drm/i915: intel_display.c handle latency variable efficiently
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_dp.h"
36
37 #include "drm_crtc_helper.h"
38
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
40
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
44
45 typedef struct {
46     /* given values */
47     int n;
48     int m1, m2;
49     int p1, p2;
50     /* derived values */
51     int dot;
52     int vco;
53     int m;
54     int p;
55 } intel_clock_t;
56
57 typedef struct {
58     int min, max;
59 } intel_range_t;
60
61 typedef struct {
62     int dot_limit;
63     int p2_slow, p2_fast;
64 } intel_p2_t;
65
66 #define INTEL_P2_NUM                  2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
70     intel_p2_t      p2;
71     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72                       int, int, intel_clock_t *);
73     bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74                               int, int, intel_clock_t *);
75 };
76
77 #define I8XX_DOT_MIN              25000
78 #define I8XX_DOT_MAX             350000
79 #define I8XX_VCO_MIN             930000
80 #define I8XX_VCO_MAX            1400000
81 #define I8XX_N_MIN                    3
82 #define I8XX_N_MAX                   16
83 #define I8XX_M_MIN                   96
84 #define I8XX_M_MAX                  140
85 #define I8XX_M1_MIN                  18
86 #define I8XX_M1_MAX                  26
87 #define I8XX_M2_MIN                   6
88 #define I8XX_M2_MAX                  16
89 #define I8XX_P_MIN                    4
90 #define I8XX_P_MAX                  128
91 #define I8XX_P1_MIN                   2
92 #define I8XX_P1_MAX                  33
93 #define I8XX_P1_LVDS_MIN              1
94 #define I8XX_P1_LVDS_MAX              6
95 #define I8XX_P2_SLOW                  4
96 #define I8XX_P2_FAST                  2
97 #define I8XX_P2_LVDS_SLOW             14
98 #define I8XX_P2_LVDS_FAST             7
99 #define I8XX_P2_SLOW_LIMIT       165000
100
101 #define I9XX_DOT_MIN              20000
102 #define I9XX_DOT_MAX             400000
103 #define I9XX_VCO_MIN            1400000
104 #define I9XX_VCO_MAX            2800000
105 #define IGD_VCO_MIN             1700000
106 #define IGD_VCO_MAX             3500000
107 #define I9XX_N_MIN                    1
108 #define I9XX_N_MAX                    6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN                     3
111 #define IGD_N_MAX                     6
112 #define I9XX_M_MIN                   70
113 #define I9XX_M_MAX                  120
114 #define IGD_M_MIN                     2
115 #define IGD_M_MAX                   256
116 #define I9XX_M1_MIN                  10
117 #define I9XX_M1_MAX                  22
118 #define I9XX_M2_MIN                   5
119 #define I9XX_M2_MAX                   9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN                    0
122 #define IGD_M1_MAX                    0
123 #define IGD_M2_MIN                    0
124 #define IGD_M2_MAX                    254
125 #define I9XX_P_SDVO_DAC_MIN           5
126 #define I9XX_P_SDVO_DAC_MAX          80
127 #define I9XX_P_LVDS_MIN               7
128 #define I9XX_P_LVDS_MAX              98
129 #define IGD_P_LVDS_MIN                7
130 #define IGD_P_LVDS_MAX               112
131 #define I9XX_P1_MIN                   1
132 #define I9XX_P1_MAX                   8
133 #define I9XX_P2_SDVO_DAC_SLOW                10
134 #define I9XX_P2_SDVO_DAC_FAST                 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
136 #define I9XX_P2_LVDS_SLOW                    14
137 #define I9XX_P2_LVDS_FAST                     7
138 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
139
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN           25000
142 #define G4X_DOT_SDVO_MAX           270000
143 #define G4X_VCO_MIN                1750000
144 #define G4X_VCO_MAX                3500000
145 #define G4X_N_SDVO_MIN             1
146 #define G4X_N_SDVO_MAX             4
147 #define G4X_M_SDVO_MIN             104
148 #define G4X_M_SDVO_MAX             138
149 #define G4X_M1_SDVO_MIN            17
150 #define G4X_M1_SDVO_MAX            23
151 #define G4X_M2_SDVO_MIN            5
152 #define G4X_M2_SDVO_MAX            11
153 #define G4X_P_SDVO_MIN             10
154 #define G4X_P_SDVO_MAX             30
155 #define G4X_P1_SDVO_MIN            1
156 #define G4X_P1_SDVO_MAX            3
157 #define G4X_P2_SDVO_SLOW           10
158 #define G4X_P2_SDVO_FAST           10
159 #define G4X_P2_SDVO_LIMIT          270000
160
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN           22000
163 #define G4X_DOT_HDMI_DAC_MAX           400000
164 #define G4X_N_HDMI_DAC_MIN             1
165 #define G4X_N_HDMI_DAC_MAX             4
166 #define G4X_M_HDMI_DAC_MIN             104
167 #define G4X_M_HDMI_DAC_MAX             138
168 #define G4X_M1_HDMI_DAC_MIN            16
169 #define G4X_M1_HDMI_DAC_MAX            23
170 #define G4X_M2_HDMI_DAC_MIN            5
171 #define G4X_M2_HDMI_DAC_MAX            11
172 #define G4X_P_HDMI_DAC_MIN             5
173 #define G4X_P_HDMI_DAC_MAX             80
174 #define G4X_P1_HDMI_DAC_MIN            1
175 #define G4X_P1_HDMI_DAC_MAX            8
176 #define G4X_P2_HDMI_DAC_SLOW           10
177 #define G4X_P2_HDMI_DAC_FAST           5
178 #define G4X_P2_HDMI_DAC_LIMIT          165000
179
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
198
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
217
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN           161670
220 #define G4X_DOT_DISPLAY_PORT_MAX           227000
221 #define G4X_N_DISPLAY_PORT_MIN             1
222 #define G4X_N_DISPLAY_PORT_MAX             2
223 #define G4X_M_DISPLAY_PORT_MIN             97
224 #define G4X_M_DISPLAY_PORT_MAX             108
225 #define G4X_M1_DISPLAY_PORT_MIN            0x10
226 #define G4X_M1_DISPLAY_PORT_MAX            0x12
227 #define G4X_M2_DISPLAY_PORT_MIN            0x05
228 #define G4X_M2_DISPLAY_PORT_MAX            0x06
229 #define G4X_P_DISPLAY_PORT_MIN             10
230 #define G4X_P_DISPLAY_PORT_MAX             20
231 #define G4X_P1_DISPLAY_PORT_MIN            1
232 #define G4X_P1_DISPLAY_PORT_MAX            2
233 #define G4X_P2_DISPLAY_PORT_SLOW           10
234 #define G4X_P2_DISPLAY_PORT_FAST           10
235 #define G4X_P2_DISPLAY_PORT_LIMIT          0
236
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239    N/M1/M2, so here the range value for them is (actual_value-2).
240  */
241 #define IGDNG_DOT_MIN         25000
242 #define IGDNG_DOT_MAX         350000
243 #define IGDNG_VCO_MIN         1760000
244 #define IGDNG_VCO_MAX         3510000
245 #define IGDNG_N_MIN           1
246 #define IGDNG_N_MAX           5
247 #define IGDNG_M_MIN           79
248 #define IGDNG_M_MAX           118
249 #define IGDNG_M1_MIN          12
250 #define IGDNG_M1_MAX          23
251 #define IGDNG_M2_MIN          5
252 #define IGDNG_M2_MAX          9
253 #define IGDNG_P_SDVO_DAC_MIN  5
254 #define IGDNG_P_SDVO_DAC_MAX  80
255 #define IGDNG_P_LVDS_MIN      28
256 #define IGDNG_P_LVDS_MAX      112
257 #define IGDNG_P1_MIN          1
258 #define IGDNG_P1_MAX          8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
263 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
264
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267                     int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270                             int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273                         int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276                         int target, int refclk, intel_clock_t *best_clock);
277
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280                       int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283                       int target, int refclk, intel_clock_t *best_clock);
284
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
287         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
288         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
289         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
290         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
291         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
292         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
293         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
294         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
296         .find_pll = intel_find_best_PLL,
297         .find_reduced_pll = intel_find_best_reduced_PLL,
298 };
299
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
302         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
303         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
304         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
305         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
306         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
307         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
308         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
309         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
311         .find_pll = intel_find_best_PLL,
312         .find_reduced_pll = intel_find_best_reduced_PLL,
313 };
314         
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
317         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
318         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
319         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
320         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
321         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
322         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
323         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
324         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326         .find_pll = intel_find_best_PLL,
327         .find_reduced_pll = intel_find_best_reduced_PLL,
328 };
329
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
332         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
333         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
334         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
335         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
336         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
337         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
338         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
339         /* The single-channel range is 25-112Mhz, and dual-channel
340          * is 80-224Mhz.  Prefer single channel as much as possible.
341          */
342         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
344         .find_pll = intel_find_best_PLL,
345         .find_reduced_pll = intel_find_best_reduced_PLL,
346 };
347
348     /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
351         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
352         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
353         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
354         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
355         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
356         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
357         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
358         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
359                  .p2_slow = G4X_P2_SDVO_SLOW,
360                  .p2_fast = G4X_P2_SDVO_FAST
361         },
362         .find_pll = intel_g4x_find_best_PLL,
363         .find_reduced_pll = intel_g4x_find_best_PLL,
364 };
365
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
368         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
369         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
370         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
371         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
372         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
373         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
374         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
375         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377                  .p2_fast = G4X_P2_HDMI_DAC_FAST
378         },
379         .find_pll = intel_g4x_find_best_PLL,
380         .find_reduced_pll = intel_g4x_find_best_PLL,
381 };
382
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386         .vco = { .min = G4X_VCO_MIN,
387                  .max = G4X_VCO_MAX },
388         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
403         },
404         .find_pll = intel_g4x_find_best_PLL,
405         .find_reduced_pll = intel_g4x_find_best_PLL,
406 };
407
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411         .vco = { .min = G4X_VCO_MIN,
412                  .max = G4X_VCO_MAX },
413         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
428         },
429         .find_pll = intel_g4x_find_best_PLL,
430         .find_reduced_pll = intel_g4x_find_best_PLL,
431 };
432
433 static const intel_limit_t intel_limits_g4x_display_port = {
434         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435                  .max = G4X_DOT_DISPLAY_PORT_MAX },
436         .vco = { .min = G4X_VCO_MIN,
437                  .max = G4X_VCO_MAX},
438         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
439                  .max = G4X_N_DISPLAY_PORT_MAX },
440         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
441                  .max = G4X_M_DISPLAY_PORT_MAX },
442         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
443                  .max = G4X_M1_DISPLAY_PORT_MAX },
444         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
445                  .max = G4X_M2_DISPLAY_PORT_MAX },
446         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
447                  .max = G4X_P_DISPLAY_PORT_MAX },
448         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
449                  .max = G4X_P1_DISPLAY_PORT_MAX},
450         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453         .find_pll = intel_find_pll_g4x_dp,
454 };
455
456 static const intel_limit_t intel_limits_igd_sdvo = {
457         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
458         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
459         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
460         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
461         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
462         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
463         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
464         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
465         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467         .find_pll = intel_find_best_PLL,
468         .find_reduced_pll = intel_find_best_reduced_PLL,
469 };
470
471 static const intel_limit_t intel_limits_igd_lvds = {
472         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
473         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
474         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
475         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
476         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
477         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
478         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
480         /* IGD only supports single-channel mode. */
481         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
483         .find_pll = intel_find_best_PLL,
484         .find_reduced_pll = intel_find_best_reduced_PLL,
485 };
486
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
489         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
490         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
491         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
492         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
493         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
494         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
495         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
496         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499         .find_pll = intel_igdng_find_best_PLL,
500 };
501
502 static const intel_limit_t intel_limits_igdng_lvds = {
503         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
504         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
505         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
506         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
507         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
508         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
509         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
510         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
511         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512                  .p2_slow = IGDNG_P2_LVDS_SLOW,
513                  .p2_fast = IGDNG_P2_LVDS_FAST },
514         .find_pll = intel_igdng_find_best_PLL,
515 };
516
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
518 {
519         const intel_limit_t *limit;
520         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521                 limit = &intel_limits_igdng_lvds;
522         else
523                 limit = &intel_limits_igdng_sdvo;
524
525         return limit;
526 }
527
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
529 {
530         struct drm_device *dev = crtc->dev;
531         struct drm_i915_private *dev_priv = dev->dev_private;
532         const intel_limit_t *limit;
533
534         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536                     LVDS_CLKB_POWER_UP)
537                         /* LVDS with dual channel */
538                         limit = &intel_limits_g4x_dual_channel_lvds;
539                 else
540                         /* LVDS with dual channel */
541                         limit = &intel_limits_g4x_single_channel_lvds;
542         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544                 limit = &intel_limits_g4x_hdmi;
545         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546                 limit = &intel_limits_g4x_sdvo;
547         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548                 limit = &intel_limits_g4x_display_port;
549         } else /* The option is for other outputs */
550                 limit = &intel_limits_i9xx_sdvo;
551
552         return limit;
553 }
554
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
556 {
557         struct drm_device *dev = crtc->dev;
558         const intel_limit_t *limit;
559
560         if (IS_IGDNG(dev))
561                 limit = intel_igdng_limit(crtc);
562         else if (IS_G4X(dev)) {
563                 limit = intel_g4x_limit(crtc);
564         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566                         limit = &intel_limits_i9xx_lvds;
567                 else
568                         limit = &intel_limits_i9xx_sdvo;
569         } else if (IS_IGD(dev)) {
570                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571                         limit = &intel_limits_igd_lvds;
572                 else
573                         limit = &intel_limits_igd_sdvo;
574         } else {
575                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576                         limit = &intel_limits_i8xx_lvds;
577                 else
578                         limit = &intel_limits_i8xx_dvo;
579         }
580         return limit;
581 }
582
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
585 {
586         clock->m = clock->m2 + 2;
587         clock->p = clock->p1 * clock->p2;
588         clock->vco = refclk * clock->m / clock->n;
589         clock->dot = clock->vco / clock->p;
590 }
591
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
593 {
594         if (IS_IGD(dev)) {
595                 igd_clock(refclk, clock);
596                 return;
597         }
598         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599         clock->p = clock->p1 * clock->p2;
600         clock->vco = refclk * clock->m / (clock->n + 2);
601         clock->dot = clock->vco / clock->p;
602 }
603
604 /**
605  * Returns whether any output on the specified pipe is of the specified type
606  */
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
608 {
609     struct drm_device *dev = crtc->dev;
610     struct drm_mode_config *mode_config = &dev->mode_config;
611     struct drm_connector *l_entry;
612
613     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614             if (l_entry->encoder &&
615                 l_entry->encoder->crtc == crtc) {
616                     struct intel_output *intel_output = to_intel_output(l_entry);
617                     if (intel_output->type == type)
618                             return true;
619             }
620     }
621     return false;
622 }
623
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
626 {
627     struct drm_device *dev = crtc->dev;
628     struct drm_mode_config *mode_config = &dev->mode_config;
629     struct drm_connector *l_entry, *ret = NULL;
630
631     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632             if (l_entry->encoder &&
633                 l_entry->encoder->crtc == crtc) {
634                     ret = l_entry;
635                     break;
636             }
637     }
638     return ret;
639 }
640
641 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
642 /**
643  * Returns whether the given set of divisors are valid for a given refclk with
644  * the given connectors.
645  */
646
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
648 {
649         const intel_limit_t *limit = intel_limit (crtc);
650         struct drm_device *dev = crtc->dev;
651
652         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
653                 INTELPllInvalid ("p1 out of range\n");
654         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
655                 INTELPllInvalid ("p out of range\n");
656         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
657                 INTELPllInvalid ("m2 out of range\n");
658         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
659                 INTELPllInvalid ("m1 out of range\n");
660         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661                 INTELPllInvalid ("m1 <= m2\n");
662         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
663                 INTELPllInvalid ("m out of range\n");
664         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
665                 INTELPllInvalid ("n out of range\n");
666         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667                 INTELPllInvalid ("vco out of range\n");
668         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669          * connector, etc., rather than just a single range.
670          */
671         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672                 INTELPllInvalid ("dot out of range\n");
673
674         return true;
675 }
676
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679                     int target, int refclk, intel_clock_t *best_clock)
680
681 {
682         struct drm_device *dev = crtc->dev;
683         struct drm_i915_private *dev_priv = dev->dev_private;
684         intel_clock_t clock;
685         int err = target;
686
687         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688             (I915_READ(LVDS)) != 0) {
689                 /*
690                  * For LVDS, if the panel is on, just rely on its current
691                  * settings for dual-channel.  We haven't figured out how to
692                  * reliably set up different single/dual channel state, if we
693                  * even can.
694                  */
695                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696                     LVDS_CLKB_POWER_UP)
697                         clock.p2 = limit->p2.p2_fast;
698                 else
699                         clock.p2 = limit->p2.p2_slow;
700         } else {
701                 if (target < limit->p2.dot_limit)
702                         clock.p2 = limit->p2.p2_slow;
703                 else
704                         clock.p2 = limit->p2.p2_fast;
705         }
706
707         memset (best_clock, 0, sizeof (*best_clock));
708
709         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
710                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
711                      clock.m1++) {
712                         for (clock.m2 = limit->m2.min;
713                              clock.m2 <= limit->m2.max; clock.m2++) {
714                                 /* m1 is always 0 in IGD */
715                                 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
716                                         break;
717                                 for (clock.n = limit->n.min;
718                                      clock.n <= limit->n.max; clock.n++) {
719                                         int this_err;
720
721                                         intel_clock(dev, refclk, &clock);
722
723                                         if (!intel_PLL_is_valid(crtc, &clock))
724                                                 continue;
725
726                                         this_err = abs(clock.dot - target);
727                                         if (this_err < err) {
728                                                 *best_clock = clock;
729                                                 err = this_err;
730                                         }
731                                 }
732                         }
733                 }
734         }
735
736         return (err != target);
737 }
738
739
740 static bool
741 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
742                             int target, int refclk, intel_clock_t *best_clock)
743
744 {
745         struct drm_device *dev = crtc->dev;
746         intel_clock_t clock;
747         int err = target;
748         bool found = false;
749
750         memcpy(&clock, best_clock, sizeof(intel_clock_t));
751
752         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
753                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
754                         /* m1 is always 0 in IGD */
755                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
756                                 break;
757                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
758                              clock.n++) {
759                                 int this_err;
760
761                                 intel_clock(dev, refclk, &clock);
762
763                                 if (!intel_PLL_is_valid(crtc, &clock))
764                                         continue;
765
766                                 this_err = abs(clock.dot - target);
767                                 if (this_err < err) {
768                                         *best_clock = clock;
769                                         err = this_err;
770                                         found = true;
771                                 }
772                         }
773                 }
774         }
775
776         return found;
777 }
778
779 static bool
780 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
781                         int target, int refclk, intel_clock_t *best_clock)
782 {
783         struct drm_device *dev = crtc->dev;
784         struct drm_i915_private *dev_priv = dev->dev_private;
785         intel_clock_t clock;
786         int max_n;
787         bool found;
788         /* approximately equals target * 0.00488 */
789         int err_most = (target >> 8) + (target >> 10);
790         found = false;
791
792         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
793                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
794                     LVDS_CLKB_POWER_UP)
795                         clock.p2 = limit->p2.p2_fast;
796                 else
797                         clock.p2 = limit->p2.p2_slow;
798         } else {
799                 if (target < limit->p2.dot_limit)
800                         clock.p2 = limit->p2.p2_slow;
801                 else
802                         clock.p2 = limit->p2.p2_fast;
803         }
804
805         memset(best_clock, 0, sizeof(*best_clock));
806         max_n = limit->n.max;
807         /* based on hardware requriment prefer smaller n to precision */
808         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
809                 /* based on hardware requirment prefere larger m1,m2 */
810                 for (clock.m1 = limit->m1.max;
811                      clock.m1 >= limit->m1.min; clock.m1--) {
812                         for (clock.m2 = limit->m2.max;
813                              clock.m2 >= limit->m2.min; clock.m2--) {
814                                 for (clock.p1 = limit->p1.max;
815                                      clock.p1 >= limit->p1.min; clock.p1--) {
816                                         int this_err;
817
818                                         intel_clock(dev, refclk, &clock);
819                                         if (!intel_PLL_is_valid(crtc, &clock))
820                                                 continue;
821                                         this_err = abs(clock.dot - target) ;
822                                         if (this_err < err_most) {
823                                                 *best_clock = clock;
824                                                 err_most = this_err;
825                                                 max_n = clock.n;
826                                                 found = true;
827                                         }
828                                 }
829                         }
830                 }
831         }
832         return found;
833 }
834
835 static bool
836 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
837                       int target, int refclk, intel_clock_t *best_clock)
838 {
839         struct drm_device *dev = crtc->dev;
840         intel_clock_t clock;
841         if (target < 200000) {
842                 clock.n = 1;
843                 clock.p1 = 2;
844                 clock.p2 = 10;
845                 clock.m1 = 12;
846                 clock.m2 = 9;
847         } else {
848                 clock.n = 2;
849                 clock.p1 = 1;
850                 clock.p2 = 10;
851                 clock.m1 = 14;
852                 clock.m2 = 8;
853         }
854         intel_clock(dev, refclk, &clock);
855         memcpy(best_clock, &clock, sizeof(intel_clock_t));
856         return true;
857 }
858
859 static bool
860 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
861                         int target, int refclk, intel_clock_t *best_clock)
862 {
863         struct drm_device *dev = crtc->dev;
864         struct drm_i915_private *dev_priv = dev->dev_private;
865         intel_clock_t clock;
866         int max_n;
867         bool found;
868         int err_most = 47;
869         found = false;
870
871         /* eDP has only 2 clock choice, no n/m/p setting */
872         if (HAS_eDP)
873                 return true;
874
875         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
876                 return intel_find_pll_igdng_dp(limit, crtc, target,
877                                                refclk, best_clock);
878
879         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
881                     LVDS_CLKB_POWER_UP)
882                         clock.p2 = limit->p2.p2_fast;
883                 else
884                         clock.p2 = limit->p2.p2_slow;
885         } else {
886                 if (target < limit->p2.dot_limit)
887                         clock.p2 = limit->p2.p2_slow;
888                 else
889                         clock.p2 = limit->p2.p2_fast;
890         }
891
892         memset(best_clock, 0, sizeof(*best_clock));
893         max_n = limit->n.max;
894         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
895                 /* based on hardware requriment prefer smaller n to precision */
896                 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
897                         /* based on hardware requirment prefere larger m1,m2 */
898                         for (clock.m1 = limit->m1.max;
899                              clock.m1 >= limit->m1.min; clock.m1--) {
900                                 for (clock.m2 = limit->m2.max;
901                                      clock.m2 >= limit->m2.min; clock.m2--) {
902                                         int this_err;
903
904                                         intel_clock(dev, refclk, &clock);
905                                         if (!intel_PLL_is_valid(crtc, &clock))
906                                                 continue;
907                                         this_err = abs((10000 - (target*10000/clock.dot)));
908                                         if (this_err < err_most) {
909                                                 *best_clock = clock;
910                                                 err_most = this_err;
911                                                 max_n = clock.n;
912                                                 found = true;
913                                                 /* found on first matching */
914                                                 goto out;
915                                         }
916                                 }
917                         }
918                 }
919         }
920 out:
921         return found;
922 }
923
924 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
925 static bool
926 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
927                       int target, int refclk, intel_clock_t *best_clock)
928 {
929     intel_clock_t clock;
930     if (target < 200000) {
931         clock.p1 = 2;
932         clock.p2 = 10;
933         clock.n = 2;
934         clock.m1 = 23;
935         clock.m2 = 8;
936     } else {
937         clock.p1 = 1;
938         clock.p2 = 10;
939         clock.n = 1;
940         clock.m1 = 14;
941         clock.m2 = 2;
942     }
943     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
944     clock.p = (clock.p1 * clock.p2);
945     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
946     memcpy(best_clock, &clock, sizeof(intel_clock_t));
947     return true;
948 }
949
950 void
951 intel_wait_for_vblank(struct drm_device *dev)
952 {
953         /* Wait for 20ms, i.e. one cycle at 50hz. */
954         mdelay(20);
955 }
956
957 /* Parameters have changed, update FBC info */
958 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
959 {
960         struct drm_device *dev = crtc->dev;
961         struct drm_i915_private *dev_priv = dev->dev_private;
962         struct drm_framebuffer *fb = crtc->fb;
963         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
964         struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
965         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
966         int plane, i;
967         u32 fbc_ctl, fbc_ctl2;
968
969         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
970
971         if (fb->pitch < dev_priv->cfb_pitch)
972                 dev_priv->cfb_pitch = fb->pitch;
973
974         /* FBC_CTL wants 64B units */
975         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
976         dev_priv->cfb_fence = obj_priv->fence_reg;
977         dev_priv->cfb_plane = intel_crtc->plane;
978         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
979
980         /* Clear old tags */
981         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
982                 I915_WRITE(FBC_TAG + (i * 4), 0);
983
984         /* Set it up... */
985         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
986         if (obj_priv->tiling_mode != I915_TILING_NONE)
987                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
988         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
989         I915_WRITE(FBC_FENCE_OFF, crtc->y);
990
991         /* enable it... */
992         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
993         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
994         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
995         if (obj_priv->tiling_mode != I915_TILING_NONE)
996                 fbc_ctl |= dev_priv->cfb_fence;
997         I915_WRITE(FBC_CONTROL, fbc_ctl);
998
999         DRM_DEBUG("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1000                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1001 }
1002
1003 void i8xx_disable_fbc(struct drm_device *dev)
1004 {
1005         struct drm_i915_private *dev_priv = dev->dev_private;
1006         u32 fbc_ctl;
1007
1008         if (!I915_HAS_FBC(dev))
1009                 return;
1010
1011         /* Disable compression */
1012         fbc_ctl = I915_READ(FBC_CONTROL);
1013         fbc_ctl &= ~FBC_CTL_EN;
1014         I915_WRITE(FBC_CONTROL, fbc_ctl);
1015
1016         /* Wait for compressing bit to clear */
1017         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1018                 ; /* nothing */
1019
1020         intel_wait_for_vblank(dev);
1021
1022         DRM_DEBUG("disabled FBC\n");
1023 }
1024
1025 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1026 {
1027         struct drm_device *dev = crtc->dev;
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029
1030         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1031 }
1032
1033 /**
1034  * intel_update_fbc - enable/disable FBC as needed
1035  * @crtc: CRTC to point the compressor at
1036  * @mode: mode in use
1037  *
1038  * Set up the framebuffer compression hardware at mode set time.  We
1039  * enable it if possible:
1040  *   - plane A only (on pre-965)
1041  *   - no pixel mulitply/line duplication
1042  *   - no alpha buffer discard
1043  *   - no dual wide
1044  *   - framebuffer <= 2048 in width, 1536 in height
1045  *
1046  * We can't assume that any compression will take place (worst case),
1047  * so the compressed buffer has to be the same size as the uncompressed
1048  * one.  It also must reside (along with the line length buffer) in
1049  * stolen memory.
1050  *
1051  * We need to enable/disable FBC on a global basis.
1052  */
1053 static void intel_update_fbc(struct drm_crtc *crtc,
1054                              struct drm_display_mode *mode)
1055 {
1056         struct drm_device *dev = crtc->dev;
1057         struct drm_i915_private *dev_priv = dev->dev_private;
1058         struct drm_framebuffer *fb = crtc->fb;
1059         struct intel_framebuffer *intel_fb;
1060         struct drm_i915_gem_object *obj_priv;
1061         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1062         int plane = intel_crtc->plane;
1063
1064         if (!i915_powersave)
1065                 return;
1066
1067         if (!crtc->fb)
1068                 return;
1069
1070         intel_fb = to_intel_framebuffer(fb);
1071         obj_priv = intel_fb->obj->driver_private;
1072
1073         /*
1074          * If FBC is already on, we just have to verify that we can
1075          * keep it that way...
1076          * Need to disable if:
1077          *   - changing FBC params (stride, fence, mode)
1078          *   - new fb is too large to fit in compressed buffer
1079          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1080          */
1081         if (intel_fb->obj->size > dev_priv->cfb_size) {
1082                 DRM_DEBUG("framebuffer too large, disabling compression\n");
1083                 goto out_disable;
1084         }
1085         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1086             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1087                 DRM_DEBUG("mode incompatible with compression, disabling\n");
1088                 goto out_disable;
1089         }
1090         if ((mode->hdisplay > 2048) ||
1091             (mode->vdisplay > 1536)) {
1092                 DRM_DEBUG("mode too large for compression, disabling\n");
1093                 goto out_disable;
1094         }
1095         if (IS_I9XX(dev) && plane != 0) {
1096                 DRM_DEBUG("plane not 0, disabling compression\n");
1097                 goto out_disable;
1098         }
1099         if (obj_priv->tiling_mode != I915_TILING_X) {
1100                 DRM_DEBUG("framebuffer not tiled, disabling compression\n");
1101                 goto out_disable;
1102         }
1103
1104         if (i8xx_fbc_enabled(crtc)) {
1105                 /* We can re-enable it in this case, but need to update pitch */
1106                 if (fb->pitch > dev_priv->cfb_pitch)
1107                         i8xx_disable_fbc(dev);
1108                 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1109                         i8xx_disable_fbc(dev);
1110                 if (plane != dev_priv->cfb_plane)
1111                         i8xx_disable_fbc(dev);
1112         }
1113
1114         if (!i8xx_fbc_enabled(crtc)) {
1115                 /* Now try to turn it back on if possible */
1116                 i8xx_enable_fbc(crtc, 500);
1117         }
1118
1119         return;
1120
1121 out_disable:
1122         DRM_DEBUG("unsupported config, disabling FBC\n");
1123         /* Multiple disables should be harmless */
1124         if (i8xx_fbc_enabled(crtc))
1125                 i8xx_disable_fbc(dev);
1126 }
1127
1128 static int
1129 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1130                     struct drm_framebuffer *old_fb)
1131 {
1132         struct drm_device *dev = crtc->dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         struct drm_i915_master_private *master_priv;
1135         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1136         struct intel_framebuffer *intel_fb;
1137         struct drm_i915_gem_object *obj_priv;
1138         struct drm_gem_object *obj;
1139         int pipe = intel_crtc->pipe;
1140         int plane = intel_crtc->plane;
1141         unsigned long Start, Offset;
1142         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1143         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1144         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1145         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1146         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1147         u32 dspcntr, alignment;
1148         int ret;
1149
1150         /* no fb bound */
1151         if (!crtc->fb) {
1152                 DRM_DEBUG("No FB bound\n");
1153                 return 0;
1154         }
1155
1156         switch (plane) {
1157         case 0:
1158         case 1:
1159                 break;
1160         default:
1161                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1162                 return -EINVAL;
1163         }
1164
1165         intel_fb = to_intel_framebuffer(crtc->fb);
1166         obj = intel_fb->obj;
1167         obj_priv = obj->driver_private;
1168
1169         switch (obj_priv->tiling_mode) {
1170         case I915_TILING_NONE:
1171                 alignment = 64 * 1024;
1172                 break;
1173         case I915_TILING_X:
1174                 /* pin() will align the object as required by fence */
1175                 alignment = 0;
1176                 break;
1177         case I915_TILING_Y:
1178                 /* FIXME: Is this true? */
1179                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1180                 return -EINVAL;
1181         default:
1182                 BUG();
1183         }
1184
1185         mutex_lock(&dev->struct_mutex);
1186         ret = i915_gem_object_pin(obj, alignment);
1187         if (ret != 0) {
1188                 mutex_unlock(&dev->struct_mutex);
1189                 return ret;
1190         }
1191
1192         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1193         if (ret != 0) {
1194                 i915_gem_object_unpin(obj);
1195                 mutex_unlock(&dev->struct_mutex);
1196                 return ret;
1197         }
1198
1199         /* Pre-i965 needs to install a fence for tiled scan-out */
1200         if (!IS_I965G(dev) &&
1201             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1202             obj_priv->tiling_mode != I915_TILING_NONE) {
1203                 ret = i915_gem_object_get_fence_reg(obj);
1204                 if (ret != 0) {
1205                         i915_gem_object_unpin(obj);
1206                         mutex_unlock(&dev->struct_mutex);
1207                         return ret;
1208                 }
1209         }
1210
1211         dspcntr = I915_READ(dspcntr_reg);
1212         /* Mask out pixel format bits in case we change it */
1213         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1214         switch (crtc->fb->bits_per_pixel) {
1215         case 8:
1216                 dspcntr |= DISPPLANE_8BPP;
1217                 break;
1218         case 16:
1219                 if (crtc->fb->depth == 15)
1220                         dspcntr |= DISPPLANE_15_16BPP;
1221                 else
1222                         dspcntr |= DISPPLANE_16BPP;
1223                 break;
1224         case 24:
1225         case 32:
1226                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1227                 break;
1228         default:
1229                 DRM_ERROR("Unknown color depth\n");
1230                 i915_gem_object_unpin(obj);
1231                 mutex_unlock(&dev->struct_mutex);
1232                 return -EINVAL;
1233         }
1234         if (IS_I965G(dev)) {
1235                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1236                         dspcntr |= DISPPLANE_TILED;
1237                 else
1238                         dspcntr &= ~DISPPLANE_TILED;
1239         }
1240
1241         if (IS_IGDNG(dev))
1242                 /* must disable */
1243                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1244
1245         I915_WRITE(dspcntr_reg, dspcntr);
1246
1247         Start = obj_priv->gtt_offset;
1248         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1249
1250         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1251         I915_WRITE(dspstride, crtc->fb->pitch);
1252         if (IS_I965G(dev)) {
1253                 I915_WRITE(dspbase, Offset);
1254                 I915_READ(dspbase);
1255                 I915_WRITE(dspsurf, Start);
1256                 I915_READ(dspsurf);
1257                 I915_WRITE(dsptileoff, (y << 16) | x);
1258         } else {
1259                 I915_WRITE(dspbase, Start + Offset);
1260                 I915_READ(dspbase);
1261         }
1262
1263         intel_wait_for_vblank(dev);
1264
1265         if (old_fb) {
1266                 intel_fb = to_intel_framebuffer(old_fb);
1267                 obj_priv = intel_fb->obj->driver_private;
1268                 i915_gem_object_unpin(intel_fb->obj);
1269         }
1270         intel_increase_pllclock(crtc, true);
1271
1272         mutex_unlock(&dev->struct_mutex);
1273
1274         if (!dev->primary->master)
1275                 return 0;
1276
1277         master_priv = dev->primary->master->driver_priv;
1278         if (!master_priv->sarea_priv)
1279                 return 0;
1280
1281         if (pipe) {
1282                 master_priv->sarea_priv->pipeB_x = x;
1283                 master_priv->sarea_priv->pipeB_y = y;
1284         } else {
1285                 master_priv->sarea_priv->pipeA_x = x;
1286                 master_priv->sarea_priv->pipeA_y = y;
1287         }
1288
1289         if (I915_HAS_FBC(dev) && (IS_I965G(dev) || plane == 0))
1290                 intel_update_fbc(crtc, &crtc->mode);
1291
1292         return 0;
1293 }
1294
1295 /* Disable the VGA plane that we never use */
1296 static void i915_disable_vga (struct drm_device *dev)
1297 {
1298         struct drm_i915_private *dev_priv = dev->dev_private;
1299         u8 sr1;
1300         u32 vga_reg;
1301
1302         if (IS_IGDNG(dev))
1303                 vga_reg = CPU_VGACNTRL;
1304         else
1305                 vga_reg = VGACNTRL;
1306
1307         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1308                 return;
1309
1310         I915_WRITE8(VGA_SR_INDEX, 1);
1311         sr1 = I915_READ8(VGA_SR_DATA);
1312         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1313         udelay(100);
1314
1315         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1316 }
1317
1318 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1319 {
1320         struct drm_device *dev = crtc->dev;
1321         struct drm_i915_private *dev_priv = dev->dev_private;
1322         u32 dpa_ctl;
1323
1324         DRM_DEBUG("\n");
1325         dpa_ctl = I915_READ(DP_A);
1326         dpa_ctl &= ~DP_PLL_ENABLE;
1327         I915_WRITE(DP_A, dpa_ctl);
1328 }
1329
1330 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1331 {
1332         struct drm_device *dev = crtc->dev;
1333         struct drm_i915_private *dev_priv = dev->dev_private;
1334         u32 dpa_ctl;
1335
1336         dpa_ctl = I915_READ(DP_A);
1337         dpa_ctl |= DP_PLL_ENABLE;
1338         I915_WRITE(DP_A, dpa_ctl);
1339         udelay(200);
1340 }
1341
1342
1343 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1344 {
1345         struct drm_device *dev = crtc->dev;
1346         struct drm_i915_private *dev_priv = dev->dev_private;
1347         u32 dpa_ctl;
1348
1349         DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
1350         dpa_ctl = I915_READ(DP_A);
1351         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1352
1353         if (clock < 200000) {
1354                 u32 temp;
1355                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1356                 /* workaround for 160Mhz:
1357                    1) program 0x4600c bits 15:0 = 0x8124
1358                    2) program 0x46010 bit 0 = 1
1359                    3) program 0x46034 bit 24 = 1
1360                    4) program 0x64000 bit 14 = 1
1361                    */
1362                 temp = I915_READ(0x4600c);
1363                 temp &= 0xffff0000;
1364                 I915_WRITE(0x4600c, temp | 0x8124);
1365
1366                 temp = I915_READ(0x46010);
1367                 I915_WRITE(0x46010, temp | 1);
1368
1369                 temp = I915_READ(0x46034);
1370                 I915_WRITE(0x46034, temp | (1 << 24));
1371         } else {
1372                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1373         }
1374         I915_WRITE(DP_A, dpa_ctl);
1375
1376         udelay(500);
1377 }
1378
1379 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1380 {
1381         struct drm_device *dev = crtc->dev;
1382         struct drm_i915_private *dev_priv = dev->dev_private;
1383         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1384         int pipe = intel_crtc->pipe;
1385         int plane = intel_crtc->plane;
1386         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1387         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1388         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1389         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1390         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1391         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1392         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1393         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1394         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1395         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1396         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1397         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1398         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1399         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1400         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1401         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1402         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1403         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1404         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1405         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1406         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1407         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1408         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1409         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1410         u32 temp;
1411         int tries = 5, j, n;
1412
1413         /* XXX: When our outputs are all unaware of DPMS modes other than off
1414          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1415          */
1416         switch (mode) {
1417         case DRM_MODE_DPMS_ON:
1418         case DRM_MODE_DPMS_STANDBY:
1419         case DRM_MODE_DPMS_SUSPEND:
1420                 DRM_DEBUG("crtc %d dpms on\n", pipe);
1421                 if (HAS_eDP) {
1422                         /* enable eDP PLL */
1423                         igdng_enable_pll_edp(crtc);
1424                 } else {
1425                         /* enable PCH DPLL */
1426                         temp = I915_READ(pch_dpll_reg);
1427                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1428                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1429                                 I915_READ(pch_dpll_reg);
1430                         }
1431
1432                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1433                         temp = I915_READ(fdi_rx_reg);
1434                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1435                                         FDI_SEL_PCDCLK |
1436                                         FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1437                         I915_READ(fdi_rx_reg);
1438                         udelay(200);
1439
1440                         /* Enable CPU FDI TX PLL, always on for IGDNG */
1441                         temp = I915_READ(fdi_tx_reg);
1442                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1443                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1444                                 I915_READ(fdi_tx_reg);
1445                                 udelay(100);
1446                         }
1447                 }
1448
1449                 /* Enable panel fitting for LVDS */
1450                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1451                         temp = I915_READ(pf_ctl_reg);
1452                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE);
1453
1454                         /* currently full aspect */
1455                         I915_WRITE(pf_win_pos, 0);
1456
1457                         I915_WRITE(pf_win_size,
1458                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1459                                    (dev_priv->panel_fixed_mode->vdisplay));
1460                 }
1461
1462                 /* Enable CPU pipe */
1463                 temp = I915_READ(pipeconf_reg);
1464                 if ((temp & PIPEACONF_ENABLE) == 0) {
1465                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1466                         I915_READ(pipeconf_reg);
1467                         udelay(100);
1468                 }
1469
1470                 /* configure and enable CPU plane */
1471                 temp = I915_READ(dspcntr_reg);
1472                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1473                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1474                         /* Flush the plane changes */
1475                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1476                 }
1477
1478                 if (!HAS_eDP) {
1479                         /* enable CPU FDI TX and PCH FDI RX */
1480                         temp = I915_READ(fdi_tx_reg);
1481                         temp |= FDI_TX_ENABLE;
1482                         temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1483                         temp &= ~FDI_LINK_TRAIN_NONE;
1484                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1485                         I915_WRITE(fdi_tx_reg, temp);
1486                         I915_READ(fdi_tx_reg);
1487
1488                         temp = I915_READ(fdi_rx_reg);
1489                         temp &= ~FDI_LINK_TRAIN_NONE;
1490                         temp |= FDI_LINK_TRAIN_PATTERN_1;
1491                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1492                         I915_READ(fdi_rx_reg);
1493
1494                         udelay(150);
1495
1496                         /* Train FDI. */
1497                         /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1498                            for train result */
1499                         temp = I915_READ(fdi_rx_imr_reg);
1500                         temp &= ~FDI_RX_SYMBOL_LOCK;
1501                         temp &= ~FDI_RX_BIT_LOCK;
1502                         I915_WRITE(fdi_rx_imr_reg, temp);
1503                         I915_READ(fdi_rx_imr_reg);
1504                         udelay(150);
1505
1506                         temp = I915_READ(fdi_rx_iir_reg);
1507                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1508
1509                         if ((temp & FDI_RX_BIT_LOCK) == 0) {
1510                                 for (j = 0; j < tries; j++) {
1511                                         temp = I915_READ(fdi_rx_iir_reg);
1512                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1513                                         if (temp & FDI_RX_BIT_LOCK)
1514                                                 break;
1515                                         udelay(200);
1516                                 }
1517                                 if (j != tries)
1518                                         I915_WRITE(fdi_rx_iir_reg,
1519                                                         temp | FDI_RX_BIT_LOCK);
1520                                 else
1521                                         DRM_DEBUG("train 1 fail\n");
1522                         } else {
1523                                 I915_WRITE(fdi_rx_iir_reg,
1524                                                 temp | FDI_RX_BIT_LOCK);
1525                                 DRM_DEBUG("train 1 ok 2!\n");
1526                         }
1527                         temp = I915_READ(fdi_tx_reg);
1528                         temp &= ~FDI_LINK_TRAIN_NONE;
1529                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1530                         I915_WRITE(fdi_tx_reg, temp);
1531
1532                         temp = I915_READ(fdi_rx_reg);
1533                         temp &= ~FDI_LINK_TRAIN_NONE;
1534                         temp |= FDI_LINK_TRAIN_PATTERN_2;
1535                         I915_WRITE(fdi_rx_reg, temp);
1536
1537                         udelay(150);
1538
1539                         temp = I915_READ(fdi_rx_iir_reg);
1540                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1541
1542                         if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1543                                 for (j = 0; j < tries; j++) {
1544                                         temp = I915_READ(fdi_rx_iir_reg);
1545                                         DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1546                                         if (temp & FDI_RX_SYMBOL_LOCK)
1547                                                 break;
1548                                         udelay(200);
1549                                 }
1550                                 if (j != tries) {
1551                                         I915_WRITE(fdi_rx_iir_reg,
1552                                                         temp | FDI_RX_SYMBOL_LOCK);
1553                                         DRM_DEBUG("train 2 ok 1!\n");
1554                                 } else
1555                                         DRM_DEBUG("train 2 fail\n");
1556                         } else {
1557                                 I915_WRITE(fdi_rx_iir_reg,
1558                                                 temp | FDI_RX_SYMBOL_LOCK);
1559                                 DRM_DEBUG("train 2 ok 2!\n");
1560                         }
1561                         DRM_DEBUG("train done\n");
1562
1563                         /* set transcoder timing */
1564                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1565                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1566                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1567
1568                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1569                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1570                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1571
1572                         /* enable PCH transcoder */
1573                         temp = I915_READ(transconf_reg);
1574                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1575                         I915_READ(transconf_reg);
1576
1577                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1578                                 ;
1579
1580                         /* enable normal */
1581
1582                         temp = I915_READ(fdi_tx_reg);
1583                         temp &= ~FDI_LINK_TRAIN_NONE;
1584                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1585                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1586                         I915_READ(fdi_tx_reg);
1587
1588                         temp = I915_READ(fdi_rx_reg);
1589                         temp &= ~FDI_LINK_TRAIN_NONE;
1590                         I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1591                                         FDI_RX_ENHANCE_FRAME_ENABLE);
1592                         I915_READ(fdi_rx_reg);
1593
1594                         /* wait one idle pattern time */
1595                         udelay(100);
1596
1597                 }
1598
1599                 intel_crtc_load_lut(crtc);
1600
1601         break;
1602         case DRM_MODE_DPMS_OFF:
1603                 DRM_DEBUG("crtc %d dpms off\n", pipe);
1604
1605                 i915_disable_vga(dev);
1606
1607                 /* Disable display plane */
1608                 temp = I915_READ(dspcntr_reg);
1609                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1610                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1611                         /* Flush the plane changes */
1612                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1613                         I915_READ(dspbase_reg);
1614                 }
1615
1616                 /* disable cpu pipe, disable after all planes disabled */
1617                 temp = I915_READ(pipeconf_reg);
1618                 if ((temp & PIPEACONF_ENABLE) != 0) {
1619                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1620                         I915_READ(pipeconf_reg);
1621                         n = 0;
1622                         /* wait for cpu pipe off, pipe state */
1623                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1624                                 n++;
1625                                 if (n < 60) {
1626                                         udelay(500);
1627                                         continue;
1628                                 } else {
1629                                         DRM_DEBUG("pipe %d off delay\n", pipe);
1630                                         break;
1631                                 }
1632                         }
1633                 } else
1634                         DRM_DEBUG("crtc %d is disabled\n", pipe);
1635
1636                 if (HAS_eDP) {
1637                         igdng_disable_pll_edp(crtc);
1638                 }
1639
1640                 /* disable CPU FDI tx and PCH FDI rx */
1641                 temp = I915_READ(fdi_tx_reg);
1642                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1643                 I915_READ(fdi_tx_reg);
1644
1645                 temp = I915_READ(fdi_rx_reg);
1646                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1647                 I915_READ(fdi_rx_reg);
1648
1649                 udelay(100);
1650
1651                 /* still set train pattern 1 */
1652                 temp = I915_READ(fdi_tx_reg);
1653                 temp &= ~FDI_LINK_TRAIN_NONE;
1654                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1655                 I915_WRITE(fdi_tx_reg, temp);
1656
1657                 temp = I915_READ(fdi_rx_reg);
1658                 temp &= ~FDI_LINK_TRAIN_NONE;
1659                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1660                 I915_WRITE(fdi_rx_reg, temp);
1661
1662                 udelay(100);
1663
1664                 /* disable PCH transcoder */
1665                 temp = I915_READ(transconf_reg);
1666                 if ((temp & TRANS_ENABLE) != 0) {
1667                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1668                         I915_READ(transconf_reg);
1669                         n = 0;
1670                         /* wait for PCH transcoder off, transcoder state */
1671                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1672                                 n++;
1673                                 if (n < 60) {
1674                                         udelay(500);
1675                                         continue;
1676                                 } else {
1677                                         DRM_DEBUG("transcoder %d off delay\n", pipe);
1678                                         break;
1679                                 }
1680                         }
1681                 }
1682
1683                 /* disable PCH DPLL */
1684                 temp = I915_READ(pch_dpll_reg);
1685                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1686                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1687                         I915_READ(pch_dpll_reg);
1688                 }
1689
1690                 temp = I915_READ(fdi_rx_reg);
1691                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1692                         temp &= ~FDI_SEL_PCDCLK;
1693                         temp &= ~FDI_RX_PLL_ENABLE;
1694                         I915_WRITE(fdi_rx_reg, temp);
1695                         I915_READ(fdi_rx_reg);
1696                 }
1697
1698                 /* Disable CPU FDI TX PLL */
1699                 temp = I915_READ(fdi_tx_reg);
1700                 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1701                         I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1702                         I915_READ(fdi_tx_reg);
1703                         udelay(100);
1704                 }
1705
1706                 /* Disable PF */
1707                 temp = I915_READ(pf_ctl_reg);
1708                 if ((temp & PF_ENABLE) != 0) {
1709                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1710                         I915_READ(pf_ctl_reg);
1711                 }
1712                 I915_WRITE(pf_win_size, 0);
1713
1714                 /* Wait for the clocks to turn off. */
1715                 udelay(150);
1716                 break;
1717         }
1718 }
1719
1720 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1721 {
1722         struct drm_device *dev = crtc->dev;
1723         struct drm_i915_private *dev_priv = dev->dev_private;
1724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1725         int pipe = intel_crtc->pipe;
1726         int plane = intel_crtc->plane;
1727         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1728         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1729         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1730         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1731         u32 temp;
1732
1733         /* XXX: When our outputs are all unaware of DPMS modes other than off
1734          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1735          */
1736         switch (mode) {
1737         case DRM_MODE_DPMS_ON:
1738         case DRM_MODE_DPMS_STANDBY:
1739         case DRM_MODE_DPMS_SUSPEND:
1740                 /* Enable the DPLL */
1741                 temp = I915_READ(dpll_reg);
1742                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1743                         I915_WRITE(dpll_reg, temp);
1744                         I915_READ(dpll_reg);
1745                         /* Wait for the clocks to stabilize. */
1746                         udelay(150);
1747                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1748                         I915_READ(dpll_reg);
1749                         /* Wait for the clocks to stabilize. */
1750                         udelay(150);
1751                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1752                         I915_READ(dpll_reg);
1753                         /* Wait for the clocks to stabilize. */
1754                         udelay(150);
1755                 }
1756
1757                 /* Enable the pipe */
1758                 temp = I915_READ(pipeconf_reg);
1759                 if ((temp & PIPEACONF_ENABLE) == 0)
1760                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1761
1762                 /* Enable the plane */
1763                 temp = I915_READ(dspcntr_reg);
1764                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1765                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1766                         /* Flush the plane changes */
1767                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1768                 }
1769
1770                 intel_crtc_load_lut(crtc);
1771
1772                 if (I915_HAS_FBC(dev) && (IS_I965G(dev) || plane == 0))
1773                         intel_update_fbc(crtc, &crtc->mode);
1774
1775                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1776                 //intel_crtc_dpms_video(crtc, true); TODO
1777                 intel_update_watermarks(dev);
1778         break;
1779         case DRM_MODE_DPMS_OFF:
1780                 intel_update_watermarks(dev);
1781                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1782                 //intel_crtc_dpms_video(crtc, FALSE); TODO
1783
1784                 if (dev_priv->cfb_plane == plane)
1785                         i8xx_disable_fbc(dev);
1786
1787                 /* Disable the VGA plane that we never use */
1788                 i915_disable_vga(dev);
1789
1790                 /* Disable display plane */
1791                 temp = I915_READ(dspcntr_reg);
1792                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1793                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1794                         /* Flush the plane changes */
1795                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1796                         I915_READ(dspbase_reg);
1797                 }
1798
1799                 if (!IS_I9XX(dev)) {
1800                         /* Wait for vblank for the disable to take effect */
1801                         intel_wait_for_vblank(dev);
1802                 }
1803
1804                 /* Next, disable display pipes */
1805                 temp = I915_READ(pipeconf_reg);
1806                 if ((temp & PIPEACONF_ENABLE) != 0) {
1807                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1808                         I915_READ(pipeconf_reg);
1809                 }
1810
1811                 /* Wait for vblank for the disable to take effect. */
1812                 intel_wait_for_vblank(dev);
1813
1814                 temp = I915_READ(dpll_reg);
1815                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1816                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1817                         I915_READ(dpll_reg);
1818                 }
1819
1820                 /* Wait for the clocks to turn off. */
1821                 udelay(150);
1822                 break;
1823         }
1824 }
1825
1826 /**
1827  * Sets the power management mode of the pipe and plane.
1828  *
1829  * This code should probably grow support for turning the cursor off and back
1830  * on appropriately at the same time as we're turning the pipe off/on.
1831  */
1832 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1833 {
1834         struct drm_device *dev = crtc->dev;
1835         struct drm_i915_master_private *master_priv;
1836         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1837         int pipe = intel_crtc->pipe;
1838         bool enabled;
1839
1840         if (IS_IGDNG(dev))
1841                 igdng_crtc_dpms(crtc, mode);
1842         else
1843                 i9xx_crtc_dpms(crtc, mode);
1844
1845         intel_crtc->dpms_mode = mode;
1846
1847         if (!dev->primary->master)
1848                 return;
1849
1850         master_priv = dev->primary->master->driver_priv;
1851         if (!master_priv->sarea_priv)
1852                 return;
1853
1854         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1855
1856         switch (pipe) {
1857         case 0:
1858                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1859                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1860                 break;
1861         case 1:
1862                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1863                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1864                 break;
1865         default:
1866                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1867                 break;
1868         }
1869 }
1870
1871 static void intel_crtc_prepare (struct drm_crtc *crtc)
1872 {
1873         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1874         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1875 }
1876
1877 static void intel_crtc_commit (struct drm_crtc *crtc)
1878 {
1879         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1880         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1881 }
1882
1883 void intel_encoder_prepare (struct drm_encoder *encoder)
1884 {
1885         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1886         /* lvds has its own version of prepare see intel_lvds_prepare */
1887         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1888 }
1889
1890 void intel_encoder_commit (struct drm_encoder *encoder)
1891 {
1892         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1893         /* lvds has its own version of commit see intel_lvds_commit */
1894         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1895 }
1896
1897 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1898                                   struct drm_display_mode *mode,
1899                                   struct drm_display_mode *adjusted_mode)
1900 {
1901         struct drm_device *dev = crtc->dev;
1902         if (IS_IGDNG(dev)) {
1903                 /* FDI link clock is fixed at 2.7G */
1904                 if (mode->clock * 3 > 27000 * 4)
1905                         return MODE_CLOCK_HIGH;
1906         }
1907         return true;
1908 }
1909
1910
1911 /** Returns the core display clock speed for i830 - i945 */
1912 static int intel_get_core_clock_speed(struct drm_device *dev)
1913 {
1914
1915         /* Core clock values taken from the published datasheets.
1916          * The 830 may go up to 166 Mhz, which we should check.
1917          */
1918         if (IS_I945G(dev))
1919                 return 400000;
1920         else if (IS_I915G(dev))
1921                 return 333000;
1922         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
1923                 return 200000;
1924         else if (IS_I915GM(dev)) {
1925                 u16 gcfgc = 0;
1926
1927                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1928
1929                 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1930                         return 133000;
1931                 else {
1932                         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1933                         case GC_DISPLAY_CLOCK_333_MHZ:
1934                                 return 333000;
1935                         default:
1936                         case GC_DISPLAY_CLOCK_190_200_MHZ:
1937                                 return 190000;
1938                         }
1939                 }
1940         } else if (IS_I865G(dev))
1941                 return 266000;
1942         else if (IS_I855(dev)) {
1943                 u16 hpllcc = 0;
1944                 /* Assume that the hardware is in the high speed state.  This
1945                  * should be the default.
1946                  */
1947                 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1948                 case GC_CLOCK_133_200:
1949                 case GC_CLOCK_100_200:
1950                         return 200000;
1951                 case GC_CLOCK_166_250:
1952                         return 250000;
1953                 case GC_CLOCK_100_133:
1954                         return 133000;
1955                 }
1956         } else /* 852, 830 */
1957                 return 133000;
1958
1959         return 0; /* Silence gcc warning */
1960 }
1961
1962 /**
1963  * Return the pipe currently connected to the panel fitter,
1964  * or -1 if the panel fitter is not present or not in use
1965  */
1966 static int intel_panel_fitter_pipe (struct drm_device *dev)
1967 {
1968         struct drm_i915_private *dev_priv = dev->dev_private;
1969         u32  pfit_control;
1970
1971         /* i830 doesn't have a panel fitter */
1972         if (IS_I830(dev))
1973                 return -1;
1974
1975         pfit_control = I915_READ(PFIT_CONTROL);
1976
1977         /* See if the panel fitter is in use */
1978         if ((pfit_control & PFIT_ENABLE) == 0)
1979                 return -1;
1980
1981         /* 965 can place panel fitter on either pipe */
1982         if (IS_I965G(dev))
1983                 return (pfit_control >> 29) & 0x3;
1984
1985         /* older chips can only use pipe 1 */
1986         return 1;
1987 }
1988
1989 struct fdi_m_n {
1990         u32        tu;
1991         u32        gmch_m;
1992         u32        gmch_n;
1993         u32        link_m;
1994         u32        link_n;
1995 };
1996
1997 static void
1998 fdi_reduce_ratio(u32 *num, u32 *den)
1999 {
2000         while (*num > 0xffffff || *den > 0xffffff) {
2001                 *num >>= 1;
2002                 *den >>= 1;
2003         }
2004 }
2005
2006 #define DATA_N 0x800000
2007 #define LINK_N 0x80000
2008
2009 static void
2010 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
2011                 int pixel_clock, int link_clock,
2012                 struct fdi_m_n *m_n)
2013 {
2014         u64 temp;
2015
2016         m_n->tu = 64; /* default size */
2017
2018         temp = (u64) DATA_N * pixel_clock;
2019         temp = div_u64(temp, link_clock);
2020         m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
2021         m_n->gmch_n = DATA_N;
2022         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2023
2024         temp = (u64) LINK_N * pixel_clock;
2025         m_n->link_m = div_u64(temp, link_clock);
2026         m_n->link_n = LINK_N;
2027         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2028 }
2029
2030
2031 struct intel_watermark_params {
2032         unsigned long fifo_size;
2033         unsigned long max_wm;
2034         unsigned long default_wm;
2035         unsigned long guard_size;
2036         unsigned long cacheline_size;
2037 };
2038
2039 /* IGD has different values for various configs */
2040 static struct intel_watermark_params igd_display_wm = {
2041         IGD_DISPLAY_FIFO,
2042         IGD_MAX_WM,
2043         IGD_DFT_WM,
2044         IGD_GUARD_WM,
2045         IGD_FIFO_LINE_SIZE
2046 };
2047 static struct intel_watermark_params igd_display_hplloff_wm = {
2048         IGD_DISPLAY_FIFO,
2049         IGD_MAX_WM,
2050         IGD_DFT_HPLLOFF_WM,
2051         IGD_GUARD_WM,
2052         IGD_FIFO_LINE_SIZE
2053 };
2054 static struct intel_watermark_params igd_cursor_wm = {
2055         IGD_CURSOR_FIFO,
2056         IGD_CURSOR_MAX_WM,
2057         IGD_CURSOR_DFT_WM,
2058         IGD_CURSOR_GUARD_WM,
2059         IGD_FIFO_LINE_SIZE,
2060 };
2061 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2062         IGD_CURSOR_FIFO,
2063         IGD_CURSOR_MAX_WM,
2064         IGD_CURSOR_DFT_WM,
2065         IGD_CURSOR_GUARD_WM,
2066         IGD_FIFO_LINE_SIZE
2067 };
2068 static struct intel_watermark_params i945_wm_info = {
2069         I945_FIFO_SIZE,
2070         I915_MAX_WM,
2071         1,
2072         2,
2073         I915_FIFO_LINE_SIZE
2074 };
2075 static struct intel_watermark_params i915_wm_info = {
2076         I915_FIFO_SIZE,
2077         I915_MAX_WM,
2078         1,
2079         2,
2080         I915_FIFO_LINE_SIZE
2081 };
2082 static struct intel_watermark_params i855_wm_info = {
2083         I855GM_FIFO_SIZE,
2084         I915_MAX_WM,
2085         1,
2086         2,
2087         I830_FIFO_LINE_SIZE
2088 };
2089 static struct intel_watermark_params i830_wm_info = {
2090         I830_FIFO_SIZE,
2091         I915_MAX_WM,
2092         1,
2093         2,
2094         I830_FIFO_LINE_SIZE
2095 };
2096
2097 /**
2098  * intel_calculate_wm - calculate watermark level
2099  * @clock_in_khz: pixel clock
2100  * @wm: chip FIFO params
2101  * @pixel_size: display pixel size
2102  * @latency_ns: memory latency for the platform
2103  *
2104  * Calculate the watermark level (the level at which the display plane will
2105  * start fetching from memory again).  Each chip has a different display
2106  * FIFO size and allocation, so the caller needs to figure that out and pass
2107  * in the correct intel_watermark_params structure.
2108  *
2109  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2110  * on the pixel size.  When it reaches the watermark level, it'll start
2111  * fetching FIFO line sized based chunks from memory until the FIFO fills
2112  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2113  * will occur, and a display engine hang could result.
2114  */
2115 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2116                                         struct intel_watermark_params *wm,
2117                                         int pixel_size,
2118                                         unsigned long latency_ns)
2119 {
2120         long entries_required, wm_size;
2121
2122         entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
2123         entries_required /= wm->cacheline_size;
2124
2125         DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);
2126
2127         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2128
2129         DRM_DEBUG("FIFO watermark level: %d\n", wm_size);
2130
2131         /* Don't promote wm_size to unsigned... */
2132         if (wm_size > (long)wm->max_wm)
2133                 wm_size = wm->max_wm;
2134         if (wm_size <= 0)
2135                 wm_size = wm->default_wm;
2136         return wm_size;
2137 }
2138
2139 struct cxsr_latency {
2140         int is_desktop;
2141         unsigned long fsb_freq;
2142         unsigned long mem_freq;
2143         unsigned long display_sr;
2144         unsigned long display_hpll_disable;
2145         unsigned long cursor_sr;
2146         unsigned long cursor_hpll_disable;
2147 };
2148
2149 static struct cxsr_latency cxsr_latency_table[] = {
2150         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2151         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2152         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2153
2154         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2155         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2156         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2157
2158         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2159         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2160         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2161
2162         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2163         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2164         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2165
2166         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2167         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2168         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2169
2170         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2171         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2172         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2173 };
2174
2175 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2176                                                    int mem)
2177 {
2178         int i;
2179         struct cxsr_latency *latency;
2180
2181         if (fsb == 0 || mem == 0)
2182                 return NULL;
2183
2184         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2185                 latency = &cxsr_latency_table[i];
2186                 if (is_desktop == latency->is_desktop &&
2187                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2188                         return latency;
2189         }
2190
2191         DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2192
2193         return NULL;
2194 }
2195
2196 static void igd_disable_cxsr(struct drm_device *dev)
2197 {
2198         struct drm_i915_private *dev_priv = dev->dev_private;
2199         u32 reg;
2200
2201         /* deactivate cxsr */
2202         reg = I915_READ(DSPFW3);
2203         reg &= ~(IGD_SELF_REFRESH_EN);
2204         I915_WRITE(DSPFW3, reg);
2205         DRM_INFO("Big FIFO is disabled\n");
2206 }
2207
2208 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2209                             int pixel_size)
2210 {
2211         struct drm_i915_private *dev_priv = dev->dev_private;
2212         u32 reg;
2213         unsigned long wm;
2214         struct cxsr_latency *latency;
2215
2216         latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2217                 dev_priv->mem_freq);
2218         if (!latency) {
2219                 DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
2220                 igd_disable_cxsr(dev);
2221                 return;
2222         }
2223
2224         /* Display SR */
2225         wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2226                                 latency->display_sr);
2227         reg = I915_READ(DSPFW1);
2228         reg &= 0x7fffff;
2229         reg |= wm << 23;
2230         I915_WRITE(DSPFW1, reg);
2231         DRM_DEBUG("DSPFW1 register is %x\n", reg);
2232
2233         /* cursor SR */
2234         wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2235                                 latency->cursor_sr);
2236         reg = I915_READ(DSPFW3);
2237         reg &= ~(0x3f << 24);
2238         reg |= (wm & 0x3f) << 24;
2239         I915_WRITE(DSPFW3, reg);
2240
2241         /* Display HPLL off SR */
2242         wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2243                 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2244         reg = I915_READ(DSPFW3);
2245         reg &= 0xfffffe00;
2246         reg |= wm & 0x1ff;
2247         I915_WRITE(DSPFW3, reg);
2248
2249         /* cursor HPLL off SR */
2250         wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2251                                 latency->cursor_hpll_disable);
2252         reg = I915_READ(DSPFW3);
2253         reg &= ~(0x3f << 16);
2254         reg |= (wm & 0x3f) << 16;
2255         I915_WRITE(DSPFW3, reg);
2256         DRM_DEBUG("DSPFW3 register is %x\n", reg);
2257
2258         /* activate cxsr */
2259         reg = I915_READ(DSPFW3);
2260         reg |= IGD_SELF_REFRESH_EN;
2261         I915_WRITE(DSPFW3, reg);
2262
2263         DRM_INFO("Big FIFO is enabled\n");
2264
2265         return;
2266 }
2267
2268 /*
2269  * Latency for FIFO fetches is dependent on several factors:
2270  *   - memory configuration (speed, channels)
2271  *   - chipset
2272  *   - current MCH state
2273  * It can be fairly high in some situations, so here we assume a fairly
2274  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2275  * set this value too high, the FIFO will fetch frequently to stay full)
2276  * and power consumption (set it too low to save power and we might see
2277  * FIFO underruns and display "flicker").
2278  *
2279  * A value of 5us seems to be a good balance; safe for very low end
2280  * platforms but not overly aggressive on lower latency configs.
2281  */
2282 const static int latency_ns = 5000;
2283
2284 static int intel_get_fifo_size(struct drm_device *dev, int plane)
2285 {
2286         struct drm_i915_private *dev_priv = dev->dev_private;
2287         uint32_t dsparb = I915_READ(DSPARB);
2288         int size;
2289
2290         if (IS_I9XX(dev)) {
2291                 if (plane == 0)
2292                         size = dsparb & 0x7f;
2293                 else
2294                         size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2295                                 (dsparb & 0x7f);
2296         } else if (IS_I85X(dev)) {
2297                 if (plane == 0)
2298                         size = dsparb & 0x1ff;
2299                 else
2300                         size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2301                                 (dsparb & 0x1ff);
2302                 size >>= 1; /* Convert to cachelines */
2303         } else if (IS_845G(dev)) {
2304                 size = dsparb & 0x7f;
2305                 size >>= 2; /* Convert to cachelines */
2306         } else {
2307                 size = dsparb & 0x7f;
2308                 size >>= 1; /* Convert to cachelines */
2309         }
2310
2311         DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
2312                   size);
2313
2314         return size;
2315 }
2316
2317 static void g4x_update_wm(struct drm_device *dev)
2318 {
2319         struct drm_i915_private *dev_priv = dev->dev_private;
2320         u32 fw_blc_self = I915_READ(FW_BLC_SELF);
2321
2322         if (i915_powersave)
2323                 fw_blc_self |= FW_BLC_SELF_EN;
2324         else
2325                 fw_blc_self &= ~FW_BLC_SELF_EN;
2326         I915_WRITE(FW_BLC_SELF, fw_blc_self);
2327 }
2328
2329 static void i965_update_wm(struct drm_device *dev)
2330 {
2331         struct drm_i915_private *dev_priv = dev->dev_private;
2332
2333         DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");
2334
2335         /* 965 has limitations... */
2336         I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
2337         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2338 }
2339
2340 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2341                            int planeb_clock, int sr_hdisplay, int pixel_size)
2342 {
2343         struct drm_i915_private *dev_priv = dev->dev_private;
2344         uint32_t fwater_lo;
2345         uint32_t fwater_hi;
2346         int total_size, cacheline_size, cwm, srwm = 1;
2347         int planea_wm, planeb_wm;
2348         struct intel_watermark_params planea_params, planeb_params;
2349         unsigned long line_time_us;
2350         int sr_clock, sr_entries = 0;
2351
2352         /* Create copies of the base settings for each pipe */
2353         if (IS_I965GM(dev) || IS_I945GM(dev))
2354                 planea_params = planeb_params = i945_wm_info;
2355         else if (IS_I9XX(dev))
2356                 planea_params = planeb_params = i915_wm_info;
2357         else
2358                 planea_params = planeb_params = i855_wm_info;
2359
2360         /* Grab a couple of global values before we overwrite them */
2361         total_size = planea_params.fifo_size;
2362         cacheline_size = planea_params.cacheline_size;
2363
2364         /* Update per-plane FIFO sizes */
2365         planea_params.fifo_size = intel_get_fifo_size(dev, 0);
2366         planeb_params.fifo_size = intel_get_fifo_size(dev, 1);
2367
2368         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2369                                        pixel_size, latency_ns);
2370         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2371                                        pixel_size, latency_ns);
2372         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2373
2374         /*
2375          * Overlay gets an aggressive default since video jitter is bad.
2376          */
2377         cwm = 2;
2378
2379         /* Calc sr entries for one plane configs */
2380         if (HAS_FW_BLC(dev) && sr_hdisplay &&
2381             (!planea_clock || !planeb_clock)) {
2382                 /* self-refresh has much higher latency */
2383                 const static int sr_latency_ns = 6000;
2384
2385                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2386                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2387
2388                 /* Use ns/us then divide to preserve precision */
2389                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2390                               pixel_size * sr_hdisplay) / 1000;
2391                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2392                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2393                 srwm = total_size - sr_entries;
2394                 if (srwm < 0)
2395                         srwm = 1;
2396                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2397         }
2398
2399         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2400                   planea_wm, planeb_wm, cwm, srwm);
2401
2402         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2403         fwater_hi = (cwm & 0x1f);
2404
2405         /* Set request length to 8 cachelines per fetch */
2406         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2407         fwater_hi = fwater_hi | (1 << 8);
2408
2409         I915_WRITE(FW_BLC, fwater_lo);
2410         I915_WRITE(FW_BLC2, fwater_hi);
2411 }
2412
2413 static void i830_update_wm(struct drm_device *dev, int planea_clock,
2414                            int pixel_size)
2415 {
2416         struct drm_i915_private *dev_priv = dev->dev_private;
2417         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2418         int planea_wm;
2419
2420         i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);
2421
2422         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2423                                        pixel_size, latency_ns);
2424         fwater_lo |= (3<<8) | planea_wm;
2425
2426         DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);
2427
2428         I915_WRITE(FW_BLC, fwater_lo);
2429 }
2430
2431 /**
2432  * intel_update_watermarks - update FIFO watermark values based on current modes
2433  *
2434  * Calculate watermark values for the various WM regs based on current mode
2435  * and plane configuration.
2436  *
2437  * There are several cases to deal with here:
2438  *   - normal (i.e. non-self-refresh)
2439  *   - self-refresh (SR) mode
2440  *   - lines are large relative to FIFO size (buffer can hold up to 2)
2441  *   - lines are small relative to FIFO size (buffer can hold more than 2
2442  *     lines), so need to account for TLB latency
2443  *
2444  *   The normal calculation is:
2445  *     watermark = dotclock * bytes per pixel * latency
2446  *   where latency is platform & configuration dependent (we assume pessimal
2447  *   values here).
2448  *
2449  *   The SR calculation is:
2450  *     watermark = (trunc(latency/line time)+1) * surface width *
2451  *       bytes per pixel
2452  *   where
2453  *     line time = htotal / dotclock
2454  *   and latency is assumed to be high, as above.
2455  *
2456  * The final value programmed to the register should always be rounded up,
2457  * and include an extra 2 entries to account for clock crossings.
2458  *
2459  * We don't use the sprite, so we can ignore that.  And on Crestline we have
2460  * to set the non-SR watermarks to 8.
2461   */
2462 static void intel_update_watermarks(struct drm_device *dev)
2463 {
2464         struct drm_crtc *crtc;
2465         struct intel_crtc *intel_crtc;
2466         int sr_hdisplay = 0;
2467         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2468         int enabled = 0, pixel_size = 0;
2469
2470         /* Get the clock config from both planes */
2471         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2472                 intel_crtc = to_intel_crtc(crtc);
2473                 if (crtc->enabled) {
2474                         enabled++;
2475                         if (intel_crtc->plane == 0) {
2476                                 DRM_DEBUG("plane A (pipe %d) clock: %d\n",
2477                                           intel_crtc->pipe, crtc->mode.clock);
2478                                 planea_clock = crtc->mode.clock;
2479                         } else {
2480                                 DRM_DEBUG("plane B (pipe %d) clock: %d\n",
2481                                           intel_crtc->pipe, crtc->mode.clock);
2482                                 planeb_clock = crtc->mode.clock;
2483                         }
2484                         sr_hdisplay = crtc->mode.hdisplay;
2485                         sr_clock = crtc->mode.clock;
2486                         if (crtc->fb)
2487                                 pixel_size = crtc->fb->bits_per_pixel / 8;
2488                         else
2489                                 pixel_size = 4; /* by default */
2490                 }
2491         }
2492
2493         if (enabled <= 0)
2494                 return;
2495
2496         /* Single plane configs can enable self refresh */
2497         if (enabled == 1 && IS_IGD(dev))
2498                 igd_enable_cxsr(dev, sr_clock, pixel_size);
2499         else if (IS_IGD(dev))
2500                 igd_disable_cxsr(dev);
2501
2502         if (IS_G4X(dev))
2503                 g4x_update_wm(dev);
2504         else if (IS_I965G(dev))
2505                 i965_update_wm(dev);
2506         else if (IS_I9XX(dev) || IS_MOBILE(dev))
2507                 i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
2508                                pixel_size);
2509         else
2510                 i830_update_wm(dev, planea_clock, pixel_size);
2511 }
2512
2513 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2514                                struct drm_display_mode *mode,
2515                                struct drm_display_mode *adjusted_mode,
2516                                int x, int y,
2517                                struct drm_framebuffer *old_fb)
2518 {
2519         struct drm_device *dev = crtc->dev;
2520         struct drm_i915_private *dev_priv = dev->dev_private;
2521         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2522         int pipe = intel_crtc->pipe;
2523         int plane = intel_crtc->plane;
2524         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2525         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2526         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2527         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2528         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2529         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2530         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2531         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2532         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2533         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2534         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2535         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2536         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2537         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2538         int refclk, num_outputs = 0;
2539         intel_clock_t clock, reduced_clock;
2540         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2541         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2542         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2543         bool is_edp = false;
2544         struct drm_mode_config *mode_config = &dev->mode_config;
2545         struct drm_connector *connector;
2546         const intel_limit_t *limit;
2547         int ret;
2548         struct fdi_m_n m_n = {0};
2549         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2550         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2551         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2552         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2553         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2554         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2555         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2556         int lvds_reg = LVDS;
2557         u32 temp;
2558         int sdvo_pixel_multiply;
2559         int target_clock;
2560
2561         drm_vblank_pre_modeset(dev, pipe);
2562
2563         list_for_each_entry(connector, &mode_config->connector_list, head) {
2564                 struct intel_output *intel_output = to_intel_output(connector);
2565
2566                 if (!connector->encoder || connector->encoder->crtc != crtc)
2567                         continue;
2568
2569                 switch (intel_output->type) {
2570                 case INTEL_OUTPUT_LVDS:
2571                         is_lvds = true;
2572                         break;
2573                 case INTEL_OUTPUT_SDVO:
2574                 case INTEL_OUTPUT_HDMI:
2575                         is_sdvo = true;
2576                         if (intel_output->needs_tv_clock)
2577                                 is_tv = true;
2578                         break;
2579                 case INTEL_OUTPUT_DVO:
2580                         is_dvo = true;
2581                         break;
2582                 case INTEL_OUTPUT_TVOUT:
2583                         is_tv = true;
2584                         break;
2585                 case INTEL_OUTPUT_ANALOG:
2586                         is_crt = true;
2587                         break;
2588                 case INTEL_OUTPUT_DISPLAYPORT:
2589                         is_dp = true;
2590                         break;
2591                 case INTEL_OUTPUT_EDP:
2592                         is_edp = true;
2593                         break;
2594                 }
2595
2596                 num_outputs++;
2597         }
2598
2599         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2600                 refclk = dev_priv->lvds_ssc_freq * 1000;
2601                 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
2602         } else if (IS_I9XX(dev)) {
2603                 refclk = 96000;
2604                 if (IS_IGDNG(dev))
2605                         refclk = 120000; /* 120Mhz refclk */
2606         } else {
2607                 refclk = 48000;
2608         }
2609         
2610
2611         /*
2612          * Returns a set of divisors for the desired target clock with the given
2613          * refclk, or FALSE.  The returned values represent the clock equation:
2614          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2615          */
2616         limit = intel_limit(crtc);
2617         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2618         if (!ok) {
2619                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2620                 drm_vblank_post_modeset(dev, pipe);
2621                 return -EINVAL;
2622         }
2623
2624         if (limit->find_reduced_pll && dev_priv->lvds_downclock_avail) {
2625                 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2626                 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2627                                                             (adjusted_mode->clock*3/4),
2628                                                             refclk,
2629                                                             &reduced_clock);
2630         }
2631
2632         /* SDVO TV has fixed PLL values depend on its clock range,
2633            this mirrors vbios setting. */
2634         if (is_sdvo && is_tv) {
2635                 if (adjusted_mode->clock >= 100000
2636                                 && adjusted_mode->clock < 140500) {
2637                         clock.p1 = 2;
2638                         clock.p2 = 10;
2639                         clock.n = 3;
2640                         clock.m1 = 16;
2641                         clock.m2 = 8;
2642                 } else if (adjusted_mode->clock >= 140500
2643                                 && adjusted_mode->clock <= 200000) {
2644                         clock.p1 = 1;
2645                         clock.p2 = 10;
2646                         clock.n = 6;
2647                         clock.m1 = 12;
2648                         clock.m2 = 8;
2649                 }
2650         }
2651
2652         /* FDI link */
2653         if (IS_IGDNG(dev)) {
2654                 int lane, link_bw;
2655                 /* eDP doesn't require FDI link, so just set DP M/N
2656                    according to current link config */
2657                 if (is_edp) {
2658                         struct drm_connector *edp;
2659                         target_clock = mode->clock;
2660                         edp = intel_pipe_get_output(crtc);
2661                         intel_edp_link_config(to_intel_output(edp),
2662                                         &lane, &link_bw);
2663                 } else {
2664                         /* DP over FDI requires target mode clock
2665                            instead of link clock */
2666                         if (is_dp)
2667                                 target_clock = mode->clock;
2668                         else
2669                                 target_clock = adjusted_mode->clock;
2670                         lane = 4;
2671                         link_bw = 270000;
2672                 }
2673                 igdng_compute_m_n(3, lane, target_clock,
2674                                   link_bw, &m_n);
2675         }
2676
2677         if (IS_IGD(dev)) {
2678                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
2679                 if (has_reduced_clock)
2680                         fp2 = (1 << reduced_clock.n) << 16 |
2681                                 reduced_clock.m1 << 8 | reduced_clock.m2;
2682         } else {
2683                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
2684                 if (has_reduced_clock)
2685                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
2686                                 reduced_clock.m2;
2687         }
2688
2689         if (!IS_IGDNG(dev))
2690                 dpll = DPLL_VGA_MODE_DIS;
2691
2692         if (IS_I9XX(dev)) {
2693                 if (is_lvds)
2694                         dpll |= DPLLB_MODE_LVDS;
2695                 else
2696                         dpll |= DPLLB_MODE_DAC_SERIAL;
2697                 if (is_sdvo) {
2698                         dpll |= DPLL_DVO_HIGH_SPEED;
2699                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2700                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
2701                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
2702                         else if (IS_IGDNG(dev))
2703                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
2704                 }
2705                 if (is_dp)
2706                         dpll |= DPLL_DVO_HIGH_SPEED;
2707
2708                 /* compute bitmask from p1 value */
2709                 if (IS_IGD(dev))
2710                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
2711                 else {
2712                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2713                         /* also FPA1 */
2714                         if (IS_IGDNG(dev))
2715                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2716                         if (IS_G4X(dev) && has_reduced_clock)
2717                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
2718                 }
2719                 switch (clock.p2) {
2720                 case 5:
2721                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
2722                         break;
2723                 case 7:
2724                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
2725                         break;
2726                 case 10:
2727                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
2728                         break;
2729                 case 14:
2730                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
2731                         break;
2732                 }
2733                 if (IS_I965G(dev) && !IS_IGDNG(dev))
2734                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
2735         } else {
2736                 if (is_lvds) {
2737                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2738                 } else {
2739                         if (clock.p1 == 2)
2740                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
2741                         else
2742                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
2743                         if (clock.p2 == 4)
2744                                 dpll |= PLL_P2_DIVIDE_BY_4;
2745                 }
2746         }
2747
2748         if (is_sdvo && is_tv)
2749                 dpll |= PLL_REF_INPUT_TVCLKINBC;
2750         else if (is_tv)
2751                 /* XXX: just matching BIOS for now */
2752                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
2753                 dpll |= 3;
2754         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
2755                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
2756         else
2757                 dpll |= PLL_REF_INPUT_DREFCLK;
2758
2759         /* setup pipeconf */
2760         pipeconf = I915_READ(pipeconf_reg);
2761
2762         /* Set up the display plane register */
2763         dspcntr = DISPPLANE_GAMMA_ENABLE;
2764
2765         /* IGDNG's plane is forced to pipe, bit 24 is to
2766            enable color space conversion */
2767         if (!IS_IGDNG(dev)) {
2768                 if (pipe == 0)
2769                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
2770                 else
2771                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2772         }
2773
2774         if (pipe == 0 && !IS_I965G(dev)) {
2775                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
2776                  * core speed.
2777                  *
2778                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
2779                  * pipe == 0 check?
2780                  */
2781                 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
2782                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
2783                 else
2784                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
2785         }
2786
2787         dspcntr |= DISPLAY_PLANE_ENABLE;
2788         pipeconf |= PIPEACONF_ENABLE;
2789         dpll |= DPLL_VCO_ENABLE;
2790
2791
2792         /* Disable the panel fitter if it was on our pipe */
2793         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
2794                 I915_WRITE(PFIT_CONTROL, 0);
2795
2796         DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
2797         drm_mode_debug_printmodeline(mode);
2798
2799         /* assign to IGDNG registers */
2800         if (IS_IGDNG(dev)) {
2801                 fp_reg = pch_fp_reg;
2802                 dpll_reg = pch_dpll_reg;
2803         }
2804
2805         if (is_edp) {
2806                 igdng_disable_pll_edp(crtc);
2807         } else if ((dpll & DPLL_VCO_ENABLE)) {
2808                 I915_WRITE(fp_reg, fp);
2809                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
2810                 I915_READ(dpll_reg);
2811                 udelay(150);
2812         }
2813
2814         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
2815          * This is an exception to the general rule that mode_set doesn't turn
2816          * things on.
2817          */
2818         if (is_lvds) {
2819                 u32 lvds;
2820
2821                 if (IS_IGDNG(dev))
2822                         lvds_reg = PCH_LVDS;
2823
2824                 lvds = I915_READ(lvds_reg);
2825                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
2826                 /* Set the B0-B3 data pairs corresponding to whether we're going to
2827                  * set the DPLLs for dual-channel mode or not.
2828                  */
2829                 if (clock.p2 == 7)
2830                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
2831                 else
2832                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
2833
2834                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
2835                  * appropriately here, but we need to look more thoroughly into how
2836                  * panels behave in the two modes.
2837                  */
2838
2839                 I915_WRITE(lvds_reg, lvds);
2840                 I915_READ(lvds_reg);
2841         }
2842         if (is_dp)
2843                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
2844
2845         if (!is_edp) {
2846                 I915_WRITE(fp_reg, fp);
2847                 I915_WRITE(dpll_reg, dpll);
2848                 I915_READ(dpll_reg);
2849                 /* Wait for the clocks to stabilize. */
2850                 udelay(150);
2851
2852                 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
2853                         if (is_sdvo) {
2854                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
2855                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
2856                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
2857                         } else
2858                                 I915_WRITE(dpll_md_reg, 0);
2859                 } else {
2860                         /* write it again -- the BIOS does, after all */
2861                         I915_WRITE(dpll_reg, dpll);
2862                 }
2863                 I915_READ(dpll_reg);
2864                 /* Wait for the clocks to stabilize. */
2865                 udelay(150);
2866         }
2867
2868         if (is_lvds && has_reduced_clock && i915_powersave) {
2869                 I915_WRITE(fp_reg + 4, fp2);
2870                 intel_crtc->lowfreq_avail = true;
2871                 if (HAS_PIPE_CXSR(dev)) {
2872                         DRM_DEBUG("enabling CxSR downclocking\n");
2873                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
2874                 }
2875         } else {
2876                 I915_WRITE(fp_reg + 4, fp);
2877                 intel_crtc->lowfreq_avail = false;
2878                 if (HAS_PIPE_CXSR(dev)) {
2879                         DRM_DEBUG("disabling CxSR downclocking\n");
2880                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
2881                 }
2882         }
2883
2884         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
2885                    ((adjusted_mode->crtc_htotal - 1) << 16));
2886         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
2887                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
2888         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
2889                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
2890         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
2891                    ((adjusted_mode->crtc_vtotal - 1) << 16));
2892         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
2893                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
2894         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
2895                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
2896         /* pipesrc and dspsize control the size that is scaled from, which should
2897          * always be the user's requested size.
2898          */
2899         if (!IS_IGDNG(dev)) {
2900                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
2901                                 (mode->hdisplay - 1));
2902                 I915_WRITE(dsppos_reg, 0);
2903         }
2904         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
2905
2906         if (IS_IGDNG(dev)) {
2907                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
2908                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
2909                 I915_WRITE(link_m1_reg, m_n.link_m);
2910                 I915_WRITE(link_n1_reg, m_n.link_n);
2911
2912                 if (is_edp) {
2913                         igdng_set_pll_edp(crtc, adjusted_mode->clock);
2914                 } else {
2915                         /* enable FDI RX PLL too */
2916                         temp = I915_READ(fdi_rx_reg);
2917                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
2918                         udelay(200);
2919                 }
2920         }
2921
2922         I915_WRITE(pipeconf_reg, pipeconf);
2923         I915_READ(pipeconf_reg);
2924
2925         intel_wait_for_vblank(dev);
2926
2927         if (IS_IGDNG(dev)) {
2928                 /* enable address swizzle for tiling buffer */
2929                 temp = I915_READ(DISP_ARB_CTL);
2930                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
2931         }
2932
2933         I915_WRITE(dspcntr_reg, dspcntr);
2934
2935         /* Flush the plane changes */
2936         ret = intel_pipe_set_base(crtc, x, y, old_fb);
2937
2938         if (I915_HAS_FBC(dev) && (IS_I965G(dev) || plane == 0))
2939                 intel_update_fbc(crtc, &crtc->mode);
2940         intel_update_watermarks(dev);
2941
2942         drm_vblank_post_modeset(dev, pipe);
2943
2944         return ret;
2945 }
2946
2947 /** Loads the palette/gamma unit for the CRTC with the prepared values */
2948 void intel_crtc_load_lut(struct drm_crtc *crtc)
2949 {
2950         struct drm_device *dev = crtc->dev;
2951         struct drm_i915_private *dev_priv = dev->dev_private;
2952         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2953         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
2954         int i;
2955
2956         /* The clocks have to be on to load the palette. */
2957         if (!crtc->enabled)
2958                 return;
2959
2960         /* use legacy palette for IGDNG */
2961         if (IS_IGDNG(dev))
2962                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
2963                                                    LGC_PALETTE_B;
2964
2965         for (i = 0; i < 256; i++) {
2966                 I915_WRITE(palreg + 4 * i,
2967                            (intel_crtc->lut_r[i] << 16) |
2968                            (intel_crtc->lut_g[i] << 8) |
2969                            intel_crtc->lut_b[i]);
2970         }
2971 }
2972
2973 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
2974                                  struct drm_file *file_priv,
2975                                  uint32_t handle,
2976                                  uint32_t width, uint32_t height)
2977 {
2978         struct drm_device *dev = crtc->dev;
2979         struct drm_i915_private *dev_priv = dev->dev_private;
2980         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2981         struct drm_gem_object *bo;
2982         struct drm_i915_gem_object *obj_priv;
2983         int pipe = intel_crtc->pipe;
2984         int plane = intel_crtc->plane;
2985         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
2986         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
2987         uint32_t temp = I915_READ(control);
2988         size_t addr;
2989         int ret;
2990
2991         DRM_DEBUG("\n");
2992
2993         /* if we want to turn off the cursor ignore width and height */
2994         if (!handle) {
2995                 DRM_DEBUG("cursor off\n");
2996                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
2997                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
2998                         temp |= CURSOR_MODE_DISABLE;
2999                 } else {
3000                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3001                 }
3002                 addr = 0;
3003                 bo = NULL;
3004                 mutex_lock(&dev->struct_mutex);
3005                 goto finish;
3006         }
3007
3008         /* Currently we only support 64x64 cursors */
3009         if (width != 64 || height != 64) {
3010                 DRM_ERROR("we currently only support 64x64 cursors\n");
3011                 return -EINVAL;
3012         }
3013
3014         bo = drm_gem_object_lookup(dev, file_priv, handle);
3015         if (!bo)
3016                 return -ENOENT;
3017
3018         obj_priv = bo->driver_private;
3019
3020         if (bo->size < width * height * 4) {
3021                 DRM_ERROR("buffer is to small\n");
3022                 ret = -ENOMEM;
3023                 goto fail;
3024         }
3025
3026         /* we only need to pin inside GTT if cursor is non-phy */
3027         mutex_lock(&dev->struct_mutex);
3028         if (!dev_priv->cursor_needs_physical) {
3029                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3030                 if (ret) {
3031                         DRM_ERROR("failed to pin cursor bo\n");
3032                         goto fail_locked;
3033                 }
3034                 addr = obj_priv->gtt_offset;
3035         } else {
3036                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3037                 if (ret) {
3038                         DRM_ERROR("failed to attach phys object\n");
3039                         goto fail_locked;
3040                 }
3041                 addr = obj_priv->phys_obj->handle->busaddr;
3042         }
3043
3044         if (!IS_I9XX(dev))
3045                 I915_WRITE(CURSIZE, (height << 12) | width);
3046
3047         /* Hooray for CUR*CNTR differences */
3048         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3049                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3050                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3051                 temp |= (pipe << 28); /* Connect to correct pipe */
3052         } else {
3053                 temp &= ~(CURSOR_FORMAT_MASK);
3054                 temp |= CURSOR_ENABLE;
3055                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3056         }
3057
3058  finish:
3059         I915_WRITE(control, temp);
3060         I915_WRITE(base, addr);
3061
3062         if (intel_crtc->cursor_bo) {
3063                 if (dev_priv->cursor_needs_physical) {
3064                         if (intel_crtc->cursor_bo != bo)
3065                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3066                 } else
3067                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3068                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3069         }
3070
3071         if (I915_HAS_FBC(dev) && (IS_I965G(dev) || plane == 0))
3072                 intel_update_fbc(crtc, &crtc->mode);
3073
3074         mutex_unlock(&dev->struct_mutex);
3075
3076         intel_crtc->cursor_addr = addr;
3077         intel_crtc->cursor_bo = bo;
3078
3079         return 0;
3080 fail:
3081         mutex_lock(&dev->struct_mutex);
3082 fail_locked:
3083         drm_gem_object_unreference(bo);
3084         mutex_unlock(&dev->struct_mutex);
3085         return ret;
3086 }
3087
3088 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3089 {
3090         struct drm_device *dev = crtc->dev;
3091         struct drm_i915_private *dev_priv = dev->dev_private;
3092         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3093         struct intel_framebuffer *intel_fb;
3094         int pipe = intel_crtc->pipe;
3095         uint32_t temp = 0;
3096         uint32_t adder;
3097
3098         if (crtc->fb) {
3099                 intel_fb = to_intel_framebuffer(crtc->fb);
3100                 intel_mark_busy(dev, intel_fb->obj);
3101         }
3102
3103         if (x < 0) {
3104                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3105                 x = -x;
3106         }
3107         if (y < 0) {
3108                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3109                 y = -y;
3110         }
3111
3112         temp |= x << CURSOR_X_SHIFT;
3113         temp |= y << CURSOR_Y_SHIFT;
3114
3115         adder = intel_crtc->cursor_addr;
3116         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3117         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3118
3119         return 0;
3120 }
3121
3122 /** Sets the color ramps on behalf of RandR */
3123 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3124                                  u16 blue, int regno)
3125 {
3126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3127
3128         intel_crtc->lut_r[regno] = red >> 8;
3129         intel_crtc->lut_g[regno] = green >> 8;
3130         intel_crtc->lut_b[regno] = blue >> 8;
3131 }
3132
3133 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3134                                  u16 *blue, uint32_t size)
3135 {
3136         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3137         int i;
3138
3139         if (size != 256)
3140                 return;
3141
3142         for (i = 0; i < 256; i++) {
3143                 intel_crtc->lut_r[i] = red[i] >> 8;
3144                 intel_crtc->lut_g[i] = green[i] >> 8;
3145                 intel_crtc->lut_b[i] = blue[i] >> 8;
3146         }
3147
3148         intel_crtc_load_lut(crtc);
3149 }
3150
3151 /**
3152  * Get a pipe with a simple mode set on it for doing load-based monitor
3153  * detection.
3154  *
3155  * It will be up to the load-detect code to adjust the pipe as appropriate for
3156  * its requirements.  The pipe will be connected to no other outputs.
3157  *
3158  * Currently this code will only succeed if there is a pipe with no outputs
3159  * configured for it.  In the future, it could choose to temporarily disable
3160  * some outputs to free up a pipe for its use.
3161  *
3162  * \return crtc, or NULL if no pipes are available.
3163  */
3164
3165 /* VESA 640x480x72Hz mode to set on the pipe */
3166 static struct drm_display_mode load_detect_mode = {
3167         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3168                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3169 };
3170
3171 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3172                                             struct drm_display_mode *mode,
3173                                             int *dpms_mode)
3174 {
3175         struct intel_crtc *intel_crtc;
3176         struct drm_crtc *possible_crtc;
3177         struct drm_crtc *supported_crtc =NULL;
3178         struct drm_encoder *encoder = &intel_output->enc;
3179         struct drm_crtc *crtc = NULL;
3180         struct drm_device *dev = encoder->dev;
3181         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3182         struct drm_crtc_helper_funcs *crtc_funcs;
3183         int i = -1;
3184
3185         /*
3186          * Algorithm gets a little messy:
3187          *   - if the connector already has an assigned crtc, use it (but make
3188          *     sure it's on first)
3189          *   - try to find the first unused crtc that can drive this connector,
3190          *     and use that if we find one
3191          *   - if there are no unused crtcs available, try to use the first
3192          *     one we found that supports the connector
3193          */
3194
3195         /* See if we already have a CRTC for this connector */
3196         if (encoder->crtc) {
3197                 crtc = encoder->crtc;
3198                 /* Make sure the crtc and connector are running */
3199                 intel_crtc = to_intel_crtc(crtc);
3200                 *dpms_mode = intel_crtc->dpms_mode;
3201                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3202                         crtc_funcs = crtc->helper_private;
3203                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3204                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3205                 }
3206                 return crtc;
3207         }
3208
3209         /* Find an unused one (if possible) */
3210         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3211                 i++;
3212                 if (!(encoder->possible_crtcs & (1 << i)))
3213                         continue;
3214                 if (!possible_crtc->enabled) {
3215                         crtc = possible_crtc;
3216                         break;
3217                 }
3218                 if (!supported_crtc)
3219                         supported_crtc = possible_crtc;
3220         }
3221
3222         /*
3223          * If we didn't find an unused CRTC, don't use any.
3224          */
3225         if (!crtc) {
3226                 return NULL;
3227         }
3228
3229         encoder->crtc = crtc;
3230         intel_output->base.encoder = encoder;
3231         intel_output->load_detect_temp = true;
3232
3233         intel_crtc = to_intel_crtc(crtc);
3234         *dpms_mode = intel_crtc->dpms_mode;
3235
3236         if (!crtc->enabled) {
3237                 if (!mode)
3238                         mode = &load_detect_mode;
3239                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3240         } else {
3241                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3242                         crtc_funcs = crtc->helper_private;
3243                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3244                 }
3245
3246                 /* Add this connector to the crtc */
3247                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3248                 encoder_funcs->commit(encoder);
3249         }
3250         /* let the connector get through one full cycle before testing */
3251         intel_wait_for_vblank(dev);
3252
3253         return crtc;
3254 }
3255
3256 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3257 {
3258         struct drm_encoder *encoder = &intel_output->enc;
3259         struct drm_device *dev = encoder->dev;
3260         struct drm_crtc *crtc = encoder->crtc;
3261         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3262         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3263
3264         if (intel_output->load_detect_temp) {
3265                 encoder->crtc = NULL;
3266                 intel_output->base.encoder = NULL;
3267                 intel_output->load_detect_temp = false;
3268                 crtc->enabled = drm_helper_crtc_in_use(crtc);
3269                 drm_helper_disable_unused_functions(dev);
3270         }
3271
3272         /* Switch crtc and output back off if necessary */
3273         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3274                 if (encoder->crtc == crtc)
3275                         encoder_funcs->dpms(encoder, dpms_mode);
3276                 crtc_funcs->dpms(crtc, dpms_mode);
3277         }
3278 }
3279
3280 /* Returns the clock of the currently programmed mode of the given pipe. */
3281 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3282 {
3283         struct drm_i915_private *dev_priv = dev->dev_private;
3284         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3285         int pipe = intel_crtc->pipe;
3286         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3287         u32 fp;
3288         intel_clock_t clock;
3289
3290         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3291                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3292         else
3293                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3294
3295         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3296         if (IS_IGD(dev)) {
3297                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3298                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3299         } else {
3300                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3301                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3302         }
3303
3304         if (IS_I9XX(dev)) {
3305                 if (IS_IGD(dev))
3306                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3307                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3308                 else
3309                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3310                                DPLL_FPA01_P1_POST_DIV_SHIFT);
3311
3312                 switch (dpll & DPLL_MODE_MASK) {
3313                 case DPLLB_MODE_DAC_SERIAL:
3314                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3315                                 5 : 10;
3316                         break;
3317                 case DPLLB_MODE_LVDS:
3318                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3319                                 7 : 14;
3320                         break;
3321                 default:
3322                         DRM_DEBUG("Unknown DPLL mode %08x in programmed "
3323                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
3324                         return 0;
3325                 }
3326
3327                 /* XXX: Handle the 100Mhz refclk */
3328                 intel_clock(dev, 96000, &clock);
3329         } else {
3330                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3331
3332                 if (is_lvds) {
3333                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3334                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
3335                         clock.p2 = 14;
3336
3337                         if ((dpll & PLL_REF_INPUT_MASK) ==
3338                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3339                                 /* XXX: might not be 66MHz */
3340                                 intel_clock(dev, 66000, &clock);
3341                         } else
3342                                 intel_clock(dev, 48000, &clock);
3343                 } else {
3344                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
3345                                 clock.p1 = 2;
3346                         else {
3347                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3348                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3349                         }
3350                         if (dpll & PLL_P2_DIVIDE_BY_4)
3351                                 clock.p2 = 4;
3352                         else
3353                                 clock.p2 = 2;
3354
3355                         intel_clock(dev, 48000, &clock);
3356                 }
3357         }
3358
3359         /* XXX: It would be nice to validate the clocks, but we can't reuse
3360          * i830PllIsValid() because it relies on the xf86_config connector
3361          * configuration being accurate, which it isn't necessarily.
3362          */
3363
3364         return clock.dot;
3365 }
3366
3367 /** Returns the currently programmed mode of the given pipe. */
3368 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3369                                              struct drm_crtc *crtc)
3370 {
3371         struct drm_i915_private *dev_priv = dev->dev_private;
3372         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3373         int pipe = intel_crtc->pipe;
3374         struct drm_display_mode *mode;
3375         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3376         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3377         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3378         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3379
3380         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3381         if (!mode)
3382                 return NULL;
3383
3384         mode->clock = intel_crtc_clock_get(dev, crtc);
3385         mode->hdisplay = (htot & 0xffff) + 1;
3386         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3387         mode->hsync_start = (hsync & 0xffff) + 1;
3388         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3389         mode->vdisplay = (vtot & 0xffff) + 1;
3390         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3391         mode->vsync_start = (vsync & 0xffff) + 1;
3392         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3393
3394         drm_mode_set_name(mode);
3395         drm_mode_set_crtcinfo(mode, 0);
3396
3397         return mode;
3398 }
3399
3400 #define GPU_IDLE_TIMEOUT 500 /* ms */
3401
3402 /* When this timer fires, we've been idle for awhile */
3403 static void intel_gpu_idle_timer(unsigned long arg)
3404 {
3405         struct drm_device *dev = (struct drm_device *)arg;
3406         drm_i915_private_t *dev_priv = dev->dev_private;
3407
3408         DRM_DEBUG("idle timer fired, downclocking\n");
3409
3410         dev_priv->busy = false;
3411
3412         queue_work(dev_priv->wq, &dev_priv->idle_work);
3413 }
3414
3415 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3416 {
3417         drm_i915_private_t *dev_priv = dev->dev_private;
3418
3419         if (IS_IGDNG(dev))
3420                 return;
3421
3422         if (!dev_priv->render_reclock_avail) {
3423                 DRM_DEBUG("not reclocking render clock\n");
3424                 return;
3425         }
3426
3427         /* Restore render clock frequency to original value */
3428         if (IS_G4X(dev) || IS_I9XX(dev))
3429                 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3430         else if (IS_I85X(dev))
3431                 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3432         DRM_DEBUG("increasing render clock frequency\n");
3433
3434         /* Schedule downclock */
3435         if (schedule)
3436                 mod_timer(&dev_priv->idle_timer, jiffies +
3437                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3438 }
3439
3440 void intel_decrease_renderclock(struct drm_device *dev)
3441 {
3442         drm_i915_private_t *dev_priv = dev->dev_private;
3443
3444         if (IS_IGDNG(dev))
3445                 return;
3446
3447         if (!dev_priv->render_reclock_avail) {
3448                 DRM_DEBUG("not reclocking render clock\n");
3449                 return;
3450         }
3451
3452         if (IS_G4X(dev)) {
3453                 u16 gcfgc;
3454
3455                 /* Adjust render clock... */
3456                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3457
3458                 /* Down to minimum... */
3459                 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3460                 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3461
3462                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3463         } else if (IS_I965G(dev)) {
3464                 u16 gcfgc;
3465
3466                 /* Adjust render clock... */
3467                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3468
3469                 /* Down to minimum... */
3470                 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3471                 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3472
3473                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3474         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3475                 u16 gcfgc;
3476
3477                 /* Adjust render clock... */
3478                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3479
3480                 /* Down to minimum... */
3481                 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3482                 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3483
3484                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3485         } else if (IS_I915G(dev)) {
3486                 u16 gcfgc;
3487
3488                 /* Adjust render clock... */
3489                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3490
3491                 /* Down to minimum... */
3492                 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3493                 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3494
3495                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3496         } else if (IS_I85X(dev)) {
3497                 u16 hpllcc;
3498
3499                 /* Adjust render clock... */
3500                 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3501
3502                 /* Up to maximum... */
3503                 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3504                 hpllcc |= GC_CLOCK_133_200;
3505
3506                 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3507         }
3508         DRM_DEBUG("decreasing render clock frequency\n");
3509 }
3510
3511 /* Note that no increase function is needed for this - increase_renderclock()
3512  *  will also rewrite these bits
3513  */
3514 void intel_decrease_displayclock(struct drm_device *dev)
3515 {
3516         if (IS_IGDNG(dev))
3517                 return;
3518
3519         if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3520             IS_I915GM(dev)) {
3521                 u16 gcfgc;
3522
3523                 /* Adjust render clock... */
3524                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3525
3526                 /* Down to minimum... */
3527                 gcfgc &= ~0xf0;
3528                 gcfgc |= 0x80;
3529
3530                 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3531         }
3532 }
3533
3534 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3535
3536 static void intel_crtc_idle_timer(unsigned long arg)
3537 {
3538         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3539         struct drm_crtc *crtc = &intel_crtc->base;
3540         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3541
3542         DRM_DEBUG("idle timer fired, downclocking\n");
3543
3544         intel_crtc->busy = false;
3545
3546         queue_work(dev_priv->wq, &dev_priv->idle_work);
3547 }
3548
3549 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3550 {
3551         struct drm_device *dev = crtc->dev;
3552         drm_i915_private_t *dev_priv = dev->dev_private;
3553         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3554         int pipe = intel_crtc->pipe;
3555         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3556         int dpll = I915_READ(dpll_reg);
3557
3558         if (IS_IGDNG(dev))
3559                 return;
3560
3561         if (!dev_priv->lvds_downclock_avail)
3562                 return;
3563
3564         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3565                 DRM_DEBUG("upclocking LVDS\n");
3566
3567                 /* Unlock panel regs */
3568                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3569
3570                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3571                 I915_WRITE(dpll_reg, dpll);
3572                 dpll = I915_READ(dpll_reg);
3573                 intel_wait_for_vblank(dev);
3574                 dpll = I915_READ(dpll_reg);
3575                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3576                         DRM_DEBUG("failed to upclock LVDS!\n");
3577
3578                 /* ...and lock them again */
3579                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3580         }
3581
3582         /* Schedule downclock */
3583         if (schedule)
3584                 mod_timer(&intel_crtc->idle_timer, jiffies +
3585                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3586 }
3587
3588 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3589 {
3590         struct drm_device *dev = crtc->dev;
3591         drm_i915_private_t *dev_priv = dev->dev_private;
3592         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3593         int pipe = intel_crtc->pipe;
3594         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3595         int dpll = I915_READ(dpll_reg);
3596
3597         if (IS_IGDNG(dev))
3598                 return;
3599
3600         if (!dev_priv->lvds_downclock_avail)
3601                 return;
3602
3603         /*
3604          * Since this is called by a timer, we should never get here in
3605          * the manual case.
3606          */
3607         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3608                 DRM_DEBUG("downclocking LVDS\n");
3609
3610                 /* Unlock panel regs */
3611                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3612
3613                 dpll |= DISPLAY_RATE_SELECT_FPA1;
3614                 I915_WRITE(dpll_reg, dpll);
3615                 dpll = I915_READ(dpll_reg);
3616                 intel_wait_for_vblank(dev);
3617                 dpll = I915_READ(dpll_reg);
3618                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3619                         DRM_DEBUG("failed to downclock LVDS!\n");
3620
3621                 /* ...and lock them again */
3622                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3623         }
3624
3625 }
3626
3627 /**
3628  * intel_idle_update - adjust clocks for idleness
3629  * @work: work struct
3630  *
3631  * Either the GPU or display (or both) went idle.  Check the busy status
3632  * here and adjust the CRTC and GPU clocks as necessary.
3633  */
3634 static void intel_idle_update(struct work_struct *work)
3635 {
3636         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
3637                                                     idle_work);
3638         struct drm_device *dev = dev_priv->dev;
3639         struct drm_crtc *crtc;
3640         struct intel_crtc *intel_crtc;
3641
3642         if (!i915_powersave)
3643                 return;
3644
3645         mutex_lock(&dev->struct_mutex);
3646
3647         /* GPU isn't processing, downclock it. */
3648         if (!dev_priv->busy) {
3649                 intel_decrease_renderclock(dev);
3650                 intel_decrease_displayclock(dev);
3651         }
3652
3653         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3654                 /* Skip inactive CRTCs */
3655                 if (!crtc->fb)
3656                         continue;
3657
3658                 intel_crtc = to_intel_crtc(crtc);
3659                 if (!intel_crtc->busy)
3660                         intel_decrease_pllclock(crtc);
3661         }
3662
3663         mutex_unlock(&dev->struct_mutex);
3664 }
3665
3666 /**
3667  * intel_mark_busy - mark the GPU and possibly the display busy
3668  * @dev: drm device
3669  * @obj: object we're operating on
3670  *
3671  * Callers can use this function to indicate that the GPU is busy processing
3672  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
3673  * buffer), we'll also mark the display as busy, so we know to increase its
3674  * clock frequency.
3675  */
3676 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
3677 {
3678         drm_i915_private_t *dev_priv = dev->dev_private;
3679         struct drm_crtc *crtc = NULL;
3680         struct intel_framebuffer *intel_fb;
3681         struct intel_crtc *intel_crtc;
3682
3683         if (!drm_core_check_feature(dev, DRIVER_MODESET))
3684                 return;
3685
3686         dev_priv->busy = true;
3687         intel_increase_renderclock(dev, true);
3688
3689         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3690                 if (!crtc->fb)
3691                         continue;
3692
3693                 intel_crtc = to_intel_crtc(crtc);
3694                 intel_fb = to_intel_framebuffer(crtc->fb);
3695                 if (intel_fb->obj == obj) {
3696                         if (!intel_crtc->busy) {
3697                                 /* Non-busy -> busy, upclock */
3698                                 intel_increase_pllclock(crtc, true);
3699                                 intel_crtc->busy = true;
3700                         } else {
3701                                 /* Busy -> busy, put off timer */
3702                                 mod_timer(&intel_crtc->idle_timer, jiffies +
3703                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3704                         }
3705                 }
3706         }
3707 }
3708
3709 static void intel_crtc_destroy(struct drm_crtc *crtc)
3710 {
3711         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3712
3713         drm_crtc_cleanup(crtc);
3714         kfree(intel_crtc);
3715 }
3716
3717 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
3718         .dpms = intel_crtc_dpms,
3719         .mode_fixup = intel_crtc_mode_fixup,
3720         .mode_set = intel_crtc_mode_set,
3721         .mode_set_base = intel_pipe_set_base,
3722         .prepare = intel_crtc_prepare,
3723         .commit = intel_crtc_commit,
3724 };
3725
3726 static const struct drm_crtc_funcs intel_crtc_funcs = {
3727         .cursor_set = intel_crtc_cursor_set,
3728         .cursor_move = intel_crtc_cursor_move,
3729         .gamma_set = intel_crtc_gamma_set,
3730         .set_config = drm_crtc_helper_set_config,
3731         .destroy = intel_crtc_destroy,
3732 };
3733
3734
3735 static void intel_crtc_init(struct drm_device *dev, int pipe)
3736 {
3737         struct intel_crtc *intel_crtc;
3738         int i;
3739
3740         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
3741         if (intel_crtc == NULL)
3742                 return;
3743
3744         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
3745
3746         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
3747         intel_crtc->pipe = pipe;
3748         intel_crtc->plane = pipe;
3749         for (i = 0; i < 256; i++) {
3750                 intel_crtc->lut_r[i] = i;
3751                 intel_crtc->lut_g[i] = i;
3752                 intel_crtc->lut_b[i] = i;
3753         }
3754
3755         /* Swap pipes & planes for FBC on pre-965 */
3756         intel_crtc->pipe = pipe;
3757         intel_crtc->plane = pipe;
3758         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
3759                 DRM_DEBUG("swapping pipes & planes for FBC\n");
3760                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
3761         }
3762
3763         intel_crtc->cursor_addr = 0;
3764         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
3765         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
3766
3767         intel_crtc->busy = false;
3768
3769         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
3770                     (unsigned long)intel_crtc);
3771 }
3772
3773 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
3774                                 struct drm_file *file_priv)
3775 {
3776         drm_i915_private_t *dev_priv = dev->dev_private;
3777         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
3778         struct drm_mode_object *drmmode_obj;
3779         struct intel_crtc *crtc;
3780
3781         if (!dev_priv) {
3782                 DRM_ERROR("called with no initialization\n");
3783                 return -EINVAL;
3784         }
3785
3786         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
3787                         DRM_MODE_OBJECT_CRTC);
3788
3789         if (!drmmode_obj) {
3790                 DRM_ERROR("no such CRTC id\n");
3791                 return -EINVAL;
3792         }
3793
3794         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
3795         pipe_from_crtc_id->pipe = crtc->pipe;
3796
3797         return 0;
3798 }
3799
3800 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
3801 {
3802         struct drm_crtc *crtc = NULL;
3803
3804         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3805                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3806                 if (intel_crtc->pipe == pipe)
3807                         break;
3808         }
3809         return crtc;
3810 }
3811
3812 static int intel_connector_clones(struct drm_device *dev, int type_mask)
3813 {
3814         int index_mask = 0;
3815         struct drm_connector *connector;
3816         int entry = 0;
3817
3818         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3819                 struct intel_output *intel_output = to_intel_output(connector);
3820                 if (type_mask & intel_output->clone_mask)
3821                         index_mask |= (1 << entry);
3822                 entry++;
3823         }
3824         return index_mask;
3825 }
3826
3827
3828 static void intel_setup_outputs(struct drm_device *dev)
3829 {
3830         struct drm_i915_private *dev_priv = dev->dev_private;
3831         struct drm_connector *connector;
3832
3833         intel_crt_init(dev);
3834
3835         /* Set up integrated LVDS */
3836         if (IS_MOBILE(dev) && !IS_I830(dev))
3837                 intel_lvds_init(dev);
3838
3839         if (IS_IGDNG(dev)) {
3840                 int found;
3841
3842                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
3843                         intel_dp_init(dev, DP_A);
3844
3845                 if (I915_READ(HDMIB) & PORT_DETECTED) {
3846                         /* check SDVOB */
3847                         /* found = intel_sdvo_init(dev, HDMIB); */
3848                         found = 0;
3849                         if (!found)
3850                                 intel_hdmi_init(dev, HDMIB);
3851                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
3852                                 intel_dp_init(dev, PCH_DP_B);
3853                 }
3854
3855                 if (I915_READ(HDMIC) & PORT_DETECTED)
3856                         intel_hdmi_init(dev, HDMIC);
3857
3858                 if (I915_READ(HDMID) & PORT_DETECTED)
3859                         intel_hdmi_init(dev, HDMID);
3860
3861                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
3862                         intel_dp_init(dev, PCH_DP_C);
3863
3864                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
3865                         intel_dp_init(dev, PCH_DP_D);
3866
3867         } else if (IS_I9XX(dev)) {
3868                 bool found = false;
3869
3870                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
3871                         found = intel_sdvo_init(dev, SDVOB);
3872                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
3873                                 intel_hdmi_init(dev, SDVOB);
3874
3875                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
3876                                 intel_dp_init(dev, DP_B);
3877                 }
3878
3879                 /* Before G4X SDVOC doesn't have its own detect register */
3880
3881                 if (I915_READ(SDVOB) & SDVO_DETECTED)
3882                         found = intel_sdvo_init(dev, SDVOC);
3883
3884                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
3885
3886                         if (SUPPORTS_INTEGRATED_HDMI(dev))
3887                                 intel_hdmi_init(dev, SDVOC);
3888                         if (SUPPORTS_INTEGRATED_DP(dev))
3889                                 intel_dp_init(dev, DP_C);
3890                 }
3891
3892                 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
3893                         intel_dp_init(dev, DP_D);
3894         } else
3895                 intel_dvo_init(dev);
3896
3897         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
3898                 intel_tv_init(dev);
3899
3900         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3901                 struct intel_output *intel_output = to_intel_output(connector);
3902                 struct drm_encoder *encoder = &intel_output->enc;
3903
3904                 encoder->possible_crtcs = intel_output->crtc_mask;
3905                 encoder->possible_clones = intel_connector_clones(dev,
3906                                                 intel_output->clone_mask);
3907         }
3908 }
3909
3910 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
3911 {
3912         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3913         struct drm_device *dev = fb->dev;
3914
3915         if (fb->fbdev)
3916                 intelfb_remove(dev, fb);
3917
3918         drm_framebuffer_cleanup(fb);
3919         mutex_lock(&dev->struct_mutex);
3920         drm_gem_object_unreference(intel_fb->obj);
3921         mutex_unlock(&dev->struct_mutex);
3922
3923         kfree(intel_fb);
3924 }
3925
3926 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
3927                                                 struct drm_file *file_priv,
3928                                                 unsigned int *handle)
3929 {
3930         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
3931         struct drm_gem_object *object = intel_fb->obj;
3932
3933         return drm_gem_handle_create(file_priv, object, handle);
3934 }
3935
3936 static const struct drm_framebuffer_funcs intel_fb_funcs = {
3937         .destroy = intel_user_framebuffer_destroy,
3938         .create_handle = intel_user_framebuffer_create_handle,
3939 };
3940
3941 int intel_framebuffer_create(struct drm_device *dev,
3942                              struct drm_mode_fb_cmd *mode_cmd,
3943                              struct drm_framebuffer **fb,
3944                              struct drm_gem_object *obj)
3945 {
3946         struct intel_framebuffer *intel_fb;
3947         int ret;
3948
3949         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
3950         if (!intel_fb)
3951                 return -ENOMEM;
3952
3953         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
3954         if (ret) {
3955                 DRM_ERROR("framebuffer init failed %d\n", ret);
3956                 return ret;
3957         }
3958
3959         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
3960
3961         intel_fb->obj = obj;
3962
3963         *fb = &intel_fb->base;
3964
3965         return 0;
3966 }
3967
3968
3969 static struct drm_framebuffer *
3970 intel_user_framebuffer_create(struct drm_device *dev,
3971                               struct drm_file *filp,
3972                               struct drm_mode_fb_cmd *mode_cmd)
3973 {
3974         struct drm_gem_object *obj;
3975         struct drm_framebuffer *fb;
3976         int ret;
3977
3978         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
3979         if (!obj)
3980                 return NULL;
3981
3982         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
3983         if (ret) {
3984                 mutex_lock(&dev->struct_mutex);
3985                 drm_gem_object_unreference(obj);
3986                 mutex_unlock(&dev->struct_mutex);
3987                 return NULL;
3988         }
3989
3990         return fb;
3991 }
3992
3993 static const struct drm_mode_config_funcs intel_mode_funcs = {
3994         .fb_create = intel_user_framebuffer_create,
3995         .fb_changed = intelfb_probe,
3996 };
3997
3998 void intel_init_clock_gating(struct drm_device *dev)
3999 {
4000         struct drm_i915_private *dev_priv = dev->dev_private;
4001
4002         /*
4003          * Disable clock gating reported to work incorrectly according to the
4004          * specs, but enable as much else as we can.
4005          */
4006         if (IS_G4X(dev)) {
4007                 uint32_t dspclk_gate;
4008                 I915_WRITE(RENCLK_GATE_D1, 0);
4009                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4010                        GS_UNIT_CLOCK_GATE_DISABLE |
4011                        CL_UNIT_CLOCK_GATE_DISABLE);
4012                 I915_WRITE(RAMCLK_GATE_D, 0);
4013                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4014                         OVRUNIT_CLOCK_GATE_DISABLE |
4015                         OVCUNIT_CLOCK_GATE_DISABLE;
4016                 if (IS_GM45(dev))
4017                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4018                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4019         } else if (IS_I965GM(dev)) {
4020                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4021                 I915_WRITE(RENCLK_GATE_D2, 0);
4022                 I915_WRITE(DSPCLK_GATE_D, 0);
4023                 I915_WRITE(RAMCLK_GATE_D, 0);
4024                 I915_WRITE16(DEUC, 0);
4025         } else if (IS_I965G(dev)) {
4026                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4027                        I965_RCC_CLOCK_GATE_DISABLE |
4028                        I965_RCPB_CLOCK_GATE_DISABLE |
4029                        I965_ISC_CLOCK_GATE_DISABLE |
4030                        I965_FBC_CLOCK_GATE_DISABLE);
4031                 I915_WRITE(RENCLK_GATE_D2, 0);
4032         } else if (IS_I9XX(dev)) {
4033                 u32 dstate = I915_READ(D_STATE);
4034
4035                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4036                         DSTATE_DOT_CLOCK_GATING;
4037                 I915_WRITE(D_STATE, dstate);
4038         } else if (IS_I855(dev) || IS_I865G(dev)) {
4039                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4040         } else if (IS_I830(dev)) {
4041                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4042         }
4043 }
4044
4045 void intel_modeset_init(struct drm_device *dev)
4046 {
4047         struct drm_i915_private *dev_priv = dev->dev_private;
4048         int num_pipe;
4049         int i;
4050
4051         drm_mode_config_init(dev);
4052
4053         dev->mode_config.min_width = 0;
4054         dev->mode_config.min_height = 0;
4055
4056         dev->mode_config.funcs = (void *)&intel_mode_funcs;
4057
4058         if (IS_I965G(dev)) {
4059                 dev->mode_config.max_width = 8192;
4060                 dev->mode_config.max_height = 8192;
4061         } else if (IS_I9XX(dev)) {
4062                 dev->mode_config.max_width = 4096;
4063                 dev->mode_config.max_height = 4096;
4064         } else {
4065                 dev->mode_config.max_width = 2048;
4066                 dev->mode_config.max_height = 2048;
4067         }
4068
4069         /* set memory base */
4070         if (IS_I9XX(dev))
4071                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4072         else
4073                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4074
4075         if (IS_MOBILE(dev) || IS_I9XX(dev))
4076                 num_pipe = 2;
4077         else
4078                 num_pipe = 1;
4079         DRM_DEBUG("%d display pipe%s available.\n",
4080                   num_pipe, num_pipe > 1 ? "s" : "");
4081
4082         if (IS_I85X(dev))
4083                 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4084         else if (IS_I9XX(dev) || IS_G4X(dev))
4085                 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4086
4087         for (i = 0; i < num_pipe; i++) {
4088                 intel_crtc_init(dev, i);
4089         }
4090
4091         intel_setup_outputs(dev);
4092
4093         intel_init_clock_gating(dev);
4094
4095         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4096         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4097                     (unsigned long)dev);
4098 }
4099
4100 void intel_modeset_cleanup(struct drm_device *dev)
4101 {
4102         struct drm_i915_private *dev_priv = dev->dev_private;
4103         struct drm_crtc *crtc;
4104         struct intel_crtc *intel_crtc;
4105
4106         mutex_lock(&dev->struct_mutex);
4107
4108         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4109                 /* Skip inactive CRTCs */
4110                 if (!crtc->fb)
4111                         continue;
4112
4113                 intel_crtc = to_intel_crtc(crtc);
4114                 intel_increase_pllclock(crtc, false);
4115                 del_timer_sync(&intel_crtc->idle_timer);
4116         }
4117
4118         intel_increase_renderclock(dev, false);
4119         del_timer_sync(&dev_priv->idle_timer);
4120
4121         mutex_unlock(&dev->struct_mutex);
4122
4123         i8xx_disable_fbc(dev);
4124         drm_mode_config_cleanup(dev);
4125 }
4126
4127
4128 /* current intel driver doesn't take advantage of encoders
4129    always give back the encoder for the connector
4130 */
4131 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4132 {
4133         struct intel_output *intel_output = to_intel_output(connector);
4134
4135         return &intel_output->enc;
4136 }