drm/i915: Add the support of memory self-refresh on Ironlake
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "drm_dp_helper.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73 };
74
75 #define I8XX_DOT_MIN              25000
76 #define I8XX_DOT_MAX             350000
77 #define I8XX_VCO_MIN             930000
78 #define I8XX_VCO_MAX            1400000
79 #define I8XX_N_MIN                    3
80 #define I8XX_N_MAX                   16
81 #define I8XX_M_MIN                   96
82 #define I8XX_M_MAX                  140
83 #define I8XX_M1_MIN                  18
84 #define I8XX_M1_MAX                  26
85 #define I8XX_M2_MIN                   6
86 #define I8XX_M2_MAX                  16
87 #define I8XX_P_MIN                    4
88 #define I8XX_P_MAX                  128
89 #define I8XX_P1_MIN                   2
90 #define I8XX_P1_MAX                  33
91 #define I8XX_P1_LVDS_MIN              1
92 #define I8XX_P1_LVDS_MAX              6
93 #define I8XX_P2_SLOW                  4
94 #define I8XX_P2_FAST                  2
95 #define I8XX_P2_LVDS_SLOW             14
96 #define I8XX_P2_LVDS_FAST             7
97 #define I8XX_P2_SLOW_LIMIT       165000
98
99 #define I9XX_DOT_MIN              20000
100 #define I9XX_DOT_MAX             400000
101 #define I9XX_VCO_MIN            1400000
102 #define I9XX_VCO_MAX            2800000
103 #define PINEVIEW_VCO_MIN                1700000
104 #define PINEVIEW_VCO_MAX                3500000
105 #define I9XX_N_MIN                    1
106 #define I9XX_N_MAX                    6
107 /* Pineview's Ncounter is a ring counter */
108 #define PINEVIEW_N_MIN                3
109 #define PINEVIEW_N_MAX                6
110 #define I9XX_M_MIN                   70
111 #define I9XX_M_MAX                  120
112 #define PINEVIEW_M_MIN                2
113 #define PINEVIEW_M_MAX              256
114 #define I9XX_M1_MIN                  10
115 #define I9XX_M1_MAX                  22
116 #define I9XX_M2_MIN                   5
117 #define I9XX_M2_MAX                   9
118 /* Pineview M1 is reserved, and must be 0 */
119 #define PINEVIEW_M1_MIN               0
120 #define PINEVIEW_M1_MAX               0
121 #define PINEVIEW_M2_MIN               0
122 #define PINEVIEW_M2_MAX               254
123 #define I9XX_P_SDVO_DAC_MIN           5
124 #define I9XX_P_SDVO_DAC_MAX          80
125 #define I9XX_P_LVDS_MIN               7
126 #define I9XX_P_LVDS_MAX              98
127 #define PINEVIEW_P_LVDS_MIN                   7
128 #define PINEVIEW_P_LVDS_MAX                  112
129 #define I9XX_P1_MIN                   1
130 #define I9XX_P1_MAX                   8
131 #define I9XX_P2_SDVO_DAC_SLOW                10
132 #define I9XX_P2_SDVO_DAC_FAST                 5
133 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
134 #define I9XX_P2_LVDS_SLOW                    14
135 #define I9XX_P2_LVDS_FAST                     7
136 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
137
138 /*The parameter is for SDVO on G4x platform*/
139 #define G4X_DOT_SDVO_MIN           25000
140 #define G4X_DOT_SDVO_MAX           270000
141 #define G4X_VCO_MIN                1750000
142 #define G4X_VCO_MAX                3500000
143 #define G4X_N_SDVO_MIN             1
144 #define G4X_N_SDVO_MAX             4
145 #define G4X_M_SDVO_MIN             104
146 #define G4X_M_SDVO_MAX             138
147 #define G4X_M1_SDVO_MIN            17
148 #define G4X_M1_SDVO_MAX            23
149 #define G4X_M2_SDVO_MIN            5
150 #define G4X_M2_SDVO_MAX            11
151 #define G4X_P_SDVO_MIN             10
152 #define G4X_P_SDVO_MAX             30
153 #define G4X_P1_SDVO_MIN            1
154 #define G4X_P1_SDVO_MAX            3
155 #define G4X_P2_SDVO_SLOW           10
156 #define G4X_P2_SDVO_FAST           10
157 #define G4X_P2_SDVO_LIMIT          270000
158
159 /*The parameter is for HDMI_DAC on G4x platform*/
160 #define G4X_DOT_HDMI_DAC_MIN           22000
161 #define G4X_DOT_HDMI_DAC_MAX           400000
162 #define G4X_N_HDMI_DAC_MIN             1
163 #define G4X_N_HDMI_DAC_MAX             4
164 #define G4X_M_HDMI_DAC_MIN             104
165 #define G4X_M_HDMI_DAC_MAX             138
166 #define G4X_M1_HDMI_DAC_MIN            16
167 #define G4X_M1_HDMI_DAC_MAX            23
168 #define G4X_M2_HDMI_DAC_MIN            5
169 #define G4X_M2_HDMI_DAC_MAX            11
170 #define G4X_P_HDMI_DAC_MIN             5
171 #define G4X_P_HDMI_DAC_MAX             80
172 #define G4X_P1_HDMI_DAC_MIN            1
173 #define G4X_P1_HDMI_DAC_MAX            8
174 #define G4X_P2_HDMI_DAC_SLOW           10
175 #define G4X_P2_HDMI_DAC_FAST           5
176 #define G4X_P2_HDMI_DAC_LIMIT          165000
177
178 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
179 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
181 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
183 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
185 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
187 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
189 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
191 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
193 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
196
197 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
198 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
200 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
201 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
202 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
203 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
204 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
206 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
208 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
209 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
210 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
212 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
213 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
215
216 /*The parameter is for DISPLAY PORT on G4x platform*/
217 #define G4X_DOT_DISPLAY_PORT_MIN           161670
218 #define G4X_DOT_DISPLAY_PORT_MAX           227000
219 #define G4X_N_DISPLAY_PORT_MIN             1
220 #define G4X_N_DISPLAY_PORT_MAX             2
221 #define G4X_M_DISPLAY_PORT_MIN             97
222 #define G4X_M_DISPLAY_PORT_MAX             108
223 #define G4X_M1_DISPLAY_PORT_MIN            0x10
224 #define G4X_M1_DISPLAY_PORT_MAX            0x12
225 #define G4X_M2_DISPLAY_PORT_MIN            0x05
226 #define G4X_M2_DISPLAY_PORT_MAX            0x06
227 #define G4X_P_DISPLAY_PORT_MIN             10
228 #define G4X_P_DISPLAY_PORT_MAX             20
229 #define G4X_P1_DISPLAY_PORT_MIN            1
230 #define G4X_P1_DISPLAY_PORT_MAX            2
231 #define G4X_P2_DISPLAY_PORT_SLOW           10
232 #define G4X_P2_DISPLAY_PORT_FAST           10
233 #define G4X_P2_DISPLAY_PORT_LIMIT          0
234
235 /* Ironlake / Sandybridge */
236 /* as we calculate clock using (register_value + 2) for
237    N/M1/M2, so here the range value for them is (actual_value-2).
238  */
239 #define IRONLAKE_DOT_MIN         25000
240 #define IRONLAKE_DOT_MAX         350000
241 #define IRONLAKE_VCO_MIN         1760000
242 #define IRONLAKE_VCO_MAX         3510000
243 #define IRONLAKE_M1_MIN          12
244 #define IRONLAKE_M1_MAX          22
245 #define IRONLAKE_M2_MIN          5
246 #define IRONLAKE_M2_MAX          9
247 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
248
249 /* We have parameter ranges for different type of outputs. */
250
251 /* DAC & HDMI Refclk 120Mhz */
252 #define IRONLAKE_DAC_N_MIN      1
253 #define IRONLAKE_DAC_N_MAX      5
254 #define IRONLAKE_DAC_M_MIN      79
255 #define IRONLAKE_DAC_M_MAX      127
256 #define IRONLAKE_DAC_P_MIN      5
257 #define IRONLAKE_DAC_P_MAX      80
258 #define IRONLAKE_DAC_P1_MIN     1
259 #define IRONLAKE_DAC_P1_MAX     8
260 #define IRONLAKE_DAC_P2_SLOW    10
261 #define IRONLAKE_DAC_P2_FAST    5
262
263 /* LVDS single-channel 120Mhz refclk */
264 #define IRONLAKE_LVDS_S_N_MIN   1
265 #define IRONLAKE_LVDS_S_N_MAX   3
266 #define IRONLAKE_LVDS_S_M_MIN   79
267 #define IRONLAKE_LVDS_S_M_MAX   118
268 #define IRONLAKE_LVDS_S_P_MIN   28
269 #define IRONLAKE_LVDS_S_P_MAX   112
270 #define IRONLAKE_LVDS_S_P1_MIN  2
271 #define IRONLAKE_LVDS_S_P1_MAX  8
272 #define IRONLAKE_LVDS_S_P2_SLOW 14
273 #define IRONLAKE_LVDS_S_P2_FAST 14
274
275 /* LVDS dual-channel 120Mhz refclk */
276 #define IRONLAKE_LVDS_D_N_MIN   1
277 #define IRONLAKE_LVDS_D_N_MAX   3
278 #define IRONLAKE_LVDS_D_M_MIN   79
279 #define IRONLAKE_LVDS_D_M_MAX   127
280 #define IRONLAKE_LVDS_D_P_MIN   14
281 #define IRONLAKE_LVDS_D_P_MAX   56
282 #define IRONLAKE_LVDS_D_P1_MIN  2
283 #define IRONLAKE_LVDS_D_P1_MAX  8
284 #define IRONLAKE_LVDS_D_P2_SLOW 7
285 #define IRONLAKE_LVDS_D_P2_FAST 7
286
287 /* LVDS single-channel 100Mhz refclk */
288 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
289 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
290 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
291 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
292 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
293 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
294 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
295 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
296 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
297 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
298
299 /* LVDS dual-channel 100Mhz refclk */
300 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
301 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
302 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
303 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
304 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
305 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
306 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
307 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
308 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
309 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
310
311 /* DisplayPort */
312 #define IRONLAKE_DP_N_MIN               1
313 #define IRONLAKE_DP_N_MAX               2
314 #define IRONLAKE_DP_M_MIN               81
315 #define IRONLAKE_DP_M_MAX               90
316 #define IRONLAKE_DP_P_MIN               10
317 #define IRONLAKE_DP_P_MAX               20
318 #define IRONLAKE_DP_P2_FAST             10
319 #define IRONLAKE_DP_P2_SLOW             10
320 #define IRONLAKE_DP_P2_LIMIT            0
321 #define IRONLAKE_DP_P1_MIN              1
322 #define IRONLAKE_DP_P1_MAX              2
323
324 static bool
325 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
326                     int target, int refclk, intel_clock_t *best_clock);
327 static bool
328 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
329                         int target, int refclk, intel_clock_t *best_clock);
330
331 static bool
332 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
333                       int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
336                            int target, int refclk, intel_clock_t *best_clock);
337
338 static const intel_limit_t intel_limits_i8xx_dvo = {
339         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
340         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
341         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
342         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
343         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
344         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
345         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
346         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
347         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
348                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
349         .find_pll = intel_find_best_PLL,
350 };
351
352 static const intel_limit_t intel_limits_i8xx_lvds = {
353         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
354         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
355         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
356         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
357         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
358         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
359         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
360         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
361         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
363         .find_pll = intel_find_best_PLL,
364 };
365         
366 static const intel_limit_t intel_limits_i9xx_sdvo = {
367         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
368         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
369         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
370         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
371         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
372         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
373         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
374         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
375         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
376                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
377         .find_pll = intel_find_best_PLL,
378 };
379
380 static const intel_limit_t intel_limits_i9xx_lvds = {
381         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
382         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
383         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
384         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
385         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
386         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
387         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
388         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
389         /* The single-channel range is 25-112Mhz, and dual-channel
390          * is 80-224Mhz.  Prefer single channel as much as possible.
391          */
392         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
393                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
394         .find_pll = intel_find_best_PLL,
395 };
396
397     /* below parameter and function is for G4X Chipset Family*/
398 static const intel_limit_t intel_limits_g4x_sdvo = {
399         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
400         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
401         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
402         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
403         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
404         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
405         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
406         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
407         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
408                  .p2_slow = G4X_P2_SDVO_SLOW,
409                  .p2_fast = G4X_P2_SDVO_FAST
410         },
411         .find_pll = intel_g4x_find_best_PLL,
412 };
413
414 static const intel_limit_t intel_limits_g4x_hdmi = {
415         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
416         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
417         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
418         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
419         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
420         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
421         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
422         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
423         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
424                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
425                  .p2_fast = G4X_P2_HDMI_DAC_FAST
426         },
427         .find_pll = intel_g4x_find_best_PLL,
428 };
429
430 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
431         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
432                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
433         .vco = { .min = G4X_VCO_MIN,
434                  .max = G4X_VCO_MAX },
435         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
436                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
437         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
438                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
439         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
440                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
441         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
442                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
443         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
444                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
445         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
446                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
447         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
448                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
449                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
450         },
451         .find_pll = intel_g4x_find_best_PLL,
452 };
453
454 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
455         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
456                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
457         .vco = { .min = G4X_VCO_MIN,
458                  .max = G4X_VCO_MAX },
459         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
460                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
461         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
462                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
463         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
464                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
465         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
466                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
467         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
468                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
469         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
470                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
471         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
472                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
473                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
474         },
475         .find_pll = intel_g4x_find_best_PLL,
476 };
477
478 static const intel_limit_t intel_limits_g4x_display_port = {
479         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
480                  .max = G4X_DOT_DISPLAY_PORT_MAX },
481         .vco = { .min = G4X_VCO_MIN,
482                  .max = G4X_VCO_MAX},
483         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
484                  .max = G4X_N_DISPLAY_PORT_MAX },
485         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
486                  .max = G4X_M_DISPLAY_PORT_MAX },
487         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
488                  .max = G4X_M1_DISPLAY_PORT_MAX },
489         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
490                  .max = G4X_M2_DISPLAY_PORT_MAX },
491         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
492                  .max = G4X_P_DISPLAY_PORT_MAX },
493         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
494                  .max = G4X_P1_DISPLAY_PORT_MAX},
495         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
496                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
497                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
498         .find_pll = intel_find_pll_g4x_dp,
499 };
500
501 static const intel_limit_t intel_limits_pineview_sdvo = {
502         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
503         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
504         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
505         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
506         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
507         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
508         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
509         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
510         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
511                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
512         .find_pll = intel_find_best_PLL,
513 };
514
515 static const intel_limit_t intel_limits_pineview_lvds = {
516         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
517         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
518         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
519         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
520         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
521         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
522         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
523         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
524         /* Pineview only supports single-channel mode. */
525         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
526                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
527         .find_pll = intel_find_best_PLL,
528 };
529
530 static const intel_limit_t intel_limits_ironlake_dac = {
531         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
532         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
533         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
534         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
535         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
536         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
537         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
538         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
539         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
540                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
541                  .p2_fast = IRONLAKE_DAC_P2_FAST },
542         .find_pll = intel_g4x_find_best_PLL,
543 };
544
545 static const intel_limit_t intel_limits_ironlake_single_lvds = {
546         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
547         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
548         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
549         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
550         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
551         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
552         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
553         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
554         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
555                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
556                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
557         .find_pll = intel_g4x_find_best_PLL,
558 };
559
560 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
561         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
562         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
563         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
564         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
565         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
566         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
567         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
568         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
569         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
570                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
571                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
572         .find_pll = intel_g4x_find_best_PLL,
573 };
574
575 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
576         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
577         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
578         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
579         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
580         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
581         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
582         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
583         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
584         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
585                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
586                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
587         .find_pll = intel_g4x_find_best_PLL,
588 };
589
590 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
591         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
592         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
593         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
594         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
595         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
596         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
597         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
598         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
599         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
600                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
601                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
602         .find_pll = intel_g4x_find_best_PLL,
603 };
604
605 static const intel_limit_t intel_limits_ironlake_display_port = {
606         .dot = { .min = IRONLAKE_DOT_MIN,
607                  .max = IRONLAKE_DOT_MAX },
608         .vco = { .min = IRONLAKE_VCO_MIN,
609                  .max = IRONLAKE_VCO_MAX},
610         .n   = { .min = IRONLAKE_DP_N_MIN,
611                  .max = IRONLAKE_DP_N_MAX },
612         .m   = { .min = IRONLAKE_DP_M_MIN,
613                  .max = IRONLAKE_DP_M_MAX },
614         .m1  = { .min = IRONLAKE_M1_MIN,
615                  .max = IRONLAKE_M1_MAX },
616         .m2  = { .min = IRONLAKE_M2_MIN,
617                  .max = IRONLAKE_M2_MAX },
618         .p   = { .min = IRONLAKE_DP_P_MIN,
619                  .max = IRONLAKE_DP_P_MAX },
620         .p1  = { .min = IRONLAKE_DP_P1_MIN,
621                  .max = IRONLAKE_DP_P1_MAX},
622         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
623                  .p2_slow = IRONLAKE_DP_P2_SLOW,
624                  .p2_fast = IRONLAKE_DP_P2_FAST },
625         .find_pll = intel_find_pll_ironlake_dp,
626 };
627
628 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
629 {
630         struct drm_device *dev = crtc->dev;
631         struct drm_i915_private *dev_priv = dev->dev_private;
632         const intel_limit_t *limit;
633         int refclk = 120;
634
635         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
636                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
637                         refclk = 100;
638
639                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
640                     LVDS_CLKB_POWER_UP) {
641                         /* LVDS dual channel */
642                         if (refclk == 100)
643                                 limit = &intel_limits_ironlake_dual_lvds_100m;
644                         else
645                                 limit = &intel_limits_ironlake_dual_lvds;
646                 } else {
647                         if (refclk == 100)
648                                 limit = &intel_limits_ironlake_single_lvds_100m;
649                         else
650                                 limit = &intel_limits_ironlake_single_lvds;
651                 }
652         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
653                         HAS_eDP)
654                 limit = &intel_limits_ironlake_display_port;
655         else
656                 limit = &intel_limits_ironlake_dac;
657
658         return limit;
659 }
660
661 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
662 {
663         struct drm_device *dev = crtc->dev;
664         struct drm_i915_private *dev_priv = dev->dev_private;
665         const intel_limit_t *limit;
666
667         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
668                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
669                     LVDS_CLKB_POWER_UP)
670                         /* LVDS with dual channel */
671                         limit = &intel_limits_g4x_dual_channel_lvds;
672                 else
673                         /* LVDS with dual channel */
674                         limit = &intel_limits_g4x_single_channel_lvds;
675         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
676                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
677                 limit = &intel_limits_g4x_hdmi;
678         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
679                 limit = &intel_limits_g4x_sdvo;
680         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
681                 limit = &intel_limits_g4x_display_port;
682         } else /* The option is for other outputs */
683                 limit = &intel_limits_i9xx_sdvo;
684
685         return limit;
686 }
687
688 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
689 {
690         struct drm_device *dev = crtc->dev;
691         const intel_limit_t *limit;
692
693         if (HAS_PCH_SPLIT(dev))
694                 limit = intel_ironlake_limit(crtc);
695         else if (IS_G4X(dev)) {
696                 limit = intel_g4x_limit(crtc);
697         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
698                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
699                         limit = &intel_limits_i9xx_lvds;
700                 else
701                         limit = &intel_limits_i9xx_sdvo;
702         } else if (IS_PINEVIEW(dev)) {
703                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
704                         limit = &intel_limits_pineview_lvds;
705                 else
706                         limit = &intel_limits_pineview_sdvo;
707         } else {
708                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
709                         limit = &intel_limits_i8xx_lvds;
710                 else
711                         limit = &intel_limits_i8xx_dvo;
712         }
713         return limit;
714 }
715
716 /* m1 is reserved as 0 in Pineview, n is a ring counter */
717 static void pineview_clock(int refclk, intel_clock_t *clock)
718 {
719         clock->m = clock->m2 + 2;
720         clock->p = clock->p1 * clock->p2;
721         clock->vco = refclk * clock->m / clock->n;
722         clock->dot = clock->vco / clock->p;
723 }
724
725 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
726 {
727         if (IS_PINEVIEW(dev)) {
728                 pineview_clock(refclk, clock);
729                 return;
730         }
731         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
732         clock->p = clock->p1 * clock->p2;
733         clock->vco = refclk * clock->m / (clock->n + 2);
734         clock->dot = clock->vco / clock->p;
735 }
736
737 /**
738  * Returns whether any output on the specified pipe is of the specified type
739  */
740 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
741 {
742     struct drm_device *dev = crtc->dev;
743     struct drm_mode_config *mode_config = &dev->mode_config;
744     struct drm_encoder *l_entry;
745
746     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
747             if (l_entry && l_entry->crtc == crtc) {
748                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
749                     if (intel_encoder->type == type)
750                             return true;
751             }
752     }
753     return false;
754 }
755
756 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
757 /**
758  * Returns whether the given set of divisors are valid for a given refclk with
759  * the given connectors.
760  */
761
762 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
763 {
764         const intel_limit_t *limit = intel_limit (crtc);
765         struct drm_device *dev = crtc->dev;
766
767         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
768                 INTELPllInvalid ("p1 out of range\n");
769         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
770                 INTELPllInvalid ("p out of range\n");
771         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
772                 INTELPllInvalid ("m2 out of range\n");
773         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
774                 INTELPllInvalid ("m1 out of range\n");
775         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
776                 INTELPllInvalid ("m1 <= m2\n");
777         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
778                 INTELPllInvalid ("m out of range\n");
779         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
780                 INTELPllInvalid ("n out of range\n");
781         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
782                 INTELPllInvalid ("vco out of range\n");
783         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
784          * connector, etc., rather than just a single range.
785          */
786         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
787                 INTELPllInvalid ("dot out of range\n");
788
789         return true;
790 }
791
792 static bool
793 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
794                     int target, int refclk, intel_clock_t *best_clock)
795
796 {
797         struct drm_device *dev = crtc->dev;
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         intel_clock_t clock;
800         int err = target;
801
802         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
803             (I915_READ(LVDS)) != 0) {
804                 /*
805                  * For LVDS, if the panel is on, just rely on its current
806                  * settings for dual-channel.  We haven't figured out how to
807                  * reliably set up different single/dual channel state, if we
808                  * even can.
809                  */
810                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
811                     LVDS_CLKB_POWER_UP)
812                         clock.p2 = limit->p2.p2_fast;
813                 else
814                         clock.p2 = limit->p2.p2_slow;
815         } else {
816                 if (target < limit->p2.dot_limit)
817                         clock.p2 = limit->p2.p2_slow;
818                 else
819                         clock.p2 = limit->p2.p2_fast;
820         }
821
822         memset (best_clock, 0, sizeof (*best_clock));
823
824         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
825              clock.m1++) {
826                 for (clock.m2 = limit->m2.min;
827                      clock.m2 <= limit->m2.max; clock.m2++) {
828                         /* m1 is always 0 in Pineview */
829                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
830                                 break;
831                         for (clock.n = limit->n.min;
832                              clock.n <= limit->n.max; clock.n++) {
833                                 for (clock.p1 = limit->p1.min;
834                                         clock.p1 <= limit->p1.max; clock.p1++) {
835                                         int this_err;
836
837                                         intel_clock(dev, refclk, &clock);
838
839                                         if (!intel_PLL_is_valid(crtc, &clock))
840                                                 continue;
841
842                                         this_err = abs(clock.dot - target);
843                                         if (this_err < err) {
844                                                 *best_clock = clock;
845                                                 err = this_err;
846                                         }
847                                 }
848                         }
849                 }
850         }
851
852         return (err != target);
853 }
854
855 static bool
856 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
857                         int target, int refclk, intel_clock_t *best_clock)
858 {
859         struct drm_device *dev = crtc->dev;
860         struct drm_i915_private *dev_priv = dev->dev_private;
861         intel_clock_t clock;
862         int max_n;
863         bool found;
864         /* approximately equals target * 0.00488 */
865         int err_most = (target >> 8) + (target >> 10);
866         found = false;
867
868         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
869                 int lvds_reg;
870
871                 if (HAS_PCH_SPLIT(dev))
872                         lvds_reg = PCH_LVDS;
873                 else
874                         lvds_reg = LVDS;
875                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
876                     LVDS_CLKB_POWER_UP)
877                         clock.p2 = limit->p2.p2_fast;
878                 else
879                         clock.p2 = limit->p2.p2_slow;
880         } else {
881                 if (target < limit->p2.dot_limit)
882                         clock.p2 = limit->p2.p2_slow;
883                 else
884                         clock.p2 = limit->p2.p2_fast;
885         }
886
887         memset(best_clock, 0, sizeof(*best_clock));
888         max_n = limit->n.max;
889         /* based on hardware requriment prefer smaller n to precision */
890         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
891                 /* based on hardware requirment prefere larger m1,m2 */
892                 for (clock.m1 = limit->m1.max;
893                      clock.m1 >= limit->m1.min; clock.m1--) {
894                         for (clock.m2 = limit->m2.max;
895                              clock.m2 >= limit->m2.min; clock.m2--) {
896                                 for (clock.p1 = limit->p1.max;
897                                      clock.p1 >= limit->p1.min; clock.p1--) {
898                                         int this_err;
899
900                                         intel_clock(dev, refclk, &clock);
901                                         if (!intel_PLL_is_valid(crtc, &clock))
902                                                 continue;
903                                         this_err = abs(clock.dot - target) ;
904                                         if (this_err < err_most) {
905                                                 *best_clock = clock;
906                                                 err_most = this_err;
907                                                 max_n = clock.n;
908                                                 found = true;
909                                         }
910                                 }
911                         }
912                 }
913         }
914         return found;
915 }
916
917 static bool
918 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
919                            int target, int refclk, intel_clock_t *best_clock)
920 {
921         struct drm_device *dev = crtc->dev;
922         intel_clock_t clock;
923
924         /* return directly when it is eDP */
925         if (HAS_eDP)
926                 return true;
927
928         if (target < 200000) {
929                 clock.n = 1;
930                 clock.p1 = 2;
931                 clock.p2 = 10;
932                 clock.m1 = 12;
933                 clock.m2 = 9;
934         } else {
935                 clock.n = 2;
936                 clock.p1 = 1;
937                 clock.p2 = 10;
938                 clock.m1 = 14;
939                 clock.m2 = 8;
940         }
941         intel_clock(dev, refclk, &clock);
942         memcpy(best_clock, &clock, sizeof(intel_clock_t));
943         return true;
944 }
945
946 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
947 static bool
948 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
949                       int target, int refclk, intel_clock_t *best_clock)
950 {
951     intel_clock_t clock;
952     if (target < 200000) {
953         clock.p1 = 2;
954         clock.p2 = 10;
955         clock.n = 2;
956         clock.m1 = 23;
957         clock.m2 = 8;
958     } else {
959         clock.p1 = 1;
960         clock.p2 = 10;
961         clock.n = 1;
962         clock.m1 = 14;
963         clock.m2 = 2;
964     }
965     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
966     clock.p = (clock.p1 * clock.p2);
967     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
968     clock.vco = 0;
969     memcpy(best_clock, &clock, sizeof(intel_clock_t));
970     return true;
971 }
972
973 void
974 intel_wait_for_vblank(struct drm_device *dev)
975 {
976         /* Wait for 20ms, i.e. one cycle at 50hz. */
977         msleep(20);
978 }
979
980 /* Parameters have changed, update FBC info */
981 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
982 {
983         struct drm_device *dev = crtc->dev;
984         struct drm_i915_private *dev_priv = dev->dev_private;
985         struct drm_framebuffer *fb = crtc->fb;
986         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
987         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
989         int plane, i;
990         u32 fbc_ctl, fbc_ctl2;
991
992         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
993
994         if (fb->pitch < dev_priv->cfb_pitch)
995                 dev_priv->cfb_pitch = fb->pitch;
996
997         /* FBC_CTL wants 64B units */
998         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
999         dev_priv->cfb_fence = obj_priv->fence_reg;
1000         dev_priv->cfb_plane = intel_crtc->plane;
1001         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1002
1003         /* Clear old tags */
1004         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1005                 I915_WRITE(FBC_TAG + (i * 4), 0);
1006
1007         /* Set it up... */
1008         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1009         if (obj_priv->tiling_mode != I915_TILING_NONE)
1010                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1011         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1012         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1013
1014         /* enable it... */
1015         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1016         if (IS_I945GM(dev))
1017                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1018         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1019         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1020         if (obj_priv->tiling_mode != I915_TILING_NONE)
1021                 fbc_ctl |= dev_priv->cfb_fence;
1022         I915_WRITE(FBC_CONTROL, fbc_ctl);
1023
1024         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1025                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1026 }
1027
1028 void i8xx_disable_fbc(struct drm_device *dev)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         u32 fbc_ctl;
1032
1033         if (!I915_HAS_FBC(dev))
1034                 return;
1035
1036         /* Disable compression */
1037         fbc_ctl = I915_READ(FBC_CONTROL);
1038         fbc_ctl &= ~FBC_CTL_EN;
1039         I915_WRITE(FBC_CONTROL, fbc_ctl);
1040
1041         /* Wait for compressing bit to clear */
1042         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1043                 ; /* nothing */
1044
1045         intel_wait_for_vblank(dev);
1046
1047         DRM_DEBUG_KMS("disabled FBC\n");
1048 }
1049
1050 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1051 {
1052         struct drm_device *dev = crtc->dev;
1053         struct drm_i915_private *dev_priv = dev->dev_private;
1054
1055         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1056 }
1057
1058 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1059 {
1060         struct drm_device *dev = crtc->dev;
1061         struct drm_i915_private *dev_priv = dev->dev_private;
1062         struct drm_framebuffer *fb = crtc->fb;
1063         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1064         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1065         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1066         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1067                      DPFC_CTL_PLANEB);
1068         unsigned long stall_watermark = 200;
1069         u32 dpfc_ctl;
1070
1071         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1072         dev_priv->cfb_fence = obj_priv->fence_reg;
1073         dev_priv->cfb_plane = intel_crtc->plane;
1074
1075         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1076         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1077                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1078                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1079         } else {
1080                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1081         }
1082
1083         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1084         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1085                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1086                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1087         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1088
1089         /* enable it... */
1090         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1091
1092         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1093 }
1094
1095 void g4x_disable_fbc(struct drm_device *dev)
1096 {
1097         struct drm_i915_private *dev_priv = dev->dev_private;
1098         u32 dpfc_ctl;
1099
1100         /* Disable compression */
1101         dpfc_ctl = I915_READ(DPFC_CONTROL);
1102         dpfc_ctl &= ~DPFC_CTL_EN;
1103         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1104         intel_wait_for_vblank(dev);
1105
1106         DRM_DEBUG_KMS("disabled FBC\n");
1107 }
1108
1109 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1110 {
1111         struct drm_device *dev = crtc->dev;
1112         struct drm_i915_private *dev_priv = dev->dev_private;
1113
1114         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1115 }
1116
1117 /**
1118  * intel_update_fbc - enable/disable FBC as needed
1119  * @crtc: CRTC to point the compressor at
1120  * @mode: mode in use
1121  *
1122  * Set up the framebuffer compression hardware at mode set time.  We
1123  * enable it if possible:
1124  *   - plane A only (on pre-965)
1125  *   - no pixel mulitply/line duplication
1126  *   - no alpha buffer discard
1127  *   - no dual wide
1128  *   - framebuffer <= 2048 in width, 1536 in height
1129  *
1130  * We can't assume that any compression will take place (worst case),
1131  * so the compressed buffer has to be the same size as the uncompressed
1132  * one.  It also must reside (along with the line length buffer) in
1133  * stolen memory.
1134  *
1135  * We need to enable/disable FBC on a global basis.
1136  */
1137 static void intel_update_fbc(struct drm_crtc *crtc,
1138                              struct drm_display_mode *mode)
1139 {
1140         struct drm_device *dev = crtc->dev;
1141         struct drm_i915_private *dev_priv = dev->dev_private;
1142         struct drm_framebuffer *fb = crtc->fb;
1143         struct intel_framebuffer *intel_fb;
1144         struct drm_i915_gem_object *obj_priv;
1145         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1146         int plane = intel_crtc->plane;
1147
1148         if (!i915_powersave)
1149                 return;
1150
1151         if (!dev_priv->display.fbc_enabled ||
1152             !dev_priv->display.enable_fbc ||
1153             !dev_priv->display.disable_fbc)
1154                 return;
1155
1156         if (!crtc->fb)
1157                 return;
1158
1159         intel_fb = to_intel_framebuffer(fb);
1160         obj_priv = to_intel_bo(intel_fb->obj);
1161
1162         /*
1163          * If FBC is already on, we just have to verify that we can
1164          * keep it that way...
1165          * Need to disable if:
1166          *   - changing FBC params (stride, fence, mode)
1167          *   - new fb is too large to fit in compressed buffer
1168          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1169          */
1170         if (intel_fb->obj->size > dev_priv->cfb_size) {
1171                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1172                                 "compression\n");
1173                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1174                 goto out_disable;
1175         }
1176         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1177             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1178                 DRM_DEBUG_KMS("mode incompatible with compression, "
1179                                 "disabling\n");
1180                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1181                 goto out_disable;
1182         }
1183         if ((mode->hdisplay > 2048) ||
1184             (mode->vdisplay > 1536)) {
1185                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1186                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1187                 goto out_disable;
1188         }
1189         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1190                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1191                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1192                 goto out_disable;
1193         }
1194         if (obj_priv->tiling_mode != I915_TILING_X) {
1195                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1196                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1197                 goto out_disable;
1198         }
1199
1200         if (dev_priv->display.fbc_enabled(crtc)) {
1201                 /* We can re-enable it in this case, but need to update pitch */
1202                 if (fb->pitch > dev_priv->cfb_pitch)
1203                         dev_priv->display.disable_fbc(dev);
1204                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1205                         dev_priv->display.disable_fbc(dev);
1206                 if (plane != dev_priv->cfb_plane)
1207                         dev_priv->display.disable_fbc(dev);
1208         }
1209
1210         if (!dev_priv->display.fbc_enabled(crtc)) {
1211                 /* Now try to turn it back on if possible */
1212                 dev_priv->display.enable_fbc(crtc, 500);
1213         }
1214
1215         return;
1216
1217 out_disable:
1218         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1219         /* Multiple disables should be harmless */
1220         if (dev_priv->display.fbc_enabled(crtc))
1221                 dev_priv->display.disable_fbc(dev);
1222 }
1223
1224 static int
1225 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1226 {
1227         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1228         u32 alignment;
1229         int ret;
1230
1231         switch (obj_priv->tiling_mode) {
1232         case I915_TILING_NONE:
1233                 alignment = 64 * 1024;
1234                 break;
1235         case I915_TILING_X:
1236                 /* pin() will align the object as required by fence */
1237                 alignment = 0;
1238                 break;
1239         case I915_TILING_Y:
1240                 /* FIXME: Is this true? */
1241                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1242                 return -EINVAL;
1243         default:
1244                 BUG();
1245         }
1246
1247         ret = i915_gem_object_pin(obj, alignment);
1248         if (ret != 0)
1249                 return ret;
1250
1251         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1252          * fence, whereas 965+ only requires a fence if using
1253          * framebuffer compression.  For simplicity, we always install
1254          * a fence as the cost is not that onerous.
1255          */
1256         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1257             obj_priv->tiling_mode != I915_TILING_NONE) {
1258                 ret = i915_gem_object_get_fence_reg(obj);
1259                 if (ret != 0) {
1260                         i915_gem_object_unpin(obj);
1261                         return ret;
1262                 }
1263         }
1264
1265         return 0;
1266 }
1267
1268 static int
1269 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1270                     struct drm_framebuffer *old_fb)
1271 {
1272         struct drm_device *dev = crtc->dev;
1273         struct drm_i915_private *dev_priv = dev->dev_private;
1274         struct drm_i915_master_private *master_priv;
1275         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1276         struct intel_framebuffer *intel_fb;
1277         struct drm_i915_gem_object *obj_priv;
1278         struct drm_gem_object *obj;
1279         int pipe = intel_crtc->pipe;
1280         int plane = intel_crtc->plane;
1281         unsigned long Start, Offset;
1282         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1283         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1284         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1285         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1286         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1287         u32 dspcntr;
1288         int ret;
1289
1290         /* no fb bound */
1291         if (!crtc->fb) {
1292                 DRM_DEBUG_KMS("No FB bound\n");
1293                 return 0;
1294         }
1295
1296         switch (plane) {
1297         case 0:
1298         case 1:
1299                 break;
1300         default:
1301                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1302                 return -EINVAL;
1303         }
1304
1305         intel_fb = to_intel_framebuffer(crtc->fb);
1306         obj = intel_fb->obj;
1307         obj_priv = to_intel_bo(obj);
1308
1309         mutex_lock(&dev->struct_mutex);
1310         ret = intel_pin_and_fence_fb_obj(dev, obj);
1311         if (ret != 0) {
1312                 mutex_unlock(&dev->struct_mutex);
1313                 return ret;
1314         }
1315
1316         ret = i915_gem_object_set_to_display_plane(obj);
1317         if (ret != 0) {
1318                 i915_gem_object_unpin(obj);
1319                 mutex_unlock(&dev->struct_mutex);
1320                 return ret;
1321         }
1322
1323         dspcntr = I915_READ(dspcntr_reg);
1324         /* Mask out pixel format bits in case we change it */
1325         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1326         switch (crtc->fb->bits_per_pixel) {
1327         case 8:
1328                 dspcntr |= DISPPLANE_8BPP;
1329                 break;
1330         case 16:
1331                 if (crtc->fb->depth == 15)
1332                         dspcntr |= DISPPLANE_15_16BPP;
1333                 else
1334                         dspcntr |= DISPPLANE_16BPP;
1335                 break;
1336         case 24:
1337         case 32:
1338                 if (crtc->fb->depth == 30)
1339                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1340                 else
1341                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1342                 break;
1343         default:
1344                 DRM_ERROR("Unknown color depth\n");
1345                 i915_gem_object_unpin(obj);
1346                 mutex_unlock(&dev->struct_mutex);
1347                 return -EINVAL;
1348         }
1349         if (IS_I965G(dev)) {
1350                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1351                         dspcntr |= DISPPLANE_TILED;
1352                 else
1353                         dspcntr &= ~DISPPLANE_TILED;
1354         }
1355
1356         if (HAS_PCH_SPLIT(dev))
1357                 /* must disable */
1358                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1359
1360         I915_WRITE(dspcntr_reg, dspcntr);
1361
1362         Start = obj_priv->gtt_offset;
1363         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1364
1365         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1366         I915_WRITE(dspstride, crtc->fb->pitch);
1367         if (IS_I965G(dev)) {
1368                 I915_WRITE(dspbase, Offset);
1369                 I915_READ(dspbase);
1370                 I915_WRITE(dspsurf, Start);
1371                 I915_READ(dspsurf);
1372                 I915_WRITE(dsptileoff, (y << 16) | x);
1373         } else {
1374                 I915_WRITE(dspbase, Start + Offset);
1375                 I915_READ(dspbase);
1376         }
1377
1378         if ((IS_I965G(dev) || plane == 0))
1379                 intel_update_fbc(crtc, &crtc->mode);
1380
1381         intel_wait_for_vblank(dev);
1382
1383         if (old_fb) {
1384                 intel_fb = to_intel_framebuffer(old_fb);
1385                 obj_priv = to_intel_bo(intel_fb->obj);
1386                 i915_gem_object_unpin(intel_fb->obj);
1387         }
1388         intel_increase_pllclock(crtc, true);
1389
1390         mutex_unlock(&dev->struct_mutex);
1391
1392         if (!dev->primary->master)
1393                 return 0;
1394
1395         master_priv = dev->primary->master->driver_priv;
1396         if (!master_priv->sarea_priv)
1397                 return 0;
1398
1399         if (pipe) {
1400                 master_priv->sarea_priv->pipeB_x = x;
1401                 master_priv->sarea_priv->pipeB_y = y;
1402         } else {
1403                 master_priv->sarea_priv->pipeA_x = x;
1404                 master_priv->sarea_priv->pipeA_y = y;
1405         }
1406
1407         return 0;
1408 }
1409
1410 /* Disable the VGA plane that we never use */
1411 static void i915_disable_vga (struct drm_device *dev)
1412 {
1413         struct drm_i915_private *dev_priv = dev->dev_private;
1414         u8 sr1;
1415         u32 vga_reg;
1416
1417         if (HAS_PCH_SPLIT(dev))
1418                 vga_reg = CPU_VGACNTRL;
1419         else
1420                 vga_reg = VGACNTRL;
1421
1422         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1423                 return;
1424
1425         I915_WRITE8(VGA_SR_INDEX, 1);
1426         sr1 = I915_READ8(VGA_SR_DATA);
1427         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1428         udelay(100);
1429
1430         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1431 }
1432
1433 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1434 {
1435         struct drm_device *dev = crtc->dev;
1436         struct drm_i915_private *dev_priv = dev->dev_private;
1437         u32 dpa_ctl;
1438
1439         DRM_DEBUG_KMS("\n");
1440         dpa_ctl = I915_READ(DP_A);
1441         dpa_ctl &= ~DP_PLL_ENABLE;
1442         I915_WRITE(DP_A, dpa_ctl);
1443 }
1444
1445 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1446 {
1447         struct drm_device *dev = crtc->dev;
1448         struct drm_i915_private *dev_priv = dev->dev_private;
1449         u32 dpa_ctl;
1450
1451         dpa_ctl = I915_READ(DP_A);
1452         dpa_ctl |= DP_PLL_ENABLE;
1453         I915_WRITE(DP_A, dpa_ctl);
1454         udelay(200);
1455 }
1456
1457
1458 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1459 {
1460         struct drm_device *dev = crtc->dev;
1461         struct drm_i915_private *dev_priv = dev->dev_private;
1462         u32 dpa_ctl;
1463
1464         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1465         dpa_ctl = I915_READ(DP_A);
1466         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1467
1468         if (clock < 200000) {
1469                 u32 temp;
1470                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1471                 /* workaround for 160Mhz:
1472                    1) program 0x4600c bits 15:0 = 0x8124
1473                    2) program 0x46010 bit 0 = 1
1474                    3) program 0x46034 bit 24 = 1
1475                    4) program 0x64000 bit 14 = 1
1476                    */
1477                 temp = I915_READ(0x4600c);
1478                 temp &= 0xffff0000;
1479                 I915_WRITE(0x4600c, temp | 0x8124);
1480
1481                 temp = I915_READ(0x46010);
1482                 I915_WRITE(0x46010, temp | 1);
1483
1484                 temp = I915_READ(0x46034);
1485                 I915_WRITE(0x46034, temp | (1 << 24));
1486         } else {
1487                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1488         }
1489         I915_WRITE(DP_A, dpa_ctl);
1490
1491         udelay(500);
1492 }
1493
1494 /* The FDI link training functions for ILK/Ibexpeak. */
1495 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1496 {
1497         struct drm_device *dev = crtc->dev;
1498         struct drm_i915_private *dev_priv = dev->dev_private;
1499         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1500         int pipe = intel_crtc->pipe;
1501         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1502         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1503         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1504         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1505         u32 temp, tries = 0;
1506
1507         /* enable CPU FDI TX and PCH FDI RX */
1508         temp = I915_READ(fdi_tx_reg);
1509         temp |= FDI_TX_ENABLE;
1510         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1511         temp &= ~FDI_LINK_TRAIN_NONE;
1512         temp |= FDI_LINK_TRAIN_PATTERN_1;
1513         I915_WRITE(fdi_tx_reg, temp);
1514         I915_READ(fdi_tx_reg);
1515
1516         temp = I915_READ(fdi_rx_reg);
1517         temp &= ~FDI_LINK_TRAIN_NONE;
1518         temp |= FDI_LINK_TRAIN_PATTERN_1;
1519         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1520         I915_READ(fdi_rx_reg);
1521         udelay(150);
1522
1523         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1524            for train result */
1525         temp = I915_READ(fdi_rx_imr_reg);
1526         temp &= ~FDI_RX_SYMBOL_LOCK;
1527         temp &= ~FDI_RX_BIT_LOCK;
1528         I915_WRITE(fdi_rx_imr_reg, temp);
1529         I915_READ(fdi_rx_imr_reg);
1530         udelay(150);
1531
1532         for (;;) {
1533                 temp = I915_READ(fdi_rx_iir_reg);
1534                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1535
1536                 if ((temp & FDI_RX_BIT_LOCK)) {
1537                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1538                         I915_WRITE(fdi_rx_iir_reg,
1539                                    temp | FDI_RX_BIT_LOCK);
1540                         break;
1541                 }
1542
1543                 tries++;
1544
1545                 if (tries > 5) {
1546                         DRM_DEBUG_KMS("FDI train 1 fail!\n");
1547                         break;
1548                 }
1549         }
1550
1551         /* Train 2 */
1552         temp = I915_READ(fdi_tx_reg);
1553         temp &= ~FDI_LINK_TRAIN_NONE;
1554         temp |= FDI_LINK_TRAIN_PATTERN_2;
1555         I915_WRITE(fdi_tx_reg, temp);
1556
1557         temp = I915_READ(fdi_rx_reg);
1558         temp &= ~FDI_LINK_TRAIN_NONE;
1559         temp |= FDI_LINK_TRAIN_PATTERN_2;
1560         I915_WRITE(fdi_rx_reg, temp);
1561         udelay(150);
1562
1563         tries = 0;
1564
1565         for (;;) {
1566                 temp = I915_READ(fdi_rx_iir_reg);
1567                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1568
1569                 if (temp & FDI_RX_SYMBOL_LOCK) {
1570                         I915_WRITE(fdi_rx_iir_reg,
1571                                    temp | FDI_RX_SYMBOL_LOCK);
1572                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1573                         break;
1574                 }
1575
1576                 tries++;
1577
1578                 if (tries > 5) {
1579                         DRM_DEBUG_KMS("FDI train 2 fail!\n");
1580                         break;
1581                 }
1582         }
1583
1584         DRM_DEBUG_KMS("FDI train done\n");
1585 }
1586
1587 static int snb_b_fdi_train_param [] = {
1588         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1589         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1590         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1591         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1592 };
1593
1594 /* The FDI link training functions for SNB/Cougarpoint. */
1595 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1596 {
1597         struct drm_device *dev = crtc->dev;
1598         struct drm_i915_private *dev_priv = dev->dev_private;
1599         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1600         int pipe = intel_crtc->pipe;
1601         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1602         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1603         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1604         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1605         u32 temp, i;
1606
1607         /* enable CPU FDI TX and PCH FDI RX */
1608         temp = I915_READ(fdi_tx_reg);
1609         temp |= FDI_TX_ENABLE;
1610         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1611         temp &= ~FDI_LINK_TRAIN_NONE;
1612         temp |= FDI_LINK_TRAIN_PATTERN_1;
1613         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1614         /* SNB-B */
1615         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1616         I915_WRITE(fdi_tx_reg, temp);
1617         I915_READ(fdi_tx_reg);
1618
1619         temp = I915_READ(fdi_rx_reg);
1620         if (HAS_PCH_CPT(dev)) {
1621                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1622                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1623         } else {
1624                 temp &= ~FDI_LINK_TRAIN_NONE;
1625                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1626         }
1627         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1628         I915_READ(fdi_rx_reg);
1629         udelay(150);
1630
1631         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1632            for train result */
1633         temp = I915_READ(fdi_rx_imr_reg);
1634         temp &= ~FDI_RX_SYMBOL_LOCK;
1635         temp &= ~FDI_RX_BIT_LOCK;
1636         I915_WRITE(fdi_rx_imr_reg, temp);
1637         I915_READ(fdi_rx_imr_reg);
1638         udelay(150);
1639
1640         for (i = 0; i < 4; i++ ) {
1641                 temp = I915_READ(fdi_tx_reg);
1642                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1643                 temp |= snb_b_fdi_train_param[i];
1644                 I915_WRITE(fdi_tx_reg, temp);
1645                 udelay(500);
1646
1647                 temp = I915_READ(fdi_rx_iir_reg);
1648                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1649
1650                 if (temp & FDI_RX_BIT_LOCK) {
1651                         I915_WRITE(fdi_rx_iir_reg,
1652                                    temp | FDI_RX_BIT_LOCK);
1653                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1654                         break;
1655                 }
1656         }
1657         if (i == 4)
1658                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1659
1660         /* Train 2 */
1661         temp = I915_READ(fdi_tx_reg);
1662         temp &= ~FDI_LINK_TRAIN_NONE;
1663         temp |= FDI_LINK_TRAIN_PATTERN_2;
1664         if (IS_GEN6(dev)) {
1665                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1666                 /* SNB-B */
1667                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1668         }
1669         I915_WRITE(fdi_tx_reg, temp);
1670
1671         temp = I915_READ(fdi_rx_reg);
1672         if (HAS_PCH_CPT(dev)) {
1673                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1674                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1675         } else {
1676                 temp &= ~FDI_LINK_TRAIN_NONE;
1677                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1678         }
1679         I915_WRITE(fdi_rx_reg, temp);
1680         udelay(150);
1681
1682         for (i = 0; i < 4; i++ ) {
1683                 temp = I915_READ(fdi_tx_reg);
1684                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1685                 temp |= snb_b_fdi_train_param[i];
1686                 I915_WRITE(fdi_tx_reg, temp);
1687                 udelay(500);
1688
1689                 temp = I915_READ(fdi_rx_iir_reg);
1690                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1691
1692                 if (temp & FDI_RX_SYMBOL_LOCK) {
1693                         I915_WRITE(fdi_rx_iir_reg,
1694                                    temp | FDI_RX_SYMBOL_LOCK);
1695                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1696                         break;
1697                 }
1698         }
1699         if (i == 4)
1700                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1701
1702         DRM_DEBUG_KMS("FDI train done.\n");
1703 }
1704
1705 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1706 {
1707         struct drm_device *dev = crtc->dev;
1708         struct drm_i915_private *dev_priv = dev->dev_private;
1709         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1710         int pipe = intel_crtc->pipe;
1711         int plane = intel_crtc->plane;
1712         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1713         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1714         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1715         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1716         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1717         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1718         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1719         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1720         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1721         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1722         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1723         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1724         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1725         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1726         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1727         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1728         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1729         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1730         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1731         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1732         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1733         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1734         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1735         u32 temp;
1736         int n;
1737         u32 pipe_bpc;
1738
1739         temp = I915_READ(pipeconf_reg);
1740         pipe_bpc = temp & PIPE_BPC_MASK;
1741
1742         /* XXX: When our outputs are all unaware of DPMS modes other than off
1743          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1744          */
1745         switch (mode) {
1746         case DRM_MODE_DPMS_ON:
1747         case DRM_MODE_DPMS_STANDBY:
1748         case DRM_MODE_DPMS_SUSPEND:
1749                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1750
1751                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1752                         temp = I915_READ(PCH_LVDS);
1753                         if ((temp & LVDS_PORT_EN) == 0) {
1754                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1755                                 POSTING_READ(PCH_LVDS);
1756                         }
1757                 }
1758
1759                 if (HAS_eDP) {
1760                         /* enable eDP PLL */
1761                         ironlake_enable_pll_edp(crtc);
1762                 } else {
1763
1764                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1765                         temp = I915_READ(fdi_rx_reg);
1766                         /*
1767                          * make the BPC in FDI Rx be consistent with that in
1768                          * pipeconf reg.
1769                          */
1770                         temp &= ~(0x7 << 16);
1771                         temp |= (pipe_bpc << 11);
1772                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1773                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1774                         I915_READ(fdi_rx_reg);
1775                         udelay(200);
1776
1777                         /* Switch from Rawclk to PCDclk */
1778                         temp = I915_READ(fdi_rx_reg);
1779                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1780                         I915_READ(fdi_rx_reg);
1781                         udelay(200);
1782
1783                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1784                         temp = I915_READ(fdi_tx_reg);
1785                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1786                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1787                                 I915_READ(fdi_tx_reg);
1788                                 udelay(100);
1789                         }
1790                 }
1791
1792                 /* Enable panel fitting for LVDS */
1793                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1794                         temp = I915_READ(pf_ctl_reg);
1795                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1796
1797                         /* currently full aspect */
1798                         I915_WRITE(pf_win_pos, 0);
1799
1800                         I915_WRITE(pf_win_size,
1801                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1802                                    (dev_priv->panel_fixed_mode->vdisplay));
1803                 }
1804
1805                 /* Enable CPU pipe */
1806                 temp = I915_READ(pipeconf_reg);
1807                 if ((temp & PIPEACONF_ENABLE) == 0) {
1808                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1809                         I915_READ(pipeconf_reg);
1810                         udelay(100);
1811                 }
1812
1813                 /* configure and enable CPU plane */
1814                 temp = I915_READ(dspcntr_reg);
1815                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1816                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1817                         /* Flush the plane changes */
1818                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1819                 }
1820
1821                 if (!HAS_eDP) {
1822                         /* For PCH output, training FDI link */
1823                         if (IS_GEN6(dev))
1824                                 gen6_fdi_link_train(crtc);
1825                         else
1826                                 ironlake_fdi_link_train(crtc);
1827
1828                         /* enable PCH DPLL */
1829                         temp = I915_READ(pch_dpll_reg);
1830                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1831                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1832                                 I915_READ(pch_dpll_reg);
1833                         }
1834                         udelay(200);
1835
1836                         if (HAS_PCH_CPT(dev)) {
1837                                 /* Be sure PCH DPLL SEL is set */
1838                                 temp = I915_READ(PCH_DPLL_SEL);
1839                                 if (trans_dpll_sel == 0 &&
1840                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1841                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1842                                 else if (trans_dpll_sel == 1 &&
1843                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1844                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1845                                 I915_WRITE(PCH_DPLL_SEL, temp);
1846                                 I915_READ(PCH_DPLL_SEL);
1847                         }
1848
1849                         /* set transcoder timing */
1850                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1851                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1852                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1853
1854                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1855                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1856                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1857
1858                         /* enable normal train */
1859                         temp = I915_READ(fdi_tx_reg);
1860                         temp &= ~FDI_LINK_TRAIN_NONE;
1861                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1862                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1863                         I915_READ(fdi_tx_reg);
1864
1865                         temp = I915_READ(fdi_rx_reg);
1866                         if (HAS_PCH_CPT(dev)) {
1867                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1868                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1869                         } else {
1870                                 temp &= ~FDI_LINK_TRAIN_NONE;
1871                                 temp |= FDI_LINK_TRAIN_NONE;
1872                         }
1873                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1874                         I915_READ(fdi_rx_reg);
1875
1876                         /* wait one idle pattern time */
1877                         udelay(100);
1878
1879                         /* For PCH DP, enable TRANS_DP_CTL */
1880                         if (HAS_PCH_CPT(dev) &&
1881                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1882                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1883                                 int reg;
1884
1885                                 reg = I915_READ(trans_dp_ctl);
1886                                 reg &= ~TRANS_DP_PORT_SEL_MASK;
1887                                 reg = TRANS_DP_OUTPUT_ENABLE |
1888                                       TRANS_DP_ENH_FRAMING |
1889                                       TRANS_DP_VSYNC_ACTIVE_HIGH |
1890                                       TRANS_DP_HSYNC_ACTIVE_HIGH;
1891
1892                                 switch (intel_trans_dp_port_sel(crtc)) {
1893                                 case PCH_DP_B:
1894                                         reg |= TRANS_DP_PORT_SEL_B;
1895                                         break;
1896                                 case PCH_DP_C:
1897                                         reg |= TRANS_DP_PORT_SEL_C;
1898                                         break;
1899                                 case PCH_DP_D:
1900                                         reg |= TRANS_DP_PORT_SEL_D;
1901                                         break;
1902                                 default:
1903                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1904                                         reg |= TRANS_DP_PORT_SEL_B;
1905                                         break;
1906                                 }
1907
1908                                 I915_WRITE(trans_dp_ctl, reg);
1909                                 POSTING_READ(trans_dp_ctl);
1910                         }
1911
1912                         /* enable PCH transcoder */
1913                         temp = I915_READ(transconf_reg);
1914                         /*
1915                          * make the BPC in transcoder be consistent with
1916                          * that in pipeconf reg.
1917                          */
1918                         temp &= ~PIPE_BPC_MASK;
1919                         temp |= pipe_bpc;
1920                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1921                         I915_READ(transconf_reg);
1922
1923                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1924                                 ;
1925
1926                 }
1927
1928                 intel_crtc_load_lut(crtc);
1929
1930         break;
1931         case DRM_MODE_DPMS_OFF:
1932                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1933
1934                 drm_vblank_off(dev, pipe);
1935                 /* Disable display plane */
1936                 temp = I915_READ(dspcntr_reg);
1937                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1938                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1939                         /* Flush the plane changes */
1940                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1941                         I915_READ(dspbase_reg);
1942                 }
1943
1944                 i915_disable_vga(dev);
1945
1946                 /* disable cpu pipe, disable after all planes disabled */
1947                 temp = I915_READ(pipeconf_reg);
1948                 if ((temp & PIPEACONF_ENABLE) != 0) {
1949                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1950                         I915_READ(pipeconf_reg);
1951                         n = 0;
1952                         /* wait for cpu pipe off, pipe state */
1953                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1954                                 n++;
1955                                 if (n < 60) {
1956                                         udelay(500);
1957                                         continue;
1958                                 } else {
1959                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1960                                                                 pipe);
1961                                         break;
1962                                 }
1963                         }
1964                 } else
1965                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1966
1967                 udelay(100);
1968
1969                 /* Disable PF */
1970                 temp = I915_READ(pf_ctl_reg);
1971                 if ((temp & PF_ENABLE) != 0) {
1972                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1973                         I915_READ(pf_ctl_reg);
1974                 }
1975                 I915_WRITE(pf_win_size, 0);
1976                 POSTING_READ(pf_win_size);
1977
1978
1979                 /* disable CPU FDI tx and PCH FDI rx */
1980                 temp = I915_READ(fdi_tx_reg);
1981                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1982                 I915_READ(fdi_tx_reg);
1983
1984                 temp = I915_READ(fdi_rx_reg);
1985                 /* BPC in FDI rx is consistent with that in pipeconf */
1986                 temp &= ~(0x07 << 16);
1987                 temp |= (pipe_bpc << 11);
1988                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1989                 I915_READ(fdi_rx_reg);
1990
1991                 udelay(100);
1992
1993                 /* still set train pattern 1 */
1994                 temp = I915_READ(fdi_tx_reg);
1995                 temp &= ~FDI_LINK_TRAIN_NONE;
1996                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1997                 I915_WRITE(fdi_tx_reg, temp);
1998                 POSTING_READ(fdi_tx_reg);
1999
2000                 temp = I915_READ(fdi_rx_reg);
2001                 if (HAS_PCH_CPT(dev)) {
2002                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2003                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2004                 } else {
2005                         temp &= ~FDI_LINK_TRAIN_NONE;
2006                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2007                 }
2008                 I915_WRITE(fdi_rx_reg, temp);
2009                 POSTING_READ(fdi_rx_reg);
2010
2011                 udelay(100);
2012
2013                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2014                         temp = I915_READ(PCH_LVDS);
2015                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2016                         I915_READ(PCH_LVDS);
2017                         udelay(100);
2018                 }
2019
2020                 /* disable PCH transcoder */
2021                 temp = I915_READ(transconf_reg);
2022                 if ((temp & TRANS_ENABLE) != 0) {
2023                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2024                         I915_READ(transconf_reg);
2025                         n = 0;
2026                         /* wait for PCH transcoder off, transcoder state */
2027                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2028                                 n++;
2029                                 if (n < 60) {
2030                                         udelay(500);
2031                                         continue;
2032                                 } else {
2033                                         DRM_DEBUG_KMS("transcoder %d off "
2034                                                         "delay\n", pipe);
2035                                         break;
2036                                 }
2037                         }
2038                 }
2039
2040                 temp = I915_READ(transconf_reg);
2041                 /* BPC in transcoder is consistent with that in pipeconf */
2042                 temp &= ~PIPE_BPC_MASK;
2043                 temp |= pipe_bpc;
2044                 I915_WRITE(transconf_reg, temp);
2045                 I915_READ(transconf_reg);
2046                 udelay(100);
2047
2048                 if (HAS_PCH_CPT(dev)) {
2049                         /* disable TRANS_DP_CTL */
2050                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2051                         int reg;
2052
2053                         reg = I915_READ(trans_dp_ctl);
2054                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2055                         I915_WRITE(trans_dp_ctl, reg);
2056                         POSTING_READ(trans_dp_ctl);
2057
2058                         /* disable DPLL_SEL */
2059                         temp = I915_READ(PCH_DPLL_SEL);
2060                         if (trans_dpll_sel == 0)
2061                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2062                         else
2063                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2064                         I915_WRITE(PCH_DPLL_SEL, temp);
2065                         I915_READ(PCH_DPLL_SEL);
2066
2067                 }
2068
2069                 /* disable PCH DPLL */
2070                 temp = I915_READ(pch_dpll_reg);
2071                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2072                 I915_READ(pch_dpll_reg);
2073
2074                 if (HAS_eDP) {
2075                         ironlake_disable_pll_edp(crtc);
2076                 }
2077
2078                 /* Switch from PCDclk to Rawclk */
2079                 temp = I915_READ(fdi_rx_reg);
2080                 temp &= ~FDI_SEL_PCDCLK;
2081                 I915_WRITE(fdi_rx_reg, temp);
2082                 I915_READ(fdi_rx_reg);
2083
2084                 /* Disable CPU FDI TX PLL */
2085                 temp = I915_READ(fdi_tx_reg);
2086                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2087                 I915_READ(fdi_tx_reg);
2088                 udelay(100);
2089
2090                 temp = I915_READ(fdi_rx_reg);
2091                 temp &= ~FDI_RX_PLL_ENABLE;
2092                 I915_WRITE(fdi_rx_reg, temp);
2093                 I915_READ(fdi_rx_reg);
2094
2095                 /* Wait for the clocks to turn off. */
2096                 udelay(100);
2097                 break;
2098         }
2099 }
2100
2101 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2102 {
2103         struct intel_overlay *overlay;
2104         int ret;
2105
2106         if (!enable && intel_crtc->overlay) {
2107                 overlay = intel_crtc->overlay;
2108                 mutex_lock(&overlay->dev->struct_mutex);
2109                 for (;;) {
2110                         ret = intel_overlay_switch_off(overlay);
2111                         if (ret == 0)
2112                                 break;
2113
2114                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2115                         if (ret != 0) {
2116                                 /* overlay doesn't react anymore. Usually
2117                                  * results in a black screen and an unkillable
2118                                  * X server. */
2119                                 BUG();
2120                                 overlay->hw_wedged = HW_WEDGED;
2121                                 break;
2122                         }
2123                 }
2124                 mutex_unlock(&overlay->dev->struct_mutex);
2125         }
2126         /* Let userspace switch the overlay on again. In most cases userspace
2127          * has to recompute where to put it anyway. */
2128
2129         return;
2130 }
2131
2132 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2133 {
2134         struct drm_device *dev = crtc->dev;
2135         struct drm_i915_private *dev_priv = dev->dev_private;
2136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2137         int pipe = intel_crtc->pipe;
2138         int plane = intel_crtc->plane;
2139         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2140         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2141         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2142         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2143         u32 temp;
2144
2145         /* XXX: When our outputs are all unaware of DPMS modes other than off
2146          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2147          */
2148         switch (mode) {
2149         case DRM_MODE_DPMS_ON:
2150         case DRM_MODE_DPMS_STANDBY:
2151         case DRM_MODE_DPMS_SUSPEND:
2152                 intel_update_watermarks(dev);
2153
2154                 /* Enable the DPLL */
2155                 temp = I915_READ(dpll_reg);
2156                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2157                         I915_WRITE(dpll_reg, temp);
2158                         I915_READ(dpll_reg);
2159                         /* Wait for the clocks to stabilize. */
2160                         udelay(150);
2161                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2162                         I915_READ(dpll_reg);
2163                         /* Wait for the clocks to stabilize. */
2164                         udelay(150);
2165                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2166                         I915_READ(dpll_reg);
2167                         /* Wait for the clocks to stabilize. */
2168                         udelay(150);
2169                 }
2170
2171                 /* Enable the pipe */
2172                 temp = I915_READ(pipeconf_reg);
2173                 if ((temp & PIPEACONF_ENABLE) == 0)
2174                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2175
2176                 /* Enable the plane */
2177                 temp = I915_READ(dspcntr_reg);
2178                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2179                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2180                         /* Flush the plane changes */
2181                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2182                 }
2183
2184                 intel_crtc_load_lut(crtc);
2185
2186                 if ((IS_I965G(dev) || plane == 0))
2187                         intel_update_fbc(crtc, &crtc->mode);
2188
2189                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2190                 intel_crtc_dpms_overlay(intel_crtc, true);
2191         break;
2192         case DRM_MODE_DPMS_OFF:
2193                 intel_update_watermarks(dev);
2194
2195                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2196                 intel_crtc_dpms_overlay(intel_crtc, false);
2197                 drm_vblank_off(dev, pipe);
2198
2199                 if (dev_priv->cfb_plane == plane &&
2200                     dev_priv->display.disable_fbc)
2201                         dev_priv->display.disable_fbc(dev);
2202
2203                 /* Disable the VGA plane that we never use */
2204                 i915_disable_vga(dev);
2205
2206                 /* Disable display plane */
2207                 temp = I915_READ(dspcntr_reg);
2208                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2209                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2210                         /* Flush the plane changes */
2211                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2212                         I915_READ(dspbase_reg);
2213                 }
2214
2215                 if (!IS_I9XX(dev)) {
2216                         /* Wait for vblank for the disable to take effect */
2217                         intel_wait_for_vblank(dev);
2218                 }
2219
2220                 /* Next, disable display pipes */
2221                 temp = I915_READ(pipeconf_reg);
2222                 if ((temp & PIPEACONF_ENABLE) != 0) {
2223                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2224                         I915_READ(pipeconf_reg);
2225                 }
2226
2227                 /* Wait for vblank for the disable to take effect. */
2228                 intel_wait_for_vblank(dev);
2229
2230                 temp = I915_READ(dpll_reg);
2231                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2232                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2233                         I915_READ(dpll_reg);
2234                 }
2235
2236                 /* Wait for the clocks to turn off. */
2237                 udelay(150);
2238                 break;
2239         }
2240 }
2241
2242 /**
2243  * Sets the power management mode of the pipe and plane.
2244  *
2245  * This code should probably grow support for turning the cursor off and back
2246  * on appropriately at the same time as we're turning the pipe off/on.
2247  */
2248 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2249 {
2250         struct drm_device *dev = crtc->dev;
2251         struct drm_i915_private *dev_priv = dev->dev_private;
2252         struct drm_i915_master_private *master_priv;
2253         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2254         int pipe = intel_crtc->pipe;
2255         bool enabled;
2256
2257         dev_priv->display.dpms(crtc, mode);
2258
2259         intel_crtc->dpms_mode = mode;
2260
2261         if (!dev->primary->master)
2262                 return;
2263
2264         master_priv = dev->primary->master->driver_priv;
2265         if (!master_priv->sarea_priv)
2266                 return;
2267
2268         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2269
2270         switch (pipe) {
2271         case 0:
2272                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2273                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2274                 break;
2275         case 1:
2276                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2277                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2278                 break;
2279         default:
2280                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2281                 break;
2282         }
2283 }
2284
2285 static void intel_crtc_prepare (struct drm_crtc *crtc)
2286 {
2287         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2288         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2289 }
2290
2291 static void intel_crtc_commit (struct drm_crtc *crtc)
2292 {
2293         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2294         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2295 }
2296
2297 void intel_encoder_prepare (struct drm_encoder *encoder)
2298 {
2299         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2300         /* lvds has its own version of prepare see intel_lvds_prepare */
2301         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2302 }
2303
2304 void intel_encoder_commit (struct drm_encoder *encoder)
2305 {
2306         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2307         /* lvds has its own version of commit see intel_lvds_commit */
2308         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2309 }
2310
2311 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2312                                   struct drm_display_mode *mode,
2313                                   struct drm_display_mode *adjusted_mode)
2314 {
2315         struct drm_device *dev = crtc->dev;
2316         if (HAS_PCH_SPLIT(dev)) {
2317                 /* FDI link clock is fixed at 2.7G */
2318                 if (mode->clock * 3 > 27000 * 4)
2319                         return MODE_CLOCK_HIGH;
2320         }
2321         return true;
2322 }
2323
2324 static int i945_get_display_clock_speed(struct drm_device *dev)
2325 {
2326         return 400000;
2327 }
2328
2329 static int i915_get_display_clock_speed(struct drm_device *dev)
2330 {
2331         return 333000;
2332 }
2333
2334 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2335 {
2336         return 200000;
2337 }
2338
2339 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2340 {
2341         u16 gcfgc = 0;
2342
2343         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2344
2345         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2346                 return 133000;
2347         else {
2348                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2349                 case GC_DISPLAY_CLOCK_333_MHZ:
2350                         return 333000;
2351                 default:
2352                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2353                         return 190000;
2354                 }
2355         }
2356 }
2357
2358 static int i865_get_display_clock_speed(struct drm_device *dev)
2359 {
2360         return 266000;
2361 }
2362
2363 static int i855_get_display_clock_speed(struct drm_device *dev)
2364 {
2365         u16 hpllcc = 0;
2366         /* Assume that the hardware is in the high speed state.  This
2367          * should be the default.
2368          */
2369         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2370         case GC_CLOCK_133_200:
2371         case GC_CLOCK_100_200:
2372                 return 200000;
2373         case GC_CLOCK_166_250:
2374                 return 250000;
2375         case GC_CLOCK_100_133:
2376                 return 133000;
2377         }
2378
2379         /* Shouldn't happen */
2380         return 0;
2381 }
2382
2383 static int i830_get_display_clock_speed(struct drm_device *dev)
2384 {
2385         return 133000;
2386 }
2387
2388 /**
2389  * Return the pipe currently connected to the panel fitter,
2390  * or -1 if the panel fitter is not present or not in use
2391  */
2392 int intel_panel_fitter_pipe (struct drm_device *dev)
2393 {
2394         struct drm_i915_private *dev_priv = dev->dev_private;
2395         u32  pfit_control;
2396
2397         /* i830 doesn't have a panel fitter */
2398         if (IS_I830(dev))
2399                 return -1;
2400
2401         pfit_control = I915_READ(PFIT_CONTROL);
2402
2403         /* See if the panel fitter is in use */
2404         if ((pfit_control & PFIT_ENABLE) == 0)
2405                 return -1;
2406
2407         /* 965 can place panel fitter on either pipe */
2408         if (IS_I965G(dev))
2409                 return (pfit_control >> 29) & 0x3;
2410
2411         /* older chips can only use pipe 1 */
2412         return 1;
2413 }
2414
2415 struct fdi_m_n {
2416         u32        tu;
2417         u32        gmch_m;
2418         u32        gmch_n;
2419         u32        link_m;
2420         u32        link_n;
2421 };
2422
2423 static void
2424 fdi_reduce_ratio(u32 *num, u32 *den)
2425 {
2426         while (*num > 0xffffff || *den > 0xffffff) {
2427                 *num >>= 1;
2428                 *den >>= 1;
2429         }
2430 }
2431
2432 #define DATA_N 0x800000
2433 #define LINK_N 0x80000
2434
2435 static void
2436 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2437                      int link_clock, struct fdi_m_n *m_n)
2438 {
2439         u64 temp;
2440
2441         m_n->tu = 64; /* default size */
2442
2443         temp = (u64) DATA_N * pixel_clock;
2444         temp = div_u64(temp, link_clock);
2445         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2446         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2447         m_n->gmch_n = DATA_N;
2448         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2449
2450         temp = (u64) LINK_N * pixel_clock;
2451         m_n->link_m = div_u64(temp, link_clock);
2452         m_n->link_n = LINK_N;
2453         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2454 }
2455
2456
2457 struct intel_watermark_params {
2458         unsigned long fifo_size;
2459         unsigned long max_wm;
2460         unsigned long default_wm;
2461         unsigned long guard_size;
2462         unsigned long cacheline_size;
2463 };
2464
2465 /* Pineview has different values for various configs */
2466 static struct intel_watermark_params pineview_display_wm = {
2467         PINEVIEW_DISPLAY_FIFO,
2468         PINEVIEW_MAX_WM,
2469         PINEVIEW_DFT_WM,
2470         PINEVIEW_GUARD_WM,
2471         PINEVIEW_FIFO_LINE_SIZE
2472 };
2473 static struct intel_watermark_params pineview_display_hplloff_wm = {
2474         PINEVIEW_DISPLAY_FIFO,
2475         PINEVIEW_MAX_WM,
2476         PINEVIEW_DFT_HPLLOFF_WM,
2477         PINEVIEW_GUARD_WM,
2478         PINEVIEW_FIFO_LINE_SIZE
2479 };
2480 static struct intel_watermark_params pineview_cursor_wm = {
2481         PINEVIEW_CURSOR_FIFO,
2482         PINEVIEW_CURSOR_MAX_WM,
2483         PINEVIEW_CURSOR_DFT_WM,
2484         PINEVIEW_CURSOR_GUARD_WM,
2485         PINEVIEW_FIFO_LINE_SIZE,
2486 };
2487 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2488         PINEVIEW_CURSOR_FIFO,
2489         PINEVIEW_CURSOR_MAX_WM,
2490         PINEVIEW_CURSOR_DFT_WM,
2491         PINEVIEW_CURSOR_GUARD_WM,
2492         PINEVIEW_FIFO_LINE_SIZE
2493 };
2494 static struct intel_watermark_params g4x_wm_info = {
2495         G4X_FIFO_SIZE,
2496         G4X_MAX_WM,
2497         G4X_MAX_WM,
2498         2,
2499         G4X_FIFO_LINE_SIZE,
2500 };
2501 static struct intel_watermark_params i945_wm_info = {
2502         I945_FIFO_SIZE,
2503         I915_MAX_WM,
2504         1,
2505         2,
2506         I915_FIFO_LINE_SIZE
2507 };
2508 static struct intel_watermark_params i915_wm_info = {
2509         I915_FIFO_SIZE,
2510         I915_MAX_WM,
2511         1,
2512         2,
2513         I915_FIFO_LINE_SIZE
2514 };
2515 static struct intel_watermark_params i855_wm_info = {
2516         I855GM_FIFO_SIZE,
2517         I915_MAX_WM,
2518         1,
2519         2,
2520         I830_FIFO_LINE_SIZE
2521 };
2522 static struct intel_watermark_params i830_wm_info = {
2523         I830_FIFO_SIZE,
2524         I915_MAX_WM,
2525         1,
2526         2,
2527         I830_FIFO_LINE_SIZE
2528 };
2529
2530 static struct intel_watermark_params ironlake_display_wm_info = {
2531         ILK_DISPLAY_FIFO,
2532         ILK_DISPLAY_MAXWM,
2533         ILK_DISPLAY_DFTWM,
2534         2,
2535         ILK_FIFO_LINE_SIZE
2536 };
2537
2538 static struct intel_watermark_params ironlake_display_srwm_info = {
2539         ILK_DISPLAY_SR_FIFO,
2540         ILK_DISPLAY_MAX_SRWM,
2541         ILK_DISPLAY_DFT_SRWM,
2542         2,
2543         ILK_FIFO_LINE_SIZE
2544 };
2545
2546 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2547         ILK_CURSOR_SR_FIFO,
2548         ILK_CURSOR_MAX_SRWM,
2549         ILK_CURSOR_DFT_SRWM,
2550         2,
2551         ILK_FIFO_LINE_SIZE
2552 };
2553
2554 /**
2555  * intel_calculate_wm - calculate watermark level
2556  * @clock_in_khz: pixel clock
2557  * @wm: chip FIFO params
2558  * @pixel_size: display pixel size
2559  * @latency_ns: memory latency for the platform
2560  *
2561  * Calculate the watermark level (the level at which the display plane will
2562  * start fetching from memory again).  Each chip has a different display
2563  * FIFO size and allocation, so the caller needs to figure that out and pass
2564  * in the correct intel_watermark_params structure.
2565  *
2566  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2567  * on the pixel size.  When it reaches the watermark level, it'll start
2568  * fetching FIFO line sized based chunks from memory until the FIFO fills
2569  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2570  * will occur, and a display engine hang could result.
2571  */
2572 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2573                                         struct intel_watermark_params *wm,
2574                                         int pixel_size,
2575                                         unsigned long latency_ns)
2576 {
2577         long entries_required, wm_size;
2578
2579         /*
2580          * Note: we need to make sure we don't overflow for various clock &
2581          * latency values.
2582          * clocks go from a few thousand to several hundred thousand.
2583          * latency is usually a few thousand
2584          */
2585         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2586                 1000;
2587         entries_required /= wm->cacheline_size;
2588
2589         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2590
2591         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2592
2593         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2594
2595         /* Don't promote wm_size to unsigned... */
2596         if (wm_size > (long)wm->max_wm)
2597                 wm_size = wm->max_wm;
2598         if (wm_size <= 0)
2599                 wm_size = wm->default_wm;
2600         return wm_size;
2601 }
2602
2603 struct cxsr_latency {
2604         int is_desktop;
2605         unsigned long fsb_freq;
2606         unsigned long mem_freq;
2607         unsigned long display_sr;
2608         unsigned long display_hpll_disable;
2609         unsigned long cursor_sr;
2610         unsigned long cursor_hpll_disable;
2611 };
2612
2613 static struct cxsr_latency cxsr_latency_table[] = {
2614         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2615         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2616         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2617
2618         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2619         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2620         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2621
2622         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2623         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2624         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2625
2626         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2627         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2628         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2629
2630         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2631         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2632         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2633
2634         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2635         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2636         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2637 };
2638
2639 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2640                                                    int mem)
2641 {
2642         int i;
2643         struct cxsr_latency *latency;
2644
2645         if (fsb == 0 || mem == 0)
2646                 return NULL;
2647
2648         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2649                 latency = &cxsr_latency_table[i];
2650                 if (is_desktop == latency->is_desktop &&
2651                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2652                         return latency;
2653         }
2654
2655         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2656
2657         return NULL;
2658 }
2659
2660 static void pineview_disable_cxsr(struct drm_device *dev)
2661 {
2662         struct drm_i915_private *dev_priv = dev->dev_private;
2663         u32 reg;
2664
2665         /* deactivate cxsr */
2666         reg = I915_READ(DSPFW3);
2667         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2668         I915_WRITE(DSPFW3, reg);
2669         DRM_INFO("Big FIFO is disabled\n");
2670 }
2671
2672 /*
2673  * Latency for FIFO fetches is dependent on several factors:
2674  *   - memory configuration (speed, channels)
2675  *   - chipset
2676  *   - current MCH state
2677  * It can be fairly high in some situations, so here we assume a fairly
2678  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2679  * set this value too high, the FIFO will fetch frequently to stay full)
2680  * and power consumption (set it too low to save power and we might see
2681  * FIFO underruns and display "flicker").
2682  *
2683  * A value of 5us seems to be a good balance; safe for very low end
2684  * platforms but not overly aggressive on lower latency configs.
2685  */
2686 static const int latency_ns = 5000;
2687
2688 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2689 {
2690         struct drm_i915_private *dev_priv = dev->dev_private;
2691         uint32_t dsparb = I915_READ(DSPARB);
2692         int size;
2693
2694         if (plane == 0)
2695                 size = dsparb & 0x7f;
2696         else
2697                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2698                         (dsparb & 0x7f);
2699
2700         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2701                         plane ? "B" : "A", size);
2702
2703         return size;
2704 }
2705
2706 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2707 {
2708         struct drm_i915_private *dev_priv = dev->dev_private;
2709         uint32_t dsparb = I915_READ(DSPARB);
2710         int size;
2711
2712         if (plane == 0)
2713                 size = dsparb & 0x1ff;
2714         else
2715                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2716                         (dsparb & 0x1ff);
2717         size >>= 1; /* Convert to cachelines */
2718
2719         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2720                         plane ? "B" : "A", size);
2721
2722         return size;
2723 }
2724
2725 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2726 {
2727         struct drm_i915_private *dev_priv = dev->dev_private;
2728         uint32_t dsparb = I915_READ(DSPARB);
2729         int size;
2730
2731         size = dsparb & 0x7f;
2732         size >>= 2; /* Convert to cachelines */
2733
2734         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2735                         plane ? "B" : "A",
2736                   size);
2737
2738         return size;
2739 }
2740
2741 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2742 {
2743         struct drm_i915_private *dev_priv = dev->dev_private;
2744         uint32_t dsparb = I915_READ(DSPARB);
2745         int size;
2746
2747         size = dsparb & 0x7f;
2748         size >>= 1; /* Convert to cachelines */
2749
2750         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2751                         plane ? "B" : "A", size);
2752
2753         return size;
2754 }
2755
2756 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
2757                           int planeb_clock, int sr_hdisplay, int pixel_size)
2758 {
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         u32 reg;
2761         unsigned long wm;
2762         struct cxsr_latency *latency;
2763         int sr_clock;
2764
2765         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2766                                          dev_priv->mem_freq);
2767         if (!latency) {
2768                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2769                 pineview_disable_cxsr(dev);
2770                 return;
2771         }
2772
2773         if (!planea_clock || !planeb_clock) {
2774                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2775
2776                 /* Display SR */
2777                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2778                                         pixel_size, latency->display_sr);
2779                 reg = I915_READ(DSPFW1);
2780                 reg &= ~DSPFW_SR_MASK;
2781                 reg |= wm << DSPFW_SR_SHIFT;
2782                 I915_WRITE(DSPFW1, reg);
2783                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2784
2785                 /* cursor SR */
2786                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2787                                         pixel_size, latency->cursor_sr);
2788                 reg = I915_READ(DSPFW3);
2789                 reg &= ~DSPFW_CURSOR_SR_MASK;
2790                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2791                 I915_WRITE(DSPFW3, reg);
2792
2793                 /* Display HPLL off SR */
2794                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2795                                         pixel_size, latency->display_hpll_disable);
2796                 reg = I915_READ(DSPFW3);
2797                 reg &= ~DSPFW_HPLL_SR_MASK;
2798                 reg |= wm & DSPFW_HPLL_SR_MASK;
2799                 I915_WRITE(DSPFW3, reg);
2800
2801                 /* cursor HPLL off SR */
2802                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2803                                         pixel_size, latency->cursor_hpll_disable);
2804                 reg = I915_READ(DSPFW3);
2805                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2806                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2807                 I915_WRITE(DSPFW3, reg);
2808                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2809
2810                 /* activate cxsr */
2811                 reg = I915_READ(DSPFW3);
2812                 reg |= PINEVIEW_SELF_REFRESH_EN;
2813                 I915_WRITE(DSPFW3, reg);
2814                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2815         } else {
2816                 pineview_disable_cxsr(dev);
2817                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2818         }
2819 }
2820
2821 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2822                           int planeb_clock, int sr_hdisplay, int pixel_size)
2823 {
2824         struct drm_i915_private *dev_priv = dev->dev_private;
2825         int total_size, cacheline_size;
2826         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2827         struct intel_watermark_params planea_params, planeb_params;
2828         unsigned long line_time_us;
2829         int sr_clock, sr_entries = 0, entries_required;
2830
2831         /* Create copies of the base settings for each pipe */
2832         planea_params = planeb_params = g4x_wm_info;
2833
2834         /* Grab a couple of global values before we overwrite them */
2835         total_size = planea_params.fifo_size;
2836         cacheline_size = planea_params.cacheline_size;
2837
2838         /*
2839          * Note: we need to make sure we don't overflow for various clock &
2840          * latency values.
2841          * clocks go from a few thousand to several hundred thousand.
2842          * latency is usually a few thousand
2843          */
2844         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2845                 1000;
2846         entries_required /= G4X_FIFO_LINE_SIZE;
2847         planea_wm = entries_required + planea_params.guard_size;
2848
2849         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2850                 1000;
2851         entries_required /= G4X_FIFO_LINE_SIZE;
2852         planeb_wm = entries_required + planeb_params.guard_size;
2853
2854         cursora_wm = cursorb_wm = 16;
2855         cursor_sr = 32;
2856
2857         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2858
2859         /* Calc sr entries for one plane configs */
2860         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2861                 /* self-refresh has much higher latency */
2862                 static const int sr_latency_ns = 12000;
2863
2864                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2865                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2866
2867                 /* Use ns/us then divide to preserve precision */
2868                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2869                               pixel_size * sr_hdisplay) / 1000;
2870                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2871                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2872                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2873         } else {
2874                 /* Turn off self refresh if both pipes are enabled */
2875                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2876                                         & ~FW_BLC_SELF_EN);
2877         }
2878
2879         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2880                   planea_wm, planeb_wm, sr_entries);
2881
2882         planea_wm &= 0x3f;
2883         planeb_wm &= 0x3f;
2884
2885         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2886                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2887                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2888         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2889                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2890         /* HPLL off in SR has some issues on G4x... disable it */
2891         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2892                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2893 }
2894
2895 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2896                            int planeb_clock, int sr_hdisplay, int pixel_size)
2897 {
2898         struct drm_i915_private *dev_priv = dev->dev_private;
2899         unsigned long line_time_us;
2900         int sr_clock, sr_entries, srwm = 1;
2901
2902         /* Calc sr entries for one plane configs */
2903         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2904                 /* self-refresh has much higher latency */
2905                 static const int sr_latency_ns = 12000;
2906
2907                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2908                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2909
2910                 /* Use ns/us then divide to preserve precision */
2911                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2912                               pixel_size * sr_hdisplay) / 1000;
2913                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2914                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2915                 srwm = I945_FIFO_SIZE - sr_entries;
2916                 if (srwm < 0)
2917                         srwm = 1;
2918                 srwm &= 0x3f;
2919                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2920         } else {
2921                 /* Turn off self refresh if both pipes are enabled */
2922                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2923                                         & ~FW_BLC_SELF_EN);
2924         }
2925
2926         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2927                       srwm);
2928
2929         /* 965 has limitations... */
2930         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2931                    (8 << 0));
2932         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2933 }
2934
2935 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2936                            int planeb_clock, int sr_hdisplay, int pixel_size)
2937 {
2938         struct drm_i915_private *dev_priv = dev->dev_private;
2939         uint32_t fwater_lo;
2940         uint32_t fwater_hi;
2941         int total_size, cacheline_size, cwm, srwm = 1;
2942         int planea_wm, planeb_wm;
2943         struct intel_watermark_params planea_params, planeb_params;
2944         unsigned long line_time_us;
2945         int sr_clock, sr_entries = 0;
2946
2947         /* Create copies of the base settings for each pipe */
2948         if (IS_I965GM(dev) || IS_I945GM(dev))
2949                 planea_params = planeb_params = i945_wm_info;
2950         else if (IS_I9XX(dev))
2951                 planea_params = planeb_params = i915_wm_info;
2952         else
2953                 planea_params = planeb_params = i855_wm_info;
2954
2955         /* Grab a couple of global values before we overwrite them */
2956         total_size = planea_params.fifo_size;
2957         cacheline_size = planea_params.cacheline_size;
2958
2959         /* Update per-plane FIFO sizes */
2960         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2961         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2962
2963         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2964                                        pixel_size, latency_ns);
2965         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2966                                        pixel_size, latency_ns);
2967         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2968
2969         /*
2970          * Overlay gets an aggressive default since video jitter is bad.
2971          */
2972         cwm = 2;
2973
2974         /* Calc sr entries for one plane configs */
2975         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2976             (!planea_clock || !planeb_clock)) {
2977                 /* self-refresh has much higher latency */
2978                 static const int sr_latency_ns = 6000;
2979
2980                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2981                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2982
2983                 /* Use ns/us then divide to preserve precision */
2984                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2985                               pixel_size * sr_hdisplay) / 1000;
2986                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2987                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2988                 srwm = total_size - sr_entries;
2989                 if (srwm < 0)
2990                         srwm = 1;
2991
2992                 if (IS_I945G(dev) || IS_I945GM(dev))
2993                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2994                 else if (IS_I915GM(dev)) {
2995                         /* 915M has a smaller SRWM field */
2996                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2997                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
2998                 }
2999         } else {
3000                 /* Turn off self refresh if both pipes are enabled */
3001                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3002                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3003                                    & ~FW_BLC_SELF_EN);
3004                 } else if (IS_I915GM(dev)) {
3005                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3006                 }
3007         }
3008
3009         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3010                   planea_wm, planeb_wm, cwm, srwm);
3011
3012         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3013         fwater_hi = (cwm & 0x1f);
3014
3015         /* Set request length to 8 cachelines per fetch */
3016         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3017         fwater_hi = fwater_hi | (1 << 8);
3018
3019         I915_WRITE(FW_BLC, fwater_lo);
3020         I915_WRITE(FW_BLC2, fwater_hi);
3021 }
3022
3023 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3024                            int unused2, int pixel_size)
3025 {
3026         struct drm_i915_private *dev_priv = dev->dev_private;
3027         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3028         int planea_wm;
3029
3030         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3031
3032         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3033                                        pixel_size, latency_ns);
3034         fwater_lo |= (3<<8) | planea_wm;
3035
3036         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3037
3038         I915_WRITE(FW_BLC, fwater_lo);
3039 }
3040
3041 #define ILK_LP0_PLANE_LATENCY           700
3042
3043 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3044                        int planeb_clock, int sr_hdisplay, int pixel_size)
3045 {
3046         struct drm_i915_private *dev_priv = dev->dev_private;
3047         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3048         int sr_wm, cursor_wm;
3049         unsigned long line_time_us;
3050         int sr_clock, entries_required;
3051         u32 reg_value;
3052
3053         /* Calculate and update the watermark for plane A */
3054         if (planea_clock) {
3055                 entries_required = ((planea_clock / 1000) * pixel_size *
3056                                      ILK_LP0_PLANE_LATENCY) / 1000;
3057                 entries_required = DIV_ROUND_UP(entries_required,
3058                                    ironlake_display_wm_info.cacheline_size);
3059                 planea_wm = entries_required +
3060                             ironlake_display_wm_info.guard_size;
3061
3062                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3063                         planea_wm = ironlake_display_wm_info.max_wm;
3064
3065                 cursora_wm = 16;
3066                 reg_value = I915_READ(WM0_PIPEA_ILK);
3067                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3068                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3069                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3070                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3071                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3072                                 "cursor: %d\n", planea_wm, cursora_wm);
3073         }
3074         /* Calculate and update the watermark for plane B */
3075         if (planeb_clock) {
3076                 entries_required = ((planeb_clock / 1000) * pixel_size *
3077                                      ILK_LP0_PLANE_LATENCY) / 1000;
3078                 entries_required = DIV_ROUND_UP(entries_required,
3079                                    ironlake_display_wm_info.cacheline_size);
3080                 planeb_wm = entries_required +
3081                             ironlake_display_wm_info.guard_size;
3082
3083                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3084                         planeb_wm = ironlake_display_wm_info.max_wm;
3085
3086                 cursorb_wm = 16;
3087                 reg_value = I915_READ(WM0_PIPEB_ILK);
3088                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3089                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3090                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3091                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3092                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3093                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3094         }
3095
3096         /*
3097          * Calculate and update the self-refresh watermark only when one
3098          * display plane is used.
3099          */
3100         if (!planea_clock || !planeb_clock) {
3101                 int line_count;
3102                 /* Read the self-refresh latency. The unit is 0.5us */
3103                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3104
3105                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3106                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3107
3108                 /* Use ns/us then divide to preserve precision */
3109                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3110                                / 1000;
3111
3112                 /* calculate the self-refresh watermark for display plane */
3113                 entries_required = line_count * sr_hdisplay * pixel_size;
3114                 entries_required = DIV_ROUND_UP(entries_required,
3115                                    ironlake_display_srwm_info.cacheline_size);
3116                 sr_wm = entries_required +
3117                         ironlake_display_srwm_info.guard_size;
3118
3119                 /* calculate the self-refresh watermark for display cursor */
3120                 entries_required = line_count * pixel_size * 64;
3121                 entries_required = DIV_ROUND_UP(entries_required,
3122                                    ironlake_cursor_srwm_info.cacheline_size);
3123                 cursor_wm = entries_required +
3124                             ironlake_cursor_srwm_info.guard_size;
3125
3126                 /* configure watermark and enable self-refresh */
3127                 reg_value = I915_READ(WM1_LP_ILK);
3128                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3129                                WM1_LP_CURSOR_MASK);
3130                 reg_value |= WM1_LP_SR_EN |
3131                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3132                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3133
3134                 I915_WRITE(WM1_LP_ILK, reg_value);
3135                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3136                                 "cursor %d\n", sr_wm, cursor_wm);
3137
3138         } else {
3139                 /* Turn off self refresh if both pipes are enabled */
3140                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3141         }
3142 }
3143 /**
3144  * intel_update_watermarks - update FIFO watermark values based on current modes
3145  *
3146  * Calculate watermark values for the various WM regs based on current mode
3147  * and plane configuration.
3148  *
3149  * There are several cases to deal with here:
3150  *   - normal (i.e. non-self-refresh)
3151  *   - self-refresh (SR) mode
3152  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3153  *   - lines are small relative to FIFO size (buffer can hold more than 2
3154  *     lines), so need to account for TLB latency
3155  *
3156  *   The normal calculation is:
3157  *     watermark = dotclock * bytes per pixel * latency
3158  *   where latency is platform & configuration dependent (we assume pessimal
3159  *   values here).
3160  *
3161  *   The SR calculation is:
3162  *     watermark = (trunc(latency/line time)+1) * surface width *
3163  *       bytes per pixel
3164  *   where
3165  *     line time = htotal / dotclock
3166  *   and latency is assumed to be high, as above.
3167  *
3168  * The final value programmed to the register should always be rounded up,
3169  * and include an extra 2 entries to account for clock crossings.
3170  *
3171  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3172  * to set the non-SR watermarks to 8.
3173   */
3174 static void intel_update_watermarks(struct drm_device *dev)
3175 {
3176         struct drm_i915_private *dev_priv = dev->dev_private;
3177         struct drm_crtc *crtc;
3178         struct intel_crtc *intel_crtc;
3179         int sr_hdisplay = 0;
3180         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3181         int enabled = 0, pixel_size = 0;
3182
3183         if (!dev_priv->display.update_wm)
3184                 return;
3185
3186         /* Get the clock config from both planes */
3187         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3188                 intel_crtc = to_intel_crtc(crtc);
3189                 if (crtc->enabled) {
3190                         enabled++;
3191                         if (intel_crtc->plane == 0) {
3192                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3193                                           intel_crtc->pipe, crtc->mode.clock);
3194                                 planea_clock = crtc->mode.clock;
3195                         } else {
3196                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3197                                           intel_crtc->pipe, crtc->mode.clock);
3198                                 planeb_clock = crtc->mode.clock;
3199                         }
3200                         sr_hdisplay = crtc->mode.hdisplay;
3201                         sr_clock = crtc->mode.clock;
3202                         if (crtc->fb)
3203                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3204                         else
3205                                 pixel_size = 4; /* by default */
3206                 }
3207         }
3208
3209         if (enabled <= 0)
3210                 return;
3211
3212         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3213                                     sr_hdisplay, pixel_size);
3214 }
3215
3216 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3217                                struct drm_display_mode *mode,
3218                                struct drm_display_mode *adjusted_mode,
3219                                int x, int y,
3220                                struct drm_framebuffer *old_fb)
3221 {
3222         struct drm_device *dev = crtc->dev;
3223         struct drm_i915_private *dev_priv = dev->dev_private;
3224         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3225         int pipe = intel_crtc->pipe;
3226         int plane = intel_crtc->plane;
3227         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3228         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3229         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3230         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3231         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3232         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3233         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3234         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3235         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3236         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3237         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3238         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3239         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3240         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3241         int refclk, num_connectors = 0;
3242         intel_clock_t clock, reduced_clock;
3243         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3244         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3245         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3246         bool is_edp = false;
3247         struct drm_mode_config *mode_config = &dev->mode_config;
3248         struct drm_encoder *encoder;
3249         struct intel_encoder *intel_encoder = NULL;
3250         const intel_limit_t *limit;
3251         int ret;
3252         struct fdi_m_n m_n = {0};
3253         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3254         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3255         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3256         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3257         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3258         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3259         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3260         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3261         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3262         int lvds_reg = LVDS;
3263         u32 temp;
3264         int sdvo_pixel_multiply;
3265         int target_clock;
3266
3267         drm_vblank_pre_modeset(dev, pipe);
3268
3269         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3270
3271                 if (!encoder || encoder->crtc != crtc)
3272                         continue;
3273
3274                 intel_encoder = enc_to_intel_encoder(encoder);
3275
3276                 switch (intel_encoder->type) {
3277                 case INTEL_OUTPUT_LVDS:
3278                         is_lvds = true;
3279                         break;
3280                 case INTEL_OUTPUT_SDVO:
3281                 case INTEL_OUTPUT_HDMI:
3282                         is_sdvo = true;
3283                         if (intel_encoder->needs_tv_clock)
3284                                 is_tv = true;
3285                         break;
3286                 case INTEL_OUTPUT_DVO:
3287                         is_dvo = true;
3288                         break;
3289                 case INTEL_OUTPUT_TVOUT:
3290                         is_tv = true;
3291                         break;
3292                 case INTEL_OUTPUT_ANALOG:
3293                         is_crt = true;
3294                         break;
3295                 case INTEL_OUTPUT_DISPLAYPORT:
3296                         is_dp = true;
3297                         break;
3298                 case INTEL_OUTPUT_EDP:
3299                         is_edp = true;
3300                         break;
3301                 }
3302
3303                 num_connectors++;
3304         }
3305
3306         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3307                 refclk = dev_priv->lvds_ssc_freq * 1000;
3308                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3309                                         refclk / 1000);
3310         } else if (IS_I9XX(dev)) {
3311                 refclk = 96000;
3312                 if (HAS_PCH_SPLIT(dev))
3313                         refclk = 120000; /* 120Mhz refclk */
3314         } else {
3315                 refclk = 48000;
3316         }
3317         
3318
3319         /*
3320          * Returns a set of divisors for the desired target clock with the given
3321          * refclk, or FALSE.  The returned values represent the clock equation:
3322          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3323          */
3324         limit = intel_limit(crtc);
3325         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3326         if (!ok) {
3327                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3328                 drm_vblank_post_modeset(dev, pipe);
3329                 return -EINVAL;
3330         }
3331
3332         if (is_lvds && dev_priv->lvds_downclock_avail) {
3333                 has_reduced_clock = limit->find_pll(limit, crtc,
3334                                                             dev_priv->lvds_downclock,
3335                                                             refclk,
3336                                                             &reduced_clock);
3337                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3338                         /*
3339                          * If the different P is found, it means that we can't
3340                          * switch the display clock by using the FP0/FP1.
3341                          * In such case we will disable the LVDS downclock
3342                          * feature.
3343                          */
3344                         DRM_DEBUG_KMS("Different P is found for "
3345                                                 "LVDS clock/downclock\n");
3346                         has_reduced_clock = 0;
3347                 }
3348         }
3349         /* SDVO TV has fixed PLL values depend on its clock range,
3350            this mirrors vbios setting. */
3351         if (is_sdvo && is_tv) {
3352                 if (adjusted_mode->clock >= 100000
3353                                 && adjusted_mode->clock < 140500) {
3354                         clock.p1 = 2;
3355                         clock.p2 = 10;
3356                         clock.n = 3;
3357                         clock.m1 = 16;
3358                         clock.m2 = 8;
3359                 } else if (adjusted_mode->clock >= 140500
3360                                 && adjusted_mode->clock <= 200000) {
3361                         clock.p1 = 1;
3362                         clock.p2 = 10;
3363                         clock.n = 6;
3364                         clock.m1 = 12;
3365                         clock.m2 = 8;
3366                 }
3367         }
3368
3369         /* FDI link */
3370         if (HAS_PCH_SPLIT(dev)) {
3371                 int lane, link_bw, bpp;
3372                 /* eDP doesn't require FDI link, so just set DP M/N
3373                    according to current link config */
3374                 if (is_edp) {
3375                         target_clock = mode->clock;
3376                         intel_edp_link_config(intel_encoder,
3377                                         &lane, &link_bw);
3378                 } else {
3379                         /* DP over FDI requires target mode clock
3380                            instead of link clock */
3381                         if (is_dp)
3382                                 target_clock = mode->clock;
3383                         else
3384                                 target_clock = adjusted_mode->clock;
3385                         lane = 4;
3386                         link_bw = 270000;
3387                 }
3388
3389                 /* determine panel color depth */
3390                 temp = I915_READ(pipeconf_reg);
3391                 temp &= ~PIPE_BPC_MASK;
3392                 if (is_lvds) {
3393                         int lvds_reg = I915_READ(PCH_LVDS);
3394                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3395                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3396                                 temp |= PIPE_8BPC;
3397                         else
3398                                 temp |= PIPE_6BPC;
3399                 } else if (is_edp) {
3400                         switch (dev_priv->edp_bpp/3) {
3401                         case 8:
3402                                 temp |= PIPE_8BPC;
3403                                 break;
3404                         case 10:
3405                                 temp |= PIPE_10BPC;
3406                                 break;
3407                         case 6:
3408                                 temp |= PIPE_6BPC;
3409                                 break;
3410                         case 12:
3411                                 temp |= PIPE_12BPC;
3412                                 break;
3413                         }
3414                 } else
3415                         temp |= PIPE_8BPC;
3416                 I915_WRITE(pipeconf_reg, temp);
3417                 I915_READ(pipeconf_reg);
3418
3419                 switch (temp & PIPE_BPC_MASK) {
3420                 case PIPE_8BPC:
3421                         bpp = 24;
3422                         break;
3423                 case PIPE_10BPC:
3424                         bpp = 30;
3425                         break;
3426                 case PIPE_6BPC:
3427                         bpp = 18;
3428                         break;
3429                 case PIPE_12BPC:
3430                         bpp = 36;
3431                         break;
3432                 default:
3433                         DRM_ERROR("unknown pipe bpc value\n");
3434                         bpp = 24;
3435                 }
3436
3437                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3438         }
3439
3440         /* Ironlake: try to setup display ref clock before DPLL
3441          * enabling. This is only under driver's control after
3442          * PCH B stepping, previous chipset stepping should be
3443          * ignoring this setting.
3444          */
3445         if (HAS_PCH_SPLIT(dev)) {
3446                 temp = I915_READ(PCH_DREF_CONTROL);
3447                 /* Always enable nonspread source */
3448                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3449                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3450                 I915_WRITE(PCH_DREF_CONTROL, temp);
3451                 POSTING_READ(PCH_DREF_CONTROL);
3452
3453                 temp &= ~DREF_SSC_SOURCE_MASK;
3454                 temp |= DREF_SSC_SOURCE_ENABLE;
3455                 I915_WRITE(PCH_DREF_CONTROL, temp);
3456                 POSTING_READ(PCH_DREF_CONTROL);
3457
3458                 udelay(200);
3459
3460                 if (is_edp) {
3461                         if (dev_priv->lvds_use_ssc) {
3462                                 temp |= DREF_SSC1_ENABLE;
3463                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3464                                 POSTING_READ(PCH_DREF_CONTROL);
3465
3466                                 udelay(200);
3467
3468                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3469                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3470                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3471                                 POSTING_READ(PCH_DREF_CONTROL);
3472                         } else {
3473                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3474                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3475                                 POSTING_READ(PCH_DREF_CONTROL);
3476                         }
3477                 }
3478         }
3479
3480         if (IS_PINEVIEW(dev)) {
3481                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3482                 if (has_reduced_clock)
3483                         fp2 = (1 << reduced_clock.n) << 16 |
3484                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3485         } else {
3486                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3487                 if (has_reduced_clock)
3488                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3489                                 reduced_clock.m2;
3490         }
3491
3492         if (!HAS_PCH_SPLIT(dev))
3493                 dpll = DPLL_VGA_MODE_DIS;
3494
3495         if (IS_I9XX(dev)) {
3496                 if (is_lvds)
3497                         dpll |= DPLLB_MODE_LVDS;
3498                 else
3499                         dpll |= DPLLB_MODE_DAC_SERIAL;
3500                 if (is_sdvo) {
3501                         dpll |= DPLL_DVO_HIGH_SPEED;
3502                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3503                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3504                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3505                         else if (HAS_PCH_SPLIT(dev))
3506                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3507                 }
3508                 if (is_dp)
3509                         dpll |= DPLL_DVO_HIGH_SPEED;
3510
3511                 /* compute bitmask from p1 value */
3512                 if (IS_PINEVIEW(dev))
3513                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3514                 else {
3515                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3516                         /* also FPA1 */
3517                         if (HAS_PCH_SPLIT(dev))
3518                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3519                         if (IS_G4X(dev) && has_reduced_clock)
3520                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3521                 }
3522                 switch (clock.p2) {
3523                 case 5:
3524                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3525                         break;
3526                 case 7:
3527                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3528                         break;
3529                 case 10:
3530                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3531                         break;
3532                 case 14:
3533                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3534                         break;
3535                 }
3536                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3537                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3538         } else {
3539                 if (is_lvds) {
3540                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3541                 } else {
3542                         if (clock.p1 == 2)
3543                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3544                         else
3545                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3546                         if (clock.p2 == 4)
3547                                 dpll |= PLL_P2_DIVIDE_BY_4;
3548                 }
3549         }
3550
3551         if (is_sdvo && is_tv)
3552                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3553         else if (is_tv)
3554                 /* XXX: just matching BIOS for now */
3555                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3556                 dpll |= 3;
3557         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3558                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3559         else
3560                 dpll |= PLL_REF_INPUT_DREFCLK;
3561
3562         /* setup pipeconf */
3563         pipeconf = I915_READ(pipeconf_reg);
3564
3565         /* Set up the display plane register */
3566         dspcntr = DISPPLANE_GAMMA_ENABLE;
3567
3568         /* Ironlake's plane is forced to pipe, bit 24 is to
3569            enable color space conversion */
3570         if (!HAS_PCH_SPLIT(dev)) {
3571                 if (pipe == 0)
3572                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3573                 else
3574                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3575         }
3576
3577         if (pipe == 0 && !IS_I965G(dev)) {
3578                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3579                  * core speed.
3580                  *
3581                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3582                  * pipe == 0 check?
3583                  */
3584                 if (mode->clock >
3585                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3586                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3587                 else
3588                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3589         }
3590
3591         /* Disable the panel fitter if it was on our pipe */
3592         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3593                 I915_WRITE(PFIT_CONTROL, 0);
3594
3595         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3596         drm_mode_debug_printmodeline(mode);
3597
3598         /* assign to Ironlake registers */
3599         if (HAS_PCH_SPLIT(dev)) {
3600                 fp_reg = pch_fp_reg;
3601                 dpll_reg = pch_dpll_reg;
3602         }
3603
3604         if (is_edp) {
3605                 ironlake_disable_pll_edp(crtc);
3606         } else if ((dpll & DPLL_VCO_ENABLE)) {
3607                 I915_WRITE(fp_reg, fp);
3608                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3609                 I915_READ(dpll_reg);
3610                 udelay(150);
3611         }
3612
3613         /* enable transcoder DPLL */
3614         if (HAS_PCH_CPT(dev)) {
3615                 temp = I915_READ(PCH_DPLL_SEL);
3616                 if (trans_dpll_sel == 0)
3617                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3618                 else
3619                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3620                 I915_WRITE(PCH_DPLL_SEL, temp);
3621                 I915_READ(PCH_DPLL_SEL);
3622                 udelay(150);
3623         }
3624
3625         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3626          * This is an exception to the general rule that mode_set doesn't turn
3627          * things on.
3628          */
3629         if (is_lvds) {
3630                 u32 lvds;
3631
3632                 if (HAS_PCH_SPLIT(dev))
3633                         lvds_reg = PCH_LVDS;
3634
3635                 lvds = I915_READ(lvds_reg);
3636                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3637                 if (pipe == 1) {
3638                         if (HAS_PCH_CPT(dev))
3639                                 lvds |= PORT_TRANS_B_SEL_CPT;
3640                         else
3641                                 lvds |= LVDS_PIPEB_SELECT;
3642                 } else {
3643                         if (HAS_PCH_CPT(dev))
3644                                 lvds &= ~PORT_TRANS_SEL_MASK;
3645                         else
3646                                 lvds &= ~LVDS_PIPEB_SELECT;
3647                 }
3648                 /* set the corresponsding LVDS_BORDER bit */
3649                 lvds |= dev_priv->lvds_border_bits;
3650                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3651                  * set the DPLLs for dual-channel mode or not.
3652                  */
3653                 if (clock.p2 == 7)
3654                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3655                 else
3656                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3657
3658                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3659                  * appropriately here, but we need to look more thoroughly into how
3660                  * panels behave in the two modes.
3661                  */
3662                 /* set the dithering flag */
3663                 if (IS_I965G(dev)) {
3664                         if (dev_priv->lvds_dither) {
3665                                 if (HAS_PCH_SPLIT(dev))
3666                                         pipeconf |= PIPE_ENABLE_DITHER;
3667                                 else
3668                                         lvds |= LVDS_ENABLE_DITHER;
3669                         } else {
3670                                 if (HAS_PCH_SPLIT(dev))
3671                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3672                                 else
3673                                         lvds &= ~LVDS_ENABLE_DITHER;
3674                         }
3675                 }
3676                 I915_WRITE(lvds_reg, lvds);
3677                 I915_READ(lvds_reg);
3678         }
3679         if (is_dp)
3680                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3681         else if (HAS_PCH_SPLIT(dev)) {
3682                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3683                 if (pipe == 0) {
3684                         I915_WRITE(TRANSA_DATA_M1, 0);
3685                         I915_WRITE(TRANSA_DATA_N1, 0);
3686                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3687                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3688                 } else {
3689                         I915_WRITE(TRANSB_DATA_M1, 0);
3690                         I915_WRITE(TRANSB_DATA_N1, 0);
3691                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3692                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3693                 }
3694         }
3695
3696         if (!is_edp) {
3697                 I915_WRITE(fp_reg, fp);
3698                 I915_WRITE(dpll_reg, dpll);
3699                 I915_READ(dpll_reg);
3700                 /* Wait for the clocks to stabilize. */
3701                 udelay(150);
3702
3703                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3704                         if (is_sdvo) {
3705                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3706                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3707                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3708                         } else
3709                                 I915_WRITE(dpll_md_reg, 0);
3710                 } else {
3711                         /* write it again -- the BIOS does, after all */
3712                         I915_WRITE(dpll_reg, dpll);
3713                 }
3714                 I915_READ(dpll_reg);
3715                 /* Wait for the clocks to stabilize. */
3716                 udelay(150);
3717         }
3718
3719         if (is_lvds && has_reduced_clock && i915_powersave) {
3720                 I915_WRITE(fp_reg + 4, fp2);
3721                 intel_crtc->lowfreq_avail = true;
3722                 if (HAS_PIPE_CXSR(dev)) {
3723                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3724                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3725                 }
3726         } else {
3727                 I915_WRITE(fp_reg + 4, fp);
3728                 intel_crtc->lowfreq_avail = false;
3729                 if (HAS_PIPE_CXSR(dev)) {
3730                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3731                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3732                 }
3733         }
3734
3735         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3736                    ((adjusted_mode->crtc_htotal - 1) << 16));
3737         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3738                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3739         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3740                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3741         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3742                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3743         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3744                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3745         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3746                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3747         /* pipesrc and dspsize control the size that is scaled from, which should
3748          * always be the user's requested size.
3749          */
3750         if (!HAS_PCH_SPLIT(dev)) {
3751                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3752                                 (mode->hdisplay - 1));
3753                 I915_WRITE(dsppos_reg, 0);
3754         }
3755         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3756
3757         if (HAS_PCH_SPLIT(dev)) {
3758                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3759                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3760                 I915_WRITE(link_m1_reg, m_n.link_m);
3761                 I915_WRITE(link_n1_reg, m_n.link_n);
3762
3763                 if (is_edp) {
3764                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3765                 } else {
3766                         /* enable FDI RX PLL too */
3767                         temp = I915_READ(fdi_rx_reg);
3768                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3769                         I915_READ(fdi_rx_reg);
3770                         udelay(200);
3771
3772                         /* enable FDI TX PLL too */
3773                         temp = I915_READ(fdi_tx_reg);
3774                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
3775                         I915_READ(fdi_tx_reg);
3776
3777                         /* enable FDI RX PCDCLK */
3778                         temp = I915_READ(fdi_rx_reg);
3779                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
3780                         I915_READ(fdi_rx_reg);
3781                         udelay(200);
3782                 }
3783         }
3784
3785         I915_WRITE(pipeconf_reg, pipeconf);
3786         I915_READ(pipeconf_reg);
3787
3788         intel_wait_for_vblank(dev);
3789
3790         if (IS_IRONLAKE(dev)) {
3791                 /* enable address swizzle for tiling buffer */
3792                 temp = I915_READ(DISP_ARB_CTL);
3793                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3794         }
3795
3796         I915_WRITE(dspcntr_reg, dspcntr);
3797
3798         /* Flush the plane changes */
3799         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3800
3801         if ((IS_I965G(dev) || plane == 0))
3802                 intel_update_fbc(crtc, &crtc->mode);
3803
3804         intel_update_watermarks(dev);
3805
3806         drm_vblank_post_modeset(dev, pipe);
3807
3808         return ret;
3809 }
3810
3811 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3812 void intel_crtc_load_lut(struct drm_crtc *crtc)
3813 {
3814         struct drm_device *dev = crtc->dev;
3815         struct drm_i915_private *dev_priv = dev->dev_private;
3816         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3817         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3818         int i;
3819
3820         /* The clocks have to be on to load the palette. */
3821         if (!crtc->enabled)
3822                 return;
3823
3824         /* use legacy palette for Ironlake */
3825         if (HAS_PCH_SPLIT(dev))
3826                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3827                                                    LGC_PALETTE_B;
3828
3829         for (i = 0; i < 256; i++) {
3830                 I915_WRITE(palreg + 4 * i,
3831                            (intel_crtc->lut_r[i] << 16) |
3832                            (intel_crtc->lut_g[i] << 8) |
3833                            intel_crtc->lut_b[i]);
3834         }
3835 }
3836
3837 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3838                                  struct drm_file *file_priv,
3839                                  uint32_t handle,
3840                                  uint32_t width, uint32_t height)
3841 {
3842         struct drm_device *dev = crtc->dev;
3843         struct drm_i915_private *dev_priv = dev->dev_private;
3844         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3845         struct drm_gem_object *bo;
3846         struct drm_i915_gem_object *obj_priv;
3847         int pipe = intel_crtc->pipe;
3848         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3849         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3850         uint32_t temp = I915_READ(control);
3851         size_t addr;
3852         int ret;
3853
3854         DRM_DEBUG_KMS("\n");
3855
3856         /* if we want to turn off the cursor ignore width and height */
3857         if (!handle) {
3858                 DRM_DEBUG_KMS("cursor off\n");
3859                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3860                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3861                         temp |= CURSOR_MODE_DISABLE;
3862                 } else {
3863                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3864                 }
3865                 addr = 0;
3866                 bo = NULL;
3867                 mutex_lock(&dev->struct_mutex);
3868                 goto finish;
3869         }
3870
3871         /* Currently we only support 64x64 cursors */
3872         if (width != 64 || height != 64) {
3873                 DRM_ERROR("we currently only support 64x64 cursors\n");
3874                 return -EINVAL;
3875         }
3876
3877         bo = drm_gem_object_lookup(dev, file_priv, handle);
3878         if (!bo)
3879                 return -ENOENT;
3880
3881         obj_priv = to_intel_bo(bo);
3882
3883         if (bo->size < width * height * 4) {
3884                 DRM_ERROR("buffer is to small\n");
3885                 ret = -ENOMEM;
3886                 goto fail;
3887         }
3888
3889         /* we only need to pin inside GTT if cursor is non-phy */
3890         mutex_lock(&dev->struct_mutex);
3891         if (!dev_priv->info->cursor_needs_physical) {
3892                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3893                 if (ret) {
3894                         DRM_ERROR("failed to pin cursor bo\n");
3895                         goto fail_locked;
3896                 }
3897                 addr = obj_priv->gtt_offset;
3898         } else {
3899                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3900                 if (ret) {
3901                         DRM_ERROR("failed to attach phys object\n");
3902                         goto fail_locked;
3903                 }
3904                 addr = obj_priv->phys_obj->handle->busaddr;
3905         }
3906
3907         if (!IS_I9XX(dev))
3908                 I915_WRITE(CURSIZE, (height << 12) | width);
3909
3910         /* Hooray for CUR*CNTR differences */
3911         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3912                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3913                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3914                 temp |= (pipe << 28); /* Connect to correct pipe */
3915         } else {
3916                 temp &= ~(CURSOR_FORMAT_MASK);
3917                 temp |= CURSOR_ENABLE;
3918                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3919         }
3920
3921  finish:
3922         I915_WRITE(control, temp);
3923         I915_WRITE(base, addr);
3924
3925         if (intel_crtc->cursor_bo) {
3926                 if (dev_priv->info->cursor_needs_physical) {
3927                         if (intel_crtc->cursor_bo != bo)
3928                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3929                 } else
3930                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3931                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3932         }
3933
3934         mutex_unlock(&dev->struct_mutex);
3935
3936         intel_crtc->cursor_addr = addr;
3937         intel_crtc->cursor_bo = bo;
3938
3939         return 0;
3940 fail_locked:
3941         mutex_unlock(&dev->struct_mutex);
3942 fail:
3943         drm_gem_object_unreference_unlocked(bo);
3944         return ret;
3945 }
3946
3947 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3948 {
3949         struct drm_device *dev = crtc->dev;
3950         struct drm_i915_private *dev_priv = dev->dev_private;
3951         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3952         struct intel_framebuffer *intel_fb;
3953         int pipe = intel_crtc->pipe;
3954         uint32_t temp = 0;
3955         uint32_t adder;
3956
3957         if (crtc->fb) {
3958                 intel_fb = to_intel_framebuffer(crtc->fb);
3959                 intel_mark_busy(dev, intel_fb->obj);
3960         }
3961
3962         if (x < 0) {
3963                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3964                 x = -x;
3965         }
3966         if (y < 0) {
3967                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3968                 y = -y;
3969         }
3970
3971         temp |= x << CURSOR_X_SHIFT;
3972         temp |= y << CURSOR_Y_SHIFT;
3973
3974         adder = intel_crtc->cursor_addr;
3975         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3976         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3977
3978         return 0;
3979 }
3980
3981 /** Sets the color ramps on behalf of RandR */
3982 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3983                                  u16 blue, int regno)
3984 {
3985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3986
3987         intel_crtc->lut_r[regno] = red >> 8;
3988         intel_crtc->lut_g[regno] = green >> 8;
3989         intel_crtc->lut_b[regno] = blue >> 8;
3990 }
3991
3992 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3993                              u16 *blue, int regno)
3994 {
3995         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3996
3997         *red = intel_crtc->lut_r[regno] << 8;
3998         *green = intel_crtc->lut_g[regno] << 8;
3999         *blue = intel_crtc->lut_b[regno] << 8;
4000 }
4001
4002 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4003                                  u16 *blue, uint32_t size)
4004 {
4005         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4006         int i;
4007
4008         if (size != 256)
4009                 return;
4010
4011         for (i = 0; i < 256; i++) {
4012                 intel_crtc->lut_r[i] = red[i] >> 8;
4013                 intel_crtc->lut_g[i] = green[i] >> 8;
4014                 intel_crtc->lut_b[i] = blue[i] >> 8;
4015         }
4016
4017         intel_crtc_load_lut(crtc);
4018 }
4019
4020 /**
4021  * Get a pipe with a simple mode set on it for doing load-based monitor
4022  * detection.
4023  *
4024  * It will be up to the load-detect code to adjust the pipe as appropriate for
4025  * its requirements.  The pipe will be connected to no other encoders.
4026  *
4027  * Currently this code will only succeed if there is a pipe with no encoders
4028  * configured for it.  In the future, it could choose to temporarily disable
4029  * some outputs to free up a pipe for its use.
4030  *
4031  * \return crtc, or NULL if no pipes are available.
4032  */
4033
4034 /* VESA 640x480x72Hz mode to set on the pipe */
4035 static struct drm_display_mode load_detect_mode = {
4036         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4037                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4038 };
4039
4040 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4041                                             struct drm_connector *connector,
4042                                             struct drm_display_mode *mode,
4043                                             int *dpms_mode)
4044 {
4045         struct intel_crtc *intel_crtc;
4046         struct drm_crtc *possible_crtc;
4047         struct drm_crtc *supported_crtc =NULL;
4048         struct drm_encoder *encoder = &intel_encoder->enc;
4049         struct drm_crtc *crtc = NULL;
4050         struct drm_device *dev = encoder->dev;
4051         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4052         struct drm_crtc_helper_funcs *crtc_funcs;
4053         int i = -1;
4054
4055         /*
4056          * Algorithm gets a little messy:
4057          *   - if the connector already has an assigned crtc, use it (but make
4058          *     sure it's on first)
4059          *   - try to find the first unused crtc that can drive this connector,
4060          *     and use that if we find one
4061          *   - if there are no unused crtcs available, try to use the first
4062          *     one we found that supports the connector
4063          */
4064
4065         /* See if we already have a CRTC for this connector */
4066         if (encoder->crtc) {
4067                 crtc = encoder->crtc;
4068                 /* Make sure the crtc and connector are running */
4069                 intel_crtc = to_intel_crtc(crtc);
4070                 *dpms_mode = intel_crtc->dpms_mode;
4071                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4072                         crtc_funcs = crtc->helper_private;
4073                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4074                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4075                 }
4076                 return crtc;
4077         }
4078
4079         /* Find an unused one (if possible) */
4080         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4081                 i++;
4082                 if (!(encoder->possible_crtcs & (1 << i)))
4083                         continue;
4084                 if (!possible_crtc->enabled) {
4085                         crtc = possible_crtc;
4086                         break;
4087                 }
4088                 if (!supported_crtc)
4089                         supported_crtc = possible_crtc;
4090         }
4091
4092         /*
4093          * If we didn't find an unused CRTC, don't use any.
4094          */
4095         if (!crtc) {
4096                 return NULL;
4097         }
4098
4099         encoder->crtc = crtc;
4100         connector->encoder = encoder;
4101         intel_encoder->load_detect_temp = true;
4102
4103         intel_crtc = to_intel_crtc(crtc);
4104         *dpms_mode = intel_crtc->dpms_mode;
4105
4106         if (!crtc->enabled) {
4107                 if (!mode)
4108                         mode = &load_detect_mode;
4109                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4110         } else {
4111                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4112                         crtc_funcs = crtc->helper_private;
4113                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4114                 }
4115
4116                 /* Add this connector to the crtc */
4117                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4118                 encoder_funcs->commit(encoder);
4119         }
4120         /* let the connector get through one full cycle before testing */
4121         intel_wait_for_vblank(dev);
4122
4123         return crtc;
4124 }
4125
4126 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4127                                     struct drm_connector *connector, int dpms_mode)
4128 {
4129         struct drm_encoder *encoder = &intel_encoder->enc;
4130         struct drm_device *dev = encoder->dev;
4131         struct drm_crtc *crtc = encoder->crtc;
4132         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4133         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4134
4135         if (intel_encoder->load_detect_temp) {
4136                 encoder->crtc = NULL;
4137                 connector->encoder = NULL;
4138                 intel_encoder->load_detect_temp = false;
4139                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4140                 drm_helper_disable_unused_functions(dev);
4141         }
4142
4143         /* Switch crtc and encoder back off if necessary */
4144         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4145                 if (encoder->crtc == crtc)
4146                         encoder_funcs->dpms(encoder, dpms_mode);
4147                 crtc_funcs->dpms(crtc, dpms_mode);
4148         }
4149 }
4150
4151 /* Returns the clock of the currently programmed mode of the given pipe. */
4152 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4153 {
4154         struct drm_i915_private *dev_priv = dev->dev_private;
4155         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4156         int pipe = intel_crtc->pipe;
4157         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4158         u32 fp;
4159         intel_clock_t clock;
4160
4161         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4162                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4163         else
4164                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4165
4166         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4167         if (IS_PINEVIEW(dev)) {
4168                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4169                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4170         } else {
4171                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4172                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4173         }
4174
4175         if (IS_I9XX(dev)) {
4176                 if (IS_PINEVIEW(dev))
4177                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4178                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4179                 else
4180                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4181                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4182
4183                 switch (dpll & DPLL_MODE_MASK) {
4184                 case DPLLB_MODE_DAC_SERIAL:
4185                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4186                                 5 : 10;
4187                         break;
4188                 case DPLLB_MODE_LVDS:
4189                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4190                                 7 : 14;
4191                         break;
4192                 default:
4193                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4194                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4195                         return 0;
4196                 }
4197
4198                 /* XXX: Handle the 100Mhz refclk */
4199                 intel_clock(dev, 96000, &clock);
4200         } else {
4201                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4202
4203                 if (is_lvds) {
4204                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4205                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4206                         clock.p2 = 14;
4207
4208                         if ((dpll & PLL_REF_INPUT_MASK) ==
4209                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4210                                 /* XXX: might not be 66MHz */
4211                                 intel_clock(dev, 66000, &clock);
4212                         } else
4213                                 intel_clock(dev, 48000, &clock);
4214                 } else {
4215                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4216                                 clock.p1 = 2;
4217                         else {
4218                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4219                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4220                         }
4221                         if (dpll & PLL_P2_DIVIDE_BY_4)
4222                                 clock.p2 = 4;
4223                         else
4224                                 clock.p2 = 2;
4225
4226                         intel_clock(dev, 48000, &clock);
4227                 }
4228         }
4229
4230         /* XXX: It would be nice to validate the clocks, but we can't reuse
4231          * i830PllIsValid() because it relies on the xf86_config connector
4232          * configuration being accurate, which it isn't necessarily.
4233          */
4234
4235         return clock.dot;
4236 }
4237
4238 /** Returns the currently programmed mode of the given pipe. */
4239 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4240                                              struct drm_crtc *crtc)
4241 {
4242         struct drm_i915_private *dev_priv = dev->dev_private;
4243         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4244         int pipe = intel_crtc->pipe;
4245         struct drm_display_mode *mode;
4246         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4247         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4248         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4249         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4250
4251         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4252         if (!mode)
4253                 return NULL;
4254
4255         mode->clock = intel_crtc_clock_get(dev, crtc);
4256         mode->hdisplay = (htot & 0xffff) + 1;
4257         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4258         mode->hsync_start = (hsync & 0xffff) + 1;
4259         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4260         mode->vdisplay = (vtot & 0xffff) + 1;
4261         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4262         mode->vsync_start = (vsync & 0xffff) + 1;
4263         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4264
4265         drm_mode_set_name(mode);
4266         drm_mode_set_crtcinfo(mode, 0);
4267
4268         return mode;
4269 }
4270
4271 #define GPU_IDLE_TIMEOUT 500 /* ms */
4272
4273 /* When this timer fires, we've been idle for awhile */
4274 static void intel_gpu_idle_timer(unsigned long arg)
4275 {
4276         struct drm_device *dev = (struct drm_device *)arg;
4277         drm_i915_private_t *dev_priv = dev->dev_private;
4278
4279         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4280
4281         dev_priv->busy = false;
4282
4283         queue_work(dev_priv->wq, &dev_priv->idle_work);
4284 }
4285
4286 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4287
4288 static void intel_crtc_idle_timer(unsigned long arg)
4289 {
4290         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4291         struct drm_crtc *crtc = &intel_crtc->base;
4292         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4293
4294         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4295
4296         intel_crtc->busy = false;
4297
4298         queue_work(dev_priv->wq, &dev_priv->idle_work);
4299 }
4300
4301 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4302 {
4303         struct drm_device *dev = crtc->dev;
4304         drm_i915_private_t *dev_priv = dev->dev_private;
4305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4306         int pipe = intel_crtc->pipe;
4307         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4308         int dpll = I915_READ(dpll_reg);
4309
4310         if (HAS_PCH_SPLIT(dev))
4311                 return;
4312
4313         if (!dev_priv->lvds_downclock_avail)
4314                 return;
4315
4316         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4317                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4318
4319                 /* Unlock panel regs */
4320                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4321
4322                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4323                 I915_WRITE(dpll_reg, dpll);
4324                 dpll = I915_READ(dpll_reg);
4325                 intel_wait_for_vblank(dev);
4326                 dpll = I915_READ(dpll_reg);
4327                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4328                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4329
4330                 /* ...and lock them again */
4331                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4332         }
4333
4334         /* Schedule downclock */
4335         if (schedule)
4336                 mod_timer(&intel_crtc->idle_timer, jiffies +
4337                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4338 }
4339
4340 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4341 {
4342         struct drm_device *dev = crtc->dev;
4343         drm_i915_private_t *dev_priv = dev->dev_private;
4344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4345         int pipe = intel_crtc->pipe;
4346         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4347         int dpll = I915_READ(dpll_reg);
4348
4349         if (HAS_PCH_SPLIT(dev))
4350                 return;
4351
4352         if (!dev_priv->lvds_downclock_avail)
4353                 return;
4354
4355         /*
4356          * Since this is called by a timer, we should never get here in
4357          * the manual case.
4358          */
4359         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4360                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4361
4362                 /* Unlock panel regs */
4363                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4364
4365                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4366                 I915_WRITE(dpll_reg, dpll);
4367                 dpll = I915_READ(dpll_reg);
4368                 intel_wait_for_vblank(dev);
4369                 dpll = I915_READ(dpll_reg);
4370                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4371                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4372
4373                 /* ...and lock them again */
4374                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4375         }
4376
4377 }
4378
4379 /**
4380  * intel_idle_update - adjust clocks for idleness
4381  * @work: work struct
4382  *
4383  * Either the GPU or display (or both) went idle.  Check the busy status
4384  * here and adjust the CRTC and GPU clocks as necessary.
4385  */
4386 static void intel_idle_update(struct work_struct *work)
4387 {
4388         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4389                                                     idle_work);
4390         struct drm_device *dev = dev_priv->dev;
4391         struct drm_crtc *crtc;
4392         struct intel_crtc *intel_crtc;
4393
4394         if (!i915_powersave)
4395                 return;
4396
4397         mutex_lock(&dev->struct_mutex);
4398
4399         if (IS_I945G(dev) || IS_I945GM(dev)) {
4400                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4401                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4402         }
4403
4404         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4405                 /* Skip inactive CRTCs */
4406                 if (!crtc->fb)
4407                         continue;
4408
4409                 intel_crtc = to_intel_crtc(crtc);
4410                 if (!intel_crtc->busy)
4411                         intel_decrease_pllclock(crtc);
4412         }
4413
4414         mutex_unlock(&dev->struct_mutex);
4415 }
4416
4417 /**
4418  * intel_mark_busy - mark the GPU and possibly the display busy
4419  * @dev: drm device
4420  * @obj: object we're operating on
4421  *
4422  * Callers can use this function to indicate that the GPU is busy processing
4423  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4424  * buffer), we'll also mark the display as busy, so we know to increase its
4425  * clock frequency.
4426  */
4427 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4428 {
4429         drm_i915_private_t *dev_priv = dev->dev_private;
4430         struct drm_crtc *crtc = NULL;
4431         struct intel_framebuffer *intel_fb;
4432         struct intel_crtc *intel_crtc;
4433
4434         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4435                 return;
4436
4437         if (!dev_priv->busy) {
4438                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4439                         u32 fw_blc_self;
4440
4441                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4442                         fw_blc_self = I915_READ(FW_BLC_SELF);
4443                         fw_blc_self &= ~FW_BLC_SELF_EN;
4444                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4445                 }
4446                 dev_priv->busy = true;
4447         } else
4448                 mod_timer(&dev_priv->idle_timer, jiffies +
4449                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4450
4451         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4452                 if (!crtc->fb)
4453                         continue;
4454
4455                 intel_crtc = to_intel_crtc(crtc);
4456                 intel_fb = to_intel_framebuffer(crtc->fb);
4457                 if (intel_fb->obj == obj) {
4458                         if (!intel_crtc->busy) {
4459                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4460                                         u32 fw_blc_self;
4461
4462                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4463                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4464                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4465                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4466                                 }
4467                                 /* Non-busy -> busy, upclock */
4468                                 intel_increase_pllclock(crtc, true);
4469                                 intel_crtc->busy = true;
4470                         } else {
4471                                 /* Busy -> busy, put off timer */
4472                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4473                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4474                         }
4475                 }
4476         }
4477 }
4478
4479 static void intel_crtc_destroy(struct drm_crtc *crtc)
4480 {
4481         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4482
4483         drm_crtc_cleanup(crtc);
4484         kfree(intel_crtc);
4485 }
4486
4487 struct intel_unpin_work {
4488         struct work_struct work;
4489         struct drm_device *dev;
4490         struct drm_gem_object *old_fb_obj;
4491         struct drm_gem_object *pending_flip_obj;
4492         struct drm_pending_vblank_event *event;
4493         int pending;
4494 };
4495
4496 static void intel_unpin_work_fn(struct work_struct *__work)
4497 {
4498         struct intel_unpin_work *work =
4499                 container_of(__work, struct intel_unpin_work, work);
4500
4501         mutex_lock(&work->dev->struct_mutex);
4502         i915_gem_object_unpin(work->old_fb_obj);
4503         drm_gem_object_unreference(work->pending_flip_obj);
4504         drm_gem_object_unreference(work->old_fb_obj);
4505         mutex_unlock(&work->dev->struct_mutex);
4506         kfree(work);
4507 }
4508
4509 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4510 {
4511         drm_i915_private_t *dev_priv = dev->dev_private;
4512         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4514         struct intel_unpin_work *work;
4515         struct drm_i915_gem_object *obj_priv;
4516         struct drm_pending_vblank_event *e;
4517         struct timeval now;
4518         unsigned long flags;
4519
4520         /* Ignore early vblank irqs */
4521         if (intel_crtc == NULL)
4522                 return;
4523
4524         spin_lock_irqsave(&dev->event_lock, flags);
4525         work = intel_crtc->unpin_work;
4526         if (work == NULL || !work->pending) {
4527                 if (work && !work->pending) {
4528                         obj_priv = to_intel_bo(work->pending_flip_obj);
4529                         DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4530                                          obj_priv,
4531                                          atomic_read(&obj_priv->pending_flip));
4532                 }
4533                 spin_unlock_irqrestore(&dev->event_lock, flags);
4534                 return;
4535         }
4536
4537         intel_crtc->unpin_work = NULL;
4538         drm_vblank_put(dev, intel_crtc->pipe);
4539
4540         if (work->event) {
4541                 e = work->event;
4542                 do_gettimeofday(&now);
4543                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4544                 e->event.tv_sec = now.tv_sec;
4545                 e->event.tv_usec = now.tv_usec;
4546                 list_add_tail(&e->base.link,
4547                               &e->base.file_priv->event_list);
4548                 wake_up_interruptible(&e->base.file_priv->event_wait);
4549         }
4550
4551         spin_unlock_irqrestore(&dev->event_lock, flags);
4552
4553         obj_priv = to_intel_bo(work->pending_flip_obj);
4554
4555         /* Initial scanout buffer will have a 0 pending flip count */
4556         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4557             atomic_dec_and_test(&obj_priv->pending_flip))
4558                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4559         schedule_work(&work->work);
4560 }
4561
4562 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4563 {
4564         drm_i915_private_t *dev_priv = dev->dev_private;
4565         struct intel_crtc *intel_crtc =
4566                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4567         unsigned long flags;
4568
4569         spin_lock_irqsave(&dev->event_lock, flags);
4570         if (intel_crtc->unpin_work) {
4571                 intel_crtc->unpin_work->pending = 1;
4572         } else {
4573                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4574         }
4575         spin_unlock_irqrestore(&dev->event_lock, flags);
4576 }
4577
4578 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4579                                 struct drm_framebuffer *fb,
4580                                 struct drm_pending_vblank_event *event)
4581 {
4582         struct drm_device *dev = crtc->dev;
4583         struct drm_i915_private *dev_priv = dev->dev_private;
4584         struct intel_framebuffer *intel_fb;
4585         struct drm_i915_gem_object *obj_priv;
4586         struct drm_gem_object *obj;
4587         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4588         struct intel_unpin_work *work;
4589         unsigned long flags;
4590         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4591         int ret, pipesrc;
4592         RING_LOCALS;
4593
4594         work = kzalloc(sizeof *work, GFP_KERNEL);
4595         if (work == NULL)
4596                 return -ENOMEM;
4597
4598         mutex_lock(&dev->struct_mutex);
4599
4600         work->event = event;
4601         work->dev = crtc->dev;
4602         intel_fb = to_intel_framebuffer(crtc->fb);
4603         work->old_fb_obj = intel_fb->obj;
4604         INIT_WORK(&work->work, intel_unpin_work_fn);
4605
4606         /* We borrow the event spin lock for protecting unpin_work */
4607         spin_lock_irqsave(&dev->event_lock, flags);
4608         if (intel_crtc->unpin_work) {
4609                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4610                 spin_unlock_irqrestore(&dev->event_lock, flags);
4611                 kfree(work);
4612                 mutex_unlock(&dev->struct_mutex);
4613                 return -EBUSY;
4614         }
4615         intel_crtc->unpin_work = work;
4616         spin_unlock_irqrestore(&dev->event_lock, flags);
4617
4618         intel_fb = to_intel_framebuffer(fb);
4619         obj = intel_fb->obj;
4620
4621         ret = intel_pin_and_fence_fb_obj(dev, obj);
4622         if (ret != 0) {
4623                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4624                           to_intel_bo(obj));
4625                 kfree(work);
4626                 intel_crtc->unpin_work = NULL;
4627                 mutex_unlock(&dev->struct_mutex);
4628                 return ret;
4629         }
4630
4631         /* Reference the objects for the scheduled work. */
4632         drm_gem_object_reference(work->old_fb_obj);
4633         drm_gem_object_reference(obj);
4634
4635         crtc->fb = fb;
4636         i915_gem_object_flush_write_domain(obj);
4637         drm_vblank_get(dev, intel_crtc->pipe);
4638         obj_priv = to_intel_bo(obj);
4639         atomic_inc(&obj_priv->pending_flip);
4640         work->pending_flip_obj = obj;
4641
4642         BEGIN_LP_RING(4);
4643         OUT_RING(MI_DISPLAY_FLIP |
4644                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4645         OUT_RING(fb->pitch);
4646         if (IS_I965G(dev)) {
4647                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4648                 pipesrc = I915_READ(pipesrc_reg); 
4649                 OUT_RING(pipesrc & 0x0fff0fff);
4650         } else {
4651                 OUT_RING(obj_priv->gtt_offset);
4652                 OUT_RING(MI_NOOP);
4653         }
4654         ADVANCE_LP_RING();
4655
4656         mutex_unlock(&dev->struct_mutex);
4657
4658         return 0;
4659 }
4660
4661 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4662         .dpms = intel_crtc_dpms,
4663         .mode_fixup = intel_crtc_mode_fixup,
4664         .mode_set = intel_crtc_mode_set,
4665         .mode_set_base = intel_pipe_set_base,
4666         .prepare = intel_crtc_prepare,
4667         .commit = intel_crtc_commit,
4668         .load_lut = intel_crtc_load_lut,
4669 };
4670
4671 static const struct drm_crtc_funcs intel_crtc_funcs = {
4672         .cursor_set = intel_crtc_cursor_set,
4673         .cursor_move = intel_crtc_cursor_move,
4674         .gamma_set = intel_crtc_gamma_set,
4675         .set_config = drm_crtc_helper_set_config,
4676         .destroy = intel_crtc_destroy,
4677         .page_flip = intel_crtc_page_flip,
4678 };
4679
4680
4681 static void intel_crtc_init(struct drm_device *dev, int pipe)
4682 {
4683         drm_i915_private_t *dev_priv = dev->dev_private;
4684         struct intel_crtc *intel_crtc;
4685         int i;
4686
4687         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4688         if (intel_crtc == NULL)
4689                 return;
4690
4691         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4692
4693         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4694         intel_crtc->pipe = pipe;
4695         intel_crtc->plane = pipe;
4696         for (i = 0; i < 256; i++) {
4697                 intel_crtc->lut_r[i] = i;
4698                 intel_crtc->lut_g[i] = i;
4699                 intel_crtc->lut_b[i] = i;
4700         }
4701
4702         /* Swap pipes & planes for FBC on pre-965 */
4703         intel_crtc->pipe = pipe;
4704         intel_crtc->plane = pipe;
4705         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4706                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4707                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4708         }
4709
4710         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4711                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4712         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4713         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4714
4715         intel_crtc->cursor_addr = 0;
4716         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4717         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4718
4719         intel_crtc->busy = false;
4720
4721         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4722                     (unsigned long)intel_crtc);
4723 }
4724
4725 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4726                                 struct drm_file *file_priv)
4727 {
4728         drm_i915_private_t *dev_priv = dev->dev_private;
4729         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4730         struct drm_mode_object *drmmode_obj;
4731         struct intel_crtc *crtc;
4732
4733         if (!dev_priv) {
4734                 DRM_ERROR("called with no initialization\n");
4735                 return -EINVAL;
4736         }
4737
4738         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4739                         DRM_MODE_OBJECT_CRTC);
4740
4741         if (!drmmode_obj) {
4742                 DRM_ERROR("no such CRTC id\n");
4743                 return -EINVAL;
4744         }
4745
4746         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4747         pipe_from_crtc_id->pipe = crtc->pipe;
4748
4749         return 0;
4750 }
4751
4752 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4753 {
4754         struct drm_crtc *crtc = NULL;
4755
4756         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4757                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4758                 if (intel_crtc->pipe == pipe)
4759                         break;
4760         }
4761         return crtc;
4762 }
4763
4764 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4765 {
4766         int index_mask = 0;
4767         struct drm_encoder *encoder;
4768         int entry = 0;
4769
4770         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4771                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4772                 if (type_mask & intel_encoder->clone_mask)
4773                         index_mask |= (1 << entry);
4774                 entry++;
4775         }
4776         return index_mask;
4777 }
4778
4779
4780 static void intel_setup_outputs(struct drm_device *dev)
4781 {
4782         struct drm_i915_private *dev_priv = dev->dev_private;
4783         struct drm_encoder *encoder;
4784
4785         intel_crt_init(dev);
4786
4787         /* Set up integrated LVDS */
4788         if (IS_MOBILE(dev) && !IS_I830(dev))
4789                 intel_lvds_init(dev);
4790
4791         if (HAS_PCH_SPLIT(dev)) {
4792                 int found;
4793
4794                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4795                         intel_dp_init(dev, DP_A);
4796
4797                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4798                         /* PCH SDVOB multiplex with HDMIB */
4799                         found = intel_sdvo_init(dev, PCH_SDVOB);
4800                         if (!found)
4801                                 intel_hdmi_init(dev, HDMIB);
4802                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4803                                 intel_dp_init(dev, PCH_DP_B);
4804                 }
4805
4806                 if (I915_READ(HDMIC) & PORT_DETECTED)
4807                         intel_hdmi_init(dev, HDMIC);
4808
4809                 if (I915_READ(HDMID) & PORT_DETECTED)
4810                         intel_hdmi_init(dev, HDMID);
4811
4812                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4813                         intel_dp_init(dev, PCH_DP_C);
4814
4815                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4816                         intel_dp_init(dev, PCH_DP_D);
4817
4818         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4819                 bool found = false;
4820
4821                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4822                         DRM_DEBUG_KMS("probing SDVOB\n");
4823                         found = intel_sdvo_init(dev, SDVOB);
4824                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4825                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4826                                 intel_hdmi_init(dev, SDVOB);
4827                         }
4828
4829                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4830                                 DRM_DEBUG_KMS("probing DP_B\n");
4831                                 intel_dp_init(dev, DP_B);
4832                         }
4833                 }
4834
4835                 /* Before G4X SDVOC doesn't have its own detect register */
4836
4837                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4838                         DRM_DEBUG_KMS("probing SDVOC\n");
4839                         found = intel_sdvo_init(dev, SDVOC);
4840                 }
4841
4842                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4843
4844                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4845                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4846                                 intel_hdmi_init(dev, SDVOC);
4847                         }
4848                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4849                                 DRM_DEBUG_KMS("probing DP_C\n");
4850                                 intel_dp_init(dev, DP_C);
4851                         }
4852                 }
4853
4854                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4855                     (I915_READ(DP_D) & DP_DETECTED)) {
4856                         DRM_DEBUG_KMS("probing DP_D\n");
4857                         intel_dp_init(dev, DP_D);
4858                 }
4859         } else if (IS_GEN2(dev))
4860                 intel_dvo_init(dev);
4861
4862         if (SUPPORTS_TV(dev))
4863                 intel_tv_init(dev);
4864
4865         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4866                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4867
4868                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4869                 encoder->possible_clones = intel_encoder_clones(dev,
4870                                                 intel_encoder->clone_mask);
4871         }
4872 }
4873
4874 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4875 {
4876         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4877         struct drm_device *dev = fb->dev;
4878
4879         if (fb->fbdev)
4880                 intelfb_remove(dev, fb);
4881
4882         drm_framebuffer_cleanup(fb);
4883         drm_gem_object_unreference_unlocked(intel_fb->obj);
4884
4885         kfree(intel_fb);
4886 }
4887
4888 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4889                                                 struct drm_file *file_priv,
4890                                                 unsigned int *handle)
4891 {
4892         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4893         struct drm_gem_object *object = intel_fb->obj;
4894
4895         return drm_gem_handle_create(file_priv, object, handle);
4896 }
4897
4898 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4899         .destroy = intel_user_framebuffer_destroy,
4900         .create_handle = intel_user_framebuffer_create_handle,
4901 };
4902
4903 int intel_framebuffer_create(struct drm_device *dev,
4904                              struct drm_mode_fb_cmd *mode_cmd,
4905                              struct drm_framebuffer **fb,
4906                              struct drm_gem_object *obj)
4907 {
4908         struct intel_framebuffer *intel_fb;
4909         int ret;
4910
4911         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4912         if (!intel_fb)
4913                 return -ENOMEM;
4914
4915         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4916         if (ret) {
4917                 DRM_ERROR("framebuffer init failed %d\n", ret);
4918                 return ret;
4919         }
4920
4921         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4922
4923         intel_fb->obj = obj;
4924
4925         *fb = &intel_fb->base;
4926
4927         return 0;
4928 }
4929
4930
4931 static struct drm_framebuffer *
4932 intel_user_framebuffer_create(struct drm_device *dev,
4933                               struct drm_file *filp,
4934                               struct drm_mode_fb_cmd *mode_cmd)
4935 {
4936         struct drm_gem_object *obj;
4937         struct drm_framebuffer *fb;
4938         int ret;
4939
4940         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4941         if (!obj)
4942                 return NULL;
4943
4944         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4945         if (ret) {
4946                 drm_gem_object_unreference_unlocked(obj);
4947                 return NULL;
4948         }
4949
4950         return fb;
4951 }
4952
4953 static const struct drm_mode_config_funcs intel_mode_funcs = {
4954         .fb_create = intel_user_framebuffer_create,
4955         .fb_changed = intelfb_probe,
4956 };
4957
4958 static struct drm_gem_object *
4959 intel_alloc_power_context(struct drm_device *dev)
4960 {
4961         struct drm_gem_object *pwrctx;
4962         int ret;
4963
4964         pwrctx = drm_gem_object_alloc(dev, 4096);
4965         if (!pwrctx) {
4966                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4967                 return NULL;
4968         }
4969
4970         mutex_lock(&dev->struct_mutex);
4971         ret = i915_gem_object_pin(pwrctx, 4096);
4972         if (ret) {
4973                 DRM_ERROR("failed to pin power context: %d\n", ret);
4974                 goto err_unref;
4975         }
4976
4977         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4978         if (ret) {
4979                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
4980                 goto err_unpin;
4981         }
4982         mutex_unlock(&dev->struct_mutex);
4983
4984         return pwrctx;
4985
4986 err_unpin:
4987         i915_gem_object_unpin(pwrctx);
4988 err_unref:
4989         drm_gem_object_unreference(pwrctx);
4990         mutex_unlock(&dev->struct_mutex);
4991         return NULL;
4992 }
4993
4994 void ironlake_enable_drps(struct drm_device *dev)
4995 {
4996         struct drm_i915_private *dev_priv = dev->dev_private;
4997         u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl;
4998         u8 fmax, fmin, fstart, vstart;
4999         int i = 0;
5000
5001         /* 100ms RC evaluation intervals */
5002         I915_WRITE(RCUPEI, 100000);
5003         I915_WRITE(RCDNEI, 100000);
5004
5005         /* Set max/min thresholds to 90ms and 80ms respectively */
5006         I915_WRITE(RCBMAXAVG, 90000);
5007         I915_WRITE(RCBMINAVG, 80000);
5008
5009         I915_WRITE(MEMIHYST, 1);
5010
5011         /* Set up min, max, and cur for interrupt handling */
5012         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5013         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5014         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5015                 MEMMODE_FSTART_SHIFT;
5016         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5017                 PXVFREQ_PX_SHIFT;
5018
5019         dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */
5020         dev_priv->min_delay = fmin;
5021         dev_priv->cur_delay = fstart;
5022
5023         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5024
5025         /*
5026          * Interrupts will be enabled in ironlake_irq_postinstall
5027          */
5028
5029         I915_WRITE(VIDSTART, vstart);
5030         POSTING_READ(VIDSTART);
5031
5032         rgvmodectl |= MEMMODE_SWMODE_EN;
5033         I915_WRITE(MEMMODECTL, rgvmodectl);
5034
5035         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5036                 if (i++ > 100) {
5037                         DRM_ERROR("stuck trying to change perf mode\n");
5038                         break;
5039                 }
5040                 msleep(1);
5041         }
5042         msleep(1);
5043
5044         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5045                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5046         I915_WRITE(MEMSWCTL, rgvswctl);
5047         POSTING_READ(MEMSWCTL);
5048
5049         rgvswctl |= MEMCTL_CMD_STS;
5050         I915_WRITE(MEMSWCTL, rgvswctl);
5051 }
5052
5053 void ironlake_disable_drps(struct drm_device *dev)
5054 {
5055         struct drm_i915_private *dev_priv = dev->dev_private;
5056         u32 rgvswctl;
5057         u8 fstart;
5058
5059         /* Ack interrupts, disable EFC interrupt */
5060         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5061         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5062         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5063         I915_WRITE(DEIIR, DE_PCU_EVENT);
5064         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5065
5066         /* Go back to the starting frequency */
5067         fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >>
5068                 MEMMODE_FSTART_SHIFT;
5069         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5070                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5071         I915_WRITE(MEMSWCTL, rgvswctl);
5072         msleep(1);
5073         rgvswctl |= MEMCTL_CMD_STS;
5074         I915_WRITE(MEMSWCTL, rgvswctl);
5075         msleep(1);
5076
5077 }
5078
5079 void intel_init_clock_gating(struct drm_device *dev)
5080 {
5081         struct drm_i915_private *dev_priv = dev->dev_private;
5082
5083         /*
5084          * Disable clock gating reported to work incorrectly according to the
5085          * specs, but enable as much else as we can.
5086          */
5087         if (HAS_PCH_SPLIT(dev)) {
5088                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5089
5090                 if (IS_IRONLAKE(dev)) {
5091                         /* Required for FBC */
5092                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5093                         /* Required for CxSR */
5094                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5095
5096                         I915_WRITE(PCH_3DCGDIS0,
5097                                    MARIUNIT_CLOCK_GATE_DISABLE |
5098                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5099                 }
5100
5101                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5102
5103                 /*
5104                  * According to the spec the following bits should be set in
5105                  * order to enable memory self-refresh
5106                  * The bit 22/21 of 0x42004
5107                  * The bit 5 of 0x42020
5108                  * The bit 15 of 0x45000
5109                  */
5110                 if (IS_IRONLAKE(dev)) {
5111                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5112                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5113                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5114                         I915_WRITE(ILK_DSPCLK_GATE,
5115                                         (I915_READ(ILK_DSPCLK_GATE) |
5116                                                 ILK_DPARB_CLK_GATE));
5117                         I915_WRITE(DISP_ARB_CTL,
5118                                         (I915_READ(DISP_ARB_CTL) |
5119                                                 DISP_FBC_WM_DIS));
5120                 }
5121                 return;
5122         } else if (IS_G4X(dev)) {
5123                 uint32_t dspclk_gate;
5124                 I915_WRITE(RENCLK_GATE_D1, 0);
5125                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5126                        GS_UNIT_CLOCK_GATE_DISABLE |
5127                        CL_UNIT_CLOCK_GATE_DISABLE);
5128                 I915_WRITE(RAMCLK_GATE_D, 0);
5129                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5130                         OVRUNIT_CLOCK_GATE_DISABLE |
5131                         OVCUNIT_CLOCK_GATE_DISABLE;
5132                 if (IS_GM45(dev))
5133                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5134                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5135         } else if (IS_I965GM(dev)) {
5136                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5137                 I915_WRITE(RENCLK_GATE_D2, 0);
5138                 I915_WRITE(DSPCLK_GATE_D, 0);
5139                 I915_WRITE(RAMCLK_GATE_D, 0);
5140                 I915_WRITE16(DEUC, 0);
5141         } else if (IS_I965G(dev)) {
5142                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5143                        I965_RCC_CLOCK_GATE_DISABLE |
5144                        I965_RCPB_CLOCK_GATE_DISABLE |
5145                        I965_ISC_CLOCK_GATE_DISABLE |
5146                        I965_FBC_CLOCK_GATE_DISABLE);
5147                 I915_WRITE(RENCLK_GATE_D2, 0);
5148         } else if (IS_I9XX(dev)) {
5149                 u32 dstate = I915_READ(D_STATE);
5150
5151                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5152                         DSTATE_DOT_CLOCK_GATING;
5153                 I915_WRITE(D_STATE, dstate);
5154         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5155                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5156         } else if (IS_I830(dev)) {
5157                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5158         }
5159
5160         /*
5161          * GPU can automatically power down the render unit if given a page
5162          * to save state.
5163          */
5164         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5165                 struct drm_i915_gem_object *obj_priv = NULL;
5166
5167                 if (dev_priv->pwrctx) {
5168                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5169                 } else {
5170                         struct drm_gem_object *pwrctx;
5171
5172                         pwrctx = intel_alloc_power_context(dev);
5173                         if (pwrctx) {
5174                                 dev_priv->pwrctx = pwrctx;
5175                                 obj_priv = to_intel_bo(pwrctx);
5176                         }
5177                 }
5178
5179                 if (obj_priv) {
5180                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5181                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5182                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5183                 }
5184         }
5185 }
5186
5187 /* Set up chip specific display functions */
5188 static void intel_init_display(struct drm_device *dev)
5189 {
5190         struct drm_i915_private *dev_priv = dev->dev_private;
5191
5192         /* We always want a DPMS function */
5193         if (HAS_PCH_SPLIT(dev))
5194                 dev_priv->display.dpms = ironlake_crtc_dpms;
5195         else
5196                 dev_priv->display.dpms = i9xx_crtc_dpms;
5197
5198         /* Only mobile has FBC, leave pointers NULL for other chips */
5199         if (IS_MOBILE(dev)) {
5200                 if (IS_GM45(dev)) {
5201                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5202                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5203                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5204                 } else if (IS_I965GM(dev)) {
5205                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5206                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5207                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5208                 }
5209                 /* 855GM needs testing */
5210         }
5211
5212         /* Returns the core display clock speed */
5213         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5214                 dev_priv->display.get_display_clock_speed =
5215                         i945_get_display_clock_speed;
5216         else if (IS_I915G(dev))
5217                 dev_priv->display.get_display_clock_speed =
5218                         i915_get_display_clock_speed;
5219         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5220                 dev_priv->display.get_display_clock_speed =
5221                         i9xx_misc_get_display_clock_speed;
5222         else if (IS_I915GM(dev))
5223                 dev_priv->display.get_display_clock_speed =
5224                         i915gm_get_display_clock_speed;
5225         else if (IS_I865G(dev))
5226                 dev_priv->display.get_display_clock_speed =
5227                         i865_get_display_clock_speed;
5228         else if (IS_I85X(dev))
5229                 dev_priv->display.get_display_clock_speed =
5230                         i855_get_display_clock_speed;
5231         else /* 852, 830 */
5232                 dev_priv->display.get_display_clock_speed =
5233                         i830_get_display_clock_speed;
5234
5235         /* For FIFO watermark updates */
5236         if (HAS_PCH_SPLIT(dev)) {
5237                 if (IS_IRONLAKE(dev)) {
5238                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5239                                 dev_priv->display.update_wm = ironlake_update_wm;
5240                         else {
5241                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5242                                               "Disable CxSR\n");
5243                                 dev_priv->display.update_wm = NULL;
5244                         }
5245                 } else
5246                         dev_priv->display.update_wm = NULL;
5247         } else if (IS_PINEVIEW(dev)) {
5248                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5249                                             dev_priv->fsb_freq,
5250                                             dev_priv->mem_freq)) {
5251                         DRM_INFO("failed to find known CxSR latency "
5252                                  "(found fsb freq %d, mem freq %d), "
5253                                  "disabling CxSR\n",
5254                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5255                         /* Disable CxSR and never update its watermark again */
5256                         pineview_disable_cxsr(dev);
5257                         dev_priv->display.update_wm = NULL;
5258                 } else
5259                         dev_priv->display.update_wm = pineview_update_wm;
5260         } else if (IS_G4X(dev))
5261                 dev_priv->display.update_wm = g4x_update_wm;
5262         else if (IS_I965G(dev))
5263                 dev_priv->display.update_wm = i965_update_wm;
5264         else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
5265                 dev_priv->display.update_wm = i9xx_update_wm;
5266                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5267         } else {
5268                 if (IS_I85X(dev))
5269                         dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5270                 else if (IS_845G(dev))
5271                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5272                 else
5273                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5274                 dev_priv->display.update_wm = i830_update_wm;
5275         }
5276 }
5277
5278 void intel_modeset_init(struct drm_device *dev)
5279 {
5280         struct drm_i915_private *dev_priv = dev->dev_private;
5281         int num_pipe;
5282         int i;
5283
5284         drm_mode_config_init(dev);
5285
5286         dev->mode_config.min_width = 0;
5287         dev->mode_config.min_height = 0;
5288
5289         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5290
5291         intel_init_display(dev);
5292
5293         if (IS_I965G(dev)) {
5294                 dev->mode_config.max_width = 8192;
5295                 dev->mode_config.max_height = 8192;
5296         } else if (IS_I9XX(dev)) {
5297                 dev->mode_config.max_width = 4096;
5298                 dev->mode_config.max_height = 4096;
5299         } else {
5300                 dev->mode_config.max_width = 2048;
5301                 dev->mode_config.max_height = 2048;
5302         }
5303
5304         /* set memory base */
5305         if (IS_I9XX(dev))
5306                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5307         else
5308                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5309
5310         if (IS_MOBILE(dev) || IS_I9XX(dev))
5311                 num_pipe = 2;
5312         else
5313                 num_pipe = 1;
5314         DRM_DEBUG_KMS("%d display pipe%s available.\n",
5315                   num_pipe, num_pipe > 1 ? "s" : "");
5316
5317         for (i = 0; i < num_pipe; i++) {
5318                 intel_crtc_init(dev, i);
5319         }
5320
5321         intel_setup_outputs(dev);
5322
5323         intel_init_clock_gating(dev);
5324
5325         if (IS_IRONLAKE_M(dev))
5326                 ironlake_enable_drps(dev);
5327
5328         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5329         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5330                     (unsigned long)dev);
5331
5332         intel_setup_overlay(dev);
5333 }
5334
5335 void intel_modeset_cleanup(struct drm_device *dev)
5336 {
5337         struct drm_i915_private *dev_priv = dev->dev_private;
5338         struct drm_crtc *crtc;
5339         struct intel_crtc *intel_crtc;
5340
5341         mutex_lock(&dev->struct_mutex);
5342
5343         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5344                 /* Skip inactive CRTCs */
5345                 if (!crtc->fb)
5346                         continue;
5347
5348                 intel_crtc = to_intel_crtc(crtc);
5349                 intel_increase_pllclock(crtc, false);
5350                 del_timer_sync(&intel_crtc->idle_timer);
5351         }
5352
5353         del_timer_sync(&dev_priv->idle_timer);
5354
5355         if (dev_priv->display.disable_fbc)
5356                 dev_priv->display.disable_fbc(dev);
5357
5358         if (dev_priv->pwrctx) {
5359                 struct drm_i915_gem_object *obj_priv;
5360
5361                 obj_priv = to_intel_bo(dev_priv->pwrctx);
5362                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5363                 I915_READ(PWRCTXA);
5364                 i915_gem_object_unpin(dev_priv->pwrctx);
5365                 drm_gem_object_unreference(dev_priv->pwrctx);
5366         }
5367
5368         if (IS_IRONLAKE_M(dev))
5369                 ironlake_disable_drps(dev);
5370
5371         mutex_unlock(&dev->struct_mutex);
5372
5373         drm_mode_config_cleanup(dev);
5374 }
5375
5376
5377 /*
5378  * Return which encoder is currently attached for connector.
5379  */
5380 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5381 {
5382         struct drm_mode_object *obj;
5383         struct drm_encoder *encoder;
5384         int i;
5385
5386         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5387                 if (connector->encoder_ids[i] == 0)
5388                         break;
5389
5390                 obj = drm_mode_object_find(connector->dev,
5391                                            connector->encoder_ids[i],
5392                                            DRM_MODE_OBJECT_ENCODER);
5393                 if (!obj)
5394                         continue;
5395
5396                 encoder = obj_to_encoder(obj);
5397                 return encoder;
5398         }
5399         return NULL;
5400 }
5401
5402 /*
5403  * set vga decode state - true == enable VGA decode
5404  */
5405 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5406 {
5407         struct drm_i915_private *dev_priv = dev->dev_private;
5408         u16 gmch_ctrl;
5409
5410         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5411         if (state)
5412                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5413         else
5414                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5415         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5416         return 0;
5417 }