ttm: Make parts of a struct ttm_bo_device global.
[safe/jmp/linux-2.6] / drivers / gpu / drm / ttm / ttm_tt.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include <linux/vmalloc.h>
32 #include <linux/sched.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/file.h>
36 #include <linux/swap.h>
37 #include "ttm/ttm_module.h"
38 #include "ttm/ttm_bo_driver.h"
39 #include "ttm/ttm_placement.h"
40
41 static int ttm_tt_swapin(struct ttm_tt *ttm);
42
43 #if defined(CONFIG_X86)
44 static void ttm_tt_clflush_page(struct page *page)
45 {
46         uint8_t *page_virtual;
47         unsigned int i;
48
49         if (unlikely(page == NULL))
50                 return;
51
52         page_virtual = kmap_atomic(page, KM_USER0);
53
54         for (i = 0; i < PAGE_SIZE; i += boot_cpu_data.x86_clflush_size)
55                 clflush(page_virtual + i);
56
57         kunmap_atomic(page_virtual, KM_USER0);
58 }
59
60 static void ttm_tt_cache_flush_clflush(struct page *pages[],
61                                        unsigned long num_pages)
62 {
63         unsigned long i;
64
65         mb();
66         for (i = 0; i < num_pages; ++i)
67                 ttm_tt_clflush_page(*pages++);
68         mb();
69 }
70 #elif !defined(__powerpc__)
71 static void ttm_tt_ipi_handler(void *null)
72 {
73         ;
74 }
75 #endif
76
77 void ttm_tt_cache_flush(struct page *pages[], unsigned long num_pages)
78 {
79
80 #if defined(CONFIG_X86)
81         if (cpu_has_clflush) {
82                 ttm_tt_cache_flush_clflush(pages, num_pages);
83                 return;
84         }
85 #elif defined(__powerpc__)
86         unsigned long i;
87
88         for (i = 0; i < num_pages; ++i) {
89                 if (pages[i]) {
90                         unsigned long start = (unsigned long)page_address(pages[i]);
91                         flush_dcache_range(start, start + PAGE_SIZE);
92                 }
93         }
94 #else
95         if (on_each_cpu(ttm_tt_ipi_handler, NULL, 1) != 0)
96                 printk(KERN_ERR TTM_PFX
97                        "Timed out waiting for drm cache flush.\n");
98 #endif
99 }
100
101 /**
102  * Allocates storage for pointers to the pages that back the ttm.
103  *
104  * Uses kmalloc if possible. Otherwise falls back to vmalloc.
105  */
106 static void ttm_tt_alloc_page_directory(struct ttm_tt *ttm)
107 {
108         unsigned long size = ttm->num_pages * sizeof(*ttm->pages);
109         ttm->pages = NULL;
110
111         if (size <= PAGE_SIZE)
112                 ttm->pages = kzalloc(size, GFP_KERNEL);
113
114         if (!ttm->pages) {
115                 ttm->pages = vmalloc_user(size);
116                 if (ttm->pages)
117                         ttm->page_flags |= TTM_PAGE_FLAG_VMALLOC;
118         }
119 }
120
121 static void ttm_tt_free_page_directory(struct ttm_tt *ttm)
122 {
123         if (ttm->page_flags & TTM_PAGE_FLAG_VMALLOC) {
124                 vfree(ttm->pages);
125                 ttm->page_flags &= ~TTM_PAGE_FLAG_VMALLOC;
126         } else {
127                 kfree(ttm->pages);
128         }
129         ttm->pages = NULL;
130 }
131
132 static struct page *ttm_tt_alloc_page(unsigned page_flags)
133 {
134         if (page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
135                 return alloc_page(GFP_HIGHUSER | __GFP_ZERO);
136
137         return alloc_page(GFP_HIGHUSER);
138 }
139
140 static void ttm_tt_free_user_pages(struct ttm_tt *ttm)
141 {
142         int write;
143         int dirty;
144         struct page *page;
145         int i;
146         struct ttm_backend *be = ttm->be;
147
148         BUG_ON(!(ttm->page_flags & TTM_PAGE_FLAG_USER));
149         write = ((ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0);
150         dirty = ((ttm->page_flags & TTM_PAGE_FLAG_USER_DIRTY) != 0);
151
152         if (be)
153                 be->func->clear(be);
154
155         for (i = 0; i < ttm->num_pages; ++i) {
156                 page = ttm->pages[i];
157                 if (page == NULL)
158                         continue;
159
160                 if (page == ttm->dummy_read_page) {
161                         BUG_ON(write);
162                         continue;
163                 }
164
165                 if (write && dirty && !PageReserved(page))
166                         set_page_dirty_lock(page);
167
168                 ttm->pages[i] = NULL;
169                 ttm_mem_global_free(ttm->glob->mem_glob, PAGE_SIZE);
170                 put_page(page);
171         }
172         ttm->state = tt_unpopulated;
173         ttm->first_himem_page = ttm->num_pages;
174         ttm->last_lomem_page = -1;
175 }
176
177 static struct page *__ttm_tt_get_page(struct ttm_tt *ttm, int index)
178 {
179         struct page *p;
180         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
181         int ret;
182
183         while (NULL == (p = ttm->pages[index])) {
184                 p = ttm_tt_alloc_page(ttm->page_flags);
185
186                 if (!p)
187                         return NULL;
188
189                 ret = ttm_mem_global_alloc_page(mem_glob, p, false, false);
190                 if (unlikely(ret != 0))
191                         goto out_err;
192
193                 if (PageHighMem(p))
194                         ttm->pages[--ttm->first_himem_page] = p;
195                 else
196                         ttm->pages[++ttm->last_lomem_page] = p;
197         }
198         return p;
199 out_err:
200         put_page(p);
201         return NULL;
202 }
203
204 struct page *ttm_tt_get_page(struct ttm_tt *ttm, int index)
205 {
206         int ret;
207
208         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
209                 ret = ttm_tt_swapin(ttm);
210                 if (unlikely(ret != 0))
211                         return NULL;
212         }
213         return __ttm_tt_get_page(ttm, index);
214 }
215
216 int ttm_tt_populate(struct ttm_tt *ttm)
217 {
218         struct page *page;
219         unsigned long i;
220         struct ttm_backend *be;
221         int ret;
222
223         if (ttm->state != tt_unpopulated)
224                 return 0;
225
226         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
227                 ret = ttm_tt_swapin(ttm);
228                 if (unlikely(ret != 0))
229                         return ret;
230         }
231
232         be = ttm->be;
233
234         for (i = 0; i < ttm->num_pages; ++i) {
235                 page = __ttm_tt_get_page(ttm, i);
236                 if (!page)
237                         return -ENOMEM;
238         }
239
240         be->func->populate(be, ttm->num_pages, ttm->pages,
241                            ttm->dummy_read_page);
242         ttm->state = tt_unbound;
243         return 0;
244 }
245
246 #ifdef CONFIG_X86
247 static inline int ttm_tt_set_page_caching(struct page *p,
248                                           enum ttm_caching_state c_state)
249 {
250         if (PageHighMem(p))
251                 return 0;
252
253         switch (c_state) {
254         case tt_cached:
255                 return set_pages_wb(p, 1);
256         case tt_wc:
257             return set_memory_wc((unsigned long) page_address(p), 1);
258         default:
259                 return set_pages_uc(p, 1);
260         }
261 }
262 #else /* CONFIG_X86 */
263 static inline int ttm_tt_set_page_caching(struct page *p,
264                                           enum ttm_caching_state c_state)
265 {
266         return 0;
267 }
268 #endif /* CONFIG_X86 */
269
270 /*
271  * Change caching policy for the linear kernel map
272  * for range of pages in a ttm.
273  */
274
275 static int ttm_tt_set_caching(struct ttm_tt *ttm,
276                               enum ttm_caching_state c_state)
277 {
278         int i, j;
279         struct page *cur_page;
280         int ret;
281
282         if (ttm->caching_state == c_state)
283                 return 0;
284
285         if (c_state != tt_cached) {
286                 ret = ttm_tt_populate(ttm);
287                 if (unlikely(ret != 0))
288                         return ret;
289         }
290
291         if (ttm->caching_state == tt_cached)
292                 ttm_tt_cache_flush(ttm->pages, ttm->num_pages);
293
294         for (i = 0; i < ttm->num_pages; ++i) {
295                 cur_page = ttm->pages[i];
296                 if (likely(cur_page != NULL)) {
297                         ret = ttm_tt_set_page_caching(cur_page, c_state);
298                         if (unlikely(ret != 0))
299                                 goto out_err;
300                 }
301         }
302
303         ttm->caching_state = c_state;
304
305         return 0;
306
307 out_err:
308         for (j = 0; j < i; ++j) {
309                 cur_page = ttm->pages[j];
310                 if (likely(cur_page != NULL)) {
311                         (void)ttm_tt_set_page_caching(cur_page,
312                                                       ttm->caching_state);
313                 }
314         }
315
316         return ret;
317 }
318
319 int ttm_tt_set_placement_caching(struct ttm_tt *ttm, uint32_t placement)
320 {
321         enum ttm_caching_state state;
322
323         if (placement & TTM_PL_FLAG_WC)
324                 state = tt_wc;
325         else if (placement & TTM_PL_FLAG_UNCACHED)
326                 state = tt_uncached;
327         else
328                 state = tt_cached;
329
330         return ttm_tt_set_caching(ttm, state);
331 }
332
333 static void ttm_tt_free_alloced_pages(struct ttm_tt *ttm)
334 {
335         int i;
336         struct page *cur_page;
337         struct ttm_backend *be = ttm->be;
338
339         if (be)
340                 be->func->clear(be);
341         (void)ttm_tt_set_caching(ttm, tt_cached);
342         for (i = 0; i < ttm->num_pages; ++i) {
343                 cur_page = ttm->pages[i];
344                 ttm->pages[i] = NULL;
345                 if (cur_page) {
346                         if (page_count(cur_page) != 1)
347                                 printk(KERN_ERR TTM_PFX
348                                        "Erroneous page count. "
349                                        "Leaking pages.\n");
350                         ttm_mem_global_free_page(ttm->glob->mem_glob,
351                                                  cur_page);
352                         __free_page(cur_page);
353                 }
354         }
355         ttm->state = tt_unpopulated;
356         ttm->first_himem_page = ttm->num_pages;
357         ttm->last_lomem_page = -1;
358 }
359
360 void ttm_tt_destroy(struct ttm_tt *ttm)
361 {
362         struct ttm_backend *be;
363
364         if (unlikely(ttm == NULL))
365                 return;
366
367         be = ttm->be;
368         if (likely(be != NULL)) {
369                 be->func->destroy(be);
370                 ttm->be = NULL;
371         }
372
373         if (likely(ttm->pages != NULL)) {
374                 if (ttm->page_flags & TTM_PAGE_FLAG_USER)
375                         ttm_tt_free_user_pages(ttm);
376                 else
377                         ttm_tt_free_alloced_pages(ttm);
378
379                 ttm_tt_free_page_directory(ttm);
380         }
381
382         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP) &&
383             ttm->swap_storage)
384                 fput(ttm->swap_storage);
385
386         kfree(ttm);
387 }
388
389 int ttm_tt_set_user(struct ttm_tt *ttm,
390                     struct task_struct *tsk,
391                     unsigned long start, unsigned long num_pages)
392 {
393         struct mm_struct *mm = tsk->mm;
394         int ret;
395         int write = (ttm->page_flags & TTM_PAGE_FLAG_WRITE) != 0;
396         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
397
398         BUG_ON(num_pages != ttm->num_pages);
399         BUG_ON((ttm->page_flags & TTM_PAGE_FLAG_USER) == 0);
400
401         /**
402          * Account user pages as lowmem pages for now.
403          */
404
405         ret = ttm_mem_global_alloc(mem_glob, num_pages * PAGE_SIZE,
406                                    false, false);
407         if (unlikely(ret != 0))
408                 return ret;
409
410         down_read(&mm->mmap_sem);
411         ret = get_user_pages(tsk, mm, start, num_pages,
412                              write, 0, ttm->pages, NULL);
413         up_read(&mm->mmap_sem);
414
415         if (ret != num_pages && write) {
416                 ttm_tt_free_user_pages(ttm);
417                 ttm_mem_global_free(mem_glob, num_pages * PAGE_SIZE);
418                 return -ENOMEM;
419         }
420
421         ttm->tsk = tsk;
422         ttm->start = start;
423         ttm->state = tt_unbound;
424
425         return 0;
426 }
427
428 struct ttm_tt *ttm_tt_create(struct ttm_bo_device *bdev, unsigned long size,
429                              uint32_t page_flags, struct page *dummy_read_page)
430 {
431         struct ttm_bo_driver *bo_driver = bdev->driver;
432         struct ttm_tt *ttm;
433
434         if (!bo_driver)
435                 return NULL;
436
437         ttm = kzalloc(sizeof(*ttm), GFP_KERNEL);
438         if (!ttm)
439                 return NULL;
440
441         ttm->glob = bdev->glob;
442         ttm->num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
443         ttm->first_himem_page = ttm->num_pages;
444         ttm->last_lomem_page = -1;
445         ttm->caching_state = tt_cached;
446         ttm->page_flags = page_flags;
447
448         ttm->dummy_read_page = dummy_read_page;
449
450         ttm_tt_alloc_page_directory(ttm);
451         if (!ttm->pages) {
452                 ttm_tt_destroy(ttm);
453                 printk(KERN_ERR TTM_PFX "Failed allocating page table\n");
454                 return NULL;
455         }
456         ttm->be = bo_driver->create_ttm_backend_entry(bdev);
457         if (!ttm->be) {
458                 ttm_tt_destroy(ttm);
459                 printk(KERN_ERR TTM_PFX "Failed creating ttm backend entry\n");
460                 return NULL;
461         }
462         ttm->state = tt_unpopulated;
463         return ttm;
464 }
465
466 void ttm_tt_unbind(struct ttm_tt *ttm)
467 {
468         int ret;
469         struct ttm_backend *be = ttm->be;
470
471         if (ttm->state == tt_bound) {
472                 ret = be->func->unbind(be);
473                 BUG_ON(ret);
474                 ttm->state = tt_unbound;
475         }
476 }
477
478 int ttm_tt_bind(struct ttm_tt *ttm, struct ttm_mem_reg *bo_mem)
479 {
480         int ret = 0;
481         struct ttm_backend *be;
482
483         if (!ttm)
484                 return -EINVAL;
485
486         if (ttm->state == tt_bound)
487                 return 0;
488
489         be = ttm->be;
490
491         ret = ttm_tt_populate(ttm);
492         if (ret)
493                 return ret;
494
495         ret = be->func->bind(be, bo_mem);
496         if (ret) {
497                 printk(KERN_ERR TTM_PFX "Couldn't bind backend.\n");
498                 return ret;
499         }
500
501         ttm->state = tt_bound;
502
503         if (ttm->page_flags & TTM_PAGE_FLAG_USER)
504                 ttm->page_flags |= TTM_PAGE_FLAG_USER_DIRTY;
505         return 0;
506 }
507 EXPORT_SYMBOL(ttm_tt_bind);
508
509 static int ttm_tt_swapin(struct ttm_tt *ttm)
510 {
511         struct address_space *swap_space;
512         struct file *swap_storage;
513         struct page *from_page;
514         struct page *to_page;
515         void *from_virtual;
516         void *to_virtual;
517         int i;
518         int ret;
519
520         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
521                 ret = ttm_tt_set_user(ttm, ttm->tsk, ttm->start,
522                                       ttm->num_pages);
523                 if (unlikely(ret != 0))
524                         return ret;
525
526                 ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
527                 return 0;
528         }
529
530         swap_storage = ttm->swap_storage;
531         BUG_ON(swap_storage == NULL);
532
533         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
534
535         for (i = 0; i < ttm->num_pages; ++i) {
536                 from_page = read_mapping_page(swap_space, i, NULL);
537                 if (IS_ERR(from_page))
538                         goto out_err;
539                 to_page = __ttm_tt_get_page(ttm, i);
540                 if (unlikely(to_page == NULL))
541                         goto out_err;
542
543                 preempt_disable();
544                 from_virtual = kmap_atomic(from_page, KM_USER0);
545                 to_virtual = kmap_atomic(to_page, KM_USER1);
546                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
547                 kunmap_atomic(to_virtual, KM_USER1);
548                 kunmap_atomic(from_virtual, KM_USER0);
549                 preempt_enable();
550                 page_cache_release(from_page);
551         }
552
553         if (!(ttm->page_flags & TTM_PAGE_FLAG_PERSISTANT_SWAP))
554                 fput(swap_storage);
555         ttm->swap_storage = NULL;
556         ttm->page_flags &= ~TTM_PAGE_FLAG_SWAPPED;
557
558         return 0;
559 out_err:
560         ttm_tt_free_alloced_pages(ttm);
561         return -ENOMEM;
562 }
563
564 int ttm_tt_swapout(struct ttm_tt *ttm, struct file *persistant_swap_storage)
565 {
566         struct address_space *swap_space;
567         struct file *swap_storage;
568         struct page *from_page;
569         struct page *to_page;
570         void *from_virtual;
571         void *to_virtual;
572         int i;
573
574         BUG_ON(ttm->state != tt_unbound && ttm->state != tt_unpopulated);
575         BUG_ON(ttm->caching_state != tt_cached);
576
577         /*
578          * For user buffers, just unpin the pages, as there should be
579          * vma references.
580          */
581
582         if (ttm->page_flags & TTM_PAGE_FLAG_USER) {
583                 ttm_tt_free_user_pages(ttm);
584                 ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
585                 ttm->swap_storage = NULL;
586                 return 0;
587         }
588
589         if (!persistant_swap_storage) {
590                 swap_storage = shmem_file_setup("ttm swap",
591                                                 ttm->num_pages << PAGE_SHIFT,
592                                                 0);
593                 if (unlikely(IS_ERR(swap_storage))) {
594                         printk(KERN_ERR "Failed allocating swap storage.\n");
595                         return -ENOMEM;
596                 }
597         } else
598                 swap_storage = persistant_swap_storage;
599
600         swap_space = swap_storage->f_path.dentry->d_inode->i_mapping;
601
602         for (i = 0; i < ttm->num_pages; ++i) {
603                 from_page = ttm->pages[i];
604                 if (unlikely(from_page == NULL))
605                         continue;
606                 to_page = read_mapping_page(swap_space, i, NULL);
607                 if (unlikely(to_page == NULL))
608                         goto out_err;
609
610                 preempt_disable();
611                 from_virtual = kmap_atomic(from_page, KM_USER0);
612                 to_virtual = kmap_atomic(to_page, KM_USER1);
613                 memcpy(to_virtual, from_virtual, PAGE_SIZE);
614                 kunmap_atomic(to_virtual, KM_USER1);
615                 kunmap_atomic(from_virtual, KM_USER0);
616                 preempt_enable();
617                 set_page_dirty(to_page);
618                 mark_page_accessed(to_page);
619                 page_cache_release(to_page);
620         }
621
622         ttm_tt_free_alloced_pages(ttm);
623         ttm->swap_storage = swap_storage;
624         ttm->page_flags |= TTM_PAGE_FLAG_SWAPPED;
625         if (persistant_swap_storage)
626                 ttm->page_flags |= TTM_PAGE_FLAG_PERSISTANT_SWAP;
627
628         return 0;
629 out_err:
630         if (!persistant_swap_storage)
631                 fput(swap_storage);
632
633         return -ENOMEM;
634 }