dea9ac069851c3755857623430a23f05a08bc5ba
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include <linux/swap.h>
34 #include <linux/pci.h>
35
36 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52 static int i915_gem_evict_from_list(struct drm_device *dev,
53                                     struct list_head *head);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327         return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333         mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339         int ret;
340
341         ret = i915_gem_object_get_pages(obj);
342
343         /* If we've insufficient memory to map in the pages, attempt
344          * to make some space by throwing out some old buffers.
345          */
346         if (ret == -ENOMEM) {
347                 struct drm_device *dev = obj->dev;
348                 gfp_t gfp;
349
350                 ret = i915_gem_evict_something(dev, obj->size);
351                 if (ret)
352                         return ret;
353
354                 gfp = i915_gem_object_get_page_gfp_mask(obj);
355                 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356                 ret = i915_gem_object_get_pages(obj);
357                 i915_gem_object_set_page_gfp_mask (obj, gfp);
358         }
359
360         return ret;
361 }
362
363 /**
364  * This is the fallback shmem pread path, which allocates temporary storage
365  * in kernel space to copy_to_user into outside of the struct_mutex, so we
366  * can copy out of the object's backing pages while holding the struct mutex
367  * and not take page faults.
368  */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371                           struct drm_i915_gem_pread *args,
372                           struct drm_file *file_priv)
373 {
374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
375         struct mm_struct *mm = current->mm;
376         struct page **user_pages;
377         ssize_t remain;
378         loff_t offset, pinned_pages, i;
379         loff_t first_data_page, last_data_page, num_pages;
380         int shmem_page_index, shmem_page_offset;
381         int data_page_index,  data_page_offset;
382         int page_length;
383         int ret;
384         uint64_t data_ptr = args->data_ptr;
385         int do_bit17_swizzling;
386
387         remain = args->size;
388
389         /* Pin the user pages containing the data.  We can't fault while
390          * holding the struct mutex, yet we want to hold it while
391          * dereferencing the user data.
392          */
393         first_data_page = data_ptr / PAGE_SIZE;
394         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395         num_pages = last_data_page - first_data_page + 1;
396
397         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398         if (user_pages == NULL)
399                 return -ENOMEM;
400
401         down_read(&mm->mmap_sem);
402         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403                                       num_pages, 1, 0, user_pages, NULL);
404         up_read(&mm->mmap_sem);
405         if (pinned_pages < num_pages) {
406                 ret = -EFAULT;
407                 goto fail_put_user_pages;
408         }
409
410         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411
412         mutex_lock(&dev->struct_mutex);
413
414         ret = i915_gem_object_get_pages_or_evict(obj);
415         if (ret)
416                 goto fail_unlock;
417
418         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419                                                         args->size);
420         if (ret != 0)
421                 goto fail_put_pages;
422
423         obj_priv = obj->driver_private;
424         offset = args->offset;
425
426         while (remain > 0) {
427                 /* Operation in this page
428                  *
429                  * shmem_page_index = page number within shmem file
430                  * shmem_page_offset = offset within page in shmem file
431                  * data_page_index = page number in get_user_pages return
432                  * data_page_offset = offset with data_page_index page.
433                  * page_length = bytes to copy for this page
434                  */
435                 shmem_page_index = offset / PAGE_SIZE;
436                 shmem_page_offset = offset & ~PAGE_MASK;
437                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438                 data_page_offset = data_ptr & ~PAGE_MASK;
439
440                 page_length = remain;
441                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442                         page_length = PAGE_SIZE - shmem_page_offset;
443                 if ((data_page_offset + page_length) > PAGE_SIZE)
444                         page_length = PAGE_SIZE - data_page_offset;
445
446                 if (do_bit17_swizzling) {
447                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448                                                     shmem_page_offset,
449                                                     user_pages[data_page_index],
450                                                     data_page_offset,
451                                                     page_length,
452                                                     1);
453                 } else {
454                         ret = slow_shmem_copy(user_pages[data_page_index],
455                                               data_page_offset,
456                                               obj_priv->pages[shmem_page_index],
457                                               shmem_page_offset,
458                                               page_length);
459                 }
460                 if (ret)
461                         goto fail_put_pages;
462
463                 remain -= page_length;
464                 data_ptr += page_length;
465                 offset += page_length;
466         }
467
468 fail_put_pages:
469         i915_gem_object_put_pages(obj);
470 fail_unlock:
471         mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473         for (i = 0; i < pinned_pages; i++) {
474                 SetPageDirty(user_pages[i]);
475                 page_cache_release(user_pages[i]);
476         }
477         drm_free_large(user_pages);
478
479         return ret;
480 }
481
482 /**
483  * Reads data from the object referenced by handle.
484  *
485  * On error, the contents of *data are undefined.
486  */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489                      struct drm_file *file_priv)
490 {
491         struct drm_i915_gem_pread *args = data;
492         struct drm_gem_object *obj;
493         struct drm_i915_gem_object *obj_priv;
494         int ret;
495
496         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497         if (obj == NULL)
498                 return -EBADF;
499         obj_priv = obj->driver_private;
500
501         /* Bounds check source.
502          *
503          * XXX: This could use review for overflow issues...
504          */
505         if (args->offset > obj->size || args->size > obj->size ||
506             args->offset + args->size > obj->size) {
507                 drm_gem_object_unreference(obj);
508                 return -EINVAL;
509         }
510
511         if (i915_gem_object_needs_bit17_swizzle(obj)) {
512                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513         } else {
514                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515                 if (ret != 0)
516                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
517                                                         file_priv);
518         }
519
520         drm_gem_object_unreference(obj);
521
522         return ret;
523 }
524
525 /* This is the fast write path which cannot handle
526  * page faults in the source data
527  */
528
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531                 loff_t page_base, int page_offset,
532                 char __user *user_data,
533                 int length)
534 {
535         char *vaddr_atomic;
536         unsigned long unwritten;
537
538         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540                                                       user_data, length);
541         io_mapping_unmap_atomic(vaddr_atomic);
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /* Here's the write path which can sleep for
548  * page faults
549  */
550
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553                   loff_t gtt_base, int gtt_offset,
554                   struct page *user_page, int user_offset,
555                   int length)
556 {
557         char *src_vaddr, *dst_vaddr;
558         unsigned long unwritten;
559
560         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561         src_vaddr = kmap_atomic(user_page, KM_USER1);
562         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563                                                       src_vaddr + user_offset,
564                                                       length);
565         kunmap_atomic(src_vaddr, KM_USER1);
566         io_mapping_unmap_atomic(dst_vaddr);
567         if (unwritten)
568                 return -EFAULT;
569         return 0;
570 }
571
572 static inline int
573 fast_shmem_write(struct page **pages,
574                  loff_t page_base, int page_offset,
575                  char __user *data,
576                  int length)
577 {
578         char __iomem *vaddr;
579         unsigned long unwritten;
580
581         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582         if (vaddr == NULL)
583                 return -ENOMEM;
584         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585         kunmap_atomic(vaddr, KM_USER0);
586
587         if (unwritten)
588                 return -EFAULT;
589         return 0;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598                          struct drm_i915_gem_pwrite *args,
599                          struct drm_file *file_priv)
600 {
601         struct drm_i915_gem_object *obj_priv = obj->driver_private;
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length;
607         int ret;
608
609         user_data = (char __user *) (uintptr_t) args->data_ptr;
610         remain = args->size;
611         if (!access_ok(VERIFY_READ, user_data, remain))
612                 return -EFAULT;
613
614
615         mutex_lock(&dev->struct_mutex);
616         ret = i915_gem_object_pin(obj, 0);
617         if (ret) {
618                 mutex_unlock(&dev->struct_mutex);
619                 return ret;
620         }
621         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622         if (ret)
623                 goto fail;
624
625         obj_priv = obj->driver_private;
626         offset = obj_priv->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = (offset & ~(PAGE_SIZE-1));
636                 page_offset = offset & (PAGE_SIZE-1);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642                                        page_offset, user_data, page_length);
643
644                 /* If we get a fault while copying data, then (presumably) our
645                  * source page isn't available.  Return the error and we'll
646                  * retry in the slow path.
647                  */
648                 if (ret)
649                         goto fail;
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 fail:
657         i915_gem_object_unpin(obj);
658         mutex_unlock(&dev->struct_mutex);
659
660         return ret;
661 }
662
663 /**
664  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665  * the memory and maps it using kmap_atomic for copying.
666  *
667  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669  */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672                          struct drm_i915_gem_pwrite *args,
673                          struct drm_file *file_priv)
674 {
675         struct drm_i915_gem_object *obj_priv = obj->driver_private;
676         drm_i915_private_t *dev_priv = dev->dev_private;
677         ssize_t remain;
678         loff_t gtt_page_base, offset;
679         loff_t first_data_page, last_data_page, num_pages;
680         loff_t pinned_pages, i;
681         struct page **user_pages;
682         struct mm_struct *mm = current->mm;
683         int gtt_page_offset, data_page_offset, data_page_index, page_length;
684         int ret;
685         uint64_t data_ptr = args->data_ptr;
686
687         remain = args->size;
688
689         /* Pin the user pages containing the data.  We can't fault while
690          * holding the struct mutex, and all of the pwrite implementations
691          * want to hold it while dereferencing the user data.
692          */
693         first_data_page = data_ptr / PAGE_SIZE;
694         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695         num_pages = last_data_page - first_data_page + 1;
696
697         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698         if (user_pages == NULL)
699                 return -ENOMEM;
700
701         down_read(&mm->mmap_sem);
702         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703                                       num_pages, 0, 0, user_pages, NULL);
704         up_read(&mm->mmap_sem);
705         if (pinned_pages < num_pages) {
706                 ret = -EFAULT;
707                 goto out_unpin_pages;
708         }
709
710         mutex_lock(&dev->struct_mutex);
711         ret = i915_gem_object_pin(obj, 0);
712         if (ret)
713                 goto out_unlock;
714
715         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716         if (ret)
717                 goto out_unpin_object;
718
719         obj_priv = obj->driver_private;
720         offset = obj_priv->gtt_offset + args->offset;
721
722         while (remain > 0) {
723                 /* Operation in this page
724                  *
725                  * gtt_page_base = page offset within aperture
726                  * gtt_page_offset = offset within page in aperture
727                  * data_page_index = page number in get_user_pages return
728                  * data_page_offset = offset with data_page_index page.
729                  * page_length = bytes to copy for this page
730                  */
731                 gtt_page_base = offset & PAGE_MASK;
732                 gtt_page_offset = offset & ~PAGE_MASK;
733                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734                 data_page_offset = data_ptr & ~PAGE_MASK;
735
736                 page_length = remain;
737                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738                         page_length = PAGE_SIZE - gtt_page_offset;
739                 if ((data_page_offset + page_length) > PAGE_SIZE)
740                         page_length = PAGE_SIZE - data_page_offset;
741
742                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743                                         gtt_page_base, gtt_page_offset,
744                                         user_pages[data_page_index],
745                                         data_page_offset,
746                                         page_length);
747
748                 /* If we get a fault while copying data, then (presumably) our
749                  * source page isn't available.  Return the error and we'll
750                  * retry in the slow path.
751                  */
752                 if (ret)
753                         goto out_unpin_object;
754
755                 remain -= page_length;
756                 offset += page_length;
757                 data_ptr += page_length;
758         }
759
760 out_unpin_object:
761         i915_gem_object_unpin(obj);
762 out_unlock:
763         mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765         for (i = 0; i < pinned_pages; i++)
766                 page_cache_release(user_pages[i]);
767         drm_free_large(user_pages);
768
769         return ret;
770 }
771
772 /**
773  * This is the fast shmem pwrite path, which attempts to directly
774  * copy_from_user into the kmapped pages backing the object.
775  */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778                            struct drm_i915_gem_pwrite *args,
779                            struct drm_file *file_priv)
780 {
781         struct drm_i915_gem_object *obj_priv = obj->driver_private;
782         ssize_t remain;
783         loff_t offset, page_base;
784         char __user *user_data;
785         int page_offset, page_length;
786         int ret;
787
788         user_data = (char __user *) (uintptr_t) args->data_ptr;
789         remain = args->size;
790
791         mutex_lock(&dev->struct_mutex);
792
793         ret = i915_gem_object_get_pages(obj);
794         if (ret != 0)
795                 goto fail_unlock;
796
797         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798         if (ret != 0)
799                 goto fail_put_pages;
800
801         obj_priv = obj->driver_private;
802         offset = args->offset;
803         obj_priv->dirty = 1;
804
805         while (remain > 0) {
806                 /* Operation in this page
807                  *
808                  * page_base = page offset within aperture
809                  * page_offset = offset within page
810                  * page_length = bytes to copy for this page
811                  */
812                 page_base = (offset & ~(PAGE_SIZE-1));
813                 page_offset = offset & (PAGE_SIZE-1);
814                 page_length = remain;
815                 if ((page_offset + remain) > PAGE_SIZE)
816                         page_length = PAGE_SIZE - page_offset;
817
818                 ret = fast_shmem_write(obj_priv->pages,
819                                        page_base, page_offset,
820                                        user_data, page_length);
821                 if (ret)
822                         goto fail_put_pages;
823
824                 remain -= page_length;
825                 user_data += page_length;
826                 offset += page_length;
827         }
828
829 fail_put_pages:
830         i915_gem_object_put_pages(obj);
831 fail_unlock:
832         mutex_unlock(&dev->struct_mutex);
833
834         return ret;
835 }
836
837 /**
838  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839  * the memory and maps it using kmap_atomic for copying.
840  *
841  * This avoids taking mmap_sem for faulting on the user's address while the
842  * struct_mutex is held.
843  */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846                            struct drm_i915_gem_pwrite *args,
847                            struct drm_file *file_priv)
848 {
849         struct drm_i915_gem_object *obj_priv = obj->driver_private;
850         struct mm_struct *mm = current->mm;
851         struct page **user_pages;
852         ssize_t remain;
853         loff_t offset, pinned_pages, i;
854         loff_t first_data_page, last_data_page, num_pages;
855         int shmem_page_index, shmem_page_offset;
856         int data_page_index,  data_page_offset;
857         int page_length;
858         int ret;
859         uint64_t data_ptr = args->data_ptr;
860         int do_bit17_swizzling;
861
862         remain = args->size;
863
864         /* Pin the user pages containing the data.  We can't fault while
865          * holding the struct mutex, and all of the pwrite implementations
866          * want to hold it while dereferencing the user data.
867          */
868         first_data_page = data_ptr / PAGE_SIZE;
869         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870         num_pages = last_data_page - first_data_page + 1;
871
872         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873         if (user_pages == NULL)
874                 return -ENOMEM;
875
876         down_read(&mm->mmap_sem);
877         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878                                       num_pages, 0, 0, user_pages, NULL);
879         up_read(&mm->mmap_sem);
880         if (pinned_pages < num_pages) {
881                 ret = -EFAULT;
882                 goto fail_put_user_pages;
883         }
884
885         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886
887         mutex_lock(&dev->struct_mutex);
888
889         ret = i915_gem_object_get_pages_or_evict(obj);
890         if (ret)
891                 goto fail_unlock;
892
893         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894         if (ret != 0)
895                 goto fail_put_pages;
896
897         obj_priv = obj->driver_private;
898         offset = args->offset;
899         obj_priv->dirty = 1;
900
901         while (remain > 0) {
902                 /* Operation in this page
903                  *
904                  * shmem_page_index = page number within shmem file
905                  * shmem_page_offset = offset within page in shmem file
906                  * data_page_index = page number in get_user_pages return
907                  * data_page_offset = offset with data_page_index page.
908                  * page_length = bytes to copy for this page
909                  */
910                 shmem_page_index = offset / PAGE_SIZE;
911                 shmem_page_offset = offset & ~PAGE_MASK;
912                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913                 data_page_offset = data_ptr & ~PAGE_MASK;
914
915                 page_length = remain;
916                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917                         page_length = PAGE_SIZE - shmem_page_offset;
918                 if ((data_page_offset + page_length) > PAGE_SIZE)
919                         page_length = PAGE_SIZE - data_page_offset;
920
921                 if (do_bit17_swizzling) {
922                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923                                                     shmem_page_offset,
924                                                     user_pages[data_page_index],
925                                                     data_page_offset,
926                                                     page_length,
927                                                     0);
928                 } else {
929                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930                                               shmem_page_offset,
931                                               user_pages[data_page_index],
932                                               data_page_offset,
933                                               page_length);
934                 }
935                 if (ret)
936                         goto fail_put_pages;
937
938                 remain -= page_length;
939                 data_ptr += page_length;
940                 offset += page_length;
941         }
942
943 fail_put_pages:
944         i915_gem_object_put_pages(obj);
945 fail_unlock:
946         mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948         for (i = 0; i < pinned_pages; i++)
949                 page_cache_release(user_pages[i]);
950         drm_free_large(user_pages);
951
952         return ret;
953 }
954
955 /**
956  * Writes data to the object referenced by handle.
957  *
958  * On error, the contents of the buffer that were to be modified are undefined.
959  */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962                       struct drm_file *file_priv)
963 {
964         struct drm_i915_gem_pwrite *args = data;
965         struct drm_gem_object *obj;
966         struct drm_i915_gem_object *obj_priv;
967         int ret = 0;
968
969         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970         if (obj == NULL)
971                 return -EBADF;
972         obj_priv = obj->driver_private;
973
974         /* Bounds check destination.
975          *
976          * XXX: This could use review for overflow issues...
977          */
978         if (args->offset > obj->size || args->size > obj->size ||
979             args->offset + args->size > obj->size) {
980                 drm_gem_object_unreference(obj);
981                 return -EINVAL;
982         }
983
984         /* We can only do the GTT pwrite on untiled buffers, as otherwise
985          * it would end up going through the fenced access, and we'll get
986          * different detiling behavior between reading and writing.
987          * pread/pwrite currently are reading and writing from the CPU
988          * perspective, requiring manual detiling by the client.
989          */
990         if (obj_priv->phys_obj)
991                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993                  dev->gtt_total != 0) {
994                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995                 if (ret == -EFAULT) {
996                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997                                                        file_priv);
998                 }
999         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001         } else {
1002                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003                 if (ret == -EFAULT) {
1004                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005                                                          file_priv);
1006                 }
1007         }
1008
1009 #if WATCH_PWRITE
1010         if (ret)
1011                 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013
1014         drm_gem_object_unreference(obj);
1015
1016         return ret;
1017 }
1018
1019 /**
1020  * Called when user space prepares to use an object with the CPU, either
1021  * through the mmap ioctl's mapping or a GTT mapping.
1022  */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025                           struct drm_file *file_priv)
1026 {
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_i915_gem_set_domain *args = data;
1029         struct drm_gem_object *obj;
1030         struct drm_i915_gem_object *obj_priv;
1031         uint32_t read_domains = args->read_domains;
1032         uint32_t write_domain = args->write_domain;
1033         int ret;
1034
1035         if (!(dev->driver->driver_features & DRIVER_GEM))
1036                 return -ENODEV;
1037
1038         /* Only handle setting domains to types used by the CPU. */
1039         if (write_domain & I915_GEM_GPU_DOMAINS)
1040                 return -EINVAL;
1041
1042         if (read_domains & I915_GEM_GPU_DOMAINS)
1043                 return -EINVAL;
1044
1045         /* Having something in the write domain implies it's in the read
1046          * domain, and only that read domain.  Enforce that in the request.
1047          */
1048         if (write_domain != 0 && read_domains != write_domain)
1049                 return -EINVAL;
1050
1051         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052         if (obj == NULL)
1053                 return -EBADF;
1054         obj_priv = obj->driver_private;
1055
1056         mutex_lock(&dev->struct_mutex);
1057
1058         intel_mark_busy(dev, obj);
1059
1060 #if WATCH_BUF
1061         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062                  obj, obj->size, read_domains, write_domain);
1063 #endif
1064         if (read_domains & I915_GEM_DOMAIN_GTT) {
1065                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067                 /* Update the LRU on the fence for the CPU access that's
1068                  * about to occur.
1069                  */
1070                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071                         list_move_tail(&obj_priv->fence_list,
1072                                        &dev_priv->mm.fence_list);
1073                 }
1074
1075                 /* Silently promote "you're not bound, there was nothing to do"
1076                  * to success, since the client was just asking us to
1077                  * make sure everything was done.
1078                  */
1079                 if (ret == -EINVAL)
1080                         ret = 0;
1081         } else {
1082                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083         }
1084
1085         drm_gem_object_unreference(obj);
1086         mutex_unlock(&dev->struct_mutex);
1087         return ret;
1088 }
1089
1090 /**
1091  * Called when user space has done writes to this buffer
1092  */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095                       struct drm_file *file_priv)
1096 {
1097         struct drm_i915_gem_sw_finish *args = data;
1098         struct drm_gem_object *obj;
1099         struct drm_i915_gem_object *obj_priv;
1100         int ret = 0;
1101
1102         if (!(dev->driver->driver_features & DRIVER_GEM))
1103                 return -ENODEV;
1104
1105         mutex_lock(&dev->struct_mutex);
1106         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107         if (obj == NULL) {
1108                 mutex_unlock(&dev->struct_mutex);
1109                 return -EBADF;
1110         }
1111
1112 #if WATCH_BUF
1113         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114                  __func__, args->handle, obj, obj->size);
1115 #endif
1116         obj_priv = obj->driver_private;
1117
1118         /* Pinned buffers may be scanout, so flush the cache */
1119         if (obj_priv->pin_count)
1120                 i915_gem_object_flush_cpu_write_domain(obj);
1121
1122         drm_gem_object_unreference(obj);
1123         mutex_unlock(&dev->struct_mutex);
1124         return ret;
1125 }
1126
1127 /**
1128  * Maps the contents of an object, returning the address it is mapped
1129  * into.
1130  *
1131  * While the mapping holds a reference on the contents of the object, it doesn't
1132  * imply a ref on the object itself.
1133  */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136                    struct drm_file *file_priv)
1137 {
1138         struct drm_i915_gem_mmap *args = data;
1139         struct drm_gem_object *obj;
1140         loff_t offset;
1141         unsigned long addr;
1142
1143         if (!(dev->driver->driver_features & DRIVER_GEM))
1144                 return -ENODEV;
1145
1146         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147         if (obj == NULL)
1148                 return -EBADF;
1149
1150         offset = args->offset;
1151
1152         down_write(&current->mm->mmap_sem);
1153         addr = do_mmap(obj->filp, 0, args->size,
1154                        PROT_READ | PROT_WRITE, MAP_SHARED,
1155                        args->offset);
1156         up_write(&current->mm->mmap_sem);
1157         mutex_lock(&dev->struct_mutex);
1158         drm_gem_object_unreference(obj);
1159         mutex_unlock(&dev->struct_mutex);
1160         if (IS_ERR((void *)addr))
1161                 return addr;
1162
1163         args->addr_ptr = (uint64_t) addr;
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * i915_gem_fault - fault a page into the GTT
1170  * vma: VMA in question
1171  * vmf: fault info
1172  *
1173  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174  * from userspace.  The fault handler takes care of binding the object to
1175  * the GTT (if needed), allocating and programming a fence register (again,
1176  * only if needed based on whether the old reg is still valid or the object
1177  * is tiled) and inserting a new PTE into the faulting process.
1178  *
1179  * Note that the faulting process may involve evicting existing objects
1180  * from the GTT and/or fence registers to make room.  So performance may
1181  * suffer if the GTT working set is large or there are few fence registers
1182  * left.
1183  */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186         struct drm_gem_object *obj = vma->vm_private_data;
1187         struct drm_device *dev = obj->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190         pgoff_t page_offset;
1191         unsigned long pfn;
1192         int ret = 0;
1193         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195         /* We don't use vmf->pgoff since that has the fake offset */
1196         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197                 PAGE_SHIFT;
1198
1199         /* Now bind it into the GTT if needed */
1200         mutex_lock(&dev->struct_mutex);
1201         if (!obj_priv->gtt_space) {
1202                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203                 if (ret) {
1204                         mutex_unlock(&dev->struct_mutex);
1205                         return VM_FAULT_SIGBUS;
1206                 }
1207                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1208
1209                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1210                 if (ret) {
1211                         mutex_unlock(&dev->struct_mutex);
1212                         return VM_FAULT_SIGBUS;
1213                 }
1214         }
1215
1216         /* Need a new fence register? */
1217         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1218                 ret = i915_gem_object_get_fence_reg(obj);
1219                 if (ret) {
1220                         mutex_unlock(&dev->struct_mutex);
1221                         return VM_FAULT_SIGBUS;
1222                 }
1223         }
1224
1225         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1226                 page_offset;
1227
1228         /* Finally, remap it using the new GTT offset */
1229         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1230
1231         mutex_unlock(&dev->struct_mutex);
1232
1233         switch (ret) {
1234         case -ENOMEM:
1235         case -EAGAIN:
1236                 return VM_FAULT_OOM;
1237         case -EFAULT:
1238         case -EINVAL:
1239                 return VM_FAULT_SIGBUS;
1240         default:
1241                 return VM_FAULT_NOPAGE;
1242         }
1243 }
1244
1245 /**
1246  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1247  * @obj: obj in question
1248  *
1249  * GEM memory mapping works by handing back to userspace a fake mmap offset
1250  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1251  * up the object based on the offset and sets up the various memory mapping
1252  * structures.
1253  *
1254  * This routine allocates and attaches a fake offset for @obj.
1255  */
1256 static int
1257 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1258 {
1259         struct drm_device *dev = obj->dev;
1260         struct drm_gem_mm *mm = dev->mm_private;
1261         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262         struct drm_map_list *list;
1263         struct drm_local_map *map;
1264         int ret = 0;
1265
1266         /* Set the object up for mmap'ing */
1267         list = &obj->map_list;
1268         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1269         if (!list->map)
1270                 return -ENOMEM;
1271
1272         map = list->map;
1273         map->type = _DRM_GEM;
1274         map->size = obj->size;
1275         map->handle = obj;
1276
1277         /* Get a DRM GEM mmap offset allocated... */
1278         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1279                                                     obj->size / PAGE_SIZE, 0, 0);
1280         if (!list->file_offset_node) {
1281                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1282                 ret = -ENOMEM;
1283                 goto out_free_list;
1284         }
1285
1286         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1287                                                   obj->size / PAGE_SIZE, 0);
1288         if (!list->file_offset_node) {
1289                 ret = -ENOMEM;
1290                 goto out_free_list;
1291         }
1292
1293         list->hash.key = list->file_offset_node->start;
1294         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1295                 DRM_ERROR("failed to add to map hash\n");
1296                 goto out_free_mm;
1297         }
1298
1299         /* By now we should be all set, any drm_mmap request on the offset
1300          * below will get to our mmap & fault handler */
1301         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1302
1303         return 0;
1304
1305 out_free_mm:
1306         drm_mm_put_block(list->file_offset_node);
1307 out_free_list:
1308         kfree(list->map);
1309
1310         return ret;
1311 }
1312
1313 /**
1314  * i915_gem_release_mmap - remove physical page mappings
1315  * @obj: obj in question
1316  *
1317  * Preserve the reservation of the mmaping with the DRM core code, but
1318  * relinquish ownership of the pages back to the system.
1319  *
1320  * It is vital that we remove the page mapping if we have mapped a tiled
1321  * object through the GTT and then lose the fence register due to
1322  * resource pressure. Similarly if the object has been moved out of the
1323  * aperture, than pages mapped into userspace must be revoked. Removing the
1324  * mapping will then trigger a page fault on the next user access, allowing
1325  * fixup by i915_gem_fault().
1326  */
1327 void
1328 i915_gem_release_mmap(struct drm_gem_object *obj)
1329 {
1330         struct drm_device *dev = obj->dev;
1331         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1332
1333         if (dev->dev_mapping)
1334                 unmap_mapping_range(dev->dev_mapping,
1335                                     obj_priv->mmap_offset, obj->size, 1);
1336 }
1337
1338 static void
1339 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1340 {
1341         struct drm_device *dev = obj->dev;
1342         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1343         struct drm_gem_mm *mm = dev->mm_private;
1344         struct drm_map_list *list;
1345
1346         list = &obj->map_list;
1347         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1348
1349         if (list->file_offset_node) {
1350                 drm_mm_put_block(list->file_offset_node);
1351                 list->file_offset_node = NULL;
1352         }
1353
1354         if (list->map) {
1355                 kfree(list->map);
1356                 list->map = NULL;
1357         }
1358
1359         obj_priv->mmap_offset = 0;
1360 }
1361
1362 /**
1363  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1364  * @obj: object to check
1365  *
1366  * Return the required GTT alignment for an object, taking into account
1367  * potential fence register mapping if needed.
1368  */
1369 static uint32_t
1370 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1371 {
1372         struct drm_device *dev = obj->dev;
1373         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1374         int start, i;
1375
1376         /*
1377          * Minimum alignment is 4k (GTT page size), but might be greater
1378          * if a fence register is needed for the object.
1379          */
1380         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1381                 return 4096;
1382
1383         /*
1384          * Previous chips need to be aligned to the size of the smallest
1385          * fence register that can contain the object.
1386          */
1387         if (IS_I9XX(dev))
1388                 start = 1024*1024;
1389         else
1390                 start = 512*1024;
1391
1392         for (i = start; i < obj->size; i <<= 1)
1393                 ;
1394
1395         return i;
1396 }
1397
1398 /**
1399  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1400  * @dev: DRM device
1401  * @data: GTT mapping ioctl data
1402  * @file_priv: GEM object info
1403  *
1404  * Simply returns the fake offset to userspace so it can mmap it.
1405  * The mmap call will end up in drm_gem_mmap(), which will set things
1406  * up so we can get faults in the handler above.
1407  *
1408  * The fault handler will take care of binding the object into the GTT
1409  * (since it may have been evicted to make room for something), allocating
1410  * a fence register, and mapping the appropriate aperture address into
1411  * userspace.
1412  */
1413 int
1414 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1415                         struct drm_file *file_priv)
1416 {
1417         struct drm_i915_gem_mmap_gtt *args = data;
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419         struct drm_gem_object *obj;
1420         struct drm_i915_gem_object *obj_priv;
1421         int ret;
1422
1423         if (!(dev->driver->driver_features & DRIVER_GEM))
1424                 return -ENODEV;
1425
1426         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1427         if (obj == NULL)
1428                 return -EBADF;
1429
1430         mutex_lock(&dev->struct_mutex);
1431
1432         obj_priv = obj->driver_private;
1433
1434         if (!obj_priv->mmap_offset) {
1435                 ret = i915_gem_create_mmap_offset(obj);
1436                 if (ret) {
1437                         drm_gem_object_unreference(obj);
1438                         mutex_unlock(&dev->struct_mutex);
1439                         return ret;
1440                 }
1441         }
1442
1443         args->offset = obj_priv->mmap_offset;
1444
1445         /*
1446          * Pull it into the GTT so that we have a page list (makes the
1447          * initial fault faster and any subsequent flushing possible).
1448          */
1449         if (!obj_priv->agp_mem) {
1450                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1451                 if (ret) {
1452                         drm_gem_object_unreference(obj);
1453                         mutex_unlock(&dev->struct_mutex);
1454                         return ret;
1455                 }
1456                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1457         }
1458
1459         drm_gem_object_unreference(obj);
1460         mutex_unlock(&dev->struct_mutex);
1461
1462         return 0;
1463 }
1464
1465 void
1466 i915_gem_object_put_pages(struct drm_gem_object *obj)
1467 {
1468         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1469         int page_count = obj->size / PAGE_SIZE;
1470         int i;
1471
1472         BUG_ON(obj_priv->pages_refcount == 0);
1473
1474         if (--obj_priv->pages_refcount != 0)
1475                 return;
1476
1477         if (obj_priv->tiling_mode != I915_TILING_NONE)
1478                 i915_gem_object_save_bit_17_swizzle(obj);
1479
1480         if (obj_priv->madv == I915_MADV_DONTNEED)
1481             obj_priv->dirty = 0;
1482
1483         for (i = 0; i < page_count; i++) {
1484                 if (obj_priv->pages[i] == NULL)
1485                         break;
1486
1487                 if (obj_priv->dirty)
1488                         set_page_dirty(obj_priv->pages[i]);
1489
1490                 if (obj_priv->madv == I915_MADV_WILLNEED)
1491                     mark_page_accessed(obj_priv->pages[i]);
1492
1493                 page_cache_release(obj_priv->pages[i]);
1494         }
1495         obj_priv->dirty = 0;
1496
1497         drm_free_large(obj_priv->pages);
1498         obj_priv->pages = NULL;
1499 }
1500
1501 static void
1502 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1503 {
1504         struct drm_device *dev = obj->dev;
1505         drm_i915_private_t *dev_priv = dev->dev_private;
1506         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1507
1508         /* Add a reference if we're newly entering the active list. */
1509         if (!obj_priv->active) {
1510                 drm_gem_object_reference(obj);
1511                 obj_priv->active = 1;
1512         }
1513         /* Move from whatever list we were on to the tail of execution. */
1514         spin_lock(&dev_priv->mm.active_list_lock);
1515         list_move_tail(&obj_priv->list,
1516                        &dev_priv->mm.active_list);
1517         spin_unlock(&dev_priv->mm.active_list_lock);
1518         obj_priv->last_rendering_seqno = seqno;
1519 }
1520
1521 static void
1522 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1523 {
1524         struct drm_device *dev = obj->dev;
1525         drm_i915_private_t *dev_priv = dev->dev_private;
1526         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1527
1528         BUG_ON(!obj_priv->active);
1529         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1530         obj_priv->last_rendering_seqno = 0;
1531 }
1532
1533 static void
1534 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1535 {
1536         struct drm_device *dev = obj->dev;
1537         drm_i915_private_t *dev_priv = dev->dev_private;
1538         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1539
1540         i915_verify_inactive(dev, __FILE__, __LINE__);
1541         if (obj_priv->pin_count != 0)
1542                 list_del_init(&obj_priv->list);
1543         else
1544                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1545
1546         obj_priv->last_rendering_seqno = 0;
1547         if (obj_priv->active) {
1548                 obj_priv->active = 0;
1549                 drm_gem_object_unreference(obj);
1550         }
1551         i915_verify_inactive(dev, __FILE__, __LINE__);
1552 }
1553
1554 /**
1555  * Creates a new sequence number, emitting a write of it to the status page
1556  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1557  *
1558  * Must be called with struct_lock held.
1559  *
1560  * Returned sequence numbers are nonzero on success.
1561  */
1562 static uint32_t
1563 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1564                  uint32_t flush_domains)
1565 {
1566         drm_i915_private_t *dev_priv = dev->dev_private;
1567         struct drm_i915_file_private *i915_file_priv = NULL;
1568         struct drm_i915_gem_request *request;
1569         uint32_t seqno;
1570         int was_empty;
1571         RING_LOCALS;
1572
1573         if (file_priv != NULL)
1574                 i915_file_priv = file_priv->driver_priv;
1575
1576         request = kzalloc(sizeof(*request), GFP_KERNEL);
1577         if (request == NULL)
1578                 return 0;
1579
1580         /* Grab the seqno we're going to make this request be, and bump the
1581          * next (skipping 0 so it can be the reserved no-seqno value).
1582          */
1583         seqno = dev_priv->mm.next_gem_seqno;
1584         dev_priv->mm.next_gem_seqno++;
1585         if (dev_priv->mm.next_gem_seqno == 0)
1586                 dev_priv->mm.next_gem_seqno++;
1587
1588         BEGIN_LP_RING(4);
1589         OUT_RING(MI_STORE_DWORD_INDEX);
1590         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1591         OUT_RING(seqno);
1592
1593         OUT_RING(MI_USER_INTERRUPT);
1594         ADVANCE_LP_RING();
1595
1596         DRM_DEBUG("%d\n", seqno);
1597
1598         request->seqno = seqno;
1599         request->emitted_jiffies = jiffies;
1600         was_empty = list_empty(&dev_priv->mm.request_list);
1601         list_add_tail(&request->list, &dev_priv->mm.request_list);
1602         if (i915_file_priv) {
1603                 list_add_tail(&request->client_list,
1604                               &i915_file_priv->mm.request_list);
1605         } else {
1606                 INIT_LIST_HEAD(&request->client_list);
1607         }
1608
1609         /* Associate any objects on the flushing list matching the write
1610          * domain we're flushing with our flush.
1611          */
1612         if (flush_domains != 0) {
1613                 struct drm_i915_gem_object *obj_priv, *next;
1614
1615                 list_for_each_entry_safe(obj_priv, next,
1616                                          &dev_priv->mm.flushing_list, list) {
1617                         struct drm_gem_object *obj = obj_priv->obj;
1618
1619                         if ((obj->write_domain & flush_domains) ==
1620                             obj->write_domain) {
1621                                 obj->write_domain = 0;
1622                                 i915_gem_object_move_to_active(obj, seqno);
1623                         }
1624                 }
1625
1626         }
1627
1628         if (!dev_priv->mm.suspended) {
1629                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1630                 if (was_empty)
1631                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1632         }
1633         return seqno;
1634 }
1635
1636 /**
1637  * Command execution barrier
1638  *
1639  * Ensures that all commands in the ring are finished
1640  * before signalling the CPU
1641  */
1642 static uint32_t
1643 i915_retire_commands(struct drm_device *dev)
1644 {
1645         drm_i915_private_t *dev_priv = dev->dev_private;
1646         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1647         uint32_t flush_domains = 0;
1648         RING_LOCALS;
1649
1650         /* The sampler always gets flushed on i965 (sigh) */
1651         if (IS_I965G(dev))
1652                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1653         BEGIN_LP_RING(2);
1654         OUT_RING(cmd);
1655         OUT_RING(0); /* noop */
1656         ADVANCE_LP_RING();
1657         return flush_domains;
1658 }
1659
1660 /**
1661  * Moves buffers associated only with the given active seqno from the active
1662  * to inactive list, potentially freeing them.
1663  */
1664 static void
1665 i915_gem_retire_request(struct drm_device *dev,
1666                         struct drm_i915_gem_request *request)
1667 {
1668         drm_i915_private_t *dev_priv = dev->dev_private;
1669
1670         /* Move any buffers on the active list that are no longer referenced
1671          * by the ringbuffer to the flushing/inactive lists as appropriate.
1672          */
1673         spin_lock(&dev_priv->mm.active_list_lock);
1674         while (!list_empty(&dev_priv->mm.active_list)) {
1675                 struct drm_gem_object *obj;
1676                 struct drm_i915_gem_object *obj_priv;
1677
1678                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1679                                             struct drm_i915_gem_object,
1680                                             list);
1681                 obj = obj_priv->obj;
1682
1683                 /* If the seqno being retired doesn't match the oldest in the
1684                  * list, then the oldest in the list must still be newer than
1685                  * this seqno.
1686                  */
1687                 if (obj_priv->last_rendering_seqno != request->seqno)
1688                         goto out;
1689
1690 #if WATCH_LRU
1691                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1692                          __func__, request->seqno, obj);
1693 #endif
1694
1695                 if (obj->write_domain != 0)
1696                         i915_gem_object_move_to_flushing(obj);
1697                 else {
1698                         /* Take a reference on the object so it won't be
1699                          * freed while the spinlock is held.  The list
1700                          * protection for this spinlock is safe when breaking
1701                          * the lock like this since the next thing we do
1702                          * is just get the head of the list again.
1703                          */
1704                         drm_gem_object_reference(obj);
1705                         i915_gem_object_move_to_inactive(obj);
1706                         spin_unlock(&dev_priv->mm.active_list_lock);
1707                         drm_gem_object_unreference(obj);
1708                         spin_lock(&dev_priv->mm.active_list_lock);
1709                 }
1710         }
1711 out:
1712         spin_unlock(&dev_priv->mm.active_list_lock);
1713 }
1714
1715 /**
1716  * Returns true if seq1 is later than seq2.
1717  */
1718 bool
1719 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1720 {
1721         return (int32_t)(seq1 - seq2) >= 0;
1722 }
1723
1724 uint32_t
1725 i915_get_gem_seqno(struct drm_device *dev)
1726 {
1727         drm_i915_private_t *dev_priv = dev->dev_private;
1728
1729         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1730 }
1731
1732 /**
1733  * This function clears the request list as sequence numbers are passed.
1734  */
1735 void
1736 i915_gem_retire_requests(struct drm_device *dev)
1737 {
1738         drm_i915_private_t *dev_priv = dev->dev_private;
1739         uint32_t seqno;
1740
1741         if (!dev_priv->hw_status_page)
1742                 return;
1743
1744         seqno = i915_get_gem_seqno(dev);
1745
1746         while (!list_empty(&dev_priv->mm.request_list)) {
1747                 struct drm_i915_gem_request *request;
1748                 uint32_t retiring_seqno;
1749
1750                 request = list_first_entry(&dev_priv->mm.request_list,
1751                                            struct drm_i915_gem_request,
1752                                            list);
1753                 retiring_seqno = request->seqno;
1754
1755                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1756                     atomic_read(&dev_priv->mm.wedged)) {
1757                         i915_gem_retire_request(dev, request);
1758
1759                         list_del(&request->list);
1760                         list_del(&request->client_list);
1761                         kfree(request);
1762                 } else
1763                         break;
1764         }
1765 }
1766
1767 void
1768 i915_gem_retire_work_handler(struct work_struct *work)
1769 {
1770         drm_i915_private_t *dev_priv;
1771         struct drm_device *dev;
1772
1773         dev_priv = container_of(work, drm_i915_private_t,
1774                                 mm.retire_work.work);
1775         dev = dev_priv->dev;
1776
1777         mutex_lock(&dev->struct_mutex);
1778         i915_gem_retire_requests(dev);
1779         if (!dev_priv->mm.suspended &&
1780             !list_empty(&dev_priv->mm.request_list))
1781                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1782         mutex_unlock(&dev->struct_mutex);
1783 }
1784
1785 /**
1786  * Waits for a sequence number to be signaled, and cleans up the
1787  * request and object lists appropriately for that event.
1788  */
1789 static int
1790 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1791 {
1792         drm_i915_private_t *dev_priv = dev->dev_private;
1793         u32 ier;
1794         int ret = 0;
1795
1796         BUG_ON(seqno == 0);
1797
1798         if (atomic_read(&dev_priv->mm.wedged))
1799                 return -EIO;
1800
1801         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1802                 if (IS_IGDNG(dev))
1803                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1804                 else
1805                         ier = I915_READ(IER);
1806                 if (!ier) {
1807                         DRM_ERROR("something (likely vbetool) disabled "
1808                                   "interrupts, re-enabling\n");
1809                         i915_driver_irq_preinstall(dev);
1810                         i915_driver_irq_postinstall(dev);
1811                 }
1812
1813                 dev_priv->mm.waiting_gem_seqno = seqno;
1814                 i915_user_irq_get(dev);
1815                 ret = wait_event_interruptible(dev_priv->irq_queue,
1816                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1817                                                                  seqno) ||
1818                                                atomic_read(&dev_priv->mm.wedged));
1819                 i915_user_irq_put(dev);
1820                 dev_priv->mm.waiting_gem_seqno = 0;
1821         }
1822         if (atomic_read(&dev_priv->mm.wedged))
1823                 ret = -EIO;
1824
1825         if (ret && ret != -ERESTARTSYS)
1826                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1827                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1828
1829         /* Directly dispatch request retiring.  While we have the work queue
1830          * to handle this, the waiter on a request often wants an associated
1831          * buffer to have made it to the inactive list, and we would need
1832          * a separate wait queue to handle that.
1833          */
1834         if (ret == 0)
1835                 i915_gem_retire_requests(dev);
1836
1837         return ret;
1838 }
1839
1840 static void
1841 i915_gem_flush(struct drm_device *dev,
1842                uint32_t invalidate_domains,
1843                uint32_t flush_domains)
1844 {
1845         drm_i915_private_t *dev_priv = dev->dev_private;
1846         uint32_t cmd;
1847         RING_LOCALS;
1848
1849 #if WATCH_EXEC
1850         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1851                   invalidate_domains, flush_domains);
1852 #endif
1853
1854         if (flush_domains & I915_GEM_DOMAIN_CPU)
1855                 drm_agp_chipset_flush(dev);
1856
1857         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1858                 /*
1859                  * read/write caches:
1860                  *
1861                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1862                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1863                  * also flushed at 2d versus 3d pipeline switches.
1864                  *
1865                  * read-only caches:
1866                  *
1867                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1868                  * MI_READ_FLUSH is set, and is always flushed on 965.
1869                  *
1870                  * I915_GEM_DOMAIN_COMMAND may not exist?
1871                  *
1872                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1873                  * invalidated when MI_EXE_FLUSH is set.
1874                  *
1875                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1876                  * invalidated with every MI_FLUSH.
1877                  *
1878                  * TLBs:
1879                  *
1880                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1881                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1882                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1883                  * are flushed at any MI_FLUSH.
1884                  */
1885
1886                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1887                 if ((invalidate_domains|flush_domains) &
1888                     I915_GEM_DOMAIN_RENDER)
1889                         cmd &= ~MI_NO_WRITE_FLUSH;
1890                 if (!IS_I965G(dev)) {
1891                         /*
1892                          * On the 965, the sampler cache always gets flushed
1893                          * and this bit is reserved.
1894                          */
1895                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1896                                 cmd |= MI_READ_FLUSH;
1897                 }
1898                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1899                         cmd |= MI_EXE_FLUSH;
1900
1901 #if WATCH_EXEC
1902                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1903 #endif
1904                 BEGIN_LP_RING(2);
1905                 OUT_RING(cmd);
1906                 OUT_RING(0); /* noop */
1907                 ADVANCE_LP_RING();
1908         }
1909 }
1910
1911 /**
1912  * Ensures that all rendering to the object has completed and the object is
1913  * safe to unbind from the GTT or access from the CPU.
1914  */
1915 static int
1916 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1917 {
1918         struct drm_device *dev = obj->dev;
1919         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1920         int ret;
1921
1922         /* This function only exists to support waiting for existing rendering,
1923          * not for emitting required flushes.
1924          */
1925         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1926
1927         /* If there is rendering queued on the buffer being evicted, wait for
1928          * it.
1929          */
1930         if (obj_priv->active) {
1931 #if WATCH_BUF
1932                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1933                           __func__, obj, obj_priv->last_rendering_seqno);
1934 #endif
1935                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1936                 if (ret != 0)
1937                         return ret;
1938         }
1939
1940         return 0;
1941 }
1942
1943 /**
1944  * Unbinds an object from the GTT aperture.
1945  */
1946 int
1947 i915_gem_object_unbind(struct drm_gem_object *obj)
1948 {
1949         struct drm_device *dev = obj->dev;
1950         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1951         int ret = 0;
1952
1953 #if WATCH_BUF
1954         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1955         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1956 #endif
1957         if (obj_priv->gtt_space == NULL)
1958                 return 0;
1959
1960         if (obj_priv->pin_count != 0) {
1961                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1962                 return -EINVAL;
1963         }
1964
1965         /* blow away mappings if mapped through GTT */
1966         i915_gem_release_mmap(obj);
1967
1968         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1969                 i915_gem_clear_fence_reg(obj);
1970
1971         /* Move the object to the CPU domain to ensure that
1972          * any possible CPU writes while it's not in the GTT
1973          * are flushed when we go to remap it. This will
1974          * also ensure that all pending GPU writes are finished
1975          * before we unbind.
1976          */
1977         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1978         if (ret) {
1979                 if (ret != -ERESTARTSYS)
1980                         DRM_ERROR("set_domain failed: %d\n", ret);
1981                 return ret;
1982         }
1983
1984         BUG_ON(obj_priv->active);
1985
1986         if (obj_priv->agp_mem != NULL) {
1987                 drm_unbind_agp(obj_priv->agp_mem);
1988                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1989                 obj_priv->agp_mem = NULL;
1990         }
1991
1992         i915_gem_object_put_pages(obj);
1993
1994         if (obj_priv->gtt_space) {
1995                 atomic_dec(&dev->gtt_count);
1996                 atomic_sub(obj->size, &dev->gtt_memory);
1997
1998                 drm_mm_put_block(obj_priv->gtt_space);
1999                 obj_priv->gtt_space = NULL;
2000         }
2001
2002         /* Remove ourselves from the LRU list if present. */
2003         if (!list_empty(&obj_priv->list))
2004                 list_del_init(&obj_priv->list);
2005
2006         return 0;
2007 }
2008
2009 static inline int
2010 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
2011 {
2012         return !obj_priv->dirty || obj_priv->madv == I915_MADV_DONTNEED;
2013 }
2014
2015 static struct drm_gem_object *
2016 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2017 {
2018         drm_i915_private_t *dev_priv = dev->dev_private;
2019         struct drm_i915_gem_object *obj_priv;
2020         struct drm_gem_object *best = NULL;
2021         struct drm_gem_object *first = NULL;
2022
2023         /* Try to find the smallest clean object */
2024         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2025                 struct drm_gem_object *obj = obj_priv->obj;
2026                 if (obj->size >= min_size) {
2027                         if (i915_gem_object_is_purgeable(obj_priv) &&
2028                             (!best || obj->size < best->size)) {
2029                                 best = obj;
2030                                 if (best->size == min_size)
2031                                         return best;
2032                         }
2033                         if (!first)
2034                             first = obj;
2035                 }
2036         }
2037
2038         return best ? best : first;
2039 }
2040
2041 static int
2042 i915_gem_evict_everything(struct drm_device *dev)
2043 {
2044         drm_i915_private_t *dev_priv = dev->dev_private;
2045         uint32_t seqno;
2046         int ret;
2047         bool lists_empty;
2048
2049         DRM_INFO("GTT full, evicting everything: "
2050                  "%d objects [%d pinned], "
2051                  "%d object bytes [%d pinned], "
2052                  "%d/%d gtt bytes\n",
2053                  atomic_read(&dev->object_count),
2054                  atomic_read(&dev->pin_count),
2055                  atomic_read(&dev->object_memory),
2056                  atomic_read(&dev->pin_memory),
2057                  atomic_read(&dev->gtt_memory),
2058                  dev->gtt_total);
2059
2060         spin_lock(&dev_priv->mm.active_list_lock);
2061         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2062                        list_empty(&dev_priv->mm.flushing_list) &&
2063                        list_empty(&dev_priv->mm.active_list));
2064         spin_unlock(&dev_priv->mm.active_list_lock);
2065
2066         if (lists_empty) {
2067                 DRM_ERROR("GTT full, but lists empty!\n");
2068                 return -ENOSPC;
2069         }
2070
2071         /* Flush everything (on to the inactive lists) and evict */
2072         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2073         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2074         if (seqno == 0)
2075                 return -ENOMEM;
2076
2077         ret = i915_wait_request(dev, seqno);
2078         if (ret)
2079                 return ret;
2080
2081         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
2082         if (ret)
2083                 return ret;
2084
2085         spin_lock(&dev_priv->mm.active_list_lock);
2086         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2087                        list_empty(&dev_priv->mm.flushing_list) &&
2088                        list_empty(&dev_priv->mm.active_list));
2089         spin_unlock(&dev_priv->mm.active_list_lock);
2090         BUG_ON(!lists_empty);
2091
2092         return 0;
2093 }
2094
2095 static int
2096 i915_gem_evict_something(struct drm_device *dev, int min_size)
2097 {
2098         drm_i915_private_t *dev_priv = dev->dev_private;
2099         struct drm_gem_object *obj;
2100         int have_waited = 0;
2101         int ret;
2102
2103         for (;;) {
2104                 i915_gem_retire_requests(dev);
2105
2106                 /* If there's an inactive buffer available now, grab it
2107                  * and be done.
2108                  */
2109                 obj = i915_gem_find_inactive_object(dev, min_size);
2110                 if (obj) {
2111                         struct drm_i915_gem_object *obj_priv;
2112
2113 #if WATCH_LRU
2114                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2115 #endif
2116                         obj_priv = obj->driver_private;
2117                         BUG_ON(obj_priv->pin_count != 0);
2118                         BUG_ON(obj_priv->active);
2119
2120                         /* Wait on the rendering and unbind the buffer. */
2121                         return i915_gem_object_unbind(obj);
2122                 }
2123
2124                 if (have_waited)
2125                         return 0;
2126
2127                 /* If we didn't get anything, but the ring is still processing
2128                  * things, wait for the next to finish and hopefully leave us
2129                  * a buffer to evict.
2130                  */
2131                 if (!list_empty(&dev_priv->mm.request_list)) {
2132                         struct drm_i915_gem_request *request;
2133
2134                         request = list_first_entry(&dev_priv->mm.request_list,
2135                                                    struct drm_i915_gem_request,
2136                                                    list);
2137
2138                         ret = i915_wait_request(dev, request->seqno);
2139                         if (ret)
2140                                 return ret;
2141
2142                         have_waited = 1;
2143                         continue;
2144                 }
2145
2146                 /* If we didn't have anything on the request list but there
2147                  * are buffers awaiting a flush, emit one and try again.
2148                  * When we wait on it, those buffers waiting for that flush
2149                  * will get moved to inactive.
2150                  */
2151                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2152                         struct drm_i915_gem_object *obj_priv;
2153                         uint32_t seqno;
2154
2155                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2156                                                     struct drm_i915_gem_object,
2157                                                     list);
2158                         obj = obj_priv->obj;
2159
2160                         i915_gem_flush(dev,
2161                                        obj->write_domain,
2162                                        obj->write_domain);
2163                         seqno = i915_add_request(dev, NULL, obj->write_domain);
2164                         if (seqno == 0)
2165                                 return -ENOMEM;
2166
2167                         ret = i915_wait_request(dev, seqno);
2168                         if (ret)
2169                                 return ret;
2170
2171                         have_waited = 1;
2172                         continue;
2173                 }
2174
2175                 /* If we didn't do any of the above, there's no single buffer
2176                  * large enough to swap out for the new one, so just evict
2177                  * everything and start again. (This should be rare.)
2178                  */
2179                 if (!list_empty (&dev_priv->mm.inactive_list)) {
2180                         DRM_INFO("GTT full, evicting inactive buffers\n");
2181                         return i915_gem_evict_from_list(dev,
2182                                                         &dev_priv->mm.inactive_list);
2183                 } else
2184                         return i915_gem_evict_everything(dev);
2185         }
2186 }
2187
2188 int
2189 i915_gem_object_get_pages(struct drm_gem_object *obj)
2190 {
2191         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2192         int page_count, i;
2193         struct address_space *mapping;
2194         struct inode *inode;
2195         struct page *page;
2196         int ret;
2197
2198         if (obj_priv->pages_refcount++ != 0)
2199                 return 0;
2200
2201         /* Get the list of pages out of our struct file.  They'll be pinned
2202          * at this point until we release them.
2203          */
2204         page_count = obj->size / PAGE_SIZE;
2205         BUG_ON(obj_priv->pages != NULL);
2206         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2207         if (obj_priv->pages == NULL) {
2208                 DRM_ERROR("Failed to allocate page list\n");
2209                 obj_priv->pages_refcount--;
2210                 return -ENOMEM;
2211         }
2212
2213         inode = obj->filp->f_path.dentry->d_inode;
2214         mapping = inode->i_mapping;
2215         for (i = 0; i < page_count; i++) {
2216                 page = read_mapping_page(mapping, i, NULL);
2217                 if (IS_ERR(page)) {
2218                         ret = PTR_ERR(page);
2219                         i915_gem_object_put_pages(obj);
2220                         return ret;
2221                 }
2222                 obj_priv->pages[i] = page;
2223         }
2224
2225         if (obj_priv->tiling_mode != I915_TILING_NONE)
2226                 i915_gem_object_do_bit_17_swizzle(obj);
2227
2228         return 0;
2229 }
2230
2231 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2232 {
2233         struct drm_gem_object *obj = reg->obj;
2234         struct drm_device *dev = obj->dev;
2235         drm_i915_private_t *dev_priv = dev->dev_private;
2236         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2237         int regnum = obj_priv->fence_reg;
2238         uint64_t val;
2239
2240         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2241                     0xfffff000) << 32;
2242         val |= obj_priv->gtt_offset & 0xfffff000;
2243         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2244         if (obj_priv->tiling_mode == I915_TILING_Y)
2245                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2246         val |= I965_FENCE_REG_VALID;
2247
2248         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2249 }
2250
2251 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2252 {
2253         struct drm_gem_object *obj = reg->obj;
2254         struct drm_device *dev = obj->dev;
2255         drm_i915_private_t *dev_priv = dev->dev_private;
2256         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2257         int regnum = obj_priv->fence_reg;
2258         int tile_width;
2259         uint32_t fence_reg, val;
2260         uint32_t pitch_val;
2261
2262         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2263             (obj_priv->gtt_offset & (obj->size - 1))) {
2264                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2265                      __func__, obj_priv->gtt_offset, obj->size);
2266                 return;
2267         }
2268
2269         if (obj_priv->tiling_mode == I915_TILING_Y &&
2270             HAS_128_BYTE_Y_TILING(dev))
2271                 tile_width = 128;
2272         else
2273                 tile_width = 512;
2274
2275         /* Note: pitch better be a power of two tile widths */
2276         pitch_val = obj_priv->stride / tile_width;
2277         pitch_val = ffs(pitch_val) - 1;
2278
2279         val = obj_priv->gtt_offset;
2280         if (obj_priv->tiling_mode == I915_TILING_Y)
2281                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2282         val |= I915_FENCE_SIZE_BITS(obj->size);
2283         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2284         val |= I830_FENCE_REG_VALID;
2285
2286         if (regnum < 8)
2287                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2288         else
2289                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2290         I915_WRITE(fence_reg, val);
2291 }
2292
2293 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2294 {
2295         struct drm_gem_object *obj = reg->obj;
2296         struct drm_device *dev = obj->dev;
2297         drm_i915_private_t *dev_priv = dev->dev_private;
2298         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2299         int regnum = obj_priv->fence_reg;
2300         uint32_t val;
2301         uint32_t pitch_val;
2302         uint32_t fence_size_bits;
2303
2304         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2305             (obj_priv->gtt_offset & (obj->size - 1))) {
2306                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2307                      __func__, obj_priv->gtt_offset);
2308                 return;
2309         }
2310
2311         pitch_val = obj_priv->stride / 128;
2312         pitch_val = ffs(pitch_val) - 1;
2313         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2314
2315         val = obj_priv->gtt_offset;
2316         if (obj_priv->tiling_mode == I915_TILING_Y)
2317                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2318         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2319         WARN_ON(fence_size_bits & ~0x00000f00);
2320         val |= fence_size_bits;
2321         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2322         val |= I830_FENCE_REG_VALID;
2323
2324         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2325 }
2326
2327 /**
2328  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2329  * @obj: object to map through a fence reg
2330  *
2331  * When mapping objects through the GTT, userspace wants to be able to write
2332  * to them without having to worry about swizzling if the object is tiled.
2333  *
2334  * This function walks the fence regs looking for a free one for @obj,
2335  * stealing one if it can't find any.
2336  *
2337  * It then sets up the reg based on the object's properties: address, pitch
2338  * and tiling format.
2339  */
2340 int
2341 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2342 {
2343         struct drm_device *dev = obj->dev;
2344         struct drm_i915_private *dev_priv = dev->dev_private;
2345         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2346         struct drm_i915_fence_reg *reg = NULL;
2347         struct drm_i915_gem_object *old_obj_priv = NULL;
2348         int i, ret, avail;
2349
2350         /* Just update our place in the LRU if our fence is getting used. */
2351         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2352                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2353                 return 0;
2354         }
2355
2356         switch (obj_priv->tiling_mode) {
2357         case I915_TILING_NONE:
2358                 WARN(1, "allocating a fence for non-tiled object?\n");
2359                 break;
2360         case I915_TILING_X:
2361                 if (!obj_priv->stride)
2362                         return -EINVAL;
2363                 WARN((obj_priv->stride & (512 - 1)),
2364                      "object 0x%08x is X tiled but has non-512B pitch\n",
2365                      obj_priv->gtt_offset);
2366                 break;
2367         case I915_TILING_Y:
2368                 if (!obj_priv->stride)
2369                         return -EINVAL;
2370                 WARN((obj_priv->stride & (128 - 1)),
2371                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2372                      obj_priv->gtt_offset);
2373                 break;
2374         }
2375
2376         /* First try to find a free reg */
2377         avail = 0;
2378         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2379                 reg = &dev_priv->fence_regs[i];
2380                 if (!reg->obj)
2381                         break;
2382
2383                 old_obj_priv = reg->obj->driver_private;
2384                 if (!old_obj_priv->pin_count)
2385                     avail++;
2386         }
2387
2388         /* None available, try to steal one or wait for a user to finish */
2389         if (i == dev_priv->num_fence_regs) {
2390                 struct drm_gem_object *old_obj = NULL;
2391
2392                 if (avail == 0)
2393                         return -ENOSPC;
2394
2395                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2396                                     fence_list) {
2397                         old_obj = old_obj_priv->obj;
2398
2399                         if (old_obj_priv->pin_count)
2400                                 continue;
2401
2402                         /* Take a reference, as otherwise the wait_rendering
2403                          * below may cause the object to get freed out from
2404                          * under us.
2405                          */
2406                         drm_gem_object_reference(old_obj);
2407
2408                         /* i915 uses fences for GPU access to tiled buffers */
2409                         if (IS_I965G(dev) || !old_obj_priv->active)
2410                                 break;
2411
2412                         /* This brings the object to the head of the LRU if it
2413                          * had been written to.  The only way this should
2414                          * result in us waiting longer than the expected
2415                          * optimal amount of time is if there was a
2416                          * fence-using buffer later that was read-only.
2417                          */
2418                         i915_gem_object_flush_gpu_write_domain(old_obj);
2419                         ret = i915_gem_object_wait_rendering(old_obj);
2420                         if (ret != 0) {
2421                                 drm_gem_object_unreference(old_obj);
2422                                 return ret;
2423                         }
2424
2425                         break;
2426                 }
2427
2428                 /*
2429                  * Zap this virtual mapping so we can set up a fence again
2430                  * for this object next time we need it.
2431                  */
2432                 i915_gem_release_mmap(old_obj);
2433
2434                 i = old_obj_priv->fence_reg;
2435                 reg = &dev_priv->fence_regs[i];
2436
2437                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2438                 list_del_init(&old_obj_priv->fence_list);
2439
2440                 drm_gem_object_unreference(old_obj);
2441         }
2442
2443         obj_priv->fence_reg = i;
2444         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2445
2446         reg->obj = obj;
2447
2448         if (IS_I965G(dev))
2449                 i965_write_fence_reg(reg);
2450         else if (IS_I9XX(dev))
2451                 i915_write_fence_reg(reg);
2452         else
2453                 i830_write_fence_reg(reg);
2454
2455         return 0;
2456 }
2457
2458 /**
2459  * i915_gem_clear_fence_reg - clear out fence register info
2460  * @obj: object to clear
2461  *
2462  * Zeroes out the fence register itself and clears out the associated
2463  * data structures in dev_priv and obj_priv.
2464  */
2465 static void
2466 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2467 {
2468         struct drm_device *dev = obj->dev;
2469         drm_i915_private_t *dev_priv = dev->dev_private;
2470         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2471
2472         if (IS_I965G(dev))
2473                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2474         else {
2475                 uint32_t fence_reg;
2476
2477                 if (obj_priv->fence_reg < 8)
2478                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2479                 else
2480                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2481                                                        8) * 4;
2482
2483                 I915_WRITE(fence_reg, 0);
2484         }
2485
2486         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2487         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2488         list_del_init(&obj_priv->fence_list);
2489 }
2490
2491 /**
2492  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2493  * to the buffer to finish, and then resets the fence register.
2494  * @obj: tiled object holding a fence register.
2495  *
2496  * Zeroes out the fence register itself and clears out the associated
2497  * data structures in dev_priv and obj_priv.
2498  */
2499 int
2500 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2501 {
2502         struct drm_device *dev = obj->dev;
2503         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2504
2505         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2506                 return 0;
2507
2508         /* On the i915, GPU access to tiled buffers is via a fence,
2509          * therefore we must wait for any outstanding access to complete
2510          * before clearing the fence.
2511          */
2512         if (!IS_I965G(dev)) {
2513                 int ret;
2514
2515                 i915_gem_object_flush_gpu_write_domain(obj);
2516                 i915_gem_object_flush_gtt_write_domain(obj);
2517                 ret = i915_gem_object_wait_rendering(obj);
2518                 if (ret != 0)
2519                         return ret;
2520         }
2521
2522         i915_gem_clear_fence_reg (obj);
2523
2524         return 0;
2525 }
2526
2527 /**
2528  * Finds free space in the GTT aperture and binds the object there.
2529  */
2530 static int
2531 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2532 {
2533         struct drm_device *dev = obj->dev;
2534         drm_i915_private_t *dev_priv = dev->dev_private;
2535         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2536         struct drm_mm_node *free_space;
2537         bool retry_alloc = false;
2538         int ret;
2539
2540         if (dev_priv->mm.suspended)
2541                 return -EBUSY;
2542
2543         if (obj_priv->madv == I915_MADV_DONTNEED) {
2544                 DRM_ERROR("Attempting to bind a purgeable object\n");
2545                 return -EINVAL;
2546         }
2547
2548         if (alignment == 0)
2549                 alignment = i915_gem_get_gtt_alignment(obj);
2550         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2551                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2552                 return -EINVAL;
2553         }
2554
2555  search_free:
2556         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2557                                         obj->size, alignment, 0);
2558         if (free_space != NULL) {
2559                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2560                                                        alignment);
2561                 if (obj_priv->gtt_space != NULL) {
2562                         obj_priv->gtt_space->private = obj;
2563                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2564                 }
2565         }
2566         if (obj_priv->gtt_space == NULL) {
2567                 /* If the gtt is empty and we're still having trouble
2568                  * fitting our object in, we're out of memory.
2569                  */
2570 #if WATCH_LRU
2571                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2572 #endif
2573                 ret = i915_gem_evict_something(dev, obj->size);
2574                 if (ret != 0) {
2575                         if (ret != -ERESTARTSYS)
2576                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2577                         return ret;
2578                 }
2579                 goto search_free;
2580         }
2581
2582 #if WATCH_BUF
2583         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2584                  obj->size, obj_priv->gtt_offset);
2585 #endif
2586         if (retry_alloc) {
2587                 i915_gem_object_set_page_gfp_mask (obj,
2588                                                    i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2589         }
2590         ret = i915_gem_object_get_pages(obj);
2591         if (retry_alloc) {
2592                 i915_gem_object_set_page_gfp_mask (obj,
2593                                                    i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2594         }
2595         if (ret) {
2596                 drm_mm_put_block(obj_priv->gtt_space);
2597                 obj_priv->gtt_space = NULL;
2598
2599                 if (ret == -ENOMEM) {
2600                         /* first try to clear up some space from the GTT */
2601                         ret = i915_gem_evict_something(dev, obj->size);
2602                         if (ret) {
2603                                 if (ret != -ERESTARTSYS)
2604                                         DRM_ERROR("Failed to allocate space for backing pages %d\n", ret);
2605
2606                                 /* now try to shrink everyone else */
2607                                 if (! retry_alloc) {
2608                                     retry_alloc = true;
2609                                     goto search_free;
2610                                 }
2611
2612                                 return ret;
2613                         }
2614
2615                         goto search_free;
2616                 }
2617
2618                 return ret;
2619         }
2620
2621         /* Create an AGP memory structure pointing at our pages, and bind it
2622          * into the GTT.
2623          */
2624         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2625                                                obj_priv->pages,
2626                                                obj->size >> PAGE_SHIFT,
2627                                                obj_priv->gtt_offset,
2628                                                obj_priv->agp_type);
2629         if (obj_priv->agp_mem == NULL) {
2630                 i915_gem_object_put_pages(obj);
2631                 drm_mm_put_block(obj_priv->gtt_space);
2632                 obj_priv->gtt_space = NULL;
2633
2634                 ret = i915_gem_evict_something(dev, obj->size);
2635                 if (ret) {
2636                         if (ret != -ERESTARTSYS)
2637                                 DRM_ERROR("Failed to allocate space to bind AGP: %d\n", ret);
2638                         return ret;
2639                 }
2640
2641                 goto search_free;
2642         }
2643         atomic_inc(&dev->gtt_count);
2644         atomic_add(obj->size, &dev->gtt_memory);
2645
2646         /* Assert that the object is not currently in any GPU domain. As it
2647          * wasn't in the GTT, there shouldn't be any way it could have been in
2648          * a GPU cache
2649          */
2650         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2651         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2652
2653         return 0;
2654 }
2655
2656 void
2657 i915_gem_clflush_object(struct drm_gem_object *obj)
2658 {
2659         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2660
2661         /* If we don't have a page list set up, then we're not pinned
2662          * to GPU, and we can ignore the cache flush because it'll happen
2663          * again at bind time.
2664          */
2665         if (obj_priv->pages == NULL)
2666                 return;
2667
2668         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2669 }
2670
2671 /** Flushes any GPU write domain for the object if it's dirty. */
2672 static void
2673 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2674 {
2675         struct drm_device *dev = obj->dev;
2676         uint32_t seqno;
2677
2678         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2679                 return;
2680
2681         /* Queue the GPU write cache flushing we need. */
2682         i915_gem_flush(dev, 0, obj->write_domain);
2683         seqno = i915_add_request(dev, NULL, obj->write_domain);
2684         obj->write_domain = 0;
2685         i915_gem_object_move_to_active(obj, seqno);
2686 }
2687
2688 /** Flushes the GTT write domain for the object if it's dirty. */
2689 static void
2690 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2691 {
2692         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2693                 return;
2694
2695         /* No actual flushing is required for the GTT write domain.   Writes
2696          * to it immediately go to main memory as far as we know, so there's
2697          * no chipset flush.  It also doesn't land in render cache.
2698          */
2699         obj->write_domain = 0;
2700 }
2701
2702 /** Flushes the CPU write domain for the object if it's dirty. */
2703 static void
2704 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2705 {
2706         struct drm_device *dev = obj->dev;
2707
2708         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2709                 return;
2710
2711         i915_gem_clflush_object(obj);
2712         drm_agp_chipset_flush(dev);
2713         obj->write_domain = 0;
2714 }
2715
2716 /**
2717  * Moves a single object to the GTT read, and possibly write domain.
2718  *
2719  * This function returns when the move is complete, including waiting on
2720  * flushes to occur.
2721  */
2722 int
2723 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2724 {
2725         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2726         int ret;
2727
2728         /* Not valid to be called on unbound objects. */
2729         if (obj_priv->gtt_space == NULL)
2730                 return -EINVAL;
2731
2732         i915_gem_object_flush_gpu_write_domain(obj);
2733         /* Wait on any GPU rendering and flushing to occur. */
2734         ret = i915_gem_object_wait_rendering(obj);
2735         if (ret != 0)
2736                 return ret;
2737
2738         /* If we're writing through the GTT domain, then CPU and GPU caches
2739          * will need to be invalidated at next use.
2740          */
2741         if (write)
2742                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2743
2744         i915_gem_object_flush_cpu_write_domain(obj);
2745
2746         /* It should now be out of any other write domains, and we can update
2747          * the domain values for our changes.
2748          */
2749         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2750         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2751         if (write) {
2752                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2753                 obj_priv->dirty = 1;
2754         }
2755
2756         return 0;
2757 }
2758
2759 /**
2760  * Moves a single object to the CPU read, and possibly write domain.
2761  *
2762  * This function returns when the move is complete, including waiting on
2763  * flushes to occur.
2764  */
2765 static int
2766 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2767 {
2768         int ret;
2769
2770         i915_gem_object_flush_gpu_write_domain(obj);
2771         /* Wait on any GPU rendering and flushing to occur. */
2772         ret = i915_gem_object_wait_rendering(obj);
2773         if (ret != 0)
2774                 return ret;
2775
2776         i915_gem_object_flush_gtt_write_domain(obj);
2777
2778         /* If we have a partially-valid cache of the object in the CPU,
2779          * finish invalidating it and free the per-page flags.
2780          */
2781         i915_gem_object_set_to_full_cpu_read_domain(obj);
2782
2783         /* Flush the CPU cache if it's still invalid. */
2784         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2785                 i915_gem_clflush_object(obj);
2786
2787                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2788         }
2789
2790         /* It should now be out of any other write domains, and we can update
2791          * the domain values for our changes.
2792          */
2793         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2794
2795         /* If we're writing through the CPU, then the GPU read domains will
2796          * need to be invalidated at next use.
2797          */
2798         if (write) {
2799                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2800                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2801         }
2802
2803         return 0;
2804 }
2805
2806 /*
2807  * Set the next domain for the specified object. This
2808  * may not actually perform the necessary flushing/invaliding though,
2809  * as that may want to be batched with other set_domain operations
2810  *
2811  * This is (we hope) the only really tricky part of gem. The goal
2812  * is fairly simple -- track which caches hold bits of the object
2813  * and make sure they remain coherent. A few concrete examples may
2814  * help to explain how it works. For shorthand, we use the notation
2815  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2816  * a pair of read and write domain masks.
2817  *
2818  * Case 1: the batch buffer
2819  *
2820  *      1. Allocated
2821  *      2. Written by CPU
2822  *      3. Mapped to GTT
2823  *      4. Read by GPU
2824  *      5. Unmapped from GTT
2825  *      6. Freed
2826  *
2827  *      Let's take these a step at a time
2828  *
2829  *      1. Allocated
2830  *              Pages allocated from the kernel may still have
2831  *              cache contents, so we set them to (CPU, CPU) always.
2832  *      2. Written by CPU (using pwrite)
2833  *              The pwrite function calls set_domain (CPU, CPU) and
2834  *              this function does nothing (as nothing changes)
2835  *      3. Mapped by GTT
2836  *              This function asserts that the object is not
2837  *              currently in any GPU-based read or write domains
2838  *      4. Read by GPU
2839  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2840  *              As write_domain is zero, this function adds in the
2841  *              current read domains (CPU+COMMAND, 0).
2842  *              flush_domains is set to CPU.
2843  *              invalidate_domains is set to COMMAND
2844  *              clflush is run to get data out of the CPU caches
2845  *              then i915_dev_set_domain calls i915_gem_flush to
2846  *              emit an MI_FLUSH and drm_agp_chipset_flush
2847  *      5. Unmapped from GTT
2848  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2849  *              flush_domains and invalidate_domains end up both zero
2850  *              so no flushing/invalidating happens
2851  *      6. Freed
2852  *              yay, done
2853  *
2854  * Case 2: The shared render buffer
2855  *
2856  *      1. Allocated
2857  *      2. Mapped to GTT
2858  *      3. Read/written by GPU
2859  *      4. set_domain to (CPU,CPU)
2860  *      5. Read/written by CPU
2861  *      6. Read/written by GPU
2862  *
2863  *      1. Allocated
2864  *              Same as last example, (CPU, CPU)
2865  *      2. Mapped to GTT
2866  *              Nothing changes (assertions find that it is not in the GPU)
2867  *      3. Read/written by GPU
2868  *              execbuffer calls set_domain (RENDER, RENDER)
2869  *              flush_domains gets CPU
2870  *              invalidate_domains gets GPU
2871  *              clflush (obj)
2872  *              MI_FLUSH and drm_agp_chipset_flush
2873  *      4. set_domain (CPU, CPU)
2874  *              flush_domains gets GPU
2875  *              invalidate_domains gets CPU
2876  *              wait_rendering (obj) to make sure all drawing is complete.
2877  *              This will include an MI_FLUSH to get the data from GPU
2878  *              to memory
2879  *              clflush (obj) to invalidate the CPU cache
2880  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2881  *      5. Read/written by CPU
2882  *              cache lines are loaded and dirtied
2883  *      6. Read written by GPU
2884  *              Same as last GPU access
2885  *
2886  * Case 3: The constant buffer
2887  *
2888  *      1. Allocated
2889  *      2. Written by CPU
2890  *      3. Read by GPU
2891  *      4. Updated (written) by CPU again
2892  *      5. Read by GPU
2893  *
2894  *      1. Allocated
2895  *              (CPU, CPU)
2896  *      2. Written by CPU
2897  *              (CPU, CPU)
2898  *      3. Read by GPU
2899  *              (CPU+RENDER, 0)
2900  *              flush_domains = CPU
2901  *              invalidate_domains = RENDER
2902  *              clflush (obj)
2903  *              MI_FLUSH
2904  *              drm_agp_chipset_flush
2905  *      4. Updated (written) by CPU again
2906  *              (CPU, CPU)
2907  *              flush_domains = 0 (no previous write domain)
2908  *              invalidate_domains = 0 (no new read domains)
2909  *      5. Read by GPU
2910  *              (CPU+RENDER, 0)
2911  *              flush_domains = CPU
2912  *              invalidate_domains = RENDER
2913  *              clflush (obj)
2914  *              MI_FLUSH
2915  *              drm_agp_chipset_flush
2916  */
2917 static void
2918 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2919 {
2920         struct drm_device               *dev = obj->dev;
2921         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2922         uint32_t                        invalidate_domains = 0;
2923         uint32_t                        flush_domains = 0;
2924
2925         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2926         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2927
2928         intel_mark_busy(dev, obj);
2929
2930 #if WATCH_BUF
2931         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2932                  __func__, obj,
2933                  obj->read_domains, obj->pending_read_domains,
2934                  obj->write_domain, obj->pending_write_domain);
2935 #endif
2936         /*
2937          * If the object isn't moving to a new write domain,
2938          * let the object stay in multiple read domains
2939          */
2940         if (obj->pending_write_domain == 0)
2941                 obj->pending_read_domains |= obj->read_domains;
2942         else
2943                 obj_priv->dirty = 1;
2944
2945         /*
2946          * Flush the current write domain if
2947          * the new read domains don't match. Invalidate
2948          * any read domains which differ from the old
2949          * write domain
2950          */
2951         if (obj->write_domain &&
2952             obj->write_domain != obj->pending_read_domains) {
2953                 flush_domains |= obj->write_domain;
2954                 invalidate_domains |=
2955                         obj->pending_read_domains & ~obj->write_domain;
2956         }
2957         /*
2958          * Invalidate any read caches which may have
2959          * stale data. That is, any new read domains.
2960          */
2961         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2962         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2963 #if WATCH_BUF
2964                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2965                          __func__, flush_domains, invalidate_domains);
2966 #endif
2967                 i915_gem_clflush_object(obj);
2968         }
2969
2970         /* The actual obj->write_domain will be updated with
2971          * pending_write_domain after we emit the accumulated flush for all
2972          * of our domain changes in execbuffers (which clears objects'
2973          * write_domains).  So if we have a current write domain that we
2974          * aren't changing, set pending_write_domain to that.
2975          */
2976         if (flush_domains == 0 && obj->pending_write_domain == 0)
2977                 obj->pending_write_domain = obj->write_domain;
2978         obj->read_domains = obj->pending_read_domains;
2979
2980         dev->invalidate_domains |= invalidate_domains;
2981         dev->flush_domains |= flush_domains;
2982 #if WATCH_BUF
2983         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2984                  __func__,
2985                  obj->read_domains, obj->write_domain,
2986                  dev->invalidate_domains, dev->flush_domains);
2987 #endif
2988 }
2989
2990 /**
2991  * Moves the object from a partially CPU read to a full one.
2992  *
2993  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2994  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2995  */
2996 static void
2997 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2998 {
2999         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3000
3001         if (!obj_priv->page_cpu_valid)
3002                 return;
3003
3004         /* If we're partially in the CPU read domain, finish moving it in.
3005          */
3006         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3007                 int i;
3008
3009                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3010                         if (obj_priv->page_cpu_valid[i])
3011                                 continue;
3012                         drm_clflush_pages(obj_priv->pages + i, 1);
3013                 }
3014         }
3015
3016         /* Free the page_cpu_valid mappings which are now stale, whether
3017          * or not we've got I915_GEM_DOMAIN_CPU.
3018          */
3019         kfree(obj_priv->page_cpu_valid);
3020         obj_priv->page_cpu_valid = NULL;
3021 }
3022
3023 /**
3024  * Set the CPU read domain on a range of the object.
3025  *
3026  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3027  * not entirely valid.  The page_cpu_valid member of the object flags which
3028  * pages have been flushed, and will be respected by
3029  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3030  * of the whole object.
3031  *
3032  * This function returns when the move is complete, including waiting on
3033  * flushes to occur.
3034  */
3035 static int
3036 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3037                                           uint64_t offset, uint64_t size)
3038 {
3039         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3040         int i, ret;
3041
3042         if (offset == 0 && size == obj->size)
3043                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3044
3045         i915_gem_object_flush_gpu_write_domain(obj);
3046         /* Wait on any GPU rendering and flushing to occur. */
3047         ret = i915_gem_object_wait_rendering(obj);
3048         if (ret != 0)
3049                 return ret;
3050         i915_gem_object_flush_gtt_write_domain(obj);
3051
3052         /* If we're already fully in the CPU read domain, we're done. */
3053         if (obj_priv->page_cpu_valid == NULL &&
3054             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3055                 return 0;
3056
3057         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3058          * newly adding I915_GEM_DOMAIN_CPU
3059          */
3060         if (obj_priv->page_cpu_valid == NULL) {
3061                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3062                                                    GFP_KERNEL);
3063                 if (obj_priv->page_cpu_valid == NULL)
3064                         return -ENOMEM;
3065         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3066                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3067
3068         /* Flush the cache on any pages that are still invalid from the CPU's
3069          * perspective.
3070          */
3071         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3072              i++) {
3073                 if (obj_priv->page_cpu_valid[i])
3074                         continue;
3075
3076                 drm_clflush_pages(obj_priv->pages + i, 1);
3077
3078                 obj_priv->page_cpu_valid[i] = 1;
3079         }
3080
3081         /* It should now be out of any other write domains, and we can update
3082          * the domain values for our changes.
3083          */
3084         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3085
3086         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3087
3088         return 0;
3089 }
3090
3091 /**
3092  * Pin an object to the GTT and evaluate the relocations landing in it.
3093  */
3094 static int
3095 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3096                                  struct drm_file *file_priv,
3097                                  struct drm_i915_gem_exec_object *entry,
3098                                  struct drm_i915_gem_relocation_entry *relocs)
3099 {
3100         struct drm_device *dev = obj->dev;
3101         drm_i915_private_t *dev_priv = dev->dev_private;
3102         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3103         int i, ret;
3104         void __iomem *reloc_page;
3105
3106         /* Choose the GTT offset for our buffer and put it there. */
3107         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3108         if (ret)
3109                 return ret;
3110
3111         entry->offset = obj_priv->gtt_offset;
3112
3113         /* Apply the relocations, using the GTT aperture to avoid cache
3114          * flushing requirements.
3115          */
3116         for (i = 0; i < entry->relocation_count; i++) {
3117                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3118                 struct drm_gem_object *target_obj;
3119                 struct drm_i915_gem_object *target_obj_priv;
3120                 uint32_t reloc_val, reloc_offset;
3121                 uint32_t __iomem *reloc_entry;
3122
3123                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3124                                                    reloc->target_handle);
3125                 if (target_obj == NULL) {
3126                         i915_gem_object_unpin(obj);
3127                         return -EBADF;
3128                 }
3129                 target_obj_priv = target_obj->driver_private;
3130
3131 #if WATCH_RELOC
3132                 DRM_INFO("%s: obj %p offset %08x target %d "
3133                          "read %08x write %08x gtt %08x "
3134                          "presumed %08x delta %08x\n",
3135                          __func__,
3136                          obj,
3137                          (int) reloc->offset,
3138                          (int) reloc->target_handle,
3139                          (int) reloc->read_domains,
3140                          (int) reloc->write_domain,
3141                          (int) target_obj_priv->gtt_offset,
3142                          (int) reloc->presumed_offset,
3143                          reloc->delta);
3144 #endif
3145
3146                 /* The target buffer should have appeared before us in the
3147                  * exec_object list, so it should have a GTT space bound by now.
3148                  */
3149                 if (target_obj_priv->gtt_space == NULL) {
3150                         DRM_ERROR("No GTT space found for object %d\n",
3151                                   reloc->target_handle);
3152                         drm_gem_object_unreference(target_obj);
3153                         i915_gem_object_unpin(obj);
3154                         return -EINVAL;
3155                 }
3156
3157                 /* Validate that the target is in a valid r/w GPU domain */
3158                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3159                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3160                         DRM_ERROR("reloc with read/write CPU domains: "
3161                                   "obj %p target %d offset %d "
3162                                   "read %08x write %08x",
3163                                   obj, reloc->target_handle,
3164                                   (int) reloc->offset,
3165                                   reloc->read_domains,
3166                                   reloc->write_domain);
3167                         drm_gem_object_unreference(target_obj);
3168                         i915_gem_object_unpin(obj);
3169                         return -EINVAL;
3170                 }
3171                 if (reloc->write_domain && target_obj->pending_write_domain &&
3172                     reloc->write_domain != target_obj->pending_write_domain) {
3173                         DRM_ERROR("Write domain conflict: "
3174                                   "obj %p target %d offset %d "
3175                                   "new %08x old %08x\n",
3176                                   obj, reloc->target_handle,
3177                                   (int) reloc->offset,
3178                                   reloc->write_domain,
3179                                   target_obj->pending_write_domain);
3180                         drm_gem_object_unreference(target_obj);
3181                         i915_gem_object_unpin(obj);
3182                         return -EINVAL;
3183                 }
3184
3185                 target_obj->pending_read_domains |= reloc->read_domains;
3186                 target_obj->pending_write_domain |= reloc->write_domain;
3187
3188                 /* If the relocation already has the right value in it, no
3189                  * more work needs to be done.
3190                  */
3191                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3192                         drm_gem_object_unreference(target_obj);
3193                         continue;
3194                 }
3195
3196                 /* Check that the relocation address is valid... */
3197                 if (reloc->offset > obj->size - 4) {
3198                         DRM_ERROR("Relocation beyond object bounds: "
3199                                   "obj %p target %d offset %d size %d.\n",
3200                                   obj, reloc->target_handle,
3201                                   (int) reloc->offset, (int) obj->size);
3202                         drm_gem_object_unreference(target_obj);
3203                         i915_gem_object_unpin(obj);
3204                         return -EINVAL;
3205                 }
3206                 if (reloc->offset & 3) {
3207                         DRM_ERROR("Relocation not 4-byte aligned: "
3208                                   "obj %p target %d offset %d.\n",
3209                                   obj, reloc->target_handle,
3210                                   (int) reloc->offset);
3211                         drm_gem_object_unreference(target_obj);
3212                         i915_gem_object_unpin(obj);
3213                         return -EINVAL;
3214                 }
3215
3216                 /* and points to somewhere within the target object. */
3217                 if (reloc->delta >= target_obj->size) {
3218                         DRM_ERROR("Relocation beyond target object bounds: "
3219                                   "obj %p target %d delta %d size %d.\n",
3220                                   obj, reloc->target_handle,
3221                                   (int) reloc->delta, (int) target_obj->size);
3222                         drm_gem_object_unreference(target_obj);
3223                         i915_gem_object_unpin(obj);
3224                         return -EINVAL;
3225                 }
3226
3227                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3228                 if (ret != 0) {
3229                         drm_gem_object_unreference(target_obj);
3230                         i915_gem_object_unpin(obj);
3231                         return -EINVAL;
3232                 }
3233
3234                 /* Map the page containing the relocation we're going to
3235                  * perform.
3236                  */
3237                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3238                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3239                                                       (reloc_offset &
3240                                                        ~(PAGE_SIZE - 1)));
3241                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3242                                                    (reloc_offset & (PAGE_SIZE - 1)));
3243                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3244
3245 #if WATCH_BUF
3246                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3247                           obj, (unsigned int) reloc->offset,
3248                           readl(reloc_entry), reloc_val);
3249 #endif
3250                 writel(reloc_val, reloc_entry);
3251                 io_mapping_unmap_atomic(reloc_page);
3252
3253                 /* The updated presumed offset for this entry will be
3254                  * copied back out to the user.
3255                  */
3256                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3257
3258                 drm_gem_object_unreference(target_obj);
3259         }
3260
3261 #if WATCH_BUF
3262         if (0)
3263                 i915_gem_dump_object(obj, 128, __func__, ~0);
3264 #endif
3265         return 0;
3266 }
3267
3268 /** Dispatch a batchbuffer to the ring
3269  */
3270 static int
3271 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3272                               struct drm_i915_gem_execbuffer *exec,
3273                               struct drm_clip_rect *cliprects,
3274                               uint64_t exec_offset)
3275 {
3276         drm_i915_private_t *dev_priv = dev->dev_private;
3277         int nbox = exec->num_cliprects;
3278         int i = 0, count;
3279         uint32_t exec_start, exec_len;
3280         RING_LOCALS;
3281
3282         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3283         exec_len = (uint32_t) exec->batch_len;
3284
3285         count = nbox ? nbox : 1;
3286
3287         for (i = 0; i < count; i++) {
3288                 if (i < nbox) {
3289                         int ret = i915_emit_box(dev, cliprects, i,
3290                                                 exec->DR1, exec->DR4);
3291                         if (ret)
3292                                 return ret;
3293                 }
3294
3295                 if (IS_I830(dev) || IS_845G(dev)) {
3296                         BEGIN_LP_RING(4);
3297                         OUT_RING(MI_BATCH_BUFFER);
3298                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3299                         OUT_RING(exec_start + exec_len - 4);
3300                         OUT_RING(0);
3301                         ADVANCE_LP_RING();
3302                 } else {
3303                         BEGIN_LP_RING(2);
3304                         if (IS_I965G(dev)) {
3305                                 OUT_RING(MI_BATCH_BUFFER_START |
3306                                          (2 << 6) |
3307                                          MI_BATCH_NON_SECURE_I965);
3308                                 OUT_RING(exec_start);
3309                         } else {
3310                                 OUT_RING(MI_BATCH_BUFFER_START |
3311                                          (2 << 6));
3312                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3313                         }
3314                         ADVANCE_LP_RING();
3315                 }
3316         }
3317
3318         /* XXX breadcrumb */
3319         return 0;
3320 }
3321
3322 /* Throttle our rendering by waiting until the ring has completed our requests
3323  * emitted over 20 msec ago.
3324  *
3325  * Note that if we were to use the current jiffies each time around the loop,
3326  * we wouldn't escape the function with any frames outstanding if the time to
3327  * render a frame was over 20ms.
3328  *
3329  * This should get us reasonable parallelism between CPU and GPU but also
3330  * relatively low latency when blocking on a particular request to finish.
3331  */
3332 static int
3333 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3334 {
3335         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3336         int ret = 0;
3337         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3338
3339         mutex_lock(&dev->struct_mutex);
3340         while (!list_empty(&i915_file_priv->mm.request_list)) {
3341                 struct drm_i915_gem_request *request;
3342
3343                 request = list_first_entry(&i915_file_priv->mm.request_list,
3344                                            struct drm_i915_gem_request,
3345                                            client_list);
3346
3347                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3348                         break;
3349
3350                 ret = i915_wait_request(dev, request->seqno);
3351                 if (ret != 0)
3352                         break;
3353         }
3354         mutex_unlock(&dev->struct_mutex);
3355
3356         return ret;
3357 }
3358
3359 static int
3360 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3361                               uint32_t buffer_count,
3362                               struct drm_i915_gem_relocation_entry **relocs)
3363 {
3364         uint32_t reloc_count = 0, reloc_index = 0, i;
3365         int ret;
3366
3367         *relocs = NULL;
3368         for (i = 0; i < buffer_count; i++) {
3369                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3370                         return -EINVAL;
3371                 reloc_count += exec_list[i].relocation_count;
3372         }
3373
3374         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3375         if (*relocs == NULL)
3376                 return -ENOMEM;
3377
3378         for (i = 0; i < buffer_count; i++) {
3379                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3380
3381                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3382
3383                 ret = copy_from_user(&(*relocs)[reloc_index],
3384                                      user_relocs,
3385                                      exec_list[i].relocation_count *
3386                                      sizeof(**relocs));
3387                 if (ret != 0) {
3388                         drm_free_large(*relocs);
3389                         *relocs = NULL;
3390                         return -EFAULT;
3391                 }
3392
3393                 reloc_index += exec_list[i].relocation_count;
3394         }
3395
3396         return 0;
3397 }
3398
3399 static int
3400 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3401                             uint32_t buffer_count,
3402                             struct drm_i915_gem_relocation_entry *relocs)
3403 {
3404         uint32_t reloc_count = 0, i;
3405         int ret = 0;
3406
3407         for (i = 0; i < buffer_count; i++) {
3408                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3409                 int unwritten;
3410
3411                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3412
3413                 unwritten = copy_to_user(user_relocs,
3414                                          &relocs[reloc_count],
3415                                          exec_list[i].relocation_count *
3416                                          sizeof(*relocs));
3417
3418                 if (unwritten) {
3419                         ret = -EFAULT;
3420                         goto err;
3421                 }
3422
3423                 reloc_count += exec_list[i].relocation_count;
3424         }
3425
3426 err:
3427         drm_free_large(relocs);
3428
3429         return ret;
3430 }
3431
3432 static int
3433 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3434                            uint64_t exec_offset)
3435 {
3436         uint32_t exec_start, exec_len;
3437
3438         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3439         exec_len = (uint32_t) exec->batch_len;
3440
3441         if ((exec_start | exec_len) & 0x7)
3442                 return -EINVAL;
3443
3444         if (!exec_start)
3445                 return -EINVAL;
3446
3447         return 0;
3448 }
3449
3450 int
3451 i915_gem_execbuffer(struct drm_device *dev, void *data,
3452                     struct drm_file *file_priv)
3453 {
3454         drm_i915_private_t *dev_priv = dev->dev_private;
3455         struct drm_i915_gem_execbuffer *args = data;
3456         struct drm_i915_gem_exec_object *exec_list = NULL;
3457         struct drm_gem_object **object_list = NULL;
3458         struct drm_gem_object *batch_obj;
3459         struct drm_i915_gem_object *obj_priv;
3460         struct drm_clip_rect *cliprects = NULL;
3461         struct drm_i915_gem_relocation_entry *relocs;
3462         int ret, ret2, i, pinned = 0;
3463         uint64_t exec_offset;
3464         uint32_t seqno, flush_domains, reloc_index;
3465         int pin_tries;
3466
3467 #if WATCH_EXEC
3468         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3469                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3470 #endif
3471
3472         if (args->buffer_count < 1) {
3473                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3474                 return -EINVAL;
3475         }
3476         /* Copy in the exec list from userland */
3477         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3478         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3479         if (exec_list == NULL || object_list == NULL) {
3480                 DRM_ERROR("Failed to allocate exec or object list "
3481                           "for %d buffers\n",
3482                           args->buffer_count);
3483                 ret = -ENOMEM;
3484                 goto pre_mutex_err;
3485         }
3486         ret = copy_from_user(exec_list,
3487                              (struct drm_i915_relocation_entry __user *)
3488                              (uintptr_t) args->buffers_ptr,
3489                              sizeof(*exec_list) * args->buffer_count);
3490         if (ret != 0) {
3491                 DRM_ERROR("copy %d exec entries failed %d\n",
3492                           args->buffer_count, ret);
3493                 goto pre_mutex_err;
3494         }
3495
3496         if (args->num_cliprects != 0) {
3497                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3498                                     GFP_KERNEL);
3499                 if (cliprects == NULL)
3500                         goto pre_mutex_err;
3501
3502                 ret = copy_from_user(cliprects,
3503                                      (struct drm_clip_rect __user *)
3504                                      (uintptr_t) args->cliprects_ptr,
3505                                      sizeof(*cliprects) * args->num_cliprects);
3506                 if (ret != 0) {
3507                         DRM_ERROR("copy %d cliprects failed: %d\n",
3508                                   args->num_cliprects, ret);
3509                         goto pre_mutex_err;
3510                 }
3511         }
3512
3513         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3514                                             &relocs);
3515         if (ret != 0)
3516                 goto pre_mutex_err;
3517
3518         mutex_lock(&dev->struct_mutex);
3519
3520         i915_verify_inactive(dev, __FILE__, __LINE__);
3521
3522         if (atomic_read(&dev_priv->mm.wedged)) {
3523                 DRM_ERROR("Execbuf while wedged\n");
3524                 mutex_unlock(&dev->struct_mutex);
3525                 ret = -EIO;
3526                 goto pre_mutex_err;
3527         }
3528
3529         if (dev_priv->mm.suspended) {
3530                 DRM_ERROR("Execbuf while VT-switched.\n");
3531                 mutex_unlock(&dev->struct_mutex);
3532                 ret = -EBUSY;
3533                 goto pre_mutex_err;
3534         }
3535
3536         /* Look up object handles */
3537         for (i = 0; i < args->buffer_count; i++) {
3538                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3539                                                        exec_list[i].handle);
3540                 if (object_list[i] == NULL) {
3541                         DRM_ERROR("Invalid object handle %d at index %d\n",
3542                                    exec_list[i].handle, i);
3543                         ret = -EBADF;
3544                         goto err;
3545                 }
3546
3547                 obj_priv = object_list[i]->driver_private;
3548                 if (obj_priv->in_execbuffer) {
3549                         DRM_ERROR("Object %p appears more than once in object list\n",
3550                                    object_list[i]);
3551                         ret = -EBADF;
3552                         goto err;
3553                 }
3554                 obj_priv->in_execbuffer = true;
3555         }
3556
3557         /* Pin and relocate */
3558         for (pin_tries = 0; ; pin_tries++) {
3559                 ret = 0;
3560                 reloc_index = 0;
3561
3562                 for (i = 0; i < args->buffer_count; i++) {
3563                         object_list[i]->pending_read_domains = 0;
3564                         object_list[i]->pending_write_domain = 0;
3565                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3566                                                                file_priv,
3567                                                                &exec_list[i],
3568                                                                &relocs[reloc_index]);
3569                         if (ret)
3570                                 break;
3571                         pinned = i + 1;
3572                         reloc_index += exec_list[i].relocation_count;
3573                 }
3574                 /* success */
3575                 if (ret == 0)
3576                         break;
3577
3578                 /* error other than GTT full, or we've already tried again */
3579                 if (ret != -ENOSPC || pin_tries >= 1) {
3580                         if (ret != -ERESTARTSYS) {
3581                                 unsigned long long total_size = 0;
3582                                 for (i = 0; i < args->buffer_count; i++)
3583                                         total_size += object_list[i]->size;
3584                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3585                                           pinned+1, args->buffer_count,
3586                                           total_size, ret);
3587                                 DRM_ERROR("%d objects [%d pinned], "
3588                                           "%d object bytes [%d pinned], "
3589                                           "%d/%d gtt bytes\n",
3590                                           atomic_read(&dev->object_count),
3591                                           atomic_read(&dev->pin_count),
3592                                           atomic_read(&dev->object_memory),
3593                                           atomic_read(&dev->pin_memory),
3594                                           atomic_read(&dev->gtt_memory),
3595                                           dev->gtt_total);
3596                         }
3597                         goto err;
3598                 }
3599
3600                 /* unpin all of our buffers */
3601                 for (i = 0; i < pinned; i++)
3602                         i915_gem_object_unpin(object_list[i]);
3603                 pinned = 0;
3604
3605                 /* evict everyone we can from the aperture */
3606                 ret = i915_gem_evict_everything(dev);
3607                 if (ret && ret != -ENOSPC)
3608                         goto err;
3609         }
3610
3611         /* Set the pending read domains for the batch buffer to COMMAND */
3612         batch_obj = object_list[args->buffer_count-1];
3613         if (batch_obj->pending_write_domain) {
3614                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3615                 ret = -EINVAL;
3616                 goto err;
3617         }
3618         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3619
3620         /* Sanity check the batch buffer, prior to moving objects */
3621         exec_offset = exec_list[args->buffer_count - 1].offset;
3622         ret = i915_gem_check_execbuffer (args, exec_offset);
3623         if (ret != 0) {
3624                 DRM_ERROR("execbuf with invalid offset/length\n");
3625                 goto err;
3626         }
3627
3628         i915_verify_inactive(dev, __FILE__, __LINE__);
3629
3630         /* Zero the global flush/invalidate flags. These
3631          * will be modified as new domains are computed
3632          * for each object
3633          */
3634         dev->invalidate_domains = 0;
3635         dev->flush_domains = 0;
3636
3637         for (i = 0; i < args->buffer_count; i++) {
3638                 struct drm_gem_object *obj = object_list[i];
3639
3640                 /* Compute new gpu domains and update invalidate/flush */
3641                 i915_gem_object_set_to_gpu_domain(obj);
3642         }
3643
3644         i915_verify_inactive(dev, __FILE__, __LINE__);
3645
3646         if (dev->invalidate_domains | dev->flush_domains) {
3647 #if WATCH_EXEC
3648                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3649                           __func__,
3650                          dev->invalidate_domains,
3651                          dev->flush_domains);
3652 #endif
3653                 i915_gem_flush(dev,
3654                                dev->invalidate_domains,
3655                                dev->flush_domains);
3656                 if (dev->flush_domains)
3657                         (void)i915_add_request(dev, file_priv,
3658                                                dev->flush_domains);
3659         }
3660
3661         for (i = 0; i < args->buffer_count; i++) {
3662                 struct drm_gem_object *obj = object_list[i];
3663
3664                 obj->write_domain = obj->pending_write_domain;
3665         }
3666
3667         i915_verify_inactive(dev, __FILE__, __LINE__);
3668
3669 #if WATCH_COHERENCY
3670         for (i = 0; i < args->buffer_count; i++) {
3671                 i915_gem_object_check_coherency(object_list[i],
3672                                                 exec_list[i].handle);
3673         }
3674 #endif
3675
3676 #if WATCH_EXEC
3677         i915_gem_dump_object(batch_obj,
3678                               args->batch_len,
3679                               __func__,
3680                               ~0);
3681 #endif
3682
3683         /* Exec the batchbuffer */
3684         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3685         if (ret) {
3686                 DRM_ERROR("dispatch failed %d\n", ret);
3687                 goto err;
3688         }
3689
3690         /*
3691          * Ensure that the commands in the batch buffer are
3692          * finished before the interrupt fires
3693          */
3694         flush_domains = i915_retire_commands(dev);
3695
3696         i915_verify_inactive(dev, __FILE__, __LINE__);
3697
3698         /*
3699          * Get a seqno representing the execution of the current buffer,
3700          * which we can wait on.  We would like to mitigate these interrupts,
3701          * likely by only creating seqnos occasionally (so that we have
3702          * *some* interrupts representing completion of buffers that we can
3703          * wait on when trying to clear up gtt space).
3704          */
3705         seqno = i915_add_request(dev, file_priv, flush_domains);
3706         BUG_ON(seqno == 0);
3707         for (i = 0; i < args->buffer_count; i++) {
3708                 struct drm_gem_object *obj = object_list[i];
3709
3710                 i915_gem_object_move_to_active(obj, seqno);
3711 #if WATCH_LRU
3712                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3713 #endif
3714         }
3715 #if WATCH_LRU
3716         i915_dump_lru(dev, __func__);
3717 #endif
3718
3719         i915_verify_inactive(dev, __FILE__, __LINE__);
3720
3721 err:
3722         for (i = 0; i < pinned; i++)
3723                 i915_gem_object_unpin(object_list[i]);
3724
3725         for (i = 0; i < args->buffer_count; i++) {
3726                 if (object_list[i]) {
3727                         obj_priv = object_list[i]->driver_private;
3728                         obj_priv->in_execbuffer = false;
3729                 }
3730                 drm_gem_object_unreference(object_list[i]);
3731         }
3732
3733         mutex_unlock(&dev->struct_mutex);
3734
3735         if (!ret) {
3736                 /* Copy the new buffer offsets back to the user's exec list. */
3737                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3738                                    (uintptr_t) args->buffers_ptr,
3739                                    exec_list,
3740                                    sizeof(*exec_list) * args->buffer_count);
3741                 if (ret) {
3742                         ret = -EFAULT;
3743                         DRM_ERROR("failed to copy %d exec entries "
3744                                   "back to user (%d)\n",
3745                                   args->buffer_count, ret);
3746                 }
3747         }
3748
3749         /* Copy the updated relocations out regardless of current error
3750          * state.  Failure to update the relocs would mean that the next
3751          * time userland calls execbuf, it would do so with presumed offset
3752          * state that didn't match the actual object state.
3753          */
3754         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3755                                            relocs);
3756         if (ret2 != 0) {
3757                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3758
3759                 if (ret == 0)
3760                         ret = ret2;
3761         }
3762
3763 pre_mutex_err:
3764         drm_free_large(object_list);
3765         drm_free_large(exec_list);
3766         kfree(cliprects);
3767
3768         return ret;
3769 }
3770
3771 int
3772 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3773 {
3774         struct drm_device *dev = obj->dev;
3775         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3776         int ret;
3777
3778         i915_verify_inactive(dev, __FILE__, __LINE__);
3779         if (obj_priv->gtt_space == NULL) {
3780                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3781                 if (ret != 0) {
3782                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3783                                 DRM_ERROR("Failure to bind: %d\n", ret);
3784                         return ret;
3785                 }
3786         }
3787         /*
3788          * Pre-965 chips need a fence register set up in order to
3789          * properly handle tiled surfaces.
3790          */
3791         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3792                 ret = i915_gem_object_get_fence_reg(obj);
3793                 if (ret != 0) {
3794                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3795                                 DRM_ERROR("Failure to install fence: %d\n",
3796                                           ret);
3797                         return ret;
3798                 }
3799         }
3800         obj_priv->pin_count++;
3801
3802         /* If the object is not active and not pending a flush,
3803          * remove it from the inactive list
3804          */
3805         if (obj_priv->pin_count == 1) {
3806                 atomic_inc(&dev->pin_count);
3807                 atomic_add(obj->size, &dev->pin_memory);
3808                 if (!obj_priv->active &&
3809                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3810                     !list_empty(&obj_priv->list))
3811                         list_del_init(&obj_priv->list);
3812         }
3813         i915_verify_inactive(dev, __FILE__, __LINE__);
3814
3815         return 0;
3816 }
3817
3818 void
3819 i915_gem_object_unpin(struct drm_gem_object *obj)
3820 {
3821         struct drm_device *dev = obj->dev;
3822         drm_i915_private_t *dev_priv = dev->dev_private;
3823         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3824
3825         i915_verify_inactive(dev, __FILE__, __LINE__);
3826         obj_priv->pin_count--;
3827         BUG_ON(obj_priv->pin_count < 0);
3828         BUG_ON(obj_priv->gtt_space == NULL);
3829
3830         /* If the object is no longer pinned, and is
3831          * neither active nor being flushed, then stick it on
3832          * the inactive list
3833          */
3834         if (obj_priv->pin_count == 0) {
3835                 if (!obj_priv->active &&
3836                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3837                         list_move_tail(&obj_priv->list,
3838                                        &dev_priv->mm.inactive_list);
3839                 atomic_dec(&dev->pin_count);
3840                 atomic_sub(obj->size, &dev->pin_memory);
3841         }
3842         i915_verify_inactive(dev, __FILE__, __LINE__);
3843 }
3844
3845 int
3846 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3847                    struct drm_file *file_priv)
3848 {
3849         struct drm_i915_gem_pin *args = data;
3850         struct drm_gem_object *obj;
3851         struct drm_i915_gem_object *obj_priv;
3852         int ret;
3853
3854         mutex_lock(&dev->struct_mutex);
3855
3856         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3857         if (obj == NULL) {
3858                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3859                           args->handle);
3860                 mutex_unlock(&dev->struct_mutex);
3861                 return -EBADF;
3862         }
3863         obj_priv = obj->driver_private;
3864
3865         if (obj_priv->madv == I915_MADV_DONTNEED) {
3866                 DRM_ERROR("Attempting to pin a I915_MADV_DONTNEED buffer\n");
3867                 drm_gem_object_unreference(obj);
3868                 mutex_unlock(&dev->struct_mutex);
3869                 return -EINVAL;
3870         }
3871
3872         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3873                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3874                           args->handle);
3875                 drm_gem_object_unreference(obj);
3876                 mutex_unlock(&dev->struct_mutex);
3877                 return -EINVAL;
3878         }
3879
3880         obj_priv->user_pin_count++;
3881         obj_priv->pin_filp = file_priv;
3882         if (obj_priv->user_pin_count == 1) {
3883                 ret = i915_gem_object_pin(obj, args->alignment);
3884                 if (ret != 0) {
3885                         drm_gem_object_unreference(obj);
3886                         mutex_unlock(&dev->struct_mutex);
3887                         return ret;
3888                 }
3889         }
3890
3891         /* XXX - flush the CPU caches for pinned objects
3892          * as the X server doesn't manage domains yet
3893          */
3894         i915_gem_object_flush_cpu_write_domain(obj);
3895         args->offset = obj_priv->gtt_offset;
3896         drm_gem_object_unreference(obj);
3897         mutex_unlock(&dev->struct_mutex);
3898
3899         return 0;
3900 }
3901
3902 int
3903 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3904                      struct drm_file *file_priv)
3905 {
3906         struct drm_i915_gem_pin *args = data;
3907         struct drm_gem_object *obj;
3908         struct drm_i915_gem_object *obj_priv;
3909
3910         mutex_lock(&dev->struct_mutex);
3911
3912         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3913         if (obj == NULL) {
3914                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3915                           args->handle);
3916                 mutex_unlock(&dev->struct_mutex);
3917                 return -EBADF;
3918         }
3919
3920         obj_priv = obj->driver_private;
3921         if (obj_priv->pin_filp != file_priv) {
3922                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3923                           args->handle);
3924                 drm_gem_object_unreference(obj);
3925                 mutex_unlock(&dev->struct_mutex);
3926                 return -EINVAL;
3927         }
3928         obj_priv->user_pin_count--;
3929         if (obj_priv->user_pin_count == 0) {
3930                 obj_priv->pin_filp = NULL;
3931                 i915_gem_object_unpin(obj);
3932         }
3933
3934         drm_gem_object_unreference(obj);
3935         mutex_unlock(&dev->struct_mutex);
3936         return 0;
3937 }
3938
3939 int
3940 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3941                     struct drm_file *file_priv)
3942 {
3943         struct drm_i915_gem_busy *args = data;
3944         struct drm_gem_object *obj;
3945         struct drm_i915_gem_object *obj_priv;
3946
3947         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3948         if (obj == NULL) {
3949                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3950                           args->handle);
3951                 return -EBADF;
3952         }
3953
3954         mutex_lock(&dev->struct_mutex);
3955         /* Update the active list for the hardware's current position.
3956          * Otherwise this only updates on a delayed timer or when irqs are
3957          * actually unmasked, and our working set ends up being larger than
3958          * required.
3959          */
3960         i915_gem_retire_requests(dev);
3961
3962         obj_priv = obj->driver_private;
3963         /* Don't count being on the flushing list against the object being
3964          * done.  Otherwise, a buffer left on the flushing list but not getting
3965          * flushed (because nobody's flushing that domain) won't ever return
3966          * unbusy and get reused by libdrm's bo cache.  The other expected
3967          * consumer of this interface, OpenGL's occlusion queries, also specs
3968          * that the objects get unbusy "eventually" without any interference.
3969          */
3970         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3971
3972         drm_gem_object_unreference(obj);
3973         mutex_unlock(&dev->struct_mutex);
3974         return 0;
3975 }
3976
3977 int
3978 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3979                         struct drm_file *file_priv)
3980 {
3981     return i915_gem_ring_throttle(dev, file_priv);
3982 }
3983
3984 int
3985 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3986                        struct drm_file *file_priv)
3987 {
3988         struct drm_i915_gem_madvise *args = data;
3989         struct drm_gem_object *obj;
3990         struct drm_i915_gem_object *obj_priv;
3991
3992         switch (args->madv) {
3993         case I915_MADV_DONTNEED:
3994         case I915_MADV_WILLNEED:
3995             break;
3996         default:
3997             return -EINVAL;
3998         }
3999
4000         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4001         if (obj == NULL) {
4002                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4003                           args->handle);
4004                 return -EBADF;
4005         }
4006
4007         mutex_lock(&dev->struct_mutex);
4008         obj_priv = obj->driver_private;
4009
4010         if (obj_priv->pin_count) {
4011                 drm_gem_object_unreference(obj);
4012                 mutex_unlock(&dev->struct_mutex);
4013
4014                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4015                 return -EINVAL;
4016         }
4017
4018         obj_priv->madv = args->madv;
4019         args->retained = obj_priv->gtt_space != NULL;
4020
4021         drm_gem_object_unreference(obj);
4022         mutex_unlock(&dev->struct_mutex);
4023
4024         return 0;
4025 }
4026
4027 int i915_gem_init_object(struct drm_gem_object *obj)
4028 {
4029         struct drm_i915_gem_object *obj_priv;
4030
4031         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4032         if (obj_priv == NULL)
4033                 return -ENOMEM;
4034
4035         /*
4036          * We've just allocated pages from the kernel,
4037          * so they've just been written by the CPU with
4038          * zeros. They'll need to be clflushed before we
4039          * use them with the GPU.
4040          */
4041         obj->write_domain = I915_GEM_DOMAIN_CPU;
4042         obj->read_domains = I915_GEM_DOMAIN_CPU;
4043
4044         obj_priv->agp_type = AGP_USER_MEMORY;
4045
4046         obj->driver_private = obj_priv;
4047         obj_priv->obj = obj;
4048         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4049         INIT_LIST_HEAD(&obj_priv->list);
4050         INIT_LIST_HEAD(&obj_priv->fence_list);
4051         obj_priv->madv = I915_MADV_WILLNEED;
4052
4053         return 0;
4054 }
4055
4056 void i915_gem_free_object(struct drm_gem_object *obj)
4057 {
4058         struct drm_device *dev = obj->dev;
4059         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4060
4061         while (obj_priv->pin_count > 0)
4062                 i915_gem_object_unpin(obj);
4063
4064         if (obj_priv->phys_obj)
4065                 i915_gem_detach_phys_object(dev, obj);
4066
4067         i915_gem_object_unbind(obj);
4068
4069         if (obj_priv->mmap_offset)
4070                 i915_gem_free_mmap_offset(obj);
4071
4072         kfree(obj_priv->page_cpu_valid);
4073         kfree(obj_priv->bit_17);
4074         kfree(obj->driver_private);
4075 }
4076
4077 /** Unbinds all objects that are on the given buffer list. */
4078 static int
4079 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
4080 {
4081         struct drm_gem_object *obj;
4082         struct drm_i915_gem_object *obj_priv;
4083         int ret;
4084
4085         while (!list_empty(head)) {
4086                 obj_priv = list_first_entry(head,
4087                                             struct drm_i915_gem_object,
4088                                             list);
4089                 obj = obj_priv->obj;
4090
4091                 if (obj_priv->pin_count != 0) {
4092                         DRM_ERROR("Pinned object in unbind list\n");
4093                         mutex_unlock(&dev->struct_mutex);
4094                         return -EINVAL;
4095                 }
4096
4097                 ret = i915_gem_object_unbind(obj);
4098                 if (ret != 0) {
4099                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
4100                                   ret);
4101                         mutex_unlock(&dev->struct_mutex);
4102                         return ret;
4103                 }
4104         }
4105
4106
4107         return 0;
4108 }
4109
4110 int
4111 i915_gem_idle(struct drm_device *dev)
4112 {
4113         drm_i915_private_t *dev_priv = dev->dev_private;
4114         uint32_t seqno, cur_seqno, last_seqno;
4115         int stuck, ret;
4116
4117         mutex_lock(&dev->struct_mutex);
4118
4119         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4120                 mutex_unlock(&dev->struct_mutex);
4121                 return 0;
4122         }
4123
4124         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4125          * We need to replace this with a semaphore, or something.
4126          */
4127         dev_priv->mm.suspended = 1;
4128         del_timer(&dev_priv->hangcheck_timer);
4129
4130         /* Cancel the retire work handler, wait for it to finish if running
4131          */
4132         mutex_unlock(&dev->struct_mutex);
4133         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4134         mutex_lock(&dev->struct_mutex);
4135
4136         i915_kernel_lost_context(dev);
4137
4138         /* Flush the GPU along with all non-CPU write domains
4139          */
4140         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4141         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4142
4143         if (seqno == 0) {
4144                 mutex_unlock(&dev->struct_mutex);
4145                 return -ENOMEM;
4146         }
4147
4148         dev_priv->mm.waiting_gem_seqno = seqno;
4149         last_seqno = 0;
4150         stuck = 0;
4151         for (;;) {
4152                 cur_seqno = i915_get_gem_seqno(dev);
4153                 if (i915_seqno_passed(cur_seqno, seqno))
4154                         break;
4155                 if (last_seqno == cur_seqno) {
4156                         if (stuck++ > 100) {
4157                                 DRM_ERROR("hardware wedged\n");
4158                                 atomic_set(&dev_priv->mm.wedged, 1);
4159                                 DRM_WAKEUP(&dev_priv->irq_queue);
4160                                 break;
4161                         }
4162                 }
4163                 msleep(10);
4164                 last_seqno = cur_seqno;
4165         }
4166         dev_priv->mm.waiting_gem_seqno = 0;
4167
4168         i915_gem_retire_requests(dev);
4169
4170         spin_lock(&dev_priv->mm.active_list_lock);
4171         if (!atomic_read(&dev_priv->mm.wedged)) {
4172                 /* Active and flushing should now be empty as we've
4173                  * waited for a sequence higher than any pending execbuffer
4174                  */
4175                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4176                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4177                 /* Request should now be empty as we've also waited
4178                  * for the last request in the list
4179                  */
4180                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4181         }
4182
4183         /* Empty the active and flushing lists to inactive.  If there's
4184          * anything left at this point, it means that we're wedged and
4185          * nothing good's going to happen by leaving them there.  So strip
4186          * the GPU domains and just stuff them onto inactive.
4187          */
4188         while (!list_empty(&dev_priv->mm.active_list)) {
4189                 struct drm_i915_gem_object *obj_priv;
4190
4191                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
4192                                             struct drm_i915_gem_object,
4193                                             list);
4194                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4195                 i915_gem_object_move_to_inactive(obj_priv->obj);
4196         }
4197         spin_unlock(&dev_priv->mm.active_list_lock);
4198
4199         while (!list_empty(&dev_priv->mm.flushing_list)) {
4200                 struct drm_i915_gem_object *obj_priv;
4201
4202                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
4203                                             struct drm_i915_gem_object,
4204                                             list);
4205                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4206                 i915_gem_object_move_to_inactive(obj_priv->obj);
4207         }
4208
4209
4210         /* Move all inactive buffers out of the GTT. */
4211         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
4212         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4213         if (ret) {
4214                 mutex_unlock(&dev->struct_mutex);
4215                 return ret;
4216         }
4217
4218         i915_gem_cleanup_ringbuffer(dev);
4219         mutex_unlock(&dev->struct_mutex);
4220
4221         return 0;
4222 }
4223
4224 static int
4225 i915_gem_init_hws(struct drm_device *dev)
4226 {
4227         drm_i915_private_t *dev_priv = dev->dev_private;
4228         struct drm_gem_object *obj;
4229         struct drm_i915_gem_object *obj_priv;
4230         int ret;
4231
4232         /* If we need a physical address for the status page, it's already
4233          * initialized at driver load time.
4234          */
4235         if (!I915_NEED_GFX_HWS(dev))
4236                 return 0;
4237
4238         obj = drm_gem_object_alloc(dev, 4096);
4239         if (obj == NULL) {
4240                 DRM_ERROR("Failed to allocate status page\n");
4241                 return -ENOMEM;
4242         }
4243         obj_priv = obj->driver_private;
4244         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4245
4246         ret = i915_gem_object_pin(obj, 4096);
4247         if (ret != 0) {
4248                 drm_gem_object_unreference(obj);
4249                 return ret;
4250         }
4251
4252         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4253
4254         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4255         if (dev_priv->hw_status_page == NULL) {
4256                 DRM_ERROR("Failed to map status page.\n");
4257                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4258                 i915_gem_object_unpin(obj);
4259                 drm_gem_object_unreference(obj);
4260                 return -EINVAL;
4261         }
4262         dev_priv->hws_obj = obj;
4263         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4264         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4265         I915_READ(HWS_PGA); /* posting read */
4266         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4267
4268         return 0;
4269 }
4270
4271 static void
4272 i915_gem_cleanup_hws(struct drm_device *dev)
4273 {
4274         drm_i915_private_t *dev_priv = dev->dev_private;
4275         struct drm_gem_object *obj;
4276         struct drm_i915_gem_object *obj_priv;
4277
4278         if (dev_priv->hws_obj == NULL)
4279                 return;
4280
4281         obj = dev_priv->hws_obj;
4282         obj_priv = obj->driver_private;
4283
4284         kunmap(obj_priv->pages[0]);
4285         i915_gem_object_unpin(obj);
4286         drm_gem_object_unreference(obj);
4287         dev_priv->hws_obj = NULL;
4288
4289         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4290         dev_priv->hw_status_page = NULL;
4291
4292         /* Write high address into HWS_PGA when disabling. */
4293         I915_WRITE(HWS_PGA, 0x1ffff000);
4294 }
4295
4296 int
4297 i915_gem_init_ringbuffer(struct drm_device *dev)
4298 {
4299         drm_i915_private_t *dev_priv = dev->dev_private;
4300         struct drm_gem_object *obj;
4301         struct drm_i915_gem_object *obj_priv;
4302         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4303         int ret;
4304         u32 head;
4305
4306         ret = i915_gem_init_hws(dev);
4307         if (ret != 0)
4308                 return ret;
4309
4310         obj = drm_gem_object_alloc(dev, 128 * 1024);
4311         if (obj == NULL) {
4312                 DRM_ERROR("Failed to allocate ringbuffer\n");
4313                 i915_gem_cleanup_hws(dev);
4314                 return -ENOMEM;
4315         }
4316         obj_priv = obj->driver_private;
4317
4318         ret = i915_gem_object_pin(obj, 4096);
4319         if (ret != 0) {
4320                 drm_gem_object_unreference(obj);
4321                 i915_gem_cleanup_hws(dev);
4322                 return ret;
4323         }
4324
4325         /* Set up the kernel mapping for the ring. */
4326         ring->Size = obj->size;
4327
4328         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4329         ring->map.size = obj->size;
4330         ring->map.type = 0;
4331         ring->map.flags = 0;
4332         ring->map.mtrr = 0;
4333
4334         drm_core_ioremap_wc(&ring->map, dev);
4335         if (ring->map.handle == NULL) {
4336                 DRM_ERROR("Failed to map ringbuffer.\n");
4337                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4338                 i915_gem_object_unpin(obj);
4339                 drm_gem_object_unreference(obj);
4340                 i915_gem_cleanup_hws(dev);
4341                 return -EINVAL;
4342         }
4343         ring->ring_obj = obj;
4344         ring->virtual_start = ring->map.handle;
4345
4346         /* Stop the ring if it's running. */
4347         I915_WRITE(PRB0_CTL, 0);
4348         I915_WRITE(PRB0_TAIL, 0);
4349         I915_WRITE(PRB0_HEAD, 0);
4350
4351         /* Initialize the ring. */
4352         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4353         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4354
4355         /* G45 ring initialization fails to reset head to zero */
4356         if (head != 0) {
4357                 DRM_ERROR("Ring head not reset to zero "
4358                           "ctl %08x head %08x tail %08x start %08x\n",
4359                           I915_READ(PRB0_CTL),
4360                           I915_READ(PRB0_HEAD),
4361                           I915_READ(PRB0_TAIL),
4362                           I915_READ(PRB0_START));
4363                 I915_WRITE(PRB0_HEAD, 0);
4364
4365                 DRM_ERROR("Ring head forced to zero "
4366                           "ctl %08x head %08x tail %08x start %08x\n",
4367                           I915_READ(PRB0_CTL),
4368                           I915_READ(PRB0_HEAD),
4369                           I915_READ(PRB0_TAIL),
4370                           I915_READ(PRB0_START));
4371         }
4372
4373         I915_WRITE(PRB0_CTL,
4374                    ((obj->size - 4096) & RING_NR_PAGES) |
4375                    RING_NO_REPORT |
4376                    RING_VALID);
4377
4378         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4379
4380         /* If the head is still not zero, the ring is dead */
4381         if (head != 0) {
4382                 DRM_ERROR("Ring initialization failed "
4383                           "ctl %08x head %08x tail %08x start %08x\n",
4384                           I915_READ(PRB0_CTL),
4385                           I915_READ(PRB0_HEAD),
4386                           I915_READ(PRB0_TAIL),
4387                           I915_READ(PRB0_START));
4388                 return -EIO;
4389         }
4390
4391         /* Update our cache of the ring state */
4392         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4393                 i915_kernel_lost_context(dev);
4394         else {
4395                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4396                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4397                 ring->space = ring->head - (ring->tail + 8);
4398                 if (ring->space < 0)
4399                         ring->space += ring->Size;
4400         }
4401
4402         return 0;
4403 }
4404
4405 void
4406 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4407 {
4408         drm_i915_private_t *dev_priv = dev->dev_private;
4409
4410         if (dev_priv->ring.ring_obj == NULL)
4411                 return;
4412
4413         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4414
4415         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4416         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4417         dev_priv->ring.ring_obj = NULL;
4418         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4419
4420         i915_gem_cleanup_hws(dev);
4421 }
4422
4423 int
4424 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4425                        struct drm_file *file_priv)
4426 {
4427         drm_i915_private_t *dev_priv = dev->dev_private;
4428         int ret;
4429
4430         if (drm_core_check_feature(dev, DRIVER_MODESET))
4431                 return 0;
4432
4433         if (atomic_read(&dev_priv->mm.wedged)) {
4434                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4435                 atomic_set(&dev_priv->mm.wedged, 0);
4436         }
4437
4438         mutex_lock(&dev->struct_mutex);
4439         dev_priv->mm.suspended = 0;
4440
4441         ret = i915_gem_init_ringbuffer(dev);
4442         if (ret != 0) {
4443                 mutex_unlock(&dev->struct_mutex);
4444                 return ret;
4445         }
4446
4447         spin_lock(&dev_priv->mm.active_list_lock);
4448         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4449         spin_unlock(&dev_priv->mm.active_list_lock);
4450
4451         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4452         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4453         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4454         mutex_unlock(&dev->struct_mutex);
4455
4456         drm_irq_install(dev);
4457
4458         return 0;
4459 }
4460
4461 int
4462 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4463                        struct drm_file *file_priv)
4464 {
4465         int ret;
4466
4467         if (drm_core_check_feature(dev, DRIVER_MODESET))
4468                 return 0;
4469
4470         ret = i915_gem_idle(dev);
4471         drm_irq_uninstall(dev);
4472
4473         return ret;
4474 }
4475
4476 void
4477 i915_gem_lastclose(struct drm_device *dev)
4478 {
4479         int ret;
4480
4481         if (drm_core_check_feature(dev, DRIVER_MODESET))
4482                 return;
4483
4484         ret = i915_gem_idle(dev);
4485         if (ret)
4486                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4487 }
4488
4489 void
4490 i915_gem_load(struct drm_device *dev)
4491 {
4492         int i;
4493         drm_i915_private_t *dev_priv = dev->dev_private;
4494
4495         spin_lock_init(&dev_priv->mm.active_list_lock);
4496         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4497         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4498         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4499         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4500         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4501         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4502                           i915_gem_retire_work_handler);
4503         dev_priv->mm.next_gem_seqno = 1;
4504
4505         spin_lock(&shrink_list_lock);
4506         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4507         spin_unlock(&shrink_list_lock);
4508
4509         /* Old X drivers will take 0-2 for front, back, depth buffers */
4510         dev_priv->fence_reg_start = 3;
4511
4512         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4513                 dev_priv->num_fence_regs = 16;
4514         else
4515                 dev_priv->num_fence_regs = 8;
4516
4517         /* Initialize fence registers to zero */
4518         if (IS_I965G(dev)) {
4519                 for (i = 0; i < 16; i++)
4520                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4521         } else {
4522                 for (i = 0; i < 8; i++)
4523                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4524                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4525                         for (i = 0; i < 8; i++)
4526                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4527         }
4528
4529         i915_gem_detect_bit_6_swizzle(dev);
4530 }
4531
4532 /*
4533  * Create a physically contiguous memory object for this object
4534  * e.g. for cursor + overlay regs
4535  */
4536 int i915_gem_init_phys_object(struct drm_device *dev,
4537                               int id, int size)
4538 {
4539         drm_i915_private_t *dev_priv = dev->dev_private;
4540         struct drm_i915_gem_phys_object *phys_obj;
4541         int ret;
4542
4543         if (dev_priv->mm.phys_objs[id - 1] || !size)
4544                 return 0;
4545
4546         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4547         if (!phys_obj)
4548                 return -ENOMEM;
4549
4550         phys_obj->id = id;
4551
4552         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4553         if (!phys_obj->handle) {
4554                 ret = -ENOMEM;
4555                 goto kfree_obj;
4556         }
4557 #ifdef CONFIG_X86
4558         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4559 #endif
4560
4561         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4562
4563         return 0;
4564 kfree_obj:
4565         kfree(phys_obj);
4566         return ret;
4567 }
4568
4569 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4570 {
4571         drm_i915_private_t *dev_priv = dev->dev_private;
4572         struct drm_i915_gem_phys_object *phys_obj;
4573
4574         if (!dev_priv->mm.phys_objs[id - 1])
4575                 return;
4576
4577         phys_obj = dev_priv->mm.phys_objs[id - 1];
4578         if (phys_obj->cur_obj) {
4579                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4580         }
4581
4582 #ifdef CONFIG_X86
4583         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4584 #endif
4585         drm_pci_free(dev, phys_obj->handle);
4586         kfree(phys_obj);
4587         dev_priv->mm.phys_objs[id - 1] = NULL;
4588 }
4589
4590 void i915_gem_free_all_phys_object(struct drm_device *dev)
4591 {
4592         int i;
4593
4594         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4595                 i915_gem_free_phys_object(dev, i);
4596 }
4597
4598 void i915_gem_detach_phys_object(struct drm_device *dev,
4599                                  struct drm_gem_object *obj)
4600 {
4601         struct drm_i915_gem_object *obj_priv;
4602         int i;
4603         int ret;
4604         int page_count;
4605
4606         obj_priv = obj->driver_private;
4607         if (!obj_priv->phys_obj)
4608                 return;
4609
4610         ret = i915_gem_object_get_pages(obj);
4611         if (ret)
4612                 goto out;
4613
4614         page_count = obj->size / PAGE_SIZE;
4615
4616         for (i = 0; i < page_count; i++) {
4617                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4618                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4619
4620                 memcpy(dst, src, PAGE_SIZE);
4621                 kunmap_atomic(dst, KM_USER0);
4622         }
4623         drm_clflush_pages(obj_priv->pages, page_count);
4624         drm_agp_chipset_flush(dev);
4625
4626         i915_gem_object_put_pages(obj);
4627 out:
4628         obj_priv->phys_obj->cur_obj = NULL;
4629         obj_priv->phys_obj = NULL;
4630 }
4631
4632 int
4633 i915_gem_attach_phys_object(struct drm_device *dev,
4634                             struct drm_gem_object *obj, int id)
4635 {
4636         drm_i915_private_t *dev_priv = dev->dev_private;
4637         struct drm_i915_gem_object *obj_priv;
4638         int ret = 0;
4639         int page_count;
4640         int i;
4641
4642         if (id > I915_MAX_PHYS_OBJECT)
4643                 return -EINVAL;
4644
4645         obj_priv = obj->driver_private;
4646
4647         if (obj_priv->phys_obj) {
4648                 if (obj_priv->phys_obj->id == id)
4649                         return 0;
4650                 i915_gem_detach_phys_object(dev, obj);
4651         }
4652
4653
4654         /* create a new object */
4655         if (!dev_priv->mm.phys_objs[id - 1]) {
4656                 ret = i915_gem_init_phys_object(dev, id,
4657                                                 obj->size);
4658                 if (ret) {
4659                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4660                         goto out;
4661                 }
4662         }
4663
4664         /* bind to the object */
4665         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4666         obj_priv->phys_obj->cur_obj = obj;
4667
4668         ret = i915_gem_object_get_pages(obj);
4669         if (ret) {
4670                 DRM_ERROR("failed to get page list\n");
4671                 goto out;
4672         }
4673
4674         page_count = obj->size / PAGE_SIZE;
4675
4676         for (i = 0; i < page_count; i++) {
4677                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4678                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4679
4680                 memcpy(dst, src, PAGE_SIZE);
4681                 kunmap_atomic(src, KM_USER0);
4682         }
4683
4684         i915_gem_object_put_pages(obj);
4685
4686         return 0;
4687 out:
4688         return ret;
4689 }
4690
4691 static int
4692 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4693                      struct drm_i915_gem_pwrite *args,
4694                      struct drm_file *file_priv)
4695 {
4696         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4697         void *obj_addr;
4698         int ret;
4699         char __user *user_data;
4700
4701         user_data = (char __user *) (uintptr_t) args->data_ptr;
4702         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4703
4704         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4705         ret = copy_from_user(obj_addr, user_data, args->size);
4706         if (ret)
4707                 return -EFAULT;
4708
4709         drm_agp_chipset_flush(dev);
4710         return 0;
4711 }
4712
4713 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4714 {
4715         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4716
4717         /* Clean up our request list when the client is going away, so that
4718          * later retire_requests won't dereference our soon-to-be-gone
4719          * file_priv.
4720          */
4721         mutex_lock(&dev->struct_mutex);
4722         while (!list_empty(&i915_file_priv->mm.request_list))
4723                 list_del_init(i915_file_priv->mm.request_list.next);
4724         mutex_unlock(&dev->struct_mutex);
4725 }
4726
4727 /* Immediately discard the backing storage */
4728 static void
4729 i915_gem_object_truncate(struct drm_gem_object *obj)
4730 {
4731     struct inode *inode;
4732
4733     inode = obj->filp->f_path.dentry->d_inode;
4734
4735     mutex_lock(&inode->i_mutex);
4736     truncate_inode_pages(inode->i_mapping, 0);
4737     mutex_unlock(&inode->i_mutex);
4738 }
4739
4740 static int
4741 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4742 {
4743         drm_i915_private_t *dev_priv, *next_dev;
4744         struct drm_i915_gem_object *obj_priv, *next_obj;
4745         int cnt = 0;
4746         int would_deadlock = 1;
4747
4748         /* "fast-path" to count number of available objects */
4749         if (nr_to_scan == 0) {
4750                 spin_lock(&shrink_list_lock);
4751                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4752                         struct drm_device *dev = dev_priv->dev;
4753
4754                         if (mutex_trylock(&dev->struct_mutex)) {
4755                                 list_for_each_entry(obj_priv,
4756                                                     &dev_priv->mm.inactive_list,
4757                                                     list)
4758                                         cnt++;
4759                                 mutex_unlock(&dev->struct_mutex);
4760                         }
4761                 }
4762                 spin_unlock(&shrink_list_lock);
4763
4764                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4765         }
4766
4767         spin_lock(&shrink_list_lock);
4768
4769         /* first scan for clean buffers */
4770         list_for_each_entry_safe(dev_priv, next_dev,
4771                                  &shrink_list, mm.shrink_list) {
4772                 struct drm_device *dev = dev_priv->dev;
4773
4774                 if (! mutex_trylock(&dev->struct_mutex))
4775                         continue;
4776
4777                 spin_unlock(&shrink_list_lock);
4778
4779                 i915_gem_retire_requests(dev);
4780
4781                 list_for_each_entry_safe(obj_priv, next_obj,
4782                                          &dev_priv->mm.inactive_list,
4783                                          list) {
4784                         if (i915_gem_object_is_purgeable(obj_priv)) {
4785                                 struct drm_gem_object *obj = obj_priv->obj;
4786                                 i915_gem_object_unbind(obj);
4787                                 i915_gem_object_truncate(obj);
4788
4789                                 if (--nr_to_scan <= 0)
4790                                         break;
4791                         }
4792                 }
4793
4794                 spin_lock(&shrink_list_lock);
4795                 mutex_unlock(&dev->struct_mutex);
4796
4797                 if (nr_to_scan <= 0)
4798                         break;
4799         }
4800
4801         /* second pass, evict/count anything still on the inactive list */
4802         list_for_each_entry_safe(dev_priv, next_dev,
4803                                  &shrink_list, mm.shrink_list) {
4804                 struct drm_device *dev = dev_priv->dev;
4805
4806                 if (! mutex_trylock(&dev->struct_mutex))
4807                         continue;
4808
4809                 spin_unlock(&shrink_list_lock);
4810
4811                 list_for_each_entry_safe(obj_priv, next_obj,
4812                                          &dev_priv->mm.inactive_list,
4813                                          list) {
4814                         if (nr_to_scan > 0) {
4815                                 struct drm_gem_object *obj = obj_priv->obj;
4816                                 i915_gem_object_unbind(obj);
4817                                 if (i915_gem_object_is_purgeable(obj_priv))
4818                                         i915_gem_object_truncate(obj);
4819
4820                                 nr_to_scan--;
4821                         } else
4822                                 cnt++;
4823                 }
4824
4825                 spin_lock(&shrink_list_lock);
4826                 mutex_unlock(&dev->struct_mutex);
4827
4828                 would_deadlock = 0;
4829         }
4830
4831         spin_unlock(&shrink_list_lock);
4832
4833         if (would_deadlock)
4834                 return -1;
4835         else if (cnt > 0)
4836                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4837         else
4838                 return 0;
4839 }
4840
4841 static struct shrinker shrinker = {
4842         .shrink = i915_gem_shrink,
4843         .seeks = DEFAULT_SEEKS,
4844 };
4845
4846 __init void
4847 i915_gem_shrinker_init(void)
4848 {
4849     register_shrinker(&shrinker);
4850 }
4851
4852 __exit void
4853 i915_gem_shrinker_exit(void)
4854 {
4855     unregister_shrinker(&shrinker);
4856 }