f0f6f668a61e4e783a6e756e69d16265bb1fc0c1
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include <linux/swap.h>
34 #include <linux/pci.h>
35
36 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57                      unsigned long end)
58 {
59         drm_i915_private_t *dev_priv = dev->dev_private;
60
61         if (start >= end ||
62             (start & (PAGE_SIZE - 1)) != 0 ||
63             (end & (PAGE_SIZE - 1)) != 0) {
64                 return -EINVAL;
65         }
66
67         drm_mm_init(&dev_priv->mm.gtt_space, start,
68                     end - start);
69
70         dev->gtt_total = (uint32_t) (end - start);
71
72         return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77                     struct drm_file *file_priv)
78 {
79         struct drm_i915_gem_init *args = data;
80         int ret;
81
82         mutex_lock(&dev->struct_mutex);
83         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84         mutex_unlock(&dev->struct_mutex);
85
86         return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91                             struct drm_file *file_priv)
92 {
93         struct drm_i915_gem_get_aperture *args = data;
94
95         if (!(dev->driver->driver_features & DRIVER_GEM))
96                 return -ENODEV;
97
98         args->aper_size = dev->gtt_total;
99         args->aper_available_size = (args->aper_size -
100                                      atomic_read(&dev->pin_memory));
101
102         return 0;
103 }
104
105
106 /**
107  * Creates a new mm object and returns a handle to it.
108  */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111                       struct drm_file *file_priv)
112 {
113         struct drm_i915_gem_create *args = data;
114         struct drm_gem_object *obj;
115         int ret;
116         u32 handle;
117
118         args->size = roundup(args->size, PAGE_SIZE);
119
120         /* Allocate the new object */
121         obj = drm_gem_object_alloc(dev, args->size);
122         if (obj == NULL)
123                 return -ENOMEM;
124
125         ret = drm_gem_handle_create(file_priv, obj, &handle);
126         mutex_lock(&dev->struct_mutex);
127         drm_gem_object_handle_unreference(obj);
128         mutex_unlock(&dev->struct_mutex);
129
130         if (ret)
131                 return ret;
132
133         args->handle = handle;
134
135         return 0;
136 }
137
138 static inline int
139 fast_shmem_read(struct page **pages,
140                 loff_t page_base, int page_offset,
141                 char __user *data,
142                 int length)
143 {
144         char __iomem *vaddr;
145         int unwritten;
146
147         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
148         if (vaddr == NULL)
149                 return -ENOMEM;
150         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
151         kunmap_atomic(vaddr, KM_USER0);
152
153         if (unwritten)
154                 return -EFAULT;
155
156         return 0;
157 }
158
159 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
160 {
161         drm_i915_private_t *dev_priv = obj->dev->dev_private;
162         struct drm_i915_gem_object *obj_priv = obj->driver_private;
163
164         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
165                 obj_priv->tiling_mode != I915_TILING_NONE;
166 }
167
168 static inline int
169 slow_shmem_copy(struct page *dst_page,
170                 int dst_offset,
171                 struct page *src_page,
172                 int src_offset,
173                 int length)
174 {
175         char *dst_vaddr, *src_vaddr;
176
177         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
178         if (dst_vaddr == NULL)
179                 return -ENOMEM;
180
181         src_vaddr = kmap_atomic(src_page, KM_USER1);
182         if (src_vaddr == NULL) {
183                 kunmap_atomic(dst_vaddr, KM_USER0);
184                 return -ENOMEM;
185         }
186
187         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
188
189         kunmap_atomic(src_vaddr, KM_USER1);
190         kunmap_atomic(dst_vaddr, KM_USER0);
191
192         return 0;
193 }
194
195 static inline int
196 slow_shmem_bit17_copy(struct page *gpu_page,
197                       int gpu_offset,
198                       struct page *cpu_page,
199                       int cpu_offset,
200                       int length,
201                       int is_read)
202 {
203         char *gpu_vaddr, *cpu_vaddr;
204
205         /* Use the unswizzled path if this page isn't affected. */
206         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207                 if (is_read)
208                         return slow_shmem_copy(cpu_page, cpu_offset,
209                                                gpu_page, gpu_offset, length);
210                 else
211                         return slow_shmem_copy(gpu_page, gpu_offset,
212                                                cpu_page, cpu_offset, length);
213         }
214
215         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
216         if (gpu_vaddr == NULL)
217                 return -ENOMEM;
218
219         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
220         if (cpu_vaddr == NULL) {
221                 kunmap_atomic(gpu_vaddr, KM_USER0);
222                 return -ENOMEM;
223         }
224
225         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226          * XORing with the other bits (A9 for Y, A9 and A10 for X)
227          */
228         while (length > 0) {
229                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230                 int this_length = min(cacheline_end - gpu_offset, length);
231                 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233                 if (is_read) {
234                         memcpy(cpu_vaddr + cpu_offset,
235                                gpu_vaddr + swizzled_gpu_offset,
236                                this_length);
237                 } else {
238                         memcpy(gpu_vaddr + swizzled_gpu_offset,
239                                cpu_vaddr + cpu_offset,
240                                this_length);
241                 }
242                 cpu_offset += this_length;
243                 gpu_offset += this_length;
244                 length -= this_length;
245         }
246
247         kunmap_atomic(cpu_vaddr, KM_USER1);
248         kunmap_atomic(gpu_vaddr, KM_USER0);
249
250         return 0;
251 }
252
253 /**
254  * This is the fast shmem pread path, which attempts to copy_from_user directly
255  * from the backing pages of the object to the user's address space.  On a
256  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
257  */
258 static int
259 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
260                           struct drm_i915_gem_pread *args,
261                           struct drm_file *file_priv)
262 {
263         struct drm_i915_gem_object *obj_priv = obj->driver_private;
264         ssize_t remain;
265         loff_t offset, page_base;
266         char __user *user_data;
267         int page_offset, page_length;
268         int ret;
269
270         user_data = (char __user *) (uintptr_t) args->data_ptr;
271         remain = args->size;
272
273         mutex_lock(&dev->struct_mutex);
274
275         ret = i915_gem_object_get_pages(obj);
276         if (ret != 0)
277                 goto fail_unlock;
278
279         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
280                                                         args->size);
281         if (ret != 0)
282                 goto fail_put_pages;
283
284         obj_priv = obj->driver_private;
285         offset = args->offset;
286
287         while (remain > 0) {
288                 /* Operation in this page
289                  *
290                  * page_base = page offset within aperture
291                  * page_offset = offset within page
292                  * page_length = bytes to copy for this page
293                  */
294                 page_base = (offset & ~(PAGE_SIZE-1));
295                 page_offset = offset & (PAGE_SIZE-1);
296                 page_length = remain;
297                 if ((page_offset + remain) > PAGE_SIZE)
298                         page_length = PAGE_SIZE - page_offset;
299
300                 ret = fast_shmem_read(obj_priv->pages,
301                                       page_base, page_offset,
302                                       user_data, page_length);
303                 if (ret)
304                         goto fail_put_pages;
305
306                 remain -= page_length;
307                 user_data += page_length;
308                 offset += page_length;
309         }
310
311 fail_put_pages:
312         i915_gem_object_put_pages(obj);
313 fail_unlock:
314         mutex_unlock(&dev->struct_mutex);
315
316         return ret;
317 }
318
319 /**
320  * This is the fallback shmem pread path, which allocates temporary storage
321  * in kernel space to copy_to_user into outside of the struct_mutex, so we
322  * can copy out of the object's backing pages while holding the struct mutex
323  * and not take page faults.
324  */
325 static int
326 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
327                           struct drm_i915_gem_pread *args,
328                           struct drm_file *file_priv)
329 {
330         struct drm_i915_gem_object *obj_priv = obj->driver_private;
331         struct mm_struct *mm = current->mm;
332         struct page **user_pages;
333         ssize_t remain;
334         loff_t offset, pinned_pages, i;
335         loff_t first_data_page, last_data_page, num_pages;
336         int shmem_page_index, shmem_page_offset;
337         int data_page_index,  data_page_offset;
338         int page_length;
339         int ret;
340         uint64_t data_ptr = args->data_ptr;
341         int do_bit17_swizzling;
342
343         remain = args->size;
344
345         /* Pin the user pages containing the data.  We can't fault while
346          * holding the struct mutex, yet we want to hold it while
347          * dereferencing the user data.
348          */
349         first_data_page = data_ptr / PAGE_SIZE;
350         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
351         num_pages = last_data_page - first_data_page + 1;
352
353         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
354         if (user_pages == NULL)
355                 return -ENOMEM;
356
357         down_read(&mm->mmap_sem);
358         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
359                                       num_pages, 1, 0, user_pages, NULL);
360         up_read(&mm->mmap_sem);
361         if (pinned_pages < num_pages) {
362                 ret = -EFAULT;
363                 goto fail_put_user_pages;
364         }
365
366         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
367
368         mutex_lock(&dev->struct_mutex);
369
370         ret = i915_gem_object_get_pages(obj);
371         if (ret != 0)
372                 goto fail_unlock;
373
374         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
375                                                         args->size);
376         if (ret != 0)
377                 goto fail_put_pages;
378
379         obj_priv = obj->driver_private;
380         offset = args->offset;
381
382         while (remain > 0) {
383                 /* Operation in this page
384                  *
385                  * shmem_page_index = page number within shmem file
386                  * shmem_page_offset = offset within page in shmem file
387                  * data_page_index = page number in get_user_pages return
388                  * data_page_offset = offset with data_page_index page.
389                  * page_length = bytes to copy for this page
390                  */
391                 shmem_page_index = offset / PAGE_SIZE;
392                 shmem_page_offset = offset & ~PAGE_MASK;
393                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
394                 data_page_offset = data_ptr & ~PAGE_MASK;
395
396                 page_length = remain;
397                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
398                         page_length = PAGE_SIZE - shmem_page_offset;
399                 if ((data_page_offset + page_length) > PAGE_SIZE)
400                         page_length = PAGE_SIZE - data_page_offset;
401
402                 if (do_bit17_swizzling) {
403                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
404                                                     shmem_page_offset,
405                                                     user_pages[data_page_index],
406                                                     data_page_offset,
407                                                     page_length,
408                                                     1);
409                 } else {
410                         ret = slow_shmem_copy(user_pages[data_page_index],
411                                               data_page_offset,
412                                               obj_priv->pages[shmem_page_index],
413                                               shmem_page_offset,
414                                               page_length);
415                 }
416                 if (ret)
417                         goto fail_put_pages;
418
419                 remain -= page_length;
420                 data_ptr += page_length;
421                 offset += page_length;
422         }
423
424 fail_put_pages:
425         i915_gem_object_put_pages(obj);
426 fail_unlock:
427         mutex_unlock(&dev->struct_mutex);
428 fail_put_user_pages:
429         for (i = 0; i < pinned_pages; i++) {
430                 SetPageDirty(user_pages[i]);
431                 page_cache_release(user_pages[i]);
432         }
433         drm_free_large(user_pages);
434
435         return ret;
436 }
437
438 /**
439  * Reads data from the object referenced by handle.
440  *
441  * On error, the contents of *data are undefined.
442  */
443 int
444 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
445                      struct drm_file *file_priv)
446 {
447         struct drm_i915_gem_pread *args = data;
448         struct drm_gem_object *obj;
449         struct drm_i915_gem_object *obj_priv;
450         int ret;
451
452         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
453         if (obj == NULL)
454                 return -EBADF;
455         obj_priv = obj->driver_private;
456
457         /* Bounds check source.
458          *
459          * XXX: This could use review for overflow issues...
460          */
461         if (args->offset > obj->size || args->size > obj->size ||
462             args->offset + args->size > obj->size) {
463                 drm_gem_object_unreference(obj);
464                 return -EINVAL;
465         }
466
467         if (i915_gem_object_needs_bit17_swizzle(obj)) {
468                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
469         } else {
470                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
471                 if (ret != 0)
472                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
473                                                         file_priv);
474         }
475
476         drm_gem_object_unreference(obj);
477
478         return ret;
479 }
480
481 /* This is the fast write path which cannot handle
482  * page faults in the source data
483  */
484
485 static inline int
486 fast_user_write(struct io_mapping *mapping,
487                 loff_t page_base, int page_offset,
488                 char __user *user_data,
489                 int length)
490 {
491         char *vaddr_atomic;
492         unsigned long unwritten;
493
494         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
495         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
496                                                       user_data, length);
497         io_mapping_unmap_atomic(vaddr_atomic);
498         if (unwritten)
499                 return -EFAULT;
500         return 0;
501 }
502
503 /* Here's the write path which can sleep for
504  * page faults
505  */
506
507 static inline int
508 slow_kernel_write(struct io_mapping *mapping,
509                   loff_t gtt_base, int gtt_offset,
510                   struct page *user_page, int user_offset,
511                   int length)
512 {
513         char *src_vaddr, *dst_vaddr;
514         unsigned long unwritten;
515
516         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
517         src_vaddr = kmap_atomic(user_page, KM_USER1);
518         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
519                                                       src_vaddr + user_offset,
520                                                       length);
521         kunmap_atomic(src_vaddr, KM_USER1);
522         io_mapping_unmap_atomic(dst_vaddr);
523         if (unwritten)
524                 return -EFAULT;
525         return 0;
526 }
527
528 static inline int
529 fast_shmem_write(struct page **pages,
530                  loff_t page_base, int page_offset,
531                  char __user *data,
532                  int length)
533 {
534         char __iomem *vaddr;
535         unsigned long unwritten;
536
537         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
538         if (vaddr == NULL)
539                 return -ENOMEM;
540         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
541         kunmap_atomic(vaddr, KM_USER0);
542
543         if (unwritten)
544                 return -EFAULT;
545         return 0;
546 }
547
548 /**
549  * This is the fast pwrite path, where we copy the data directly from the
550  * user into the GTT, uncached.
551  */
552 static int
553 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
554                          struct drm_i915_gem_pwrite *args,
555                          struct drm_file *file_priv)
556 {
557         struct drm_i915_gem_object *obj_priv = obj->driver_private;
558         drm_i915_private_t *dev_priv = dev->dev_private;
559         ssize_t remain;
560         loff_t offset, page_base;
561         char __user *user_data;
562         int page_offset, page_length;
563         int ret;
564
565         user_data = (char __user *) (uintptr_t) args->data_ptr;
566         remain = args->size;
567         if (!access_ok(VERIFY_READ, user_data, remain))
568                 return -EFAULT;
569
570
571         mutex_lock(&dev->struct_mutex);
572         ret = i915_gem_object_pin(obj, 0);
573         if (ret) {
574                 mutex_unlock(&dev->struct_mutex);
575                 return ret;
576         }
577         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
578         if (ret)
579                 goto fail;
580
581         obj_priv = obj->driver_private;
582         offset = obj_priv->gtt_offset + args->offset;
583
584         while (remain > 0) {
585                 /* Operation in this page
586                  *
587                  * page_base = page offset within aperture
588                  * page_offset = offset within page
589                  * page_length = bytes to copy for this page
590                  */
591                 page_base = (offset & ~(PAGE_SIZE-1));
592                 page_offset = offset & (PAGE_SIZE-1);
593                 page_length = remain;
594                 if ((page_offset + remain) > PAGE_SIZE)
595                         page_length = PAGE_SIZE - page_offset;
596
597                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
598                                        page_offset, user_data, page_length);
599
600                 /* If we get a fault while copying data, then (presumably) our
601                  * source page isn't available.  Return the error and we'll
602                  * retry in the slow path.
603                  */
604                 if (ret)
605                         goto fail;
606
607                 remain -= page_length;
608                 user_data += page_length;
609                 offset += page_length;
610         }
611
612 fail:
613         i915_gem_object_unpin(obj);
614         mutex_unlock(&dev->struct_mutex);
615
616         return ret;
617 }
618
619 /**
620  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
621  * the memory and maps it using kmap_atomic for copying.
622  *
623  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
624  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
625  */
626 static int
627 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
628                          struct drm_i915_gem_pwrite *args,
629                          struct drm_file *file_priv)
630 {
631         struct drm_i915_gem_object *obj_priv = obj->driver_private;
632         drm_i915_private_t *dev_priv = dev->dev_private;
633         ssize_t remain;
634         loff_t gtt_page_base, offset;
635         loff_t first_data_page, last_data_page, num_pages;
636         loff_t pinned_pages, i;
637         struct page **user_pages;
638         struct mm_struct *mm = current->mm;
639         int gtt_page_offset, data_page_offset, data_page_index, page_length;
640         int ret;
641         uint64_t data_ptr = args->data_ptr;
642
643         remain = args->size;
644
645         /* Pin the user pages containing the data.  We can't fault while
646          * holding the struct mutex, and all of the pwrite implementations
647          * want to hold it while dereferencing the user data.
648          */
649         first_data_page = data_ptr / PAGE_SIZE;
650         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
651         num_pages = last_data_page - first_data_page + 1;
652
653         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
654         if (user_pages == NULL)
655                 return -ENOMEM;
656
657         down_read(&mm->mmap_sem);
658         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
659                                       num_pages, 0, 0, user_pages, NULL);
660         up_read(&mm->mmap_sem);
661         if (pinned_pages < num_pages) {
662                 ret = -EFAULT;
663                 goto out_unpin_pages;
664         }
665
666         mutex_lock(&dev->struct_mutex);
667         ret = i915_gem_object_pin(obj, 0);
668         if (ret)
669                 goto out_unlock;
670
671         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
672         if (ret)
673                 goto out_unpin_object;
674
675         obj_priv = obj->driver_private;
676         offset = obj_priv->gtt_offset + args->offset;
677
678         while (remain > 0) {
679                 /* Operation in this page
680                  *
681                  * gtt_page_base = page offset within aperture
682                  * gtt_page_offset = offset within page in aperture
683                  * data_page_index = page number in get_user_pages return
684                  * data_page_offset = offset with data_page_index page.
685                  * page_length = bytes to copy for this page
686                  */
687                 gtt_page_base = offset & PAGE_MASK;
688                 gtt_page_offset = offset & ~PAGE_MASK;
689                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
690                 data_page_offset = data_ptr & ~PAGE_MASK;
691
692                 page_length = remain;
693                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
694                         page_length = PAGE_SIZE - gtt_page_offset;
695                 if ((data_page_offset + page_length) > PAGE_SIZE)
696                         page_length = PAGE_SIZE - data_page_offset;
697
698                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
699                                         gtt_page_base, gtt_page_offset,
700                                         user_pages[data_page_index],
701                                         data_page_offset,
702                                         page_length);
703
704                 /* If we get a fault while copying data, then (presumably) our
705                  * source page isn't available.  Return the error and we'll
706                  * retry in the slow path.
707                  */
708                 if (ret)
709                         goto out_unpin_object;
710
711                 remain -= page_length;
712                 offset += page_length;
713                 data_ptr += page_length;
714         }
715
716 out_unpin_object:
717         i915_gem_object_unpin(obj);
718 out_unlock:
719         mutex_unlock(&dev->struct_mutex);
720 out_unpin_pages:
721         for (i = 0; i < pinned_pages; i++)
722                 page_cache_release(user_pages[i]);
723         drm_free_large(user_pages);
724
725         return ret;
726 }
727
728 /**
729  * This is the fast shmem pwrite path, which attempts to directly
730  * copy_from_user into the kmapped pages backing the object.
731  */
732 static int
733 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
734                            struct drm_i915_gem_pwrite *args,
735                            struct drm_file *file_priv)
736 {
737         struct drm_i915_gem_object *obj_priv = obj->driver_private;
738         ssize_t remain;
739         loff_t offset, page_base;
740         char __user *user_data;
741         int page_offset, page_length;
742         int ret;
743
744         user_data = (char __user *) (uintptr_t) args->data_ptr;
745         remain = args->size;
746
747         mutex_lock(&dev->struct_mutex);
748
749         ret = i915_gem_object_get_pages(obj);
750         if (ret != 0)
751                 goto fail_unlock;
752
753         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
754         if (ret != 0)
755                 goto fail_put_pages;
756
757         obj_priv = obj->driver_private;
758         offset = args->offset;
759         obj_priv->dirty = 1;
760
761         while (remain > 0) {
762                 /* Operation in this page
763                  *
764                  * page_base = page offset within aperture
765                  * page_offset = offset within page
766                  * page_length = bytes to copy for this page
767                  */
768                 page_base = (offset & ~(PAGE_SIZE-1));
769                 page_offset = offset & (PAGE_SIZE-1);
770                 page_length = remain;
771                 if ((page_offset + remain) > PAGE_SIZE)
772                         page_length = PAGE_SIZE - page_offset;
773
774                 ret = fast_shmem_write(obj_priv->pages,
775                                        page_base, page_offset,
776                                        user_data, page_length);
777                 if (ret)
778                         goto fail_put_pages;
779
780                 remain -= page_length;
781                 user_data += page_length;
782                 offset += page_length;
783         }
784
785 fail_put_pages:
786         i915_gem_object_put_pages(obj);
787 fail_unlock:
788         mutex_unlock(&dev->struct_mutex);
789
790         return ret;
791 }
792
793 /**
794  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
795  * the memory and maps it using kmap_atomic for copying.
796  *
797  * This avoids taking mmap_sem for faulting on the user's address while the
798  * struct_mutex is held.
799  */
800 static int
801 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
802                            struct drm_i915_gem_pwrite *args,
803                            struct drm_file *file_priv)
804 {
805         struct drm_i915_gem_object *obj_priv = obj->driver_private;
806         struct mm_struct *mm = current->mm;
807         struct page **user_pages;
808         ssize_t remain;
809         loff_t offset, pinned_pages, i;
810         loff_t first_data_page, last_data_page, num_pages;
811         int shmem_page_index, shmem_page_offset;
812         int data_page_index,  data_page_offset;
813         int page_length;
814         int ret;
815         uint64_t data_ptr = args->data_ptr;
816         int do_bit17_swizzling;
817
818         remain = args->size;
819
820         /* Pin the user pages containing the data.  We can't fault while
821          * holding the struct mutex, and all of the pwrite implementations
822          * want to hold it while dereferencing the user data.
823          */
824         first_data_page = data_ptr / PAGE_SIZE;
825         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
826         num_pages = last_data_page - first_data_page + 1;
827
828         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
829         if (user_pages == NULL)
830                 return -ENOMEM;
831
832         down_read(&mm->mmap_sem);
833         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
834                                       num_pages, 0, 0, user_pages, NULL);
835         up_read(&mm->mmap_sem);
836         if (pinned_pages < num_pages) {
837                 ret = -EFAULT;
838                 goto fail_put_user_pages;
839         }
840
841         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
842
843         mutex_lock(&dev->struct_mutex);
844
845         ret = i915_gem_object_get_pages(obj);
846         if (ret != 0)
847                 goto fail_unlock;
848
849         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
850         if (ret != 0)
851                 goto fail_put_pages;
852
853         obj_priv = obj->driver_private;
854         offset = args->offset;
855         obj_priv->dirty = 1;
856
857         while (remain > 0) {
858                 /* Operation in this page
859                  *
860                  * shmem_page_index = page number within shmem file
861                  * shmem_page_offset = offset within page in shmem file
862                  * data_page_index = page number in get_user_pages return
863                  * data_page_offset = offset with data_page_index page.
864                  * page_length = bytes to copy for this page
865                  */
866                 shmem_page_index = offset / PAGE_SIZE;
867                 shmem_page_offset = offset & ~PAGE_MASK;
868                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
869                 data_page_offset = data_ptr & ~PAGE_MASK;
870
871                 page_length = remain;
872                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
873                         page_length = PAGE_SIZE - shmem_page_offset;
874                 if ((data_page_offset + page_length) > PAGE_SIZE)
875                         page_length = PAGE_SIZE - data_page_offset;
876
877                 if (do_bit17_swizzling) {
878                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
879                                                     shmem_page_offset,
880                                                     user_pages[data_page_index],
881                                                     data_page_offset,
882                                                     page_length,
883                                                     0);
884                 } else {
885                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
886                                               shmem_page_offset,
887                                               user_pages[data_page_index],
888                                               data_page_offset,
889                                               page_length);
890                 }
891                 if (ret)
892                         goto fail_put_pages;
893
894                 remain -= page_length;
895                 data_ptr += page_length;
896                 offset += page_length;
897         }
898
899 fail_put_pages:
900         i915_gem_object_put_pages(obj);
901 fail_unlock:
902         mutex_unlock(&dev->struct_mutex);
903 fail_put_user_pages:
904         for (i = 0; i < pinned_pages; i++)
905                 page_cache_release(user_pages[i]);
906         drm_free_large(user_pages);
907
908         return ret;
909 }
910
911 /**
912  * Writes data to the object referenced by handle.
913  *
914  * On error, the contents of the buffer that were to be modified are undefined.
915  */
916 int
917 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
918                       struct drm_file *file_priv)
919 {
920         struct drm_i915_gem_pwrite *args = data;
921         struct drm_gem_object *obj;
922         struct drm_i915_gem_object *obj_priv;
923         int ret = 0;
924
925         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
926         if (obj == NULL)
927                 return -EBADF;
928         obj_priv = obj->driver_private;
929
930         /* Bounds check destination.
931          *
932          * XXX: This could use review for overflow issues...
933          */
934         if (args->offset > obj->size || args->size > obj->size ||
935             args->offset + args->size > obj->size) {
936                 drm_gem_object_unreference(obj);
937                 return -EINVAL;
938         }
939
940         /* We can only do the GTT pwrite on untiled buffers, as otherwise
941          * it would end up going through the fenced access, and we'll get
942          * different detiling behavior between reading and writing.
943          * pread/pwrite currently are reading and writing from the CPU
944          * perspective, requiring manual detiling by the client.
945          */
946         if (obj_priv->phys_obj)
947                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
948         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
949                  dev->gtt_total != 0) {
950                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
951                 if (ret == -EFAULT) {
952                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
953                                                        file_priv);
954                 }
955         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
956                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
957         } else {
958                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
959                 if (ret == -EFAULT) {
960                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
961                                                          file_priv);
962                 }
963         }
964
965 #if WATCH_PWRITE
966         if (ret)
967                 DRM_INFO("pwrite failed %d\n", ret);
968 #endif
969
970         drm_gem_object_unreference(obj);
971
972         return ret;
973 }
974
975 /**
976  * Called when user space prepares to use an object with the CPU, either
977  * through the mmap ioctl's mapping or a GTT mapping.
978  */
979 int
980 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
981                           struct drm_file *file_priv)
982 {
983         struct drm_i915_private *dev_priv = dev->dev_private;
984         struct drm_i915_gem_set_domain *args = data;
985         struct drm_gem_object *obj;
986         struct drm_i915_gem_object *obj_priv;
987         uint32_t read_domains = args->read_domains;
988         uint32_t write_domain = args->write_domain;
989         int ret;
990
991         if (!(dev->driver->driver_features & DRIVER_GEM))
992                 return -ENODEV;
993
994         /* Only handle setting domains to types used by the CPU. */
995         if (write_domain & I915_GEM_GPU_DOMAINS)
996                 return -EINVAL;
997
998         if (read_domains & I915_GEM_GPU_DOMAINS)
999                 return -EINVAL;
1000
1001         /* Having something in the write domain implies it's in the read
1002          * domain, and only that read domain.  Enforce that in the request.
1003          */
1004         if (write_domain != 0 && read_domains != write_domain)
1005                 return -EINVAL;
1006
1007         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008         if (obj == NULL)
1009                 return -EBADF;
1010         obj_priv = obj->driver_private;
1011
1012         mutex_lock(&dev->struct_mutex);
1013
1014         intel_mark_busy(dev, obj);
1015
1016 #if WATCH_BUF
1017         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1018                  obj, obj->size, read_domains, write_domain);
1019 #endif
1020         if (read_domains & I915_GEM_DOMAIN_GTT) {
1021                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1022
1023                 /* Update the LRU on the fence for the CPU access that's
1024                  * about to occur.
1025                  */
1026                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1027                         list_move_tail(&obj_priv->fence_list,
1028                                        &dev_priv->mm.fence_list);
1029                 }
1030
1031                 /* Silently promote "you're not bound, there was nothing to do"
1032                  * to success, since the client was just asking us to
1033                  * make sure everything was done.
1034                  */
1035                 if (ret == -EINVAL)
1036                         ret = 0;
1037         } else {
1038                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1039         }
1040
1041         drm_gem_object_unreference(obj);
1042         mutex_unlock(&dev->struct_mutex);
1043         return ret;
1044 }
1045
1046 /**
1047  * Called when user space has done writes to this buffer
1048  */
1049 int
1050 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1051                       struct drm_file *file_priv)
1052 {
1053         struct drm_i915_gem_sw_finish *args = data;
1054         struct drm_gem_object *obj;
1055         struct drm_i915_gem_object *obj_priv;
1056         int ret = 0;
1057
1058         if (!(dev->driver->driver_features & DRIVER_GEM))
1059                 return -ENODEV;
1060
1061         mutex_lock(&dev->struct_mutex);
1062         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1063         if (obj == NULL) {
1064                 mutex_unlock(&dev->struct_mutex);
1065                 return -EBADF;
1066         }
1067
1068 #if WATCH_BUF
1069         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1070                  __func__, args->handle, obj, obj->size);
1071 #endif
1072         obj_priv = obj->driver_private;
1073
1074         /* Pinned buffers may be scanout, so flush the cache */
1075         if (obj_priv->pin_count)
1076                 i915_gem_object_flush_cpu_write_domain(obj);
1077
1078         drm_gem_object_unreference(obj);
1079         mutex_unlock(&dev->struct_mutex);
1080         return ret;
1081 }
1082
1083 /**
1084  * Maps the contents of an object, returning the address it is mapped
1085  * into.
1086  *
1087  * While the mapping holds a reference on the contents of the object, it doesn't
1088  * imply a ref on the object itself.
1089  */
1090 int
1091 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1092                    struct drm_file *file_priv)
1093 {
1094         struct drm_i915_gem_mmap *args = data;
1095         struct drm_gem_object *obj;
1096         loff_t offset;
1097         unsigned long addr;
1098
1099         if (!(dev->driver->driver_features & DRIVER_GEM))
1100                 return -ENODEV;
1101
1102         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1103         if (obj == NULL)
1104                 return -EBADF;
1105
1106         offset = args->offset;
1107
1108         down_write(&current->mm->mmap_sem);
1109         addr = do_mmap(obj->filp, 0, args->size,
1110                        PROT_READ | PROT_WRITE, MAP_SHARED,
1111                        args->offset);
1112         up_write(&current->mm->mmap_sem);
1113         mutex_lock(&dev->struct_mutex);
1114         drm_gem_object_unreference(obj);
1115         mutex_unlock(&dev->struct_mutex);
1116         if (IS_ERR((void *)addr))
1117                 return addr;
1118
1119         args->addr_ptr = (uint64_t) addr;
1120
1121         return 0;
1122 }
1123
1124 /**
1125  * i915_gem_fault - fault a page into the GTT
1126  * vma: VMA in question
1127  * vmf: fault info
1128  *
1129  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1130  * from userspace.  The fault handler takes care of binding the object to
1131  * the GTT (if needed), allocating and programming a fence register (again,
1132  * only if needed based on whether the old reg is still valid or the object
1133  * is tiled) and inserting a new PTE into the faulting process.
1134  *
1135  * Note that the faulting process may involve evicting existing objects
1136  * from the GTT and/or fence registers to make room.  So performance may
1137  * suffer if the GTT working set is large or there are few fence registers
1138  * left.
1139  */
1140 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1141 {
1142         struct drm_gem_object *obj = vma->vm_private_data;
1143         struct drm_device *dev = obj->dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1146         pgoff_t page_offset;
1147         unsigned long pfn;
1148         int ret = 0;
1149         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1150
1151         /* We don't use vmf->pgoff since that has the fake offset */
1152         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1153                 PAGE_SHIFT;
1154
1155         /* Now bind it into the GTT if needed */
1156         mutex_lock(&dev->struct_mutex);
1157         if (!obj_priv->gtt_space) {
1158                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1159                 if (ret) {
1160                         mutex_unlock(&dev->struct_mutex);
1161                         return VM_FAULT_SIGBUS;
1162                 }
1163
1164                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1165                 if (ret) {
1166                         mutex_unlock(&dev->struct_mutex);
1167                         return VM_FAULT_SIGBUS;
1168                 }
1169
1170                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1171         }
1172
1173         /* Need a new fence register? */
1174         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1175                 ret = i915_gem_object_get_fence_reg(obj);
1176                 if (ret) {
1177                         mutex_unlock(&dev->struct_mutex);
1178                         return VM_FAULT_SIGBUS;
1179                 }
1180         }
1181
1182         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1183                 page_offset;
1184
1185         /* Finally, remap it using the new GTT offset */
1186         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1187
1188         mutex_unlock(&dev->struct_mutex);
1189
1190         switch (ret) {
1191         case -ENOMEM:
1192         case -EAGAIN:
1193                 return VM_FAULT_OOM;
1194         case -EFAULT:
1195         case -EINVAL:
1196                 return VM_FAULT_SIGBUS;
1197         default:
1198                 return VM_FAULT_NOPAGE;
1199         }
1200 }
1201
1202 /**
1203  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1204  * @obj: obj in question
1205  *
1206  * GEM memory mapping works by handing back to userspace a fake mmap offset
1207  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1208  * up the object based on the offset and sets up the various memory mapping
1209  * structures.
1210  *
1211  * This routine allocates and attaches a fake offset for @obj.
1212  */
1213 static int
1214 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1215 {
1216         struct drm_device *dev = obj->dev;
1217         struct drm_gem_mm *mm = dev->mm_private;
1218         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1219         struct drm_map_list *list;
1220         struct drm_local_map *map;
1221         int ret = 0;
1222
1223         /* Set the object up for mmap'ing */
1224         list = &obj->map_list;
1225         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1226         if (!list->map)
1227                 return -ENOMEM;
1228
1229         map = list->map;
1230         map->type = _DRM_GEM;
1231         map->size = obj->size;
1232         map->handle = obj;
1233
1234         /* Get a DRM GEM mmap offset allocated... */
1235         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1236                                                     obj->size / PAGE_SIZE, 0, 0);
1237         if (!list->file_offset_node) {
1238                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1239                 ret = -ENOMEM;
1240                 goto out_free_list;
1241         }
1242
1243         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1244                                                   obj->size / PAGE_SIZE, 0);
1245         if (!list->file_offset_node) {
1246                 ret = -ENOMEM;
1247                 goto out_free_list;
1248         }
1249
1250         list->hash.key = list->file_offset_node->start;
1251         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1252                 DRM_ERROR("failed to add to map hash\n");
1253                 goto out_free_mm;
1254         }
1255
1256         /* By now we should be all set, any drm_mmap request on the offset
1257          * below will get to our mmap & fault handler */
1258         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1259
1260         return 0;
1261
1262 out_free_mm:
1263         drm_mm_put_block(list->file_offset_node);
1264 out_free_list:
1265         kfree(list->map);
1266
1267         return ret;
1268 }
1269
1270 /**
1271  * i915_gem_release_mmap - remove physical page mappings
1272  * @obj: obj in question
1273  *
1274  * Preserve the reservation of the mmaping with the DRM core code, but
1275  * relinquish ownership of the pages back to the system.
1276  *
1277  * It is vital that we remove the page mapping if we have mapped a tiled
1278  * object through the GTT and then lose the fence register due to
1279  * resource pressure. Similarly if the object has been moved out of the
1280  * aperture, than pages mapped into userspace must be revoked. Removing the
1281  * mapping will then trigger a page fault on the next user access, allowing
1282  * fixup by i915_gem_fault().
1283  */
1284 void
1285 i915_gem_release_mmap(struct drm_gem_object *obj)
1286 {
1287         struct drm_device *dev = obj->dev;
1288         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1289
1290         if (dev->dev_mapping)
1291                 unmap_mapping_range(dev->dev_mapping,
1292                                     obj_priv->mmap_offset, obj->size, 1);
1293 }
1294
1295 static void
1296 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1297 {
1298         struct drm_device *dev = obj->dev;
1299         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1300         struct drm_gem_mm *mm = dev->mm_private;
1301         struct drm_map_list *list;
1302
1303         list = &obj->map_list;
1304         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1305
1306         if (list->file_offset_node) {
1307                 drm_mm_put_block(list->file_offset_node);
1308                 list->file_offset_node = NULL;
1309         }
1310
1311         if (list->map) {
1312                 kfree(list->map);
1313                 list->map = NULL;
1314         }
1315
1316         obj_priv->mmap_offset = 0;
1317 }
1318
1319 /**
1320  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1321  * @obj: object to check
1322  *
1323  * Return the required GTT alignment for an object, taking into account
1324  * potential fence register mapping if needed.
1325  */
1326 static uint32_t
1327 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1328 {
1329         struct drm_device *dev = obj->dev;
1330         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1331         int start, i;
1332
1333         /*
1334          * Minimum alignment is 4k (GTT page size), but might be greater
1335          * if a fence register is needed for the object.
1336          */
1337         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1338                 return 4096;
1339
1340         /*
1341          * Previous chips need to be aligned to the size of the smallest
1342          * fence register that can contain the object.
1343          */
1344         if (IS_I9XX(dev))
1345                 start = 1024*1024;
1346         else
1347                 start = 512*1024;
1348
1349         for (i = start; i < obj->size; i <<= 1)
1350                 ;
1351
1352         return i;
1353 }
1354
1355 /**
1356  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1357  * @dev: DRM device
1358  * @data: GTT mapping ioctl data
1359  * @file_priv: GEM object info
1360  *
1361  * Simply returns the fake offset to userspace so it can mmap it.
1362  * The mmap call will end up in drm_gem_mmap(), which will set things
1363  * up so we can get faults in the handler above.
1364  *
1365  * The fault handler will take care of binding the object into the GTT
1366  * (since it may have been evicted to make room for something), allocating
1367  * a fence register, and mapping the appropriate aperture address into
1368  * userspace.
1369  */
1370 int
1371 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1372                         struct drm_file *file_priv)
1373 {
1374         struct drm_i915_gem_mmap_gtt *args = data;
1375         struct drm_i915_private *dev_priv = dev->dev_private;
1376         struct drm_gem_object *obj;
1377         struct drm_i915_gem_object *obj_priv;
1378         int ret;
1379
1380         if (!(dev->driver->driver_features & DRIVER_GEM))
1381                 return -ENODEV;
1382
1383         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1384         if (obj == NULL)
1385                 return -EBADF;
1386
1387         mutex_lock(&dev->struct_mutex);
1388
1389         obj_priv = obj->driver_private;
1390
1391         if (!obj_priv->mmap_offset) {
1392                 ret = i915_gem_create_mmap_offset(obj);
1393                 if (ret) {
1394                         drm_gem_object_unreference(obj);
1395                         mutex_unlock(&dev->struct_mutex);
1396                         return ret;
1397                 }
1398         }
1399
1400         args->offset = obj_priv->mmap_offset;
1401
1402         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1403
1404         /* Make sure the alignment is correct for fence regs etc */
1405         if (obj_priv->agp_mem &&
1406             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1407                 drm_gem_object_unreference(obj);
1408                 mutex_unlock(&dev->struct_mutex);
1409                 return -EINVAL;
1410         }
1411
1412         /*
1413          * Pull it into the GTT so that we have a page list (makes the
1414          * initial fault faster and any subsequent flushing possible).
1415          */
1416         if (!obj_priv->agp_mem) {
1417                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1418                 if (ret) {
1419                         drm_gem_object_unreference(obj);
1420                         mutex_unlock(&dev->struct_mutex);
1421                         return ret;
1422                 }
1423                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1424         }
1425
1426         drm_gem_object_unreference(obj);
1427         mutex_unlock(&dev->struct_mutex);
1428
1429         return 0;
1430 }
1431
1432 void
1433 i915_gem_object_put_pages(struct drm_gem_object *obj)
1434 {
1435         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1436         int page_count = obj->size / PAGE_SIZE;
1437         int i;
1438
1439         BUG_ON(obj_priv->pages_refcount == 0);
1440
1441         if (--obj_priv->pages_refcount != 0)
1442                 return;
1443
1444         if (obj_priv->tiling_mode != I915_TILING_NONE)
1445                 i915_gem_object_save_bit_17_swizzle(obj);
1446
1447         for (i = 0; i < page_count; i++)
1448                 if (obj_priv->pages[i] != NULL) {
1449                         if (obj_priv->dirty)
1450                                 set_page_dirty(obj_priv->pages[i]);
1451                         mark_page_accessed(obj_priv->pages[i]);
1452                         page_cache_release(obj_priv->pages[i]);
1453                 }
1454         obj_priv->dirty = 0;
1455
1456         drm_free_large(obj_priv->pages);
1457         obj_priv->pages = NULL;
1458 }
1459
1460 static void
1461 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1462 {
1463         struct drm_device *dev = obj->dev;
1464         drm_i915_private_t *dev_priv = dev->dev_private;
1465         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1466
1467         /* Add a reference if we're newly entering the active list. */
1468         if (!obj_priv->active) {
1469                 drm_gem_object_reference(obj);
1470                 obj_priv->active = 1;
1471         }
1472         /* Move from whatever list we were on to the tail of execution. */
1473         spin_lock(&dev_priv->mm.active_list_lock);
1474         list_move_tail(&obj_priv->list,
1475                        &dev_priv->mm.active_list);
1476         spin_unlock(&dev_priv->mm.active_list_lock);
1477         obj_priv->last_rendering_seqno = seqno;
1478 }
1479
1480 static void
1481 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1482 {
1483         struct drm_device *dev = obj->dev;
1484         drm_i915_private_t *dev_priv = dev->dev_private;
1485         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1486
1487         BUG_ON(!obj_priv->active);
1488         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1489         obj_priv->last_rendering_seqno = 0;
1490 }
1491
1492 static void
1493 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1494 {
1495         struct drm_device *dev = obj->dev;
1496         drm_i915_private_t *dev_priv = dev->dev_private;
1497         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1498
1499         i915_verify_inactive(dev, __FILE__, __LINE__);
1500         if (obj_priv->pin_count != 0)
1501                 list_del_init(&obj_priv->list);
1502         else
1503                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1504
1505         obj_priv->last_rendering_seqno = 0;
1506         if (obj_priv->active) {
1507                 obj_priv->active = 0;
1508                 drm_gem_object_unreference(obj);
1509         }
1510         i915_verify_inactive(dev, __FILE__, __LINE__);
1511 }
1512
1513 /**
1514  * Creates a new sequence number, emitting a write of it to the status page
1515  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1516  *
1517  * Must be called with struct_lock held.
1518  *
1519  * Returned sequence numbers are nonzero on success.
1520  */
1521 static uint32_t
1522 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1523                  uint32_t flush_domains)
1524 {
1525         drm_i915_private_t *dev_priv = dev->dev_private;
1526         struct drm_i915_file_private *i915_file_priv = NULL;
1527         struct drm_i915_gem_request *request;
1528         uint32_t seqno;
1529         int was_empty;
1530         RING_LOCALS;
1531
1532         if (file_priv != NULL)
1533                 i915_file_priv = file_priv->driver_priv;
1534
1535         request = kzalloc(sizeof(*request), GFP_KERNEL);
1536         if (request == NULL)
1537                 return 0;
1538
1539         /* Grab the seqno we're going to make this request be, and bump the
1540          * next (skipping 0 so it can be the reserved no-seqno value).
1541          */
1542         seqno = dev_priv->mm.next_gem_seqno;
1543         dev_priv->mm.next_gem_seqno++;
1544         if (dev_priv->mm.next_gem_seqno == 0)
1545                 dev_priv->mm.next_gem_seqno++;
1546
1547         BEGIN_LP_RING(4);
1548         OUT_RING(MI_STORE_DWORD_INDEX);
1549         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1550         OUT_RING(seqno);
1551
1552         OUT_RING(MI_USER_INTERRUPT);
1553         ADVANCE_LP_RING();
1554
1555         DRM_DEBUG("%d\n", seqno);
1556
1557         request->seqno = seqno;
1558         request->emitted_jiffies = jiffies;
1559         was_empty = list_empty(&dev_priv->mm.request_list);
1560         list_add_tail(&request->list, &dev_priv->mm.request_list);
1561         if (i915_file_priv) {
1562                 list_add_tail(&request->client_list,
1563                               &i915_file_priv->mm.request_list);
1564         } else {
1565                 INIT_LIST_HEAD(&request->client_list);
1566         }
1567
1568         /* Associate any objects on the flushing list matching the write
1569          * domain we're flushing with our flush.
1570          */
1571         if (flush_domains != 0) {
1572                 struct drm_i915_gem_object *obj_priv, *next;
1573
1574                 list_for_each_entry_safe(obj_priv, next,
1575                                          &dev_priv->mm.flushing_list, list) {
1576                         struct drm_gem_object *obj = obj_priv->obj;
1577
1578                         if ((obj->write_domain & flush_domains) ==
1579                             obj->write_domain) {
1580                                 obj->write_domain = 0;
1581                                 i915_gem_object_move_to_active(obj, seqno);
1582                         }
1583                 }
1584
1585         }
1586
1587         if (!dev_priv->mm.suspended) {
1588                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1589                 if (was_empty)
1590                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1591         }
1592         return seqno;
1593 }
1594
1595 /**
1596  * Command execution barrier
1597  *
1598  * Ensures that all commands in the ring are finished
1599  * before signalling the CPU
1600  */
1601 static uint32_t
1602 i915_retire_commands(struct drm_device *dev)
1603 {
1604         drm_i915_private_t *dev_priv = dev->dev_private;
1605         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1606         uint32_t flush_domains = 0;
1607         RING_LOCALS;
1608
1609         /* The sampler always gets flushed on i965 (sigh) */
1610         if (IS_I965G(dev))
1611                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1612         BEGIN_LP_RING(2);
1613         OUT_RING(cmd);
1614         OUT_RING(0); /* noop */
1615         ADVANCE_LP_RING();
1616         return flush_domains;
1617 }
1618
1619 /**
1620  * Moves buffers associated only with the given active seqno from the active
1621  * to inactive list, potentially freeing them.
1622  */
1623 static void
1624 i915_gem_retire_request(struct drm_device *dev,
1625                         struct drm_i915_gem_request *request)
1626 {
1627         drm_i915_private_t *dev_priv = dev->dev_private;
1628
1629         /* Move any buffers on the active list that are no longer referenced
1630          * by the ringbuffer to the flushing/inactive lists as appropriate.
1631          */
1632         spin_lock(&dev_priv->mm.active_list_lock);
1633         while (!list_empty(&dev_priv->mm.active_list)) {
1634                 struct drm_gem_object *obj;
1635                 struct drm_i915_gem_object *obj_priv;
1636
1637                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1638                                             struct drm_i915_gem_object,
1639                                             list);
1640                 obj = obj_priv->obj;
1641
1642                 /* If the seqno being retired doesn't match the oldest in the
1643                  * list, then the oldest in the list must still be newer than
1644                  * this seqno.
1645                  */
1646                 if (obj_priv->last_rendering_seqno != request->seqno)
1647                         goto out;
1648
1649 #if WATCH_LRU
1650                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1651                          __func__, request->seqno, obj);
1652 #endif
1653
1654                 if (obj->write_domain != 0)
1655                         i915_gem_object_move_to_flushing(obj);
1656                 else {
1657                         /* Take a reference on the object so it won't be
1658                          * freed while the spinlock is held.  The list
1659                          * protection for this spinlock is safe when breaking
1660                          * the lock like this since the next thing we do
1661                          * is just get the head of the list again.
1662                          */
1663                         drm_gem_object_reference(obj);
1664                         i915_gem_object_move_to_inactive(obj);
1665                         spin_unlock(&dev_priv->mm.active_list_lock);
1666                         drm_gem_object_unreference(obj);
1667                         spin_lock(&dev_priv->mm.active_list_lock);
1668                 }
1669         }
1670 out:
1671         spin_unlock(&dev_priv->mm.active_list_lock);
1672 }
1673
1674 /**
1675  * Returns true if seq1 is later than seq2.
1676  */
1677 bool
1678 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1679 {
1680         return (int32_t)(seq1 - seq2) >= 0;
1681 }
1682
1683 uint32_t
1684 i915_get_gem_seqno(struct drm_device *dev)
1685 {
1686         drm_i915_private_t *dev_priv = dev->dev_private;
1687
1688         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1689 }
1690
1691 /**
1692  * This function clears the request list as sequence numbers are passed.
1693  */
1694 void
1695 i915_gem_retire_requests(struct drm_device *dev)
1696 {
1697         drm_i915_private_t *dev_priv = dev->dev_private;
1698         uint32_t seqno;
1699
1700         if (!dev_priv->hw_status_page)
1701                 return;
1702
1703         seqno = i915_get_gem_seqno(dev);
1704
1705         while (!list_empty(&dev_priv->mm.request_list)) {
1706                 struct drm_i915_gem_request *request;
1707                 uint32_t retiring_seqno;
1708
1709                 request = list_first_entry(&dev_priv->mm.request_list,
1710                                            struct drm_i915_gem_request,
1711                                            list);
1712                 retiring_seqno = request->seqno;
1713
1714                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1715                     atomic_read(&dev_priv->mm.wedged)) {
1716                         i915_gem_retire_request(dev, request);
1717
1718                         list_del(&request->list);
1719                         list_del(&request->client_list);
1720                         kfree(request);
1721                 } else
1722                         break;
1723         }
1724 }
1725
1726 void
1727 i915_gem_retire_work_handler(struct work_struct *work)
1728 {
1729         drm_i915_private_t *dev_priv;
1730         struct drm_device *dev;
1731
1732         dev_priv = container_of(work, drm_i915_private_t,
1733                                 mm.retire_work.work);
1734         dev = dev_priv->dev;
1735
1736         mutex_lock(&dev->struct_mutex);
1737         i915_gem_retire_requests(dev);
1738         if (!dev_priv->mm.suspended &&
1739             !list_empty(&dev_priv->mm.request_list))
1740                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1741         mutex_unlock(&dev->struct_mutex);
1742 }
1743
1744 /**
1745  * Waits for a sequence number to be signaled, and cleans up the
1746  * request and object lists appropriately for that event.
1747  */
1748 static int
1749 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1750 {
1751         drm_i915_private_t *dev_priv = dev->dev_private;
1752         u32 ier;
1753         int ret = 0;
1754
1755         BUG_ON(seqno == 0);
1756
1757         if (atomic_read(&dev_priv->mm.wedged))
1758                 return -EIO;
1759
1760         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1761                 if (IS_IGDNG(dev))
1762                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1763                 else
1764                         ier = I915_READ(IER);
1765                 if (!ier) {
1766                         DRM_ERROR("something (likely vbetool) disabled "
1767                                   "interrupts, re-enabling\n");
1768                         i915_driver_irq_preinstall(dev);
1769                         i915_driver_irq_postinstall(dev);
1770                 }
1771
1772                 dev_priv->mm.waiting_gem_seqno = seqno;
1773                 i915_user_irq_get(dev);
1774                 ret = wait_event_interruptible(dev_priv->irq_queue,
1775                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1776                                                                  seqno) ||
1777                                                atomic_read(&dev_priv->mm.wedged));
1778                 i915_user_irq_put(dev);
1779                 dev_priv->mm.waiting_gem_seqno = 0;
1780         }
1781         if (atomic_read(&dev_priv->mm.wedged))
1782                 ret = -EIO;
1783
1784         if (ret && ret != -ERESTARTSYS)
1785                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1786                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1787
1788         /* Directly dispatch request retiring.  While we have the work queue
1789          * to handle this, the waiter on a request often wants an associated
1790          * buffer to have made it to the inactive list, and we would need
1791          * a separate wait queue to handle that.
1792          */
1793         if (ret == 0)
1794                 i915_gem_retire_requests(dev);
1795
1796         return ret;
1797 }
1798
1799 static void
1800 i915_gem_flush(struct drm_device *dev,
1801                uint32_t invalidate_domains,
1802                uint32_t flush_domains)
1803 {
1804         drm_i915_private_t *dev_priv = dev->dev_private;
1805         uint32_t cmd;
1806         RING_LOCALS;
1807
1808 #if WATCH_EXEC
1809         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1810                   invalidate_domains, flush_domains);
1811 #endif
1812
1813         if (flush_domains & I915_GEM_DOMAIN_CPU)
1814                 drm_agp_chipset_flush(dev);
1815
1816         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1817                 /*
1818                  * read/write caches:
1819                  *
1820                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1821                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1822                  * also flushed at 2d versus 3d pipeline switches.
1823                  *
1824                  * read-only caches:
1825                  *
1826                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1827                  * MI_READ_FLUSH is set, and is always flushed on 965.
1828                  *
1829                  * I915_GEM_DOMAIN_COMMAND may not exist?
1830                  *
1831                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1832                  * invalidated when MI_EXE_FLUSH is set.
1833                  *
1834                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1835                  * invalidated with every MI_FLUSH.
1836                  *
1837                  * TLBs:
1838                  *
1839                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1840                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1841                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1842                  * are flushed at any MI_FLUSH.
1843                  */
1844
1845                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1846                 if ((invalidate_domains|flush_domains) &
1847                     I915_GEM_DOMAIN_RENDER)
1848                         cmd &= ~MI_NO_WRITE_FLUSH;
1849                 if (!IS_I965G(dev)) {
1850                         /*
1851                          * On the 965, the sampler cache always gets flushed
1852                          * and this bit is reserved.
1853                          */
1854                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1855                                 cmd |= MI_READ_FLUSH;
1856                 }
1857                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1858                         cmd |= MI_EXE_FLUSH;
1859
1860 #if WATCH_EXEC
1861                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1862 #endif
1863                 BEGIN_LP_RING(2);
1864                 OUT_RING(cmd);
1865                 OUT_RING(0); /* noop */
1866                 ADVANCE_LP_RING();
1867         }
1868 }
1869
1870 /**
1871  * Ensures that all rendering to the object has completed and the object is
1872  * safe to unbind from the GTT or access from the CPU.
1873  */
1874 static int
1875 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1876 {
1877         struct drm_device *dev = obj->dev;
1878         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1879         int ret;
1880
1881         /* This function only exists to support waiting for existing rendering,
1882          * not for emitting required flushes.
1883          */
1884         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1885
1886         /* If there is rendering queued on the buffer being evicted, wait for
1887          * it.
1888          */
1889         if (obj_priv->active) {
1890 #if WATCH_BUF
1891                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1892                           __func__, obj, obj_priv->last_rendering_seqno);
1893 #endif
1894                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1895                 if (ret != 0)
1896                         return ret;
1897         }
1898
1899         return 0;
1900 }
1901
1902 /**
1903  * Unbinds an object from the GTT aperture.
1904  */
1905 int
1906 i915_gem_object_unbind(struct drm_gem_object *obj)
1907 {
1908         struct drm_device *dev = obj->dev;
1909         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1910         int ret = 0;
1911
1912 #if WATCH_BUF
1913         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1914         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1915 #endif
1916         if (obj_priv->gtt_space == NULL)
1917                 return 0;
1918
1919         if (obj_priv->pin_count != 0) {
1920                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1921                 return -EINVAL;
1922         }
1923
1924         /* blow away mappings if mapped through GTT */
1925         i915_gem_release_mmap(obj);
1926
1927         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1928                 i915_gem_clear_fence_reg(obj);
1929
1930         /* Move the object to the CPU domain to ensure that
1931          * any possible CPU writes while it's not in the GTT
1932          * are flushed when we go to remap it. This will
1933          * also ensure that all pending GPU writes are finished
1934          * before we unbind.
1935          */
1936         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1937         if (ret) {
1938                 if (ret != -ERESTARTSYS)
1939                         DRM_ERROR("set_domain failed: %d\n", ret);
1940                 return ret;
1941         }
1942
1943         BUG_ON(obj_priv->active);
1944
1945         if (obj_priv->agp_mem != NULL) {
1946                 drm_unbind_agp(obj_priv->agp_mem);
1947                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1948                 obj_priv->agp_mem = NULL;
1949         }
1950
1951         i915_gem_object_put_pages(obj);
1952
1953         if (obj_priv->gtt_space) {
1954                 atomic_dec(&dev->gtt_count);
1955                 atomic_sub(obj->size, &dev->gtt_memory);
1956
1957                 drm_mm_put_block(obj_priv->gtt_space);
1958                 obj_priv->gtt_space = NULL;
1959         }
1960
1961         /* Remove ourselves from the LRU list if present. */
1962         if (!list_empty(&obj_priv->list))
1963                 list_del_init(&obj_priv->list);
1964
1965         return 0;
1966 }
1967
1968 static int
1969 i915_gem_evict_something(struct drm_device *dev)
1970 {
1971         drm_i915_private_t *dev_priv = dev->dev_private;
1972         struct drm_gem_object *obj;
1973         struct drm_i915_gem_object *obj_priv;
1974         int ret = 0;
1975
1976         for (;;) {
1977                 /* If there's an inactive buffer available now, grab it
1978                  * and be done.
1979                  */
1980                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1981                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1982                                                     struct drm_i915_gem_object,
1983                                                     list);
1984                         obj = obj_priv->obj;
1985                         BUG_ON(obj_priv->pin_count != 0);
1986 #if WATCH_LRU
1987                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1988 #endif
1989                         BUG_ON(obj_priv->active);
1990
1991                         /* Wait on the rendering and unbind the buffer. */
1992                         ret = i915_gem_object_unbind(obj);
1993                         break;
1994                 }
1995
1996                 /* If we didn't get anything, but the ring is still processing
1997                  * things, wait for one of those things to finish and hopefully
1998                  * leave us a buffer to evict.
1999                  */
2000                 if (!list_empty(&dev_priv->mm.request_list)) {
2001                         struct drm_i915_gem_request *request;
2002
2003                         request = list_first_entry(&dev_priv->mm.request_list,
2004                                                    struct drm_i915_gem_request,
2005                                                    list);
2006
2007                         ret = i915_wait_request(dev, request->seqno);
2008                         if (ret)
2009                                 break;
2010
2011                         /* if waiting caused an object to become inactive,
2012                          * then loop around and wait for it. Otherwise, we
2013                          * assume that waiting freed and unbound something,
2014                          * so there should now be some space in the GTT
2015                          */
2016                         if (!list_empty(&dev_priv->mm.inactive_list))
2017                                 continue;
2018                         break;
2019                 }
2020
2021                 /* If we didn't have anything on the request list but there
2022                  * are buffers awaiting a flush, emit one and try again.
2023                  * When we wait on it, those buffers waiting for that flush
2024                  * will get moved to inactive.
2025                  */
2026                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2027                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2028                                                     struct drm_i915_gem_object,
2029                                                     list);
2030                         obj = obj_priv->obj;
2031
2032                         i915_gem_flush(dev,
2033                                        obj->write_domain,
2034                                        obj->write_domain);
2035                         i915_add_request(dev, NULL, obj->write_domain);
2036
2037                         obj = NULL;
2038                         continue;
2039                 }
2040
2041                 DRM_ERROR("inactive empty %d request empty %d "
2042                           "flushing empty %d\n",
2043                           list_empty(&dev_priv->mm.inactive_list),
2044                           list_empty(&dev_priv->mm.request_list),
2045                           list_empty(&dev_priv->mm.flushing_list));
2046                 /* If we didn't do any of the above, there's nothing to be done
2047                  * and we just can't fit it in.
2048                  */
2049                 return -ENOSPC;
2050         }
2051         return ret;
2052 }
2053
2054 static int
2055 i915_gem_evict_everything(struct drm_device *dev)
2056 {
2057         int ret;
2058
2059         for (;;) {
2060                 ret = i915_gem_evict_something(dev);
2061                 if (ret != 0)
2062                         break;
2063         }
2064         if (ret == -ENOSPC)
2065                 return 0;
2066         return ret;
2067 }
2068
2069 int
2070 i915_gem_object_get_pages(struct drm_gem_object *obj)
2071 {
2072         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2073         int page_count, i;
2074         struct address_space *mapping;
2075         struct inode *inode;
2076         struct page *page;
2077         int ret;
2078
2079         if (obj_priv->pages_refcount++ != 0)
2080                 return 0;
2081
2082         /* Get the list of pages out of our struct file.  They'll be pinned
2083          * at this point until we release them.
2084          */
2085         page_count = obj->size / PAGE_SIZE;
2086         BUG_ON(obj_priv->pages != NULL);
2087         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2088         if (obj_priv->pages == NULL) {
2089                 DRM_ERROR("Faled to allocate page list\n");
2090                 obj_priv->pages_refcount--;
2091                 return -ENOMEM;
2092         }
2093
2094         inode = obj->filp->f_path.dentry->d_inode;
2095         mapping = inode->i_mapping;
2096         for (i = 0; i < page_count; i++) {
2097                 page = read_mapping_page(mapping, i, NULL);
2098                 if (IS_ERR(page)) {
2099                         ret = PTR_ERR(page);
2100                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2101                         i915_gem_object_put_pages(obj);
2102                         return ret;
2103                 }
2104                 obj_priv->pages[i] = page;
2105         }
2106
2107         if (obj_priv->tiling_mode != I915_TILING_NONE)
2108                 i915_gem_object_do_bit_17_swizzle(obj);
2109
2110         return 0;
2111 }
2112
2113 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2114 {
2115         struct drm_gem_object *obj = reg->obj;
2116         struct drm_device *dev = obj->dev;
2117         drm_i915_private_t *dev_priv = dev->dev_private;
2118         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2119         int regnum = obj_priv->fence_reg;
2120         uint64_t val;
2121
2122         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2123                     0xfffff000) << 32;
2124         val |= obj_priv->gtt_offset & 0xfffff000;
2125         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2126         if (obj_priv->tiling_mode == I915_TILING_Y)
2127                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2128         val |= I965_FENCE_REG_VALID;
2129
2130         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2131 }
2132
2133 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2134 {
2135         struct drm_gem_object *obj = reg->obj;
2136         struct drm_device *dev = obj->dev;
2137         drm_i915_private_t *dev_priv = dev->dev_private;
2138         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2139         int regnum = obj_priv->fence_reg;
2140         int tile_width;
2141         uint32_t fence_reg, val;
2142         uint32_t pitch_val;
2143
2144         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2145             (obj_priv->gtt_offset & (obj->size - 1))) {
2146                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2147                      __func__, obj_priv->gtt_offset, obj->size);
2148                 return;
2149         }
2150
2151         if (obj_priv->tiling_mode == I915_TILING_Y &&
2152             HAS_128_BYTE_Y_TILING(dev))
2153                 tile_width = 128;
2154         else
2155                 tile_width = 512;
2156
2157         /* Note: pitch better be a power of two tile widths */
2158         pitch_val = obj_priv->stride / tile_width;
2159         pitch_val = ffs(pitch_val) - 1;
2160
2161         val = obj_priv->gtt_offset;
2162         if (obj_priv->tiling_mode == I915_TILING_Y)
2163                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2164         val |= I915_FENCE_SIZE_BITS(obj->size);
2165         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2166         val |= I830_FENCE_REG_VALID;
2167
2168         if (regnum < 8)
2169                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2170         else
2171                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2172         I915_WRITE(fence_reg, val);
2173 }
2174
2175 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2176 {
2177         struct drm_gem_object *obj = reg->obj;
2178         struct drm_device *dev = obj->dev;
2179         drm_i915_private_t *dev_priv = dev->dev_private;
2180         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2181         int regnum = obj_priv->fence_reg;
2182         uint32_t val;
2183         uint32_t pitch_val;
2184         uint32_t fence_size_bits;
2185
2186         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2187             (obj_priv->gtt_offset & (obj->size - 1))) {
2188                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2189                      __func__, obj_priv->gtt_offset);
2190                 return;
2191         }
2192
2193         pitch_val = obj_priv->stride / 128;
2194         pitch_val = ffs(pitch_val) - 1;
2195         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2196
2197         val = obj_priv->gtt_offset;
2198         if (obj_priv->tiling_mode == I915_TILING_Y)
2199                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2200         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2201         WARN_ON(fence_size_bits & ~0x00000f00);
2202         val |= fence_size_bits;
2203         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2204         val |= I830_FENCE_REG_VALID;
2205
2206         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2207 }
2208
2209 /**
2210  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2211  * @obj: object to map through a fence reg
2212  *
2213  * When mapping objects through the GTT, userspace wants to be able to write
2214  * to them without having to worry about swizzling if the object is tiled.
2215  *
2216  * This function walks the fence regs looking for a free one for @obj,
2217  * stealing one if it can't find any.
2218  *
2219  * It then sets up the reg based on the object's properties: address, pitch
2220  * and tiling format.
2221  */
2222 int
2223 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2224 {
2225         struct drm_device *dev = obj->dev;
2226         struct drm_i915_private *dev_priv = dev->dev_private;
2227         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2228         struct drm_i915_fence_reg *reg = NULL;
2229         struct drm_i915_gem_object *old_obj_priv = NULL;
2230         int i, ret, avail;
2231
2232         /* Just update our place in the LRU if our fence is getting used. */
2233         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2234                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2235                 return 0;
2236         }
2237
2238         switch (obj_priv->tiling_mode) {
2239         case I915_TILING_NONE:
2240                 WARN(1, "allocating a fence for non-tiled object?\n");
2241                 break;
2242         case I915_TILING_X:
2243                 if (!obj_priv->stride)
2244                         return -EINVAL;
2245                 WARN((obj_priv->stride & (512 - 1)),
2246                      "object 0x%08x is X tiled but has non-512B pitch\n",
2247                      obj_priv->gtt_offset);
2248                 break;
2249         case I915_TILING_Y:
2250                 if (!obj_priv->stride)
2251                         return -EINVAL;
2252                 WARN((obj_priv->stride & (128 - 1)),
2253                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2254                      obj_priv->gtt_offset);
2255                 break;
2256         }
2257
2258         /* First try to find a free reg */
2259         avail = 0;
2260         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2261                 reg = &dev_priv->fence_regs[i];
2262                 if (!reg->obj)
2263                         break;
2264
2265                 old_obj_priv = reg->obj->driver_private;
2266                 if (!old_obj_priv->pin_count)
2267                     avail++;
2268         }
2269
2270         /* None available, try to steal one or wait for a user to finish */
2271         if (i == dev_priv->num_fence_regs) {
2272                 struct drm_gem_object *old_obj = NULL;
2273
2274                 if (avail == 0)
2275                         return -ENOSPC;
2276
2277                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2278                                     fence_list) {
2279                         old_obj = old_obj_priv->obj;
2280
2281                         if (old_obj_priv->pin_count)
2282                                 continue;
2283
2284                         /* Take a reference, as otherwise the wait_rendering
2285                          * below may cause the object to get freed out from
2286                          * under us.
2287                          */
2288                         drm_gem_object_reference(old_obj);
2289
2290                         /* i915 uses fences for GPU access to tiled buffers */
2291                         if (IS_I965G(dev) || !old_obj_priv->active)
2292                                 break;
2293
2294                         /* This brings the object to the head of the LRU if it
2295                          * had been written to.  The only way this should
2296                          * result in us waiting longer than the expected
2297                          * optimal amount of time is if there was a
2298                          * fence-using buffer later that was read-only.
2299                          */
2300                         i915_gem_object_flush_gpu_write_domain(old_obj);
2301                         ret = i915_gem_object_wait_rendering(old_obj);
2302                         if (ret != 0) {
2303                                 drm_gem_object_unreference(old_obj);
2304                                 return ret;
2305                         }
2306
2307                         break;
2308                 }
2309
2310                 /*
2311                  * Zap this virtual mapping so we can set up a fence again
2312                  * for this object next time we need it.
2313                  */
2314                 i915_gem_release_mmap(old_obj);
2315
2316                 i = old_obj_priv->fence_reg;
2317                 reg = &dev_priv->fence_regs[i];
2318
2319                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2320                 list_del_init(&old_obj_priv->fence_list);
2321
2322                 drm_gem_object_unreference(old_obj);
2323         }
2324
2325         obj_priv->fence_reg = i;
2326         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2327
2328         reg->obj = obj;
2329
2330         if (IS_I965G(dev))
2331                 i965_write_fence_reg(reg);
2332         else if (IS_I9XX(dev))
2333                 i915_write_fence_reg(reg);
2334         else
2335                 i830_write_fence_reg(reg);
2336
2337         return 0;
2338 }
2339
2340 /**
2341  * i915_gem_clear_fence_reg - clear out fence register info
2342  * @obj: object to clear
2343  *
2344  * Zeroes out the fence register itself and clears out the associated
2345  * data structures in dev_priv and obj_priv.
2346  */
2347 static void
2348 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2349 {
2350         struct drm_device *dev = obj->dev;
2351         drm_i915_private_t *dev_priv = dev->dev_private;
2352         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2353
2354         if (IS_I965G(dev))
2355                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2356         else {
2357                 uint32_t fence_reg;
2358
2359                 if (obj_priv->fence_reg < 8)
2360                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2361                 else
2362                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2363                                                        8) * 4;
2364
2365                 I915_WRITE(fence_reg, 0);
2366         }
2367
2368         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2369         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2370         list_del_init(&obj_priv->fence_list);
2371 }
2372
2373 /**
2374  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2375  * to the buffer to finish, and then resets the fence register.
2376  * @obj: tiled object holding a fence register.
2377  *
2378  * Zeroes out the fence register itself and clears out the associated
2379  * data structures in dev_priv and obj_priv.
2380  */
2381 int
2382 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2383 {
2384         struct drm_device *dev = obj->dev;
2385         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2386
2387         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2388                 return 0;
2389
2390         /* On the i915, GPU access to tiled buffers is via a fence,
2391          * therefore we must wait for any outstanding access to complete
2392          * before clearing the fence.
2393          */
2394         if (!IS_I965G(dev)) {
2395                 int ret;
2396
2397                 i915_gem_object_flush_gpu_write_domain(obj);
2398                 i915_gem_object_flush_gtt_write_domain(obj);
2399                 ret = i915_gem_object_wait_rendering(obj);
2400                 if (ret != 0)
2401                         return ret;
2402         }
2403
2404         i915_gem_clear_fence_reg (obj);
2405
2406         return 0;
2407 }
2408
2409 /**
2410  * Finds free space in the GTT aperture and binds the object there.
2411  */
2412 static int
2413 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2414 {
2415         struct drm_device *dev = obj->dev;
2416         drm_i915_private_t *dev_priv = dev->dev_private;
2417         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2418         struct drm_mm_node *free_space;
2419         int page_count, ret;
2420
2421         if (dev_priv->mm.suspended)
2422                 return -EBUSY;
2423         if (alignment == 0)
2424                 alignment = i915_gem_get_gtt_alignment(obj);
2425         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2426                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2427                 return -EINVAL;
2428         }
2429
2430  search_free:
2431         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2432                                         obj->size, alignment, 0);
2433         if (free_space != NULL) {
2434                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2435                                                        alignment);
2436                 if (obj_priv->gtt_space != NULL) {
2437                         obj_priv->gtt_space->private = obj;
2438                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2439                 }
2440         }
2441         if (obj_priv->gtt_space == NULL) {
2442                 bool lists_empty;
2443
2444                 /* If the gtt is empty and we're still having trouble
2445                  * fitting our object in, we're out of memory.
2446                  */
2447 #if WATCH_LRU
2448                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2449 #endif
2450                 spin_lock(&dev_priv->mm.active_list_lock);
2451                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2452                                list_empty(&dev_priv->mm.flushing_list) &&
2453                                list_empty(&dev_priv->mm.active_list));
2454                 spin_unlock(&dev_priv->mm.active_list_lock);
2455                 if (lists_empty) {
2456                         DRM_ERROR("GTT full, but LRU list empty\n");
2457                         return -ENOSPC;
2458                 }
2459
2460                 ret = i915_gem_evict_something(dev);
2461                 if (ret != 0) {
2462                         if (ret != -ERESTARTSYS)
2463                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2464                         return ret;
2465                 }
2466                 goto search_free;
2467         }
2468
2469 #if WATCH_BUF
2470         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2471                  obj->size, obj_priv->gtt_offset);
2472 #endif
2473         ret = i915_gem_object_get_pages(obj);
2474         if (ret) {
2475                 drm_mm_put_block(obj_priv->gtt_space);
2476                 obj_priv->gtt_space = NULL;
2477                 return ret;
2478         }
2479
2480         page_count = obj->size / PAGE_SIZE;
2481         /* Create an AGP memory structure pointing at our pages, and bind it
2482          * into the GTT.
2483          */
2484         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2485                                                obj_priv->pages,
2486                                                page_count,
2487                                                obj_priv->gtt_offset,
2488                                                obj_priv->agp_type);
2489         if (obj_priv->agp_mem == NULL) {
2490                 i915_gem_object_put_pages(obj);
2491                 drm_mm_put_block(obj_priv->gtt_space);
2492                 obj_priv->gtt_space = NULL;
2493                 return -ENOMEM;
2494         }
2495         atomic_inc(&dev->gtt_count);
2496         atomic_add(obj->size, &dev->gtt_memory);
2497
2498         /* Assert that the object is not currently in any GPU domain. As it
2499          * wasn't in the GTT, there shouldn't be any way it could have been in
2500          * a GPU cache
2501          */
2502         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2503         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2504
2505         return 0;
2506 }
2507
2508 void
2509 i915_gem_clflush_object(struct drm_gem_object *obj)
2510 {
2511         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2512
2513         /* If we don't have a page list set up, then we're not pinned
2514          * to GPU, and we can ignore the cache flush because it'll happen
2515          * again at bind time.
2516          */
2517         if (obj_priv->pages == NULL)
2518                 return;
2519
2520         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2521 }
2522
2523 /** Flushes any GPU write domain for the object if it's dirty. */
2524 static void
2525 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2526 {
2527         struct drm_device *dev = obj->dev;
2528         uint32_t seqno;
2529
2530         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2531                 return;
2532
2533         /* Queue the GPU write cache flushing we need. */
2534         i915_gem_flush(dev, 0, obj->write_domain);
2535         seqno = i915_add_request(dev, NULL, obj->write_domain);
2536         obj->write_domain = 0;
2537         i915_gem_object_move_to_active(obj, seqno);
2538 }
2539
2540 /** Flushes the GTT write domain for the object if it's dirty. */
2541 static void
2542 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2543 {
2544         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2545                 return;
2546
2547         /* No actual flushing is required for the GTT write domain.   Writes
2548          * to it immediately go to main memory as far as we know, so there's
2549          * no chipset flush.  It also doesn't land in render cache.
2550          */
2551         obj->write_domain = 0;
2552 }
2553
2554 /** Flushes the CPU write domain for the object if it's dirty. */
2555 static void
2556 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2557 {
2558         struct drm_device *dev = obj->dev;
2559
2560         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2561                 return;
2562
2563         i915_gem_clflush_object(obj);
2564         drm_agp_chipset_flush(dev);
2565         obj->write_domain = 0;
2566 }
2567
2568 /**
2569  * Moves a single object to the GTT read, and possibly write domain.
2570  *
2571  * This function returns when the move is complete, including waiting on
2572  * flushes to occur.
2573  */
2574 int
2575 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2576 {
2577         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2578         int ret;
2579
2580         /* Not valid to be called on unbound objects. */
2581         if (obj_priv->gtt_space == NULL)
2582                 return -EINVAL;
2583
2584         i915_gem_object_flush_gpu_write_domain(obj);
2585         /* Wait on any GPU rendering and flushing to occur. */
2586         ret = i915_gem_object_wait_rendering(obj);
2587         if (ret != 0)
2588                 return ret;
2589
2590         /* If we're writing through the GTT domain, then CPU and GPU caches
2591          * will need to be invalidated at next use.
2592          */
2593         if (write)
2594                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2595
2596         i915_gem_object_flush_cpu_write_domain(obj);
2597
2598         /* It should now be out of any other write domains, and we can update
2599          * the domain values for our changes.
2600          */
2601         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2602         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2603         if (write) {
2604                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2605                 obj_priv->dirty = 1;
2606         }
2607
2608         return 0;
2609 }
2610
2611 /**
2612  * Moves a single object to the CPU read, and possibly write domain.
2613  *
2614  * This function returns when the move is complete, including waiting on
2615  * flushes to occur.
2616  */
2617 static int
2618 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2619 {
2620         int ret;
2621
2622         i915_gem_object_flush_gpu_write_domain(obj);
2623         /* Wait on any GPU rendering and flushing to occur. */
2624         ret = i915_gem_object_wait_rendering(obj);
2625         if (ret != 0)
2626                 return ret;
2627
2628         i915_gem_object_flush_gtt_write_domain(obj);
2629
2630         /* If we have a partially-valid cache of the object in the CPU,
2631          * finish invalidating it and free the per-page flags.
2632          */
2633         i915_gem_object_set_to_full_cpu_read_domain(obj);
2634
2635         /* Flush the CPU cache if it's still invalid. */
2636         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2637                 i915_gem_clflush_object(obj);
2638
2639                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2640         }
2641
2642         /* It should now be out of any other write domains, and we can update
2643          * the domain values for our changes.
2644          */
2645         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2646
2647         /* If we're writing through the CPU, then the GPU read domains will
2648          * need to be invalidated at next use.
2649          */
2650         if (write) {
2651                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2652                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2653         }
2654
2655         return 0;
2656 }
2657
2658 /*
2659  * Set the next domain for the specified object. This
2660  * may not actually perform the necessary flushing/invaliding though,
2661  * as that may want to be batched with other set_domain operations
2662  *
2663  * This is (we hope) the only really tricky part of gem. The goal
2664  * is fairly simple -- track which caches hold bits of the object
2665  * and make sure they remain coherent. A few concrete examples may
2666  * help to explain how it works. For shorthand, we use the notation
2667  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2668  * a pair of read and write domain masks.
2669  *
2670  * Case 1: the batch buffer
2671  *
2672  *      1. Allocated
2673  *      2. Written by CPU
2674  *      3. Mapped to GTT
2675  *      4. Read by GPU
2676  *      5. Unmapped from GTT
2677  *      6. Freed
2678  *
2679  *      Let's take these a step at a time
2680  *
2681  *      1. Allocated
2682  *              Pages allocated from the kernel may still have
2683  *              cache contents, so we set them to (CPU, CPU) always.
2684  *      2. Written by CPU (using pwrite)
2685  *              The pwrite function calls set_domain (CPU, CPU) and
2686  *              this function does nothing (as nothing changes)
2687  *      3. Mapped by GTT
2688  *              This function asserts that the object is not
2689  *              currently in any GPU-based read or write domains
2690  *      4. Read by GPU
2691  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2692  *              As write_domain is zero, this function adds in the
2693  *              current read domains (CPU+COMMAND, 0).
2694  *              flush_domains is set to CPU.
2695  *              invalidate_domains is set to COMMAND
2696  *              clflush is run to get data out of the CPU caches
2697  *              then i915_dev_set_domain calls i915_gem_flush to
2698  *              emit an MI_FLUSH and drm_agp_chipset_flush
2699  *      5. Unmapped from GTT
2700  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2701  *              flush_domains and invalidate_domains end up both zero
2702  *              so no flushing/invalidating happens
2703  *      6. Freed
2704  *              yay, done
2705  *
2706  * Case 2: The shared render buffer
2707  *
2708  *      1. Allocated
2709  *      2. Mapped to GTT
2710  *      3. Read/written by GPU
2711  *      4. set_domain to (CPU,CPU)
2712  *      5. Read/written by CPU
2713  *      6. Read/written by GPU
2714  *
2715  *      1. Allocated
2716  *              Same as last example, (CPU, CPU)
2717  *      2. Mapped to GTT
2718  *              Nothing changes (assertions find that it is not in the GPU)
2719  *      3. Read/written by GPU
2720  *              execbuffer calls set_domain (RENDER, RENDER)
2721  *              flush_domains gets CPU
2722  *              invalidate_domains gets GPU
2723  *              clflush (obj)
2724  *              MI_FLUSH and drm_agp_chipset_flush
2725  *      4. set_domain (CPU, CPU)
2726  *              flush_domains gets GPU
2727  *              invalidate_domains gets CPU
2728  *              wait_rendering (obj) to make sure all drawing is complete.
2729  *              This will include an MI_FLUSH to get the data from GPU
2730  *              to memory
2731  *              clflush (obj) to invalidate the CPU cache
2732  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2733  *      5. Read/written by CPU
2734  *              cache lines are loaded and dirtied
2735  *      6. Read written by GPU
2736  *              Same as last GPU access
2737  *
2738  * Case 3: The constant buffer
2739  *
2740  *      1. Allocated
2741  *      2. Written by CPU
2742  *      3. Read by GPU
2743  *      4. Updated (written) by CPU again
2744  *      5. Read by GPU
2745  *
2746  *      1. Allocated
2747  *              (CPU, CPU)
2748  *      2. Written by CPU
2749  *              (CPU, CPU)
2750  *      3. Read by GPU
2751  *              (CPU+RENDER, 0)
2752  *              flush_domains = CPU
2753  *              invalidate_domains = RENDER
2754  *              clflush (obj)
2755  *              MI_FLUSH
2756  *              drm_agp_chipset_flush
2757  *      4. Updated (written) by CPU again
2758  *              (CPU, CPU)
2759  *              flush_domains = 0 (no previous write domain)
2760  *              invalidate_domains = 0 (no new read domains)
2761  *      5. Read by GPU
2762  *              (CPU+RENDER, 0)
2763  *              flush_domains = CPU
2764  *              invalidate_domains = RENDER
2765  *              clflush (obj)
2766  *              MI_FLUSH
2767  *              drm_agp_chipset_flush
2768  */
2769 static void
2770 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2771 {
2772         struct drm_device               *dev = obj->dev;
2773         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2774         uint32_t                        invalidate_domains = 0;
2775         uint32_t                        flush_domains = 0;
2776
2777         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2778         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2779
2780         intel_mark_busy(dev, obj);
2781
2782 #if WATCH_BUF
2783         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2784                  __func__, obj,
2785                  obj->read_domains, obj->pending_read_domains,
2786                  obj->write_domain, obj->pending_write_domain);
2787 #endif
2788         /*
2789          * If the object isn't moving to a new write domain,
2790          * let the object stay in multiple read domains
2791          */
2792         if (obj->pending_write_domain == 0)
2793                 obj->pending_read_domains |= obj->read_domains;
2794         else
2795                 obj_priv->dirty = 1;
2796
2797         /*
2798          * Flush the current write domain if
2799          * the new read domains don't match. Invalidate
2800          * any read domains which differ from the old
2801          * write domain
2802          */
2803         if (obj->write_domain &&
2804             obj->write_domain != obj->pending_read_domains) {
2805                 flush_domains |= obj->write_domain;
2806                 invalidate_domains |=
2807                         obj->pending_read_domains & ~obj->write_domain;
2808         }
2809         /*
2810          * Invalidate any read caches which may have
2811          * stale data. That is, any new read domains.
2812          */
2813         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2814         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2815 #if WATCH_BUF
2816                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2817                          __func__, flush_domains, invalidate_domains);
2818 #endif
2819                 i915_gem_clflush_object(obj);
2820         }
2821
2822         /* The actual obj->write_domain will be updated with
2823          * pending_write_domain after we emit the accumulated flush for all
2824          * of our domain changes in execbuffers (which clears objects'
2825          * write_domains).  So if we have a current write domain that we
2826          * aren't changing, set pending_write_domain to that.
2827          */
2828         if (flush_domains == 0 && obj->pending_write_domain == 0)
2829                 obj->pending_write_domain = obj->write_domain;
2830         obj->read_domains = obj->pending_read_domains;
2831
2832         dev->invalidate_domains |= invalidate_domains;
2833         dev->flush_domains |= flush_domains;
2834 #if WATCH_BUF
2835         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2836                  __func__,
2837                  obj->read_domains, obj->write_domain,
2838                  dev->invalidate_domains, dev->flush_domains);
2839 #endif
2840 }
2841
2842 /**
2843  * Moves the object from a partially CPU read to a full one.
2844  *
2845  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2846  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2847  */
2848 static void
2849 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2850 {
2851         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2852
2853         if (!obj_priv->page_cpu_valid)
2854                 return;
2855
2856         /* If we're partially in the CPU read domain, finish moving it in.
2857          */
2858         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2859                 int i;
2860
2861                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2862                         if (obj_priv->page_cpu_valid[i])
2863                                 continue;
2864                         drm_clflush_pages(obj_priv->pages + i, 1);
2865                 }
2866         }
2867
2868         /* Free the page_cpu_valid mappings which are now stale, whether
2869          * or not we've got I915_GEM_DOMAIN_CPU.
2870          */
2871         kfree(obj_priv->page_cpu_valid);
2872         obj_priv->page_cpu_valid = NULL;
2873 }
2874
2875 /**
2876  * Set the CPU read domain on a range of the object.
2877  *
2878  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2879  * not entirely valid.  The page_cpu_valid member of the object flags which
2880  * pages have been flushed, and will be respected by
2881  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2882  * of the whole object.
2883  *
2884  * This function returns when the move is complete, including waiting on
2885  * flushes to occur.
2886  */
2887 static int
2888 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2889                                           uint64_t offset, uint64_t size)
2890 {
2891         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2892         int i, ret;
2893
2894         if (offset == 0 && size == obj->size)
2895                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2896
2897         i915_gem_object_flush_gpu_write_domain(obj);
2898         /* Wait on any GPU rendering and flushing to occur. */
2899         ret = i915_gem_object_wait_rendering(obj);
2900         if (ret != 0)
2901                 return ret;
2902         i915_gem_object_flush_gtt_write_domain(obj);
2903
2904         /* If we're already fully in the CPU read domain, we're done. */
2905         if (obj_priv->page_cpu_valid == NULL &&
2906             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2907                 return 0;
2908
2909         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2910          * newly adding I915_GEM_DOMAIN_CPU
2911          */
2912         if (obj_priv->page_cpu_valid == NULL) {
2913                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2914                                                    GFP_KERNEL);
2915                 if (obj_priv->page_cpu_valid == NULL)
2916                         return -ENOMEM;
2917         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2918                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2919
2920         /* Flush the cache on any pages that are still invalid from the CPU's
2921          * perspective.
2922          */
2923         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2924              i++) {
2925                 if (obj_priv->page_cpu_valid[i])
2926                         continue;
2927
2928                 drm_clflush_pages(obj_priv->pages + i, 1);
2929
2930                 obj_priv->page_cpu_valid[i] = 1;
2931         }
2932
2933         /* It should now be out of any other write domains, and we can update
2934          * the domain values for our changes.
2935          */
2936         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2937
2938         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2939
2940         return 0;
2941 }
2942
2943 /**
2944  * Pin an object to the GTT and evaluate the relocations landing in it.
2945  */
2946 static int
2947 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2948                                  struct drm_file *file_priv,
2949                                  struct drm_i915_gem_exec_object *entry,
2950                                  struct drm_i915_gem_relocation_entry *relocs)
2951 {
2952         struct drm_device *dev = obj->dev;
2953         drm_i915_private_t *dev_priv = dev->dev_private;
2954         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2955         int i, ret;
2956         void __iomem *reloc_page;
2957
2958         /* Choose the GTT offset for our buffer and put it there. */
2959         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2960         if (ret)
2961                 return ret;
2962
2963         entry->offset = obj_priv->gtt_offset;
2964
2965         /* Apply the relocations, using the GTT aperture to avoid cache
2966          * flushing requirements.
2967          */
2968         for (i = 0; i < entry->relocation_count; i++) {
2969                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2970                 struct drm_gem_object *target_obj;
2971                 struct drm_i915_gem_object *target_obj_priv;
2972                 uint32_t reloc_val, reloc_offset;
2973                 uint32_t __iomem *reloc_entry;
2974
2975                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2976                                                    reloc->target_handle);
2977                 if (target_obj == NULL) {
2978                         i915_gem_object_unpin(obj);
2979                         return -EBADF;
2980                 }
2981                 target_obj_priv = target_obj->driver_private;
2982
2983                 /* The target buffer should have appeared before us in the
2984                  * exec_object list, so it should have a GTT space bound by now.
2985                  */
2986                 if (target_obj_priv->gtt_space == NULL) {
2987                         DRM_ERROR("No GTT space found for object %d\n",
2988                                   reloc->target_handle);
2989                         drm_gem_object_unreference(target_obj);
2990                         i915_gem_object_unpin(obj);
2991                         return -EINVAL;
2992                 }
2993
2994                 if (reloc->offset > obj->size - 4) {
2995                         DRM_ERROR("Relocation beyond object bounds: "
2996                                   "obj %p target %d offset %d size %d.\n",
2997                                   obj, reloc->target_handle,
2998                                   (int) reloc->offset, (int) obj->size);
2999                         drm_gem_object_unreference(target_obj);
3000                         i915_gem_object_unpin(obj);
3001                         return -EINVAL;
3002                 }
3003                 if (reloc->offset & 3) {
3004                         DRM_ERROR("Relocation not 4-byte aligned: "
3005                                   "obj %p target %d offset %d.\n",
3006                                   obj, reloc->target_handle,
3007                                   (int) reloc->offset);
3008                         drm_gem_object_unreference(target_obj);
3009                         i915_gem_object_unpin(obj);
3010                         return -EINVAL;
3011                 }
3012
3013                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3014                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3015                         DRM_ERROR("reloc with read/write CPU domains: "
3016                                   "obj %p target %d offset %d "
3017                                   "read %08x write %08x",
3018                                   obj, reloc->target_handle,
3019                                   (int) reloc->offset,
3020                                   reloc->read_domains,
3021                                   reloc->write_domain);
3022                         drm_gem_object_unreference(target_obj);
3023                         i915_gem_object_unpin(obj);
3024                         return -EINVAL;
3025                 }
3026
3027                 if (reloc->write_domain && target_obj->pending_write_domain &&
3028                     reloc->write_domain != target_obj->pending_write_domain) {
3029                         DRM_ERROR("Write domain conflict: "
3030                                   "obj %p target %d offset %d "
3031                                   "new %08x old %08x\n",
3032                                   obj, reloc->target_handle,
3033                                   (int) reloc->offset,
3034                                   reloc->write_domain,
3035                                   target_obj->pending_write_domain);
3036                         drm_gem_object_unreference(target_obj);
3037                         i915_gem_object_unpin(obj);
3038                         return -EINVAL;
3039                 }
3040
3041 #if WATCH_RELOC
3042                 DRM_INFO("%s: obj %p offset %08x target %d "
3043                          "read %08x write %08x gtt %08x "
3044                          "presumed %08x delta %08x\n",
3045                          __func__,
3046                          obj,
3047                          (int) reloc->offset,
3048                          (int) reloc->target_handle,
3049                          (int) reloc->read_domains,
3050                          (int) reloc->write_domain,
3051                          (int) target_obj_priv->gtt_offset,
3052                          (int) reloc->presumed_offset,
3053                          reloc->delta);
3054 #endif
3055
3056                 target_obj->pending_read_domains |= reloc->read_domains;
3057                 target_obj->pending_write_domain |= reloc->write_domain;
3058
3059                 /* If the relocation already has the right value in it, no
3060                  * more work needs to be done.
3061                  */
3062                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3063                         drm_gem_object_unreference(target_obj);
3064                         continue;
3065                 }
3066
3067                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3068                 if (ret != 0) {
3069                         drm_gem_object_unreference(target_obj);
3070                         i915_gem_object_unpin(obj);
3071                         return -EINVAL;
3072                 }
3073
3074                 /* Map the page containing the relocation we're going to
3075                  * perform.
3076                  */
3077                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3078                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3079                                                       (reloc_offset &
3080                                                        ~(PAGE_SIZE - 1)));
3081                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3082                                                    (reloc_offset & (PAGE_SIZE - 1)));
3083                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3084
3085 #if WATCH_BUF
3086                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3087                           obj, (unsigned int) reloc->offset,
3088                           readl(reloc_entry), reloc_val);
3089 #endif
3090                 writel(reloc_val, reloc_entry);
3091                 io_mapping_unmap_atomic(reloc_page);
3092
3093                 /* The updated presumed offset for this entry will be
3094                  * copied back out to the user.
3095                  */
3096                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3097
3098                 drm_gem_object_unreference(target_obj);
3099         }
3100
3101 #if WATCH_BUF
3102         if (0)
3103                 i915_gem_dump_object(obj, 128, __func__, ~0);
3104 #endif
3105         return 0;
3106 }
3107
3108 /** Dispatch a batchbuffer to the ring
3109  */
3110 static int
3111 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3112                               struct drm_i915_gem_execbuffer *exec,
3113                               struct drm_clip_rect *cliprects,
3114                               uint64_t exec_offset)
3115 {
3116         drm_i915_private_t *dev_priv = dev->dev_private;
3117         int nbox = exec->num_cliprects;
3118         int i = 0, count;
3119         uint32_t exec_start, exec_len;
3120         RING_LOCALS;
3121
3122         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3123         exec_len = (uint32_t) exec->batch_len;
3124
3125         count = nbox ? nbox : 1;
3126
3127         for (i = 0; i < count; i++) {
3128                 if (i < nbox) {
3129                         int ret = i915_emit_box(dev, cliprects, i,
3130                                                 exec->DR1, exec->DR4);
3131                         if (ret)
3132                                 return ret;
3133                 }
3134
3135                 if (IS_I830(dev) || IS_845G(dev)) {
3136                         BEGIN_LP_RING(4);
3137                         OUT_RING(MI_BATCH_BUFFER);
3138                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3139                         OUT_RING(exec_start + exec_len - 4);
3140                         OUT_RING(0);
3141                         ADVANCE_LP_RING();
3142                 } else {
3143                         BEGIN_LP_RING(2);
3144                         if (IS_I965G(dev)) {
3145                                 OUT_RING(MI_BATCH_BUFFER_START |
3146                                          (2 << 6) |
3147                                          MI_BATCH_NON_SECURE_I965);
3148                                 OUT_RING(exec_start);
3149                         } else {
3150                                 OUT_RING(MI_BATCH_BUFFER_START |
3151                                          (2 << 6));
3152                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3153                         }
3154                         ADVANCE_LP_RING();
3155                 }
3156         }
3157
3158         /* XXX breadcrumb */
3159         return 0;
3160 }
3161
3162 /* Throttle our rendering by waiting until the ring has completed our requests
3163  * emitted over 20 msec ago.
3164  *
3165  * Note that if we were to use the current jiffies each time around the loop,
3166  * we wouldn't escape the function with any frames outstanding if the time to
3167  * render a frame was over 20ms.
3168  *
3169  * This should get us reasonable parallelism between CPU and GPU but also
3170  * relatively low latency when blocking on a particular request to finish.
3171  */
3172 static int
3173 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3174 {
3175         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3176         int ret = 0;
3177         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3178
3179         mutex_lock(&dev->struct_mutex);
3180         while (!list_empty(&i915_file_priv->mm.request_list)) {
3181                 struct drm_i915_gem_request *request;
3182
3183                 request = list_first_entry(&i915_file_priv->mm.request_list,
3184                                            struct drm_i915_gem_request,
3185                                            client_list);
3186
3187                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3188                         break;
3189
3190                 ret = i915_wait_request(dev, request->seqno);
3191                 if (ret != 0)
3192                         break;
3193         }
3194         mutex_unlock(&dev->struct_mutex);
3195
3196         return ret;
3197 }
3198
3199 static int
3200 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3201                               uint32_t buffer_count,
3202                               struct drm_i915_gem_relocation_entry **relocs)
3203 {
3204         uint32_t reloc_count = 0, reloc_index = 0, i;
3205         int ret;
3206
3207         *relocs = NULL;
3208         for (i = 0; i < buffer_count; i++) {
3209                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3210                         return -EINVAL;
3211                 reloc_count += exec_list[i].relocation_count;
3212         }
3213
3214         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3215         if (*relocs == NULL)
3216                 return -ENOMEM;
3217
3218         for (i = 0; i < buffer_count; i++) {
3219                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3220
3221                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3222
3223                 ret = copy_from_user(&(*relocs)[reloc_index],
3224                                      user_relocs,
3225                                      exec_list[i].relocation_count *
3226                                      sizeof(**relocs));
3227                 if (ret != 0) {
3228                         drm_free_large(*relocs);
3229                         *relocs = NULL;
3230                         return -EFAULT;
3231                 }
3232
3233                 reloc_index += exec_list[i].relocation_count;
3234         }
3235
3236         return 0;
3237 }
3238
3239 static int
3240 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3241                             uint32_t buffer_count,
3242                             struct drm_i915_gem_relocation_entry *relocs)
3243 {
3244         uint32_t reloc_count = 0, i;
3245         int ret = 0;
3246
3247         for (i = 0; i < buffer_count; i++) {
3248                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3249                 int unwritten;
3250
3251                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3252
3253                 unwritten = copy_to_user(user_relocs,
3254                                          &relocs[reloc_count],
3255                                          exec_list[i].relocation_count *
3256                                          sizeof(*relocs));
3257
3258                 if (unwritten) {
3259                         ret = -EFAULT;
3260                         goto err;
3261                 }
3262
3263                 reloc_count += exec_list[i].relocation_count;
3264         }
3265
3266 err:
3267         drm_free_large(relocs);
3268
3269         return ret;
3270 }
3271
3272 static int
3273 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3274                            uint64_t exec_offset)
3275 {
3276         uint32_t exec_start, exec_len;
3277
3278         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3279         exec_len = (uint32_t) exec->batch_len;
3280
3281         if ((exec_start | exec_len) & 0x7)
3282                 return -EINVAL;
3283
3284         if (!exec_start)
3285                 return -EINVAL;
3286
3287         return 0;
3288 }
3289
3290 int
3291 i915_gem_execbuffer(struct drm_device *dev, void *data,
3292                     struct drm_file *file_priv)
3293 {
3294         drm_i915_private_t *dev_priv = dev->dev_private;
3295         struct drm_i915_gem_execbuffer *args = data;
3296         struct drm_i915_gem_exec_object *exec_list = NULL;
3297         struct drm_gem_object **object_list = NULL;
3298         struct drm_gem_object *batch_obj;
3299         struct drm_i915_gem_object *obj_priv;
3300         struct drm_clip_rect *cliprects = NULL;
3301         struct drm_i915_gem_relocation_entry *relocs;
3302         int ret, ret2, i, pinned = 0;
3303         uint64_t exec_offset;
3304         uint32_t seqno, flush_domains, reloc_index;
3305         int pin_tries;
3306
3307 #if WATCH_EXEC
3308         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3309                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3310 #endif
3311
3312         if (args->buffer_count < 1) {
3313                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3314                 return -EINVAL;
3315         }
3316         /* Copy in the exec list from userland */
3317         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3318         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3319         if (exec_list == NULL || object_list == NULL) {
3320                 DRM_ERROR("Failed to allocate exec or object list "
3321                           "for %d buffers\n",
3322                           args->buffer_count);
3323                 ret = -ENOMEM;
3324                 goto pre_mutex_err;
3325         }
3326         ret = copy_from_user(exec_list,
3327                              (struct drm_i915_relocation_entry __user *)
3328                              (uintptr_t) args->buffers_ptr,
3329                              sizeof(*exec_list) * args->buffer_count);
3330         if (ret != 0) {
3331                 DRM_ERROR("copy %d exec entries failed %d\n",
3332                           args->buffer_count, ret);
3333                 goto pre_mutex_err;
3334         }
3335
3336         if (args->num_cliprects != 0) {
3337                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3338                                     GFP_KERNEL);
3339                 if (cliprects == NULL)
3340                         goto pre_mutex_err;
3341
3342                 ret = copy_from_user(cliprects,
3343                                      (struct drm_clip_rect __user *)
3344                                      (uintptr_t) args->cliprects_ptr,
3345                                      sizeof(*cliprects) * args->num_cliprects);
3346                 if (ret != 0) {
3347                         DRM_ERROR("copy %d cliprects failed: %d\n",
3348                                   args->num_cliprects, ret);
3349                         goto pre_mutex_err;
3350                 }
3351         }
3352
3353         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3354                                             &relocs);
3355         if (ret != 0)
3356                 goto pre_mutex_err;
3357
3358         mutex_lock(&dev->struct_mutex);
3359
3360         i915_verify_inactive(dev, __FILE__, __LINE__);
3361
3362         if (atomic_read(&dev_priv->mm.wedged)) {
3363                 DRM_ERROR("Execbuf while wedged\n");
3364                 mutex_unlock(&dev->struct_mutex);
3365                 ret = -EIO;
3366                 goto pre_mutex_err;
3367         }
3368
3369         if (dev_priv->mm.suspended) {
3370                 DRM_ERROR("Execbuf while VT-switched.\n");
3371                 mutex_unlock(&dev->struct_mutex);
3372                 ret = -EBUSY;
3373                 goto pre_mutex_err;
3374         }
3375
3376         /* Look up object handles */
3377         for (i = 0; i < args->buffer_count; i++) {
3378                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3379                                                        exec_list[i].handle);
3380                 if (object_list[i] == NULL) {
3381                         DRM_ERROR("Invalid object handle %d at index %d\n",
3382                                    exec_list[i].handle, i);
3383                         ret = -EBADF;
3384                         goto err;
3385                 }
3386
3387                 obj_priv = object_list[i]->driver_private;
3388                 if (obj_priv->in_execbuffer) {
3389                         DRM_ERROR("Object %p appears more than once in object list\n",
3390                                    object_list[i]);
3391                         ret = -EBADF;
3392                         goto err;
3393                 }
3394                 obj_priv->in_execbuffer = true;
3395         }
3396
3397         /* Pin and relocate */
3398         for (pin_tries = 0; ; pin_tries++) {
3399                 ret = 0;
3400                 reloc_index = 0;
3401
3402                 for (i = 0; i < args->buffer_count; i++) {
3403                         object_list[i]->pending_read_domains = 0;
3404                         object_list[i]->pending_write_domain = 0;
3405                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3406                                                                file_priv,
3407                                                                &exec_list[i],
3408                                                                &relocs[reloc_index]);
3409                         if (ret)
3410                                 break;
3411                         pinned = i + 1;
3412                         reloc_index += exec_list[i].relocation_count;
3413                 }
3414                 /* success */
3415                 if (ret == 0)
3416                         break;
3417
3418                 /* error other than GTT full, or we've already tried again */
3419                 if (ret != -ENOSPC || pin_tries >= 1) {
3420                         if (ret != -ERESTARTSYS)
3421                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3422                         goto err;
3423                 }
3424
3425                 /* unpin all of our buffers */
3426                 for (i = 0; i < pinned; i++)
3427                         i915_gem_object_unpin(object_list[i]);
3428                 pinned = 0;
3429
3430                 /* evict everyone we can from the aperture */
3431                 ret = i915_gem_evict_everything(dev);
3432                 if (ret)
3433                         goto err;
3434         }
3435
3436         /* Set the pending read domains for the batch buffer to COMMAND */
3437         batch_obj = object_list[args->buffer_count-1];
3438         if (batch_obj->pending_write_domain) {
3439                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3440                 ret = -EINVAL;
3441                 goto err;
3442         }
3443         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3444
3445         /* Sanity check the batch buffer, prior to moving objects */
3446         exec_offset = exec_list[args->buffer_count - 1].offset;
3447         ret = i915_gem_check_execbuffer (args, exec_offset);
3448         if (ret != 0) {
3449                 DRM_ERROR("execbuf with invalid offset/length\n");
3450                 goto err;
3451         }
3452
3453         i915_verify_inactive(dev, __FILE__, __LINE__);
3454
3455         /* Zero the global flush/invalidate flags. These
3456          * will be modified as new domains are computed
3457          * for each object
3458          */
3459         dev->invalidate_domains = 0;
3460         dev->flush_domains = 0;
3461
3462         for (i = 0; i < args->buffer_count; i++) {
3463                 struct drm_gem_object *obj = object_list[i];
3464
3465                 /* Compute new gpu domains and update invalidate/flush */
3466                 i915_gem_object_set_to_gpu_domain(obj);
3467         }
3468
3469         i915_verify_inactive(dev, __FILE__, __LINE__);
3470
3471         if (dev->invalidate_domains | dev->flush_domains) {
3472 #if WATCH_EXEC
3473                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3474                           __func__,
3475                          dev->invalidate_domains,
3476                          dev->flush_domains);
3477 #endif
3478                 i915_gem_flush(dev,
3479                                dev->invalidate_domains,
3480                                dev->flush_domains);
3481                 if (dev->flush_domains)
3482                         (void)i915_add_request(dev, file_priv,
3483                                                dev->flush_domains);
3484         }
3485
3486         for (i = 0; i < args->buffer_count; i++) {
3487                 struct drm_gem_object *obj = object_list[i];
3488
3489                 obj->write_domain = obj->pending_write_domain;
3490         }
3491
3492         i915_verify_inactive(dev, __FILE__, __LINE__);
3493
3494 #if WATCH_COHERENCY
3495         for (i = 0; i < args->buffer_count; i++) {
3496                 i915_gem_object_check_coherency(object_list[i],
3497                                                 exec_list[i].handle);
3498         }
3499 #endif
3500
3501 #if WATCH_EXEC
3502         i915_gem_dump_object(batch_obj,
3503                               args->batch_len,
3504                               __func__,
3505                               ~0);
3506 #endif
3507
3508         /* Exec the batchbuffer */
3509         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3510         if (ret) {
3511                 DRM_ERROR("dispatch failed %d\n", ret);
3512                 goto err;
3513         }
3514
3515         /*
3516          * Ensure that the commands in the batch buffer are
3517          * finished before the interrupt fires
3518          */
3519         flush_domains = i915_retire_commands(dev);
3520
3521         i915_verify_inactive(dev, __FILE__, __LINE__);
3522
3523         /*
3524          * Get a seqno representing the execution of the current buffer,
3525          * which we can wait on.  We would like to mitigate these interrupts,
3526          * likely by only creating seqnos occasionally (so that we have
3527          * *some* interrupts representing completion of buffers that we can
3528          * wait on when trying to clear up gtt space).
3529          */
3530         seqno = i915_add_request(dev, file_priv, flush_domains);
3531         BUG_ON(seqno == 0);
3532         for (i = 0; i < args->buffer_count; i++) {
3533                 struct drm_gem_object *obj = object_list[i];
3534
3535                 i915_gem_object_move_to_active(obj, seqno);
3536 #if WATCH_LRU
3537                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3538 #endif
3539         }
3540 #if WATCH_LRU
3541         i915_dump_lru(dev, __func__);
3542 #endif
3543
3544         i915_verify_inactive(dev, __FILE__, __LINE__);
3545
3546 err:
3547         for (i = 0; i < pinned; i++)
3548                 i915_gem_object_unpin(object_list[i]);
3549
3550         for (i = 0; i < args->buffer_count; i++) {
3551                 if (object_list[i]) {
3552                         obj_priv = object_list[i]->driver_private;
3553                         obj_priv->in_execbuffer = false;
3554                 }
3555                 drm_gem_object_unreference(object_list[i]);
3556         }
3557
3558         mutex_unlock(&dev->struct_mutex);
3559
3560         if (!ret) {
3561                 /* Copy the new buffer offsets back to the user's exec list. */
3562                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3563                                    (uintptr_t) args->buffers_ptr,
3564                                    exec_list,
3565                                    sizeof(*exec_list) * args->buffer_count);
3566                 if (ret) {
3567                         ret = -EFAULT;
3568                         DRM_ERROR("failed to copy %d exec entries "
3569                                   "back to user (%d)\n",
3570                                   args->buffer_count, ret);
3571                 }
3572         }
3573
3574         /* Copy the updated relocations out regardless of current error
3575          * state.  Failure to update the relocs would mean that the next
3576          * time userland calls execbuf, it would do so with presumed offset
3577          * state that didn't match the actual object state.
3578          */
3579         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3580                                            relocs);
3581         if (ret2 != 0) {
3582                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3583
3584                 if (ret == 0)
3585                         ret = ret2;
3586         }
3587
3588 pre_mutex_err:
3589         drm_free_large(object_list);
3590         drm_free_large(exec_list);
3591         kfree(cliprects);
3592
3593         return ret;
3594 }
3595
3596 int
3597 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3598 {
3599         struct drm_device *dev = obj->dev;
3600         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3601         int ret;
3602
3603         i915_verify_inactive(dev, __FILE__, __LINE__);
3604         if (obj_priv->gtt_space == NULL) {
3605                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3606                 if (ret != 0) {
3607                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3608                                 DRM_ERROR("Failure to bind: %d\n", ret);
3609                         return ret;
3610                 }
3611         }
3612         /*
3613          * Pre-965 chips need a fence register set up in order to
3614          * properly handle tiled surfaces.
3615          */
3616         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3617                 ret = i915_gem_object_get_fence_reg(obj);
3618                 if (ret != 0) {
3619                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3620                                 DRM_ERROR("Failure to install fence: %d\n",
3621                                           ret);
3622                         return ret;
3623                 }
3624         }
3625         obj_priv->pin_count++;
3626
3627         /* If the object is not active and not pending a flush,
3628          * remove it from the inactive list
3629          */
3630         if (obj_priv->pin_count == 1) {
3631                 atomic_inc(&dev->pin_count);
3632                 atomic_add(obj->size, &dev->pin_memory);
3633                 if (!obj_priv->active &&
3634                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3635                     !list_empty(&obj_priv->list))
3636                         list_del_init(&obj_priv->list);
3637         }
3638         i915_verify_inactive(dev, __FILE__, __LINE__);
3639
3640         return 0;
3641 }
3642
3643 void
3644 i915_gem_object_unpin(struct drm_gem_object *obj)
3645 {
3646         struct drm_device *dev = obj->dev;
3647         drm_i915_private_t *dev_priv = dev->dev_private;
3648         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3649
3650         i915_verify_inactive(dev, __FILE__, __LINE__);
3651         obj_priv->pin_count--;
3652         BUG_ON(obj_priv->pin_count < 0);
3653         BUG_ON(obj_priv->gtt_space == NULL);
3654
3655         /* If the object is no longer pinned, and is
3656          * neither active nor being flushed, then stick it on
3657          * the inactive list
3658          */
3659         if (obj_priv->pin_count == 0) {
3660                 if (!obj_priv->active &&
3661                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3662                         list_move_tail(&obj_priv->list,
3663                                        &dev_priv->mm.inactive_list);
3664                 atomic_dec(&dev->pin_count);
3665                 atomic_sub(obj->size, &dev->pin_memory);
3666         }
3667         i915_verify_inactive(dev, __FILE__, __LINE__);
3668 }
3669
3670 int
3671 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3672                    struct drm_file *file_priv)
3673 {
3674         struct drm_i915_gem_pin *args = data;
3675         struct drm_gem_object *obj;
3676         struct drm_i915_gem_object *obj_priv;
3677         int ret;
3678
3679         mutex_lock(&dev->struct_mutex);
3680
3681         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3682         if (obj == NULL) {
3683                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3684                           args->handle);
3685                 mutex_unlock(&dev->struct_mutex);
3686                 return -EBADF;
3687         }
3688         obj_priv = obj->driver_private;
3689
3690         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3691                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3692                           args->handle);
3693                 drm_gem_object_unreference(obj);
3694                 mutex_unlock(&dev->struct_mutex);
3695                 return -EINVAL;
3696         }
3697
3698         obj_priv->user_pin_count++;
3699         obj_priv->pin_filp = file_priv;
3700         if (obj_priv->user_pin_count == 1) {
3701                 ret = i915_gem_object_pin(obj, args->alignment);
3702                 if (ret != 0) {
3703                         drm_gem_object_unreference(obj);
3704                         mutex_unlock(&dev->struct_mutex);
3705                         return ret;
3706                 }
3707         }
3708
3709         /* XXX - flush the CPU caches for pinned objects
3710          * as the X server doesn't manage domains yet
3711          */
3712         i915_gem_object_flush_cpu_write_domain(obj);
3713         args->offset = obj_priv->gtt_offset;
3714         drm_gem_object_unreference(obj);
3715         mutex_unlock(&dev->struct_mutex);
3716
3717         return 0;
3718 }
3719
3720 int
3721 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3722                      struct drm_file *file_priv)
3723 {
3724         struct drm_i915_gem_pin *args = data;
3725         struct drm_gem_object *obj;
3726         struct drm_i915_gem_object *obj_priv;
3727
3728         mutex_lock(&dev->struct_mutex);
3729
3730         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3731         if (obj == NULL) {
3732                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3733                           args->handle);
3734                 mutex_unlock(&dev->struct_mutex);
3735                 return -EBADF;
3736         }
3737
3738         obj_priv = obj->driver_private;
3739         if (obj_priv->pin_filp != file_priv) {
3740                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3741                           args->handle);
3742                 drm_gem_object_unreference(obj);
3743                 mutex_unlock(&dev->struct_mutex);
3744                 return -EINVAL;
3745         }
3746         obj_priv->user_pin_count--;
3747         if (obj_priv->user_pin_count == 0) {
3748                 obj_priv->pin_filp = NULL;
3749                 i915_gem_object_unpin(obj);
3750         }
3751
3752         drm_gem_object_unreference(obj);
3753         mutex_unlock(&dev->struct_mutex);
3754         return 0;
3755 }
3756
3757 int
3758 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3759                     struct drm_file *file_priv)
3760 {
3761         struct drm_i915_gem_busy *args = data;
3762         struct drm_gem_object *obj;
3763         struct drm_i915_gem_object *obj_priv;
3764
3765         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3766         if (obj == NULL) {
3767                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3768                           args->handle);
3769                 return -EBADF;
3770         }
3771
3772         mutex_lock(&dev->struct_mutex);
3773         /* Update the active list for the hardware's current position.
3774          * Otherwise this only updates on a delayed timer or when irqs are
3775          * actually unmasked, and our working set ends up being larger than
3776          * required.
3777          */
3778         i915_gem_retire_requests(dev);
3779
3780         obj_priv = obj->driver_private;
3781         /* Don't count being on the flushing list against the object being
3782          * done.  Otherwise, a buffer left on the flushing list but not getting
3783          * flushed (because nobody's flushing that domain) won't ever return
3784          * unbusy and get reused by libdrm's bo cache.  The other expected
3785          * consumer of this interface, OpenGL's occlusion queries, also specs
3786          * that the objects get unbusy "eventually" without any interference.
3787          */
3788         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3789
3790         drm_gem_object_unreference(obj);
3791         mutex_unlock(&dev->struct_mutex);
3792         return 0;
3793 }
3794
3795 int
3796 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3797                         struct drm_file *file_priv)
3798 {
3799     return i915_gem_ring_throttle(dev, file_priv);
3800 }
3801
3802 int i915_gem_init_object(struct drm_gem_object *obj)
3803 {
3804         struct drm_i915_gem_object *obj_priv;
3805
3806         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3807         if (obj_priv == NULL)
3808                 return -ENOMEM;
3809
3810         /*
3811          * We've just allocated pages from the kernel,
3812          * so they've just been written by the CPU with
3813          * zeros. They'll need to be clflushed before we
3814          * use them with the GPU.
3815          */
3816         obj->write_domain = I915_GEM_DOMAIN_CPU;
3817         obj->read_domains = I915_GEM_DOMAIN_CPU;
3818
3819         obj_priv->agp_type = AGP_USER_MEMORY;
3820
3821         obj->driver_private = obj_priv;
3822         obj_priv->obj = obj;
3823         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3824         INIT_LIST_HEAD(&obj_priv->list);
3825         INIT_LIST_HEAD(&obj_priv->fence_list);
3826
3827         return 0;
3828 }
3829
3830 void i915_gem_free_object(struct drm_gem_object *obj)
3831 {
3832         struct drm_device *dev = obj->dev;
3833         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3834
3835         while (obj_priv->pin_count > 0)
3836                 i915_gem_object_unpin(obj);
3837
3838         if (obj_priv->phys_obj)
3839                 i915_gem_detach_phys_object(dev, obj);
3840
3841         i915_gem_object_unbind(obj);
3842
3843         if (obj_priv->mmap_offset)
3844                 i915_gem_free_mmap_offset(obj);
3845
3846         kfree(obj_priv->page_cpu_valid);
3847         kfree(obj_priv->bit_17);
3848         kfree(obj->driver_private);
3849 }
3850
3851 /** Unbinds all objects that are on the given buffer list. */
3852 static int
3853 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3854 {
3855         struct drm_gem_object *obj;
3856         struct drm_i915_gem_object *obj_priv;
3857         int ret;
3858
3859         while (!list_empty(head)) {
3860                 obj_priv = list_first_entry(head,
3861                                             struct drm_i915_gem_object,
3862                                             list);
3863                 obj = obj_priv->obj;
3864
3865                 if (obj_priv->pin_count != 0) {
3866                         DRM_ERROR("Pinned object in unbind list\n");
3867                         mutex_unlock(&dev->struct_mutex);
3868                         return -EINVAL;
3869                 }
3870
3871                 ret = i915_gem_object_unbind(obj);
3872                 if (ret != 0) {
3873                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3874                                   ret);
3875                         mutex_unlock(&dev->struct_mutex);
3876                         return ret;
3877                 }
3878         }
3879
3880
3881         return 0;
3882 }
3883
3884 int
3885 i915_gem_idle(struct drm_device *dev)
3886 {
3887         drm_i915_private_t *dev_priv = dev->dev_private;
3888         uint32_t seqno, cur_seqno, last_seqno;
3889         int stuck, ret;
3890
3891         mutex_lock(&dev->struct_mutex);
3892
3893         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3894                 mutex_unlock(&dev->struct_mutex);
3895                 return 0;
3896         }
3897
3898         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3899          * We need to replace this with a semaphore, or something.
3900          */
3901         dev_priv->mm.suspended = 1;
3902         del_timer(&dev_priv->hangcheck_timer);
3903
3904         /* Cancel the retire work handler, wait for it to finish if running
3905          */
3906         mutex_unlock(&dev->struct_mutex);
3907         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3908         mutex_lock(&dev->struct_mutex);
3909
3910         i915_kernel_lost_context(dev);
3911
3912         /* Flush the GPU along with all non-CPU write domains
3913          */
3914         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3915         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3916
3917         if (seqno == 0) {
3918                 mutex_unlock(&dev->struct_mutex);
3919                 return -ENOMEM;
3920         }
3921
3922         dev_priv->mm.waiting_gem_seqno = seqno;
3923         last_seqno = 0;
3924         stuck = 0;
3925         for (;;) {
3926                 cur_seqno = i915_get_gem_seqno(dev);
3927                 if (i915_seqno_passed(cur_seqno, seqno))
3928                         break;
3929                 if (last_seqno == cur_seqno) {
3930                         if (stuck++ > 100) {
3931                                 DRM_ERROR("hardware wedged\n");
3932                                 atomic_set(&dev_priv->mm.wedged, 1);
3933                                 DRM_WAKEUP(&dev_priv->irq_queue);
3934                                 break;
3935                         }
3936                 }
3937                 msleep(10);
3938                 last_seqno = cur_seqno;
3939         }
3940         dev_priv->mm.waiting_gem_seqno = 0;
3941
3942         i915_gem_retire_requests(dev);
3943
3944         spin_lock(&dev_priv->mm.active_list_lock);
3945         if (!atomic_read(&dev_priv->mm.wedged)) {
3946                 /* Active and flushing should now be empty as we've
3947                  * waited for a sequence higher than any pending execbuffer
3948                  */
3949                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3950                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3951                 /* Request should now be empty as we've also waited
3952                  * for the last request in the list
3953                  */
3954                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3955         }
3956
3957         /* Empty the active and flushing lists to inactive.  If there's
3958          * anything left at this point, it means that we're wedged and
3959          * nothing good's going to happen by leaving them there.  So strip
3960          * the GPU domains and just stuff them onto inactive.
3961          */
3962         while (!list_empty(&dev_priv->mm.active_list)) {
3963                 struct drm_i915_gem_object *obj_priv;
3964
3965                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3966                                             struct drm_i915_gem_object,
3967                                             list);
3968                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3969                 i915_gem_object_move_to_inactive(obj_priv->obj);
3970         }
3971         spin_unlock(&dev_priv->mm.active_list_lock);
3972
3973         while (!list_empty(&dev_priv->mm.flushing_list)) {
3974                 struct drm_i915_gem_object *obj_priv;
3975
3976                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3977                                             struct drm_i915_gem_object,
3978                                             list);
3979                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3980                 i915_gem_object_move_to_inactive(obj_priv->obj);
3981         }
3982
3983
3984         /* Move all inactive buffers out of the GTT. */
3985         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3986         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3987         if (ret) {
3988                 mutex_unlock(&dev->struct_mutex);
3989                 return ret;
3990         }
3991
3992         i915_gem_cleanup_ringbuffer(dev);
3993         mutex_unlock(&dev->struct_mutex);
3994
3995         return 0;
3996 }
3997
3998 static int
3999 i915_gem_init_hws(struct drm_device *dev)
4000 {
4001         drm_i915_private_t *dev_priv = dev->dev_private;
4002         struct drm_gem_object *obj;
4003         struct drm_i915_gem_object *obj_priv;
4004         int ret;
4005
4006         /* If we need a physical address for the status page, it's already
4007          * initialized at driver load time.
4008          */
4009         if (!I915_NEED_GFX_HWS(dev))
4010                 return 0;
4011
4012         obj = drm_gem_object_alloc(dev, 4096);
4013         if (obj == NULL) {
4014                 DRM_ERROR("Failed to allocate status page\n");
4015                 return -ENOMEM;
4016         }
4017         obj_priv = obj->driver_private;
4018         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4019
4020         ret = i915_gem_object_pin(obj, 4096);
4021         if (ret != 0) {
4022                 drm_gem_object_unreference(obj);
4023                 return ret;
4024         }
4025
4026         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4027
4028         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4029         if (dev_priv->hw_status_page == NULL) {
4030                 DRM_ERROR("Failed to map status page.\n");
4031                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4032                 i915_gem_object_unpin(obj);
4033                 drm_gem_object_unreference(obj);
4034                 return -EINVAL;
4035         }
4036         dev_priv->hws_obj = obj;
4037         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4038         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4039         I915_READ(HWS_PGA); /* posting read */
4040         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4041
4042         return 0;
4043 }
4044
4045 static void
4046 i915_gem_cleanup_hws(struct drm_device *dev)
4047 {
4048         drm_i915_private_t *dev_priv = dev->dev_private;
4049         struct drm_gem_object *obj;
4050         struct drm_i915_gem_object *obj_priv;
4051
4052         if (dev_priv->hws_obj == NULL)
4053                 return;
4054
4055         obj = dev_priv->hws_obj;
4056         obj_priv = obj->driver_private;
4057
4058         kunmap(obj_priv->pages[0]);
4059         i915_gem_object_unpin(obj);
4060         drm_gem_object_unreference(obj);
4061         dev_priv->hws_obj = NULL;
4062
4063         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4064         dev_priv->hw_status_page = NULL;
4065
4066         /* Write high address into HWS_PGA when disabling. */
4067         I915_WRITE(HWS_PGA, 0x1ffff000);
4068 }
4069
4070 int
4071 i915_gem_init_ringbuffer(struct drm_device *dev)
4072 {
4073         drm_i915_private_t *dev_priv = dev->dev_private;
4074         struct drm_gem_object *obj;
4075         struct drm_i915_gem_object *obj_priv;
4076         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4077         int ret;
4078         u32 head;
4079
4080         ret = i915_gem_init_hws(dev);
4081         if (ret != 0)
4082                 return ret;
4083
4084         obj = drm_gem_object_alloc(dev, 128 * 1024);
4085         if (obj == NULL) {
4086                 DRM_ERROR("Failed to allocate ringbuffer\n");
4087                 i915_gem_cleanup_hws(dev);
4088                 return -ENOMEM;
4089         }
4090         obj_priv = obj->driver_private;
4091
4092         ret = i915_gem_object_pin(obj, 4096);
4093         if (ret != 0) {
4094                 drm_gem_object_unreference(obj);
4095                 i915_gem_cleanup_hws(dev);
4096                 return ret;
4097         }
4098
4099         /* Set up the kernel mapping for the ring. */
4100         ring->Size = obj->size;
4101
4102         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4103         ring->map.size = obj->size;
4104         ring->map.type = 0;
4105         ring->map.flags = 0;
4106         ring->map.mtrr = 0;
4107
4108         drm_core_ioremap_wc(&ring->map, dev);
4109         if (ring->map.handle == NULL) {
4110                 DRM_ERROR("Failed to map ringbuffer.\n");
4111                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4112                 i915_gem_object_unpin(obj);
4113                 drm_gem_object_unreference(obj);
4114                 i915_gem_cleanup_hws(dev);
4115                 return -EINVAL;
4116         }
4117         ring->ring_obj = obj;
4118         ring->virtual_start = ring->map.handle;
4119
4120         /* Stop the ring if it's running. */
4121         I915_WRITE(PRB0_CTL, 0);
4122         I915_WRITE(PRB0_TAIL, 0);
4123         I915_WRITE(PRB0_HEAD, 0);
4124
4125         /* Initialize the ring. */
4126         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4127         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4128
4129         /* G45 ring initialization fails to reset head to zero */
4130         if (head != 0) {
4131                 DRM_ERROR("Ring head not reset to zero "
4132                           "ctl %08x head %08x tail %08x start %08x\n",
4133                           I915_READ(PRB0_CTL),
4134                           I915_READ(PRB0_HEAD),
4135                           I915_READ(PRB0_TAIL),
4136                           I915_READ(PRB0_START));
4137                 I915_WRITE(PRB0_HEAD, 0);
4138
4139                 DRM_ERROR("Ring head forced to zero "
4140                           "ctl %08x head %08x tail %08x start %08x\n",
4141                           I915_READ(PRB0_CTL),
4142                           I915_READ(PRB0_HEAD),
4143                           I915_READ(PRB0_TAIL),
4144                           I915_READ(PRB0_START));
4145         }
4146
4147         I915_WRITE(PRB0_CTL,
4148                    ((obj->size - 4096) & RING_NR_PAGES) |
4149                    RING_NO_REPORT |
4150                    RING_VALID);
4151
4152         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4153
4154         /* If the head is still not zero, the ring is dead */
4155         if (head != 0) {
4156                 DRM_ERROR("Ring initialization failed "
4157                           "ctl %08x head %08x tail %08x start %08x\n",
4158                           I915_READ(PRB0_CTL),
4159                           I915_READ(PRB0_HEAD),
4160                           I915_READ(PRB0_TAIL),
4161                           I915_READ(PRB0_START));
4162                 return -EIO;
4163         }
4164
4165         /* Update our cache of the ring state */
4166         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4167                 i915_kernel_lost_context(dev);
4168         else {
4169                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4170                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4171                 ring->space = ring->head - (ring->tail + 8);
4172                 if (ring->space < 0)
4173                         ring->space += ring->Size;
4174         }
4175
4176         return 0;
4177 }
4178
4179 void
4180 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4181 {
4182         drm_i915_private_t *dev_priv = dev->dev_private;
4183
4184         if (dev_priv->ring.ring_obj == NULL)
4185                 return;
4186
4187         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4188
4189         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4190         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4191         dev_priv->ring.ring_obj = NULL;
4192         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4193
4194         i915_gem_cleanup_hws(dev);
4195 }
4196
4197 int
4198 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4199                        struct drm_file *file_priv)
4200 {
4201         drm_i915_private_t *dev_priv = dev->dev_private;
4202         int ret;
4203
4204         if (drm_core_check_feature(dev, DRIVER_MODESET))
4205                 return 0;
4206
4207         if (atomic_read(&dev_priv->mm.wedged)) {
4208                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4209                 atomic_set(&dev_priv->mm.wedged, 0);
4210         }
4211
4212         mutex_lock(&dev->struct_mutex);
4213         dev_priv->mm.suspended = 0;
4214
4215         ret = i915_gem_init_ringbuffer(dev);
4216         if (ret != 0) {
4217                 mutex_unlock(&dev->struct_mutex);
4218                 return ret;
4219         }
4220
4221         spin_lock(&dev_priv->mm.active_list_lock);
4222         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4223         spin_unlock(&dev_priv->mm.active_list_lock);
4224
4225         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4226         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4227         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4228         mutex_unlock(&dev->struct_mutex);
4229
4230         drm_irq_install(dev);
4231
4232         return 0;
4233 }
4234
4235 int
4236 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4237                        struct drm_file *file_priv)
4238 {
4239         int ret;
4240
4241         if (drm_core_check_feature(dev, DRIVER_MODESET))
4242                 return 0;
4243
4244         ret = i915_gem_idle(dev);
4245         drm_irq_uninstall(dev);
4246
4247         return ret;
4248 }
4249
4250 void
4251 i915_gem_lastclose(struct drm_device *dev)
4252 {
4253         int ret;
4254
4255         if (drm_core_check_feature(dev, DRIVER_MODESET))
4256                 return;
4257
4258         ret = i915_gem_idle(dev);
4259         if (ret)
4260                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4261 }
4262
4263 void
4264 i915_gem_load(struct drm_device *dev)
4265 {
4266         int i;
4267         drm_i915_private_t *dev_priv = dev->dev_private;
4268
4269         spin_lock_init(&dev_priv->mm.active_list_lock);
4270         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4271         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4272         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4273         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4274         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4275         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4276                           i915_gem_retire_work_handler);
4277         dev_priv->mm.next_gem_seqno = 1;
4278
4279         /* Old X drivers will take 0-2 for front, back, depth buffers */
4280         dev_priv->fence_reg_start = 3;
4281
4282         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4283                 dev_priv->num_fence_regs = 16;
4284         else
4285                 dev_priv->num_fence_regs = 8;
4286
4287         /* Initialize fence registers to zero */
4288         if (IS_I965G(dev)) {
4289                 for (i = 0; i < 16; i++)
4290                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4291         } else {
4292                 for (i = 0; i < 8; i++)
4293                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4294                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4295                         for (i = 0; i < 8; i++)
4296                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4297         }
4298
4299         i915_gem_detect_bit_6_swizzle(dev);
4300 }
4301
4302 /*
4303  * Create a physically contiguous memory object for this object
4304  * e.g. for cursor + overlay regs
4305  */
4306 int i915_gem_init_phys_object(struct drm_device *dev,
4307                               int id, int size)
4308 {
4309         drm_i915_private_t *dev_priv = dev->dev_private;
4310         struct drm_i915_gem_phys_object *phys_obj;
4311         int ret;
4312
4313         if (dev_priv->mm.phys_objs[id - 1] || !size)
4314                 return 0;
4315
4316         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4317         if (!phys_obj)
4318                 return -ENOMEM;
4319
4320         phys_obj->id = id;
4321
4322         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4323         if (!phys_obj->handle) {
4324                 ret = -ENOMEM;
4325                 goto kfree_obj;
4326         }
4327 #ifdef CONFIG_X86
4328         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4329 #endif
4330
4331         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4332
4333         return 0;
4334 kfree_obj:
4335         kfree(phys_obj);
4336         return ret;
4337 }
4338
4339 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4340 {
4341         drm_i915_private_t *dev_priv = dev->dev_private;
4342         struct drm_i915_gem_phys_object *phys_obj;
4343
4344         if (!dev_priv->mm.phys_objs[id - 1])
4345                 return;
4346
4347         phys_obj = dev_priv->mm.phys_objs[id - 1];
4348         if (phys_obj->cur_obj) {
4349                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4350         }
4351
4352 #ifdef CONFIG_X86
4353         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4354 #endif
4355         drm_pci_free(dev, phys_obj->handle);
4356         kfree(phys_obj);
4357         dev_priv->mm.phys_objs[id - 1] = NULL;
4358 }
4359
4360 void i915_gem_free_all_phys_object(struct drm_device *dev)
4361 {
4362         int i;
4363
4364         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4365                 i915_gem_free_phys_object(dev, i);
4366 }
4367
4368 void i915_gem_detach_phys_object(struct drm_device *dev,
4369                                  struct drm_gem_object *obj)
4370 {
4371         struct drm_i915_gem_object *obj_priv;
4372         int i;
4373         int ret;
4374         int page_count;
4375
4376         obj_priv = obj->driver_private;
4377         if (!obj_priv->phys_obj)
4378                 return;
4379
4380         ret = i915_gem_object_get_pages(obj);
4381         if (ret)
4382                 goto out;
4383
4384         page_count = obj->size / PAGE_SIZE;
4385
4386         for (i = 0; i < page_count; i++) {
4387                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4388                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4389
4390                 memcpy(dst, src, PAGE_SIZE);
4391                 kunmap_atomic(dst, KM_USER0);
4392         }
4393         drm_clflush_pages(obj_priv->pages, page_count);
4394         drm_agp_chipset_flush(dev);
4395
4396         i915_gem_object_put_pages(obj);
4397 out:
4398         obj_priv->phys_obj->cur_obj = NULL;
4399         obj_priv->phys_obj = NULL;
4400 }
4401
4402 int
4403 i915_gem_attach_phys_object(struct drm_device *dev,
4404                             struct drm_gem_object *obj, int id)
4405 {
4406         drm_i915_private_t *dev_priv = dev->dev_private;
4407         struct drm_i915_gem_object *obj_priv;
4408         int ret = 0;
4409         int page_count;
4410         int i;
4411
4412         if (id > I915_MAX_PHYS_OBJECT)
4413                 return -EINVAL;
4414
4415         obj_priv = obj->driver_private;
4416
4417         if (obj_priv->phys_obj) {
4418                 if (obj_priv->phys_obj->id == id)
4419                         return 0;
4420                 i915_gem_detach_phys_object(dev, obj);
4421         }
4422
4423
4424         /* create a new object */
4425         if (!dev_priv->mm.phys_objs[id - 1]) {
4426                 ret = i915_gem_init_phys_object(dev, id,
4427                                                 obj->size);
4428                 if (ret) {
4429                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4430                         goto out;
4431                 }
4432         }
4433
4434         /* bind to the object */
4435         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4436         obj_priv->phys_obj->cur_obj = obj;
4437
4438         ret = i915_gem_object_get_pages(obj);
4439         if (ret) {
4440                 DRM_ERROR("failed to get page list\n");
4441                 goto out;
4442         }
4443
4444         page_count = obj->size / PAGE_SIZE;
4445
4446         for (i = 0; i < page_count; i++) {
4447                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4448                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4449
4450                 memcpy(dst, src, PAGE_SIZE);
4451                 kunmap_atomic(src, KM_USER0);
4452         }
4453
4454         i915_gem_object_put_pages(obj);
4455
4456         return 0;
4457 out:
4458         return ret;
4459 }
4460
4461 static int
4462 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4463                      struct drm_i915_gem_pwrite *args,
4464                      struct drm_file *file_priv)
4465 {
4466         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4467         void *obj_addr;
4468         int ret;
4469         char __user *user_data;
4470
4471         user_data = (char __user *) (uintptr_t) args->data_ptr;
4472         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4473
4474         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4475         ret = copy_from_user(obj_addr, user_data, args->size);
4476         if (ret)
4477                 return -EFAULT;
4478
4479         drm_agp_chipset_flush(dev);
4480         return 0;
4481 }
4482
4483 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4484 {
4485         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4486
4487         /* Clean up our request list when the client is going away, so that
4488          * later retire_requests won't dereference our soon-to-be-gone
4489          * file_priv.
4490          */
4491         mutex_lock(&dev->struct_mutex);
4492         while (!list_empty(&i915_file_priv->mm.request_list))
4493                 list_del_init(i915_file_priv->mm.request_list.next);
4494         mutex_unlock(&dev->struct_mutex);
4495 }