drm/i915: duplicate desired mode for use by fbcon.
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/i2c.h>
28 #include "drmP.h"
29 #include "intel_drv.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32
33 #include "drm_crtc_helper.h"
34
35 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
36
37 typedef struct {
38     /* given values */
39     int n;
40     int m1, m2;
41     int p1, p2;
42     /* derived values */
43     int dot;
44     int vco;
45     int m;
46     int p;
47 } intel_clock_t;
48
49 typedef struct {
50     int min, max;
51 } intel_range_t;
52
53 typedef struct {
54     int dot_limit;
55     int p2_slow, p2_fast;
56 } intel_p2_t;
57
58 #define INTEL_P2_NUM                  2
59 typedef struct intel_limit intel_limit_t;
60 struct intel_limit {
61     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
62     intel_p2_t      p2;
63     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
64                       int, int, intel_clock_t *);
65 };
66
67 #define I8XX_DOT_MIN              25000
68 #define I8XX_DOT_MAX             350000
69 #define I8XX_VCO_MIN             930000
70 #define I8XX_VCO_MAX            1400000
71 #define I8XX_N_MIN                    3
72 #define I8XX_N_MAX                   16
73 #define I8XX_M_MIN                   96
74 #define I8XX_M_MAX                  140
75 #define I8XX_M1_MIN                  18
76 #define I8XX_M1_MAX                  26
77 #define I8XX_M2_MIN                   6
78 #define I8XX_M2_MAX                  16
79 #define I8XX_P_MIN                    4
80 #define I8XX_P_MAX                  128
81 #define I8XX_P1_MIN                   2
82 #define I8XX_P1_MAX                  33
83 #define I8XX_P1_LVDS_MIN              1
84 #define I8XX_P1_LVDS_MAX              6
85 #define I8XX_P2_SLOW                  4
86 #define I8XX_P2_FAST                  2
87 #define I8XX_P2_LVDS_SLOW             14
88 #define I8XX_P2_LVDS_FAST             14 /* No fast option */
89 #define I8XX_P2_SLOW_LIMIT       165000
90
91 #define I9XX_DOT_MIN              20000
92 #define I9XX_DOT_MAX             400000
93 #define I9XX_VCO_MIN            1400000
94 #define I9XX_VCO_MAX            2800000
95 #define IGD_VCO_MIN             1700000
96 #define IGD_VCO_MAX             3500000
97 #define I9XX_N_MIN                    1
98 #define I9XX_N_MAX                    6
99 /* IGD's Ncounter is a ring counter */
100 #define IGD_N_MIN                     3
101 #define IGD_N_MAX                     6
102 #define I9XX_M_MIN                   70
103 #define I9XX_M_MAX                  120
104 #define IGD_M_MIN                     2
105 #define IGD_M_MAX                   256
106 #define I9XX_M1_MIN                  10
107 #define I9XX_M1_MAX                  22
108 #define I9XX_M2_MIN                   5
109 #define I9XX_M2_MAX                   9
110 /* IGD M1 is reserved, and must be 0 */
111 #define IGD_M1_MIN                    0
112 #define IGD_M1_MAX                    0
113 #define IGD_M2_MIN                    0
114 #define IGD_M2_MAX                    254
115 #define I9XX_P_SDVO_DAC_MIN           5
116 #define I9XX_P_SDVO_DAC_MAX          80
117 #define I9XX_P_LVDS_MIN               7
118 #define I9XX_P_LVDS_MAX              98
119 #define IGD_P_LVDS_MIN                7
120 #define IGD_P_LVDS_MAX               112
121 #define I9XX_P1_MIN                   1
122 #define I9XX_P1_MAX                   8
123 #define I9XX_P2_SDVO_DAC_SLOW                10
124 #define I9XX_P2_SDVO_DAC_FAST                 5
125 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT      200000
126 #define I9XX_P2_LVDS_SLOW                    14
127 #define I9XX_P2_LVDS_FAST                     7
128 #define I9XX_P2_LVDS_SLOW_LIMIT          112000
129
130 #define INTEL_LIMIT_I8XX_DVO_DAC    0
131 #define INTEL_LIMIT_I8XX_LVDS       1
132 #define INTEL_LIMIT_I9XX_SDVO_DAC   2
133 #define INTEL_LIMIT_I9XX_LVDS       3
134 #define INTEL_LIMIT_G4X_SDVO        4
135 #define INTEL_LIMIT_G4X_HDMI_DAC   5
136 #define INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS   6
137 #define INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS   7
138 #define INTEL_LIMIT_IGD_SDVO_DAC    8
139 #define INTEL_LIMIT_IGD_LVDS        9
140 #define INTEL_LIMIT_IGDNG_SDVO_DAC  10
141 #define INTEL_LIMIT_IGDNG_LVDS      11
142
143 /*The parameter is for SDVO on G4x platform*/
144 #define G4X_DOT_SDVO_MIN           25000
145 #define G4X_DOT_SDVO_MAX           270000
146 #define G4X_VCO_MIN                1750000
147 #define G4X_VCO_MAX                3500000
148 #define G4X_N_SDVO_MIN             1
149 #define G4X_N_SDVO_MAX             4
150 #define G4X_M_SDVO_MIN             104
151 #define G4X_M_SDVO_MAX             138
152 #define G4X_M1_SDVO_MIN            17
153 #define G4X_M1_SDVO_MAX            23
154 #define G4X_M2_SDVO_MIN            5
155 #define G4X_M2_SDVO_MAX            11
156 #define G4X_P_SDVO_MIN             10
157 #define G4X_P_SDVO_MAX             30
158 #define G4X_P1_SDVO_MIN            1
159 #define G4X_P1_SDVO_MAX            3
160 #define G4X_P2_SDVO_SLOW           10
161 #define G4X_P2_SDVO_FAST           10
162 #define G4X_P2_SDVO_LIMIT          270000
163
164 /*The parameter is for HDMI_DAC on G4x platform*/
165 #define G4X_DOT_HDMI_DAC_MIN           22000
166 #define G4X_DOT_HDMI_DAC_MAX           400000
167 #define G4X_N_HDMI_DAC_MIN             1
168 #define G4X_N_HDMI_DAC_MAX             4
169 #define G4X_M_HDMI_DAC_MIN             104
170 #define G4X_M_HDMI_DAC_MAX             138
171 #define G4X_M1_HDMI_DAC_MIN            16
172 #define G4X_M1_HDMI_DAC_MAX            23
173 #define G4X_M2_HDMI_DAC_MIN            5
174 #define G4X_M2_HDMI_DAC_MAX            11
175 #define G4X_P_HDMI_DAC_MIN             5
176 #define G4X_P_HDMI_DAC_MAX             80
177 #define G4X_P1_HDMI_DAC_MIN            1
178 #define G4X_P1_HDMI_DAC_MAX            8
179 #define G4X_P2_HDMI_DAC_SLOW           10
180 #define G4X_P2_HDMI_DAC_FAST           5
181 #define G4X_P2_HDMI_DAC_LIMIT          165000
182
183 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
185 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
187 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
189 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
191 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
193 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
195 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
197 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
200 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0
201
202 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
204 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
205 #define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
206 #define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
207 #define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
208 #define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
210 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
212 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
213 #define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
214 #define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
216 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
217 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
219 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0
220
221 /* IGDNG */
222 /* as we calculate clock using (register_value + 2) for
223    N/M1/M2, so here the range value for them is (actual_value-2).
224  */
225 #define IGDNG_DOT_MIN         25000
226 #define IGDNG_DOT_MAX         350000
227 #define IGDNG_VCO_MIN         1760000
228 #define IGDNG_VCO_MAX         3510000
229 #define IGDNG_N_MIN           1
230 #define IGDNG_N_MAX           5
231 #define IGDNG_M_MIN           79
232 #define IGDNG_M_MAX           118
233 #define IGDNG_M1_MIN          12
234 #define IGDNG_M1_MAX          23
235 #define IGDNG_M2_MIN          5
236 #define IGDNG_M2_MAX          9
237 #define IGDNG_P_SDVO_DAC_MIN  5
238 #define IGDNG_P_SDVO_DAC_MAX  80
239 #define IGDNG_P_LVDS_MIN      28
240 #define IGDNG_P_LVDS_MAX      112
241 #define IGDNG_P1_MIN          1
242 #define IGDNG_P1_MAX          8
243 #define IGDNG_P2_SDVO_DAC_SLOW 10
244 #define IGDNG_P2_SDVO_DAC_FAST 5
245 #define IGDNG_P2_LVDS_SLOW    14 /* single channel */
246 #define IGDNG_P2_LVDS_FAST    7  /* double channel */
247 #define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */
248
249 static bool
250 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
251                     int target, int refclk, intel_clock_t *best_clock);
252 static bool
253 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
254                         int target, int refclk, intel_clock_t *best_clock);
255 static bool
256 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
257                         int target, int refclk, intel_clock_t *best_clock);
258
259 static const intel_limit_t intel_limits[] = {
260     { /* INTEL_LIMIT_I8XX_DVO_DAC */
261         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
262         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
263         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
264         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
265         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
266         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
267         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
268         .p1  = { .min = I8XX_P1_MIN,            .max = I8XX_P1_MAX },
269         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
270                  .p2_slow = I8XX_P2_SLOW,       .p2_fast = I8XX_P2_FAST },
271         .find_pll = intel_find_best_PLL,
272     },
273     { /* INTEL_LIMIT_I8XX_LVDS */
274         .dot = { .min = I8XX_DOT_MIN,           .max = I8XX_DOT_MAX },
275         .vco = { .min = I8XX_VCO_MIN,           .max = I8XX_VCO_MAX },
276         .n   = { .min = I8XX_N_MIN,             .max = I8XX_N_MAX },
277         .m   = { .min = I8XX_M_MIN,             .max = I8XX_M_MAX },
278         .m1  = { .min = I8XX_M1_MIN,            .max = I8XX_M1_MAX },
279         .m2  = { .min = I8XX_M2_MIN,            .max = I8XX_M2_MAX },
280         .p   = { .min = I8XX_P_MIN,             .max = I8XX_P_MAX },
281         .p1  = { .min = I8XX_P1_LVDS_MIN,       .max = I8XX_P1_LVDS_MAX },
282         .p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
283                  .p2_slow = I8XX_P2_LVDS_SLOW,  .p2_fast = I8XX_P2_LVDS_FAST },
284         .find_pll = intel_find_best_PLL,
285     },
286     { /* INTEL_LIMIT_I9XX_SDVO_DAC */
287         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
288         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
289         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
290         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
291         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
292         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
293         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
294         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
295         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
296                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
297         .find_pll = intel_find_best_PLL,
298     },
299     { /* INTEL_LIMIT_I9XX_LVDS */
300         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
301         .vco = { .min = I9XX_VCO_MIN,           .max = I9XX_VCO_MAX },
302         .n   = { .min = I9XX_N_MIN,             .max = I9XX_N_MAX },
303         .m   = { .min = I9XX_M_MIN,             .max = I9XX_M_MAX },
304         .m1  = { .min = I9XX_M1_MIN,            .max = I9XX_M1_MAX },
305         .m2  = { .min = I9XX_M2_MIN,            .max = I9XX_M2_MAX },
306         .p   = { .min = I9XX_P_LVDS_MIN,        .max = I9XX_P_LVDS_MAX },
307         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
308         /* The single-channel range is 25-112Mhz, and dual-channel
309          * is 80-224Mhz.  Prefer single channel as much as possible.
310          */
311         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
312                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_FAST },
313         .find_pll = intel_find_best_PLL,
314     },
315     /* below parameter and function is for G4X Chipset Family*/
316     { /* INTEL_LIMIT_G4X_SDVO */
317         .dot = { .min = G4X_DOT_SDVO_MIN,       .max = G4X_DOT_SDVO_MAX },
318         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
319         .n   = { .min = G4X_N_SDVO_MIN,         .max = G4X_N_SDVO_MAX },
320         .m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
321         .m1  = { .min = G4X_M1_SDVO_MIN,        .max = G4X_M1_SDVO_MAX },
322         .m2  = { .min = G4X_M2_SDVO_MIN,        .max = G4X_M2_SDVO_MAX },
323         .p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
324         .p1  = { .min = G4X_P1_SDVO_MIN,        .max = G4X_P1_SDVO_MAX},
325         .p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
326                  .p2_slow = G4X_P2_SDVO_SLOW,
327                  .p2_fast = G4X_P2_SDVO_FAST
328         },
329         .find_pll = intel_g4x_find_best_PLL,
330     },
331     { /* INTEL_LIMIT_G4X_HDMI_DAC */
332         .dot = { .min = G4X_DOT_HDMI_DAC_MIN,   .max = G4X_DOT_HDMI_DAC_MAX },
333         .vco = { .min = G4X_VCO_MIN,            .max = G4X_VCO_MAX},
334         .n   = { .min = G4X_N_HDMI_DAC_MIN,     .max = G4X_N_HDMI_DAC_MAX },
335         .m   = { .min = G4X_M_HDMI_DAC_MIN,     .max = G4X_M_HDMI_DAC_MAX },
336         .m1  = { .min = G4X_M1_HDMI_DAC_MIN,    .max = G4X_M1_HDMI_DAC_MAX },
337         .m2  = { .min = G4X_M2_HDMI_DAC_MIN,    .max = G4X_M2_HDMI_DAC_MAX },
338         .p   = { .min = G4X_P_HDMI_DAC_MIN,     .max = G4X_P_HDMI_DAC_MAX },
339         .p1  = { .min = G4X_P1_HDMI_DAC_MIN,    .max = G4X_P1_HDMI_DAC_MAX},
340         .p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
341                  .p2_slow = G4X_P2_HDMI_DAC_SLOW,
342                  .p2_fast = G4X_P2_HDMI_DAC_FAST
343         },
344         .find_pll = intel_g4x_find_best_PLL,
345     },
346     { /* INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS */
347         .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
348                  .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
349         .vco = { .min = G4X_VCO_MIN,
350                  .max = G4X_VCO_MAX },
351         .n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
352                  .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
353         .m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
354                  .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
355         .m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
356                  .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
357         .m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
358                  .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
359         .p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
360                  .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
361         .p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
362                  .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
363         .p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
364                  .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
365                  .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
366         },
367         .find_pll = intel_g4x_find_best_PLL,
368     },
369     { /* INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS */
370         .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
371                  .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
372         .vco = { .min = G4X_VCO_MIN,
373                  .max = G4X_VCO_MAX },
374         .n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
375                  .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
376         .m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
377                  .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
378         .m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
379                  .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
380         .m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
381                  .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
382         .p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
383                  .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
384         .p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
385                  .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
386         .p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
387                  .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
388                  .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
389         },
390         .find_pll = intel_g4x_find_best_PLL,
391     },
392     { /* INTEL_LIMIT_IGD_SDVO */
393         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX},
394         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
395         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
396         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
397         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
398         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
399         .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
400         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
401         .p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
402                  .p2_slow = I9XX_P2_SDVO_DAC_SLOW,      .p2_fast = I9XX_P2_SDVO_DAC_FAST },
403         .find_pll = intel_find_best_PLL,
404     },
405     { /* INTEL_LIMIT_IGD_LVDS */
406         .dot = { .min = I9XX_DOT_MIN,           .max = I9XX_DOT_MAX },
407         .vco = { .min = IGD_VCO_MIN,            .max = IGD_VCO_MAX },
408         .n   = { .min = IGD_N_MIN,              .max = IGD_N_MAX },
409         .m   = { .min = IGD_M_MIN,              .max = IGD_M_MAX },
410         .m1  = { .min = IGD_M1_MIN,             .max = IGD_M1_MAX },
411         .m2  = { .min = IGD_M2_MIN,             .max = IGD_M2_MAX },
412         .p   = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
413         .p1  = { .min = I9XX_P1_MIN,            .max = I9XX_P1_MAX },
414         /* IGD only supports single-channel mode. */
415         .p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
416                  .p2_slow = I9XX_P2_LVDS_SLOW,  .p2_fast = I9XX_P2_LVDS_SLOW },
417         .find_pll = intel_find_best_PLL,
418     },
419     { /* INTEL_LIMIT_IGDNG_SDVO_DAC */
420         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
421         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
422         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
423         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
424         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
425         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
426         .p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
427         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
428         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
429                  .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
430                  .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
431         .find_pll = intel_igdng_find_best_PLL,
432     },
433     { /* INTEL_LIMIT_IGDNG_LVDS */
434         .dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
435         .vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
436         .n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
437         .m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
438         .m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
439         .m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
440         .p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
441         .p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
442         .p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
443                  .p2_slow = IGDNG_P2_LVDS_SLOW,
444                  .p2_fast = IGDNG_P2_LVDS_FAST },
445         .find_pll = intel_igdng_find_best_PLL,
446     },
447 };
448
449 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
450 {
451         const intel_limit_t *limit;
452         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
453                 limit = &intel_limits[INTEL_LIMIT_IGDNG_LVDS];
454         else
455                 limit = &intel_limits[INTEL_LIMIT_IGDNG_SDVO_DAC];
456
457         return limit;
458 }
459
460 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
461 {
462         struct drm_device *dev = crtc->dev;
463         struct drm_i915_private *dev_priv = dev->dev_private;
464         const intel_limit_t *limit;
465
466         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
467                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
468                     LVDS_CLKB_POWER_UP)
469                         /* LVDS with dual channel */
470                         limit = &intel_limits
471                                         [INTEL_LIMIT_G4X_DUAL_CHANNEL_LVDS];
472                 else
473                         /* LVDS with dual channel */
474                         limit = &intel_limits
475                                         [INTEL_LIMIT_G4X_SINGLE_CHANNEL_LVDS];
476         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
477                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
478                 limit = &intel_limits[INTEL_LIMIT_G4X_HDMI_DAC];
479         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
480                 limit = &intel_limits[INTEL_LIMIT_G4X_SDVO];
481         } else /* The option is for other outputs */
482                 limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
483
484         return limit;
485 }
486
487 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
488 {
489         struct drm_device *dev = crtc->dev;
490         const intel_limit_t *limit;
491
492         if (IS_IGDNG(dev))
493                 limit = intel_igdng_limit(crtc);
494         else if (IS_G4X(dev)) {
495                 limit = intel_g4x_limit(crtc);
496         } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
497                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
498                         limit = &intel_limits[INTEL_LIMIT_I9XX_LVDS];
499                 else
500                         limit = &intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
501         } else if (IS_IGD(dev)) {
502                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
503                         limit = &intel_limits[INTEL_LIMIT_IGD_LVDS];
504                 else
505                         limit = &intel_limits[INTEL_LIMIT_IGD_SDVO_DAC];
506         } else {
507                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
508                         limit = &intel_limits[INTEL_LIMIT_I8XX_LVDS];
509                 else
510                         limit = &intel_limits[INTEL_LIMIT_I8XX_DVO_DAC];
511         }
512         return limit;
513 }
514
515 /* m1 is reserved as 0 in IGD, n is a ring counter */
516 static void igd_clock(int refclk, intel_clock_t *clock)
517 {
518         clock->m = clock->m2 + 2;
519         clock->p = clock->p1 * clock->p2;
520         clock->vco = refclk * clock->m / clock->n;
521         clock->dot = clock->vco / clock->p;
522 }
523
524 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
525 {
526         if (IS_IGD(dev)) {
527                 igd_clock(refclk, clock);
528                 return;
529         }
530         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
531         clock->p = clock->p1 * clock->p2;
532         clock->vco = refclk * clock->m / (clock->n + 2);
533         clock->dot = clock->vco / clock->p;
534 }
535
536 /**
537  * Returns whether any output on the specified pipe is of the specified type
538  */
539 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
540 {
541     struct drm_device *dev = crtc->dev;
542     struct drm_mode_config *mode_config = &dev->mode_config;
543     struct drm_connector *l_entry;
544
545     list_for_each_entry(l_entry, &mode_config->connector_list, head) {
546             if (l_entry->encoder &&
547                 l_entry->encoder->crtc == crtc) {
548                     struct intel_output *intel_output = to_intel_output(l_entry);
549                     if (intel_output->type == type)
550                             return true;
551             }
552     }
553     return false;
554 }
555
556 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
557 /**
558  * Returns whether the given set of divisors are valid for a given refclk with
559  * the given connectors.
560  */
561
562 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
563 {
564         const intel_limit_t *limit = intel_limit (crtc);
565         struct drm_device *dev = crtc->dev;
566
567         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
568                 INTELPllInvalid ("p1 out of range\n");
569         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
570                 INTELPllInvalid ("p out of range\n");
571         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
572                 INTELPllInvalid ("m2 out of range\n");
573         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
574                 INTELPllInvalid ("m1 out of range\n");
575         if (clock->m1 <= clock->m2 && !IS_IGD(dev))
576                 INTELPllInvalid ("m1 <= m2\n");
577         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
578                 INTELPllInvalid ("m out of range\n");
579         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
580                 INTELPllInvalid ("n out of range\n");
581         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
582                 INTELPllInvalid ("vco out of range\n");
583         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
584          * connector, etc., rather than just a single range.
585          */
586         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
587                 INTELPllInvalid ("dot out of range\n");
588
589         return true;
590 }
591
592 static bool
593 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
594                     int target, int refclk, intel_clock_t *best_clock)
595
596 {
597         struct drm_device *dev = crtc->dev;
598         struct drm_i915_private *dev_priv = dev->dev_private;
599         intel_clock_t clock;
600         int err = target;
601
602         if (IS_I9XX(dev) && intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
603             (I915_READ(LVDS) & LVDS_PORT_EN) != 0) {
604                 /*
605                  * For LVDS, if the panel is on, just rely on its current
606                  * settings for dual-channel.  We haven't figured out how to
607                  * reliably set up different single/dual channel state, if we
608                  * even can.
609                  */
610                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
611                     LVDS_CLKB_POWER_UP)
612                         clock.p2 = limit->p2.p2_fast;
613                 else
614                         clock.p2 = limit->p2.p2_slow;
615         } else {
616                 if (target < limit->p2.dot_limit)
617                         clock.p2 = limit->p2.p2_slow;
618                 else
619                         clock.p2 = limit->p2.p2_fast;
620         }
621
622         memset (best_clock, 0, sizeof (*best_clock));
623
624         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
625                 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
626                         /* m1 is always 0 in IGD */
627                         if (clock.m2 >= clock.m1 && !IS_IGD(dev))
628                                 break;
629                         for (clock.n = limit->n.min; clock.n <= limit->n.max;
630                              clock.n++) {
631                                 for (clock.p1 = limit->p1.min;
632                                      clock.p1 <= limit->p1.max; clock.p1++) {
633                                         int this_err;
634
635                                         intel_clock(dev, refclk, &clock);
636
637                                         if (!intel_PLL_is_valid(crtc, &clock))
638                                                 continue;
639
640                                         this_err = abs(clock.dot - target);
641                                         if (this_err < err) {
642                                                 *best_clock = clock;
643                                                 err = this_err;
644                                         }
645                                 }
646                         }
647                 }
648         }
649
650         return (err != target);
651 }
652
653 static bool
654 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
655                         int target, int refclk, intel_clock_t *best_clock)
656 {
657         struct drm_device *dev = crtc->dev;
658         struct drm_i915_private *dev_priv = dev->dev_private;
659         intel_clock_t clock;
660         int max_n;
661         bool found;
662         /* approximately equals target * 0.00488 */
663         int err_most = (target >> 8) + (target >> 10);
664         found = false;
665
666         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
667                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
668                     LVDS_CLKB_POWER_UP)
669                         clock.p2 = limit->p2.p2_fast;
670                 else
671                         clock.p2 = limit->p2.p2_slow;
672         } else {
673                 if (target < limit->p2.dot_limit)
674                         clock.p2 = limit->p2.p2_slow;
675                 else
676                         clock.p2 = limit->p2.p2_fast;
677         }
678
679         memset(best_clock, 0, sizeof(*best_clock));
680         max_n = limit->n.max;
681         /* based on hardware requriment prefer smaller n to precision */
682         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
683                 /* based on hardware requirment prefere larger m1,m2, p1 */
684                 for (clock.m1 = limit->m1.max;
685                      clock.m1 >= limit->m1.min; clock.m1--) {
686                         for (clock.m2 = limit->m2.max;
687                              clock.m2 >= limit->m2.min; clock.m2--) {
688                                 for (clock.p1 = limit->p1.max;
689                                      clock.p1 >= limit->p1.min; clock.p1--) {
690                                         int this_err;
691
692                                         intel_clock(dev, refclk, &clock);
693                                         if (!intel_PLL_is_valid(crtc, &clock))
694                                                 continue;
695                                         this_err = abs(clock.dot - target) ;
696                                         if (this_err < err_most) {
697                                                 *best_clock = clock;
698                                                 err_most = this_err;
699                                                 max_n = clock.n;
700                                                 found = true;
701                                         }
702                                 }
703                         }
704                 }
705         }
706         return found;
707 }
708
709 static bool
710 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
711                         int target, int refclk, intel_clock_t *best_clock)
712 {
713         struct drm_device *dev = crtc->dev;
714         struct drm_i915_private *dev_priv = dev->dev_private;
715         intel_clock_t clock;
716         int max_n;
717         bool found;
718         int err_most = 47;
719         found = false;
720
721         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
722                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
723                     LVDS_CLKB_POWER_UP)
724                         clock.p2 = limit->p2.p2_fast;
725                 else
726                         clock.p2 = limit->p2.p2_slow;
727         } else {
728                 if (target < limit->p2.dot_limit)
729                         clock.p2 = limit->p2.p2_slow;
730                 else
731                         clock.p2 = limit->p2.p2_fast;
732         }
733
734         memset(best_clock, 0, sizeof(*best_clock));
735         max_n = limit->n.max;
736         /* based on hardware requriment prefer smaller n to precision */
737         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
738                 /* based on hardware requirment prefere larger m1,m2, p1 */
739                 for (clock.m1 = limit->m1.max;
740                      clock.m1 >= limit->m1.min; clock.m1--) {
741                         for (clock.m2 = limit->m2.max;
742                              clock.m2 >= limit->m2.min; clock.m2--) {
743                                 for (clock.p1 = limit->p1.max;
744                                      clock.p1 >= limit->p1.min; clock.p1--) {
745                                         int this_err;
746
747                                         intel_clock(dev, refclk, &clock);
748                                         if (!intel_PLL_is_valid(crtc, &clock))
749                                                 continue;
750                                         this_err = abs((10000 - (target*10000/clock.dot)));
751                                         if (this_err < err_most) {
752                                                 *best_clock = clock;
753                                                 err_most = this_err;
754                                                 max_n = clock.n;
755                                                 found = true;
756                                                 /* found on first matching */
757                                                 goto out;
758                                         }
759                                 }
760                         }
761                 }
762         }
763 out:
764         return found;
765 }
766
767 void
768 intel_wait_for_vblank(struct drm_device *dev)
769 {
770         /* Wait for 20ms, i.e. one cycle at 50hz. */
771         mdelay(20);
772 }
773
774 static int
775 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
776                     struct drm_framebuffer *old_fb)
777 {
778         struct drm_device *dev = crtc->dev;
779         struct drm_i915_private *dev_priv = dev->dev_private;
780         struct drm_i915_master_private *master_priv;
781         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
782         struct intel_framebuffer *intel_fb;
783         struct drm_i915_gem_object *obj_priv;
784         struct drm_gem_object *obj;
785         int pipe = intel_crtc->pipe;
786         unsigned long Start, Offset;
787         int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
788         int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
789         int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
790         int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
791         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
792         u32 dspcntr, alignment;
793         int ret;
794
795         /* no fb bound */
796         if (!crtc->fb) {
797                 DRM_DEBUG("No FB bound\n");
798                 return 0;
799         }
800
801         switch (pipe) {
802         case 0:
803         case 1:
804                 break;
805         default:
806                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
807                 return -EINVAL;
808         }
809
810         intel_fb = to_intel_framebuffer(crtc->fb);
811         obj = intel_fb->obj;
812         obj_priv = obj->driver_private;
813
814         switch (obj_priv->tiling_mode) {
815         case I915_TILING_NONE:
816                 alignment = 64 * 1024;
817                 break;
818         case I915_TILING_X:
819                 /* pin() will align the object as required by fence */
820                 alignment = 0;
821                 break;
822         case I915_TILING_Y:
823                 /* FIXME: Is this true? */
824                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
825                 return -EINVAL;
826         default:
827                 BUG();
828         }
829
830         mutex_lock(&dev->struct_mutex);
831         ret = i915_gem_object_pin(intel_fb->obj, alignment);
832         if (ret != 0) {
833                 mutex_unlock(&dev->struct_mutex);
834                 return ret;
835         }
836
837         ret = i915_gem_object_set_to_gtt_domain(intel_fb->obj, 1);
838         if (ret != 0) {
839                 i915_gem_object_unpin(intel_fb->obj);
840                 mutex_unlock(&dev->struct_mutex);
841                 return ret;
842         }
843
844         dspcntr = I915_READ(dspcntr_reg);
845         /* Mask out pixel format bits in case we change it */
846         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
847         switch (crtc->fb->bits_per_pixel) {
848         case 8:
849                 dspcntr |= DISPPLANE_8BPP;
850                 break;
851         case 16:
852                 if (crtc->fb->depth == 15)
853                         dspcntr |= DISPPLANE_15_16BPP;
854                 else
855                         dspcntr |= DISPPLANE_16BPP;
856                 break;
857         case 24:
858         case 32:
859                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
860                 break;
861         default:
862                 DRM_ERROR("Unknown color depth\n");
863                 i915_gem_object_unpin(intel_fb->obj);
864                 mutex_unlock(&dev->struct_mutex);
865                 return -EINVAL;
866         }
867         if (IS_I965G(dev)) {
868                 if (obj_priv->tiling_mode != I915_TILING_NONE)
869                         dspcntr |= DISPPLANE_TILED;
870                 else
871                         dspcntr &= ~DISPPLANE_TILED;
872         }
873
874         I915_WRITE(dspcntr_reg, dspcntr);
875
876         Start = obj_priv->gtt_offset;
877         Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
878
879         DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
880         I915_WRITE(dspstride, crtc->fb->pitch);
881         if (IS_I965G(dev)) {
882                 I915_WRITE(dspbase, Offset);
883                 I915_READ(dspbase);
884                 I915_WRITE(dspsurf, Start);
885                 I915_READ(dspsurf);
886                 I915_WRITE(dsptileoff, (y << 16) | x);
887         } else {
888                 I915_WRITE(dspbase, Start + Offset);
889                 I915_READ(dspbase);
890         }
891
892         intel_wait_for_vblank(dev);
893
894         if (old_fb) {
895                 intel_fb = to_intel_framebuffer(old_fb);
896                 i915_gem_object_unpin(intel_fb->obj);
897         }
898         mutex_unlock(&dev->struct_mutex);
899
900         if (!dev->primary->master)
901                 return 0;
902
903         master_priv = dev->primary->master->driver_priv;
904         if (!master_priv->sarea_priv)
905                 return 0;
906
907         if (pipe) {
908                 master_priv->sarea_priv->pipeB_x = x;
909                 master_priv->sarea_priv->pipeB_y = y;
910         } else {
911                 master_priv->sarea_priv->pipeA_x = x;
912                 master_priv->sarea_priv->pipeA_y = y;
913         }
914
915         return 0;
916 }
917
918 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
919 {
920         struct drm_device *dev = crtc->dev;
921         struct drm_i915_private *dev_priv = dev->dev_private;
922         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
923         int pipe = intel_crtc->pipe;
924         int plane = intel_crtc->pipe;
925         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
926         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
927         int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
928         int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
929         int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
930         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
931         int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
932         int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
933         int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
934         int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
935         int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
936         int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
937         int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
938         int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
939         int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
940         int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
941         int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
942         int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
943         int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
944         int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
945         int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
946         int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
947         u32 temp;
948         int tries = 5, j;
949
950         /* XXX: When our outputs are all unaware of DPMS modes other than off
951          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
952          */
953         switch (mode) {
954         case DRM_MODE_DPMS_ON:
955         case DRM_MODE_DPMS_STANDBY:
956         case DRM_MODE_DPMS_SUSPEND:
957                 DRM_DEBUG("crtc %d dpms on\n", pipe);
958                 /* enable PCH DPLL */
959                 temp = I915_READ(pch_dpll_reg);
960                 if ((temp & DPLL_VCO_ENABLE) == 0) {
961                         I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
962                         I915_READ(pch_dpll_reg);
963                 }
964
965                 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
966                 temp = I915_READ(fdi_rx_reg);
967                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
968                                 FDI_SEL_PCDCLK |
969                                 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
970                 I915_READ(fdi_rx_reg);
971                 udelay(200);
972
973                 /* Enable CPU FDI TX PLL, always on for IGDNG */
974                 temp = I915_READ(fdi_tx_reg);
975                 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
976                         I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
977                         I915_READ(fdi_tx_reg);
978                         udelay(100);
979                 }
980
981                 /* Enable CPU pipe */
982                 temp = I915_READ(pipeconf_reg);
983                 if ((temp & PIPEACONF_ENABLE) == 0) {
984                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
985                         I915_READ(pipeconf_reg);
986                         udelay(100);
987                 }
988
989                 /* configure and enable CPU plane */
990                 temp = I915_READ(dspcntr_reg);
991                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
992                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
993                         /* Flush the plane changes */
994                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
995                 }
996
997                 /* enable CPU FDI TX and PCH FDI RX */
998                 temp = I915_READ(fdi_tx_reg);
999                 temp |= FDI_TX_ENABLE;
1000                 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1001                 temp &= ~FDI_LINK_TRAIN_NONE;
1002                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1003                 I915_WRITE(fdi_tx_reg, temp);
1004                 I915_READ(fdi_tx_reg);
1005
1006                 temp = I915_READ(fdi_rx_reg);
1007                 temp &= ~FDI_LINK_TRAIN_NONE;
1008                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1009                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1010                 I915_READ(fdi_rx_reg);
1011
1012                 udelay(150);
1013
1014                 /* Train FDI. */
1015                 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1016                    for train result */
1017                 temp = I915_READ(fdi_rx_imr_reg);
1018                 temp &= ~FDI_RX_SYMBOL_LOCK;
1019                 temp &= ~FDI_RX_BIT_LOCK;
1020                 I915_WRITE(fdi_rx_imr_reg, temp);
1021                 I915_READ(fdi_rx_imr_reg);
1022                 udelay(150);
1023
1024                 temp = I915_READ(fdi_rx_iir_reg);
1025                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1026
1027                 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1028                         for (j = 0; j < tries; j++) {
1029                                 temp = I915_READ(fdi_rx_iir_reg);
1030                                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1031                                 if (temp & FDI_RX_BIT_LOCK)
1032                                         break;
1033                                 udelay(200);
1034                         }
1035                         if (j != tries)
1036                                 I915_WRITE(fdi_rx_iir_reg,
1037                                                 temp | FDI_RX_BIT_LOCK);
1038                         else
1039                                 DRM_DEBUG("train 1 fail\n");
1040                 } else {
1041                         I915_WRITE(fdi_rx_iir_reg,
1042                                         temp | FDI_RX_BIT_LOCK);
1043                         DRM_DEBUG("train 1 ok 2!\n");
1044                 }
1045                 temp = I915_READ(fdi_tx_reg);
1046                 temp &= ~FDI_LINK_TRAIN_NONE;
1047                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1048                 I915_WRITE(fdi_tx_reg, temp);
1049
1050                 temp = I915_READ(fdi_rx_reg);
1051                 temp &= ~FDI_LINK_TRAIN_NONE;
1052                 temp |= FDI_LINK_TRAIN_PATTERN_2;
1053                 I915_WRITE(fdi_rx_reg, temp);
1054
1055                 udelay(150);
1056
1057                 temp = I915_READ(fdi_rx_iir_reg);
1058                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1059
1060                 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1061                         for (j = 0; j < tries; j++) {
1062                                 temp = I915_READ(fdi_rx_iir_reg);
1063                                 DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
1064                                 if (temp & FDI_RX_SYMBOL_LOCK)
1065                                         break;
1066                                 udelay(200);
1067                         }
1068                         if (j != tries) {
1069                                 I915_WRITE(fdi_rx_iir_reg,
1070                                                 temp | FDI_RX_SYMBOL_LOCK);
1071                                 DRM_DEBUG("train 2 ok 1!\n");
1072                         } else
1073                                 DRM_DEBUG("train 2 fail\n");
1074                 } else {
1075                         I915_WRITE(fdi_rx_iir_reg, temp | FDI_RX_SYMBOL_LOCK);
1076                         DRM_DEBUG("train 2 ok 2!\n");
1077                 }
1078                 DRM_DEBUG("train done\n");
1079
1080                 /* set transcoder timing */
1081                 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1082                 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1083                 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1084
1085                 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1086                 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1087                 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1088
1089                 /* enable PCH transcoder */
1090                 temp = I915_READ(transconf_reg);
1091                 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1092                 I915_READ(transconf_reg);
1093
1094                 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1095                         ;
1096
1097                 /* enable normal */
1098
1099                 temp = I915_READ(fdi_tx_reg);
1100                 temp &= ~FDI_LINK_TRAIN_NONE;
1101                 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1102                                 FDI_TX_ENHANCE_FRAME_ENABLE);
1103                 I915_READ(fdi_tx_reg);
1104
1105                 temp = I915_READ(fdi_rx_reg);
1106                 temp &= ~FDI_LINK_TRAIN_NONE;
1107                 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1108                                 FDI_RX_ENHANCE_FRAME_ENABLE);
1109                 I915_READ(fdi_rx_reg);
1110
1111                 /* wait one idle pattern time */
1112                 udelay(100);
1113
1114                 intel_crtc_load_lut(crtc);
1115
1116         break;
1117         case DRM_MODE_DPMS_OFF:
1118                 DRM_DEBUG("crtc %d dpms off\n", pipe);
1119
1120                 /* Disable the VGA plane that we never use */
1121                 I915_WRITE(CPU_VGACNTRL, VGA_DISP_DISABLE);
1122
1123                 /* Disable display plane */
1124                 temp = I915_READ(dspcntr_reg);
1125                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1126                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1127                         /* Flush the plane changes */
1128                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1129                         I915_READ(dspbase_reg);
1130                 }
1131
1132                 /* disable cpu pipe, disable after all planes disabled */
1133                 temp = I915_READ(pipeconf_reg);
1134                 if ((temp & PIPEACONF_ENABLE) != 0) {
1135                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1136                         I915_READ(pipeconf_reg);
1137                         /* wait for cpu pipe off, pipe state */
1138                         while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0)
1139                                 ;
1140                 } else
1141                         DRM_DEBUG("crtc %d is disabled\n", pipe);
1142
1143                 /* IGDNG-A : disable cpu panel fitter ? */
1144                 temp = I915_READ(pf_ctl_reg);
1145                 if ((temp & PF_ENABLE) != 0) {
1146                         I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1147                         I915_READ(pf_ctl_reg);
1148                 }
1149
1150                 /* disable CPU FDI tx and PCH FDI rx */
1151                 temp = I915_READ(fdi_tx_reg);
1152                 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1153                 I915_READ(fdi_tx_reg);
1154
1155                 temp = I915_READ(fdi_rx_reg);
1156                 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1157                 I915_READ(fdi_rx_reg);
1158
1159                 /* still set train pattern 1 */
1160                 temp = I915_READ(fdi_tx_reg);
1161                 temp &= ~FDI_LINK_TRAIN_NONE;
1162                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1163                 I915_WRITE(fdi_tx_reg, temp);
1164
1165                 temp = I915_READ(fdi_rx_reg);
1166                 temp &= ~FDI_LINK_TRAIN_NONE;
1167                 temp |= FDI_LINK_TRAIN_PATTERN_1;
1168                 I915_WRITE(fdi_rx_reg, temp);
1169
1170                 /* disable PCH transcoder */
1171                 temp = I915_READ(transconf_reg);
1172                 if ((temp & TRANS_ENABLE) != 0) {
1173                         I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1174                         I915_READ(transconf_reg);
1175                         /* wait for PCH transcoder off, transcoder state */
1176                         while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0)
1177                                 ;
1178                 }
1179
1180                 /* disable PCH DPLL */
1181                 temp = I915_READ(pch_dpll_reg);
1182                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1183                         I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1184                         I915_READ(pch_dpll_reg);
1185                 }
1186
1187                 temp = I915_READ(fdi_rx_reg);
1188                 if ((temp & FDI_RX_PLL_ENABLE) != 0) {
1189                         temp &= ~FDI_SEL_PCDCLK;
1190                         temp &= ~FDI_RX_PLL_ENABLE;
1191                         I915_WRITE(fdi_rx_reg, temp);
1192                         I915_READ(fdi_rx_reg);
1193                 }
1194
1195                 /* Wait for the clocks to turn off. */
1196                 udelay(150);
1197                 break;
1198         }
1199 }
1200
1201 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1202 {
1203         struct drm_device *dev = crtc->dev;
1204         struct drm_i915_private *dev_priv = dev->dev_private;
1205         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1206         int pipe = intel_crtc->pipe;
1207         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1208         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1209         int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
1210         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1211         u32 temp;
1212
1213         /* XXX: When our outputs are all unaware of DPMS modes other than off
1214          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1215          */
1216         switch (mode) {
1217         case DRM_MODE_DPMS_ON:
1218         case DRM_MODE_DPMS_STANDBY:
1219         case DRM_MODE_DPMS_SUSPEND:
1220                 /* Enable the DPLL */
1221                 temp = I915_READ(dpll_reg);
1222                 if ((temp & DPLL_VCO_ENABLE) == 0) {
1223                         I915_WRITE(dpll_reg, temp);
1224                         I915_READ(dpll_reg);
1225                         /* Wait for the clocks to stabilize. */
1226                         udelay(150);
1227                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1228                         I915_READ(dpll_reg);
1229                         /* Wait for the clocks to stabilize. */
1230                         udelay(150);
1231                         I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1232                         I915_READ(dpll_reg);
1233                         /* Wait for the clocks to stabilize. */
1234                         udelay(150);
1235                 }
1236
1237                 /* Enable the pipe */
1238                 temp = I915_READ(pipeconf_reg);
1239                 if ((temp & PIPEACONF_ENABLE) == 0)
1240                         I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1241
1242                 /* Enable the plane */
1243                 temp = I915_READ(dspcntr_reg);
1244                 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1245                         I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1246                         /* Flush the plane changes */
1247                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1248                 }
1249
1250                 intel_crtc_load_lut(crtc);
1251
1252                 /* Give the overlay scaler a chance to enable if it's on this pipe */
1253                 //intel_crtc_dpms_video(crtc, true); TODO
1254         break;
1255         case DRM_MODE_DPMS_OFF:
1256                 /* Give the overlay scaler a chance to disable if it's on this pipe */
1257                 //intel_crtc_dpms_video(crtc, FALSE); TODO
1258
1259                 /* Disable the VGA plane that we never use */
1260                 I915_WRITE(VGACNTRL, VGA_DISP_DISABLE);
1261
1262                 /* Disable display plane */
1263                 temp = I915_READ(dspcntr_reg);
1264                 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1265                         I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1266                         /* Flush the plane changes */
1267                         I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1268                         I915_READ(dspbase_reg);
1269                 }
1270
1271                 if (!IS_I9XX(dev)) {
1272                         /* Wait for vblank for the disable to take effect */
1273                         intel_wait_for_vblank(dev);
1274                 }
1275
1276                 /* Next, disable display pipes */
1277                 temp = I915_READ(pipeconf_reg);
1278                 if ((temp & PIPEACONF_ENABLE) != 0) {
1279                         I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1280                         I915_READ(pipeconf_reg);
1281                 }
1282
1283                 /* Wait for vblank for the disable to take effect. */
1284                 intel_wait_for_vblank(dev);
1285
1286                 temp = I915_READ(dpll_reg);
1287                 if ((temp & DPLL_VCO_ENABLE) != 0) {
1288                         I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1289                         I915_READ(dpll_reg);
1290                 }
1291
1292                 /* Wait for the clocks to turn off. */
1293                 udelay(150);
1294                 break;
1295         }
1296 }
1297
1298 /**
1299  * Sets the power management mode of the pipe and plane.
1300  *
1301  * This code should probably grow support for turning the cursor off and back
1302  * on appropriately at the same time as we're turning the pipe off/on.
1303  */
1304 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1305 {
1306         struct drm_device *dev = crtc->dev;
1307         struct drm_i915_master_private *master_priv;
1308         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1309         int pipe = intel_crtc->pipe;
1310         bool enabled;
1311
1312         if (IS_IGDNG(dev))
1313                 igdng_crtc_dpms(crtc, mode);
1314         else
1315                 i9xx_crtc_dpms(crtc, mode);
1316
1317         if (!dev->primary->master)
1318                 return;
1319
1320         master_priv = dev->primary->master->driver_priv;
1321         if (!master_priv->sarea_priv)
1322                 return;
1323
1324         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1325
1326         switch (pipe) {
1327         case 0:
1328                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
1329                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
1330                 break;
1331         case 1:
1332                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
1333                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
1334                 break;
1335         default:
1336                 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
1337                 break;
1338         }
1339
1340         intel_crtc->dpms_mode = mode;
1341 }
1342
1343 static void intel_crtc_prepare (struct drm_crtc *crtc)
1344 {
1345         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1346         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
1347 }
1348
1349 static void intel_crtc_commit (struct drm_crtc *crtc)
1350 {
1351         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
1352         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
1353 }
1354
1355 void intel_encoder_prepare (struct drm_encoder *encoder)
1356 {
1357         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1358         /* lvds has its own version of prepare see intel_lvds_prepare */
1359         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
1360 }
1361
1362 void intel_encoder_commit (struct drm_encoder *encoder)
1363 {
1364         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
1365         /* lvds has its own version of commit see intel_lvds_commit */
1366         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
1367 }
1368
1369 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
1370                                   struct drm_display_mode *mode,
1371                                   struct drm_display_mode *adjusted_mode)
1372 {
1373         struct drm_device *dev = crtc->dev;
1374         if (IS_IGDNG(dev)) {
1375                 /* FDI link clock is fixed at 2.7G */
1376                 if (mode->clock * 3 > 27000 * 4)
1377                         return MODE_CLOCK_HIGH;
1378         }
1379         return true;
1380 }
1381
1382
1383 /** Returns the core display clock speed for i830 - i945 */
1384 static int intel_get_core_clock_speed(struct drm_device *dev)
1385 {
1386
1387         /* Core clock values taken from the published datasheets.
1388          * The 830 may go up to 166 Mhz, which we should check.
1389          */
1390         if (IS_I945G(dev))
1391                 return 400000;
1392         else if (IS_I915G(dev))
1393                 return 333000;
1394         else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
1395                 return 200000;
1396         else if (IS_I915GM(dev)) {
1397                 u16 gcfgc = 0;
1398
1399                 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
1400
1401                 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
1402                         return 133000;
1403                 else {
1404                         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
1405                         case GC_DISPLAY_CLOCK_333_MHZ:
1406                                 return 333000;
1407                         default:
1408                         case GC_DISPLAY_CLOCK_190_200_MHZ:
1409                                 return 190000;
1410                         }
1411                 }
1412         } else if (IS_I865G(dev))
1413                 return 266000;
1414         else if (IS_I855(dev)) {
1415                 u16 hpllcc = 0;
1416                 /* Assume that the hardware is in the high speed state.  This
1417                  * should be the default.
1418                  */
1419                 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
1420                 case GC_CLOCK_133_200:
1421                 case GC_CLOCK_100_200:
1422                         return 200000;
1423                 case GC_CLOCK_166_250:
1424                         return 250000;
1425                 case GC_CLOCK_100_133:
1426                         return 133000;
1427                 }
1428         } else /* 852, 830 */
1429                 return 133000;
1430
1431         return 0; /* Silence gcc warning */
1432 }
1433
1434
1435 /**
1436  * Return the pipe currently connected to the panel fitter,
1437  * or -1 if the panel fitter is not present or not in use
1438  */
1439 static int intel_panel_fitter_pipe (struct drm_device *dev)
1440 {
1441         struct drm_i915_private *dev_priv = dev->dev_private;
1442         u32  pfit_control;
1443
1444         /* i830 doesn't have a panel fitter */
1445         if (IS_I830(dev))
1446                 return -1;
1447
1448         pfit_control = I915_READ(PFIT_CONTROL);
1449
1450         /* See if the panel fitter is in use */
1451         if ((pfit_control & PFIT_ENABLE) == 0)
1452                 return -1;
1453
1454         /* 965 can place panel fitter on either pipe */
1455         if (IS_I965G(dev))
1456                 return (pfit_control >> 29) & 0x3;
1457
1458         /* older chips can only use pipe 1 */
1459         return 1;
1460 }
1461
1462 struct fdi_m_n {
1463         u32        tu;
1464         u32        gmch_m;
1465         u32        gmch_n;
1466         u32        link_m;
1467         u32        link_n;
1468 };
1469
1470 static void
1471 fdi_reduce_ratio(u32 *num, u32 *den)
1472 {
1473         while (*num > 0xffffff || *den > 0xffffff) {
1474                 *num >>= 1;
1475                 *den >>= 1;
1476         }
1477 }
1478
1479 #define DATA_N 0x800000
1480 #define LINK_N 0x80000
1481
1482 static void
1483 igdng_compute_m_n(int bytes_per_pixel, int nlanes,
1484                 int pixel_clock, int link_clock,
1485                 struct fdi_m_n *m_n)
1486 {
1487         u64 temp;
1488
1489         m_n->tu = 64; /* default size */
1490
1491         temp = (u64) DATA_N * pixel_clock;
1492         temp = div_u64(temp, link_clock);
1493         m_n->gmch_m = (temp * bytes_per_pixel) / nlanes;
1494         m_n->gmch_n = DATA_N;
1495         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
1496
1497         temp = (u64) LINK_N * pixel_clock;
1498         m_n->link_m = div_u64(temp, link_clock);
1499         m_n->link_n = LINK_N;
1500         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
1501 }
1502
1503
1504 static int intel_crtc_mode_set(struct drm_crtc *crtc,
1505                                struct drm_display_mode *mode,
1506                                struct drm_display_mode *adjusted_mode,
1507                                int x, int y,
1508                                struct drm_framebuffer *old_fb)
1509 {
1510         struct drm_device *dev = crtc->dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1513         int pipe = intel_crtc->pipe;
1514         int fp_reg = (pipe == 0) ? FPA0 : FPB0;
1515         int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1516         int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
1517         int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
1518         int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1519         int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1520         int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1521         int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1522         int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1523         int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1524         int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1525         int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
1526         int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
1527         int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
1528         int refclk, num_outputs = 0;
1529         intel_clock_t clock;
1530         u32 dpll = 0, fp = 0, dspcntr, pipeconf;
1531         bool ok, is_sdvo = false, is_dvo = false;
1532         bool is_crt = false, is_lvds = false, is_tv = false;
1533         struct drm_mode_config *mode_config = &dev->mode_config;
1534         struct drm_connector *connector;
1535         const intel_limit_t *limit;
1536         int ret;
1537         struct fdi_m_n m_n = {0};
1538         int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
1539         int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
1540         int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
1541         int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
1542         int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
1543         int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1544         int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1545         int lvds_reg = LVDS;
1546         u32 temp;
1547         int sdvo_pixel_multiply;
1548
1549         drm_vblank_pre_modeset(dev, pipe);
1550
1551         list_for_each_entry(connector, &mode_config->connector_list, head) {
1552                 struct intel_output *intel_output = to_intel_output(connector);
1553
1554                 if (!connector->encoder || connector->encoder->crtc != crtc)
1555                         continue;
1556
1557                 switch (intel_output->type) {
1558                 case INTEL_OUTPUT_LVDS:
1559                         is_lvds = true;
1560                         break;
1561                 case INTEL_OUTPUT_SDVO:
1562                 case INTEL_OUTPUT_HDMI:
1563                         is_sdvo = true;
1564                         if (intel_output->needs_tv_clock)
1565                                 is_tv = true;
1566                         break;
1567                 case INTEL_OUTPUT_DVO:
1568                         is_dvo = true;
1569                         break;
1570                 case INTEL_OUTPUT_TVOUT:
1571                         is_tv = true;
1572                         break;
1573                 case INTEL_OUTPUT_ANALOG:
1574                         is_crt = true;
1575                         break;
1576                 }
1577
1578                 num_outputs++;
1579         }
1580
1581         if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
1582                 refclk = dev_priv->lvds_ssc_freq * 1000;
1583                 DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
1584         } else if (IS_I9XX(dev)) {
1585                 refclk = 96000;
1586                 if (IS_IGDNG(dev))
1587                         refclk = 120000; /* 120Mhz refclk */
1588         } else {
1589                 refclk = 48000;
1590         }
1591
1592         /*
1593          * Returns a set of divisors for the desired target clock with the given
1594          * refclk, or FALSE.  The returned values represent the clock equation:
1595          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
1596          */
1597         limit = intel_limit(crtc);
1598         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
1599         if (!ok) {
1600                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
1601                 drm_vblank_post_modeset(dev, pipe);
1602                 return -EINVAL;
1603         }
1604
1605         /* SDVO TV has fixed PLL values depend on its clock range,
1606            this mirrors vbios setting. */
1607         if (is_sdvo && is_tv) {
1608                 if (adjusted_mode->clock >= 100000
1609                                 && adjusted_mode->clock < 140500) {
1610                         clock.p1 = 2;
1611                         clock.p2 = 10;
1612                         clock.n = 3;
1613                         clock.m1 = 16;
1614                         clock.m2 = 8;
1615                 } else if (adjusted_mode->clock >= 140500
1616                                 && adjusted_mode->clock <= 200000) {
1617                         clock.p1 = 1;
1618                         clock.p2 = 10;
1619                         clock.n = 6;
1620                         clock.m1 = 12;
1621                         clock.m2 = 8;
1622                 }
1623         }
1624
1625         /* FDI link */
1626         if (IS_IGDNG(dev))
1627                 igdng_compute_m_n(3, 4, /* lane num 4 */
1628                                 adjusted_mode->clock,
1629                                 270000, /* lane clock */
1630                                 &m_n);
1631
1632         if (IS_IGD(dev))
1633                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
1634         else
1635                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
1636
1637         if (!IS_IGDNG(dev))
1638                 dpll = DPLL_VGA_MODE_DIS;
1639
1640         if (IS_I9XX(dev)) {
1641                 if (is_lvds)
1642                         dpll |= DPLLB_MODE_LVDS;
1643                 else
1644                         dpll |= DPLLB_MODE_DAC_SERIAL;
1645                 if (is_sdvo) {
1646                         dpll |= DPLL_DVO_HIGH_SPEED;
1647                         sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1648                         if (IS_I945G(dev) || IS_I945GM(dev))
1649                                 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
1650                         else if (IS_IGDNG(dev))
1651                                 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
1652                 }
1653
1654                 /* compute bitmask from p1 value */
1655                 if (IS_IGD(dev))
1656                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
1657                 else {
1658                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1659                         /* also FPA1 */
1660                         if (IS_IGDNG(dev))
1661                                 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
1662                 }
1663                 switch (clock.p2) {
1664                 case 5:
1665                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
1666                         break;
1667                 case 7:
1668                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
1669                         break;
1670                 case 10:
1671                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
1672                         break;
1673                 case 14:
1674                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
1675                         break;
1676                 }
1677                 if (IS_I965G(dev) && !IS_IGDNG(dev))
1678                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
1679         } else {
1680                 if (is_lvds) {
1681                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1682                 } else {
1683                         if (clock.p1 == 2)
1684                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
1685                         else
1686                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
1687                         if (clock.p2 == 4)
1688                                 dpll |= PLL_P2_DIVIDE_BY_4;
1689                 }
1690         }
1691
1692         if (is_sdvo && is_tv)
1693                 dpll |= PLL_REF_INPUT_TVCLKINBC;
1694         else if (is_tv)
1695                 /* XXX: just matching BIOS for now */
1696                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
1697                 dpll |= 3;
1698         else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
1699                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
1700         else
1701                 dpll |= PLL_REF_INPUT_DREFCLK;
1702
1703         /* setup pipeconf */
1704         pipeconf = I915_READ(pipeconf_reg);
1705
1706         /* Set up the display plane register */
1707         dspcntr = DISPPLANE_GAMMA_ENABLE;
1708
1709         /* IGDNG's plane is forced to pipe, bit 24 is to
1710            enable color space conversion */
1711         if (!IS_IGDNG(dev)) {
1712                 if (pipe == 0)
1713                         dspcntr |= DISPPLANE_SEL_PIPE_A;
1714                 else
1715                         dspcntr |= DISPPLANE_SEL_PIPE_B;
1716         }
1717
1718         if (pipe == 0 && !IS_I965G(dev)) {
1719                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
1720                  * core speed.
1721                  *
1722                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
1723                  * pipe == 0 check?
1724                  */
1725                 if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
1726                         pipeconf |= PIPEACONF_DOUBLE_WIDE;
1727                 else
1728                         pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
1729         }
1730
1731         dspcntr |= DISPLAY_PLANE_ENABLE;
1732         pipeconf |= PIPEACONF_ENABLE;
1733         dpll |= DPLL_VCO_ENABLE;
1734
1735
1736         /* Disable the panel fitter if it was on our pipe */
1737         if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
1738                 I915_WRITE(PFIT_CONTROL, 0);
1739
1740         DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
1741         drm_mode_debug_printmodeline(mode);
1742
1743         /* assign to IGDNG registers */
1744         if (IS_IGDNG(dev)) {
1745                 fp_reg = pch_fp_reg;
1746                 dpll_reg = pch_dpll_reg;
1747         }
1748
1749         if (dpll & DPLL_VCO_ENABLE) {
1750                 I915_WRITE(fp_reg, fp);
1751                 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
1752                 I915_READ(dpll_reg);
1753                 udelay(150);
1754         }
1755
1756         if (IS_IGDNG(dev)) {
1757                 /* enable PCH clock reference source */
1758                 /* XXX need to change the setting for other outputs */
1759                 u32 temp;
1760                 temp = I915_READ(PCH_DREF_CONTROL);
1761                 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
1762                 temp |= DREF_NONSPREAD_CK505_ENABLE;
1763                 temp &= ~DREF_SSC_SOURCE_MASK;
1764                 temp |= DREF_SSC_SOURCE_ENABLE;
1765                 temp &= ~DREF_SSC1_ENABLE;
1766                 /* if no eDP, disable source output to CPU */
1767                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
1768                 temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
1769                 I915_WRITE(PCH_DREF_CONTROL, temp);
1770         }
1771
1772         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
1773          * This is an exception to the general rule that mode_set doesn't turn
1774          * things on.
1775          */
1776         if (is_lvds) {
1777                 u32 lvds;
1778
1779                 if (IS_IGDNG(dev))
1780                         lvds_reg = PCH_LVDS;
1781
1782                 lvds = I915_READ(lvds_reg);
1783                 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
1784                 /* Set the B0-B3 data pairs corresponding to whether we're going to
1785                  * set the DPLLs for dual-channel mode or not.
1786                  */
1787                 if (clock.p2 == 7)
1788                         lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
1789                 else
1790                         lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
1791
1792                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
1793                  * appropriately here, but we need to look more thoroughly into how
1794                  * panels behave in the two modes.
1795                  */
1796
1797                 I915_WRITE(lvds_reg, lvds);
1798                 I915_READ(lvds_reg);
1799         }
1800
1801         I915_WRITE(fp_reg, fp);
1802         I915_WRITE(dpll_reg, dpll);
1803         I915_READ(dpll_reg);
1804         /* Wait for the clocks to stabilize. */
1805         udelay(150);
1806
1807         if (IS_I965G(dev) && !IS_IGDNG(dev)) {
1808                 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
1809                 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
1810                            ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
1811         } else {
1812                 /* write it again -- the BIOS does, after all */
1813                 I915_WRITE(dpll_reg, dpll);
1814         }
1815         I915_READ(dpll_reg);
1816         /* Wait for the clocks to stabilize. */
1817         udelay(150);
1818
1819         I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
1820                    ((adjusted_mode->crtc_htotal - 1) << 16));
1821         I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
1822                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
1823         I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
1824                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
1825         I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
1826                    ((adjusted_mode->crtc_vtotal - 1) << 16));
1827         I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
1828                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
1829         I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
1830                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
1831         /* pipesrc and dspsize control the size that is scaled from, which should
1832          * always be the user's requested size.
1833          */
1834         if (!IS_IGDNG(dev)) {
1835                 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
1836                                 (mode->hdisplay - 1));
1837                 I915_WRITE(dsppos_reg, 0);
1838         }
1839         I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
1840
1841         if (IS_IGDNG(dev)) {
1842                 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
1843                 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
1844                 I915_WRITE(link_m1_reg, m_n.link_m);
1845                 I915_WRITE(link_n1_reg, m_n.link_n);
1846
1847                  /* enable FDI RX PLL too */
1848                 temp = I915_READ(fdi_rx_reg);
1849                 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
1850                 udelay(200);
1851         }
1852
1853         I915_WRITE(pipeconf_reg, pipeconf);
1854         I915_READ(pipeconf_reg);
1855
1856         intel_wait_for_vblank(dev);
1857
1858         I915_WRITE(dspcntr_reg, dspcntr);
1859
1860         /* Flush the plane changes */
1861         ret = intel_pipe_set_base(crtc, x, y, old_fb);
1862         drm_vblank_post_modeset(dev, pipe);
1863
1864         return ret;
1865 }
1866
1867 /** Loads the palette/gamma unit for the CRTC with the prepared values */
1868 void intel_crtc_load_lut(struct drm_crtc *crtc)
1869 {
1870         struct drm_device *dev = crtc->dev;
1871         struct drm_i915_private *dev_priv = dev->dev_private;
1872         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1873         int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
1874         int i;
1875
1876         /* The clocks have to be on to load the palette. */
1877         if (!crtc->enabled)
1878                 return;
1879
1880         /* use legacy palette for IGDNG */
1881         if (IS_IGDNG(dev))
1882                 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
1883                                                    LGC_PALETTE_B;
1884
1885         for (i = 0; i < 256; i++) {
1886                 I915_WRITE(palreg + 4 * i,
1887                            (intel_crtc->lut_r[i] << 16) |
1888                            (intel_crtc->lut_g[i] << 8) |
1889                            intel_crtc->lut_b[i]);
1890         }
1891 }
1892
1893 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
1894                                  struct drm_file *file_priv,
1895                                  uint32_t handle,
1896                                  uint32_t width, uint32_t height)
1897 {
1898         struct drm_device *dev = crtc->dev;
1899         struct drm_i915_private *dev_priv = dev->dev_private;
1900         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1901         struct drm_gem_object *bo;
1902         struct drm_i915_gem_object *obj_priv;
1903         int pipe = intel_crtc->pipe;
1904         uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
1905         uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
1906         uint32_t temp = I915_READ(control);
1907         size_t addr;
1908         int ret;
1909
1910         DRM_DEBUG("\n");
1911
1912         /* if we want to turn off the cursor ignore width and height */
1913         if (!handle) {
1914                 DRM_DEBUG("cursor off\n");
1915                 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
1916                         temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
1917                         temp |= CURSOR_MODE_DISABLE;
1918                 } else {
1919                         temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
1920                 }
1921                 addr = 0;
1922                 bo = NULL;
1923                 mutex_lock(&dev->struct_mutex);
1924                 goto finish;
1925         }
1926
1927         /* Currently we only support 64x64 cursors */
1928         if (width != 64 || height != 64) {
1929                 DRM_ERROR("we currently only support 64x64 cursors\n");
1930                 return -EINVAL;
1931         }
1932
1933         bo = drm_gem_object_lookup(dev, file_priv, handle);
1934         if (!bo)
1935                 return -ENOENT;
1936
1937         obj_priv = bo->driver_private;
1938
1939         if (bo->size < width * height * 4) {
1940                 DRM_ERROR("buffer is to small\n");
1941                 ret = -ENOMEM;
1942                 goto fail;
1943         }
1944
1945         /* we only need to pin inside GTT if cursor is non-phy */
1946         mutex_lock(&dev->struct_mutex);
1947         if (!dev_priv->cursor_needs_physical) {
1948                 ret = i915_gem_object_pin(bo, PAGE_SIZE);
1949                 if (ret) {
1950                         DRM_ERROR("failed to pin cursor bo\n");
1951                         goto fail_locked;
1952                 }
1953                 addr = obj_priv->gtt_offset;
1954         } else {
1955                 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
1956                 if (ret) {
1957                         DRM_ERROR("failed to attach phys object\n");
1958                         goto fail_locked;
1959                 }
1960                 addr = obj_priv->phys_obj->handle->busaddr;
1961         }
1962
1963         if (!IS_I9XX(dev))
1964                 I915_WRITE(CURSIZE, (height << 12) | width);
1965
1966         /* Hooray for CUR*CNTR differences */
1967         if (IS_MOBILE(dev) || IS_I9XX(dev)) {
1968                 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
1969                 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
1970                 temp |= (pipe << 28); /* Connect to correct pipe */
1971         } else {
1972                 temp &= ~(CURSOR_FORMAT_MASK);
1973                 temp |= CURSOR_ENABLE;
1974                 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
1975         }
1976
1977  finish:
1978         I915_WRITE(control, temp);
1979         I915_WRITE(base, addr);
1980
1981         if (intel_crtc->cursor_bo) {
1982                 if (dev_priv->cursor_needs_physical) {
1983                         if (intel_crtc->cursor_bo != bo)
1984                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
1985                 } else
1986                         i915_gem_object_unpin(intel_crtc->cursor_bo);
1987                 drm_gem_object_unreference(intel_crtc->cursor_bo);
1988         }
1989         mutex_unlock(&dev->struct_mutex);
1990
1991         intel_crtc->cursor_addr = addr;
1992         intel_crtc->cursor_bo = bo;
1993
1994         return 0;
1995 fail:
1996         mutex_lock(&dev->struct_mutex);
1997 fail_locked:
1998         drm_gem_object_unreference(bo);
1999         mutex_unlock(&dev->struct_mutex);
2000         return ret;
2001 }
2002
2003 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
2004 {
2005         struct drm_device *dev = crtc->dev;
2006         struct drm_i915_private *dev_priv = dev->dev_private;
2007         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2008         int pipe = intel_crtc->pipe;
2009         uint32_t temp = 0;
2010         uint32_t adder;
2011
2012         if (x < 0) {
2013                 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
2014                 x = -x;
2015         }
2016         if (y < 0) {
2017                 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
2018                 y = -y;
2019         }
2020
2021         temp |= x << CURSOR_X_SHIFT;
2022         temp |= y << CURSOR_Y_SHIFT;
2023
2024         adder = intel_crtc->cursor_addr;
2025         I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
2026         I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
2027
2028         return 0;
2029 }
2030
2031 /** Sets the color ramps on behalf of RandR */
2032 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
2033                                  u16 blue, int regno)
2034 {
2035         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2036
2037         intel_crtc->lut_r[regno] = red >> 8;
2038         intel_crtc->lut_g[regno] = green >> 8;
2039         intel_crtc->lut_b[regno] = blue >> 8;
2040 }
2041
2042 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
2043                                  u16 *blue, uint32_t size)
2044 {
2045         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2046         int i;
2047
2048         if (size != 256)
2049                 return;
2050
2051         for (i = 0; i < 256; i++) {
2052                 intel_crtc->lut_r[i] = red[i] >> 8;
2053                 intel_crtc->lut_g[i] = green[i] >> 8;
2054                 intel_crtc->lut_b[i] = blue[i] >> 8;
2055         }
2056
2057         intel_crtc_load_lut(crtc);
2058 }
2059
2060 /**
2061  * Get a pipe with a simple mode set on it for doing load-based monitor
2062  * detection.
2063  *
2064  * It will be up to the load-detect code to adjust the pipe as appropriate for
2065  * its requirements.  The pipe will be connected to no other outputs.
2066  *
2067  * Currently this code will only succeed if there is a pipe with no outputs
2068  * configured for it.  In the future, it could choose to temporarily disable
2069  * some outputs to free up a pipe for its use.
2070  *
2071  * \return crtc, or NULL if no pipes are available.
2072  */
2073
2074 /* VESA 640x480x72Hz mode to set on the pipe */
2075 static struct drm_display_mode load_detect_mode = {
2076         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
2077                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
2078 };
2079
2080 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
2081                                             struct drm_display_mode *mode,
2082                                             int *dpms_mode)
2083 {
2084         struct intel_crtc *intel_crtc;
2085         struct drm_crtc *possible_crtc;
2086         struct drm_crtc *supported_crtc =NULL;
2087         struct drm_encoder *encoder = &intel_output->enc;
2088         struct drm_crtc *crtc = NULL;
2089         struct drm_device *dev = encoder->dev;
2090         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2091         struct drm_crtc_helper_funcs *crtc_funcs;
2092         int i = -1;
2093
2094         /*
2095          * Algorithm gets a little messy:
2096          *   - if the connector already has an assigned crtc, use it (but make
2097          *     sure it's on first)
2098          *   - try to find the first unused crtc that can drive this connector,
2099          *     and use that if we find one
2100          *   - if there are no unused crtcs available, try to use the first
2101          *     one we found that supports the connector
2102          */
2103
2104         /* See if we already have a CRTC for this connector */
2105         if (encoder->crtc) {
2106                 crtc = encoder->crtc;
2107                 /* Make sure the crtc and connector are running */
2108                 intel_crtc = to_intel_crtc(crtc);
2109                 *dpms_mode = intel_crtc->dpms_mode;
2110                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2111                         crtc_funcs = crtc->helper_private;
2112                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2113                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2114                 }
2115                 return crtc;
2116         }
2117
2118         /* Find an unused one (if possible) */
2119         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
2120                 i++;
2121                 if (!(encoder->possible_crtcs & (1 << i)))
2122                         continue;
2123                 if (!possible_crtc->enabled) {
2124                         crtc = possible_crtc;
2125                         break;
2126                 }
2127                 if (!supported_crtc)
2128                         supported_crtc = possible_crtc;
2129         }
2130
2131         /*
2132          * If we didn't find an unused CRTC, don't use any.
2133          */
2134         if (!crtc) {
2135                 return NULL;
2136         }
2137
2138         encoder->crtc = crtc;
2139         intel_output->base.encoder = encoder;
2140         intel_output->load_detect_temp = true;
2141
2142         intel_crtc = to_intel_crtc(crtc);
2143         *dpms_mode = intel_crtc->dpms_mode;
2144
2145         if (!crtc->enabled) {
2146                 if (!mode)
2147                         mode = &load_detect_mode;
2148                 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
2149         } else {
2150                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
2151                         crtc_funcs = crtc->helper_private;
2152                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2153                 }
2154
2155                 /* Add this connector to the crtc */
2156                 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
2157                 encoder_funcs->commit(encoder);
2158         }
2159         /* let the connector get through one full cycle before testing */
2160         intel_wait_for_vblank(dev);
2161
2162         return crtc;
2163 }
2164
2165 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
2166 {
2167         struct drm_encoder *encoder = &intel_output->enc;
2168         struct drm_device *dev = encoder->dev;
2169         struct drm_crtc *crtc = encoder->crtc;
2170         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2171         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2172
2173         if (intel_output->load_detect_temp) {
2174                 encoder->crtc = NULL;
2175                 intel_output->base.encoder = NULL;
2176                 intel_output->load_detect_temp = false;
2177                 crtc->enabled = drm_helper_crtc_in_use(crtc);
2178                 drm_helper_disable_unused_functions(dev);
2179         }
2180
2181         /* Switch crtc and output back off if necessary */
2182         if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
2183                 if (encoder->crtc == crtc)
2184                         encoder_funcs->dpms(encoder, dpms_mode);
2185                 crtc_funcs->dpms(crtc, dpms_mode);
2186         }
2187 }
2188
2189 /* Returns the clock of the currently programmed mode of the given pipe. */
2190 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
2191 {
2192         struct drm_i915_private *dev_priv = dev->dev_private;
2193         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2194         int pipe = intel_crtc->pipe;
2195         u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
2196         u32 fp;
2197         intel_clock_t clock;
2198
2199         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
2200                 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
2201         else
2202                 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
2203
2204         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
2205         if (IS_IGD(dev)) {
2206                 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
2207                 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
2208         } else {
2209                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
2210                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
2211         }
2212
2213         if (IS_I9XX(dev)) {
2214                 if (IS_IGD(dev))
2215                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
2216                                 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
2217                 else
2218                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
2219                                DPLL_FPA01_P1_POST_DIV_SHIFT);
2220
2221                 switch (dpll & DPLL_MODE_MASK) {
2222                 case DPLLB_MODE_DAC_SERIAL:
2223                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
2224                                 5 : 10;
2225                         break;
2226                 case DPLLB_MODE_LVDS:
2227                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
2228                                 7 : 14;
2229                         break;
2230                 default:
2231                         DRM_DEBUG("Unknown DPLL mode %08x in programmed "
2232                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
2233                         return 0;
2234                 }
2235
2236                 /* XXX: Handle the 100Mhz refclk */
2237                 intel_clock(dev, 96000, &clock);
2238         } else {
2239                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
2240
2241                 if (is_lvds) {
2242                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
2243                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
2244                         clock.p2 = 14;
2245
2246                         if ((dpll & PLL_REF_INPUT_MASK) ==
2247                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
2248                                 /* XXX: might not be 66MHz */
2249                                 intel_clock(dev, 66000, &clock);
2250                         } else
2251                                 intel_clock(dev, 48000, &clock);
2252                 } else {
2253                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
2254                                 clock.p1 = 2;
2255                         else {
2256                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
2257                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
2258                         }
2259                         if (dpll & PLL_P2_DIVIDE_BY_4)
2260                                 clock.p2 = 4;
2261                         else
2262                                 clock.p2 = 2;
2263
2264                         intel_clock(dev, 48000, &clock);
2265                 }
2266         }
2267
2268         /* XXX: It would be nice to validate the clocks, but we can't reuse
2269          * i830PllIsValid() because it relies on the xf86_config connector
2270          * configuration being accurate, which it isn't necessarily.
2271          */
2272
2273         return clock.dot;
2274 }
2275
2276 /** Returns the currently programmed mode of the given pipe. */
2277 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
2278                                              struct drm_crtc *crtc)
2279 {
2280         struct drm_i915_private *dev_priv = dev->dev_private;
2281         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2282         int pipe = intel_crtc->pipe;
2283         struct drm_display_mode *mode;
2284         int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
2285         int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
2286         int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
2287         int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
2288
2289         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
2290         if (!mode)
2291                 return NULL;
2292
2293         mode->clock = intel_crtc_clock_get(dev, crtc);
2294         mode->hdisplay = (htot & 0xffff) + 1;
2295         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
2296         mode->hsync_start = (hsync & 0xffff) + 1;
2297         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
2298         mode->vdisplay = (vtot & 0xffff) + 1;
2299         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
2300         mode->vsync_start = (vsync & 0xffff) + 1;
2301         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
2302
2303         drm_mode_set_name(mode);
2304         drm_mode_set_crtcinfo(mode, 0);
2305
2306         return mode;
2307 }
2308
2309 static void intel_crtc_destroy(struct drm_crtc *crtc)
2310 {
2311         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2312
2313         if (intel_crtc->mode_set.mode)
2314                 drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
2315         drm_crtc_cleanup(crtc);
2316         kfree(intel_crtc);
2317 }
2318
2319 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
2320         .dpms = intel_crtc_dpms,
2321         .mode_fixup = intel_crtc_mode_fixup,
2322         .mode_set = intel_crtc_mode_set,
2323         .mode_set_base = intel_pipe_set_base,
2324         .prepare = intel_crtc_prepare,
2325         .commit = intel_crtc_commit,
2326 };
2327
2328 static const struct drm_crtc_funcs intel_crtc_funcs = {
2329         .cursor_set = intel_crtc_cursor_set,
2330         .cursor_move = intel_crtc_cursor_move,
2331         .gamma_set = intel_crtc_gamma_set,
2332         .set_config = drm_crtc_helper_set_config,
2333         .destroy = intel_crtc_destroy,
2334 };
2335
2336
2337 static void intel_crtc_init(struct drm_device *dev, int pipe)
2338 {
2339         struct intel_crtc *intel_crtc;
2340         int i;
2341
2342         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
2343         if (intel_crtc == NULL)
2344                 return;
2345
2346         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
2347
2348         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
2349         intel_crtc->pipe = pipe;
2350         for (i = 0; i < 256; i++) {
2351                 intel_crtc->lut_r[i] = i;
2352                 intel_crtc->lut_g[i] = i;
2353                 intel_crtc->lut_b[i] = i;
2354         }
2355
2356         intel_crtc->cursor_addr = 0;
2357         intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
2358         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
2359
2360         intel_crtc->mode_set.crtc = &intel_crtc->base;
2361         intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
2362         intel_crtc->mode_set.num_connectors = 0;
2363
2364         if (i915_fbpercrtc) {
2365
2366
2367
2368         }
2369 }
2370
2371 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
2372                                 struct drm_file *file_priv)
2373 {
2374         drm_i915_private_t *dev_priv = dev->dev_private;
2375         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
2376         struct drm_crtc *crtc = NULL;
2377         int pipe = -1;
2378
2379         if (!dev_priv) {
2380                 DRM_ERROR("called with no initialization\n");
2381                 return -EINVAL;
2382         }
2383
2384         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2385                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2386                 if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
2387                         pipe = intel_crtc->pipe;
2388                         break;
2389                 }
2390         }
2391
2392         if (pipe == -1) {
2393                 DRM_ERROR("no such CRTC id\n");
2394                 return -EINVAL;
2395         }
2396
2397         pipe_from_crtc_id->pipe = pipe;
2398
2399        return 0;
2400 }
2401
2402 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
2403 {
2404         struct drm_crtc *crtc = NULL;
2405
2406         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2407                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2408                 if (intel_crtc->pipe == pipe)
2409                         break;
2410         }
2411         return crtc;
2412 }
2413
2414 static int intel_connector_clones(struct drm_device *dev, int type_mask)
2415 {
2416         int index_mask = 0;
2417         struct drm_connector *connector;
2418         int entry = 0;
2419
2420         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2421                 struct intel_output *intel_output = to_intel_output(connector);
2422                 if (type_mask & (1 << intel_output->type))
2423                         index_mask |= (1 << entry);
2424                 entry++;
2425         }
2426         return index_mask;
2427 }
2428
2429
2430 static void intel_setup_outputs(struct drm_device *dev)
2431 {
2432         struct drm_i915_private *dev_priv = dev->dev_private;
2433         struct drm_connector *connector;
2434
2435         intel_crt_init(dev);
2436
2437         /* Set up integrated LVDS */
2438         if (IS_MOBILE(dev) && !IS_I830(dev))
2439                 intel_lvds_init(dev);
2440
2441         if (IS_IGDNG(dev)) {
2442                 int found;
2443
2444                 if (I915_READ(HDMIB) & PORT_DETECTED) {
2445                         /* check SDVOB */
2446                         /* found = intel_sdvo_init(dev, HDMIB); */
2447                         found = 0;
2448                         if (!found)
2449                                 intel_hdmi_init(dev, HDMIB);
2450                 }
2451
2452                 if (I915_READ(HDMIC) & PORT_DETECTED)
2453                         intel_hdmi_init(dev, HDMIC);
2454
2455                 if (I915_READ(HDMID) & PORT_DETECTED)
2456                         intel_hdmi_init(dev, HDMID);
2457
2458         } else if (IS_I9XX(dev)) {
2459                 int found;
2460                 u32 reg;
2461
2462                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
2463                         found = intel_sdvo_init(dev, SDVOB);
2464                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
2465                                 intel_hdmi_init(dev, SDVOB);
2466                 }
2467
2468                 /* Before G4X SDVOC doesn't have its own detect register */
2469                 if (IS_G4X(dev))
2470                         reg = SDVOC;
2471                 else
2472                         reg = SDVOB;
2473
2474                 if (I915_READ(reg) & SDVO_DETECTED) {
2475                         found = intel_sdvo_init(dev, SDVOC);
2476                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
2477                                 intel_hdmi_init(dev, SDVOC);
2478                 }
2479         } else
2480                 intel_dvo_init(dev);
2481
2482         if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
2483                 intel_tv_init(dev);
2484
2485         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2486                 struct intel_output *intel_output = to_intel_output(connector);
2487                 struct drm_encoder *encoder = &intel_output->enc;
2488                 int crtc_mask = 0, clone_mask = 0;
2489
2490                 /* valid crtcs */
2491                 switch(intel_output->type) {
2492                 case INTEL_OUTPUT_HDMI:
2493                         crtc_mask = ((1 << 0)|
2494                                      (1 << 1));
2495                         clone_mask = ((1 << INTEL_OUTPUT_HDMI));
2496                         break;
2497                 case INTEL_OUTPUT_DVO:
2498                 case INTEL_OUTPUT_SDVO:
2499                         crtc_mask = ((1 << 0)|
2500                                      (1 << 1));
2501                         clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
2502                                       (1 << INTEL_OUTPUT_DVO) |
2503                                       (1 << INTEL_OUTPUT_SDVO));
2504                         break;
2505                 case INTEL_OUTPUT_ANALOG:
2506                         crtc_mask = ((1 << 0)|
2507                                      (1 << 1));
2508                         clone_mask = ((1 << INTEL_OUTPUT_ANALOG) |
2509                                       (1 << INTEL_OUTPUT_DVO) |
2510                                       (1 << INTEL_OUTPUT_SDVO));
2511                         break;
2512                 case INTEL_OUTPUT_LVDS:
2513                         crtc_mask = (1 << 1);
2514                         clone_mask = (1 << INTEL_OUTPUT_LVDS);
2515                         break;
2516                 case INTEL_OUTPUT_TVOUT:
2517                         crtc_mask = ((1 << 0) |
2518                                      (1 << 1));
2519                         clone_mask = (1 << INTEL_OUTPUT_TVOUT);
2520                         break;
2521                 }
2522                 encoder->possible_crtcs = crtc_mask;
2523                 encoder->possible_clones = intel_connector_clones(dev, clone_mask);
2524         }
2525 }
2526
2527 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
2528 {
2529         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2530         struct drm_device *dev = fb->dev;
2531
2532         if (fb->fbdev)
2533                 intelfb_remove(dev, fb);
2534
2535         drm_framebuffer_cleanup(fb);
2536         mutex_lock(&dev->struct_mutex);
2537         drm_gem_object_unreference(intel_fb->obj);
2538         mutex_unlock(&dev->struct_mutex);
2539
2540         kfree(intel_fb);
2541 }
2542
2543 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
2544                                                 struct drm_file *file_priv,
2545                                                 unsigned int *handle)
2546 {
2547         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2548         struct drm_gem_object *object = intel_fb->obj;
2549
2550         return drm_gem_handle_create(file_priv, object, handle);
2551 }
2552
2553 static const struct drm_framebuffer_funcs intel_fb_funcs = {
2554         .destroy = intel_user_framebuffer_destroy,
2555         .create_handle = intel_user_framebuffer_create_handle,
2556 };
2557
2558 int intel_framebuffer_create(struct drm_device *dev,
2559                              struct drm_mode_fb_cmd *mode_cmd,
2560                              struct drm_framebuffer **fb,
2561                              struct drm_gem_object *obj)
2562 {
2563         struct intel_framebuffer *intel_fb;
2564         int ret;
2565
2566         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
2567         if (!intel_fb)
2568                 return -ENOMEM;
2569
2570         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
2571         if (ret) {
2572                 DRM_ERROR("framebuffer init failed %d\n", ret);
2573                 return ret;
2574         }
2575
2576         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
2577
2578         intel_fb->obj = obj;
2579
2580         *fb = &intel_fb->base;
2581
2582         return 0;
2583 }
2584
2585
2586 static struct drm_framebuffer *
2587 intel_user_framebuffer_create(struct drm_device *dev,
2588                               struct drm_file *filp,
2589                               struct drm_mode_fb_cmd *mode_cmd)
2590 {
2591         struct drm_gem_object *obj;
2592         struct drm_framebuffer *fb;
2593         int ret;
2594
2595         obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
2596         if (!obj)
2597                 return NULL;
2598
2599         ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
2600         if (ret) {
2601                 mutex_lock(&dev->struct_mutex);
2602                 drm_gem_object_unreference(obj);
2603                 mutex_unlock(&dev->struct_mutex);
2604                 return NULL;
2605         }
2606
2607         return fb;
2608 }
2609
2610 static const struct drm_mode_config_funcs intel_mode_funcs = {
2611         .fb_create = intel_user_framebuffer_create,
2612         .fb_changed = intelfb_probe,
2613 };
2614
2615 void intel_modeset_init(struct drm_device *dev)
2616 {
2617         int num_pipe;
2618         int i;
2619
2620         drm_mode_config_init(dev);
2621
2622         dev->mode_config.min_width = 0;
2623         dev->mode_config.min_height = 0;
2624
2625         dev->mode_config.funcs = (void *)&intel_mode_funcs;
2626
2627         if (IS_I965G(dev)) {
2628                 dev->mode_config.max_width = 8192;
2629                 dev->mode_config.max_height = 8192;
2630         } else {
2631                 dev->mode_config.max_width = 2048;
2632                 dev->mode_config.max_height = 2048;
2633         }
2634
2635         /* set memory base */
2636         if (IS_I9XX(dev))
2637                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
2638         else
2639                 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
2640
2641         if (IS_MOBILE(dev) || IS_I9XX(dev))
2642                 num_pipe = 2;
2643         else
2644                 num_pipe = 1;
2645         DRM_DEBUG("%d display pipe%s available.\n",
2646                   num_pipe, num_pipe > 1 ? "s" : "");
2647
2648         for (i = 0; i < num_pipe; i++) {
2649                 intel_crtc_init(dev, i);
2650         }
2651
2652         intel_setup_outputs(dev);
2653 }
2654
2655 void intel_modeset_cleanup(struct drm_device *dev)
2656 {
2657         drm_mode_config_cleanup(dev);
2658 }
2659
2660
2661 /* current intel driver doesn't take advantage of encoders
2662    always give back the encoder for the connector
2663 */
2664 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
2665 {
2666         struct intel_output *intel_output = to_intel_output(connector);
2667
2668         return &intel_output->enc;
2669 }