */
520         /* here the packet must be on the host->pending_packets queue */
521
522         if (ackcode != ACK_PENDING || !packet->expect_response) {
523                 packet->state = hpsb_complete;
524                 list_del_init(&packet->queue);
525                 spin_unlock_irqrestore(&pending_packets_lock, flags);
526                 queue_packet_complete(packet);
527                 return;
528         }
529
530         packet->state = hpsb_pending;
531         packet->sendtime = jiffies;
532
533         spin_unlock_irqrestore(&pending_packets_lock, flags);
534
535         mod_timer(&host->timeout, jiffies + host->timeout_interval);
536 }
537
538 /**
539  * hpsb_send_phy_config - transmit a PHY configuration packet on the bus
540  * @host: host that PHY config packet gets sent through
541  * @rootid: root whose force_root bit should get set (-1 = don't set force_root)
542  * @gapcnt: gap count value to set (-1 = don't set gap count)
543  *
544  * This function sends a PHY config packet on the bus through the specified
545  * host.
546  *
547  * Return value: 0 for success or negative error number otherwise.
548  */
549 int hpsb_send_phy_config(struct hpsb_host *host, int rootid, int gapcnt)
550 {
551         struct hpsb_packet *packet;
552         quadlet_t d = 0;
553         int retval = 0;
554
555         if (rootid >= ALL_NODES || rootid < -1 || gapcnt > 0x3f || gapcnt < -1 ||
556            (rootid == -1 && gapcnt == -1)) {
557                 HPSB_DEBUG("Invalid Parameter: rootid = %d   gapcnt = %d",
558                            rootid, gapcnt);
559                 return -EINVAL;
560         }
561
562         if (rootid != -1)
563                 d |= PHYPACKET_PHYCONFIG_R | rootid << PHYPACKET_PORT_SHIFT;
564         if (gapcnt != -1)
565                 d |= PHYPACKET_PHYCONFIG_T | gapcnt << PHYPACKET_GAPCOUNT_SHIFT;
566
567         packet = hpsb_make_phypacket(host, d);
568         if (!packet)
569                 return -ENOMEM;
570
571         packet->generation = get_hpsb_generation(host);
572         retval = hpsb_send_packet_and_wait(packet);
573         hpsb_free_packet(packet);
574
575         return retval;
576 }
577
578 /**
579  * hpsb_send_packet - transmit a packet on the bus
580  * @packet: packet to send
581  *
582  * The packet is sent through the host specified in the packet->host field.
583  * Before sending, the packet's transmit speed is automatically determined
584  * using the local speed map when it is an async, non-broadcast packet.
585  *
586  * Possibilities for failure are that host is either not initialized, in bus
587  * reset, the packet's generation number doesn't match the current generation
588  * number or the host reports a transmit error.
589  *
590  * Return value: 0 on success, negative errno on failure.
591  */
592 int hpsb_send_packet(struct hpsb_packet *packet)
593 {
594         struct hpsb_host *host = packet->host;
595
596         if (host->is_shutdown)
597                 return -EINVAL;
598         if (host->in_bus_reset ||
599             (packet->generation != get_hpsb_generation(host)))
600                 return -EAGAIN;
601
602         packet->state = hpsb_queued;
603
604         /* This just seems silly to me */
605         WARN_ON(packet->no_waiter && packet->expect_response);
606
607         if (!packet->no_waiter || packet->expect_response) {
608                 unsigned long flags;
609
610                 atomic_inc(&packet->refcnt);
611                 /* Set the initial "sendtime" to 10 seconds from now, to
612                    prevent premature expiry.  If a packet takes more than
613                    10 seconds to hit the wire, we have bigger problems :) */
614                 packet->sendtime = jiffies + 10 * HZ;
615                 spin_lock_irqsave(&pending_packets_lock, flags);
616                 list_add_tail(&packet->queue, &host->pending_packets);
617                 spin_unlock_irqrestore(&pending_packets_lock, flags);
618         }
619
620         if (packet->node_id == host->node_id) {
621                 /* it is a local request, so handle it locally */
622
623                 quadlet_t *data;
624                 size_t size = packet->data_size + packet->header_size;
625
626                 data = kmalloc(size, GFP_ATOMIC);
627                 if (!data) {
628                         HPSB_ERR("unable to allocate memory for concatenating header and data");
629                         return -ENOMEM;
630                 }
631
632                 memcpy(data, packet->header, packet->header_size);
633
634                 if (packet->data_size)
635                         memcpy(((u8*)data) + packet->header_size, packet->data, packet->data_size);
636
637                 dump_packet("send packet local", packet->header, packet->header_size, -1);
638
639                 hpsb_packet_sent(host, packet, packet->expect_response ? ACK_PENDING : ACK_COMPLETE);
640                 hpsb_packet_received(host, data, size, 0);
641
642                 kfree(data);
643
644                 return 0;
645         }
646
647         if (packet->type == hpsb_async &&
648             NODEID_TO_NODE(packet->node_id) != ALL_NODES)
649                 packet->speed_code =
650                         host->speed[NODEID_TO_NODE(packet->node_id)];
651
652         dump_packet("send packet", packet->header, packet->header_size, packet->speed_code);
653
654         return host->driver->transmit_packet(host, packet);
655 }
656
657 /* We could just use complete() directly as the packet complete
658  * callback, but this is more typesafe, in the sense that we get a
659  * compiler error if the prototype for complete() changes. */
660
661 static void complete_packet(void *data)
662 {
663         complete((struct completion *) data);
664 }
665
666 /**
667  * hpsb_send_packet_and_wait - enqueue packet, block until transaction completes
668  * @packet: packet to send
669  *
670  * Return value: 0 on success, negative errno on failure.
671  */
672 int hpsb_send_packet_and_wait(struct hpsb_packet *packet)
673 {
674         struct completion done;
675         int retval;
676
677         init_completion(&done);
678         hpsb_set_packet_complete_task(packet, complete_packet, &done);
679         retval = hpsb_send_packet(packet);
680         if (retval == 0)
681                 wait_for_completion(&done);
682
683         return retval;
684 }
685
686 static void send_packet_nocare(struct hpsb_packet *packet)
687 {
688         if (hpsb_send_packet(packet) < 0) {
689                 hpsb_free_packet(packet);
690         }
691 }
692
693 static size_t packet_size_to_data_size(size_t packet_size, size_t header_size,
694                                        size_t buffer_size, int tcode)
695 {
696         size_t ret = packet_size <= header_size ? 0 : packet_size - header_size;
697
698         if (unlikely(ret > buffer_size))
699                 ret = buffer_size;
700
701         if (unlikely(ret + header_size != packet_size))
702                 HPSB_ERR("unexpected packet size %zd (tcode %d), bug?",
703                          packet_size, tcode);
704         return ret;
705 }
706
707 static void handle_packet_response(struct hpsb_host *host, int tcode,
708                                    quadlet_t *data, size_t size)
709 {
710         struct hpsb_packet *packet;
711         int tlabel = (data[0] >> 10) & 0x3f;
712         size_t header_size;
713         unsigned long flags;
714
715         spin_lock_irqsave(&pending_packets_lock, flags);
716
717         list_for_each_entry(packet, &host->pending_packets, queue)
718                 if (packet->tlabel == tlabel &&
719                     packet->node_id == (data[1] >> 16))
720                         goto found;
721
722         spin_unlock_irqrestore(&pending_packets_lock, flags);
723         HPSB_DEBUG("unsolicited response packet received - %s",
724                    "no tlabel match");
725         dump_packet("contents", data, 16, -1);
726         return;
727
728 found:
729         switch (packet->tcode) {
730         case TCODE_WRITEQ:
731         case TCODE_WRITEB:
732                 if (unlikely(tcode != TCODE_WRITE_RESPONSE))
733                         break;
734                 header_size = 12;
735                 size = 0;
736                 goto dequeue;
737
738         case TCODE_READQ:
739                 if (unlikely(tcode != TCODE_READQ_RESPONSE))
740                         break;
741                 header_size = 16;
742                 size = 0;
743                 goto dequeue;
744
745         case TCODE_READB:
746                 if (unlikely(tcode != TCODE_READB_RESPONSE))
747                         break;
748                 header_size = 16;
749                 size = packet_size_to_data_size(size, header_size,
750                                                 packet->allocated_data_size,
751                                                 tcode);
752                 goto dequeue;
753
754         case TCODE_LOCK_REQUEST:
755                 if (unlikely(tcode != TCODE_LOCK_RESPONSE))
756                         break;
757                 header_size = 16;
758                 size = packet_size_to_data_size(min(size, (size_t)(16 + 8)),
759                                                 header_size,
760                                                 packet->allocated_data_size,
761                                                 tcode);
762                 goto dequeue;
763         }
764
765         spin_unlock_irqrestore(&pending_packets_lock, flags);
766         HPSB_DEBUG("unsolicited response packet received - %s",
767                    "tcode mismatch");
768         dump_packet("contents", data, 16, -1);
769         return;
770
771 dequeue:
772         list_del_init(&packet->queue);
773         spin_unlock_irqrestore(&pending_packets_lock, flags);
774
775         if (packet->state == hpsb_queued) {
776                 packet->sendtime = jiffies;
777                 packet->ack_code = ACK_PENDING;
778         }
779         packet->state = hpsb_complete;
780
781         memcpy(packet->header, data, header_size);
782         if (size)
783                 memcpy(packet->data, data + 4, size);
784
785         queue_packet_complete(packet);
786 }
787
788
789 static struct hpsb_packet *create_reply_packet(struct hpsb_host *host,
790                                                quadlet_t *data, size_t dsize)
791 {
792         struct hpsb_packet *p;
793
794         p = hpsb_alloc_packet(dsize);
795         if (unlikely(p == NULL)) {
796                 /* FIXME - send data_error response */
797                 HPSB_ERR("out of memory, cannot send response packet");
798                 return NULL;
799         }
800
801         p->type = hpsb_async;
802         p->state = hpsb_unused;
803         p->host = host;
804         p->node_id = data[1] >> 16;
805         p->tlabel = (data[0] >> 10) & 0x3f;
806         p->no_waiter = 1;
807
808         p->generation = get_hpsb_generation(host);
809
810         if (dsize % 4)
811                 p->data[dsize / 4] = 0;
812
813         return p;
814 }
815
816 #define PREP_ASYNC_HEAD_RCODE(tc) \
817         packet->tcode = tc; \
818         packet->header[0] = (packet->node_id << 16) | (packet->tlabel << 10) \
819                 | (1 << 8) | (tc << 4); \
820         packet->header[1] = (packet->host->node_id << 16) | (rcode << 12); \
821         packet->header[2] = 0
822
823 static void fill_async_readquad_resp(struct hpsb_packet *packet, int rcode,
824                               quadlet_t data)
825 {
826         PREP_ASYNC_HEAD_RCODE(TCODE_READQ_RESPONSE);
827         packet->header[3] = data;
828         packet->header_size = 16;
829         packet->data_size = 0;
830 }
831
832 static void fill_async_readblock_resp(struct hpsb_packet *packet, int rcode,
833                                int length)
834 {
835         if (rcode != RCODE_COMPLETE)
836                 length = 0;
837
838         PREP_ASYNC_HEAD_RCODE(TCODE_READB_RESPONSE);
839         packet->header[3] = length << 16;
840         packet->header_size = 16;
841         packet->data_size = length + (length % 4 ? 4 - (length % 4) : 0);
842 }
843
844 static void fill_async_write_resp(struct hpsb_packet *packet, int rcode)
845 {
846         PREP_ASYNC_HEAD_RCODE(TCODE_WRITE_RESPONSE);
847         packet->header_size = 12;
848         packet->data_size = 0;
849 }
850
851 static void fill_async_lock_resp(struct hpsb_packet *packet, int rcode, int extcode,
852                           int length)
853 {
854         if (rcode != RCODE_COMPLETE)
855                 length = 0;
856
857         PREP_ASYNC_HEAD_RCODE(TCODE_LOCK_RESPONSE);
858         packet->header[3] = (length << 16) | extcode;
859         packet->header_size = 16;
860         packet->data_size = length;
861 }
862
863 static void handle_incoming_packet(struct hpsb_host *host, int tcode,
864                                    quadlet_t *data, size_t size,
865                                    int write_acked)
866 {
867         struct hpsb_packet *packet;
868         int length, rcode, extcode;
869         quadlet_t buffer;
870         nodeid_t source = data[1] >> 16;
871         nodeid_t dest = data[0] >> 16;
872         u16 flags = (u16) data[0];
873         u64 addr;
874
875         /* FIXME?
876          * Out-of-bounds lengths are left for highlevel_read|write to cap. */
877
878         switch (tcode) {
879         case TCODE_WRITEQ:
880                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
881                 rcode = highlevel_write(host, source, dest, data + 3,
882                                         addr, 4, flags);
883                 goto handle_write_request;
884
885         case TCODE_WRITEB:
886                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
887                 rcode = highlevel_write(host, source, dest, data + 4,
888                                         addr, data[3] >> 16, flags);
889 handle_write_request:
890                 if (rcode < 0 || write_acked ||
891                     NODEID_TO_NODE(data[0] >> 16) == NODE_MASK)
892                         return;
893                 /* not a broadcast write, reply */
894                 packet = create_reply_packet(host, data, 0);
895                 if (packet) {
896                         fill_async_write_resp(packet, rcode);
897                         send_packet_nocare(packet);
898                 }
899                 return;
900
901         case TCODE_READQ:
902                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
903                 rcode = highlevel_read(host, source, &buffer, addr, 4, flags);
904                 if (rcode < 0)
905                         return;
906
907                 packet = create_reply_packet(host, data, 0);
908                 if (packet) {
909                         fill_async_readquad_resp(packet, rcode, buffer);
910                         send_packet_nocare(packet);
911                 }
912                 return;
913
914         case TCODE_READB:
915                 length = data[3] >> 16;
916                 packet = create_reply_packet(host, data, length);
917                 if (!packet)
918                         return;
919
920                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
921                 rcode = highlevel_read(host, source, packet->data, addr,
922                                        length, flags);
923                 if (rcode < 0) {
924                         hpsb_free_packet(packet);
925                         return;
926                 }
927                 fill_async_readblock_resp(packet, rcode, length);
928                 send_packet_nocare(packet);
929                 return;
930
931         case TCODE_LOCK_REQUEST:
932                 length = data[3] >> 16;
933                 extcode = data[3] & 0xffff;
934                 addr = (((u64)(data[1] & 0xffff)) << 32) | data[2];
935
936                 packet = create_reply_packet(host, data, 8);
937                 if (!packet)
938                         return;
939
940                 if (extcode == 0 || extcode >= 7) {
941                         /* let switch default handle error */
942                         length = 0;
943                 }
944
945                 switch (length) {
946                 case 4:
947                         rcode = highlevel_lock(host, source, packet->data, addr,
948                                                data[4], 0, extcode, flags);
949                         fill_async_lock_resp(packet, rcode, extcode, 4);
950                         break;
951                 case 8:
952                         if (extcode != EXTCODE_FETCH_ADD &&
953                             extcode != EXTCODE_LITTLE_ADD) {
954                                 rcode = highlevel_lock(host, source,
955                                                        packet->data, addr,
956                                                        data[5], data[4],
957                                                        extcode, flags);
958                                 fill_async_lock_resp(packet, rcode, extcode, 4);
959                         } else {
960                                 rcode = highlevel_lock64(host, source,
961                                              (octlet_t *)packet->data, addr,
962                                              *(octlet_t *)(data + 4), 0ULL,
963                                              extcode, flags);
964                                 fill_async_lock_resp(packet, rcode, extcode, 8);
965                         }
966                         break;
967                 case 16:
968                         rcode = highlevel_lock64(host, source,
969                                                  (octlet_t *)packet->data, addr,
970                                                  *(octlet_t *)(data + 6),
971                                                  *(octlet_t *)(data + 4),
972                                                  extcode, flags);
973                         fill_async_lock_resp(packet, rcode, extcode, 8);
974                         break;
975                 default:
976                         rcode = RCODE_TYPE_ERROR;
977                         fill_async_lock_resp(packet, rcode, extcode, 0);
978                 }
979
980                 if (rcode < 0)
981                         hpsb_free_packet(packet);
982                 else
983                         send_packet_nocare(packet);
984                 return;
985         }
986 }
987
988 /**
989  * hpsb_packet_received - hand over received packet to the core
990  *
991  * For host driver module usage.
992  *
993  * The contents of data are expected to be the full packet but with the CRCs
994  * left out (data block follows header immediately), with the header (i.e. the
995  * first four quadlets) in machine byte order and the data block in big endian.
996  * *@data can be safely overwritten after this call.
997  *
998  * If the packet is a write request, @write_acked is to be set to true if it was
999  * ack_complete'd already, false otherwise.  This argument is ignored for any
1000  * other packet type.
1001  */
1002 void hpsb_packet_received(struct hpsb_host *host, quadlet_t *data, size_t size,
1003                           int write_acked)
1004 {
1005         int tcode;
1006
1007         if (unlikely(host->in_bus_reset)) {
1008                 HPSB_DEBUG("received packet during reset; ignoring");
1009                 return;
1010         }
1011
1012         dump_packet("received packet", data, size, -1);
1013
1014         tcode = (data[0] >> 4) & 0xf;
1015
1016         switch (tcode) {
1017         case TCODE_WRITE_RESPONSE:
1018         case TCODE_READQ_RESPONSE:
1019         case TCODE_READB_RESPONSE:
1020         case TCODE_LOCK_RESPONSE:
1021                 handle_packet_response(host, tcode, data, size);
1022                 break;
1023
1024         case TCODE_WRITEQ:
1025         case TCODE_WRITEB:
1026         case TCODE_READQ:
1027         case TCODE_READB:
1028         case TCODE_LOCK_REQUEST:
1029                 handle_incoming_packet(host, tcode, data, size, write_acked);
1030                 break;
1031
1032         case TCODE_CYCLE_START:
1033                 /* simply ignore this packet if it is passed on */
1034                 break;
1035
1036         default:
1037                 HPSB_DEBUG("received packet with bogus transaction code %d",
1038                            tcode);
1039                 break;
1040         }
1041 }
1042
1043 static void abort_requests(struct hpsb_host *host)
1044 {
1045         struct hpsb_packet *packet, *p;
1046         struct list_head tmp;
1047         unsigned long flags;
1048
1049         host->driver->devctl(host, CANCEL_REQUESTS, 0);
1050
1051         INIT_LIST_HEAD(&tmp);
1052         spin_lock_irqsave(&pending_packets_lock, flags);
1053         list_splice_init(&host->pending_packets, &tmp);
1054         spin_unlock_irqrestore(&pending_packets_lock, flags);
1055
1056         list_for_each_entry_safe(packet, p, &tmp, queue) {
1057                 list_del_init(&packet->queue);
1058                 packet->state = hpsb_complete;
1059                 packet->ack_code = ACKX_ABORTED;
1060                 queue_packet_complete(packet);
1061         }
1062 }
1063
1064 void abort_timedouts(unsigned long __opaque)
1065 {
1066         struct hpsb_host *host = (struct hpsb_host *)__opaque;
1067         struct hpsb_packet *packet, *p;
1068         struct list_head tmp;
1069         unsigned long flags, expire, j;
1070
1071         spin_lock_irqsave(&host->csr.lock, flags);
1072         expire = host->csr.expire;
1073         spin_unlock_irqrestore(&host->csr.lock, flags);
1074
1075         j = jiffies;
1076         INIT_LIST_HEAD(&tmp);
1077         spin_lock_irqsave(&pending_packets_lock, flags);
1078
1079         list_for_each_entry_safe(packet, p, &host->pending_packets, queue) {
1080                 if (time_before(packet->sendtime + expire, j))
1081                         list_move_tail(&packet->queue, &tmp);
1082                 else
1083                         /* Since packets are added to the tail, the oldest
1084                          * ones are first, always. When we get to one that
1085                          * isn't timed out, the rest aren't either. */
1086                         break;
1087         }
1088         if (!list_empty(&host->pending_packets))
1089                 mod_timer(&host->timeout, j + host->timeout_interval);
1090
1091         spin_unlock_irqrestore(&pending_packets_lock, flags);
1092
1093         list_for_each_entry_safe(packet, p, &tmp, queue) {
1094                 list_del_init(&packet->queue);
1095                 packet->state = hpsb_complete;
1096                 packet->ack_code = ACKX_TIMEOUT;
1097                 queue_packet_complete(packet);
1098         }
1099 }
1100
1101 static struct task_struct *khpsbpkt_thread;
1102 static LIST_HEAD(hpsbpkt_queue);
1103
1104 static void queue_packet_complete(struct hpsb_packet *packet)
1105 {
1106         unsigned long flags;
1107
1108         if (packet->no_waiter) {
1109                 hpsb_free_packet(packet);
1110                 return;
1111         }
1112         if (packet->complete_routine != NULL) {
1113                 spin_lock_irqsave(&pending_packets_lock, flags);
1114                 list_add_tail(&packet->queue, &hpsbpkt_queue);
1115                 spin_unlock_irqrestore(&pending_packets_lock, flags);
1116                 wake_up_process(khpsbpkt_thread);
1117         }
1118         return;
1119 }
1120
1121 /*
1122  * Kernel thread which handles packets that are completed.  This way the
1123  * packet's "complete" function is asynchronously run in process context.
1124  * Only packets which have a "complete" function may be sent here.
1125  */
1126 static int hpsbpkt_thread(void *__hi)
1127 {
1128         struct hpsb_packet *packet, *p;
1129         struct list_head tmp;
1130         int may_schedule;
1131
1132         while (!kthread_should_stop()) {
1133
1134                 INIT_LIST_HEAD(&tmp);
1135                 spin_lock_irq(&pending_packets_lock);
1136                 list_splice_init(&hpsbpkt_queue, &tmp);
1137                 spin_unlock_irq(&pending_packets_lock);
1138
1139                 list_for_each_entry_safe(packet, p, &tmp, queue) {
1140                         list_del_init(&packet->queue);
1141                         packet->complete_routine(packet->complete_data);
1142                 }
1143
1144                 set_current_state(TASK_INTERRUPTIBLE);
1145                 spin_lock_irq(&pending_packets_lock);
1146                 may_schedule = list_empty(&hpsbpkt_queue);
1147                 spin_unlock_irq(&pending_packets_lock);
1148                 if (may_schedule)
1149                         schedule();
1150                 __set_current_state(TASK_RUNNING);
1151         }
1152         return 0;
1153 }
1154
1155 static int __init ieee1394_init(void)
1156 {
1157         int i, ret;
1158
1159         /* non-fatal error */
1160         if (hpsb_init_config_roms()) {
1161                 HPSB_ERR("Failed to initialize some config rom entries.\n");
1162                 HPSB_ERR("Some features may not be available\n");
1163         }
1164
1165         khpsbpkt_thread = kthread_run(hpsbpkt_thread, NULL, "khpsbpkt");
1166         if (IS_ERR(khpsbpkt_thread)) {
1167                 HPSB_ERR("Failed to start hpsbpkt thread!\n");
1168                 ret = PTR_ERR(khpsbpkt_thread);
1169                 goto exit_cleanup_config_roms;
1170         }
1171
1172         if (register_chrdev_region(IEEE1394_CORE_DEV, 256, "ieee1394")) {
1173                 HPSB_ERR("unable to register character device major %d!\n", IEEE1394_MAJOR);
1174                 ret = -ENODEV;
1175                 goto exit_release_kernel_thread;
1176         }
1177
1178         ret = bus_register(&ieee1394_bus_type);
1179         if (ret < 0) {
1180                 HPSB_INFO("bus register failed");
1181                 goto release_chrdev;
1182         }
1183
1184         for (i = 0; fw_bus_attrs[i]; i++) {
1185                 ret = bus_create_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1186                 if (ret < 0) {
1187                         while (i >= 0) {
1188                                 bus_remove_file(&ieee1394_bus_type,
1189                                                 fw_bus_attrs[i--]);
1190                         }
1191                         bus_unregister(&ieee1394_bus_type);
1192                         goto release_chrdev;
1193                 }
1194         }
1195
1196         ret = class_register(&hpsb_host_class);
1197         if (ret < 0)
1198                 goto release_all_bus;
1199
1200         hpsb_protocol_class = class_create(THIS_MODULE, "ieee1394_protocol");
1201         if (IS_ERR(hpsb_protocol_class)) {
1202                 ret = PTR_ERR(hpsb_protocol_class);
1203                 goto release_class_host;
1204         }
1205
1206         ret = init_csr();
1207         if (ret) {
1208                 HPSB_INFO("init csr failed");
1209                 ret = -ENOMEM;
1210                 goto release_class_protocol;
1211         }
1212
1213         if (disable_nodemgr) {
1214                 HPSB_INFO("nodemgr and IRM functionality disabled");
1215                 /* We shouldn't contend for IRM with nodemgr disabled, since
1216                    nodemgr implements functionality required of ieee1394a-2000
1217                    IRMs */
1218                 hpsb_disable_irm = 1;
1219
1220                 return 0;
1221         }
1222
1223         if (hpsb_disable_irm) {
1224                 HPSB_INFO("IRM functionality disabled");
1225         }
1226
1227         ret = init_ieee1394_nodemgr();
1228         if (ret < 0) {
1229                 HPSB_INFO("init nodemgr failed");
1230                 goto cleanup_csr;
1231         }
1232
1233         return 0;
1234
1235 cleanup_csr:
1236         cleanup_csr();
1237 release_class_protocol:
1238         class_destroy(hpsb_protocol_class);
1239 release_class_host:
1240         class_unregister(&hpsb_host_class);
1241 release_all_bus:
1242         for (i = 0; fw_bus_attrs[i]; i++)
1243                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1244         bus_unregister(&ieee1394_bus_type);
1245 release_chrdev:
1246         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1247 exit_release_kernel_thread:
1248         kthread_stop(khpsbpkt_thread);
1249 exit_cleanup_config_roms:
1250         hpsb_cleanup_config_roms();
1251         return ret;
1252 }
1253
1254 static void __exit ieee1394_cleanup(void)
1255 {
1256         int i;
1257
1258         if (!disable_nodemgr)
1259                 cleanup_ieee1394_nodemgr();
1260
1261         cleanup_csr();
1262
1263         class_destroy(hpsb_protocol_class);
1264         class_unregister(&hpsb_host_class);
1265         for (i = 0; fw_bus_attrs[i]; i++)
1266                 bus_remove_file(&ieee1394_bus_type, fw_bus_attrs[i]);
1267         bus_unregister(&ieee1394_bus_type);
1268
1269         kthread_stop(khpsbpkt_thread);
1270
1271         hpsb_cleanup_config_roms();
1272
1273         unregister_chrdev_region(IEEE1394_CORE_DEV, 256);
1274 }
1275
1276 fs_initcall(ieee1394_init); /* same as ohci1394 */
1277 module_exit(ieee1394_cleanup);
1278
1279 /* Exported symbols */
1280
1281 /** hosts.c **/
1282 EXPORT_SYMBOL(hpsb_alloc_host);
1283 EXPORT_SYMBOL(hpsb_add_host);
1284 EXPORT_SYMBOL(hpsb_resume_host);
1285 EXPORT_SYMBOL(hpsb_remove_host);
1286 EXPORT_SYMBOL(hpsb_update_config_rom_image);
1287
1288 /** ieee1394_core.c **/
1289 EXPORT_SYMBOL(hpsb_speedto_str);
1290 EXPORT_SYMBOL(hpsb_protocol_class);
1291 EXPORT_SYMBOL(hpsb_set_packet_complete_task);
1292 EXPORT_SYMBOL(hpsb_alloc_packet);
1293 EXPORT_SYMBOL(hpsb_free_packet);
1294 EXPORT_SYMBOL(hpsb_send_packet);
1295 EXPORT_SYMBOL(hpsb_reset_bus);
1296 EXPORT_SYMBOL(hpsb_read_cycle_timer);
1297 EXPORT_SYMBOL(hpsb_bus_reset);
1298 EXPORT_SYMBOL(hpsb_selfid_received);
1299 EXPORT_SYMBOL(hpsb_selfid_complete);
1300 EXPORT_SYMBOL(hpsb_packet_sent);
1301 EXPORT_SYMBOL(hpsb_packet_received);
1302 EXPORT_SYMBOL_GPL(hpsb_disable_irm);
1303
1304 /** ieee1394_transactions.c **/
1305 EXPORT_SYMBOL(hpsb_get_tlabel);
1306 EXPORT_SYMBOL(hpsb_free_tlabel);
1307 EXPORT_SYMBOL(hpsb_make_readpacket);
1308 EXPORT_SYMBOL(hpsb_make_writepacket);
1309 EXPORT_SYMBOL(hpsb_make_streampacket);
1310 EXPORT_SYMBOL(hpsb_make_lockpacket);
1311 EXPORT_SYMBOL(hpsb_make_lock64packet);
1312 EXPORT_SYMBOL(hpsb_make_phypacket);
1313 EXPORT_SYMBOL(hpsb_read);
1314 EXPORT_SYMBOL(hpsb_write);
1315 EXPORT_SYMBOL(hpsb_packet_success);
1316
1317 /** highlevel.c **/
1318 EXPORT_SYMBOL(hpsb_register_highlevel);
1319 EXPORT_SYMBOL(hpsb_unregister_highlevel);
1320 EXPORT_SYMBOL(hpsb_register_addrspace);
1321 EXPORT_SYMBOL(hpsb_unregister_addrspace);
1322 EXPORT_SYMBOL(hpsb_allocate_and_register_addrspace);
1323 EXPORT_SYMBOL(hpsb_get_hostinfo);
1324 EXPORT_SYMBOL(hpsb_create_hostinfo);
1325 EXPORT_SYMBOL(hpsb_destroy_hostinfo);
1326 EXPORT_SYMBOL(hpsb_set_hostinfo_key);
1327 EXPORT_SYMBOL(hpsb_get_hostinfo_bykey);
1328 EXPORT_SYMBOL(hpsb_set_hostinfo);
1329
1330 /** nodemgr.c **/
1331 EXPORT_SYMBOL(hpsb_node_fill_packet);
1332 EXPORT_SYMBOL(hpsb_node_write);
1333 EXPORT_SYMBOL(__hpsb_register_protocol);
1334 EXPORT_SYMBOL(hpsb_unregister_protocol);
1335
1336 /** csr.c **/
1337 EXPORT_SYMBOL(hpsb_update_config_rom);
1338
1339 /** dma.c **/
1340 EXPORT_SYMBOL(dma_prog_region_init);
1341 EXPORT_SYMBOL(dma_prog_region_alloc);
1342 EXPORT_SYMBOL(dma_prog_region_free);
1343 EXPORT_SYMBOL(dma_region_init);
1344 EXPORT_SYMBOL(dma_region_alloc);
1345 EXPORT_SYMBOL(dma_region_free);
1346 EXPORT_SYMBOL(dma_region_sync_for_cpu);
1347 EXPORT_SYMBOL(dma_region_sync_for_device);
1348 EXPORT_SYMBOL(dma_region_mmap);
1349 EXPORT_SYMBOL(dma_region_offset_to_bus);
1350
1351 /** iso.c **/
1352 EXPORT_SYMBOL(hpsb_iso_xmit_init);
1353 EXPORT_SYMBOL(hpsb_iso_recv_init);
1354 EXPORT_SYMBOL(hpsb_iso_xmit_start);
1355 EXPORT_SYMBOL(hpsb_iso_recv_start);
1356 EXPORT_SYMBOL(hpsb_iso_recv_listen_channel);
1357 EXPORT_SYMBOL(hpsb_iso_recv_unlisten_channel);
1358 EXPORT_SYMBOL(hpsb_iso_recv_set_channel_mask);
1359 EXPORT_SYMBOL(hpsb_iso_stop);
1360 EXPORT_SYMBOL(hpsb_iso_shutdown);
1361 EXPORT_SYMBOL(hpsb_iso_xmit_queue_packet);
1362 EXPORT_SYMBOL(hpsb_iso_xmit_sync);
1363 EXPORT_SYMBOL(hpsb_iso_recv_release_packets);
1364 EXPORT_SYMBOL(hpsb_iso_n_ready);
1365 EXPORT_SYMBOL(hpsb_iso_packet_sent);
1366 EXPORT_SYMBOL(hpsb_iso_packet_received);
1367 EXPORT_SYMBOL(hpsb_iso_wake);
1368 EXPORT_SYMBOL(hpsb_iso_recv_flush);
1369
1370 /** csr1212.c **/
1371 EXPORT_SYMBOL(csr1212_attach_keyval_to_directory);
1372 EXPORT_SYMBOL(csr1212_detach_keyval_from_directory);
1373 EXPORT_SYMBOL(csr1212_get_keyval);
1374 EXPORT_SYMBOL(csr1212_new_directory);
1375 EXPORT_SYMBOL(csr1212_parse_keyval);
1376 EXPORT_SYMBOL(csr1212_read);
1377 EXPORT_SYMBOL(csr1212_release_keyval);