drm/i915: add timeout to FBC disable waits
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include "drmP.h"
33 #include "intel_drv.h"
34 #include "i915_drm.h"
35 #include "i915_drv.h"
36 #include "drm_dp_helper.h"
37
38 #include "drm_crtc_helper.h"
39
40 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41
42 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
43 static void intel_update_watermarks(struct drm_device *dev);
44 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45
46 typedef struct {
47     /* given values */
48     int n;
49     int m1, m2;
50     int p1, p2;
51     /* derived values */
52     int dot;
53     int vco;
54     int m;
55     int p;
56 } intel_clock_t;
57
58 typedef struct {
59     int min, max;
60 } intel_range_t;
61
62 typedef struct {
63     int dot_limit;
64     int p2_slow, p2_fast;
65 } intel_p2_t;
66
67 #define INTEL_P2_NUM                  2
68 typedef struct intel_limit intel_limit_t;
69 struct intel_limit {
70     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
71     intel_p2_t      p2;
72     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
73                       int, int, intel_clock_t *);
74 };
75
76 #define I8XX_DOT_MIN              25000
77 #define I8XX_DOT_MAX             350000
78 #define I8XX_VCO_MIN             930000
79 #define I8XX_VCO_MAX            1400000
80 #define I8XX_N_MIN                    3
81 #define I8XX_N_MAX                   16
82 #define I8XX_M_MIN                   96
83 #define I8XX_M_MAX                  140
84 #define I8XX_M1_MIN                  18
85 #define I8XX_M1_MAX                  26
86 #define I8XX_M2_MIN                   6
87 #define I8XX_M2_MAX                  16
88 #define I8XX_P_MIN                    4
89 #define I8XX_P_MAX                  128
90 #define I8XX_P1_MIN                   2
91 #define I8XX_P1_MAX                  33
92 #define I8XX_P1_LVDS_MIN              1
93 #define I8XX_P1_LVDS_MAX              6
94 #define I8XX_P2_SLOW                  4
95 #define I8XX_P2_FAST                  2
96 #define I8XX_P2_LVDS_SLOW             14
97 #define I8XX_P2_LVDS_FAST             7
98 #define I8XX_P2_SLOW_LIMIT       165000
99
100 #define I9XX_DOT_MIN              20000
101 #define I9XX_DOT_MAX             400000
102 #define I9XX_VCO_MIN            1400000
103 #define I9XX_VCO_MAX            2800000
104 #define PINEVIEW_VCO_MIN                1700000
105 #define PINEVIEW_VCO_MAX                3500000
106 #define I9XX_N_MIN                    1
107 #define I9XX_N_MAX                    6
108 /* Pineview's Ncounter is a ring counter */
109 #define PINEVIEW_N_MIN                3
110 #define PINEVIEW_N_MAX                6
111 #define I9XX_M_MIN                   70
112 #define I9XX_M_MAX                  120
113 #define PINEVIEW_M_MIN                2
114 #define PINEVIEW_M_MAX              256
115 #define I9XX_M1_MIN                  10
116 #define I9XX_M1_MAX                  22
117 #define I9XX_M2_MIN                   5
118 #define I9XX_M2_MAX                   9
119 /* Pineview M1 is reserved, and must be 0 */
120 #define PINEVIEW_M1_MIN               0
121 #define PINEVIEW_M1_MAX               0
122 #define PINEVIEW_M2_MIN               0
123 #define PINEVIEW_M2_MAX               254
124 #define I9XX_P_SDVO_DAC_MIN           5
125 #define I9XX_P_SDVO_DAC_MAX          80
126 #define I9XX_P_LVDS_MIN               7
127 #define I9XX_P_LVDS_MAX              98
128 #define PINEVIEW_P_LVDS_MIN                   7
129 #define PINEVIEW_P_LVDS_MAX                  112
130 #define I9XX_P1_MIN                   1
131 #define I9XX_P1_MAX                   8
132 #define I9XX_P2_SDVO_DAC_SLOW                10
133 #define I9XX_P2_SDVO_DAC_FAST                 5
134 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
135 #define I9XX_P2_LVDS_SLOW                    14
136 #define I9XX_P2_LVDS_FAST                     7
137 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
138
139 /*The parameter is for SDVO on G4x platform*/
140 #define G4X_DOT_SDVO_MIN           25000
141 #define G4X_DOT_SDVO_MAX           270000
142 #define G4X_VCO_MIN                1750000
143 #define G4X_VCO_MAX                3500000
144 #define G4X_N_SDVO_MIN             1
145 #define G4X_N_SDVO_MAX             4
146 #define G4X_M_SDVO_MIN             104
147 #define G4X_M_SDVO_MAX             138
148 #define G4X_M1_SDVO_MIN            17
149 #define G4X_M1_SDVO_MAX            23
150 #define G4X_M2_SDVO_MIN            5
151 #define G4X_M2_SDVO_MAX            11
152 #define G4X_P_SDVO_MIN             10
153 #define G4X_P_SDVO_MAX             30
154 #define G4X_P1_SDVO_MIN            1
155 #define G4X_P1_SDVO_MAX            3
156 #define G4X_P2_SDVO_SLOW           10
157 #define G4X_P2_SDVO_FAST           10
158 #define G4X_P2_SDVO_LIMIT          270000
159
160 /*The parameter is for HDMI_DAC on G4x platform*/
161 #define G4X_DOT_HDMI_DAC_MIN           22000
162 #define G4X_DOT_HDMI_DAC_MAX           400000
163 #define G4X_N_HDMI_DAC_MIN             1
164 #define G4X_N_HDMI_DAC_MAX             4
165 #define G4X_M_HDMI_DAC_MIN             104
166 #define G4X_M_HDMI_DAC_MAX             138
167 #define G4X_M1_HDMI_DAC_MIN            16
168 #define G4X_M1_HDMI_DAC_MAX            23
169 #define G4X_M2_HDMI_DAC_MIN            5
170 #define G4X_M2_HDMI_DAC_MAX            11
171 #define G4X_P_HDMI_DAC_MIN             5
172 #define G4X_P_HDMI_DAC_MAX             80
173 #define G4X_P1_HDMI_DAC_MIN            1
174 #define G4X_P1_HDMI_DAC_MAX            8
175 #define G4X_P2_HDMI_DAC_SLOW           10
176 #define G4X_P2_HDMI_DAC_FAST           5
177 #define G4X_P2_HDMI_DAC_LIMIT          165000
178
179 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
180 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
182 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
184 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
186 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
188 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
190 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
192 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
194 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
197
198 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
199 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
201 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
202 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
203 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
204 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
205 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
207 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
209 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
210 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
211 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
213 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
214 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
216
217 /*The parameter is for DISPLAY PORT on G4x platform*/
218 #define G4X_DOT_DISPLAY_PORT_MIN           161670
219 #define G4X_DOT_DISPLAY_PORT_MAX           227000
220 #define G4X_N_DISPLAY_PORT_MIN             1
221 #define G4X_N_DISPLAY_PORT_MAX             2
222 #define G4X_M_DISPLAY_PORT_MIN             97
223 #define G4X_M_DISPLAY_PORT_MAX             108
224 #define G4X_M1_DISPLAY_PORT_MIN            0x10
225 #define G4X_M1_DISPLAY_PORT_MAX            0x12
226 #define G4X_M2_DISPLAY_PORT_MIN            0x05
227 #define G4X_M2_DISPLAY_PORT_MAX            0x06
228 #define G4X_P_DISPLAY_PORT_MIN             10
229 #define G4X_P_DISPLAY_PORT_MAX             20
230 #define G4X_P1_DISPLAY_PORT_MIN            1
231 #define G4X_P1_DISPLAY_PORT_MAX            2
232 #define G4X_P2_DISPLAY_PORT_SLOW           10
233 #define G4X_P2_DISPLAY_PORT_FAST           10
234 #define G4X_P2_DISPLAY_PORT_LIMIT          0
235
236 /* Ironlake / Sandybridge */
237 /* as we calculate clock using (register_value + 2) for
238    N/M1/M2, so here the range value for them is (actual_value-2).
239  */
240 #define IRONLAKE_DOT_MIN         25000
241 #define IRONLAKE_DOT_MAX         350000
242 #define IRONLAKE_VCO_MIN         1760000
243 #define IRONLAKE_VCO_MAX         3510000
244 #define IRONLAKE_M1_MIN          12
245 #define IRONLAKE_M1_MAX          22
246 #define IRONLAKE_M2_MIN          5
247 #define IRONLAKE_M2_MAX          9
248 #define IRONLAKE_P2_DOT_LIMIT    225000 /* 225Mhz */
249
250 /* We have parameter ranges for different type of outputs. */
251
252 /* DAC & HDMI Refclk 120Mhz */
253 #define IRONLAKE_DAC_N_MIN      1
254 #define IRONLAKE_DAC_N_MAX      5
255 #define IRONLAKE_DAC_M_MIN      79
256 #define IRONLAKE_DAC_M_MAX      127
257 #define IRONLAKE_DAC_P_MIN      5
258 #define IRONLAKE_DAC_P_MAX      80
259 #define IRONLAKE_DAC_P1_MIN     1
260 #define IRONLAKE_DAC_P1_MAX     8
261 #define IRONLAKE_DAC_P2_SLOW    10
262 #define IRONLAKE_DAC_P2_FAST    5
263
264 /* LVDS single-channel 120Mhz refclk */
265 #define IRONLAKE_LVDS_S_N_MIN   1
266 #define IRONLAKE_LVDS_S_N_MAX   3
267 #define IRONLAKE_LVDS_S_M_MIN   79
268 #define IRONLAKE_LVDS_S_M_MAX   118
269 #define IRONLAKE_LVDS_S_P_MIN   28
270 #define IRONLAKE_LVDS_S_P_MAX   112
271 #define IRONLAKE_LVDS_S_P1_MIN  2
272 #define IRONLAKE_LVDS_S_P1_MAX  8
273 #define IRONLAKE_LVDS_S_P2_SLOW 14
274 #define IRONLAKE_LVDS_S_P2_FAST 14
275
276 /* LVDS dual-channel 120Mhz refclk */
277 #define IRONLAKE_LVDS_D_N_MIN   1
278 #define IRONLAKE_LVDS_D_N_MAX   3
279 #define IRONLAKE_LVDS_D_M_MIN   79
280 #define IRONLAKE_LVDS_D_M_MAX   127
281 #define IRONLAKE_LVDS_D_P_MIN   14
282 #define IRONLAKE_LVDS_D_P_MAX   56
283 #define IRONLAKE_LVDS_D_P1_MIN  2
284 #define IRONLAKE_LVDS_D_P1_MAX  8
285 #define IRONLAKE_LVDS_D_P2_SLOW 7
286 #define IRONLAKE_LVDS_D_P2_FAST 7
287
288 /* LVDS single-channel 100Mhz refclk */
289 #define IRONLAKE_LVDS_S_SSC_N_MIN       1
290 #define IRONLAKE_LVDS_S_SSC_N_MAX       2
291 #define IRONLAKE_LVDS_S_SSC_M_MIN       79
292 #define IRONLAKE_LVDS_S_SSC_M_MAX       126
293 #define IRONLAKE_LVDS_S_SSC_P_MIN       28
294 #define IRONLAKE_LVDS_S_SSC_P_MAX       112
295 #define IRONLAKE_LVDS_S_SSC_P1_MIN      2
296 #define IRONLAKE_LVDS_S_SSC_P1_MAX      8
297 #define IRONLAKE_LVDS_S_SSC_P2_SLOW     14
298 #define IRONLAKE_LVDS_S_SSC_P2_FAST     14
299
300 /* LVDS dual-channel 100Mhz refclk */
301 #define IRONLAKE_LVDS_D_SSC_N_MIN       1
302 #define IRONLAKE_LVDS_D_SSC_N_MAX       3
303 #define IRONLAKE_LVDS_D_SSC_M_MIN       79
304 #define IRONLAKE_LVDS_D_SSC_M_MAX       126
305 #define IRONLAKE_LVDS_D_SSC_P_MIN       14
306 #define IRONLAKE_LVDS_D_SSC_P_MAX       42
307 #define IRONLAKE_LVDS_D_SSC_P1_MIN      2
308 #define IRONLAKE_LVDS_D_SSC_P1_MAX      6
309 #define IRONLAKE_LVDS_D_SSC_P2_SLOW     7
310 #define IRONLAKE_LVDS_D_SSC_P2_FAST     7
311
312 /* DisplayPort */
313 #define IRONLAKE_DP_N_MIN               1
314 #define IRONLAKE_DP_N_MAX               2
315 #define IRONLAKE_DP_M_MIN               81
316 #define IRONLAKE_DP_M_MAX               90
317 #define IRONLAKE_DP_P_MIN               10
318 #define IRONLAKE_DP_P_MAX               20
319 #define IRONLAKE_DP_P2_FAST             10
320 #define IRONLAKE_DP_P2_SLOW             10
321 #define IRONLAKE_DP_P2_LIMIT            0
322 #define IRONLAKE_DP_P1_MIN              1
323 #define IRONLAKE_DP_P1_MAX              2
324
325 static bool
326 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
327                     int target, int refclk, intel_clock_t *best_clock);
328 static bool
329 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
330                         int target, int refclk, intel_clock_t *best_clock);
331
332 static bool
333 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
334                       int target, int refclk, intel_clock_t *best_clock);
335 static bool
336 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
337                            int target, int refclk, intel_clock_t *best_clock);
338
339 static const intel_limit_t intel_limits_i8xx_dvo = {
340         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
341         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
342         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
343         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
344         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
345         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
346         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
347         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
348         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
349                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
350         .find_pll = intel_find_best_PLL,
351 };
352
353 static const intel_limit_t intel_limits_i8xx_lvds = {
354         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
355         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
356         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
357         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
358         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
359         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
360         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
361         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
362         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
363                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
364         .find_pll = intel_find_best_PLL,
365 };
366         
367 static const intel_limit_t intel_limits_i9xx_sdvo = {
368         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
369         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
370         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
371         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
372         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
373         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
374         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
375         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
376         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
377                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
378         .find_pll = intel_find_best_PLL,
379 };
380
381 static const intel_limit_t intel_limits_i9xx_lvds = {
382         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
383         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
384         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
385         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
386         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
387         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
388         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
389         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
390         /* The single-channel range is 25-112Mhz, and dual-channel
391          * is 80-224Mhz.  Prefer single channel as much as possible.
392          */
393         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
394                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
395         .find_pll = intel_find_best_PLL,
396 };
397
398     /* below parameter and function is for G4X Chipset Family*/
399 static const intel_limit_t intel_limits_g4x_sdvo = {
400         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
401         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
402         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
403         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
404         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
405         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
406         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
407         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
408         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
409                  .p2_slow = G4X_P2_SDVO_SLOW,
410                  .p2_fast = G4X_P2_SDVO_FAST
411         },
412         .find_pll = intel_g4x_find_best_PLL,
413 };
414
415 static const intel_limit_t intel_limits_g4x_hdmi = {
416         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
417         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
418         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
419         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
420         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
421         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
422         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
423         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
424         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
425                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
426                  .p2_fast = G4X_P2_HDMI_DAC_FAST
427         },
428         .find_pll = intel_g4x_find_best_PLL,
429 };
430
431 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
432         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
433                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
434         .vco = { .min = G4X_VCO_MIN,
435                  .max = G4X_VCO_MAX },
436         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
437                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
438         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
439                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
440         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
441                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
442         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
443                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
444         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
445                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
446         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
447                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
448         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
449                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
450                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
451         },
452         .find_pll = intel_g4x_find_best_PLL,
453 };
454
455 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
456         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
457                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
458         .vco = { .min = G4X_VCO_MIN,
459                  .max = G4X_VCO_MAX },
460         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
461                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
462         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
463                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
464         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
465                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
466         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
467                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
468         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
469                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
470         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
471                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
472         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
473                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
474                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
475         },
476         .find_pll = intel_g4x_find_best_PLL,
477 };
478
479 static const intel_limit_t intel_limits_g4x_display_port = {
480         .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
481                  .max = G4X_DOT_DISPLAY_PORT_MAX },
482         .vco = { .min = G4X_VCO_MIN,
483                  .max = G4X_VCO_MAX},
484         .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
485                  .max = G4X_N_DISPLAY_PORT_MAX },
486         .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
487                  .max = G4X_M_DISPLAY_PORT_MAX },
488         .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
489                  .max = G4X_M1_DISPLAY_PORT_MAX },
490         .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
491                  .max = G4X_M2_DISPLAY_PORT_MAX },
492         .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
493                  .max = G4X_P_DISPLAY_PORT_MAX },
494         .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
495                  .max = G4X_P1_DISPLAY_PORT_MAX},
496         .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
497                  .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
498                  .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
499         .find_pll = intel_find_pll_g4x_dp,
500 };
501
502 static const intel_limit_t intel_limits_pineview_sdvo = {
503         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
504         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
505         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
506         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
507         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
508         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
509         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
510         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
511         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
512                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
513         .find_pll = intel_find_best_PLL,
514 };
515
516 static const intel_limit_t intel_limits_pineview_lvds = {
517         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
518         .vco = { .min = PINEVIEW_VCO_MIN,               .max = PINEVIEW_VCO_MAX },
519         .n   = { .min = PINEVIEW_N_MIN,         .max = PINEVIEW_N_MAX },
520         .m   = { .min = PINEVIEW_M_MIN,         .max = PINEVIEW_M_MAX },
521         .m1  = { .min = PINEVIEW_M1_MIN,                .max = PINEVIEW_M1_MAX },
522         .m2  = { .min = PINEVIEW_M2_MIN,                .max = PINEVIEW_M2_MAX },
523         .p   = { .min = PINEVIEW_P_LVDS_MIN,    .max = PINEVIEW_P_LVDS_MAX },
524         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
525         /* Pineview only supports single-channel mode. */
526         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
527                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
528         .find_pll = intel_find_best_PLL,
529 };
530
531 static const intel_limit_t intel_limits_ironlake_dac = {
532         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
533         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
534         .n   = { .min = IRONLAKE_DAC_N_MIN,        .max = IRONLAKE_DAC_N_MAX },
535         .m   = { .min = IRONLAKE_DAC_M_MIN,        .max = IRONLAKE_DAC_M_MAX },
536         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
537         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
538         .p   = { .min = IRONLAKE_DAC_P_MIN,        .max = IRONLAKE_DAC_P_MAX },
539         .p1  = { .min = IRONLAKE_DAC_P1_MIN,       .max = IRONLAKE_DAC_P1_MAX },
540         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
541                  .p2_slow = IRONLAKE_DAC_P2_SLOW,
542                  .p2_fast = IRONLAKE_DAC_P2_FAST },
543         .find_pll = intel_g4x_find_best_PLL,
544 };
545
546 static const intel_limit_t intel_limits_ironlake_single_lvds = {
547         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
548         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
549         .n   = { .min = IRONLAKE_LVDS_S_N_MIN,     .max = IRONLAKE_LVDS_S_N_MAX },
550         .m   = { .min = IRONLAKE_LVDS_S_M_MIN,     .max = IRONLAKE_LVDS_S_M_MAX },
551         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
552         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
553         .p   = { .min = IRONLAKE_LVDS_S_P_MIN,     .max = IRONLAKE_LVDS_S_P_MAX },
554         .p1  = { .min = IRONLAKE_LVDS_S_P1_MIN,    .max = IRONLAKE_LVDS_S_P1_MAX },
555         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
556                  .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
557                  .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
558         .find_pll = intel_g4x_find_best_PLL,
559 };
560
561 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
562         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
563         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
564         .n   = { .min = IRONLAKE_LVDS_D_N_MIN,     .max = IRONLAKE_LVDS_D_N_MAX },
565         .m   = { .min = IRONLAKE_LVDS_D_M_MIN,     .max = IRONLAKE_LVDS_D_M_MAX },
566         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
567         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
568         .p   = { .min = IRONLAKE_LVDS_D_P_MIN,     .max = IRONLAKE_LVDS_D_P_MAX },
569         .p1  = { .min = IRONLAKE_LVDS_D_P1_MIN,    .max = IRONLAKE_LVDS_D_P1_MAX },
570         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
571                  .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
572                  .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
573         .find_pll = intel_g4x_find_best_PLL,
574 };
575
576 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
577         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
578         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
579         .n   = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
580         .m   = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
581         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
582         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
583         .p   = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
584         .p1  = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
585         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
586                  .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
587                  .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
588         .find_pll = intel_g4x_find_best_PLL,
589 };
590
591 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
592         .dot = { .min = IRONLAKE_DOT_MIN,          .max = IRONLAKE_DOT_MAX },
593         .vco = { .min = IRONLAKE_VCO_MIN,          .max = IRONLAKE_VCO_MAX },
594         .n   = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
595         .m   = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
596         .m1  = { .min = IRONLAKE_M1_MIN,           .max = IRONLAKE_M1_MAX },
597         .m2  = { .min = IRONLAKE_M2_MIN,           .max = IRONLAKE_M2_MAX },
598         .p   = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
599         .p1  = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
600         .p2  = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
601                  .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
602                  .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
603         .find_pll = intel_g4x_find_best_PLL,
604 };
605
606 static const intel_limit_t intel_limits_ironlake_display_port = {
607         .dot = { .min = IRONLAKE_DOT_MIN,
608                  .max = IRONLAKE_DOT_MAX },
609         .vco = { .min = IRONLAKE_VCO_MIN,
610                  .max = IRONLAKE_VCO_MAX},
611         .n   = { .min = IRONLAKE_DP_N_MIN,
612                  .max = IRONLAKE_DP_N_MAX },
613         .m   = { .min = IRONLAKE_DP_M_MIN,
614                  .max = IRONLAKE_DP_M_MAX },
615         .m1  = { .min = IRONLAKE_M1_MIN,
616                  .max = IRONLAKE_M1_MAX },
617         .m2  = { .min = IRONLAKE_M2_MIN,
618                  .max = IRONLAKE_M2_MAX },
619         .p   = { .min = IRONLAKE_DP_P_MIN,
620                  .max = IRONLAKE_DP_P_MAX },
621         .p1  = { .min = IRONLAKE_DP_P1_MIN,
622                  .max = IRONLAKE_DP_P1_MAX},
623         .p2  = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
624                  .p2_slow = IRONLAKE_DP_P2_SLOW,
625                  .p2_fast = IRONLAKE_DP_P2_FAST },
626         .find_pll = intel_find_pll_ironlake_dp,
627 };
628
629 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
630 {
631         struct drm_device *dev = crtc->dev;
632         struct drm_i915_private *dev_priv = dev->dev_private;
633         const intel_limit_t *limit;
634         int refclk = 120;
635
636         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
637                 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
638                         refclk = 100;
639
640                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
641                     LVDS_CLKB_POWER_UP) {
642                         /* LVDS dual channel */
643                         if (refclk == 100)
644                                 limit = &intel_limits_ironlake_dual_lvds_100m;
645                         else
646                                 limit = &intel_limits_ironlake_dual_lvds;
647                 } else {
648                         if (refclk == 100)
649                                 limit = &intel_limits_ironlake_single_lvds_100m;
650                         else
651                                 limit = &intel_limits_ironlake_single_lvds;
652                 }
653         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
654                         HAS_eDP)
655                 limit = &intel_limits_ironlake_display_port;
656         else
657                 limit = &intel_limits_ironlake_dac;
658
659         return limit;
660 }
661
662 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
663 {
664         struct drm_device *dev = crtc->dev;
665         struct drm_i915_private *dev_priv = dev->dev_private;
666         const intel_limit_t *limit;
667
668         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
669                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
670                     LVDS_CLKB_POWER_UP)
671                         /* LVDS with dual channel */
672                         limit = &intel_limits_g4x_dual_channel_lvds;
673                 else
674                         /* LVDS with dual channel */
675                         limit = &intel_limits_g4x_single_channel_lvds;
676         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
677                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
678                 limit = &intel_limits_g4x_hdmi;
679         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
680                 limit = &intel_limits_g4x_sdvo;
681         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
682                 limit = &intel_limits_g4x_display_port;
683         } else /* The option is for other outputs */
684                 limit = &intel_limits_i9xx_sdvo;
685
686         return limit;
687 }
688
689 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
690 {
691         struct drm_device *dev = crtc->dev;
692         const intel_limit_t *limit;
693
694         if (HAS_PCH_SPLIT(dev))
695                 limit = intel_ironlake_limit(crtc);
696         else if (IS_G4X(dev)) {
697                 limit = intel_g4x_limit(crtc);
698         } else if (IS_I9XX(dev) && !IS_PINEVIEW(dev)) {
699                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
700                         limit = &intel_limits_i9xx_lvds;
701                 else
702                         limit = &intel_limits_i9xx_sdvo;
703         } else if (IS_PINEVIEW(dev)) {
704                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
705                         limit = &intel_limits_pineview_lvds;
706                 else
707                         limit = &intel_limits_pineview_sdvo;
708         } else {
709                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
710                         limit = &intel_limits_i8xx_lvds;
711                 else
712                         limit = &intel_limits_i8xx_dvo;
713         }
714         return limit;
715 }
716
717 /* m1 is reserved as 0 in Pineview, n is a ring counter */
718 static void pineview_clock(int refclk, intel_clock_t *clock)
719 {
720         clock->m = clock->m2 + 2;
721         clock->p = clock->p1 * clock->p2;
722         clock->vco = refclk * clock->m / clock->n;
723         clock->dot = clock->vco / clock->p;
724 }
725
726 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
727 {
728         if (IS_PINEVIEW(dev)) {
729                 pineview_clock(refclk, clock);
730                 return;
731         }
732         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
733         clock->p = clock->p1 * clock->p2;
734         clock->vco = refclk * clock->m / (clock->n + 2);
735         clock->dot = clock->vco / clock->p;
736 }
737
738 /**
739  * Returns whether any output on the specified pipe is of the specified type
740  */
741 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
742 {
743     struct drm_device *dev = crtc->dev;
744     struct drm_mode_config *mode_config = &dev->mode_config;
745     struct drm_encoder *l_entry;
746
747     list_for_each_entry(l_entry, &mode_config->encoder_list, head) {
748             if (l_entry && l_entry->crtc == crtc) {
749                     struct intel_encoder *intel_encoder = enc_to_intel_encoder(l_entry);
750                     if (intel_encoder->type == type)
751                             return true;
752             }
753     }
754     return false;
755 }
756
757 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
758 /**
759  * Returns whether the given set of divisors are valid for a given refclk with
760  * the given connectors.
761  */
762
763 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
764 {
765         const intel_limit_t *limit = intel_limit (crtc);
766         struct drm_device *dev = crtc->dev;
767
768         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
769                 INTELPllInvalid ("p1 out of range\n");
770         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
771                 INTELPllInvalid ("p out of range\n");
772         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
773                 INTELPllInvalid ("m2 out of range\n");
774         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
775                 INTELPllInvalid ("m1 out of range\n");
776         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
777                 INTELPllInvalid ("m1 <= m2\n");
778         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
779                 INTELPllInvalid ("m out of range\n");
780         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
781                 INTELPllInvalid ("n out of range\n");
782         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
783                 INTELPllInvalid ("vco out of range\n");
784         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
785          * connector, etc., rather than just a single range.
786          */
787         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
788                 INTELPllInvalid ("dot out of range\n");
789
790         return true;
791 }
792
793 static bool
794 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
795                     int target, int refclk, intel_clock_t *best_clock)
796
797 {
798         struct drm_device *dev = crtc->dev;
799         struct drm_i915_private *dev_priv = dev->dev_private;
800         intel_clock_t clock;
801         int err = target;
802
803         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
804             (I915_READ(LVDS)) != 0) {
805                 /*
806                  * For LVDS, if the panel is on, just rely on its current
807                  * settings for dual-channel.  We haven't figured out how to
808                  * reliably set up different single/dual channel state, if we
809                  * even can.
810                  */
811                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
812                     LVDS_CLKB_POWER_UP)
813                         clock.p2 = limit->p2.p2_fast;
814                 else
815                         clock.p2 = limit->p2.p2_slow;
816         } else {
817                 if (target < limit->p2.dot_limit)
818                         clock.p2 = limit->p2.p2_slow;
819                 else
820                         clock.p2 = limit->p2.p2_fast;
821         }
822
823         memset (best_clock, 0, sizeof (*best_clock));
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         /* m1 is always 0 in Pineview */
830                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
831                                 break;
832                         for (clock.n = limit->n.min;
833                              clock.n <= limit->n.max; clock.n++) {
834                                 for (clock.p1 = limit->p1.min;
835                                         clock.p1 <= limit->p1.max; clock.p1++) {
836                                         int this_err;
837
838                                         intel_clock(dev, refclk, &clock);
839
840                                         if (!intel_PLL_is_valid(crtc, &clock))
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
858                         int target, int refclk, intel_clock_t *best_clock)
859 {
860         struct drm_device *dev = crtc->dev;
861         struct drm_i915_private *dev_priv = dev->dev_private;
862         intel_clock_t clock;
863         int max_n;
864         bool found;
865         /* approximately equals target * 0.00488 */
866         int err_most = (target >> 8) + (target >> 10);
867         found = false;
868
869         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
870                 int lvds_reg;
871
872                 if (HAS_PCH_SPLIT(dev))
873                         lvds_reg = PCH_LVDS;
874                 else
875                         lvds_reg = LVDS;
876                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
877                     LVDS_CLKB_POWER_UP)
878                         clock.p2 = limit->p2.p2_fast;
879                 else
880                         clock.p2 = limit->p2.p2_slow;
881         } else {
882                 if (target < limit->p2.dot_limit)
883                         clock.p2 = limit->p2.p2_slow;
884                 else
885                         clock.p2 = limit->p2.p2_fast;
886         }
887
888         memset(best_clock, 0, sizeof(*best_clock));
889         max_n = limit->n.max;
890         /* based on hardware requirement, prefer smaller n to precision */
891         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
892                 /* based on hardware requirement, prefere larger m1,m2 */
893                 for (clock.m1 = limit->m1.max;
894                      clock.m1 >= limit->m1.min; clock.m1--) {
895                         for (clock.m2 = limit->m2.max;
896                              clock.m2 >= limit->m2.min; clock.m2--) {
897                                 for (clock.p1 = limit->p1.max;
898                                      clock.p1 >= limit->p1.min; clock.p1--) {
899                                         int this_err;
900
901                                         intel_clock(dev, refclk, &clock);
902                                         if (!intel_PLL_is_valid(crtc, &clock))
903                                                 continue;
904                                         this_err = abs(clock.dot - target) ;
905                                         if (this_err < err_most) {
906                                                 *best_clock = clock;
907                                                 err_most = this_err;
908                                                 max_n = clock.n;
909                                                 found = true;
910                                         }
911                                 }
912                         }
913                 }
914         }
915         return found;
916 }
917
918 static bool
919 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
920                            int target, int refclk, intel_clock_t *best_clock)
921 {
922         struct drm_device *dev = crtc->dev;
923         intel_clock_t clock;
924
925         /* return directly when it is eDP */
926         if (HAS_eDP)
927                 return true;
928
929         if (target < 200000) {
930                 clock.n = 1;
931                 clock.p1 = 2;
932                 clock.p2 = 10;
933                 clock.m1 = 12;
934                 clock.m2 = 9;
935         } else {
936                 clock.n = 2;
937                 clock.p1 = 1;
938                 clock.p2 = 10;
939                 clock.m1 = 14;
940                 clock.m2 = 8;
941         }
942         intel_clock(dev, refclk, &clock);
943         memcpy(best_clock, &clock, sizeof(intel_clock_t));
944         return true;
945 }
946
947 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
948 static bool
949 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
950                       int target, int refclk, intel_clock_t *best_clock)
951 {
952     intel_clock_t clock;
953     if (target < 200000) {
954         clock.p1 = 2;
955         clock.p2 = 10;
956         clock.n = 2;
957         clock.m1 = 23;
958         clock.m2 = 8;
959     } else {
960         clock.p1 = 1;
961         clock.p2 = 10;
962         clock.n = 1;
963         clock.m1 = 14;
964         clock.m2 = 2;
965     }
966     clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
967     clock.p = (clock.p1 * clock.p2);
968     clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
969     clock.vco = 0;
970     memcpy(best_clock, &clock, sizeof(intel_clock_t));
971     return true;
972 }
973
974 void
975 intel_wait_for_vblank(struct drm_device *dev)
976 {
977         /* Wait for 20ms, i.e. one cycle at 50hz. */
978         msleep(20);
979 }
980
981 /* Parameters have changed, update FBC info */
982 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
983 {
984         struct drm_device *dev = crtc->dev;
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         struct drm_framebuffer *fb = crtc->fb;
987         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
988         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
989         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
990         int plane, i;
991         u32 fbc_ctl, fbc_ctl2;
992
993         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
994
995         if (fb->pitch < dev_priv->cfb_pitch)
996                 dev_priv->cfb_pitch = fb->pitch;
997
998         /* FBC_CTL wants 64B units */
999         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1000         dev_priv->cfb_fence = obj_priv->fence_reg;
1001         dev_priv->cfb_plane = intel_crtc->plane;
1002         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1003
1004         /* Clear old tags */
1005         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1006                 I915_WRITE(FBC_TAG + (i * 4), 0);
1007
1008         /* Set it up... */
1009         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1010         if (obj_priv->tiling_mode != I915_TILING_NONE)
1011                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1012         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1013         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1014
1015         /* enable it... */
1016         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1017         if (IS_I945GM(dev))
1018                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1019         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1020         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1021         if (obj_priv->tiling_mode != I915_TILING_NONE)
1022                 fbc_ctl |= dev_priv->cfb_fence;
1023         I915_WRITE(FBC_CONTROL, fbc_ctl);
1024
1025         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1026                   dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1027 }
1028
1029 void i8xx_disable_fbc(struct drm_device *dev)
1030 {
1031         struct drm_i915_private *dev_priv = dev->dev_private;
1032         unsigned long timeout = jiffies + msecs_to_jiffies(1);
1033         u32 fbc_ctl;
1034
1035         if (!I915_HAS_FBC(dev))
1036                 return;
1037
1038         if (!(I915_READ(FBC_CONTROL) & FBC_CTL_EN))
1039                 return; /* Already off, just return */
1040
1041         /* Disable compression */
1042         fbc_ctl = I915_READ(FBC_CONTROL);
1043         fbc_ctl &= ~FBC_CTL_EN;
1044         I915_WRITE(FBC_CONTROL, fbc_ctl);
1045
1046         /* Wait for compressing bit to clear */
1047         while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) {
1048                 if (time_after(jiffies, timeout)) {
1049                         DRM_DEBUG_DRIVER("FBC idle timed out\n");
1050                         break;
1051                 }
1052                 ; /* do nothing */
1053         }
1054
1055         intel_wait_for_vblank(dev);
1056
1057         DRM_DEBUG_KMS("disabled FBC\n");
1058 }
1059
1060 static bool i8xx_fbc_enabled(struct drm_device *dev)
1061 {
1062         struct drm_i915_private *dev_priv = dev->dev_private;
1063
1064         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1065 }
1066
1067 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1068 {
1069         struct drm_device *dev = crtc->dev;
1070         struct drm_i915_private *dev_priv = dev->dev_private;
1071         struct drm_framebuffer *fb = crtc->fb;
1072         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1073         struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1074         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1075         int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1076                      DPFC_CTL_PLANEB);
1077         unsigned long stall_watermark = 200;
1078         u32 dpfc_ctl;
1079
1080         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1081         dev_priv->cfb_fence = obj_priv->fence_reg;
1082         dev_priv->cfb_plane = intel_crtc->plane;
1083
1084         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1085         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1086                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1087                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1088         } else {
1089                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1090         }
1091
1092         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1093         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1094                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1095                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1096         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1097
1098         /* enable it... */
1099         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1100
1101         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1102 }
1103
1104 void g4x_disable_fbc(struct drm_device *dev)
1105 {
1106         struct drm_i915_private *dev_priv = dev->dev_private;
1107         u32 dpfc_ctl;
1108
1109         /* Disable compression */
1110         dpfc_ctl = I915_READ(DPFC_CONTROL);
1111         dpfc_ctl &= ~DPFC_CTL_EN;
1112         I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1113         intel_wait_for_vblank(dev);
1114
1115         DRM_DEBUG_KMS("disabled FBC\n");
1116 }
1117
1118 static bool g4x_fbc_enabled(struct drm_device *dev)
1119 {
1120         struct drm_i915_private *dev_priv = dev->dev_private;
1121
1122         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1123 }
1124
1125 bool intel_fbc_enabled(struct drm_device *dev)
1126 {
1127         struct drm_i915_private *dev_priv = dev->dev_private;
1128
1129         if (!dev_priv->display.fbc_enabled)
1130                 return false;
1131
1132         return dev_priv->display.fbc_enabled(dev);
1133 }
1134
1135 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1136 {
1137         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1138
1139         if (!dev_priv->display.enable_fbc)
1140                 return;
1141
1142         dev_priv->display.enable_fbc(crtc, interval);
1143 }
1144
1145 void intel_disable_fbc(struct drm_device *dev)
1146 {
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148
1149         if (!dev_priv->display.disable_fbc)
1150                 return;
1151
1152         dev_priv->display.disable_fbc(dev);
1153 }
1154
1155 /**
1156  * intel_update_fbc - enable/disable FBC as needed
1157  * @crtc: CRTC to point the compressor at
1158  * @mode: mode in use
1159  *
1160  * Set up the framebuffer compression hardware at mode set time.  We
1161  * enable it if possible:
1162  *   - plane A only (on pre-965)
1163  *   - no pixel mulitply/line duplication
1164  *   - no alpha buffer discard
1165  *   - no dual wide
1166  *   - framebuffer <= 2048 in width, 1536 in height
1167  *
1168  * We can't assume that any compression will take place (worst case),
1169  * so the compressed buffer has to be the same size as the uncompressed
1170  * one.  It also must reside (along with the line length buffer) in
1171  * stolen memory.
1172  *
1173  * We need to enable/disable FBC on a global basis.
1174  */
1175 static void intel_update_fbc(struct drm_crtc *crtc,
1176                              struct drm_display_mode *mode)
1177 {
1178         struct drm_device *dev = crtc->dev;
1179         struct drm_i915_private *dev_priv = dev->dev_private;
1180         struct drm_framebuffer *fb = crtc->fb;
1181         struct intel_framebuffer *intel_fb;
1182         struct drm_i915_gem_object *obj_priv;
1183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1184         int plane = intel_crtc->plane;
1185
1186         if (!i915_powersave)
1187                 return;
1188
1189         if (!I915_HAS_FBC(dev))
1190                 return;
1191
1192         if (!crtc->fb)
1193                 return;
1194
1195         intel_fb = to_intel_framebuffer(fb);
1196         obj_priv = to_intel_bo(intel_fb->obj);
1197
1198         /*
1199          * If FBC is already on, we just have to verify that we can
1200          * keep it that way...
1201          * Need to disable if:
1202          *   - changing FBC params (stride, fence, mode)
1203          *   - new fb is too large to fit in compressed buffer
1204          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1205          */
1206         if (intel_fb->obj->size > dev_priv->cfb_size) {
1207                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1208                                 "compression\n");
1209                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1210                 goto out_disable;
1211         }
1212         if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1213             (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1214                 DRM_DEBUG_KMS("mode incompatible with compression, "
1215                                 "disabling\n");
1216                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1217                 goto out_disable;
1218         }
1219         if ((mode->hdisplay > 2048) ||
1220             (mode->vdisplay > 1536)) {
1221                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1222                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1223                 goto out_disable;
1224         }
1225         if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1226                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1227                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1228                 goto out_disable;
1229         }
1230         if (obj_priv->tiling_mode != I915_TILING_X) {
1231                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1232                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1233                 goto out_disable;
1234         }
1235
1236         if (intel_fbc_enabled(dev)) {
1237                 /* We can re-enable it in this case, but need to update pitch */
1238                 if ((fb->pitch > dev_priv->cfb_pitch) ||
1239                     (obj_priv->fence_reg != dev_priv->cfb_fence) ||
1240                     (plane != dev_priv->cfb_plane))
1241                         intel_disable_fbc(dev);
1242         }
1243
1244         /* Now try to turn it back on if possible */
1245         if (!intel_fbc_enabled(dev))
1246                 intel_enable_fbc(crtc, 500);
1247
1248         return;
1249
1250 out_disable:
1251         DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1252         /* Multiple disables should be harmless */
1253         if (intel_fbc_enabled(dev))
1254                 intel_disable_fbc(dev);
1255 }
1256
1257 static int
1258 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1259 {
1260         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1261         u32 alignment;
1262         int ret;
1263
1264         switch (obj_priv->tiling_mode) {
1265         case I915_TILING_NONE:
1266                 alignment = 64 * 1024;
1267                 break;
1268         case I915_TILING_X:
1269                 /* pin() will align the object as required by fence */
1270                 alignment = 0;
1271                 break;
1272         case I915_TILING_Y:
1273                 /* FIXME: Is this true? */
1274                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1275                 return -EINVAL;
1276         default:
1277                 BUG();
1278         }
1279
1280         ret = i915_gem_object_pin(obj, alignment);
1281         if (ret != 0)
1282                 return ret;
1283
1284         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1285          * fence, whereas 965+ only requires a fence if using
1286          * framebuffer compression.  For simplicity, we always install
1287          * a fence as the cost is not that onerous.
1288          */
1289         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1290             obj_priv->tiling_mode != I915_TILING_NONE) {
1291                 ret = i915_gem_object_get_fence_reg(obj);
1292                 if (ret != 0) {
1293                         i915_gem_object_unpin(obj);
1294                         return ret;
1295                 }
1296         }
1297
1298         return 0;
1299 }
1300
1301 static int
1302 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1303                     struct drm_framebuffer *old_fb)
1304 {
1305         struct drm_device *dev = crtc->dev;
1306         struct drm_i915_private *dev_priv = dev->dev_private;
1307         struct drm_i915_master_private *master_priv;
1308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1309         struct intel_framebuffer *intel_fb;
1310         struct drm_i915_gem_object *obj_priv;
1311         struct drm_gem_object *obj;
1312         int pipe = intel_crtc->pipe;
1313         int plane = intel_crtc->plane;
1314         unsigned long Start, Offset;
1315         int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1316         int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1317         int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1318         int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1319         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1320         u32 dspcntr;
1321         int ret;
1322
1323         /* no fb bound */
1324         if (!crtc->fb) {
1325                 DRM_DEBUG_KMS("No FB bound\n");
1326                 return 0;
1327         }
1328
1329         switch (plane) {
1330         case 0:
1331         case 1:
1332                 break;
1333         default:
1334                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1335                 return -EINVAL;
1336         }
1337
1338         intel_fb = to_intel_framebuffer(crtc->fb);
1339         obj = intel_fb->obj;
1340         obj_priv = to_intel_bo(obj);
1341
1342         mutex_lock(&dev->struct_mutex);
1343         ret = intel_pin_and_fence_fb_obj(dev, obj);
1344         if (ret != 0) {
1345                 mutex_unlock(&dev->struct_mutex);
1346                 return ret;
1347         }
1348
1349         ret = i915_gem_object_set_to_display_plane(obj);
1350         if (ret != 0) {
1351                 i915_gem_object_unpin(obj);
1352                 mutex_unlock(&dev->struct_mutex);
1353                 return ret;
1354         }
1355
1356         dspcntr = I915_READ(dspcntr_reg);
1357         /* Mask out pixel format bits in case we change it */
1358         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1359         switch (crtc->fb->bits_per_pixel) {
1360         case 8:
1361                 dspcntr |= DISPPLANE_8BPP;
1362                 break;
1363         case 16:
1364                 if (crtc->fb->depth == 15)
1365                         dspcntr |= DISPPLANE_15_16BPP;
1366                 else
1367                         dspcntr |= DISPPLANE_16BPP;
1368                 break;
1369         case 24:
1370         case 32:
1371                 if (crtc->fb->depth == 30)
1372                         dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1373                 else
1374                         dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1375                 break;
1376         default:
1377                 DRM_ERROR("Unknown color depth\n");
1378                 i915_gem_object_unpin(obj);
1379                 mutex_unlock(&dev->struct_mutex);
1380                 return -EINVAL;
1381         }
1382         if (IS_I965G(dev)) {
1383                 if (obj_priv->tiling_mode != I915_TILING_NONE)
1384                         dspcntr |= DISPPLANE_TILED;
1385                 else
1386                         dspcntr &= ~DISPPLANE_TILED;
1387         }
1388
1389         if (HAS_PCH_SPLIT(dev))
1390                 /* must disable */
1391                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1392
1393         I915_WRITE(dspcntr_reg, dspcntr);
1394
1395         Start = obj_priv->gtt_offset;
1396         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1397
1398         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1399         I915_WRITE(dspstride, crtc->fb->pitch);
1400         if (IS_I965G(dev)) {
1401                 I915_WRITE(dspbase, Offset);
1402                 I915_READ(dspbase);
1403                 I915_WRITE(dspsurf, Start);
1404                 I915_READ(dspsurf);
1405                 I915_WRITE(dsptileoff, (y << 16) | x);
1406         } else {
1407                 I915_WRITE(dspbase, Start + Offset);
1408                 I915_READ(dspbase);
1409         }
1410
1411         if ((IS_I965G(dev) || plane == 0))
1412                 intel_update_fbc(crtc, &crtc->mode);
1413
1414         intel_wait_for_vblank(dev);
1415
1416         if (old_fb) {
1417                 intel_fb = to_intel_framebuffer(old_fb);
1418                 obj_priv = to_intel_bo(intel_fb->obj);
1419                 i915_gem_object_unpin(intel_fb->obj);
1420         }
1421         intel_increase_pllclock(crtc, true);
1422
1423         mutex_unlock(&dev->struct_mutex);
1424
1425         if (!dev->primary->master)
1426                 return 0;
1427
1428         master_priv = dev->primary->master->driver_priv;
1429         if (!master_priv->sarea_priv)
1430                 return 0;
1431
1432         if (pipe) {
1433                 master_priv->sarea_priv->pipeB_x = x;
1434                 master_priv->sarea_priv->pipeB_y = y;
1435         } else {
1436                 master_priv->sarea_priv->pipeA_x = x;
1437                 master_priv->sarea_priv->pipeA_y = y;
1438         }
1439
1440         return 0;
1441 }
1442
1443 /* Disable the VGA plane that we never use */
1444 static void i915_disable_vga (struct drm_device *dev)
1445 {
1446         struct drm_i915_private *dev_priv = dev->dev_private;
1447         u8 sr1;
1448         u32 vga_reg;
1449
1450         if (HAS_PCH_SPLIT(dev))
1451                 vga_reg = CPU_VGACNTRL;
1452         else
1453                 vga_reg = VGACNTRL;
1454
1455         if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1456                 return;
1457
1458         I915_WRITE8(VGA_SR_INDEX, 1);
1459         sr1 = I915_READ8(VGA_SR_DATA);
1460         I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1461         udelay(100);
1462
1463         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1464 }
1465
1466 static void ironlake_disable_pll_edp (struct drm_crtc *crtc)
1467 {
1468         struct drm_device *dev = crtc->dev;
1469         struct drm_i915_private *dev_priv = dev->dev_private;
1470         u32 dpa_ctl;
1471
1472         DRM_DEBUG_KMS("\n");
1473         dpa_ctl = I915_READ(DP_A);
1474         dpa_ctl &= ~DP_PLL_ENABLE;
1475         I915_WRITE(DP_A, dpa_ctl);
1476 }
1477
1478 static void ironlake_enable_pll_edp (struct drm_crtc *crtc)
1479 {
1480         struct drm_device *dev = crtc->dev;
1481         struct drm_i915_private *dev_priv = dev->dev_private;
1482         u32 dpa_ctl;
1483
1484         dpa_ctl = I915_READ(DP_A);
1485         dpa_ctl |= DP_PLL_ENABLE;
1486         I915_WRITE(DP_A, dpa_ctl);
1487         udelay(200);
1488 }
1489
1490
1491 static void ironlake_set_pll_edp (struct drm_crtc *crtc, int clock)
1492 {
1493         struct drm_device *dev = crtc->dev;
1494         struct drm_i915_private *dev_priv = dev->dev_private;
1495         u32 dpa_ctl;
1496
1497         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1498         dpa_ctl = I915_READ(DP_A);
1499         dpa_ctl &= ~DP_PLL_FREQ_MASK;
1500
1501         if (clock < 200000) {
1502                 u32 temp;
1503                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1504                 /* workaround for 160Mhz:
1505                    1) program 0x4600c bits 15:0 = 0x8124
1506                    2) program 0x46010 bit 0 = 1
1507                    3) program 0x46034 bit 24 = 1
1508                    4) program 0x64000 bit 14 = 1
1509                    */
1510                 temp = I915_READ(0x4600c);
1511                 temp &= 0xffff0000;
1512                 I915_WRITE(0x4600c, temp | 0x8124);
1513
1514                 temp = I915_READ(0x46010);
1515                 I915_WRITE(0x46010, temp | 1);
1516
1517                 temp = I915_READ(0x46034);
1518                 I915_WRITE(0x46034, temp | (1 << 24));
1519         } else {
1520                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1521         }
1522         I915_WRITE(DP_A, dpa_ctl);
1523
1524         udelay(500);
1525 }
1526
1527 /* The FDI link training functions for ILK/Ibexpeak. */
1528 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1529 {
1530         struct drm_device *dev = crtc->dev;
1531         struct drm_i915_private *dev_priv = dev->dev_private;
1532         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1533         int pipe = intel_crtc->pipe;
1534         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1535         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1536         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1537         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1538         u32 temp, tries = 0;
1539
1540         /* enable CPU FDI TX and PCH FDI RX */
1541         temp = I915_READ(fdi_tx_reg);
1542         temp |= FDI_TX_ENABLE;
1543         temp &= ~(7 << 19);
1544         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1545         temp &= ~FDI_LINK_TRAIN_NONE;
1546         temp |= FDI_LINK_TRAIN_PATTERN_1;
1547         I915_WRITE(fdi_tx_reg, temp);
1548         I915_READ(fdi_tx_reg);
1549
1550         temp = I915_READ(fdi_rx_reg);
1551         temp &= ~FDI_LINK_TRAIN_NONE;
1552         temp |= FDI_LINK_TRAIN_PATTERN_1;
1553         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1554         I915_READ(fdi_rx_reg);
1555         udelay(150);
1556
1557         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1558            for train result */
1559         temp = I915_READ(fdi_rx_imr_reg);
1560         temp &= ~FDI_RX_SYMBOL_LOCK;
1561         temp &= ~FDI_RX_BIT_LOCK;
1562         I915_WRITE(fdi_rx_imr_reg, temp);
1563         I915_READ(fdi_rx_imr_reg);
1564         udelay(150);
1565
1566         for (;;) {
1567                 temp = I915_READ(fdi_rx_iir_reg);
1568                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1569
1570                 if ((temp & FDI_RX_BIT_LOCK)) {
1571                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1572                         I915_WRITE(fdi_rx_iir_reg,
1573                                    temp | FDI_RX_BIT_LOCK);
1574                         break;
1575                 }
1576
1577                 tries++;
1578
1579                 if (tries > 5) {
1580                         DRM_DEBUG_KMS("FDI train 1 fail!\n");
1581                         break;
1582                 }
1583         }
1584
1585         /* Train 2 */
1586         temp = I915_READ(fdi_tx_reg);
1587         temp &= ~FDI_LINK_TRAIN_NONE;
1588         temp |= FDI_LINK_TRAIN_PATTERN_2;
1589         I915_WRITE(fdi_tx_reg, temp);
1590
1591         temp = I915_READ(fdi_rx_reg);
1592         temp &= ~FDI_LINK_TRAIN_NONE;
1593         temp |= FDI_LINK_TRAIN_PATTERN_2;
1594         I915_WRITE(fdi_rx_reg, temp);
1595         udelay(150);
1596
1597         tries = 0;
1598
1599         for (;;) {
1600                 temp = I915_READ(fdi_rx_iir_reg);
1601                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1602
1603                 if (temp & FDI_RX_SYMBOL_LOCK) {
1604                         I915_WRITE(fdi_rx_iir_reg,
1605                                    temp | FDI_RX_SYMBOL_LOCK);
1606                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1607                         break;
1608                 }
1609
1610                 tries++;
1611
1612                 if (tries > 5) {
1613                         DRM_DEBUG_KMS("FDI train 2 fail!\n");
1614                         break;
1615                 }
1616         }
1617
1618         DRM_DEBUG_KMS("FDI train done\n");
1619 }
1620
1621 static int snb_b_fdi_train_param [] = {
1622         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1623         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1624         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1625         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1626 };
1627
1628 /* The FDI link training functions for SNB/Cougarpoint. */
1629 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1630 {
1631         struct drm_device *dev = crtc->dev;
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1634         int pipe = intel_crtc->pipe;
1635         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1636         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1637         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1638         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1639         u32 temp, i;
1640
1641         /* enable CPU FDI TX and PCH FDI RX */
1642         temp = I915_READ(fdi_tx_reg);
1643         temp |= FDI_TX_ENABLE;
1644         temp &= ~(7 << 19);
1645         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1646         temp &= ~FDI_LINK_TRAIN_NONE;
1647         temp |= FDI_LINK_TRAIN_PATTERN_1;
1648         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1649         /* SNB-B */
1650         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1651         I915_WRITE(fdi_tx_reg, temp);
1652         I915_READ(fdi_tx_reg);
1653
1654         temp = I915_READ(fdi_rx_reg);
1655         if (HAS_PCH_CPT(dev)) {
1656                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1657                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1658         } else {
1659                 temp &= ~FDI_LINK_TRAIN_NONE;
1660                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1661         }
1662         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1663         I915_READ(fdi_rx_reg);
1664         udelay(150);
1665
1666         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1667            for train result */
1668         temp = I915_READ(fdi_rx_imr_reg);
1669         temp &= ~FDI_RX_SYMBOL_LOCK;
1670         temp &= ~FDI_RX_BIT_LOCK;
1671         I915_WRITE(fdi_rx_imr_reg, temp);
1672         I915_READ(fdi_rx_imr_reg);
1673         udelay(150);
1674
1675         for (i = 0; i < 4; i++ ) {
1676                 temp = I915_READ(fdi_tx_reg);
1677                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1678                 temp |= snb_b_fdi_train_param[i];
1679                 I915_WRITE(fdi_tx_reg, temp);
1680                 udelay(500);
1681
1682                 temp = I915_READ(fdi_rx_iir_reg);
1683                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1684
1685                 if (temp & FDI_RX_BIT_LOCK) {
1686                         I915_WRITE(fdi_rx_iir_reg,
1687                                    temp | FDI_RX_BIT_LOCK);
1688                         DRM_DEBUG_KMS("FDI train 1 done.\n");
1689                         break;
1690                 }
1691         }
1692         if (i == 4)
1693                 DRM_DEBUG_KMS("FDI train 1 fail!\n");
1694
1695         /* Train 2 */
1696         temp = I915_READ(fdi_tx_reg);
1697         temp &= ~FDI_LINK_TRAIN_NONE;
1698         temp |= FDI_LINK_TRAIN_PATTERN_2;
1699         if (IS_GEN6(dev)) {
1700                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1701                 /* SNB-B */
1702                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1703         }
1704         I915_WRITE(fdi_tx_reg, temp);
1705
1706         temp = I915_READ(fdi_rx_reg);
1707         if (HAS_PCH_CPT(dev)) {
1708                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1709                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1710         } else {
1711                 temp &= ~FDI_LINK_TRAIN_NONE;
1712                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1713         }
1714         I915_WRITE(fdi_rx_reg, temp);
1715         udelay(150);
1716
1717         for (i = 0; i < 4; i++ ) {
1718                 temp = I915_READ(fdi_tx_reg);
1719                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1720                 temp |= snb_b_fdi_train_param[i];
1721                 I915_WRITE(fdi_tx_reg, temp);
1722                 udelay(500);
1723
1724                 temp = I915_READ(fdi_rx_iir_reg);
1725                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1726
1727                 if (temp & FDI_RX_SYMBOL_LOCK) {
1728                         I915_WRITE(fdi_rx_iir_reg,
1729                                    temp | FDI_RX_SYMBOL_LOCK);
1730                         DRM_DEBUG_KMS("FDI train 2 done.\n");
1731                         break;
1732                 }
1733         }
1734         if (i == 4)
1735                 DRM_DEBUG_KMS("FDI train 2 fail!\n");
1736
1737         DRM_DEBUG_KMS("FDI train done.\n");
1738 }
1739
1740 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
1741 {
1742         struct drm_device *dev = crtc->dev;
1743         struct drm_i915_private *dev_priv = dev->dev_private;
1744         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1745         int pipe = intel_crtc->pipe;
1746         int plane = intel_crtc->plane;
1747         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1748         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1749         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1750         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1751         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1752         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1753         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1754         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1755         int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1756         int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1757         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1758         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1759         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1760         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1761         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1762         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1763         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1764         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1765         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1766         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1767         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1768         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1769         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
1770         u32 temp;
1771         int n;
1772         u32 pipe_bpc;
1773
1774         temp = I915_READ(pipeconf_reg);
1775         pipe_bpc = temp & PIPE_BPC_MASK;
1776
1777         /* XXX: When our outputs are all unaware of DPMS modes other than off
1778          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1779          */
1780         switch (mode) {
1781         case DRM_MODE_DPMS_ON:
1782         case DRM_MODE_DPMS_STANDBY:
1783         case DRM_MODE_DPMS_SUSPEND:
1784                 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1785
1786                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1787                         temp = I915_READ(PCH_LVDS);
1788                         if ((temp & LVDS_PORT_EN) == 0) {
1789                                 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1790                                 POSTING_READ(PCH_LVDS);
1791                         }
1792                 }
1793
1794                 if (HAS_eDP) {
1795                         /* enable eDP PLL */
1796                         ironlake_enable_pll_edp(crtc);
1797                 } else {
1798
1799                         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1800                         temp = I915_READ(fdi_rx_reg);
1801                         /*
1802                          * make the BPC in FDI Rx be consistent with that in
1803                          * pipeconf reg.
1804                          */
1805                         temp &= ~(0x7 << 16);
1806                         temp |= (pipe_bpc << 11);
1807                         temp &= ~(7 << 19);
1808                         temp |= (intel_crtc->fdi_lanes - 1) << 19;
1809                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1810                         I915_READ(fdi_rx_reg);
1811                         udelay(200);
1812
1813                         /* Switch from Rawclk to PCDclk */
1814                         temp = I915_READ(fdi_rx_reg);
1815                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
1816                         I915_READ(fdi_rx_reg);
1817                         udelay(200);
1818
1819                         /* Enable CPU FDI TX PLL, always on for Ironlake */
1820                         temp = I915_READ(fdi_tx_reg);
1821                         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1822                                 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1823                                 I915_READ(fdi_tx_reg);
1824                                 udelay(100);
1825                         }
1826                 }
1827
1828                 /* Enable panel fitting for LVDS */
1829                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1830                         temp = I915_READ(pf_ctl_reg);
1831                         I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1832
1833                         /* currently full aspect */
1834                         I915_WRITE(pf_win_pos, 0);
1835
1836                         I915_WRITE(pf_win_size,
1837                                    (dev_priv->panel_fixed_mode->hdisplay << 16) |
1838                                    (dev_priv->panel_fixed_mode->vdisplay));
1839                 }
1840
1841                 /* Enable CPU pipe */
1842                 temp = I915_READ(pipeconf_reg);
1843                 if ((temp & PIPEACONF_ENABLE) == 0) {
1844                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1845                         I915_READ(pipeconf_reg);
1846                         udelay(100);
1847                 }
1848
1849                 /* configure and enable CPU plane */
1850                 temp = I915_READ(dspcntr_reg);
1851                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1852                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1853                         /* Flush the plane changes */
1854                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1855                 }
1856
1857                 if (!HAS_eDP) {
1858                         /* For PCH output, training FDI link */
1859                         if (IS_GEN6(dev))
1860                                 gen6_fdi_link_train(crtc);
1861                         else
1862                                 ironlake_fdi_link_train(crtc);
1863
1864                         /* enable PCH DPLL */
1865                         temp = I915_READ(pch_dpll_reg);
1866                         if ((temp & DPLL_VCO_ENABLE) == 0) {
1867                                 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1868                                 I915_READ(pch_dpll_reg);
1869                         }
1870                         udelay(200);
1871
1872                         if (HAS_PCH_CPT(dev)) {
1873                                 /* Be sure PCH DPLL SEL is set */
1874                                 temp = I915_READ(PCH_DPLL_SEL);
1875                                 if (trans_dpll_sel == 0 &&
1876                                                 (temp & TRANSA_DPLL_ENABLE) == 0)
1877                                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
1878                                 else if (trans_dpll_sel == 1 &&
1879                                                 (temp & TRANSB_DPLL_ENABLE) == 0)
1880                                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
1881                                 I915_WRITE(PCH_DPLL_SEL, temp);
1882                                 I915_READ(PCH_DPLL_SEL);
1883                         }
1884
1885                         /* set transcoder timing */
1886                         I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1887                         I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1888                         I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1889
1890                         I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1891                         I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1892                         I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1893
1894                         /* enable normal train */
1895                         temp = I915_READ(fdi_tx_reg);
1896                         temp &= ~FDI_LINK_TRAIN_NONE;
1897                         I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1898                                         FDI_TX_ENHANCE_FRAME_ENABLE);
1899                         I915_READ(fdi_tx_reg);
1900
1901                         temp = I915_READ(fdi_rx_reg);
1902                         if (HAS_PCH_CPT(dev)) {
1903                                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1904                                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1905                         } else {
1906                                 temp &= ~FDI_LINK_TRAIN_NONE;
1907                                 temp |= FDI_LINK_TRAIN_NONE;
1908                         }
1909                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1910                         I915_READ(fdi_rx_reg);
1911
1912                         /* wait one idle pattern time */
1913                         udelay(100);
1914
1915                         /* For PCH DP, enable TRANS_DP_CTL */
1916                         if (HAS_PCH_CPT(dev) &&
1917                             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
1918                                 int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
1919                                 int reg;
1920
1921                                 reg = I915_READ(trans_dp_ctl);
1922                                 reg &= ~TRANS_DP_PORT_SEL_MASK;
1923                                 reg = TRANS_DP_OUTPUT_ENABLE |
1924                                       TRANS_DP_ENH_FRAMING |
1925                                       TRANS_DP_VSYNC_ACTIVE_HIGH |
1926                                       TRANS_DP_HSYNC_ACTIVE_HIGH;
1927
1928                                 switch (intel_trans_dp_port_sel(crtc)) {
1929                                 case PCH_DP_B:
1930                                         reg |= TRANS_DP_PORT_SEL_B;
1931                                         break;
1932                                 case PCH_DP_C:
1933                                         reg |= TRANS_DP_PORT_SEL_C;
1934                                         break;
1935                                 case PCH_DP_D:
1936                                         reg |= TRANS_DP_PORT_SEL_D;
1937                                         break;
1938                                 default:
1939                                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
1940                                         reg |= TRANS_DP_PORT_SEL_B;
1941                                         break;
1942                                 }
1943
1944                                 I915_WRITE(trans_dp_ctl, reg);
1945                                 POSTING_READ(trans_dp_ctl);
1946                         }
1947
1948                         /* enable PCH transcoder */
1949                         temp = I915_READ(transconf_reg);
1950                         /*
1951                          * make the BPC in transcoder be consistent with
1952                          * that in pipeconf reg.
1953                          */
1954                         temp &= ~PIPE_BPC_MASK;
1955                         temp |= pipe_bpc;
1956                         I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1957                         I915_READ(transconf_reg);
1958
1959                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1960                                 ;
1961
1962                 }
1963
1964                 intel_crtc_load_lut(crtc);
1965
1966         break;
1967         case DRM_MODE_DPMS_OFF:
1968                 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1969
1970                 drm_vblank_off(dev, pipe);
1971                 /* Disable display plane */
1972                 temp = I915_READ(dspcntr_reg);
1973                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1974                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1975                         /* Flush the plane changes */
1976                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1977                         I915_READ(dspbase_reg);
1978                 }
1979
1980                 i915_disable_vga(dev);
1981
1982                 /* disable cpu pipe, disable after all planes disabled */
1983                 temp = I915_READ(pipeconf_reg);
1984                 if ((temp & PIPEACONF_ENABLE) != 0) {
1985                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1986                         I915_READ(pipeconf_reg);
1987                         n = 0;
1988                         /* wait for cpu pipe off, pipe state */
1989                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1990                                 n++;
1991                                 if (n < 60) {
1992                                         udelay(500);
1993                                         continue;
1994                                 } else {
1995                                         DRM_DEBUG_KMS("pipe %d off delay\n",
1996                                                                 pipe);
1997                                         break;
1998                                 }
1999                         }
2000                 } else
2001                         DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
2002
2003                 udelay(100);
2004
2005                 /* Disable PF */
2006                 temp = I915_READ(pf_ctl_reg);
2007                 if ((temp & PF_ENABLE) != 0) {
2008                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
2009                         I915_READ(pf_ctl_reg);
2010                 }
2011                 I915_WRITE(pf_win_size, 0);
2012                 POSTING_READ(pf_win_size);
2013
2014
2015                 /* disable CPU FDI tx and PCH FDI rx */
2016                 temp = I915_READ(fdi_tx_reg);
2017                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
2018                 I915_READ(fdi_tx_reg);
2019
2020                 temp = I915_READ(fdi_rx_reg);
2021                 /* BPC in FDI rx is consistent with that in pipeconf */
2022                 temp &= ~(0x07 << 16);
2023                 temp |= (pipe_bpc << 11);
2024                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
2025                 I915_READ(fdi_rx_reg);
2026
2027                 udelay(100);
2028
2029                 /* still set train pattern 1 */
2030                 temp = I915_READ(fdi_tx_reg);
2031                 temp &= ~FDI_LINK_TRAIN_NONE;
2032                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2033                 I915_WRITE(fdi_tx_reg, temp);
2034                 POSTING_READ(fdi_tx_reg);
2035
2036                 temp = I915_READ(fdi_rx_reg);
2037                 if (HAS_PCH_CPT(dev)) {
2038                         temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2039                         temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2040                 } else {
2041                         temp &= ~FDI_LINK_TRAIN_NONE;
2042                         temp |= FDI_LINK_TRAIN_PATTERN_1;
2043                 }
2044                 I915_WRITE(fdi_rx_reg, temp);
2045                 POSTING_READ(fdi_rx_reg);
2046
2047                 udelay(100);
2048
2049                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2050                         temp = I915_READ(PCH_LVDS);
2051                         I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2052                         I915_READ(PCH_LVDS);
2053                         udelay(100);
2054                 }
2055
2056                 /* disable PCH transcoder */
2057                 temp = I915_READ(transconf_reg);
2058                 if ((temp & TRANS_ENABLE) != 0) {
2059                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
2060                         I915_READ(transconf_reg);
2061                         n = 0;
2062                         /* wait for PCH transcoder off, transcoder state */
2063                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
2064                                 n++;
2065                                 if (n < 60) {
2066                                         udelay(500);
2067                                         continue;
2068                                 } else {
2069                                         DRM_DEBUG_KMS("transcoder %d off "
2070                                                         "delay\n", pipe);
2071                                         break;
2072                                 }
2073                         }
2074                 }
2075
2076                 temp = I915_READ(transconf_reg);
2077                 /* BPC in transcoder is consistent with that in pipeconf */
2078                 temp &= ~PIPE_BPC_MASK;
2079                 temp |= pipe_bpc;
2080                 I915_WRITE(transconf_reg, temp);
2081                 I915_READ(transconf_reg);
2082                 udelay(100);
2083
2084                 if (HAS_PCH_CPT(dev)) {
2085                         /* disable TRANS_DP_CTL */
2086                         int trans_dp_ctl = (pipe == 0) ? TRANS_DP_CTL_A : TRANS_DP_CTL_B;
2087                         int reg;
2088
2089                         reg = I915_READ(trans_dp_ctl);
2090                         reg &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2091                         I915_WRITE(trans_dp_ctl, reg);
2092                         POSTING_READ(trans_dp_ctl);
2093
2094                         /* disable DPLL_SEL */
2095                         temp = I915_READ(PCH_DPLL_SEL);
2096                         if (trans_dpll_sel == 0)
2097                                 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2098                         else
2099                                 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2100                         I915_WRITE(PCH_DPLL_SEL, temp);
2101                         I915_READ(PCH_DPLL_SEL);
2102
2103                 }
2104
2105                 /* disable PCH DPLL */
2106                 temp = I915_READ(pch_dpll_reg);
2107                 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
2108                 I915_READ(pch_dpll_reg);
2109
2110                 if (HAS_eDP) {
2111                         ironlake_disable_pll_edp(crtc);
2112                 }
2113
2114                 /* Switch from PCDclk to Rawclk */
2115                 temp = I915_READ(fdi_rx_reg);
2116                 temp &= ~FDI_SEL_PCDCLK;
2117                 I915_WRITE(fdi_rx_reg, temp);
2118                 I915_READ(fdi_rx_reg);
2119
2120                 /* Disable CPU FDI TX PLL */
2121                 temp = I915_READ(fdi_tx_reg);
2122                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
2123                 I915_READ(fdi_tx_reg);
2124                 udelay(100);
2125
2126                 temp = I915_READ(fdi_rx_reg);
2127                 temp &= ~FDI_RX_PLL_ENABLE;
2128                 I915_WRITE(fdi_rx_reg, temp);
2129                 I915_READ(fdi_rx_reg);
2130
2131                 /* Wait for the clocks to turn off. */
2132                 udelay(100);
2133                 break;
2134         }
2135 }
2136
2137 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2138 {
2139         struct intel_overlay *overlay;
2140         int ret;
2141
2142         if (!enable && intel_crtc->overlay) {
2143                 overlay = intel_crtc->overlay;
2144                 mutex_lock(&overlay->dev->struct_mutex);
2145                 for (;;) {
2146                         ret = intel_overlay_switch_off(overlay);
2147                         if (ret == 0)
2148                                 break;
2149
2150                         ret = intel_overlay_recover_from_interrupt(overlay, 0);
2151                         if (ret != 0) {
2152                                 /* overlay doesn't react anymore. Usually
2153                                  * results in a black screen and an unkillable
2154                                  * X server. */
2155                                 BUG();
2156                                 overlay->hw_wedged = HW_WEDGED;
2157                                 break;
2158                         }
2159                 }
2160                 mutex_unlock(&overlay->dev->struct_mutex);
2161         }
2162         /* Let userspace switch the overlay on again. In most cases userspace
2163          * has to recompute where to put it anyway. */
2164
2165         return;
2166 }
2167
2168 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2169 {
2170         struct drm_device *dev = crtc->dev;
2171         struct drm_i915_private *dev_priv = dev->dev_private;
2172         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2173         int pipe = intel_crtc->pipe;
2174         int plane = intel_crtc->plane;
2175         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2176         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2177         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
2178         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2179         u32 temp;
2180
2181         /* XXX: When our outputs are all unaware of DPMS modes other than off
2182          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2183          */
2184         switch (mode) {
2185         case DRM_MODE_DPMS_ON:
2186         case DRM_MODE_DPMS_STANDBY:
2187         case DRM_MODE_DPMS_SUSPEND:
2188                 intel_update_watermarks(dev);
2189
2190                 /* Enable the DPLL */
2191                 temp = I915_READ(dpll_reg);
2192                 if ((temp & DPLL_VCO_ENABLE) == 0) {
2193                         I915_WRITE(dpll_reg, temp);
2194                         I915_READ(dpll_reg);
2195                         /* Wait for the clocks to stabilize. */
2196                         udelay(150);
2197                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2198                         I915_READ(dpll_reg);
2199                         /* Wait for the clocks to stabilize. */
2200                         udelay(150);
2201                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
2202                         I915_READ(dpll_reg);
2203                         /* Wait for the clocks to stabilize. */
2204                         udelay(150);
2205                 }
2206
2207                 /* Enable the pipe */
2208                 temp = I915_READ(pipeconf_reg);
2209                 if ((temp & PIPEACONF_ENABLE) == 0)
2210                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
2211
2212                 /* Enable the plane */
2213                 temp = I915_READ(dspcntr_reg);
2214                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2215                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
2216                         /* Flush the plane changes */
2217                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2218                 }
2219
2220                 intel_crtc_load_lut(crtc);
2221
2222                 if ((IS_I965G(dev) || plane == 0))
2223                         intel_update_fbc(crtc, &crtc->mode);
2224
2225                 /* Give the overlay scaler a chance to enable if it's on this pipe */
2226                 intel_crtc_dpms_overlay(intel_crtc, true);
2227         break;
2228         case DRM_MODE_DPMS_OFF:
2229                 intel_update_watermarks(dev);
2230
2231                 /* Give the overlay scaler a chance to disable if it's on this pipe */
2232                 intel_crtc_dpms_overlay(intel_crtc, false);
2233                 drm_vblank_off(dev, pipe);
2234
2235                 if (dev_priv->cfb_plane == plane &&
2236                     dev_priv->display.disable_fbc)
2237                         dev_priv->display.disable_fbc(dev);
2238
2239                 /* Disable the VGA plane that we never use */
2240                 i915_disable_vga(dev);
2241
2242                 /* Disable display plane */
2243                 temp = I915_READ(dspcntr_reg);
2244                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
2245                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
2246                         /* Flush the plane changes */
2247                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
2248                         I915_READ(dspbase_reg);
2249                 }
2250
2251                 if (!IS_I9XX(dev)) {
2252                         /* Wait for vblank for the disable to take effect */
2253                         intel_wait_for_vblank(dev);
2254                 }
2255
2256                 /* Next, disable display pipes */
2257                 temp = I915_READ(pipeconf_reg);
2258                 if ((temp & PIPEACONF_ENABLE) != 0) {
2259                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
2260                         I915_READ(pipeconf_reg);
2261                 }
2262
2263                 /* Wait for vblank for the disable to take effect. */
2264                 intel_wait_for_vblank(dev);
2265
2266                 temp = I915_READ(dpll_reg);
2267                 if ((temp & DPLL_VCO_ENABLE) != 0) {
2268                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
2269                         I915_READ(dpll_reg);
2270                 }
2271
2272                 /* Wait for the clocks to turn off. */
2273                 udelay(150);
2274                 break;
2275         }
2276 }
2277
2278 /**
2279  * Sets the power management mode of the pipe and plane.
2280  *
2281  * This code should probably grow support for turning the cursor off and back
2282  * on appropriately at the same time as we're turning the pipe off/on.
2283  */
2284 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2285 {
2286         struct drm_device *dev = crtc->dev;
2287         struct drm_i915_private *dev_priv = dev->dev_private;
2288         struct drm_i915_master_private *master_priv;
2289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2290         int pipe = intel_crtc->pipe;
2291         bool enabled;
2292
2293         dev_priv->display.dpms(crtc, mode);
2294
2295         intel_crtc->dpms_mode = mode;
2296
2297         if (!dev->primary->master)
2298                 return;
2299
2300         master_priv = dev->primary->master->driver_priv;
2301         if (!master_priv->sarea_priv)
2302                 return;
2303
2304         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2305
2306         switch (pipe) {
2307         case 0:
2308                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2309                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2310                 break;
2311         case 1:
2312                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2313                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2314                 break;
2315         default:
2316                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2317                 break;
2318         }
2319 }
2320
2321 static void intel_crtc_prepare (struct drm_crtc *crtc)
2322 {
2323         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2324         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2325 }
2326
2327 static void intel_crtc_commit (struct drm_crtc *crtc)
2328 {
2329         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2330         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2331 }
2332
2333 void intel_encoder_prepare (struct drm_encoder *encoder)
2334 {
2335         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2336         /* lvds has its own version of prepare see intel_lvds_prepare */
2337         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2338 }
2339
2340 void intel_encoder_commit (struct drm_encoder *encoder)
2341 {
2342         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2343         /* lvds has its own version of commit see intel_lvds_commit */
2344         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2345 }
2346
2347 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2348                                   struct drm_display_mode *mode,
2349                                   struct drm_display_mode *adjusted_mode)
2350 {
2351         struct drm_device *dev = crtc->dev;
2352         if (HAS_PCH_SPLIT(dev)) {
2353                 /* FDI link clock is fixed at 2.7G */
2354                 if (mode->clock * 3 > 27000 * 4)
2355                         return MODE_CLOCK_HIGH;
2356         }
2357         return true;
2358 }
2359
2360 static int i945_get_display_clock_speed(struct drm_device *dev)
2361 {
2362         return 400000;
2363 }
2364
2365 static int i915_get_display_clock_speed(struct drm_device *dev)
2366 {
2367         return 333000;
2368 }
2369
2370 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2371 {
2372         return 200000;
2373 }
2374
2375 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2376 {
2377         u16 gcfgc = 0;
2378
2379         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2380
2381         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2382                 return 133000;
2383         else {
2384                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2385                 case GC_DISPLAY_CLOCK_333_MHZ:
2386                         return 333000;
2387                 default:
2388                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2389                         return 190000;
2390                 }
2391         }
2392 }
2393
2394 static int i865_get_display_clock_speed(struct drm_device *dev)
2395 {
2396         return 266000;
2397 }
2398
2399 static int i855_get_display_clock_speed(struct drm_device *dev)
2400 {
2401         u16 hpllcc = 0;
2402         /* Assume that the hardware is in the high speed state.  This
2403          * should be the default.
2404          */
2405         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2406         case GC_CLOCK_133_200:
2407         case GC_CLOCK_100_200:
2408                 return 200000;
2409         case GC_CLOCK_166_250:
2410                 return 250000;
2411         case GC_CLOCK_100_133:
2412                 return 133000;
2413         }
2414
2415         /* Shouldn't happen */
2416         return 0;
2417 }
2418
2419 static int i830_get_display_clock_speed(struct drm_device *dev)
2420 {
2421         return 133000;
2422 }
2423
2424 /**
2425  * Return the pipe currently connected to the panel fitter,
2426  * or -1 if the panel fitter is not present or not in use
2427  */
2428 int intel_panel_fitter_pipe (struct drm_device *dev)
2429 {
2430         struct drm_i915_private *dev_priv = dev->dev_private;
2431         u32  pfit_control;
2432
2433         /* i830 doesn't have a panel fitter */
2434         if (IS_I830(dev))
2435                 return -1;
2436
2437         pfit_control = I915_READ(PFIT_CONTROL);
2438
2439         /* See if the panel fitter is in use */
2440         if ((pfit_control & PFIT_ENABLE) == 0)
2441                 return -1;
2442
2443         /* 965 can place panel fitter on either pipe */
2444         if (IS_I965G(dev))
2445                 return (pfit_control >> 29) & 0x3;
2446
2447         /* older chips can only use pipe 1 */
2448         return 1;
2449 }
2450
2451 struct fdi_m_n {
2452         u32        tu;
2453         u32        gmch_m;
2454         u32        gmch_n;
2455         u32        link_m;
2456         u32        link_n;
2457 };
2458
2459 static void
2460 fdi_reduce_ratio(u32 *num, u32 *den)
2461 {
2462         while (*num > 0xffffff || *den > 0xffffff) {
2463                 *num >>= 1;
2464                 *den >>= 1;
2465         }
2466 }
2467
2468 #define DATA_N 0x800000
2469 #define LINK_N 0x80000
2470
2471 static void
2472 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2473                      int link_clock, struct fdi_m_n *m_n)
2474 {
2475         u64 temp;
2476
2477         m_n->tu = 64; /* default size */
2478
2479         temp = (u64) DATA_N * pixel_clock;
2480         temp = div_u64(temp, link_clock);
2481         m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2482         m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2483         m_n->gmch_n = DATA_N;
2484         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2485
2486         temp = (u64) LINK_N * pixel_clock;
2487         m_n->link_m = div_u64(temp, link_clock);
2488         m_n->link_n = LINK_N;
2489         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2490 }
2491
2492
2493 struct intel_watermark_params {
2494         unsigned long fifo_size;
2495         unsigned long max_wm;
2496         unsigned long default_wm;
2497         unsigned long guard_size;
2498         unsigned long cacheline_size;
2499 };
2500
2501 /* Pineview has different values for various configs */
2502 static struct intel_watermark_params pineview_display_wm = {
2503         PINEVIEW_DISPLAY_FIFO,
2504         PINEVIEW_MAX_WM,
2505         PINEVIEW_DFT_WM,
2506         PINEVIEW_GUARD_WM,
2507         PINEVIEW_FIFO_LINE_SIZE
2508 };
2509 static struct intel_watermark_params pineview_display_hplloff_wm = {
2510         PINEVIEW_DISPLAY_FIFO,
2511         PINEVIEW_MAX_WM,
2512         PINEVIEW_DFT_HPLLOFF_WM,
2513         PINEVIEW_GUARD_WM,
2514         PINEVIEW_FIFO_LINE_SIZE
2515 };
2516 static struct intel_watermark_params pineview_cursor_wm = {
2517         PINEVIEW_CURSOR_FIFO,
2518         PINEVIEW_CURSOR_MAX_WM,
2519         PINEVIEW_CURSOR_DFT_WM,
2520         PINEVIEW_CURSOR_GUARD_WM,
2521         PINEVIEW_FIFO_LINE_SIZE,
2522 };
2523 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2524         PINEVIEW_CURSOR_FIFO,
2525         PINEVIEW_CURSOR_MAX_WM,
2526         PINEVIEW_CURSOR_DFT_WM,
2527         PINEVIEW_CURSOR_GUARD_WM,
2528         PINEVIEW_FIFO_LINE_SIZE
2529 };
2530 static struct intel_watermark_params g4x_wm_info = {
2531         G4X_FIFO_SIZE,
2532         G4X_MAX_WM,
2533         G4X_MAX_WM,
2534         2,
2535         G4X_FIFO_LINE_SIZE,
2536 };
2537 static struct intel_watermark_params i945_wm_info = {
2538         I945_FIFO_SIZE,
2539         I915_MAX_WM,
2540         1,
2541         2,
2542         I915_FIFO_LINE_SIZE
2543 };
2544 static struct intel_watermark_params i915_wm_info = {
2545         I915_FIFO_SIZE,
2546         I915_MAX_WM,
2547         1,
2548         2,
2549         I915_FIFO_LINE_SIZE
2550 };
2551 static struct intel_watermark_params i855_wm_info = {
2552         I855GM_FIFO_SIZE,
2553         I915_MAX_WM,
2554         1,
2555         2,
2556         I830_FIFO_LINE_SIZE
2557 };
2558 static struct intel_watermark_params i830_wm_info = {
2559         I830_FIFO_SIZE,
2560         I915_MAX_WM,
2561         1,
2562         2,
2563         I830_FIFO_LINE_SIZE
2564 };
2565
2566 static struct intel_watermark_params ironlake_display_wm_info = {
2567         ILK_DISPLAY_FIFO,
2568         ILK_DISPLAY_MAXWM,
2569         ILK_DISPLAY_DFTWM,
2570         2,
2571         ILK_FIFO_LINE_SIZE
2572 };
2573
2574 static struct intel_watermark_params ironlake_display_srwm_info = {
2575         ILK_DISPLAY_SR_FIFO,
2576         ILK_DISPLAY_MAX_SRWM,
2577         ILK_DISPLAY_DFT_SRWM,
2578         2,
2579         ILK_FIFO_LINE_SIZE
2580 };
2581
2582 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2583         ILK_CURSOR_SR_FIFO,
2584         ILK_CURSOR_MAX_SRWM,
2585         ILK_CURSOR_DFT_SRWM,
2586         2,
2587         ILK_FIFO_LINE_SIZE
2588 };
2589
2590 /**
2591  * intel_calculate_wm - calculate watermark level
2592  * @clock_in_khz: pixel clock
2593  * @wm: chip FIFO params
2594  * @pixel_size: display pixel size
2595  * @latency_ns: memory latency for the platform
2596  *
2597  * Calculate the watermark level (the level at which the display plane will
2598  * start fetching from memory again).  Each chip has a different display
2599  * FIFO size and allocation, so the caller needs to figure that out and pass
2600  * in the correct intel_watermark_params structure.
2601  *
2602  * As the pixel clock runs, the FIFO will be drained at a rate that depends
2603  * on the pixel size.  When it reaches the watermark level, it'll start
2604  * fetching FIFO line sized based chunks from memory until the FIFO fills
2605  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
2606  * will occur, and a display engine hang could result.
2607  */
2608 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2609                                         struct intel_watermark_params *wm,
2610                                         int pixel_size,
2611                                         unsigned long latency_ns)
2612 {
2613         long entries_required, wm_size;
2614
2615         /*
2616          * Note: we need to make sure we don't overflow for various clock &
2617          * latency values.
2618          * clocks go from a few thousand to several hundred thousand.
2619          * latency is usually a few thousand
2620          */
2621         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2622                 1000;
2623         entries_required /= wm->cacheline_size;
2624
2625         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2626
2627         wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2628
2629         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2630
2631         /* Don't promote wm_size to unsigned... */
2632         if (wm_size > (long)wm->max_wm)
2633                 wm_size = wm->max_wm;
2634         if (wm_size <= 0)
2635                 wm_size = wm->default_wm;
2636         return wm_size;
2637 }
2638
2639 struct cxsr_latency {
2640         int is_desktop;
2641         unsigned long fsb_freq;
2642         unsigned long mem_freq;
2643         unsigned long display_sr;
2644         unsigned long display_hpll_disable;
2645         unsigned long cursor_sr;
2646         unsigned long cursor_hpll_disable;
2647 };
2648
2649 static struct cxsr_latency cxsr_latency_table[] = {
2650         {1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
2651         {1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
2652         {1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
2653
2654         {1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
2655         {1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
2656         {1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
2657
2658         {1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
2659         {1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
2660         {1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
2661
2662         {0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
2663         {0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
2664         {0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
2665
2666         {0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
2667         {0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
2668         {0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
2669
2670         {0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
2671         {0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
2672         {0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
2673 };
2674
2675 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2676                                                    int mem)
2677 {
2678         int i;
2679         struct cxsr_latency *latency;
2680
2681         if (fsb == 0 || mem == 0)
2682                 return NULL;
2683
2684         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2685                 latency = &cxsr_latency_table[i];
2686                 if (is_desktop == latency->is_desktop &&
2687                     fsb == latency->fsb_freq && mem == latency->mem_freq)
2688                         return latency;
2689         }
2690
2691         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2692
2693         return NULL;
2694 }
2695
2696 static void pineview_disable_cxsr(struct drm_device *dev)
2697 {
2698         struct drm_i915_private *dev_priv = dev->dev_private;
2699         u32 reg;
2700
2701         /* deactivate cxsr */
2702         reg = I915_READ(DSPFW3);
2703         reg &= ~(PINEVIEW_SELF_REFRESH_EN);
2704         I915_WRITE(DSPFW3, reg);
2705         DRM_INFO("Big FIFO is disabled\n");
2706 }
2707
2708 /*
2709  * Latency for FIFO fetches is dependent on several factors:
2710  *   - memory configuration (speed, channels)
2711  *   - chipset
2712  *   - current MCH state
2713  * It can be fairly high in some situations, so here we assume a fairly
2714  * pessimal value.  It's a tradeoff between extra memory fetches (if we
2715  * set this value too high, the FIFO will fetch frequently to stay full)
2716  * and power consumption (set it too low to save power and we might see
2717  * FIFO underruns and display "flicker").
2718  *
2719  * A value of 5us seems to be a good balance; safe for very low end
2720  * platforms but not overly aggressive on lower latency configs.
2721  */
2722 static const int latency_ns = 5000;
2723
2724 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2725 {
2726         struct drm_i915_private *dev_priv = dev->dev_private;
2727         uint32_t dsparb = I915_READ(DSPARB);
2728         int size;
2729
2730         if (plane == 0)
2731                 size = dsparb & 0x7f;
2732         else
2733                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2734                         (dsparb & 0x7f);
2735
2736         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2737                         plane ? "B" : "A", size);
2738
2739         return size;
2740 }
2741
2742 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2743 {
2744         struct drm_i915_private *dev_priv = dev->dev_private;
2745         uint32_t dsparb = I915_READ(DSPARB);
2746         int size;
2747
2748         if (plane == 0)
2749                 size = dsparb & 0x1ff;
2750         else
2751                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2752                         (dsparb & 0x1ff);
2753         size >>= 1; /* Convert to cachelines */
2754
2755         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2756                         plane ? "B" : "A", size);
2757
2758         return size;
2759 }
2760
2761 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2762 {
2763         struct drm_i915_private *dev_priv = dev->dev_private;
2764         uint32_t dsparb = I915_READ(DSPARB);
2765         int size;
2766
2767         size = dsparb & 0x7f;
2768         size >>= 2; /* Convert to cachelines */
2769
2770         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2771                         plane ? "B" : "A",
2772                   size);
2773
2774         return size;
2775 }
2776
2777 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2778 {
2779         struct drm_i915_private *dev_priv = dev->dev_private;
2780         uint32_t dsparb = I915_READ(DSPARB);
2781         int size;
2782
2783         size = dsparb & 0x7f;
2784         size >>= 1; /* Convert to cachelines */
2785
2786         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2787                         plane ? "B" : "A", size);
2788
2789         return size;
2790 }
2791
2792 static void pineview_update_wm(struct drm_device *dev,  int planea_clock,
2793                           int planeb_clock, int sr_hdisplay, int pixel_size)
2794 {
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         u32 reg;
2797         unsigned long wm;
2798         struct cxsr_latency *latency;
2799         int sr_clock;
2800
2801         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->fsb_freq,
2802                                          dev_priv->mem_freq);
2803         if (!latency) {
2804                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2805                 pineview_disable_cxsr(dev);
2806                 return;
2807         }
2808
2809         if (!planea_clock || !planeb_clock) {
2810                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2811
2812                 /* Display SR */
2813                 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
2814                                         pixel_size, latency->display_sr);
2815                 reg = I915_READ(DSPFW1);
2816                 reg &= ~DSPFW_SR_MASK;
2817                 reg |= wm << DSPFW_SR_SHIFT;
2818                 I915_WRITE(DSPFW1, reg);
2819                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2820
2821                 /* cursor SR */
2822                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
2823                                         pixel_size, latency->cursor_sr);
2824                 reg = I915_READ(DSPFW3);
2825                 reg &= ~DSPFW_CURSOR_SR_MASK;
2826                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
2827                 I915_WRITE(DSPFW3, reg);
2828
2829                 /* Display HPLL off SR */
2830                 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
2831                                         pixel_size, latency->display_hpll_disable);
2832                 reg = I915_READ(DSPFW3);
2833                 reg &= ~DSPFW_HPLL_SR_MASK;
2834                 reg |= wm & DSPFW_HPLL_SR_MASK;
2835                 I915_WRITE(DSPFW3, reg);
2836
2837                 /* cursor HPLL off SR */
2838                 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
2839                                         pixel_size, latency->cursor_hpll_disable);
2840                 reg = I915_READ(DSPFW3);
2841                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
2842                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
2843                 I915_WRITE(DSPFW3, reg);
2844                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2845
2846                 /* activate cxsr */
2847                 reg = I915_READ(DSPFW3);
2848                 reg |= PINEVIEW_SELF_REFRESH_EN;
2849                 I915_WRITE(DSPFW3, reg);
2850                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
2851         } else {
2852                 pineview_disable_cxsr(dev);
2853                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
2854         }
2855 }
2856
2857 static void g4x_update_wm(struct drm_device *dev,  int planea_clock,
2858                           int planeb_clock, int sr_hdisplay, int pixel_size)
2859 {
2860         struct drm_i915_private *dev_priv = dev->dev_private;
2861         int total_size, cacheline_size;
2862         int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2863         struct intel_watermark_params planea_params, planeb_params;
2864         unsigned long line_time_us;
2865         int sr_clock, sr_entries = 0, entries_required;
2866
2867         /* Create copies of the base settings for each pipe */
2868         planea_params = planeb_params = g4x_wm_info;
2869
2870         /* Grab a couple of global values before we overwrite them */
2871         total_size = planea_params.fifo_size;
2872         cacheline_size = planea_params.cacheline_size;
2873
2874         /*
2875          * Note: we need to make sure we don't overflow for various clock &
2876          * latency values.
2877          * clocks go from a few thousand to several hundred thousand.
2878          * latency is usually a few thousand
2879          */
2880         entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2881                 1000;
2882         entries_required /= G4X_FIFO_LINE_SIZE;
2883         planea_wm = entries_required + planea_params.guard_size;
2884
2885         entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2886                 1000;
2887         entries_required /= G4X_FIFO_LINE_SIZE;
2888         planeb_wm = entries_required + planeb_params.guard_size;
2889
2890         cursora_wm = cursorb_wm = 16;
2891         cursor_sr = 32;
2892
2893         DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2894
2895         /* Calc sr entries for one plane configs */
2896         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2897                 /* self-refresh has much higher latency */
2898                 static const int sr_latency_ns = 12000;
2899
2900                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2901                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2902
2903                 /* Use ns/us then divide to preserve precision */
2904                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2905                               pixel_size * sr_hdisplay) / 1000;
2906                 sr_entries = roundup(sr_entries / cacheline_size, 1);
2907                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2908                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2909         } else {
2910                 /* Turn off self refresh if both pipes are enabled */
2911                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2912                                         & ~FW_BLC_SELF_EN);
2913         }
2914
2915         DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2916                   planea_wm, planeb_wm, sr_entries);
2917
2918         planea_wm &= 0x3f;
2919         planeb_wm &= 0x3f;
2920
2921         I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2922                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2923                    (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2924         I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2925                    (cursora_wm << DSPFW_CURSORA_SHIFT));
2926         /* HPLL off in SR has some issues on G4x... disable it */
2927         I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2928                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2929 }
2930
2931 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2932                            int planeb_clock, int sr_hdisplay, int pixel_size)
2933 {
2934         struct drm_i915_private *dev_priv = dev->dev_private;
2935         unsigned long line_time_us;
2936         int sr_clock, sr_entries, srwm = 1;
2937
2938         /* Calc sr entries for one plane configs */
2939         if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2940                 /* self-refresh has much higher latency */
2941                 static const int sr_latency_ns = 12000;
2942
2943                 sr_clock = planea_clock ? planea_clock : planeb_clock;
2944                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2945
2946                 /* Use ns/us then divide to preserve precision */
2947                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2948                               pixel_size * sr_hdisplay) / 1000;
2949                 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2950                 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2951                 srwm = I945_FIFO_SIZE - sr_entries;
2952                 if (srwm < 0)
2953                         srwm = 1;
2954                 srwm &= 0x3f;
2955                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2956         } else {
2957                 /* Turn off self refresh if both pipes are enabled */
2958                 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
2959                                         & ~FW_BLC_SELF_EN);
2960         }
2961
2962         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2963                       srwm);
2964
2965         /* 965 has limitations... */
2966         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2967                    (8 << 0));
2968         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2969 }
2970
2971 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2972                            int planeb_clock, int sr_hdisplay, int pixel_size)
2973 {
2974         struct drm_i915_private *dev_priv = dev->dev_private;
2975         uint32_t fwater_lo;
2976         uint32_t fwater_hi;
2977         int total_size, cacheline_size, cwm, srwm = 1;
2978         int planea_wm, planeb_wm;
2979         struct intel_watermark_params planea_params, planeb_params;
2980         unsigned long line_time_us;
2981         int sr_clock, sr_entries = 0;
2982
2983         /* Create copies of the base settings for each pipe */
2984         if (IS_I965GM(dev) || IS_I945GM(dev))
2985                 planea_params = planeb_params = i945_wm_info;
2986         else if (IS_I9XX(dev))
2987                 planea_params = planeb_params = i915_wm_info;
2988         else
2989                 planea_params = planeb_params = i855_wm_info;
2990
2991         /* Grab a couple of global values before we overwrite them */
2992         total_size = planea_params.fifo_size;
2993         cacheline_size = planea_params.cacheline_size;
2994
2995         /* Update per-plane FIFO sizes */
2996         planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2997         planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2998
2999         planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3000                                        pixel_size, latency_ns);
3001         planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3002                                        pixel_size, latency_ns);
3003         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3004
3005         /*
3006          * Overlay gets an aggressive default since video jitter is bad.
3007          */
3008         cwm = 2;
3009
3010         /* Calc sr entries for one plane configs */
3011         if (HAS_FW_BLC(dev) && sr_hdisplay &&
3012             (!planea_clock || !planeb_clock)) {
3013                 /* self-refresh has much higher latency */
3014                 static const int sr_latency_ns = 6000;
3015
3016                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3017                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3018
3019                 /* Use ns/us then divide to preserve precision */
3020                 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
3021                               pixel_size * sr_hdisplay) / 1000;
3022                 sr_entries = roundup(sr_entries / cacheline_size, 1);
3023                 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3024                 srwm = total_size - sr_entries;
3025                 if (srwm < 0)
3026                         srwm = 1;
3027
3028                 if (IS_I945G(dev) || IS_I945GM(dev))
3029                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3030                 else if (IS_I915GM(dev)) {
3031                         /* 915M has a smaller SRWM field */
3032                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3033                         I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3034                 }
3035         } else {
3036                 /* Turn off self refresh if both pipes are enabled */
3037                 if (IS_I945G(dev) || IS_I945GM(dev)) {
3038                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3039                                    & ~FW_BLC_SELF_EN);
3040                 } else if (IS_I915GM(dev)) {
3041                         I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3042                 }
3043         }
3044
3045         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3046                   planea_wm, planeb_wm, cwm, srwm);
3047
3048         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3049         fwater_hi = (cwm & 0x1f);
3050
3051         /* Set request length to 8 cachelines per fetch */
3052         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3053         fwater_hi = fwater_hi | (1 << 8);
3054
3055         I915_WRITE(FW_BLC, fwater_lo);
3056         I915_WRITE(FW_BLC2, fwater_hi);
3057 }
3058
3059 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3060                            int unused2, int pixel_size)
3061 {
3062         struct drm_i915_private *dev_priv = dev->dev_private;
3063         uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3064         int planea_wm;
3065
3066         i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3067
3068         planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3069                                        pixel_size, latency_ns);
3070         fwater_lo |= (3<<8) | planea_wm;
3071
3072         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3073
3074         I915_WRITE(FW_BLC, fwater_lo);
3075 }
3076
3077 #define ILK_LP0_PLANE_LATENCY           700
3078
3079 static void ironlake_update_wm(struct drm_device *dev,  int planea_clock,
3080                        int planeb_clock, int sr_hdisplay, int pixel_size)
3081 {
3082         struct drm_i915_private *dev_priv = dev->dev_private;
3083         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3084         int sr_wm, cursor_wm;
3085         unsigned long line_time_us;
3086         int sr_clock, entries_required;
3087         u32 reg_value;
3088
3089         /* Calculate and update the watermark for plane A */
3090         if (planea_clock) {
3091                 entries_required = ((planea_clock / 1000) * pixel_size *
3092                                      ILK_LP0_PLANE_LATENCY) / 1000;
3093                 entries_required = DIV_ROUND_UP(entries_required,
3094                                    ironlake_display_wm_info.cacheline_size);
3095                 planea_wm = entries_required +
3096                             ironlake_display_wm_info.guard_size;
3097
3098                 if (planea_wm > (int)ironlake_display_wm_info.max_wm)
3099                         planea_wm = ironlake_display_wm_info.max_wm;
3100
3101                 cursora_wm = 16;
3102                 reg_value = I915_READ(WM0_PIPEA_ILK);
3103                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3104                 reg_value |= (planea_wm << WM0_PIPE_PLANE_SHIFT) |
3105                              (cursora_wm & WM0_PIPE_CURSOR_MASK);
3106                 I915_WRITE(WM0_PIPEA_ILK, reg_value);
3107                 DRM_DEBUG_KMS("FIFO watermarks For pipe A - plane %d, "
3108                                 "cursor: %d\n", planea_wm, cursora_wm);
3109         }
3110         /* Calculate and update the watermark for plane B */
3111         if (planeb_clock) {
3112                 entries_required = ((planeb_clock / 1000) * pixel_size *
3113                                      ILK_LP0_PLANE_LATENCY) / 1000;
3114                 entries_required = DIV_ROUND_UP(entries_required,
3115                                    ironlake_display_wm_info.cacheline_size);
3116                 planeb_wm = entries_required +
3117                             ironlake_display_wm_info.guard_size;
3118
3119                 if (planeb_wm > (int)ironlake_display_wm_info.max_wm)
3120                         planeb_wm = ironlake_display_wm_info.max_wm;
3121
3122                 cursorb_wm = 16;
3123                 reg_value = I915_READ(WM0_PIPEB_ILK);
3124                 reg_value &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
3125                 reg_value |= (planeb_wm << WM0_PIPE_PLANE_SHIFT) |
3126                              (cursorb_wm & WM0_PIPE_CURSOR_MASK);
3127                 I915_WRITE(WM0_PIPEB_ILK, reg_value);
3128                 DRM_DEBUG_KMS("FIFO watermarks For pipe B - plane %d, "
3129                                 "cursor: %d\n", planeb_wm, cursorb_wm);
3130         }
3131
3132         /*
3133          * Calculate and update the self-refresh watermark only when one
3134          * display plane is used.
3135          */
3136         if (!planea_clock || !planeb_clock) {
3137                 int line_count;
3138                 /* Read the self-refresh latency. The unit is 0.5us */
3139                 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3140
3141                 sr_clock = planea_clock ? planea_clock : planeb_clock;
3142                 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
3143
3144                 /* Use ns/us then divide to preserve precision */
3145                 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3146                                / 1000;
3147
3148                 /* calculate the self-refresh watermark for display plane */
3149                 entries_required = line_count * sr_hdisplay * pixel_size;
3150                 entries_required = DIV_ROUND_UP(entries_required,
3151                                    ironlake_display_srwm_info.cacheline_size);
3152                 sr_wm = entries_required +
3153                         ironlake_display_srwm_info.guard_size;
3154
3155                 /* calculate the self-refresh watermark for display cursor */
3156                 entries_required = line_count * pixel_size * 64;
3157                 entries_required = DIV_ROUND_UP(entries_required,
3158                                    ironlake_cursor_srwm_info.cacheline_size);
3159                 cursor_wm = entries_required +
3160                             ironlake_cursor_srwm_info.guard_size;
3161
3162                 /* configure watermark and enable self-refresh */
3163                 reg_value = I915_READ(WM1_LP_ILK);
3164                 reg_value &= ~(WM1_LP_LATENCY_MASK | WM1_LP_SR_MASK |
3165                                WM1_LP_CURSOR_MASK);
3166                 reg_value |= WM1_LP_SR_EN |
3167                              (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3168                              (sr_wm << WM1_LP_SR_SHIFT) | cursor_wm;
3169
3170                 I915_WRITE(WM1_LP_ILK, reg_value);
3171                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3172                                 "cursor %d\n", sr_wm, cursor_wm);
3173
3174         } else {
3175                 /* Turn off self refresh if both pipes are enabled */
3176                 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
3177         }
3178 }
3179 /**
3180  * intel_update_watermarks - update FIFO watermark values based on current modes
3181  *
3182  * Calculate watermark values for the various WM regs based on current mode
3183  * and plane configuration.
3184  *
3185  * There are several cases to deal with here:
3186  *   - normal (i.e. non-self-refresh)
3187  *   - self-refresh (SR) mode
3188  *   - lines are large relative to FIFO size (buffer can hold up to 2)
3189  *   - lines are small relative to FIFO size (buffer can hold more than 2
3190  *     lines), so need to account for TLB latency
3191  *
3192  *   The normal calculation is:
3193  *     watermark = dotclock * bytes per pixel * latency
3194  *   where latency is platform & configuration dependent (we assume pessimal
3195  *   values here).
3196  *
3197  *   The SR calculation is:
3198  *     watermark = (trunc(latency/line time)+1) * surface width *
3199  *       bytes per pixel
3200  *   where
3201  *     line time = htotal / dotclock
3202  *   and latency is assumed to be high, as above.
3203  *
3204  * The final value programmed to the register should always be rounded up,
3205  * and include an extra 2 entries to account for clock crossings.
3206  *
3207  * We don't use the sprite, so we can ignore that.  And on Crestline we have
3208  * to set the non-SR watermarks to 8.
3209   */
3210 static void intel_update_watermarks(struct drm_device *dev)
3211 {
3212         struct drm_i915_private *dev_priv = dev->dev_private;
3213         struct drm_crtc *crtc;
3214         struct intel_crtc *intel_crtc;
3215         int sr_hdisplay = 0;
3216         unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3217         int enabled = 0, pixel_size = 0;
3218
3219         if (!dev_priv->display.update_wm)
3220                 return;
3221
3222         /* Get the clock config from both planes */
3223         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3224                 intel_crtc = to_intel_crtc(crtc);
3225                 if (crtc->enabled) {
3226                         enabled++;
3227                         if (intel_crtc->plane == 0) {
3228                                 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3229                                           intel_crtc->pipe, crtc->mode.clock);
3230                                 planea_clock = crtc->mode.clock;
3231                         } else {
3232                                 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3233                                           intel_crtc->pipe, crtc->mode.clock);
3234                                 planeb_clock = crtc->mode.clock;
3235                         }
3236                         sr_hdisplay = crtc->mode.hdisplay;
3237                         sr_clock = crtc->mode.clock;
3238                         if (crtc->fb)
3239                                 pixel_size = crtc->fb->bits_per_pixel / 8;
3240                         else
3241                                 pixel_size = 4; /* by default */
3242                 }
3243         }
3244
3245         if (enabled <= 0)
3246                 return;
3247
3248         dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3249                                     sr_hdisplay, pixel_size);
3250 }
3251
3252 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3253                                struct drm_display_mode *mode,
3254                                struct drm_display_mode *adjusted_mode,
3255                                int x, int y,
3256                                struct drm_framebuffer *old_fb)
3257 {
3258         struct drm_device *dev = crtc->dev;
3259         struct drm_i915_private *dev_priv = dev->dev_private;
3260         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3261         int pipe = intel_crtc->pipe;
3262         int plane = intel_crtc->plane;
3263         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
3264         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3265         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
3266         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
3267         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
3268         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
3269         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
3270         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
3271         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
3272         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
3273         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
3274         int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
3275         int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
3276         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
3277         int refclk, num_connectors = 0;
3278         intel_clock_t clock, reduced_clock;
3279         u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
3280         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3281         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3282         bool is_edp = false;
3283         struct drm_mode_config *mode_config = &dev->mode_config;
3284         struct drm_encoder *encoder;
3285         struct intel_encoder *intel_encoder = NULL;
3286         const intel_limit_t *limit;
3287         int ret;
3288         struct fdi_m_n m_n = {0};
3289         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
3290         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
3291         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
3292         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
3293         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
3294         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
3295         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
3296         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
3297         int trans_dpll_sel = (pipe == 0) ? 0 : 1;
3298         int lvds_reg = LVDS;
3299         u32 temp;
3300         int sdvo_pixel_multiply;
3301         int target_clock;
3302
3303         drm_vblank_pre_modeset(dev, pipe);
3304
3305         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
3306
3307                 if (!encoder || encoder->crtc != crtc)
3308                         continue;
3309
3310                 intel_encoder = enc_to_intel_encoder(encoder);
3311
3312                 switch (intel_encoder->type) {
3313                 case INTEL_OUTPUT_LVDS:
3314                         is_lvds = true;
3315                         break;
3316                 case INTEL_OUTPUT_SDVO:
3317                 case INTEL_OUTPUT_HDMI:
3318                         is_sdvo = true;
3319                         if (intel_encoder->needs_tv_clock)
3320                                 is_tv = true;
3321                         break;
3322                 case INTEL_OUTPUT_DVO:
3323                         is_dvo = true;
3324                         break;
3325                 case INTEL_OUTPUT_TVOUT:
3326                         is_tv = true;
3327                         break;
3328                 case INTEL_OUTPUT_ANALOG:
3329                         is_crt = true;
3330                         break;
3331                 case INTEL_OUTPUT_DISPLAYPORT:
3332                         is_dp = true;
3333                         break;
3334                 case INTEL_OUTPUT_EDP:
3335                         is_edp = true;
3336                         break;
3337                 }
3338
3339                 num_connectors++;
3340         }
3341
3342         if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3343                 refclk = dev_priv->lvds_ssc_freq * 1000;
3344                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3345                                         refclk / 1000);
3346         } else if (IS_I9XX(dev)) {
3347                 refclk = 96000;
3348                 if (HAS_PCH_SPLIT(dev))
3349                         refclk = 120000; /* 120Mhz refclk */
3350         } else {
3351                 refclk = 48000;
3352         }
3353         
3354
3355         /*
3356          * Returns a set of divisors for the desired target clock with the given
3357          * refclk, or FALSE.  The returned values represent the clock equation:
3358          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3359          */
3360         limit = intel_limit(crtc);
3361         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3362         if (!ok) {
3363                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3364                 drm_vblank_post_modeset(dev, pipe);
3365                 return -EINVAL;
3366         }
3367
3368         if (is_lvds && dev_priv->lvds_downclock_avail) {
3369                 has_reduced_clock = limit->find_pll(limit, crtc,
3370                                                             dev_priv->lvds_downclock,
3371                                                             refclk,
3372                                                             &reduced_clock);
3373                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3374                         /*
3375                          * If the different P is found, it means that we can't
3376                          * switch the display clock by using the FP0/FP1.
3377                          * In such case we will disable the LVDS downclock
3378                          * feature.
3379                          */
3380                         DRM_DEBUG_KMS("Different P is found for "
3381                                                 "LVDS clock/downclock\n");
3382                         has_reduced_clock = 0;
3383                 }
3384         }
3385         /* SDVO TV has fixed PLL values depend on its clock range,
3386            this mirrors vbios setting. */
3387         if (is_sdvo && is_tv) {
3388                 if (adjusted_mode->clock >= 100000
3389                                 && adjusted_mode->clock < 140500) {
3390                         clock.p1 = 2;
3391                         clock.p2 = 10;
3392                         clock.n = 3;
3393                         clock.m1 = 16;
3394                         clock.m2 = 8;
3395                 } else if (adjusted_mode->clock >= 140500
3396                                 && adjusted_mode->clock <= 200000) {
3397                         clock.p1 = 1;
3398                         clock.p2 = 10;
3399                         clock.n = 6;
3400                         clock.m1 = 12;
3401                         clock.m2 = 8;
3402                 }
3403         }
3404
3405         /* FDI link */
3406         if (HAS_PCH_SPLIT(dev)) {
3407                 int lane = 0, link_bw, bpp;
3408                 /* eDP doesn't require FDI link, so just set DP M/N
3409                    according to current link config */
3410                 if (is_edp) {
3411                         target_clock = mode->clock;
3412                         intel_edp_link_config(intel_encoder,
3413                                         &lane, &link_bw);
3414                 } else {
3415                         /* DP over FDI requires target mode clock
3416                            instead of link clock */
3417                         if (is_dp)
3418                                 target_clock = mode->clock;
3419                         else
3420                                 target_clock = adjusted_mode->clock;
3421                         link_bw = 270000;
3422                 }
3423
3424                 /* determine panel color depth */
3425                 temp = I915_READ(pipeconf_reg);
3426                 temp &= ~PIPE_BPC_MASK;
3427                 if (is_lvds) {
3428                         int lvds_reg = I915_READ(PCH_LVDS);
3429                         /* the BPC will be 6 if it is 18-bit LVDS panel */
3430                         if ((lvds_reg & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3431                                 temp |= PIPE_8BPC;
3432                         else
3433                                 temp |= PIPE_6BPC;
3434                 } else if (is_edp) {
3435                         switch (dev_priv->edp_bpp/3) {
3436                         case 8:
3437                                 temp |= PIPE_8BPC;
3438                                 break;
3439                         case 10:
3440                                 temp |= PIPE_10BPC;
3441                                 break;
3442                         case 6:
3443                                 temp |= PIPE_6BPC;
3444                                 break;
3445                         case 12:
3446                                 temp |= PIPE_12BPC;
3447                                 break;
3448                         }
3449                 } else
3450                         temp |= PIPE_8BPC;
3451                 I915_WRITE(pipeconf_reg, temp);
3452                 I915_READ(pipeconf_reg);
3453
3454                 switch (temp & PIPE_BPC_MASK) {
3455                 case PIPE_8BPC:
3456                         bpp = 24;
3457                         break;
3458                 case PIPE_10BPC:
3459                         bpp = 30;
3460                         break;
3461                 case PIPE_6BPC:
3462                         bpp = 18;
3463                         break;
3464                 case PIPE_12BPC:
3465                         bpp = 36;
3466                         break;
3467                 default:
3468                         DRM_ERROR("unknown pipe bpc value\n");
3469                         bpp = 24;
3470                 }
3471
3472                 if (!lane) {
3473                         /* 
3474                          * Account for spread spectrum to avoid
3475                          * oversubscribing the link. Max center spread
3476                          * is 2.5%; use 5% for safety's sake.
3477                          */
3478                         u32 bps = target_clock * bpp * 21 / 20;
3479                         lane = bps / (link_bw * 8) + 1;
3480                 }
3481
3482                 intel_crtc->fdi_lanes = lane;
3483
3484                 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3485         }
3486
3487         /* Ironlake: try to setup display ref clock before DPLL
3488          * enabling. This is only under driver's control after
3489          * PCH B stepping, previous chipset stepping should be
3490          * ignoring this setting.
3491          */
3492         if (HAS_PCH_SPLIT(dev)) {
3493                 temp = I915_READ(PCH_DREF_CONTROL);
3494                 /* Always enable nonspread source */
3495                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3496                 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3497                 I915_WRITE(PCH_DREF_CONTROL, temp);
3498                 POSTING_READ(PCH_DREF_CONTROL);
3499
3500                 temp &= ~DREF_SSC_SOURCE_MASK;
3501                 temp |= DREF_SSC_SOURCE_ENABLE;
3502                 I915_WRITE(PCH_DREF_CONTROL, temp);
3503                 POSTING_READ(PCH_DREF_CONTROL);
3504
3505                 udelay(200);
3506
3507                 if (is_edp) {
3508                         if (dev_priv->lvds_use_ssc) {
3509                                 temp |= DREF_SSC1_ENABLE;
3510                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3511                                 POSTING_READ(PCH_DREF_CONTROL);
3512
3513                                 udelay(200);
3514
3515                                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3516                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3517                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3518                                 POSTING_READ(PCH_DREF_CONTROL);
3519                         } else {
3520                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3521                                 I915_WRITE(PCH_DREF_CONTROL, temp);
3522                                 POSTING_READ(PCH_DREF_CONTROL);
3523                         }
3524                 }
3525         }
3526
3527         if (IS_PINEVIEW(dev)) {
3528                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3529                 if (has_reduced_clock)
3530                         fp2 = (1 << reduced_clock.n) << 16 |
3531                                 reduced_clock.m1 << 8 | reduced_clock.m2;
3532         } else {
3533                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3534                 if (has_reduced_clock)
3535                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3536                                 reduced_clock.m2;
3537         }
3538
3539         if (!HAS_PCH_SPLIT(dev))
3540                 dpll = DPLL_VGA_MODE_DIS;
3541
3542         if (IS_I9XX(dev)) {
3543                 if (is_lvds)
3544                         dpll |= DPLLB_MODE_LVDS;
3545                 else
3546                         dpll |= DPLLB_MODE_DAC_SERIAL;
3547                 if (is_sdvo) {
3548                         dpll |= DPLL_DVO_HIGH_SPEED;
3549                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3550                         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3551                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3552                         else if (HAS_PCH_SPLIT(dev))
3553                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3554                 }
3555                 if (is_dp)
3556                         dpll |= DPLL_DVO_HIGH_SPEED;
3557
3558                 /* compute bitmask from p1 value */
3559                 if (IS_PINEVIEW(dev))
3560                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3561                 else {
3562                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3563                         /* also FPA1 */
3564                         if (HAS_PCH_SPLIT(dev))
3565                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3566                         if (IS_G4X(dev) && has_reduced_clock)
3567                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3568                 }
3569                 switch (clock.p2) {
3570                 case 5:
3571                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3572                         break;
3573                 case 7:
3574                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3575                         break;
3576                 case 10:
3577                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3578                         break;
3579                 case 14:
3580                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3581                         break;
3582                 }
3583                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev))
3584                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3585         } else {
3586                 if (is_lvds) {
3587                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3588                 } else {
3589                         if (clock.p1 == 2)
3590                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
3591                         else
3592                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3593                         if (clock.p2 == 4)
3594                                 dpll |= PLL_P2_DIVIDE_BY_4;
3595                 }
3596         }
3597
3598         if (is_sdvo && is_tv)
3599                 dpll |= PLL_REF_INPUT_TVCLKINBC;
3600         else if (is_tv)
3601                 /* XXX: just matching BIOS for now */
3602                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
3603                 dpll |= 3;
3604         else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3605                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3606         else
3607                 dpll |= PLL_REF_INPUT_DREFCLK;
3608
3609         /* setup pipeconf */
3610         pipeconf = I915_READ(pipeconf_reg);
3611
3612         /* Set up the display plane register */
3613         dspcntr = DISPPLANE_GAMMA_ENABLE;
3614
3615         /* Ironlake's plane is forced to pipe, bit 24 is to
3616            enable color space conversion */
3617         if (!HAS_PCH_SPLIT(dev)) {
3618                 if (pipe == 0)
3619                         dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3620                 else
3621                         dspcntr |= DISPPLANE_SEL_PIPE_B;
3622         }
3623
3624         if (pipe == 0 && !IS_I965G(dev)) {
3625                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3626                  * core speed.
3627                  *
3628                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3629                  * pipe == 0 check?
3630                  */
3631                 if (mode->clock >
3632                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3633                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
3634                 else
3635                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3636         }
3637
3638         /* Disable the panel fitter if it was on our pipe */
3639         if (!HAS_PCH_SPLIT(dev) && intel_panel_fitter_pipe(dev) == pipe)
3640                 I915_WRITE(PFIT_CONTROL, 0);
3641
3642         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3643         drm_mode_debug_printmodeline(mode);
3644
3645         /* assign to Ironlake registers */
3646         if (HAS_PCH_SPLIT(dev)) {
3647                 fp_reg = pch_fp_reg;
3648                 dpll_reg = pch_dpll_reg;
3649         }
3650
3651         if (is_edp) {
3652                 ironlake_disable_pll_edp(crtc);
3653         } else if ((dpll & DPLL_VCO_ENABLE)) {
3654                 I915_WRITE(fp_reg, fp);
3655                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3656                 I915_READ(dpll_reg);
3657                 udelay(150);
3658         }
3659
3660         /* enable transcoder DPLL */
3661         if (HAS_PCH_CPT(dev)) {
3662                 temp = I915_READ(PCH_DPLL_SEL);
3663                 if (trans_dpll_sel == 0)
3664                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
3665                 else
3666                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
3667                 I915_WRITE(PCH_DPLL_SEL, temp);
3668                 I915_READ(PCH_DPLL_SEL);
3669                 udelay(150);
3670         }
3671
3672         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3673          * This is an exception to the general rule that mode_set doesn't turn
3674          * things on.
3675          */
3676         if (is_lvds) {
3677                 u32 lvds;
3678
3679                 if (HAS_PCH_SPLIT(dev))
3680                         lvds_reg = PCH_LVDS;
3681
3682                 lvds = I915_READ(lvds_reg);
3683                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3684                 if (pipe == 1) {
3685                         if (HAS_PCH_CPT(dev))
3686                                 lvds |= PORT_TRANS_B_SEL_CPT;
3687                         else
3688                                 lvds |= LVDS_PIPEB_SELECT;
3689                 } else {
3690                         if (HAS_PCH_CPT(dev))
3691                                 lvds &= ~PORT_TRANS_SEL_MASK;
3692                         else
3693                                 lvds &= ~LVDS_PIPEB_SELECT;
3694                 }
3695                 /* set the corresponsding LVDS_BORDER bit */
3696                 lvds |= dev_priv->lvds_border_bits;
3697                 /* Set the B0-B3 data pairs corresponding to whether we're going to
3698                  * set the DPLLs for dual-channel mode or not.
3699                  */
3700                 if (clock.p2 == 7)
3701                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3702                 else
3703                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3704
3705                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3706                  * appropriately here, but we need to look more thoroughly into how
3707                  * panels behave in the two modes.
3708                  */
3709                 /* set the dithering flag */
3710                 if (IS_I965G(dev)) {
3711                         if (dev_priv->lvds_dither) {
3712                                 if (HAS_PCH_SPLIT(dev)) {
3713                                         pipeconf |= PIPE_ENABLE_DITHER;
3714                                         pipeconf |= PIPE_DITHER_TYPE_ST01;
3715                                 } else
3716                                         lvds |= LVDS_ENABLE_DITHER;
3717                         } else {
3718                                 if (HAS_PCH_SPLIT(dev)) {
3719                                         pipeconf &= ~PIPE_ENABLE_DITHER;
3720                                         pipeconf &= ~PIPE_DITHER_TYPE_MASK;
3721                                 } else
3722                                         lvds &= ~LVDS_ENABLE_DITHER;
3723                         }
3724                 }
3725                 I915_WRITE(lvds_reg, lvds);
3726                 I915_READ(lvds_reg);
3727         }
3728         if (is_dp)
3729                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3730         else if (HAS_PCH_SPLIT(dev)) {
3731                 /* For non-DP output, clear any trans DP clock recovery setting.*/
3732                 if (pipe == 0) {
3733                         I915_WRITE(TRANSA_DATA_M1, 0);
3734                         I915_WRITE(TRANSA_DATA_N1, 0);
3735                         I915_WRITE(TRANSA_DP_LINK_M1, 0);
3736                         I915_WRITE(TRANSA_DP_LINK_N1, 0);
3737                 } else {
3738                         I915_WRITE(TRANSB_DATA_M1, 0);
3739                         I915_WRITE(TRANSB_DATA_N1, 0);
3740                         I915_WRITE(TRANSB_DP_LINK_M1, 0);
3741                         I915_WRITE(TRANSB_DP_LINK_N1, 0);
3742                 }
3743         }
3744
3745         if (!is_edp) {
3746                 I915_WRITE(fp_reg, fp);
3747                 I915_WRITE(dpll_reg, dpll);
3748                 I915_READ(dpll_reg);
3749                 /* Wait for the clocks to stabilize. */
3750                 udelay(150);
3751
3752                 if (IS_I965G(dev) && !HAS_PCH_SPLIT(dev)) {
3753                         if (is_sdvo) {
3754                                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3755                                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3756                                         ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3757                         } else
3758                                 I915_WRITE(dpll_md_reg, 0);
3759                 } else {
3760                         /* write it again -- the BIOS does, after all */
3761                         I915_WRITE(dpll_reg, dpll);
3762                 }
3763                 I915_READ(dpll_reg);
3764                 /* Wait for the clocks to stabilize. */
3765                 udelay(150);
3766         }
3767
3768         if (is_lvds && has_reduced_clock && i915_powersave) {
3769                 I915_WRITE(fp_reg + 4, fp2);
3770                 intel_crtc->lowfreq_avail = true;
3771                 if (HAS_PIPE_CXSR(dev)) {
3772                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3773                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3774                 }
3775         } else {
3776                 I915_WRITE(fp_reg + 4, fp);
3777                 intel_crtc->lowfreq_avail = false;
3778                 if (HAS_PIPE_CXSR(dev)) {
3779                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3780                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3781                 }
3782         }
3783
3784         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3785                    ((adjusted_mode->crtc_htotal - 1) << 16));
3786         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3787                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
3788         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3789                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
3790         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3791                    ((adjusted_mode->crtc_vtotal - 1) << 16));
3792         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3793                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
3794         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3795                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
3796         /* pipesrc and dspsize control the size that is scaled from, which should
3797          * always be the user's requested size.
3798          */
3799         if (!HAS_PCH_SPLIT(dev)) {
3800                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3801                                 (mode->hdisplay - 1));
3802                 I915_WRITE(dsppos_reg, 0);
3803         }
3804         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3805
3806         if (HAS_PCH_SPLIT(dev)) {
3807                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3808                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3809                 I915_WRITE(link_m1_reg, m_n.link_m);
3810                 I915_WRITE(link_n1_reg, m_n.link_n);
3811
3812                 if (is_edp) {
3813                         ironlake_set_pll_edp(crtc, adjusted_mode->clock);
3814                 } else {
3815                         /* enable FDI RX PLL too */
3816                         temp = I915_READ(fdi_rx_reg);
3817                         I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3818                         I915_READ(fdi_rx_reg);
3819                         udelay(200);
3820
3821                         /* enable FDI TX PLL too */
3822                         temp = I915_READ(fdi_tx_reg);
3823                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
3824                         I915_READ(fdi_tx_reg);
3825
3826                         /* enable FDI RX PCDCLK */
3827                         temp = I915_READ(fdi_rx_reg);
3828                         I915_WRITE(fdi_rx_reg, temp | FDI_SEL_PCDCLK);
3829                         I915_READ(fdi_rx_reg);
3830                         udelay(200);
3831                 }
3832         }
3833
3834         I915_WRITE(pipeconf_reg, pipeconf);
3835         I915_READ(pipeconf_reg);
3836
3837         intel_wait_for_vblank(dev);
3838
3839         if (IS_IRONLAKE(dev)) {
3840                 /* enable address swizzle for tiling buffer */
3841                 temp = I915_READ(DISP_ARB_CTL);
3842                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3843         }
3844
3845         I915_WRITE(dspcntr_reg, dspcntr);
3846
3847         /* Flush the plane changes */
3848         ret = intel_pipe_set_base(crtc, x, y, old_fb);
3849
3850         if ((IS_I965G(dev) || plane == 0))
3851                 intel_update_fbc(crtc, &crtc->mode);
3852
3853         intel_update_watermarks(dev);
3854
3855         drm_vblank_post_modeset(dev, pipe);
3856
3857         return ret;
3858 }
3859
3860 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3861 void intel_crtc_load_lut(struct drm_crtc *crtc)
3862 {
3863         struct drm_device *dev = crtc->dev;
3864         struct drm_i915_private *dev_priv = dev->dev_private;
3865         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3866         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3867         int i;
3868
3869         /* The clocks have to be on to load the palette. */
3870         if (!crtc->enabled)
3871                 return;
3872
3873         /* use legacy palette for Ironlake */
3874         if (HAS_PCH_SPLIT(dev))
3875                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3876                                                    LGC_PALETTE_B;
3877
3878         for (i = 0; i < 256; i++) {
3879                 I915_WRITE(palreg + 4 * i,
3880                            (intel_crtc->lut_r[i] << 16) |
3881                            (intel_crtc->lut_g[i] << 8) |
3882                            intel_crtc->lut_b[i]);
3883         }
3884 }
3885
3886 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3887                                  struct drm_file *file_priv,
3888                                  uint32_t handle,
3889                                  uint32_t width, uint32_t height)
3890 {
3891         struct drm_device *dev = crtc->dev;
3892         struct drm_i915_private *dev_priv = dev->dev_private;
3893         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3894         struct drm_gem_object *bo;
3895         struct drm_i915_gem_object *obj_priv;
3896         int pipe = intel_crtc->pipe;
3897         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3898         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3899         uint32_t temp = I915_READ(control);
3900         size_t addr;
3901         int ret;
3902
3903         DRM_DEBUG_KMS("\n");
3904
3905         /* if we want to turn off the cursor ignore width and height */
3906         if (!handle) {
3907                 DRM_DEBUG_KMS("cursor off\n");
3908                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3909                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3910                         temp |= CURSOR_MODE_DISABLE;
3911                 } else {
3912                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3913                 }
3914                 addr = 0;
3915                 bo = NULL;
3916                 mutex_lock(&dev->struct_mutex);
3917                 goto finish;
3918         }
3919
3920         /* Currently we only support 64x64 cursors */
3921         if (width != 64 || height != 64) {
3922                 DRM_ERROR("we currently only support 64x64 cursors\n");
3923                 return -EINVAL;
3924         }
3925
3926         bo = drm_gem_object_lookup(dev, file_priv, handle);
3927         if (!bo)
3928                 return -ENOENT;
3929
3930         obj_priv = to_intel_bo(bo);
3931
3932         if (bo->size < width * height * 4) {
3933                 DRM_ERROR("buffer is to small\n");
3934                 ret = -ENOMEM;
3935                 goto fail;
3936         }
3937
3938         /* we only need to pin inside GTT if cursor is non-phy */
3939         mutex_lock(&dev->struct_mutex);
3940         if (!dev_priv->info->cursor_needs_physical) {
3941                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3942                 if (ret) {
3943                         DRM_ERROR("failed to pin cursor bo\n");
3944                         goto fail_locked;
3945                 }
3946                 addr = obj_priv->gtt_offset;
3947         } else {
3948                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3949                 if (ret) {
3950                         DRM_ERROR("failed to attach phys object\n");
3951                         goto fail_locked;
3952                 }
3953                 addr = obj_priv->phys_obj->handle->busaddr;
3954         }
3955
3956         if (!IS_I9XX(dev))
3957                 I915_WRITE(CURSIZE, (height << 12) | width);
3958
3959         /* Hooray for CUR*CNTR differences */
3960         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3961                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3962                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3963                 temp |= (pipe << 28); /* Connect to correct pipe */
3964         } else {
3965                 temp &= ~(CURSOR_FORMAT_MASK);
3966                 temp |= CURSOR_ENABLE;
3967                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3968         }
3969
3970  finish:
3971         I915_WRITE(control, temp);
3972         I915_WRITE(base, addr);
3973
3974         if (intel_crtc->cursor_bo) {
3975                 if (dev_priv->info->cursor_needs_physical) {
3976                         if (intel_crtc->cursor_bo != bo)
3977                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3978                 } else
3979                         i915_gem_object_unpin(intel_crtc->cursor_bo);
3980                 drm_gem_object_unreference(intel_crtc->cursor_bo);
3981         }
3982
3983         mutex_unlock(&dev->struct_mutex);
3984
3985         intel_crtc->cursor_addr = addr;
3986         intel_crtc->cursor_bo = bo;
3987
3988         return 0;
3989 fail_locked:
3990         mutex_unlock(&dev->struct_mutex);
3991 fail:
3992         drm_gem_object_unreference_unlocked(bo);
3993         return ret;
3994 }
3995
3996 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3997 {
3998         struct drm_device *dev = crtc->dev;
3999         struct drm_i915_private *dev_priv = dev->dev_private;
4000         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4001         struct intel_framebuffer *intel_fb;
4002         int pipe = intel_crtc->pipe;
4003         uint32_t temp = 0;
4004         uint32_t adder;
4005
4006         if (crtc->fb) {
4007                 intel_fb = to_intel_framebuffer(crtc->fb);
4008                 intel_mark_busy(dev, intel_fb->obj);
4009         }
4010
4011         if (x < 0) {
4012                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4013                 x = -x;
4014         }
4015         if (y < 0) {
4016                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4017                 y = -y;
4018         }
4019
4020         temp |= x << CURSOR_X_SHIFT;
4021         temp |= y << CURSOR_Y_SHIFT;
4022
4023         adder = intel_crtc->cursor_addr;
4024         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
4025         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
4026
4027         return 0;
4028 }
4029
4030 /** Sets the color ramps on behalf of RandR */
4031 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4032                                  u16 blue, int regno)
4033 {
4034         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4035
4036         intel_crtc->lut_r[regno] = red >> 8;
4037         intel_crtc->lut_g[regno] = green >> 8;
4038         intel_crtc->lut_b[regno] = blue >> 8;
4039 }
4040
4041 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4042                              u16 *blue, int regno)
4043 {
4044         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4045
4046         *red = intel_crtc->lut_r[regno] << 8;
4047         *green = intel_crtc->lut_g[regno] << 8;
4048         *blue = intel_crtc->lut_b[regno] << 8;
4049 }
4050
4051 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4052                                  u16 *blue, uint32_t size)
4053 {
4054         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4055         int i;
4056
4057         if (size != 256)
4058                 return;
4059
4060         for (i = 0; i < 256; i++) {
4061                 intel_crtc->lut_r[i] = red[i] >> 8;
4062                 intel_crtc->lut_g[i] = green[i] >> 8;
4063                 intel_crtc->lut_b[i] = blue[i] >> 8;
4064         }
4065
4066         intel_crtc_load_lut(crtc);
4067 }
4068
4069 /**
4070  * Get a pipe with a simple mode set on it for doing load-based monitor
4071  * detection.
4072  *
4073  * It will be up to the load-detect code to adjust the pipe as appropriate for
4074  * its requirements.  The pipe will be connected to no other encoders.
4075  *
4076  * Currently this code will only succeed if there is a pipe with no encoders
4077  * configured for it.  In the future, it could choose to temporarily disable
4078  * some outputs to free up a pipe for its use.
4079  *
4080  * \return crtc, or NULL if no pipes are available.
4081  */
4082
4083 /* VESA 640x480x72Hz mode to set on the pipe */
4084 static struct drm_display_mode load_detect_mode = {
4085         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4086                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4087 };
4088
4089 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4090                                             struct drm_connector *connector,
4091                                             struct drm_display_mode *mode,
4092                                             int *dpms_mode)
4093 {
4094         struct intel_crtc *intel_crtc;
4095         struct drm_crtc *possible_crtc;
4096         struct drm_crtc *supported_crtc =NULL;
4097         struct drm_encoder *encoder = &intel_encoder->enc;
4098         struct drm_crtc *crtc = NULL;
4099         struct drm_device *dev = encoder->dev;
4100         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4101         struct drm_crtc_helper_funcs *crtc_funcs;
4102         int i = -1;
4103
4104         /*
4105          * Algorithm gets a little messy:
4106          *   - if the connector already has an assigned crtc, use it (but make
4107          *     sure it's on first)
4108          *   - try to find the first unused crtc that can drive this connector,
4109          *     and use that if we find one
4110          *   - if there are no unused crtcs available, try to use the first
4111          *     one we found that supports the connector
4112          */
4113
4114         /* See if we already have a CRTC for this connector */
4115         if (encoder->crtc) {
4116                 crtc = encoder->crtc;
4117                 /* Make sure the crtc and connector are running */
4118                 intel_crtc = to_intel_crtc(crtc);
4119                 *dpms_mode = intel_crtc->dpms_mode;
4120                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4121                         crtc_funcs = crtc->helper_private;
4122                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4123                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4124                 }
4125                 return crtc;
4126         }
4127
4128         /* Find an unused one (if possible) */
4129         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4130                 i++;
4131                 if (!(encoder->possible_crtcs & (1 << i)))
4132                         continue;
4133                 if (!possible_crtc->enabled) {
4134                         crtc = possible_crtc;
4135                         break;
4136                 }
4137                 if (!supported_crtc)
4138                         supported_crtc = possible_crtc;
4139         }
4140
4141         /*
4142          * If we didn't find an unused CRTC, don't use any.
4143          */
4144         if (!crtc) {
4145                 return NULL;
4146         }
4147
4148         encoder->crtc = crtc;
4149         connector->encoder = encoder;
4150         intel_encoder->load_detect_temp = true;
4151
4152         intel_crtc = to_intel_crtc(crtc);
4153         *dpms_mode = intel_crtc->dpms_mode;
4154
4155         if (!crtc->enabled) {
4156                 if (!mode)
4157                         mode = &load_detect_mode;
4158                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4159         } else {
4160                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4161                         crtc_funcs = crtc->helper_private;
4162                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4163                 }
4164
4165                 /* Add this connector to the crtc */
4166                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4167                 encoder_funcs->commit(encoder);
4168         }
4169         /* let the connector get through one full cycle before testing */
4170         intel_wait_for_vblank(dev);
4171
4172         return crtc;
4173 }
4174
4175 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4176                                     struct drm_connector *connector, int dpms_mode)
4177 {
4178         struct drm_encoder *encoder = &intel_encoder->enc;
4179         struct drm_device *dev = encoder->dev;
4180         struct drm_crtc *crtc = encoder->crtc;
4181         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4182         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4183
4184         if (intel_encoder->load_detect_temp) {
4185                 encoder->crtc = NULL;
4186                 connector->encoder = NULL;
4187                 intel_encoder->load_detect_temp = false;
4188                 crtc->enabled = drm_helper_crtc_in_use(crtc);
4189                 drm_helper_disable_unused_functions(dev);
4190         }
4191
4192         /* Switch crtc and encoder back off if necessary */
4193         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4194                 if (encoder->crtc == crtc)
4195                         encoder_funcs->dpms(encoder, dpms_mode);
4196                 crtc_funcs->dpms(crtc, dpms_mode);
4197         }
4198 }
4199
4200 /* Returns the clock of the currently programmed mode of the given pipe. */
4201 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4202 {
4203         struct drm_i915_private *dev_priv = dev->dev_private;
4204         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4205         int pipe = intel_crtc->pipe;
4206         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4207         u32 fp;
4208         intel_clock_t clock;
4209
4210         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4211                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4212         else
4213                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4214
4215         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4216         if (IS_PINEVIEW(dev)) {
4217                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4218                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4219         } else {
4220                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4221                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4222         }
4223
4224         if (IS_I9XX(dev)) {
4225                 if (IS_PINEVIEW(dev))
4226                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4227                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4228                 else
4229                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4230                                DPLL_FPA01_P1_POST_DIV_SHIFT);
4231
4232                 switch (dpll & DPLL_MODE_MASK) {
4233                 case DPLLB_MODE_DAC_SERIAL:
4234                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4235                                 5 : 10;
4236                         break;
4237                 case DPLLB_MODE_LVDS:
4238                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4239                                 7 : 14;
4240                         break;
4241                 default:
4242                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4243                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
4244                         return 0;
4245                 }
4246
4247                 /* XXX: Handle the 100Mhz refclk */
4248                 intel_clock(dev, 96000, &clock);
4249         } else {
4250                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4251
4252                 if (is_lvds) {
4253                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4254                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
4255                         clock.p2 = 14;
4256
4257                         if ((dpll & PLL_REF_INPUT_MASK) ==
4258                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4259                                 /* XXX: might not be 66MHz */
4260                                 intel_clock(dev, 66000, &clock);
4261                         } else
4262                                 intel_clock(dev, 48000, &clock);
4263                 } else {
4264                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
4265                                 clock.p1 = 2;
4266                         else {
4267                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4268                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4269                         }
4270                         if (dpll & PLL_P2_DIVIDE_BY_4)
4271                                 clock.p2 = 4;
4272                         else
4273                                 clock.p2 = 2;
4274
4275                         intel_clock(dev, 48000, &clock);
4276                 }
4277         }
4278
4279         /* XXX: It would be nice to validate the clocks, but we can't reuse
4280          * i830PllIsValid() because it relies on the xf86_config connector
4281          * configuration being accurate, which it isn't necessarily.
4282          */
4283
4284         return clock.dot;
4285 }
4286
4287 /** Returns the currently programmed mode of the given pipe. */
4288 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4289                                              struct drm_crtc *crtc)
4290 {
4291         struct drm_i915_private *dev_priv = dev->dev_private;
4292         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4293         int pipe = intel_crtc->pipe;
4294         struct drm_display_mode *mode;
4295         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4296         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4297         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4298         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4299
4300         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4301         if (!mode)
4302                 return NULL;
4303
4304         mode->clock = intel_crtc_clock_get(dev, crtc);
4305         mode->hdisplay = (htot & 0xffff) + 1;
4306         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4307         mode->hsync_start = (hsync & 0xffff) + 1;
4308         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4309         mode->vdisplay = (vtot & 0xffff) + 1;
4310         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4311         mode->vsync_start = (vsync & 0xffff) + 1;
4312         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4313
4314         drm_mode_set_name(mode);
4315         drm_mode_set_crtcinfo(mode, 0);
4316
4317         return mode;
4318 }
4319
4320 #define GPU_IDLE_TIMEOUT 500 /* ms */
4321
4322 /* When this timer fires, we've been idle for awhile */
4323 static void intel_gpu_idle_timer(unsigned long arg)
4324 {
4325         struct drm_device *dev = (struct drm_device *)arg;
4326         drm_i915_private_t *dev_priv = dev->dev_private;
4327
4328         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4329
4330         dev_priv->busy = false;
4331
4332         queue_work(dev_priv->wq, &dev_priv->idle_work);
4333 }
4334
4335 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4336
4337 static void intel_crtc_idle_timer(unsigned long arg)
4338 {
4339         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4340         struct drm_crtc *crtc = &intel_crtc->base;
4341         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4342
4343         DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
4344
4345         intel_crtc->busy = false;
4346
4347         queue_work(dev_priv->wq, &dev_priv->idle_work);
4348 }
4349
4350 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
4351 {
4352         struct drm_device *dev = crtc->dev;
4353         drm_i915_private_t *dev_priv = dev->dev_private;
4354         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4355         int pipe = intel_crtc->pipe;
4356         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4357         int dpll = I915_READ(dpll_reg);
4358
4359         if (HAS_PCH_SPLIT(dev))
4360                 return;
4361
4362         if (!dev_priv->lvds_downclock_avail)
4363                 return;
4364
4365         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4366                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4367
4368                 /* Unlock panel regs */
4369                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4370
4371                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4372                 I915_WRITE(dpll_reg, dpll);
4373                 dpll = I915_READ(dpll_reg);
4374                 intel_wait_for_vblank(dev);
4375                 dpll = I915_READ(dpll_reg);
4376                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4377                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4378
4379                 /* ...and lock them again */
4380                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4381         }
4382
4383         /* Schedule downclock */
4384         if (schedule)
4385                 mod_timer(&intel_crtc->idle_timer, jiffies +
4386                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4387 }
4388
4389 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4390 {
4391         struct drm_device *dev = crtc->dev;
4392         drm_i915_private_t *dev_priv = dev->dev_private;
4393         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4394         int pipe = intel_crtc->pipe;
4395         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4396         int dpll = I915_READ(dpll_reg);
4397
4398         if (HAS_PCH_SPLIT(dev))
4399                 return;
4400
4401         if (!dev_priv->lvds_downclock_avail)
4402                 return;
4403
4404         /*
4405          * Since this is called by a timer, we should never get here in
4406          * the manual case.
4407          */
4408         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4409                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4410
4411                 /* Unlock panel regs */
4412                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
4413
4414                 dpll |= DISPLAY_RATE_SELECT_FPA1;
4415                 I915_WRITE(dpll_reg, dpll);
4416                 dpll = I915_READ(dpll_reg);
4417                 intel_wait_for_vblank(dev);
4418                 dpll = I915_READ(dpll_reg);
4419                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4420                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4421
4422                 /* ...and lock them again */
4423                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4424         }
4425
4426 }
4427
4428 /**
4429  * intel_idle_update - adjust clocks for idleness
4430  * @work: work struct
4431  *
4432  * Either the GPU or display (or both) went idle.  Check the busy status
4433  * here and adjust the CRTC and GPU clocks as necessary.
4434  */
4435 static void intel_idle_update(struct work_struct *work)
4436 {
4437         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4438                                                     idle_work);
4439         struct drm_device *dev = dev_priv->dev;
4440         struct drm_crtc *crtc;
4441         struct intel_crtc *intel_crtc;
4442
4443         if (!i915_powersave)
4444                 return;
4445
4446         mutex_lock(&dev->struct_mutex);
4447
4448         if (IS_I945G(dev) || IS_I945GM(dev)) {
4449                 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4450                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4451         }
4452
4453         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4454                 /* Skip inactive CRTCs */
4455                 if (!crtc->fb)
4456                         continue;
4457
4458                 intel_crtc = to_intel_crtc(crtc);
4459                 if (!intel_crtc->busy)
4460                         intel_decrease_pllclock(crtc);
4461         }
4462
4463         mutex_unlock(&dev->struct_mutex);
4464 }
4465
4466 /**
4467  * intel_mark_busy - mark the GPU and possibly the display busy
4468  * @dev: drm device
4469  * @obj: object we're operating on
4470  *
4471  * Callers can use this function to indicate that the GPU is busy processing
4472  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
4473  * buffer), we'll also mark the display as busy, so we know to increase its
4474  * clock frequency.
4475  */
4476 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4477 {
4478         drm_i915_private_t *dev_priv = dev->dev_private;
4479         struct drm_crtc *crtc = NULL;
4480         struct intel_framebuffer *intel_fb;
4481         struct intel_crtc *intel_crtc;
4482
4483         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4484                 return;
4485
4486         if (!dev_priv->busy) {
4487                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4488                         u32 fw_blc_self;
4489
4490                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4491                         fw_blc_self = I915_READ(FW_BLC_SELF);
4492                         fw_blc_self &= ~FW_BLC_SELF_EN;
4493                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4494                 }
4495                 dev_priv->busy = true;
4496         } else
4497                 mod_timer(&dev_priv->idle_timer, jiffies +
4498                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4499
4500         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4501                 if (!crtc->fb)
4502                         continue;
4503
4504                 intel_crtc = to_intel_crtc(crtc);
4505                 intel_fb = to_intel_framebuffer(crtc->fb);
4506                 if (intel_fb->obj == obj) {
4507                         if (!intel_crtc->busy) {
4508                                 if (IS_I945G(dev) || IS_I945GM(dev)) {
4509                                         u32 fw_blc_self;
4510
4511                                         DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4512                                         fw_blc_self = I915_READ(FW_BLC_SELF);
4513                                         fw_blc_self &= ~FW_BLC_SELF_EN;
4514                                         I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4515                                 }
4516                                 /* Non-busy -> busy, upclock */
4517                                 intel_increase_pllclock(crtc, true);
4518                                 intel_crtc->busy = true;
4519                         } else {
4520                                 /* Busy -> busy, put off timer */
4521                                 mod_timer(&intel_crtc->idle_timer, jiffies +
4522                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4523                         }
4524                 }
4525         }
4526 }
4527
4528 static void intel_crtc_destroy(struct drm_crtc *crtc)
4529 {
4530         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4531
4532         drm_crtc_cleanup(crtc);
4533         kfree(intel_crtc);
4534 }
4535
4536 struct intel_unpin_work {
4537         struct work_struct work;
4538         struct drm_device *dev;
4539         struct drm_gem_object *old_fb_obj;
4540         struct drm_gem_object *pending_flip_obj;
4541         struct drm_pending_vblank_event *event;
4542         int pending;
4543 };
4544
4545 static void intel_unpin_work_fn(struct work_struct *__work)
4546 {
4547         struct intel_unpin_work *work =
4548                 container_of(__work, struct intel_unpin_work, work);
4549
4550         mutex_lock(&work->dev->struct_mutex);
4551         i915_gem_object_unpin(work->old_fb_obj);
4552         drm_gem_object_unreference(work->pending_flip_obj);
4553         drm_gem_object_unreference(work->old_fb_obj);
4554         mutex_unlock(&work->dev->struct_mutex);
4555         kfree(work);
4556 }
4557
4558 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4559 {
4560         drm_i915_private_t *dev_priv = dev->dev_private;
4561         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4562         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4563         struct intel_unpin_work *work;
4564         struct drm_i915_gem_object *obj_priv;
4565         struct drm_pending_vblank_event *e;
4566         struct timeval now;
4567         unsigned long flags;
4568
4569         /* Ignore early vblank irqs */
4570         if (intel_crtc == NULL)
4571                 return;
4572
4573         spin_lock_irqsave(&dev->event_lock, flags);
4574         work = intel_crtc->unpin_work;
4575         if (work == NULL || !work->pending) {
4576                 if (work && !work->pending) {
4577                         obj_priv = to_intel_bo(work->pending_flip_obj);
4578                         DRM_DEBUG_DRIVER("flip finish: %p (%d) not pending?\n",
4579                                          obj_priv,
4580                                          atomic_read(&obj_priv->pending_flip));
4581                 }
4582                 spin_unlock_irqrestore(&dev->event_lock, flags);
4583                 return;
4584         }
4585
4586         intel_crtc->unpin_work = NULL;
4587         drm_vblank_put(dev, intel_crtc->pipe);
4588
4589         if (work->event) {
4590                 e = work->event;
4591                 do_gettimeofday(&now);
4592                 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4593                 e->event.tv_sec = now.tv_sec;
4594                 e->event.tv_usec = now.tv_usec;
4595                 list_add_tail(&e->base.link,
4596                               &e->base.file_priv->event_list);
4597                 wake_up_interruptible(&e->base.file_priv->event_wait);
4598         }
4599
4600         spin_unlock_irqrestore(&dev->event_lock, flags);
4601
4602         obj_priv = to_intel_bo(work->pending_flip_obj);
4603
4604         /* Initial scanout buffer will have a 0 pending flip count */
4605         if ((atomic_read(&obj_priv->pending_flip) == 0) ||
4606             atomic_dec_and_test(&obj_priv->pending_flip))
4607                 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4608         schedule_work(&work->work);
4609 }
4610
4611 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4612 {
4613         drm_i915_private_t *dev_priv = dev->dev_private;
4614         struct intel_crtc *intel_crtc =
4615                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4616         unsigned long flags;
4617
4618         spin_lock_irqsave(&dev->event_lock, flags);
4619         if (intel_crtc->unpin_work) {
4620                 intel_crtc->unpin_work->pending = 1;
4621         } else {
4622                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
4623         }
4624         spin_unlock_irqrestore(&dev->event_lock, flags);
4625 }
4626
4627 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4628                                 struct drm_framebuffer *fb,
4629                                 struct drm_pending_vblank_event *event)
4630 {
4631         struct drm_device *dev = crtc->dev;
4632         struct drm_i915_private *dev_priv = dev->dev_private;
4633         struct intel_framebuffer *intel_fb;
4634         struct drm_i915_gem_object *obj_priv;
4635         struct drm_gem_object *obj;
4636         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4637         struct intel_unpin_work *work;
4638         unsigned long flags;
4639         int pipesrc_reg = (intel_crtc->pipe == 0) ? PIPEASRC : PIPEBSRC;
4640         int ret, pipesrc;
4641
4642         work = kzalloc(sizeof *work, GFP_KERNEL);
4643         if (work == NULL)
4644                 return -ENOMEM;
4645
4646         mutex_lock(&dev->struct_mutex);
4647
4648         work->event = event;
4649         work->dev = crtc->dev;
4650         intel_fb = to_intel_framebuffer(crtc->fb);
4651         work->old_fb_obj = intel_fb->obj;
4652         INIT_WORK(&work->work, intel_unpin_work_fn);
4653
4654         /* We borrow the event spin lock for protecting unpin_work */
4655         spin_lock_irqsave(&dev->event_lock, flags);
4656         if (intel_crtc->unpin_work) {
4657                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
4658                 spin_unlock_irqrestore(&dev->event_lock, flags);
4659                 kfree(work);
4660                 mutex_unlock(&dev->struct_mutex);
4661                 return -EBUSY;
4662         }
4663         intel_crtc->unpin_work = work;
4664         spin_unlock_irqrestore(&dev->event_lock, flags);
4665
4666         intel_fb = to_intel_framebuffer(fb);
4667         obj = intel_fb->obj;
4668
4669         ret = intel_pin_and_fence_fb_obj(dev, obj);
4670         if (ret != 0) {
4671                 DRM_DEBUG_DRIVER("flip queue: %p pin & fence failed\n",
4672                           to_intel_bo(obj));
4673                 kfree(work);
4674                 intel_crtc->unpin_work = NULL;
4675                 mutex_unlock(&dev->struct_mutex);
4676                 return ret;
4677         }
4678
4679         /* Reference the objects for the scheduled work. */
4680         drm_gem_object_reference(work->old_fb_obj);
4681         drm_gem_object_reference(obj);
4682
4683         crtc->fb = fb;
4684         i915_gem_object_flush_write_domain(obj);
4685         drm_vblank_get(dev, intel_crtc->pipe);
4686         obj_priv = to_intel_bo(obj);
4687         atomic_inc(&obj_priv->pending_flip);
4688         work->pending_flip_obj = obj;
4689
4690         BEGIN_LP_RING(4);
4691         OUT_RING(MI_DISPLAY_FLIP |
4692                  MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4693         OUT_RING(fb->pitch);
4694         if (IS_I965G(dev)) {
4695                 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4696                 pipesrc = I915_READ(pipesrc_reg); 
4697                 OUT_RING(pipesrc & 0x0fff0fff);
4698         } else {
4699                 OUT_RING(obj_priv->gtt_offset);
4700                 OUT_RING(MI_NOOP);
4701         }
4702         ADVANCE_LP_RING();
4703
4704         mutex_unlock(&dev->struct_mutex);
4705
4706         return 0;
4707 }
4708
4709 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4710         .dpms = intel_crtc_dpms,
4711         .mode_fixup = intel_crtc_mode_fixup,
4712         .mode_set = intel_crtc_mode_set,
4713         .mode_set_base = intel_pipe_set_base,
4714         .prepare = intel_crtc_prepare,
4715         .commit = intel_crtc_commit,
4716         .load_lut = intel_crtc_load_lut,
4717 };
4718
4719 static const struct drm_crtc_funcs intel_crtc_funcs = {
4720         .cursor_set = intel_crtc_cursor_set,
4721         .cursor_move = intel_crtc_cursor_move,
4722         .gamma_set = intel_crtc_gamma_set,
4723         .set_config = drm_crtc_helper_set_config,
4724         .destroy = intel_crtc_destroy,
4725         .page_flip = intel_crtc_page_flip,
4726 };
4727
4728
4729 static void intel_crtc_init(struct drm_device *dev, int pipe)
4730 {
4731         drm_i915_private_t *dev_priv = dev->dev_private;
4732         struct intel_crtc *intel_crtc;
4733         int i;
4734
4735         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4736         if (intel_crtc == NULL)
4737                 return;
4738
4739         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4740
4741         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4742         intel_crtc->pipe = pipe;
4743         intel_crtc->plane = pipe;
4744         for (i = 0; i < 256; i++) {
4745                 intel_crtc->lut_r[i] = i;
4746                 intel_crtc->lut_g[i] = i;
4747                 intel_crtc->lut_b[i] = i;
4748         }
4749
4750         /* Swap pipes & planes for FBC on pre-965 */
4751         intel_crtc->pipe = pipe;
4752         intel_crtc->plane = pipe;
4753         if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4754                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4755                 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4756         }
4757
4758         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
4759                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
4760         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
4761         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
4762
4763         intel_crtc->cursor_addr = 0;
4764         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4765         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4766
4767         intel_crtc->busy = false;
4768
4769         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4770                     (unsigned long)intel_crtc);
4771 }
4772
4773 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4774                                 struct drm_file *file_priv)
4775 {
4776         drm_i915_private_t *dev_priv = dev->dev_private;
4777         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4778         struct drm_mode_object *drmmode_obj;
4779         struct intel_crtc *crtc;
4780
4781         if (!dev_priv) {
4782                 DRM_ERROR("called with no initialization\n");
4783                 return -EINVAL;
4784         }
4785
4786         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4787                         DRM_MODE_OBJECT_CRTC);
4788
4789         if (!drmmode_obj) {
4790                 DRM_ERROR("no such CRTC id\n");
4791                 return -EINVAL;
4792         }
4793
4794         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4795         pipe_from_crtc_id->pipe = crtc->pipe;
4796
4797         return 0;
4798 }
4799
4800 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4801 {
4802         struct drm_crtc *crtc = NULL;
4803
4804         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4805                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4806                 if (intel_crtc->pipe == pipe)
4807                         break;
4808         }
4809         return crtc;
4810 }
4811
4812 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
4813 {
4814         int index_mask = 0;
4815         struct drm_encoder *encoder;
4816         int entry = 0;
4817
4818         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4819                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4820                 if (type_mask & intel_encoder->clone_mask)
4821                         index_mask |= (1 << entry);
4822                 entry++;
4823         }
4824         return index_mask;
4825 }
4826
4827
4828 static void intel_setup_outputs(struct drm_device *dev)
4829 {
4830         struct drm_i915_private *dev_priv = dev->dev_private;
4831         struct drm_encoder *encoder;
4832
4833         intel_crt_init(dev);
4834
4835         /* Set up integrated LVDS */
4836         if (IS_MOBILE(dev) && !IS_I830(dev))
4837                 intel_lvds_init(dev);
4838
4839         if (HAS_PCH_SPLIT(dev)) {
4840                 int found;
4841
4842                 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4843                         intel_dp_init(dev, DP_A);
4844
4845                 if (I915_READ(HDMIB) & PORT_DETECTED) {
4846                         /* PCH SDVOB multiplex with HDMIB */
4847                         found = intel_sdvo_init(dev, PCH_SDVOB);
4848                         if (!found)
4849                                 intel_hdmi_init(dev, HDMIB);
4850                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4851                                 intel_dp_init(dev, PCH_DP_B);
4852                 }
4853
4854                 if (I915_READ(HDMIC) & PORT_DETECTED)
4855                         intel_hdmi_init(dev, HDMIC);
4856
4857                 if (I915_READ(HDMID) & PORT_DETECTED)
4858                         intel_hdmi_init(dev, HDMID);
4859
4860                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4861                         intel_dp_init(dev, PCH_DP_C);
4862
4863                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4864                         intel_dp_init(dev, PCH_DP_D);
4865
4866         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4867                 bool found = false;
4868
4869                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4870                         DRM_DEBUG_KMS("probing SDVOB\n");
4871                         found = intel_sdvo_init(dev, SDVOB);
4872                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
4873                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
4874                                 intel_hdmi_init(dev, SDVOB);
4875                         }
4876
4877                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
4878                                 DRM_DEBUG_KMS("probing DP_B\n");
4879                                 intel_dp_init(dev, DP_B);
4880                         }
4881                 }
4882
4883                 /* Before G4X SDVOC doesn't have its own detect register */
4884
4885                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4886                         DRM_DEBUG_KMS("probing SDVOC\n");
4887                         found = intel_sdvo_init(dev, SDVOC);
4888                 }
4889
4890                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4891
4892                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
4893                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
4894                                 intel_hdmi_init(dev, SDVOC);
4895                         }
4896                         if (SUPPORTS_INTEGRATED_DP(dev)) {
4897                                 DRM_DEBUG_KMS("probing DP_C\n");
4898                                 intel_dp_init(dev, DP_C);
4899                         }
4900                 }
4901
4902                 if (SUPPORTS_INTEGRATED_DP(dev) &&
4903                     (I915_READ(DP_D) & DP_DETECTED)) {
4904                         DRM_DEBUG_KMS("probing DP_D\n");
4905                         intel_dp_init(dev, DP_D);
4906                 }
4907         } else if (IS_GEN2(dev))
4908                 intel_dvo_init(dev);
4909
4910         if (SUPPORTS_TV(dev))
4911                 intel_tv_init(dev);
4912
4913         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
4914                 struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
4915
4916                 encoder->possible_crtcs = intel_encoder->crtc_mask;
4917                 encoder->possible_clones = intel_encoder_clones(dev,
4918                                                 intel_encoder->clone_mask);
4919         }
4920 }
4921
4922 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4923 {
4924         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4925
4926         drm_framebuffer_cleanup(fb);
4927         drm_gem_object_unreference_unlocked(intel_fb->obj);
4928
4929         kfree(intel_fb);
4930 }
4931
4932 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4933                                                 struct drm_file *file_priv,
4934                                                 unsigned int *handle)
4935 {
4936         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4937         struct drm_gem_object *object = intel_fb->obj;
4938
4939         return drm_gem_handle_create(file_priv, object, handle);
4940 }
4941
4942 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4943         .destroy = intel_user_framebuffer_destroy,
4944         .create_handle = intel_user_framebuffer_create_handle,
4945 };
4946
4947 int intel_framebuffer_init(struct drm_device *dev,
4948                            struct intel_framebuffer *intel_fb,
4949                            struct drm_mode_fb_cmd *mode_cmd,
4950                            struct drm_gem_object *obj)
4951 {
4952         int ret;
4953
4954         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4955         if (ret) {
4956                 DRM_ERROR("framebuffer init failed %d\n", ret);
4957                 return ret;
4958         }
4959
4960         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4961         intel_fb->obj = obj;
4962         return 0;
4963 }
4964
4965 static struct drm_framebuffer *
4966 intel_user_framebuffer_create(struct drm_device *dev,
4967                               struct drm_file *filp,
4968                               struct drm_mode_fb_cmd *mode_cmd)
4969 {
4970         struct drm_gem_object *obj;
4971         struct intel_framebuffer *intel_fb;
4972         int ret;
4973
4974         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4975         if (!obj)
4976                 return NULL;
4977
4978         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4979         if (!intel_fb)
4980                 return NULL;
4981
4982         ret = intel_framebuffer_init(dev, intel_fb,
4983                                      mode_cmd, obj);
4984         if (ret) {
4985                 drm_gem_object_unreference_unlocked(obj);
4986                 kfree(intel_fb);
4987                 return NULL;
4988         }
4989
4990         return &intel_fb->base;
4991 }
4992
4993 static const struct drm_mode_config_funcs intel_mode_funcs = {
4994         .fb_create = intel_user_framebuffer_create,
4995         .output_poll_changed = intel_fb_output_poll_changed,
4996 };
4997
4998 static struct drm_gem_object *
4999 intel_alloc_power_context(struct drm_device *dev)
5000 {
5001         struct drm_gem_object *pwrctx;
5002         int ret;
5003
5004         pwrctx = i915_gem_alloc_object(dev, 4096);
5005         if (!pwrctx) {
5006                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5007                 return NULL;
5008         }
5009
5010         mutex_lock(&dev->struct_mutex);
5011         ret = i915_gem_object_pin(pwrctx, 4096);
5012         if (ret) {
5013                 DRM_ERROR("failed to pin power context: %d\n", ret);
5014                 goto err_unref;
5015         }
5016
5017         ret = i915_gem_object_set_to_gtt_domain(pwrctx, 1);
5018         if (ret) {
5019                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5020                 goto err_unpin;
5021         }
5022         mutex_unlock(&dev->struct_mutex);
5023
5024         return pwrctx;
5025
5026 err_unpin:
5027         i915_gem_object_unpin(pwrctx);
5028 err_unref:
5029         drm_gem_object_unreference(pwrctx);
5030         mutex_unlock(&dev->struct_mutex);
5031         return NULL;
5032 }
5033
5034 void ironlake_enable_drps(struct drm_device *dev)
5035 {
5036         struct drm_i915_private *dev_priv = dev->dev_private;
5037         u32 rgvmodectl = I915_READ(MEMMODECTL), rgvswctl;
5038         u8 fmax, fmin, fstart, vstart;
5039         int i = 0;
5040
5041         /* 100ms RC evaluation intervals */
5042         I915_WRITE(RCUPEI, 100000);
5043         I915_WRITE(RCDNEI, 100000);
5044
5045         /* Set max/min thresholds to 90ms and 80ms respectively */
5046         I915_WRITE(RCBMAXAVG, 90000);
5047         I915_WRITE(RCBMINAVG, 80000);
5048
5049         I915_WRITE(MEMIHYST, 1);
5050
5051         /* Set up min, max, and cur for interrupt handling */
5052         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5053         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5054         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5055                 MEMMODE_FSTART_SHIFT;
5056         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5057                 PXVFREQ_PX_SHIFT;
5058
5059         dev_priv->max_delay = fstart; /* can't go to fmax w/o IPS */
5060         dev_priv->min_delay = fmin;
5061         dev_priv->cur_delay = fstart;
5062
5063         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5064
5065         /*
5066          * Interrupts will be enabled in ironlake_irq_postinstall
5067          */
5068
5069         I915_WRITE(VIDSTART, vstart);
5070         POSTING_READ(VIDSTART);
5071
5072         rgvmodectl |= MEMMODE_SWMODE_EN;
5073         I915_WRITE(MEMMODECTL, rgvmodectl);
5074
5075         while (I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) {
5076                 if (i++ > 100) {
5077                         DRM_ERROR("stuck trying to change perf mode\n");
5078                         break;
5079                 }
5080                 msleep(1);
5081         }
5082         msleep(1);
5083
5084         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5085                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5086         I915_WRITE(MEMSWCTL, rgvswctl);
5087         POSTING_READ(MEMSWCTL);
5088
5089         rgvswctl |= MEMCTL_CMD_STS;
5090         I915_WRITE(MEMSWCTL, rgvswctl);
5091 }
5092
5093 void ironlake_disable_drps(struct drm_device *dev)
5094 {
5095         struct drm_i915_private *dev_priv = dev->dev_private;
5096         u32 rgvswctl;
5097         u8 fstart;
5098
5099         /* Ack interrupts, disable EFC interrupt */
5100         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5101         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5102         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5103         I915_WRITE(DEIIR, DE_PCU_EVENT);
5104         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5105
5106         /* Go back to the starting frequency */
5107         fstart = (I915_READ(MEMMODECTL) & MEMMODE_FSTART_MASK) >>
5108                 MEMMODE_FSTART_SHIFT;
5109         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5110                 (fstart << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5111         I915_WRITE(MEMSWCTL, rgvswctl);
5112         msleep(1);
5113         rgvswctl |= MEMCTL_CMD_STS;
5114         I915_WRITE(MEMSWCTL, rgvswctl);
5115         msleep(1);
5116
5117 }
5118
5119 void intel_init_clock_gating(struct drm_device *dev)
5120 {
5121         struct drm_i915_private *dev_priv = dev->dev_private;
5122
5123         /*
5124          * Disable clock gating reported to work incorrectly according to the
5125          * specs, but enable as much else as we can.
5126          */
5127         if (HAS_PCH_SPLIT(dev)) {
5128                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5129
5130                 if (IS_IRONLAKE(dev)) {
5131                         /* Required for FBC */
5132                         dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5133                         /* Required for CxSR */
5134                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5135
5136                         I915_WRITE(PCH_3DCGDIS0,
5137                                    MARIUNIT_CLOCK_GATE_DISABLE |
5138                                    SVSMUNIT_CLOCK_GATE_DISABLE);
5139                 }
5140
5141                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5142
5143                 /*
5144                  * According to the spec the following bits should be set in
5145                  * order to enable memory self-refresh
5146                  * The bit 22/21 of 0x42004
5147                  * The bit 5 of 0x42020
5148                  * The bit 15 of 0x45000
5149                  */
5150                 if (IS_IRONLAKE(dev)) {
5151                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
5152                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
5153                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5154                         I915_WRITE(ILK_DSPCLK_GATE,
5155                                         (I915_READ(ILK_DSPCLK_GATE) |
5156                                                 ILK_DPARB_CLK_GATE));
5157                         I915_WRITE(DISP_ARB_CTL,
5158                                         (I915_READ(DISP_ARB_CTL) |
5159                                                 DISP_FBC_WM_DIS));
5160                 }
5161                 return;
5162         } else if (IS_G4X(dev)) {
5163                 uint32_t dspclk_gate;
5164                 I915_WRITE(RENCLK_GATE_D1, 0);
5165                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5166                        GS_UNIT_CLOCK_GATE_DISABLE |
5167                        CL_UNIT_CLOCK_GATE_DISABLE);
5168                 I915_WRITE(RAMCLK_GATE_D, 0);
5169                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5170                         OVRUNIT_CLOCK_GATE_DISABLE |
5171                         OVCUNIT_CLOCK_GATE_DISABLE;
5172                 if (IS_GM45(dev))
5173                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5174                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5175         } else if (IS_I965GM(dev)) {
5176                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5177                 I915_WRITE(RENCLK_GATE_D2, 0);
5178                 I915_WRITE(DSPCLK_GATE_D, 0);
5179                 I915_WRITE(RAMCLK_GATE_D, 0);
5180                 I915_WRITE16(DEUC, 0);
5181         } else if (IS_I965G(dev)) {
5182                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5183                        I965_RCC_CLOCK_GATE_DISABLE |
5184                        I965_RCPB_CLOCK_GATE_DISABLE |
5185                        I965_ISC_CLOCK_GATE_DISABLE |
5186                        I965_FBC_CLOCK_GATE_DISABLE);
5187                 I915_WRITE(RENCLK_GATE_D2, 0);
5188         } else if (IS_I9XX(dev)) {
5189                 u32 dstate = I915_READ(D_STATE);
5190
5191                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5192                         DSTATE_DOT_CLOCK_GATING;
5193                 I915_WRITE(D_STATE, dstate);
5194         } else if (IS_I85X(dev) || IS_I865G(dev)) {
5195                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5196         } else if (IS_I830(dev)) {
5197                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5198         }
5199
5200         /*
5201          * GPU can automatically power down the render unit if given a page
5202          * to save state.
5203          */
5204         if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5205                 struct drm_i915_gem_object *obj_priv = NULL;
5206
5207                 if (dev_priv->pwrctx) {
5208                         obj_priv = to_intel_bo(dev_priv->pwrctx);
5209                 } else {
5210                         struct drm_gem_object *pwrctx;
5211
5212                         pwrctx = intel_alloc_power_context(dev);
5213                         if (pwrctx) {
5214                                 dev_priv->pwrctx = pwrctx;
5215                                 obj_priv = to_intel_bo(pwrctx);
5216                         }
5217                 }
5218
5219                 if (obj_priv) {
5220                         I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5221                         I915_WRITE(MCHBAR_RENDER_STANDBY,
5222                                    I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5223                 }
5224         }
5225 }
5226
5227 /* Set up chip specific display functions */
5228 static void intel_init_display(struct drm_device *dev)
5229 {
5230         struct drm_i915_private *dev_priv = dev->dev_private;
5231
5232         /* We always want a DPMS function */
5233         if (HAS_PCH_SPLIT(dev))
5234                 dev_priv->display.dpms = ironlake_crtc_dpms;
5235         else
5236                 dev_priv->display.dpms = i9xx_crtc_dpms;
5237
5238         if (I915_HAS_FBC(dev)) {
5239                 if (IS_GM45(dev)) {
5240                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5241                         dev_priv->display.enable_fbc = g4x_enable_fbc;
5242                         dev_priv->display.disable_fbc = g4x_disable_fbc;
5243                 } else if (IS_I965GM(dev)) {
5244                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5245                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
5246                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
5247                 }
5248                 /* 855GM needs testing */
5249         }
5250
5251         /* Returns the core display clock speed */
5252         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5253                 dev_priv->display.get_display_clock_speed =
5254                         i945_get_display_clock_speed;
5255         else if (IS_I915G(dev))
5256                 dev_priv->display.get_display_clock_speed =
5257                         i915_get_display_clock_speed;
5258         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5259                 dev_priv->display.get_display_clock_speed =
5260                         i9xx_misc_get_display_clock_speed;
5261         else if (IS_I915GM(dev))
5262                 dev_priv->display.get_display_clock_speed =
5263                         i915gm_get_display_clock_speed;
5264         else if (IS_I865G(dev))
5265                 dev_priv->display.get_display_clock_speed =
5266                         i865_get_display_clock_speed;
5267         else if (IS_I85X(dev))
5268                 dev_priv->display.get_display_clock_speed =
5269                         i855_get_display_clock_speed;
5270         else /* 852, 830 */
5271                 dev_priv->display.get_display_clock_speed =
5272                         i830_get_display_clock_speed;
5273
5274         /* For FIFO watermark updates */
5275         if (HAS_PCH_SPLIT(dev)) {
5276                 if (IS_IRONLAKE(dev)) {
5277                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5278                                 dev_priv->display.update_wm = ironlake_update_wm;
5279                         else {
5280                                 DRM_DEBUG_KMS("Failed to get proper latency. "
5281                                               "Disable CxSR\n");
5282                                 dev_priv->display.update_wm = NULL;
5283                         }
5284                 } else
5285                         dev_priv->display.update_wm = NULL;
5286         } else if (IS_PINEVIEW(dev)) {
5287                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5288                                             dev_priv->fsb_freq,
5289                                             dev_priv->mem_freq)) {
5290                         DRM_INFO("failed to find known CxSR latency "
5291                                  "(found fsb freq %d, mem freq %d), "
5292                                  "disabling CxSR\n",
5293                                  dev_priv->fsb_freq, dev_priv->mem_freq);
5294                         /* Disable CxSR and never update its watermark again */
5295                         pineview_disable_cxsr(dev);
5296                         dev_priv->display.update_wm = NULL;
5297                 } else
5298                         dev_priv->display.update_wm = pineview_update_wm;
5299         } else if (IS_G4X(dev))
5300                 dev_priv->display.update_wm = g4x_update_wm;
5301         else if (IS_I965G(dev))
5302                 dev_priv->display.update_wm = i965_update_wm;
5303         else if (IS_I9XX(dev)) {
5304                 dev_priv->display.update_wm = i9xx_update_wm;
5305                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5306         } else if (IS_I85X(dev)) {
5307                 dev_priv->display.update_wm = i9xx_update_wm;
5308                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5309         } else {
5310                 dev_priv->display.update_wm = i830_update_wm;
5311                 if (IS_845G(dev))
5312                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
5313                 else
5314                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
5315         }
5316 }
5317
5318 void intel_modeset_init(struct drm_device *dev)
5319 {
5320         struct drm_i915_private *dev_priv = dev->dev_private;
5321         int num_pipe;
5322         int i;
5323
5324         drm_mode_config_init(dev);
5325
5326         dev->mode_config.min_width = 0;
5327         dev->mode_config.min_height = 0;
5328
5329         dev->mode_config.funcs = (void *)&intel_mode_funcs;
5330
5331         intel_init_display(dev);
5332
5333         if (IS_I965G(dev)) {
5334                 dev->mode_config.max_width = 8192;
5335                 dev->mode_config.max_height = 8192;
5336         } else if (IS_I9XX(dev)) {
5337                 dev->mode_config.max_width = 4096;
5338                 dev->mode_config.max_height = 4096;
5339         } else {
5340                 dev->mode_config.max_width = 2048;
5341                 dev->mode_config.max_height = 2048;
5342         }
5343
5344         /* set memory base */
5345         if (IS_I9XX(dev))
5346                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
5347         else
5348                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
5349
5350         if (IS_MOBILE(dev) || IS_I9XX(dev))
5351                 num_pipe = 2;
5352         else
5353                 num_pipe = 1;
5354         DRM_DEBUG_KMS("%d display pipe%s available.\n",
5355                   num_pipe, num_pipe > 1 ? "s" : "");
5356
5357         for (i = 0; i < num_pipe; i++) {
5358                 intel_crtc_init(dev, i);
5359         }
5360
5361         intel_setup_outputs(dev);
5362
5363         intel_init_clock_gating(dev);
5364
5365         if (IS_IRONLAKE_M(dev))
5366                 ironlake_enable_drps(dev);
5367
5368         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
5369         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
5370                     (unsigned long)dev);
5371
5372         intel_setup_overlay(dev);
5373 }
5374
5375 void intel_modeset_cleanup(struct drm_device *dev)
5376 {
5377         struct drm_i915_private *dev_priv = dev->dev_private;
5378         struct drm_crtc *crtc;
5379         struct intel_crtc *intel_crtc;
5380
5381         mutex_lock(&dev->struct_mutex);
5382
5383         drm_kms_helper_poll_fini(dev);
5384         intel_fbdev_fini(dev);
5385
5386         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5387                 /* Skip inactive CRTCs */
5388                 if (!crtc->fb)
5389                         continue;
5390
5391                 intel_crtc = to_intel_crtc(crtc);
5392                 intel_increase_pllclock(crtc, false);
5393                 del_timer_sync(&intel_crtc->idle_timer);
5394         }
5395
5396         del_timer_sync(&dev_priv->idle_timer);
5397
5398         if (dev_priv->display.disable_fbc)
5399                 dev_priv->display.disable_fbc(dev);
5400
5401         if (dev_priv->pwrctx) {
5402                 struct drm_i915_gem_object *obj_priv;
5403
5404                 obj_priv = to_intel_bo(dev_priv->pwrctx);
5405                 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
5406                 I915_READ(PWRCTXA);
5407                 i915_gem_object_unpin(dev_priv->pwrctx);
5408                 drm_gem_object_unreference(dev_priv->pwrctx);
5409         }
5410
5411         if (IS_IRONLAKE_M(dev))
5412                 ironlake_disable_drps(dev);
5413
5414         mutex_unlock(&dev->struct_mutex);
5415
5416         drm_mode_config_cleanup(dev);
5417 }
5418
5419
5420 /*
5421  * Return which encoder is currently attached for connector.
5422  */
5423 struct drm_encoder *intel_attached_encoder (struct drm_connector *connector)
5424 {
5425         struct drm_mode_object *obj;
5426         struct drm_encoder *encoder;
5427         int i;
5428
5429         for (i = 0; i < DRM_CONNECTOR_MAX_ENCODER; i++) {
5430                 if (connector->encoder_ids[i] == 0)
5431                         break;
5432
5433                 obj = drm_mode_object_find(connector->dev,
5434                                            connector->encoder_ids[i],
5435                                            DRM_MODE_OBJECT_ENCODER);
5436                 if (!obj)
5437                         continue;
5438
5439                 encoder = obj_to_encoder(obj);
5440                 return encoder;
5441         }
5442         return NULL;
5443 }
5444
5445 /*
5446  * set vga decode state - true == enable VGA decode
5447  */
5448 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
5449 {
5450         struct drm_i915_private *dev_priv = dev->dev_private;
5451         u16 gmch_ctrl;
5452
5453         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
5454         if (state)
5455                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
5456         else
5457                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
5458         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
5459         return 0;
5460 }