drm/i915: Clean up evict from list.
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327         return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333         mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339         int ret;
340
341         ret = i915_gem_object_get_pages(obj);
342
343         /* If we've insufficient memory to map in the pages, attempt
344          * to make some space by throwing out some old buffers.
345          */
346         if (ret == -ENOMEM) {
347                 struct drm_device *dev = obj->dev;
348                 gfp_t gfp;
349
350                 ret = i915_gem_evict_something(dev, obj->size);
351                 if (ret)
352                         return ret;
353
354                 gfp = i915_gem_object_get_page_gfp_mask(obj);
355                 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356                 ret = i915_gem_object_get_pages(obj);
357                 i915_gem_object_set_page_gfp_mask (obj, gfp);
358         }
359
360         return ret;
361 }
362
363 /**
364  * This is the fallback shmem pread path, which allocates temporary storage
365  * in kernel space to copy_to_user into outside of the struct_mutex, so we
366  * can copy out of the object's backing pages while holding the struct mutex
367  * and not take page faults.
368  */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371                           struct drm_i915_gem_pread *args,
372                           struct drm_file *file_priv)
373 {
374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
375         struct mm_struct *mm = current->mm;
376         struct page **user_pages;
377         ssize_t remain;
378         loff_t offset, pinned_pages, i;
379         loff_t first_data_page, last_data_page, num_pages;
380         int shmem_page_index, shmem_page_offset;
381         int data_page_index,  data_page_offset;
382         int page_length;
383         int ret;
384         uint64_t data_ptr = args->data_ptr;
385         int do_bit17_swizzling;
386
387         remain = args->size;
388
389         /* Pin the user pages containing the data.  We can't fault while
390          * holding the struct mutex, yet we want to hold it while
391          * dereferencing the user data.
392          */
393         first_data_page = data_ptr / PAGE_SIZE;
394         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395         num_pages = last_data_page - first_data_page + 1;
396
397         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398         if (user_pages == NULL)
399                 return -ENOMEM;
400
401         down_read(&mm->mmap_sem);
402         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403                                       num_pages, 1, 0, user_pages, NULL);
404         up_read(&mm->mmap_sem);
405         if (pinned_pages < num_pages) {
406                 ret = -EFAULT;
407                 goto fail_put_user_pages;
408         }
409
410         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411
412         mutex_lock(&dev->struct_mutex);
413
414         ret = i915_gem_object_get_pages_or_evict(obj);
415         if (ret)
416                 goto fail_unlock;
417
418         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419                                                         args->size);
420         if (ret != 0)
421                 goto fail_put_pages;
422
423         obj_priv = obj->driver_private;
424         offset = args->offset;
425
426         while (remain > 0) {
427                 /* Operation in this page
428                  *
429                  * shmem_page_index = page number within shmem file
430                  * shmem_page_offset = offset within page in shmem file
431                  * data_page_index = page number in get_user_pages return
432                  * data_page_offset = offset with data_page_index page.
433                  * page_length = bytes to copy for this page
434                  */
435                 shmem_page_index = offset / PAGE_SIZE;
436                 shmem_page_offset = offset & ~PAGE_MASK;
437                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438                 data_page_offset = data_ptr & ~PAGE_MASK;
439
440                 page_length = remain;
441                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442                         page_length = PAGE_SIZE - shmem_page_offset;
443                 if ((data_page_offset + page_length) > PAGE_SIZE)
444                         page_length = PAGE_SIZE - data_page_offset;
445
446                 if (do_bit17_swizzling) {
447                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448                                                     shmem_page_offset,
449                                                     user_pages[data_page_index],
450                                                     data_page_offset,
451                                                     page_length,
452                                                     1);
453                 } else {
454                         ret = slow_shmem_copy(user_pages[data_page_index],
455                                               data_page_offset,
456                                               obj_priv->pages[shmem_page_index],
457                                               shmem_page_offset,
458                                               page_length);
459                 }
460                 if (ret)
461                         goto fail_put_pages;
462
463                 remain -= page_length;
464                 data_ptr += page_length;
465                 offset += page_length;
466         }
467
468 fail_put_pages:
469         i915_gem_object_put_pages(obj);
470 fail_unlock:
471         mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473         for (i = 0; i < pinned_pages; i++) {
474                 SetPageDirty(user_pages[i]);
475                 page_cache_release(user_pages[i]);
476         }
477         drm_free_large(user_pages);
478
479         return ret;
480 }
481
482 /**
483  * Reads data from the object referenced by handle.
484  *
485  * On error, the contents of *data are undefined.
486  */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489                      struct drm_file *file_priv)
490 {
491         struct drm_i915_gem_pread *args = data;
492         struct drm_gem_object *obj;
493         struct drm_i915_gem_object *obj_priv;
494         int ret;
495
496         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497         if (obj == NULL)
498                 return -EBADF;
499         obj_priv = obj->driver_private;
500
501         /* Bounds check source.
502          *
503          * XXX: This could use review for overflow issues...
504          */
505         if (args->offset > obj->size || args->size > obj->size ||
506             args->offset + args->size > obj->size) {
507                 drm_gem_object_unreference(obj);
508                 return -EINVAL;
509         }
510
511         if (i915_gem_object_needs_bit17_swizzle(obj)) {
512                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513         } else {
514                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515                 if (ret != 0)
516                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
517                                                         file_priv);
518         }
519
520         drm_gem_object_unreference(obj);
521
522         return ret;
523 }
524
525 /* This is the fast write path which cannot handle
526  * page faults in the source data
527  */
528
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531                 loff_t page_base, int page_offset,
532                 char __user *user_data,
533                 int length)
534 {
535         char *vaddr_atomic;
536         unsigned long unwritten;
537
538         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540                                                       user_data, length);
541         io_mapping_unmap_atomic(vaddr_atomic);
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /* Here's the write path which can sleep for
548  * page faults
549  */
550
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553                   loff_t gtt_base, int gtt_offset,
554                   struct page *user_page, int user_offset,
555                   int length)
556 {
557         char *src_vaddr, *dst_vaddr;
558         unsigned long unwritten;
559
560         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561         src_vaddr = kmap_atomic(user_page, KM_USER1);
562         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563                                                       src_vaddr + user_offset,
564                                                       length);
565         kunmap_atomic(src_vaddr, KM_USER1);
566         io_mapping_unmap_atomic(dst_vaddr);
567         if (unwritten)
568                 return -EFAULT;
569         return 0;
570 }
571
572 static inline int
573 fast_shmem_write(struct page **pages,
574                  loff_t page_base, int page_offset,
575                  char __user *data,
576                  int length)
577 {
578         char __iomem *vaddr;
579         unsigned long unwritten;
580
581         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582         if (vaddr == NULL)
583                 return -ENOMEM;
584         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585         kunmap_atomic(vaddr, KM_USER0);
586
587         if (unwritten)
588                 return -EFAULT;
589         return 0;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598                          struct drm_i915_gem_pwrite *args,
599                          struct drm_file *file_priv)
600 {
601         struct drm_i915_gem_object *obj_priv = obj->driver_private;
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length;
607         int ret;
608
609         user_data = (char __user *) (uintptr_t) args->data_ptr;
610         remain = args->size;
611         if (!access_ok(VERIFY_READ, user_data, remain))
612                 return -EFAULT;
613
614
615         mutex_lock(&dev->struct_mutex);
616         ret = i915_gem_object_pin(obj, 0);
617         if (ret) {
618                 mutex_unlock(&dev->struct_mutex);
619                 return ret;
620         }
621         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622         if (ret)
623                 goto fail;
624
625         obj_priv = obj->driver_private;
626         offset = obj_priv->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = (offset & ~(PAGE_SIZE-1));
636                 page_offset = offset & (PAGE_SIZE-1);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642                                        page_offset, user_data, page_length);
643
644                 /* If we get a fault while copying data, then (presumably) our
645                  * source page isn't available.  Return the error and we'll
646                  * retry in the slow path.
647                  */
648                 if (ret)
649                         goto fail;
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 fail:
657         i915_gem_object_unpin(obj);
658         mutex_unlock(&dev->struct_mutex);
659
660         return ret;
661 }
662
663 /**
664  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665  * the memory and maps it using kmap_atomic for copying.
666  *
667  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669  */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672                          struct drm_i915_gem_pwrite *args,
673                          struct drm_file *file_priv)
674 {
675         struct drm_i915_gem_object *obj_priv = obj->driver_private;
676         drm_i915_private_t *dev_priv = dev->dev_private;
677         ssize_t remain;
678         loff_t gtt_page_base, offset;
679         loff_t first_data_page, last_data_page, num_pages;
680         loff_t pinned_pages, i;
681         struct page **user_pages;
682         struct mm_struct *mm = current->mm;
683         int gtt_page_offset, data_page_offset, data_page_index, page_length;
684         int ret;
685         uint64_t data_ptr = args->data_ptr;
686
687         remain = args->size;
688
689         /* Pin the user pages containing the data.  We can't fault while
690          * holding the struct mutex, and all of the pwrite implementations
691          * want to hold it while dereferencing the user data.
692          */
693         first_data_page = data_ptr / PAGE_SIZE;
694         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695         num_pages = last_data_page - first_data_page + 1;
696
697         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698         if (user_pages == NULL)
699                 return -ENOMEM;
700
701         down_read(&mm->mmap_sem);
702         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703                                       num_pages, 0, 0, user_pages, NULL);
704         up_read(&mm->mmap_sem);
705         if (pinned_pages < num_pages) {
706                 ret = -EFAULT;
707                 goto out_unpin_pages;
708         }
709
710         mutex_lock(&dev->struct_mutex);
711         ret = i915_gem_object_pin(obj, 0);
712         if (ret)
713                 goto out_unlock;
714
715         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716         if (ret)
717                 goto out_unpin_object;
718
719         obj_priv = obj->driver_private;
720         offset = obj_priv->gtt_offset + args->offset;
721
722         while (remain > 0) {
723                 /* Operation in this page
724                  *
725                  * gtt_page_base = page offset within aperture
726                  * gtt_page_offset = offset within page in aperture
727                  * data_page_index = page number in get_user_pages return
728                  * data_page_offset = offset with data_page_index page.
729                  * page_length = bytes to copy for this page
730                  */
731                 gtt_page_base = offset & PAGE_MASK;
732                 gtt_page_offset = offset & ~PAGE_MASK;
733                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734                 data_page_offset = data_ptr & ~PAGE_MASK;
735
736                 page_length = remain;
737                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738                         page_length = PAGE_SIZE - gtt_page_offset;
739                 if ((data_page_offset + page_length) > PAGE_SIZE)
740                         page_length = PAGE_SIZE - data_page_offset;
741
742                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743                                         gtt_page_base, gtt_page_offset,
744                                         user_pages[data_page_index],
745                                         data_page_offset,
746                                         page_length);
747
748                 /* If we get a fault while copying data, then (presumably) our
749                  * source page isn't available.  Return the error and we'll
750                  * retry in the slow path.
751                  */
752                 if (ret)
753                         goto out_unpin_object;
754
755                 remain -= page_length;
756                 offset += page_length;
757                 data_ptr += page_length;
758         }
759
760 out_unpin_object:
761         i915_gem_object_unpin(obj);
762 out_unlock:
763         mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765         for (i = 0; i < pinned_pages; i++)
766                 page_cache_release(user_pages[i]);
767         drm_free_large(user_pages);
768
769         return ret;
770 }
771
772 /**
773  * This is the fast shmem pwrite path, which attempts to directly
774  * copy_from_user into the kmapped pages backing the object.
775  */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778                            struct drm_i915_gem_pwrite *args,
779                            struct drm_file *file_priv)
780 {
781         struct drm_i915_gem_object *obj_priv = obj->driver_private;
782         ssize_t remain;
783         loff_t offset, page_base;
784         char __user *user_data;
785         int page_offset, page_length;
786         int ret;
787
788         user_data = (char __user *) (uintptr_t) args->data_ptr;
789         remain = args->size;
790
791         mutex_lock(&dev->struct_mutex);
792
793         ret = i915_gem_object_get_pages(obj);
794         if (ret != 0)
795                 goto fail_unlock;
796
797         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798         if (ret != 0)
799                 goto fail_put_pages;
800
801         obj_priv = obj->driver_private;
802         offset = args->offset;
803         obj_priv->dirty = 1;
804
805         while (remain > 0) {
806                 /* Operation in this page
807                  *
808                  * page_base = page offset within aperture
809                  * page_offset = offset within page
810                  * page_length = bytes to copy for this page
811                  */
812                 page_base = (offset & ~(PAGE_SIZE-1));
813                 page_offset = offset & (PAGE_SIZE-1);
814                 page_length = remain;
815                 if ((page_offset + remain) > PAGE_SIZE)
816                         page_length = PAGE_SIZE - page_offset;
817
818                 ret = fast_shmem_write(obj_priv->pages,
819                                        page_base, page_offset,
820                                        user_data, page_length);
821                 if (ret)
822                         goto fail_put_pages;
823
824                 remain -= page_length;
825                 user_data += page_length;
826                 offset += page_length;
827         }
828
829 fail_put_pages:
830         i915_gem_object_put_pages(obj);
831 fail_unlock:
832         mutex_unlock(&dev->struct_mutex);
833
834         return ret;
835 }
836
837 /**
838  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839  * the memory and maps it using kmap_atomic for copying.
840  *
841  * This avoids taking mmap_sem for faulting on the user's address while the
842  * struct_mutex is held.
843  */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846                            struct drm_i915_gem_pwrite *args,
847                            struct drm_file *file_priv)
848 {
849         struct drm_i915_gem_object *obj_priv = obj->driver_private;
850         struct mm_struct *mm = current->mm;
851         struct page **user_pages;
852         ssize_t remain;
853         loff_t offset, pinned_pages, i;
854         loff_t first_data_page, last_data_page, num_pages;
855         int shmem_page_index, shmem_page_offset;
856         int data_page_index,  data_page_offset;
857         int page_length;
858         int ret;
859         uint64_t data_ptr = args->data_ptr;
860         int do_bit17_swizzling;
861
862         remain = args->size;
863
864         /* Pin the user pages containing the data.  We can't fault while
865          * holding the struct mutex, and all of the pwrite implementations
866          * want to hold it while dereferencing the user data.
867          */
868         first_data_page = data_ptr / PAGE_SIZE;
869         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870         num_pages = last_data_page - first_data_page + 1;
871
872         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873         if (user_pages == NULL)
874                 return -ENOMEM;
875
876         down_read(&mm->mmap_sem);
877         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878                                       num_pages, 0, 0, user_pages, NULL);
879         up_read(&mm->mmap_sem);
880         if (pinned_pages < num_pages) {
881                 ret = -EFAULT;
882                 goto fail_put_user_pages;
883         }
884
885         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886
887         mutex_lock(&dev->struct_mutex);
888
889         ret = i915_gem_object_get_pages_or_evict(obj);
890         if (ret)
891                 goto fail_unlock;
892
893         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894         if (ret != 0)
895                 goto fail_put_pages;
896
897         obj_priv = obj->driver_private;
898         offset = args->offset;
899         obj_priv->dirty = 1;
900
901         while (remain > 0) {
902                 /* Operation in this page
903                  *
904                  * shmem_page_index = page number within shmem file
905                  * shmem_page_offset = offset within page in shmem file
906                  * data_page_index = page number in get_user_pages return
907                  * data_page_offset = offset with data_page_index page.
908                  * page_length = bytes to copy for this page
909                  */
910                 shmem_page_index = offset / PAGE_SIZE;
911                 shmem_page_offset = offset & ~PAGE_MASK;
912                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913                 data_page_offset = data_ptr & ~PAGE_MASK;
914
915                 page_length = remain;
916                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917                         page_length = PAGE_SIZE - shmem_page_offset;
918                 if ((data_page_offset + page_length) > PAGE_SIZE)
919                         page_length = PAGE_SIZE - data_page_offset;
920
921                 if (do_bit17_swizzling) {
922                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923                                                     shmem_page_offset,
924                                                     user_pages[data_page_index],
925                                                     data_page_offset,
926                                                     page_length,
927                                                     0);
928                 } else {
929                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930                                               shmem_page_offset,
931                                               user_pages[data_page_index],
932                                               data_page_offset,
933                                               page_length);
934                 }
935                 if (ret)
936                         goto fail_put_pages;
937
938                 remain -= page_length;
939                 data_ptr += page_length;
940                 offset += page_length;
941         }
942
943 fail_put_pages:
944         i915_gem_object_put_pages(obj);
945 fail_unlock:
946         mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948         for (i = 0; i < pinned_pages; i++)
949                 page_cache_release(user_pages[i]);
950         drm_free_large(user_pages);
951
952         return ret;
953 }
954
955 /**
956  * Writes data to the object referenced by handle.
957  *
958  * On error, the contents of the buffer that were to be modified are undefined.
959  */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962                       struct drm_file *file_priv)
963 {
964         struct drm_i915_gem_pwrite *args = data;
965         struct drm_gem_object *obj;
966         struct drm_i915_gem_object *obj_priv;
967         int ret = 0;
968
969         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970         if (obj == NULL)
971                 return -EBADF;
972         obj_priv = obj->driver_private;
973
974         /* Bounds check destination.
975          *
976          * XXX: This could use review for overflow issues...
977          */
978         if (args->offset > obj->size || args->size > obj->size ||
979             args->offset + args->size > obj->size) {
980                 drm_gem_object_unreference(obj);
981                 return -EINVAL;
982         }
983
984         /* We can only do the GTT pwrite on untiled buffers, as otherwise
985          * it would end up going through the fenced access, and we'll get
986          * different detiling behavior between reading and writing.
987          * pread/pwrite currently are reading and writing from the CPU
988          * perspective, requiring manual detiling by the client.
989          */
990         if (obj_priv->phys_obj)
991                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993                  dev->gtt_total != 0) {
994                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995                 if (ret == -EFAULT) {
996                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997                                                        file_priv);
998                 }
999         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001         } else {
1002                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003                 if (ret == -EFAULT) {
1004                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005                                                          file_priv);
1006                 }
1007         }
1008
1009 #if WATCH_PWRITE
1010         if (ret)
1011                 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013
1014         drm_gem_object_unreference(obj);
1015
1016         return ret;
1017 }
1018
1019 /**
1020  * Called when user space prepares to use an object with the CPU, either
1021  * through the mmap ioctl's mapping or a GTT mapping.
1022  */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025                           struct drm_file *file_priv)
1026 {
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_i915_gem_set_domain *args = data;
1029         struct drm_gem_object *obj;
1030         struct drm_i915_gem_object *obj_priv;
1031         uint32_t read_domains = args->read_domains;
1032         uint32_t write_domain = args->write_domain;
1033         int ret;
1034
1035         if (!(dev->driver->driver_features & DRIVER_GEM))
1036                 return -ENODEV;
1037
1038         /* Only handle setting domains to types used by the CPU. */
1039         if (write_domain & I915_GEM_GPU_DOMAINS)
1040                 return -EINVAL;
1041
1042         if (read_domains & I915_GEM_GPU_DOMAINS)
1043                 return -EINVAL;
1044
1045         /* Having something in the write domain implies it's in the read
1046          * domain, and only that read domain.  Enforce that in the request.
1047          */
1048         if (write_domain != 0 && read_domains != write_domain)
1049                 return -EINVAL;
1050
1051         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052         if (obj == NULL)
1053                 return -EBADF;
1054         obj_priv = obj->driver_private;
1055
1056         mutex_lock(&dev->struct_mutex);
1057
1058         intel_mark_busy(dev, obj);
1059
1060 #if WATCH_BUF
1061         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062                  obj, obj->size, read_domains, write_domain);
1063 #endif
1064         if (read_domains & I915_GEM_DOMAIN_GTT) {
1065                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067                 /* Update the LRU on the fence for the CPU access that's
1068                  * about to occur.
1069                  */
1070                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071                         list_move_tail(&obj_priv->fence_list,
1072                                        &dev_priv->mm.fence_list);
1073                 }
1074
1075                 /* Silently promote "you're not bound, there was nothing to do"
1076                  * to success, since the client was just asking us to
1077                  * make sure everything was done.
1078                  */
1079                 if (ret == -EINVAL)
1080                         ret = 0;
1081         } else {
1082                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083         }
1084
1085         drm_gem_object_unreference(obj);
1086         mutex_unlock(&dev->struct_mutex);
1087         return ret;
1088 }
1089
1090 /**
1091  * Called when user space has done writes to this buffer
1092  */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095                       struct drm_file *file_priv)
1096 {
1097         struct drm_i915_gem_sw_finish *args = data;
1098         struct drm_gem_object *obj;
1099         struct drm_i915_gem_object *obj_priv;
1100         int ret = 0;
1101
1102         if (!(dev->driver->driver_features & DRIVER_GEM))
1103                 return -ENODEV;
1104
1105         mutex_lock(&dev->struct_mutex);
1106         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107         if (obj == NULL) {
1108                 mutex_unlock(&dev->struct_mutex);
1109                 return -EBADF;
1110         }
1111
1112 #if WATCH_BUF
1113         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114                  __func__, args->handle, obj, obj->size);
1115 #endif
1116         obj_priv = obj->driver_private;
1117
1118         /* Pinned buffers may be scanout, so flush the cache */
1119         if (obj_priv->pin_count)
1120                 i915_gem_object_flush_cpu_write_domain(obj);
1121
1122         drm_gem_object_unreference(obj);
1123         mutex_unlock(&dev->struct_mutex);
1124         return ret;
1125 }
1126
1127 /**
1128  * Maps the contents of an object, returning the address it is mapped
1129  * into.
1130  *
1131  * While the mapping holds a reference on the contents of the object, it doesn't
1132  * imply a ref on the object itself.
1133  */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136                    struct drm_file *file_priv)
1137 {
1138         struct drm_i915_gem_mmap *args = data;
1139         struct drm_gem_object *obj;
1140         loff_t offset;
1141         unsigned long addr;
1142
1143         if (!(dev->driver->driver_features & DRIVER_GEM))
1144                 return -ENODEV;
1145
1146         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147         if (obj == NULL)
1148                 return -EBADF;
1149
1150         offset = args->offset;
1151
1152         down_write(&current->mm->mmap_sem);
1153         addr = do_mmap(obj->filp, 0, args->size,
1154                        PROT_READ | PROT_WRITE, MAP_SHARED,
1155                        args->offset);
1156         up_write(&current->mm->mmap_sem);
1157         mutex_lock(&dev->struct_mutex);
1158         drm_gem_object_unreference(obj);
1159         mutex_unlock(&dev->struct_mutex);
1160         if (IS_ERR((void *)addr))
1161                 return addr;
1162
1163         args->addr_ptr = (uint64_t) addr;
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * i915_gem_fault - fault a page into the GTT
1170  * vma: VMA in question
1171  * vmf: fault info
1172  *
1173  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174  * from userspace.  The fault handler takes care of binding the object to
1175  * the GTT (if needed), allocating and programming a fence register (again,
1176  * only if needed based on whether the old reg is still valid or the object
1177  * is tiled) and inserting a new PTE into the faulting process.
1178  *
1179  * Note that the faulting process may involve evicting existing objects
1180  * from the GTT and/or fence registers to make room.  So performance may
1181  * suffer if the GTT working set is large or there are few fence registers
1182  * left.
1183  */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186         struct drm_gem_object *obj = vma->vm_private_data;
1187         struct drm_device *dev = obj->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190         pgoff_t page_offset;
1191         unsigned long pfn;
1192         int ret = 0;
1193         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195         /* We don't use vmf->pgoff since that has the fake offset */
1196         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197                 PAGE_SHIFT;
1198
1199         /* Now bind it into the GTT if needed */
1200         mutex_lock(&dev->struct_mutex);
1201         if (!obj_priv->gtt_space) {
1202                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203                 if (ret) {
1204                         mutex_unlock(&dev->struct_mutex);
1205                         return VM_FAULT_SIGBUS;
1206                 }
1207                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1208
1209                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1210                 if (ret) {
1211                         mutex_unlock(&dev->struct_mutex);
1212                         return VM_FAULT_SIGBUS;
1213                 }
1214         }
1215
1216         /* Need a new fence register? */
1217         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1218                 ret = i915_gem_object_get_fence_reg(obj);
1219                 if (ret) {
1220                         mutex_unlock(&dev->struct_mutex);
1221                         return VM_FAULT_SIGBUS;
1222                 }
1223         }
1224
1225         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1226                 page_offset;
1227
1228         /* Finally, remap it using the new GTT offset */
1229         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1230
1231         mutex_unlock(&dev->struct_mutex);
1232
1233         switch (ret) {
1234         case -ENOMEM:
1235         case -EAGAIN:
1236                 return VM_FAULT_OOM;
1237         case -EFAULT:
1238         case -EINVAL:
1239                 return VM_FAULT_SIGBUS;
1240         default:
1241                 return VM_FAULT_NOPAGE;
1242         }
1243 }
1244
1245 /**
1246  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1247  * @obj: obj in question
1248  *
1249  * GEM memory mapping works by handing back to userspace a fake mmap offset
1250  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1251  * up the object based on the offset and sets up the various memory mapping
1252  * structures.
1253  *
1254  * This routine allocates and attaches a fake offset for @obj.
1255  */
1256 static int
1257 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1258 {
1259         struct drm_device *dev = obj->dev;
1260         struct drm_gem_mm *mm = dev->mm_private;
1261         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1262         struct drm_map_list *list;
1263         struct drm_local_map *map;
1264         int ret = 0;
1265
1266         /* Set the object up for mmap'ing */
1267         list = &obj->map_list;
1268         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1269         if (!list->map)
1270                 return -ENOMEM;
1271
1272         map = list->map;
1273         map->type = _DRM_GEM;
1274         map->size = obj->size;
1275         map->handle = obj;
1276
1277         /* Get a DRM GEM mmap offset allocated... */
1278         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1279                                                     obj->size / PAGE_SIZE, 0, 0);
1280         if (!list->file_offset_node) {
1281                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1282                 ret = -ENOMEM;
1283                 goto out_free_list;
1284         }
1285
1286         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1287                                                   obj->size / PAGE_SIZE, 0);
1288         if (!list->file_offset_node) {
1289                 ret = -ENOMEM;
1290                 goto out_free_list;
1291         }
1292
1293         list->hash.key = list->file_offset_node->start;
1294         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1295                 DRM_ERROR("failed to add to map hash\n");
1296                 goto out_free_mm;
1297         }
1298
1299         /* By now we should be all set, any drm_mmap request on the offset
1300          * below will get to our mmap & fault handler */
1301         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1302
1303         return 0;
1304
1305 out_free_mm:
1306         drm_mm_put_block(list->file_offset_node);
1307 out_free_list:
1308         kfree(list->map);
1309
1310         return ret;
1311 }
1312
1313 /**
1314  * i915_gem_release_mmap - remove physical page mappings
1315  * @obj: obj in question
1316  *
1317  * Preserve the reservation of the mmaping with the DRM core code, but
1318  * relinquish ownership of the pages back to the system.
1319  *
1320  * It is vital that we remove the page mapping if we have mapped a tiled
1321  * object through the GTT and then lose the fence register due to
1322  * resource pressure. Similarly if the object has been moved out of the
1323  * aperture, than pages mapped into userspace must be revoked. Removing the
1324  * mapping will then trigger a page fault on the next user access, allowing
1325  * fixup by i915_gem_fault().
1326  */
1327 void
1328 i915_gem_release_mmap(struct drm_gem_object *obj)
1329 {
1330         struct drm_device *dev = obj->dev;
1331         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1332
1333         if (dev->dev_mapping)
1334                 unmap_mapping_range(dev->dev_mapping,
1335                                     obj_priv->mmap_offset, obj->size, 1);
1336 }
1337
1338 static void
1339 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1340 {
1341         struct drm_device *dev = obj->dev;
1342         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1343         struct drm_gem_mm *mm = dev->mm_private;
1344         struct drm_map_list *list;
1345
1346         list = &obj->map_list;
1347         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1348
1349         if (list->file_offset_node) {
1350                 drm_mm_put_block(list->file_offset_node);
1351                 list->file_offset_node = NULL;
1352         }
1353
1354         if (list->map) {
1355                 kfree(list->map);
1356                 list->map = NULL;
1357         }
1358
1359         obj_priv->mmap_offset = 0;
1360 }
1361
1362 /**
1363  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1364  * @obj: object to check
1365  *
1366  * Return the required GTT alignment for an object, taking into account
1367  * potential fence register mapping if needed.
1368  */
1369 static uint32_t
1370 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1371 {
1372         struct drm_device *dev = obj->dev;
1373         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1374         int start, i;
1375
1376         /*
1377          * Minimum alignment is 4k (GTT page size), but might be greater
1378          * if a fence register is needed for the object.
1379          */
1380         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1381                 return 4096;
1382
1383         /*
1384          * Previous chips need to be aligned to the size of the smallest
1385          * fence register that can contain the object.
1386          */
1387         if (IS_I9XX(dev))
1388                 start = 1024*1024;
1389         else
1390                 start = 512*1024;
1391
1392         for (i = start; i < obj->size; i <<= 1)
1393                 ;
1394
1395         return i;
1396 }
1397
1398 /**
1399  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1400  * @dev: DRM device
1401  * @data: GTT mapping ioctl data
1402  * @file_priv: GEM object info
1403  *
1404  * Simply returns the fake offset to userspace so it can mmap it.
1405  * The mmap call will end up in drm_gem_mmap(), which will set things
1406  * up so we can get faults in the handler above.
1407  *
1408  * The fault handler will take care of binding the object into the GTT
1409  * (since it may have been evicted to make room for something), allocating
1410  * a fence register, and mapping the appropriate aperture address into
1411  * userspace.
1412  */
1413 int
1414 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1415                         struct drm_file *file_priv)
1416 {
1417         struct drm_i915_gem_mmap_gtt *args = data;
1418         struct drm_i915_private *dev_priv = dev->dev_private;
1419         struct drm_gem_object *obj;
1420         struct drm_i915_gem_object *obj_priv;
1421         int ret;
1422
1423         if (!(dev->driver->driver_features & DRIVER_GEM))
1424                 return -ENODEV;
1425
1426         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1427         if (obj == NULL)
1428                 return -EBADF;
1429
1430         mutex_lock(&dev->struct_mutex);
1431
1432         obj_priv = obj->driver_private;
1433
1434         if (!obj_priv->mmap_offset) {
1435                 ret = i915_gem_create_mmap_offset(obj);
1436                 if (ret) {
1437                         drm_gem_object_unreference(obj);
1438                         mutex_unlock(&dev->struct_mutex);
1439                         return ret;
1440                 }
1441         }
1442
1443         args->offset = obj_priv->mmap_offset;
1444
1445         /*
1446          * Pull it into the GTT so that we have a page list (makes the
1447          * initial fault faster and any subsequent flushing possible).
1448          */
1449         if (!obj_priv->agp_mem) {
1450                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1451                 if (ret) {
1452                         drm_gem_object_unreference(obj);
1453                         mutex_unlock(&dev->struct_mutex);
1454                         return ret;
1455                 }
1456                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1457         }
1458
1459         drm_gem_object_unreference(obj);
1460         mutex_unlock(&dev->struct_mutex);
1461
1462         return 0;
1463 }
1464
1465 void
1466 i915_gem_object_put_pages(struct drm_gem_object *obj)
1467 {
1468         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1469         int page_count = obj->size / PAGE_SIZE;
1470         int i;
1471
1472         BUG_ON(obj_priv->pages_refcount == 0);
1473
1474         if (--obj_priv->pages_refcount != 0)
1475                 return;
1476
1477         if (obj_priv->tiling_mode != I915_TILING_NONE)
1478                 i915_gem_object_save_bit_17_swizzle(obj);
1479
1480         if (obj_priv->madv == I915_MADV_DONTNEED)
1481             obj_priv->dirty = 0;
1482
1483         for (i = 0; i < page_count; i++) {
1484                 if (obj_priv->pages[i] == NULL)
1485                         break;
1486
1487                 if (obj_priv->dirty)
1488                         set_page_dirty(obj_priv->pages[i]);
1489
1490                 if (obj_priv->madv == I915_MADV_WILLNEED)
1491                     mark_page_accessed(obj_priv->pages[i]);
1492
1493                 page_cache_release(obj_priv->pages[i]);
1494         }
1495         obj_priv->dirty = 0;
1496
1497         drm_free_large(obj_priv->pages);
1498         obj_priv->pages = NULL;
1499 }
1500
1501 static void
1502 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1503 {
1504         struct drm_device *dev = obj->dev;
1505         drm_i915_private_t *dev_priv = dev->dev_private;
1506         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1507
1508         /* Add a reference if we're newly entering the active list. */
1509         if (!obj_priv->active) {
1510                 drm_gem_object_reference(obj);
1511                 obj_priv->active = 1;
1512         }
1513         /* Move from whatever list we were on to the tail of execution. */
1514         spin_lock(&dev_priv->mm.active_list_lock);
1515         list_move_tail(&obj_priv->list,
1516                        &dev_priv->mm.active_list);
1517         spin_unlock(&dev_priv->mm.active_list_lock);
1518         obj_priv->last_rendering_seqno = seqno;
1519 }
1520
1521 static void
1522 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1523 {
1524         struct drm_device *dev = obj->dev;
1525         drm_i915_private_t *dev_priv = dev->dev_private;
1526         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1527
1528         BUG_ON(!obj_priv->active);
1529         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1530         obj_priv->last_rendering_seqno = 0;
1531 }
1532
1533 static void
1534 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1535 {
1536         struct drm_device *dev = obj->dev;
1537         drm_i915_private_t *dev_priv = dev->dev_private;
1538         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1539
1540         i915_verify_inactive(dev, __FILE__, __LINE__);
1541         if (obj_priv->pin_count != 0)
1542                 list_del_init(&obj_priv->list);
1543         else
1544                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1545
1546         obj_priv->last_rendering_seqno = 0;
1547         if (obj_priv->active) {
1548                 obj_priv->active = 0;
1549                 drm_gem_object_unreference(obj);
1550         }
1551         i915_verify_inactive(dev, __FILE__, __LINE__);
1552 }
1553
1554 /**
1555  * Creates a new sequence number, emitting a write of it to the status page
1556  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1557  *
1558  * Must be called with struct_lock held.
1559  *
1560  * Returned sequence numbers are nonzero on success.
1561  */
1562 static uint32_t
1563 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1564                  uint32_t flush_domains)
1565 {
1566         drm_i915_private_t *dev_priv = dev->dev_private;
1567         struct drm_i915_file_private *i915_file_priv = NULL;
1568         struct drm_i915_gem_request *request;
1569         uint32_t seqno;
1570         int was_empty;
1571         RING_LOCALS;
1572
1573         if (file_priv != NULL)
1574                 i915_file_priv = file_priv->driver_priv;
1575
1576         request = kzalloc(sizeof(*request), GFP_KERNEL);
1577         if (request == NULL)
1578                 return 0;
1579
1580         /* Grab the seqno we're going to make this request be, and bump the
1581          * next (skipping 0 so it can be the reserved no-seqno value).
1582          */
1583         seqno = dev_priv->mm.next_gem_seqno;
1584         dev_priv->mm.next_gem_seqno++;
1585         if (dev_priv->mm.next_gem_seqno == 0)
1586                 dev_priv->mm.next_gem_seqno++;
1587
1588         BEGIN_LP_RING(4);
1589         OUT_RING(MI_STORE_DWORD_INDEX);
1590         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1591         OUT_RING(seqno);
1592
1593         OUT_RING(MI_USER_INTERRUPT);
1594         ADVANCE_LP_RING();
1595
1596         DRM_DEBUG("%d\n", seqno);
1597
1598         request->seqno = seqno;
1599         request->emitted_jiffies = jiffies;
1600         was_empty = list_empty(&dev_priv->mm.request_list);
1601         list_add_tail(&request->list, &dev_priv->mm.request_list);
1602         if (i915_file_priv) {
1603                 list_add_tail(&request->client_list,
1604                               &i915_file_priv->mm.request_list);
1605         } else {
1606                 INIT_LIST_HEAD(&request->client_list);
1607         }
1608
1609         /* Associate any objects on the flushing list matching the write
1610          * domain we're flushing with our flush.
1611          */
1612         if (flush_domains != 0) {
1613                 struct drm_i915_gem_object *obj_priv, *next;
1614
1615                 list_for_each_entry_safe(obj_priv, next,
1616                                          &dev_priv->mm.flushing_list, list) {
1617                         struct drm_gem_object *obj = obj_priv->obj;
1618
1619                         if ((obj->write_domain & flush_domains) ==
1620                             obj->write_domain) {
1621                                 uint32_t old_write_domain = obj->write_domain;
1622
1623                                 obj->write_domain = 0;
1624                                 i915_gem_object_move_to_active(obj, seqno);
1625
1626                                 trace_i915_gem_object_change_domain(obj,
1627                                                                     obj->read_domains,
1628                                                                     old_write_domain);
1629                         }
1630                 }
1631
1632         }
1633
1634         if (!dev_priv->mm.suspended) {
1635                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1636                 if (was_empty)
1637                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1638         }
1639         return seqno;
1640 }
1641
1642 /**
1643  * Command execution barrier
1644  *
1645  * Ensures that all commands in the ring are finished
1646  * before signalling the CPU
1647  */
1648 static uint32_t
1649 i915_retire_commands(struct drm_device *dev)
1650 {
1651         drm_i915_private_t *dev_priv = dev->dev_private;
1652         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1653         uint32_t flush_domains = 0;
1654         RING_LOCALS;
1655
1656         /* The sampler always gets flushed on i965 (sigh) */
1657         if (IS_I965G(dev))
1658                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1659         BEGIN_LP_RING(2);
1660         OUT_RING(cmd);
1661         OUT_RING(0); /* noop */
1662         ADVANCE_LP_RING();
1663         return flush_domains;
1664 }
1665
1666 /**
1667  * Moves buffers associated only with the given active seqno from the active
1668  * to inactive list, potentially freeing them.
1669  */
1670 static void
1671 i915_gem_retire_request(struct drm_device *dev,
1672                         struct drm_i915_gem_request *request)
1673 {
1674         drm_i915_private_t *dev_priv = dev->dev_private;
1675
1676         trace_i915_gem_request_retire(dev, request->seqno);
1677
1678         /* Move any buffers on the active list that are no longer referenced
1679          * by the ringbuffer to the flushing/inactive lists as appropriate.
1680          */
1681         spin_lock(&dev_priv->mm.active_list_lock);
1682         while (!list_empty(&dev_priv->mm.active_list)) {
1683                 struct drm_gem_object *obj;
1684                 struct drm_i915_gem_object *obj_priv;
1685
1686                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1687                                             struct drm_i915_gem_object,
1688                                             list);
1689                 obj = obj_priv->obj;
1690
1691                 /* If the seqno being retired doesn't match the oldest in the
1692                  * list, then the oldest in the list must still be newer than
1693                  * this seqno.
1694                  */
1695                 if (obj_priv->last_rendering_seqno != request->seqno)
1696                         goto out;
1697
1698 #if WATCH_LRU
1699                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1700                          __func__, request->seqno, obj);
1701 #endif
1702
1703                 if (obj->write_domain != 0)
1704                         i915_gem_object_move_to_flushing(obj);
1705                 else {
1706                         /* Take a reference on the object so it won't be
1707                          * freed while the spinlock is held.  The list
1708                          * protection for this spinlock is safe when breaking
1709                          * the lock like this since the next thing we do
1710                          * is just get the head of the list again.
1711                          */
1712                         drm_gem_object_reference(obj);
1713                         i915_gem_object_move_to_inactive(obj);
1714                         spin_unlock(&dev_priv->mm.active_list_lock);
1715                         drm_gem_object_unreference(obj);
1716                         spin_lock(&dev_priv->mm.active_list_lock);
1717                 }
1718         }
1719 out:
1720         spin_unlock(&dev_priv->mm.active_list_lock);
1721 }
1722
1723 /**
1724  * Returns true if seq1 is later than seq2.
1725  */
1726 bool
1727 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1728 {
1729         return (int32_t)(seq1 - seq2) >= 0;
1730 }
1731
1732 uint32_t
1733 i915_get_gem_seqno(struct drm_device *dev)
1734 {
1735         drm_i915_private_t *dev_priv = dev->dev_private;
1736
1737         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1738 }
1739
1740 /**
1741  * This function clears the request list as sequence numbers are passed.
1742  */
1743 void
1744 i915_gem_retire_requests(struct drm_device *dev)
1745 {
1746         drm_i915_private_t *dev_priv = dev->dev_private;
1747         uint32_t seqno;
1748
1749         if (!dev_priv->hw_status_page)
1750                 return;
1751
1752         seqno = i915_get_gem_seqno(dev);
1753
1754         while (!list_empty(&dev_priv->mm.request_list)) {
1755                 struct drm_i915_gem_request *request;
1756                 uint32_t retiring_seqno;
1757
1758                 request = list_first_entry(&dev_priv->mm.request_list,
1759                                            struct drm_i915_gem_request,
1760                                            list);
1761                 retiring_seqno = request->seqno;
1762
1763                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1764                     atomic_read(&dev_priv->mm.wedged)) {
1765                         i915_gem_retire_request(dev, request);
1766
1767                         list_del(&request->list);
1768                         list_del(&request->client_list);
1769                         kfree(request);
1770                 } else
1771                         break;
1772         }
1773 }
1774
1775 void
1776 i915_gem_retire_work_handler(struct work_struct *work)
1777 {
1778         drm_i915_private_t *dev_priv;
1779         struct drm_device *dev;
1780
1781         dev_priv = container_of(work, drm_i915_private_t,
1782                                 mm.retire_work.work);
1783         dev = dev_priv->dev;
1784
1785         mutex_lock(&dev->struct_mutex);
1786         i915_gem_retire_requests(dev);
1787         if (!dev_priv->mm.suspended &&
1788             !list_empty(&dev_priv->mm.request_list))
1789                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1790         mutex_unlock(&dev->struct_mutex);
1791 }
1792
1793 /**
1794  * Waits for a sequence number to be signaled, and cleans up the
1795  * request and object lists appropriately for that event.
1796  */
1797 static int
1798 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1799 {
1800         drm_i915_private_t *dev_priv = dev->dev_private;
1801         u32 ier;
1802         int ret = 0;
1803
1804         BUG_ON(seqno == 0);
1805
1806         if (atomic_read(&dev_priv->mm.wedged))
1807                 return -EIO;
1808
1809         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1810                 if (IS_IGDNG(dev))
1811                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1812                 else
1813                         ier = I915_READ(IER);
1814                 if (!ier) {
1815                         DRM_ERROR("something (likely vbetool) disabled "
1816                                   "interrupts, re-enabling\n");
1817                         i915_driver_irq_preinstall(dev);
1818                         i915_driver_irq_postinstall(dev);
1819                 }
1820
1821                 trace_i915_gem_request_wait_begin(dev, seqno);
1822
1823                 dev_priv->mm.waiting_gem_seqno = seqno;
1824                 i915_user_irq_get(dev);
1825                 ret = wait_event_interruptible(dev_priv->irq_queue,
1826                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1827                                                                  seqno) ||
1828                                                atomic_read(&dev_priv->mm.wedged));
1829                 i915_user_irq_put(dev);
1830                 dev_priv->mm.waiting_gem_seqno = 0;
1831
1832                 trace_i915_gem_request_wait_end(dev, seqno);
1833         }
1834         if (atomic_read(&dev_priv->mm.wedged))
1835                 ret = -EIO;
1836
1837         if (ret && ret != -ERESTARTSYS)
1838                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1839                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1840
1841         /* Directly dispatch request retiring.  While we have the work queue
1842          * to handle this, the waiter on a request often wants an associated
1843          * buffer to have made it to the inactive list, and we would need
1844          * a separate wait queue to handle that.
1845          */
1846         if (ret == 0)
1847                 i915_gem_retire_requests(dev);
1848
1849         return ret;
1850 }
1851
1852 static void
1853 i915_gem_flush(struct drm_device *dev,
1854                uint32_t invalidate_domains,
1855                uint32_t flush_domains)
1856 {
1857         drm_i915_private_t *dev_priv = dev->dev_private;
1858         uint32_t cmd;
1859         RING_LOCALS;
1860
1861 #if WATCH_EXEC
1862         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1863                   invalidate_domains, flush_domains);
1864 #endif
1865         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1866                                      invalidate_domains, flush_domains);
1867
1868         if (flush_domains & I915_GEM_DOMAIN_CPU)
1869                 drm_agp_chipset_flush(dev);
1870
1871         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1872                 /*
1873                  * read/write caches:
1874                  *
1875                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1876                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1877                  * also flushed at 2d versus 3d pipeline switches.
1878                  *
1879                  * read-only caches:
1880                  *
1881                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1882                  * MI_READ_FLUSH is set, and is always flushed on 965.
1883                  *
1884                  * I915_GEM_DOMAIN_COMMAND may not exist?
1885                  *
1886                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1887                  * invalidated when MI_EXE_FLUSH is set.
1888                  *
1889                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1890                  * invalidated with every MI_FLUSH.
1891                  *
1892                  * TLBs:
1893                  *
1894                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1895                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1896                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1897                  * are flushed at any MI_FLUSH.
1898                  */
1899
1900                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1901                 if ((invalidate_domains|flush_domains) &
1902                     I915_GEM_DOMAIN_RENDER)
1903                         cmd &= ~MI_NO_WRITE_FLUSH;
1904                 if (!IS_I965G(dev)) {
1905                         /*
1906                          * On the 965, the sampler cache always gets flushed
1907                          * and this bit is reserved.
1908                          */
1909                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1910                                 cmd |= MI_READ_FLUSH;
1911                 }
1912                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1913                         cmd |= MI_EXE_FLUSH;
1914
1915 #if WATCH_EXEC
1916                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1917 #endif
1918                 BEGIN_LP_RING(2);
1919                 OUT_RING(cmd);
1920                 OUT_RING(0); /* noop */
1921                 ADVANCE_LP_RING();
1922         }
1923 }
1924
1925 /**
1926  * Ensures that all rendering to the object has completed and the object is
1927  * safe to unbind from the GTT or access from the CPU.
1928  */
1929 static int
1930 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1931 {
1932         struct drm_device *dev = obj->dev;
1933         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1934         int ret;
1935
1936         /* This function only exists to support waiting for existing rendering,
1937          * not for emitting required flushes.
1938          */
1939         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1940
1941         /* If there is rendering queued on the buffer being evicted, wait for
1942          * it.
1943          */
1944         if (obj_priv->active) {
1945 #if WATCH_BUF
1946                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1947                           __func__, obj, obj_priv->last_rendering_seqno);
1948 #endif
1949                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1950                 if (ret != 0)
1951                         return ret;
1952         }
1953
1954         return 0;
1955 }
1956
1957 /**
1958  * Unbinds an object from the GTT aperture.
1959  */
1960 int
1961 i915_gem_object_unbind(struct drm_gem_object *obj)
1962 {
1963         struct drm_device *dev = obj->dev;
1964         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1965         int ret = 0;
1966
1967 #if WATCH_BUF
1968         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1969         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1970 #endif
1971         if (obj_priv->gtt_space == NULL)
1972                 return 0;
1973
1974         if (obj_priv->pin_count != 0) {
1975                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1976                 return -EINVAL;
1977         }
1978
1979         /* blow away mappings if mapped through GTT */
1980         i915_gem_release_mmap(obj);
1981
1982         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1983                 i915_gem_clear_fence_reg(obj);
1984
1985         /* Move the object to the CPU domain to ensure that
1986          * any possible CPU writes while it's not in the GTT
1987          * are flushed when we go to remap it. This will
1988          * also ensure that all pending GPU writes are finished
1989          * before we unbind.
1990          */
1991         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1992         if (ret) {
1993                 if (ret != -ERESTARTSYS)
1994                         DRM_ERROR("set_domain failed: %d\n", ret);
1995                 return ret;
1996         }
1997
1998         BUG_ON(obj_priv->active);
1999
2000         if (obj_priv->agp_mem != NULL) {
2001                 drm_unbind_agp(obj_priv->agp_mem);
2002                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2003                 obj_priv->agp_mem = NULL;
2004         }
2005
2006         i915_gem_object_put_pages(obj);
2007
2008         if (obj_priv->gtt_space) {
2009                 atomic_dec(&dev->gtt_count);
2010                 atomic_sub(obj->size, &dev->gtt_memory);
2011
2012                 drm_mm_put_block(obj_priv->gtt_space);
2013                 obj_priv->gtt_space = NULL;
2014         }
2015
2016         /* Remove ourselves from the LRU list if present. */
2017         if (!list_empty(&obj_priv->list))
2018                 list_del_init(&obj_priv->list);
2019
2020         trace_i915_gem_object_unbind(obj);
2021
2022         return 0;
2023 }
2024
2025 static inline int
2026 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
2027 {
2028         return !obj_priv->dirty || obj_priv->madv == I915_MADV_DONTNEED;
2029 }
2030
2031 static struct drm_gem_object *
2032 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2033 {
2034         drm_i915_private_t *dev_priv = dev->dev_private;
2035         struct drm_i915_gem_object *obj_priv;
2036         struct drm_gem_object *best = NULL;
2037         struct drm_gem_object *first = NULL;
2038
2039         /* Try to find the smallest clean object */
2040         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2041                 struct drm_gem_object *obj = obj_priv->obj;
2042                 if (obj->size >= min_size) {
2043                         if (i915_gem_object_is_purgeable(obj_priv) &&
2044                             (!best || obj->size < best->size)) {
2045                                 best = obj;
2046                                 if (best->size == min_size)
2047                                         return best;
2048                         }
2049                         if (!first)
2050                             first = obj;
2051                 }
2052         }
2053
2054         return best ? best : first;
2055 }
2056
2057 static int
2058 i915_gem_evict_everything(struct drm_device *dev)
2059 {
2060         drm_i915_private_t *dev_priv = dev->dev_private;
2061         uint32_t seqno;
2062         int ret;
2063         bool lists_empty;
2064
2065         DRM_INFO("GTT full, evicting everything: "
2066                  "%d objects [%d pinned], "
2067                  "%d object bytes [%d pinned], "
2068                  "%d/%d gtt bytes\n",
2069                  atomic_read(&dev->object_count),
2070                  atomic_read(&dev->pin_count),
2071                  atomic_read(&dev->object_memory),
2072                  atomic_read(&dev->pin_memory),
2073                  atomic_read(&dev->gtt_memory),
2074                  dev->gtt_total);
2075
2076         spin_lock(&dev_priv->mm.active_list_lock);
2077         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2078                        list_empty(&dev_priv->mm.flushing_list) &&
2079                        list_empty(&dev_priv->mm.active_list));
2080         spin_unlock(&dev_priv->mm.active_list_lock);
2081
2082         if (lists_empty) {
2083                 DRM_ERROR("GTT full, but lists empty!\n");
2084                 return -ENOSPC;
2085         }
2086
2087         /* Flush everything (on to the inactive lists) and evict */
2088         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2089         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2090         if (seqno == 0)
2091                 return -ENOMEM;
2092
2093         ret = i915_wait_request(dev, seqno);
2094         if (ret)
2095                 return ret;
2096
2097         ret = i915_gem_evict_from_inactive_list(dev);
2098         if (ret)
2099                 return ret;
2100
2101         spin_lock(&dev_priv->mm.active_list_lock);
2102         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2103                        list_empty(&dev_priv->mm.flushing_list) &&
2104                        list_empty(&dev_priv->mm.active_list));
2105         spin_unlock(&dev_priv->mm.active_list_lock);
2106         BUG_ON(!lists_empty);
2107
2108         return 0;
2109 }
2110
2111 static int
2112 i915_gem_evict_something(struct drm_device *dev, int min_size)
2113 {
2114         drm_i915_private_t *dev_priv = dev->dev_private;
2115         struct drm_gem_object *obj;
2116         int have_waited = 0;
2117         int ret;
2118
2119         for (;;) {
2120                 i915_gem_retire_requests(dev);
2121
2122                 /* If there's an inactive buffer available now, grab it
2123                  * and be done.
2124                  */
2125                 obj = i915_gem_find_inactive_object(dev, min_size);
2126                 if (obj) {
2127                         struct drm_i915_gem_object *obj_priv;
2128
2129 #if WATCH_LRU
2130                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2131 #endif
2132                         obj_priv = obj->driver_private;
2133                         BUG_ON(obj_priv->pin_count != 0);
2134                         BUG_ON(obj_priv->active);
2135
2136                         /* Wait on the rendering and unbind the buffer. */
2137                         return i915_gem_object_unbind(obj);
2138                 }
2139
2140                 if (have_waited)
2141                         return 0;
2142
2143                 /* If we didn't get anything, but the ring is still processing
2144                  * things, wait for the next to finish and hopefully leave us
2145                  * a buffer to evict.
2146                  */
2147                 if (!list_empty(&dev_priv->mm.request_list)) {
2148                         struct drm_i915_gem_request *request;
2149
2150                         request = list_first_entry(&dev_priv->mm.request_list,
2151                                                    struct drm_i915_gem_request,
2152                                                    list);
2153
2154                         ret = i915_wait_request(dev, request->seqno);
2155                         if (ret)
2156                                 return ret;
2157
2158                         have_waited = 1;
2159                         continue;
2160                 }
2161
2162                 /* If we didn't have anything on the request list but there
2163                  * are buffers awaiting a flush, emit one and try again.
2164                  * When we wait on it, those buffers waiting for that flush
2165                  * will get moved to inactive.
2166                  */
2167                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2168                         struct drm_i915_gem_object *obj_priv;
2169                         uint32_t seqno;
2170
2171                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2172                                                     struct drm_i915_gem_object,
2173                                                     list);
2174                         obj = obj_priv->obj;
2175
2176                         i915_gem_flush(dev,
2177                                        obj->write_domain,
2178                                        obj->write_domain);
2179                         seqno = i915_add_request(dev, NULL, obj->write_domain);
2180                         if (seqno == 0)
2181                                 return -ENOMEM;
2182
2183                         ret = i915_wait_request(dev, seqno);
2184                         if (ret)
2185                                 return ret;
2186
2187                         have_waited = 1;
2188                         continue;
2189                 }
2190
2191                 /* If we didn't do any of the above, there's no single buffer
2192                  * large enough to swap out for the new one, so just evict
2193                  * everything and start again. (This should be rare.)
2194                  */
2195                 if (!list_empty (&dev_priv->mm.inactive_list)) {
2196                         DRM_INFO("GTT full, evicting inactive buffers\n");
2197                         return i915_gem_evict_from_inactive_list(dev);
2198                 } else
2199                         return i915_gem_evict_everything(dev);
2200         }
2201 }
2202
2203 int
2204 i915_gem_object_get_pages(struct drm_gem_object *obj)
2205 {
2206         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2207         int page_count, i;
2208         struct address_space *mapping;
2209         struct inode *inode;
2210         struct page *page;
2211         int ret;
2212
2213         if (obj_priv->pages_refcount++ != 0)
2214                 return 0;
2215
2216         /* Get the list of pages out of our struct file.  They'll be pinned
2217          * at this point until we release them.
2218          */
2219         page_count = obj->size / PAGE_SIZE;
2220         BUG_ON(obj_priv->pages != NULL);
2221         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2222         if (obj_priv->pages == NULL) {
2223                 DRM_ERROR("Failed to allocate page list\n");
2224                 obj_priv->pages_refcount--;
2225                 return -ENOMEM;
2226         }
2227
2228         inode = obj->filp->f_path.dentry->d_inode;
2229         mapping = inode->i_mapping;
2230         for (i = 0; i < page_count; i++) {
2231                 page = read_mapping_page(mapping, i, NULL);
2232                 if (IS_ERR(page)) {
2233                         ret = PTR_ERR(page);
2234                         i915_gem_object_put_pages(obj);
2235                         return ret;
2236                 }
2237                 obj_priv->pages[i] = page;
2238         }
2239
2240         if (obj_priv->tiling_mode != I915_TILING_NONE)
2241                 i915_gem_object_do_bit_17_swizzle(obj);
2242
2243         return 0;
2244 }
2245
2246 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2247 {
2248         struct drm_gem_object *obj = reg->obj;
2249         struct drm_device *dev = obj->dev;
2250         drm_i915_private_t *dev_priv = dev->dev_private;
2251         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2252         int regnum = obj_priv->fence_reg;
2253         uint64_t val;
2254
2255         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2256                     0xfffff000) << 32;
2257         val |= obj_priv->gtt_offset & 0xfffff000;
2258         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2259         if (obj_priv->tiling_mode == I915_TILING_Y)
2260                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2261         val |= I965_FENCE_REG_VALID;
2262
2263         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2264 }
2265
2266 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2267 {
2268         struct drm_gem_object *obj = reg->obj;
2269         struct drm_device *dev = obj->dev;
2270         drm_i915_private_t *dev_priv = dev->dev_private;
2271         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2272         int regnum = obj_priv->fence_reg;
2273         int tile_width;
2274         uint32_t fence_reg, val;
2275         uint32_t pitch_val;
2276
2277         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2278             (obj_priv->gtt_offset & (obj->size - 1))) {
2279                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2280                      __func__, obj_priv->gtt_offset, obj->size);
2281                 return;
2282         }
2283
2284         if (obj_priv->tiling_mode == I915_TILING_Y &&
2285             HAS_128_BYTE_Y_TILING(dev))
2286                 tile_width = 128;
2287         else
2288                 tile_width = 512;
2289
2290         /* Note: pitch better be a power of two tile widths */
2291         pitch_val = obj_priv->stride / tile_width;
2292         pitch_val = ffs(pitch_val) - 1;
2293
2294         val = obj_priv->gtt_offset;
2295         if (obj_priv->tiling_mode == I915_TILING_Y)
2296                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2297         val |= I915_FENCE_SIZE_BITS(obj->size);
2298         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2299         val |= I830_FENCE_REG_VALID;
2300
2301         if (regnum < 8)
2302                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2303         else
2304                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2305         I915_WRITE(fence_reg, val);
2306 }
2307
2308 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2309 {
2310         struct drm_gem_object *obj = reg->obj;
2311         struct drm_device *dev = obj->dev;
2312         drm_i915_private_t *dev_priv = dev->dev_private;
2313         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2314         int regnum = obj_priv->fence_reg;
2315         uint32_t val;
2316         uint32_t pitch_val;
2317         uint32_t fence_size_bits;
2318
2319         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2320             (obj_priv->gtt_offset & (obj->size - 1))) {
2321                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2322                      __func__, obj_priv->gtt_offset);
2323                 return;
2324         }
2325
2326         pitch_val = obj_priv->stride / 128;
2327         pitch_val = ffs(pitch_val) - 1;
2328         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2329
2330         val = obj_priv->gtt_offset;
2331         if (obj_priv->tiling_mode == I915_TILING_Y)
2332                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2333         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2334         WARN_ON(fence_size_bits & ~0x00000f00);
2335         val |= fence_size_bits;
2336         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2337         val |= I830_FENCE_REG_VALID;
2338
2339         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2340 }
2341
2342 /**
2343  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2344  * @obj: object to map through a fence reg
2345  *
2346  * When mapping objects through the GTT, userspace wants to be able to write
2347  * to them without having to worry about swizzling if the object is tiled.
2348  *
2349  * This function walks the fence regs looking for a free one for @obj,
2350  * stealing one if it can't find any.
2351  *
2352  * It then sets up the reg based on the object's properties: address, pitch
2353  * and tiling format.
2354  */
2355 int
2356 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2357 {
2358         struct drm_device *dev = obj->dev;
2359         struct drm_i915_private *dev_priv = dev->dev_private;
2360         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2361         struct drm_i915_fence_reg *reg = NULL;
2362         struct drm_i915_gem_object *old_obj_priv = NULL;
2363         int i, ret, avail;
2364
2365         /* Just update our place in the LRU if our fence is getting used. */
2366         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2367                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2368                 return 0;
2369         }
2370
2371         switch (obj_priv->tiling_mode) {
2372         case I915_TILING_NONE:
2373                 WARN(1, "allocating a fence for non-tiled object?\n");
2374                 break;
2375         case I915_TILING_X:
2376                 if (!obj_priv->stride)
2377                         return -EINVAL;
2378                 WARN((obj_priv->stride & (512 - 1)),
2379                      "object 0x%08x is X tiled but has non-512B pitch\n",
2380                      obj_priv->gtt_offset);
2381                 break;
2382         case I915_TILING_Y:
2383                 if (!obj_priv->stride)
2384                         return -EINVAL;
2385                 WARN((obj_priv->stride & (128 - 1)),
2386                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2387                      obj_priv->gtt_offset);
2388                 break;
2389         }
2390
2391         /* First try to find a free reg */
2392         avail = 0;
2393         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2394                 reg = &dev_priv->fence_regs[i];
2395                 if (!reg->obj)
2396                         break;
2397
2398                 old_obj_priv = reg->obj->driver_private;
2399                 if (!old_obj_priv->pin_count)
2400                     avail++;
2401         }
2402
2403         /* None available, try to steal one or wait for a user to finish */
2404         if (i == dev_priv->num_fence_regs) {
2405                 struct drm_gem_object *old_obj = NULL;
2406
2407                 if (avail == 0)
2408                         return -ENOSPC;
2409
2410                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2411                                     fence_list) {
2412                         old_obj = old_obj_priv->obj;
2413
2414                         if (old_obj_priv->pin_count)
2415                                 continue;
2416
2417                         /* Take a reference, as otherwise the wait_rendering
2418                          * below may cause the object to get freed out from
2419                          * under us.
2420                          */
2421                         drm_gem_object_reference(old_obj);
2422
2423                         /* i915 uses fences for GPU access to tiled buffers */
2424                         if (IS_I965G(dev) || !old_obj_priv->active)
2425                                 break;
2426
2427                         /* This brings the object to the head of the LRU if it
2428                          * had been written to.  The only way this should
2429                          * result in us waiting longer than the expected
2430                          * optimal amount of time is if there was a
2431                          * fence-using buffer later that was read-only.
2432                          */
2433                         i915_gem_object_flush_gpu_write_domain(old_obj);
2434                         ret = i915_gem_object_wait_rendering(old_obj);
2435                         if (ret != 0) {
2436                                 drm_gem_object_unreference(old_obj);
2437                                 return ret;
2438                         }
2439
2440                         break;
2441                 }
2442
2443                 /*
2444                  * Zap this virtual mapping so we can set up a fence again
2445                  * for this object next time we need it.
2446                  */
2447                 i915_gem_release_mmap(old_obj);
2448
2449                 i = old_obj_priv->fence_reg;
2450                 reg = &dev_priv->fence_regs[i];
2451
2452                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2453                 list_del_init(&old_obj_priv->fence_list);
2454
2455                 drm_gem_object_unreference(old_obj);
2456         }
2457
2458         obj_priv->fence_reg = i;
2459         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2460
2461         reg->obj = obj;
2462
2463         if (IS_I965G(dev))
2464                 i965_write_fence_reg(reg);
2465         else if (IS_I9XX(dev))
2466                 i915_write_fence_reg(reg);
2467         else
2468                 i830_write_fence_reg(reg);
2469
2470         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2471
2472         return 0;
2473 }
2474
2475 /**
2476  * i915_gem_clear_fence_reg - clear out fence register info
2477  * @obj: object to clear
2478  *
2479  * Zeroes out the fence register itself and clears out the associated
2480  * data structures in dev_priv and obj_priv.
2481  */
2482 static void
2483 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2484 {
2485         struct drm_device *dev = obj->dev;
2486         drm_i915_private_t *dev_priv = dev->dev_private;
2487         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2488
2489         if (IS_I965G(dev))
2490                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2491         else {
2492                 uint32_t fence_reg;
2493
2494                 if (obj_priv->fence_reg < 8)
2495                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2496                 else
2497                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2498                                                        8) * 4;
2499
2500                 I915_WRITE(fence_reg, 0);
2501         }
2502
2503         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2504         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2505         list_del_init(&obj_priv->fence_list);
2506 }
2507
2508 /**
2509  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2510  * to the buffer to finish, and then resets the fence register.
2511  * @obj: tiled object holding a fence register.
2512  *
2513  * Zeroes out the fence register itself and clears out the associated
2514  * data structures in dev_priv and obj_priv.
2515  */
2516 int
2517 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2518 {
2519         struct drm_device *dev = obj->dev;
2520         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2521
2522         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2523                 return 0;
2524
2525         /* On the i915, GPU access to tiled buffers is via a fence,
2526          * therefore we must wait for any outstanding access to complete
2527          * before clearing the fence.
2528          */
2529         if (!IS_I965G(dev)) {
2530                 int ret;
2531
2532                 i915_gem_object_flush_gpu_write_domain(obj);
2533                 i915_gem_object_flush_gtt_write_domain(obj);
2534                 ret = i915_gem_object_wait_rendering(obj);
2535                 if (ret != 0)
2536                         return ret;
2537         }
2538
2539         i915_gem_clear_fence_reg (obj);
2540
2541         return 0;
2542 }
2543
2544 /**
2545  * Finds free space in the GTT aperture and binds the object there.
2546  */
2547 static int
2548 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2549 {
2550         struct drm_device *dev = obj->dev;
2551         drm_i915_private_t *dev_priv = dev->dev_private;
2552         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2553         struct drm_mm_node *free_space;
2554         bool retry_alloc = false;
2555         int ret;
2556
2557         if (dev_priv->mm.suspended)
2558                 return -EBUSY;
2559
2560         if (obj_priv->madv == I915_MADV_DONTNEED) {
2561                 DRM_ERROR("Attempting to bind a purgeable object\n");
2562                 return -EINVAL;
2563         }
2564
2565         if (alignment == 0)
2566                 alignment = i915_gem_get_gtt_alignment(obj);
2567         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2568                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2569                 return -EINVAL;
2570         }
2571
2572  search_free:
2573         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2574                                         obj->size, alignment, 0);
2575         if (free_space != NULL) {
2576                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2577                                                        alignment);
2578                 if (obj_priv->gtt_space != NULL) {
2579                         obj_priv->gtt_space->private = obj;
2580                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2581                 }
2582         }
2583         if (obj_priv->gtt_space == NULL) {
2584                 /* If the gtt is empty and we're still having trouble
2585                  * fitting our object in, we're out of memory.
2586                  */
2587 #if WATCH_LRU
2588                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2589 #endif
2590                 ret = i915_gem_evict_something(dev, obj->size);
2591                 if (ret != 0) {
2592                         if (ret != -ERESTARTSYS)
2593                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2594                         return ret;
2595                 }
2596                 goto search_free;
2597         }
2598
2599 #if WATCH_BUF
2600         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2601                  obj->size, obj_priv->gtt_offset);
2602 #endif
2603         if (retry_alloc) {
2604                 i915_gem_object_set_page_gfp_mask (obj,
2605                                                    i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2606         }
2607         ret = i915_gem_object_get_pages(obj);
2608         if (retry_alloc) {
2609                 i915_gem_object_set_page_gfp_mask (obj,
2610                                                    i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2611         }
2612         if (ret) {
2613                 drm_mm_put_block(obj_priv->gtt_space);
2614                 obj_priv->gtt_space = NULL;
2615
2616                 if (ret == -ENOMEM) {
2617                         /* first try to clear up some space from the GTT */
2618                         ret = i915_gem_evict_something(dev, obj->size);
2619                         if (ret) {
2620                                 if (ret != -ERESTARTSYS)
2621                                         DRM_ERROR("Failed to allocate space for backing pages %d\n", ret);
2622
2623                                 /* now try to shrink everyone else */
2624                                 if (! retry_alloc) {
2625                                     retry_alloc = true;
2626                                     goto search_free;
2627                                 }
2628
2629                                 return ret;
2630                         }
2631
2632                         goto search_free;
2633                 }
2634
2635                 return ret;
2636         }
2637
2638         /* Create an AGP memory structure pointing at our pages, and bind it
2639          * into the GTT.
2640          */
2641         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2642                                                obj_priv->pages,
2643                                                obj->size >> PAGE_SHIFT,
2644                                                obj_priv->gtt_offset,
2645                                                obj_priv->agp_type);
2646         if (obj_priv->agp_mem == NULL) {
2647                 i915_gem_object_put_pages(obj);
2648                 drm_mm_put_block(obj_priv->gtt_space);
2649                 obj_priv->gtt_space = NULL;
2650
2651                 ret = i915_gem_evict_something(dev, obj->size);
2652                 if (ret) {
2653                         if (ret != -ERESTARTSYS)
2654                                 DRM_ERROR("Failed to allocate space to bind AGP: %d\n", ret);
2655                         return ret;
2656                 }
2657
2658                 goto search_free;
2659         }
2660         atomic_inc(&dev->gtt_count);
2661         atomic_add(obj->size, &dev->gtt_memory);
2662
2663         /* Assert that the object is not currently in any GPU domain. As it
2664          * wasn't in the GTT, there shouldn't be any way it could have been in
2665          * a GPU cache
2666          */
2667         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2668         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2669
2670         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2671
2672         return 0;
2673 }
2674
2675 void
2676 i915_gem_clflush_object(struct drm_gem_object *obj)
2677 {
2678         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2679
2680         /* If we don't have a page list set up, then we're not pinned
2681          * to GPU, and we can ignore the cache flush because it'll happen
2682          * again at bind time.
2683          */
2684         if (obj_priv->pages == NULL)
2685                 return;
2686
2687         trace_i915_gem_object_clflush(obj);
2688
2689         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2690 }
2691
2692 /** Flushes any GPU write domain for the object if it's dirty. */
2693 static void
2694 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2695 {
2696         struct drm_device *dev = obj->dev;
2697         uint32_t seqno;
2698         uint32_t old_write_domain;
2699
2700         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2701                 return;
2702
2703         /* Queue the GPU write cache flushing we need. */
2704         old_write_domain = obj->write_domain;
2705         i915_gem_flush(dev, 0, obj->write_domain);
2706         seqno = i915_add_request(dev, NULL, obj->write_domain);
2707         obj->write_domain = 0;
2708         i915_gem_object_move_to_active(obj, seqno);
2709
2710         trace_i915_gem_object_change_domain(obj,
2711                                             obj->read_domains,
2712                                             old_write_domain);
2713 }
2714
2715 /** Flushes the GTT write domain for the object if it's dirty. */
2716 static void
2717 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2718 {
2719         uint32_t old_write_domain;
2720
2721         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2722                 return;
2723
2724         /* No actual flushing is required for the GTT write domain.   Writes
2725          * to it immediately go to main memory as far as we know, so there's
2726          * no chipset flush.  It also doesn't land in render cache.
2727          */
2728         old_write_domain = obj->write_domain;
2729         obj->write_domain = 0;
2730
2731         trace_i915_gem_object_change_domain(obj,
2732                                             obj->read_domains,
2733                                             old_write_domain);
2734 }
2735
2736 /** Flushes the CPU write domain for the object if it's dirty. */
2737 static void
2738 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2739 {
2740         struct drm_device *dev = obj->dev;
2741         uint32_t old_write_domain;
2742
2743         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2744                 return;
2745
2746         i915_gem_clflush_object(obj);
2747         drm_agp_chipset_flush(dev);
2748         old_write_domain = obj->write_domain;
2749         obj->write_domain = 0;
2750
2751         trace_i915_gem_object_change_domain(obj,
2752                                             obj->read_domains,
2753                                             old_write_domain);
2754 }
2755
2756 /**
2757  * Moves a single object to the GTT read, and possibly write domain.
2758  *
2759  * This function returns when the move is complete, including waiting on
2760  * flushes to occur.
2761  */
2762 int
2763 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2764 {
2765         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2766         uint32_t old_write_domain, old_read_domains;
2767         int ret;
2768
2769         /* Not valid to be called on unbound objects. */
2770         if (obj_priv->gtt_space == NULL)
2771                 return -EINVAL;
2772
2773         i915_gem_object_flush_gpu_write_domain(obj);
2774         /* Wait on any GPU rendering and flushing to occur. */
2775         ret = i915_gem_object_wait_rendering(obj);
2776         if (ret != 0)
2777                 return ret;
2778
2779         old_write_domain = obj->write_domain;
2780         old_read_domains = obj->read_domains;
2781
2782         /* If we're writing through the GTT domain, then CPU and GPU caches
2783          * will need to be invalidated at next use.
2784          */
2785         if (write)
2786                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2787
2788         i915_gem_object_flush_cpu_write_domain(obj);
2789
2790         /* It should now be out of any other write domains, and we can update
2791          * the domain values for our changes.
2792          */
2793         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2794         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2795         if (write) {
2796                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2797                 obj_priv->dirty = 1;
2798         }
2799
2800         trace_i915_gem_object_change_domain(obj,
2801                                             old_read_domains,
2802                                             old_write_domain);
2803
2804         return 0;
2805 }
2806
2807 /**
2808  * Moves a single object to the CPU read, and possibly write domain.
2809  *
2810  * This function returns when the move is complete, including waiting on
2811  * flushes to occur.
2812  */
2813 static int
2814 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2815 {
2816         uint32_t old_write_domain, old_read_domains;
2817         int ret;
2818
2819         i915_gem_object_flush_gpu_write_domain(obj);
2820         /* Wait on any GPU rendering and flushing to occur. */
2821         ret = i915_gem_object_wait_rendering(obj);
2822         if (ret != 0)
2823                 return ret;
2824
2825         i915_gem_object_flush_gtt_write_domain(obj);
2826
2827         /* If we have a partially-valid cache of the object in the CPU,
2828          * finish invalidating it and free the per-page flags.
2829          */
2830         i915_gem_object_set_to_full_cpu_read_domain(obj);
2831
2832         old_write_domain = obj->write_domain;
2833         old_read_domains = obj->read_domains;
2834
2835         /* Flush the CPU cache if it's still invalid. */
2836         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2837                 i915_gem_clflush_object(obj);
2838
2839                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2840         }
2841
2842         /* It should now be out of any other write domains, and we can update
2843          * the domain values for our changes.
2844          */
2845         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2846
2847         /* If we're writing through the CPU, then the GPU read domains will
2848          * need to be invalidated at next use.
2849          */
2850         if (write) {
2851                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2852                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2853         }
2854
2855         trace_i915_gem_object_change_domain(obj,
2856                                             old_read_domains,
2857                                             old_write_domain);
2858
2859         return 0;
2860 }
2861
2862 /*
2863  * Set the next domain for the specified object. This
2864  * may not actually perform the necessary flushing/invaliding though,
2865  * as that may want to be batched with other set_domain operations
2866  *
2867  * This is (we hope) the only really tricky part of gem. The goal
2868  * is fairly simple -- track which caches hold bits of the object
2869  * and make sure they remain coherent. A few concrete examples may
2870  * help to explain how it works. For shorthand, we use the notation
2871  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2872  * a pair of read and write domain masks.
2873  *
2874  * Case 1: the batch buffer
2875  *
2876  *      1. Allocated
2877  *      2. Written by CPU
2878  *      3. Mapped to GTT
2879  *      4. Read by GPU
2880  *      5. Unmapped from GTT
2881  *      6. Freed
2882  *
2883  *      Let's take these a step at a time
2884  *
2885  *      1. Allocated
2886  *              Pages allocated from the kernel may still have
2887  *              cache contents, so we set them to (CPU, CPU) always.
2888  *      2. Written by CPU (using pwrite)
2889  *              The pwrite function calls set_domain (CPU, CPU) and
2890  *              this function does nothing (as nothing changes)
2891  *      3. Mapped by GTT
2892  *              This function asserts that the object is not
2893  *              currently in any GPU-based read or write domains
2894  *      4. Read by GPU
2895  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2896  *              As write_domain is zero, this function adds in the
2897  *              current read domains (CPU+COMMAND, 0).
2898  *              flush_domains is set to CPU.
2899  *              invalidate_domains is set to COMMAND
2900  *              clflush is run to get data out of the CPU caches
2901  *              then i915_dev_set_domain calls i915_gem_flush to
2902  *              emit an MI_FLUSH and drm_agp_chipset_flush
2903  *      5. Unmapped from GTT
2904  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2905  *              flush_domains and invalidate_domains end up both zero
2906  *              so no flushing/invalidating happens
2907  *      6. Freed
2908  *              yay, done
2909  *
2910  * Case 2: The shared render buffer
2911  *
2912  *      1. Allocated
2913  *      2. Mapped to GTT
2914  *      3. Read/written by GPU
2915  *      4. set_domain to (CPU,CPU)
2916  *      5. Read/written by CPU
2917  *      6. Read/written by GPU
2918  *
2919  *      1. Allocated
2920  *              Same as last example, (CPU, CPU)
2921  *      2. Mapped to GTT
2922  *              Nothing changes (assertions find that it is not in the GPU)
2923  *      3. Read/written by GPU
2924  *              execbuffer calls set_domain (RENDER, RENDER)
2925  *              flush_domains gets CPU
2926  *              invalidate_domains gets GPU
2927  *              clflush (obj)
2928  *              MI_FLUSH and drm_agp_chipset_flush
2929  *      4. set_domain (CPU, CPU)
2930  *              flush_domains gets GPU
2931  *              invalidate_domains gets CPU
2932  *              wait_rendering (obj) to make sure all drawing is complete.
2933  *              This will include an MI_FLUSH to get the data from GPU
2934  *              to memory
2935  *              clflush (obj) to invalidate the CPU cache
2936  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2937  *      5. Read/written by CPU
2938  *              cache lines are loaded and dirtied
2939  *      6. Read written by GPU
2940  *              Same as last GPU access
2941  *
2942  * Case 3: The constant buffer
2943  *
2944  *      1. Allocated
2945  *      2. Written by CPU
2946  *      3. Read by GPU
2947  *      4. Updated (written) by CPU again
2948  *      5. Read by GPU
2949  *
2950  *      1. Allocated
2951  *              (CPU, CPU)
2952  *      2. Written by CPU
2953  *              (CPU, CPU)
2954  *      3. Read by GPU
2955  *              (CPU+RENDER, 0)
2956  *              flush_domains = CPU
2957  *              invalidate_domains = RENDER
2958  *              clflush (obj)
2959  *              MI_FLUSH
2960  *              drm_agp_chipset_flush
2961  *      4. Updated (written) by CPU again
2962  *              (CPU, CPU)
2963  *              flush_domains = 0 (no previous write domain)
2964  *              invalidate_domains = 0 (no new read domains)
2965  *      5. Read by GPU
2966  *              (CPU+RENDER, 0)
2967  *              flush_domains = CPU
2968  *              invalidate_domains = RENDER
2969  *              clflush (obj)
2970  *              MI_FLUSH
2971  *              drm_agp_chipset_flush
2972  */
2973 static void
2974 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2975 {
2976         struct drm_device               *dev = obj->dev;
2977         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2978         uint32_t                        invalidate_domains = 0;
2979         uint32_t                        flush_domains = 0;
2980         uint32_t                        old_read_domains;
2981
2982         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2983         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2984
2985         intel_mark_busy(dev, obj);
2986
2987 #if WATCH_BUF
2988         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2989                  __func__, obj,
2990                  obj->read_domains, obj->pending_read_domains,
2991                  obj->write_domain, obj->pending_write_domain);
2992 #endif
2993         /*
2994          * If the object isn't moving to a new write domain,
2995          * let the object stay in multiple read domains
2996          */
2997         if (obj->pending_write_domain == 0)
2998                 obj->pending_read_domains |= obj->read_domains;
2999         else
3000                 obj_priv->dirty = 1;
3001
3002         /*
3003          * Flush the current write domain if
3004          * the new read domains don't match. Invalidate
3005          * any read domains which differ from the old
3006          * write domain
3007          */
3008         if (obj->write_domain &&
3009             obj->write_domain != obj->pending_read_domains) {
3010                 flush_domains |= obj->write_domain;
3011                 invalidate_domains |=
3012                         obj->pending_read_domains & ~obj->write_domain;
3013         }
3014         /*
3015          * Invalidate any read caches which may have
3016          * stale data. That is, any new read domains.
3017          */
3018         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3019         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3020 #if WATCH_BUF
3021                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3022                          __func__, flush_domains, invalidate_domains);
3023 #endif
3024                 i915_gem_clflush_object(obj);
3025         }
3026
3027         old_read_domains = obj->read_domains;
3028
3029         /* The actual obj->write_domain will be updated with
3030          * pending_write_domain after we emit the accumulated flush for all
3031          * of our domain changes in execbuffers (which clears objects'
3032          * write_domains).  So if we have a current write domain that we
3033          * aren't changing, set pending_write_domain to that.
3034          */
3035         if (flush_domains == 0 && obj->pending_write_domain == 0)
3036                 obj->pending_write_domain = obj->write_domain;
3037         obj->read_domains = obj->pending_read_domains;
3038
3039         dev->invalidate_domains |= invalidate_domains;
3040         dev->flush_domains |= flush_domains;
3041 #if WATCH_BUF
3042         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3043                  __func__,
3044                  obj->read_domains, obj->write_domain,
3045                  dev->invalidate_domains, dev->flush_domains);
3046 #endif
3047
3048         trace_i915_gem_object_change_domain(obj,
3049                                             old_read_domains,
3050                                             obj->write_domain);
3051 }
3052
3053 /**
3054  * Moves the object from a partially CPU read to a full one.
3055  *
3056  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3057  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3058  */
3059 static void
3060 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3061 {
3062         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3063
3064         if (!obj_priv->page_cpu_valid)
3065                 return;
3066
3067         /* If we're partially in the CPU read domain, finish moving it in.
3068          */
3069         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3070                 int i;
3071
3072                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3073                         if (obj_priv->page_cpu_valid[i])
3074                                 continue;
3075                         drm_clflush_pages(obj_priv->pages + i, 1);
3076                 }
3077         }
3078
3079         /* Free the page_cpu_valid mappings which are now stale, whether
3080          * or not we've got I915_GEM_DOMAIN_CPU.
3081          */
3082         kfree(obj_priv->page_cpu_valid);
3083         obj_priv->page_cpu_valid = NULL;
3084 }
3085
3086 /**
3087  * Set the CPU read domain on a range of the object.
3088  *
3089  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3090  * not entirely valid.  The page_cpu_valid member of the object flags which
3091  * pages have been flushed, and will be respected by
3092  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3093  * of the whole object.
3094  *
3095  * This function returns when the move is complete, including waiting on
3096  * flushes to occur.
3097  */
3098 static int
3099 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3100                                           uint64_t offset, uint64_t size)
3101 {
3102         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3103         uint32_t old_read_domains;
3104         int i, ret;
3105
3106         if (offset == 0 && size == obj->size)
3107                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3108
3109         i915_gem_object_flush_gpu_write_domain(obj);
3110         /* Wait on any GPU rendering and flushing to occur. */
3111         ret = i915_gem_object_wait_rendering(obj);
3112         if (ret != 0)
3113                 return ret;
3114         i915_gem_object_flush_gtt_write_domain(obj);
3115
3116         /* If we're already fully in the CPU read domain, we're done. */
3117         if (obj_priv->page_cpu_valid == NULL &&
3118             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3119                 return 0;
3120
3121         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3122          * newly adding I915_GEM_DOMAIN_CPU
3123          */
3124         if (obj_priv->page_cpu_valid == NULL) {
3125                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3126                                                    GFP_KERNEL);
3127                 if (obj_priv->page_cpu_valid == NULL)
3128                         return -ENOMEM;
3129         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3130                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3131
3132         /* Flush the cache on any pages that are still invalid from the CPU's
3133          * perspective.
3134          */
3135         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3136              i++) {
3137                 if (obj_priv->page_cpu_valid[i])
3138                         continue;
3139
3140                 drm_clflush_pages(obj_priv->pages + i, 1);
3141
3142                 obj_priv->page_cpu_valid[i] = 1;
3143         }
3144
3145         /* It should now be out of any other write domains, and we can update
3146          * the domain values for our changes.
3147          */
3148         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3149
3150         old_read_domains = obj->read_domains;
3151         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3152
3153         trace_i915_gem_object_change_domain(obj,
3154                                             old_read_domains,
3155                                             obj->write_domain);
3156
3157         return 0;
3158 }
3159
3160 /**
3161  * Pin an object to the GTT and evaluate the relocations landing in it.
3162  */
3163 static int
3164 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3165                                  struct drm_file *file_priv,
3166                                  struct drm_i915_gem_exec_object *entry,
3167                                  struct drm_i915_gem_relocation_entry *relocs)
3168 {
3169         struct drm_device *dev = obj->dev;
3170         drm_i915_private_t *dev_priv = dev->dev_private;
3171         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3172         int i, ret;
3173         void __iomem *reloc_page;
3174
3175         /* Choose the GTT offset for our buffer and put it there. */
3176         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3177         if (ret)
3178                 return ret;
3179
3180         entry->offset = obj_priv->gtt_offset;
3181
3182         /* Apply the relocations, using the GTT aperture to avoid cache
3183          * flushing requirements.
3184          */
3185         for (i = 0; i < entry->relocation_count; i++) {
3186                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3187                 struct drm_gem_object *target_obj;
3188                 struct drm_i915_gem_object *target_obj_priv;
3189                 uint32_t reloc_val, reloc_offset;
3190                 uint32_t __iomem *reloc_entry;
3191
3192                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3193                                                    reloc->target_handle);
3194                 if (target_obj == NULL) {
3195                         i915_gem_object_unpin(obj);
3196                         return -EBADF;
3197                 }
3198                 target_obj_priv = target_obj->driver_private;
3199
3200 #if WATCH_RELOC
3201                 DRM_INFO("%s: obj %p offset %08x target %d "
3202                          "read %08x write %08x gtt %08x "
3203                          "presumed %08x delta %08x\n",
3204                          __func__,
3205                          obj,
3206                          (int) reloc->offset,
3207                          (int) reloc->target_handle,
3208                          (int) reloc->read_domains,
3209                          (int) reloc->write_domain,
3210                          (int) target_obj_priv->gtt_offset,
3211                          (int) reloc->presumed_offset,
3212                          reloc->delta);
3213 #endif
3214
3215                 /* The target buffer should have appeared before us in the
3216                  * exec_object list, so it should have a GTT space bound by now.
3217                  */
3218                 if (target_obj_priv->gtt_space == NULL) {
3219                         DRM_ERROR("No GTT space found for object %d\n",
3220                                   reloc->target_handle);
3221                         drm_gem_object_unreference(target_obj);
3222                         i915_gem_object_unpin(obj);
3223                         return -EINVAL;
3224                 }
3225
3226                 /* Validate that the target is in a valid r/w GPU domain */
3227                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3228                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3229                         DRM_ERROR("reloc with read/write CPU domains: "
3230                                   "obj %p target %d offset %d "
3231                                   "read %08x write %08x",
3232                                   obj, reloc->target_handle,
3233                                   (int) reloc->offset,
3234                                   reloc->read_domains,
3235                                   reloc->write_domain);
3236                         drm_gem_object_unreference(target_obj);
3237                         i915_gem_object_unpin(obj);
3238                         return -EINVAL;
3239                 }
3240                 if (reloc->write_domain && target_obj->pending_write_domain &&
3241                     reloc->write_domain != target_obj->pending_write_domain) {
3242                         DRM_ERROR("Write domain conflict: "
3243                                   "obj %p target %d offset %d "
3244                                   "new %08x old %08x\n",
3245                                   obj, reloc->target_handle,
3246                                   (int) reloc->offset,
3247                                   reloc->write_domain,
3248                                   target_obj->pending_write_domain);
3249                         drm_gem_object_unreference(target_obj);
3250                         i915_gem_object_unpin(obj);
3251                         return -EINVAL;
3252                 }
3253
3254                 target_obj->pending_read_domains |= reloc->read_domains;
3255                 target_obj->pending_write_domain |= reloc->write_domain;
3256
3257                 /* If the relocation already has the right value in it, no
3258                  * more work needs to be done.
3259                  */
3260                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3261                         drm_gem_object_unreference(target_obj);
3262                         continue;
3263                 }
3264
3265                 /* Check that the relocation address is valid... */
3266                 if (reloc->offset > obj->size - 4) {
3267                         DRM_ERROR("Relocation beyond object bounds: "
3268                                   "obj %p target %d offset %d size %d.\n",
3269                                   obj, reloc->target_handle,
3270                                   (int) reloc->offset, (int) obj->size);
3271                         drm_gem_object_unreference(target_obj);
3272                         i915_gem_object_unpin(obj);
3273                         return -EINVAL;
3274                 }
3275                 if (reloc->offset & 3) {
3276                         DRM_ERROR("Relocation not 4-byte aligned: "
3277                                   "obj %p target %d offset %d.\n",
3278                                   obj, reloc->target_handle,
3279                                   (int) reloc->offset);
3280                         drm_gem_object_unreference(target_obj);
3281                         i915_gem_object_unpin(obj);
3282                         return -EINVAL;
3283                 }
3284
3285                 /* and points to somewhere within the target object. */
3286                 if (reloc->delta >= target_obj->size) {
3287                         DRM_ERROR("Relocation beyond target object bounds: "
3288                                   "obj %p target %d delta %d size %d.\n",
3289                                   obj, reloc->target_handle,
3290                                   (int) reloc->delta, (int) target_obj->size);
3291                         drm_gem_object_unreference(target_obj);
3292                         i915_gem_object_unpin(obj);
3293                         return -EINVAL;
3294                 }
3295
3296                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3297                 if (ret != 0) {
3298                         drm_gem_object_unreference(target_obj);
3299                         i915_gem_object_unpin(obj);
3300                         return -EINVAL;
3301                 }
3302
3303                 /* Map the page containing the relocation we're going to
3304                  * perform.
3305                  */
3306                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3307                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3308                                                       (reloc_offset &
3309                                                        ~(PAGE_SIZE - 1)));
3310                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3311                                                    (reloc_offset & (PAGE_SIZE - 1)));
3312                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3313
3314 #if WATCH_BUF
3315                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3316                           obj, (unsigned int) reloc->offset,
3317                           readl(reloc_entry), reloc_val);
3318 #endif
3319                 writel(reloc_val, reloc_entry);
3320                 io_mapping_unmap_atomic(reloc_page);
3321
3322                 /* The updated presumed offset for this entry will be
3323                  * copied back out to the user.
3324                  */
3325                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3326
3327                 drm_gem_object_unreference(target_obj);
3328         }
3329
3330 #if WATCH_BUF
3331         if (0)
3332                 i915_gem_dump_object(obj, 128, __func__, ~0);
3333 #endif
3334         return 0;
3335 }
3336
3337 /** Dispatch a batchbuffer to the ring
3338  */
3339 static int
3340 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3341                               struct drm_i915_gem_execbuffer *exec,
3342                               struct drm_clip_rect *cliprects,
3343                               uint64_t exec_offset)
3344 {
3345         drm_i915_private_t *dev_priv = dev->dev_private;
3346         int nbox = exec->num_cliprects;
3347         int i = 0, count;
3348         uint32_t exec_start, exec_len;
3349         RING_LOCALS;
3350
3351         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3352         exec_len = (uint32_t) exec->batch_len;
3353
3354         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno);
3355
3356         count = nbox ? nbox : 1;
3357
3358         for (i = 0; i < count; i++) {
3359                 if (i < nbox) {
3360                         int ret = i915_emit_box(dev, cliprects, i,
3361                                                 exec->DR1, exec->DR4);
3362                         if (ret)
3363                                 return ret;
3364                 }
3365
3366                 if (IS_I830(dev) || IS_845G(dev)) {
3367                         BEGIN_LP_RING(4);
3368                         OUT_RING(MI_BATCH_BUFFER);
3369                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3370                         OUT_RING(exec_start + exec_len - 4);
3371                         OUT_RING(0);
3372                         ADVANCE_LP_RING();
3373                 } else {
3374                         BEGIN_LP_RING(2);
3375                         if (IS_I965G(dev)) {
3376                                 OUT_RING(MI_BATCH_BUFFER_START |
3377                                          (2 << 6) |
3378                                          MI_BATCH_NON_SECURE_I965);
3379                                 OUT_RING(exec_start);
3380                         } else {
3381                                 OUT_RING(MI_BATCH_BUFFER_START |
3382                                          (2 << 6));
3383                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3384                         }
3385                         ADVANCE_LP_RING();
3386                 }
3387         }
3388
3389         /* XXX breadcrumb */
3390         return 0;
3391 }
3392
3393 /* Throttle our rendering by waiting until the ring has completed our requests
3394  * emitted over 20 msec ago.
3395  *
3396  * Note that if we were to use the current jiffies each time around the loop,
3397  * we wouldn't escape the function with any frames outstanding if the time to
3398  * render a frame was over 20ms.
3399  *
3400  * This should get us reasonable parallelism between CPU and GPU but also
3401  * relatively low latency when blocking on a particular request to finish.
3402  */
3403 static int
3404 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3405 {
3406         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3407         int ret = 0;
3408         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3409
3410         mutex_lock(&dev->struct_mutex);
3411         while (!list_empty(&i915_file_priv->mm.request_list)) {
3412                 struct drm_i915_gem_request *request;
3413
3414                 request = list_first_entry(&i915_file_priv->mm.request_list,
3415                                            struct drm_i915_gem_request,
3416                                            client_list);
3417
3418                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3419                         break;
3420
3421                 ret = i915_wait_request(dev, request->seqno);
3422                 if (ret != 0)
3423                         break;
3424         }
3425         mutex_unlock(&dev->struct_mutex);
3426
3427         return ret;
3428 }
3429
3430 static int
3431 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3432                               uint32_t buffer_count,
3433                               struct drm_i915_gem_relocation_entry **relocs)
3434 {
3435         uint32_t reloc_count = 0, reloc_index = 0, i;
3436         int ret;
3437
3438         *relocs = NULL;
3439         for (i = 0; i < buffer_count; i++) {
3440                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3441                         return -EINVAL;
3442                 reloc_count += exec_list[i].relocation_count;
3443         }
3444
3445         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3446         if (*relocs == NULL)
3447                 return -ENOMEM;
3448
3449         for (i = 0; i < buffer_count; i++) {
3450                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3451
3452                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3453
3454                 ret = copy_from_user(&(*relocs)[reloc_index],
3455                                      user_relocs,
3456                                      exec_list[i].relocation_count *
3457                                      sizeof(**relocs));
3458                 if (ret != 0) {
3459                         drm_free_large(*relocs);
3460                         *relocs = NULL;
3461                         return -EFAULT;
3462                 }
3463
3464                 reloc_index += exec_list[i].relocation_count;
3465         }
3466
3467         return 0;
3468 }
3469
3470 static int
3471 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3472                             uint32_t buffer_count,
3473                             struct drm_i915_gem_relocation_entry *relocs)
3474 {
3475         uint32_t reloc_count = 0, i;
3476         int ret = 0;
3477
3478         for (i = 0; i < buffer_count; i++) {
3479                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3480                 int unwritten;
3481
3482                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3483
3484                 unwritten = copy_to_user(user_relocs,
3485                                          &relocs[reloc_count],
3486                                          exec_list[i].relocation_count *
3487                                          sizeof(*relocs));
3488
3489                 if (unwritten) {
3490                         ret = -EFAULT;
3491                         goto err;
3492                 }
3493
3494                 reloc_count += exec_list[i].relocation_count;
3495         }
3496
3497 err:
3498         drm_free_large(relocs);
3499
3500         return ret;
3501 }
3502
3503 static int
3504 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3505                            uint64_t exec_offset)
3506 {
3507         uint32_t exec_start, exec_len;
3508
3509         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3510         exec_len = (uint32_t) exec->batch_len;
3511
3512         if ((exec_start | exec_len) & 0x7)
3513                 return -EINVAL;
3514
3515         if (!exec_start)
3516                 return -EINVAL;
3517
3518         return 0;
3519 }
3520
3521 int
3522 i915_gem_execbuffer(struct drm_device *dev, void *data,
3523                     struct drm_file *file_priv)
3524 {
3525         drm_i915_private_t *dev_priv = dev->dev_private;
3526         struct drm_i915_gem_execbuffer *args = data;
3527         struct drm_i915_gem_exec_object *exec_list = NULL;
3528         struct drm_gem_object **object_list = NULL;
3529         struct drm_gem_object *batch_obj;
3530         struct drm_i915_gem_object *obj_priv;
3531         struct drm_clip_rect *cliprects = NULL;
3532         struct drm_i915_gem_relocation_entry *relocs;
3533         int ret, ret2, i, pinned = 0;
3534         uint64_t exec_offset;
3535         uint32_t seqno, flush_domains, reloc_index;
3536         int pin_tries;
3537
3538 #if WATCH_EXEC
3539         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3540                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3541 #endif
3542
3543         if (args->buffer_count < 1) {
3544                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3545                 return -EINVAL;
3546         }
3547         /* Copy in the exec list from userland */
3548         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3549         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3550         if (exec_list == NULL || object_list == NULL) {
3551                 DRM_ERROR("Failed to allocate exec or object list "
3552                           "for %d buffers\n",
3553                           args->buffer_count);
3554                 ret = -ENOMEM;
3555                 goto pre_mutex_err;
3556         }
3557         ret = copy_from_user(exec_list,
3558                              (struct drm_i915_relocation_entry __user *)
3559                              (uintptr_t) args->buffers_ptr,
3560                              sizeof(*exec_list) * args->buffer_count);
3561         if (ret != 0) {
3562                 DRM_ERROR("copy %d exec entries failed %d\n",
3563                           args->buffer_count, ret);
3564                 goto pre_mutex_err;
3565         }
3566
3567         if (args->num_cliprects != 0) {
3568                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3569                                     GFP_KERNEL);
3570                 if (cliprects == NULL)
3571                         goto pre_mutex_err;
3572
3573                 ret = copy_from_user(cliprects,
3574                                      (struct drm_clip_rect __user *)
3575                                      (uintptr_t) args->cliprects_ptr,
3576                                      sizeof(*cliprects) * args->num_cliprects);
3577                 if (ret != 0) {
3578                         DRM_ERROR("copy %d cliprects failed: %d\n",
3579                                   args->num_cliprects, ret);
3580                         goto pre_mutex_err;
3581                 }
3582         }
3583
3584         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3585                                             &relocs);
3586         if (ret != 0)
3587                 goto pre_mutex_err;
3588
3589         mutex_lock(&dev->struct_mutex);
3590
3591         i915_verify_inactive(dev, __FILE__, __LINE__);
3592
3593         if (atomic_read(&dev_priv->mm.wedged)) {
3594                 DRM_ERROR("Execbuf while wedged\n");
3595                 mutex_unlock(&dev->struct_mutex);
3596                 ret = -EIO;
3597                 goto pre_mutex_err;
3598         }
3599
3600         if (dev_priv->mm.suspended) {
3601                 DRM_ERROR("Execbuf while VT-switched.\n");
3602                 mutex_unlock(&dev->struct_mutex);
3603                 ret = -EBUSY;
3604                 goto pre_mutex_err;
3605         }
3606
3607         /* Look up object handles */
3608         for (i = 0; i < args->buffer_count; i++) {
3609                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3610                                                        exec_list[i].handle);
3611                 if (object_list[i] == NULL) {
3612                         DRM_ERROR("Invalid object handle %d at index %d\n",
3613                                    exec_list[i].handle, i);
3614                         ret = -EBADF;
3615                         goto err;
3616                 }
3617
3618                 obj_priv = object_list[i]->driver_private;
3619                 if (obj_priv->in_execbuffer) {
3620                         DRM_ERROR("Object %p appears more than once in object list\n",
3621                                    object_list[i]);
3622                         ret = -EBADF;
3623                         goto err;
3624                 }
3625                 obj_priv->in_execbuffer = true;
3626         }
3627
3628         /* Pin and relocate */
3629         for (pin_tries = 0; ; pin_tries++) {
3630                 ret = 0;
3631                 reloc_index = 0;
3632
3633                 for (i = 0; i < args->buffer_count; i++) {
3634                         object_list[i]->pending_read_domains = 0;
3635                         object_list[i]->pending_write_domain = 0;
3636                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3637                                                                file_priv,
3638                                                                &exec_list[i],
3639                                                                &relocs[reloc_index]);
3640                         if (ret)
3641                                 break;
3642                         pinned = i + 1;
3643                         reloc_index += exec_list[i].relocation_count;
3644                 }
3645                 /* success */
3646                 if (ret == 0)
3647                         break;
3648
3649                 /* error other than GTT full, or we've already tried again */
3650                 if (ret != -ENOSPC || pin_tries >= 1) {
3651                         if (ret != -ERESTARTSYS) {
3652                                 unsigned long long total_size = 0;
3653                                 for (i = 0; i < args->buffer_count; i++)
3654                                         total_size += object_list[i]->size;
3655                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3656                                           pinned+1, args->buffer_count,
3657                                           total_size, ret);
3658                                 DRM_ERROR("%d objects [%d pinned], "
3659                                           "%d object bytes [%d pinned], "
3660                                           "%d/%d gtt bytes\n",
3661                                           atomic_read(&dev->object_count),
3662                                           atomic_read(&dev->pin_count),
3663                                           atomic_read(&dev->object_memory),
3664                                           atomic_read(&dev->pin_memory),
3665                                           atomic_read(&dev->gtt_memory),
3666                                           dev->gtt_total);
3667                         }
3668                         goto err;
3669                 }
3670
3671                 /* unpin all of our buffers */
3672                 for (i = 0; i < pinned; i++)
3673                         i915_gem_object_unpin(object_list[i]);
3674                 pinned = 0;
3675
3676                 /* evict everyone we can from the aperture */
3677                 ret = i915_gem_evict_everything(dev);
3678                 if (ret && ret != -ENOSPC)
3679                         goto err;
3680         }
3681
3682         /* Set the pending read domains for the batch buffer to COMMAND */
3683         batch_obj = object_list[args->buffer_count-1];
3684         if (batch_obj->pending_write_domain) {
3685                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3686                 ret = -EINVAL;
3687                 goto err;
3688         }
3689         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3690
3691         /* Sanity check the batch buffer, prior to moving objects */
3692         exec_offset = exec_list[args->buffer_count - 1].offset;
3693         ret = i915_gem_check_execbuffer (args, exec_offset);
3694         if (ret != 0) {
3695                 DRM_ERROR("execbuf with invalid offset/length\n");
3696                 goto err;
3697         }
3698
3699         i915_verify_inactive(dev, __FILE__, __LINE__);
3700
3701         /* Zero the global flush/invalidate flags. These
3702          * will be modified as new domains are computed
3703          * for each object
3704          */
3705         dev->invalidate_domains = 0;
3706         dev->flush_domains = 0;
3707
3708         for (i = 0; i < args->buffer_count; i++) {
3709                 struct drm_gem_object *obj = object_list[i];
3710
3711                 /* Compute new gpu domains and update invalidate/flush */
3712                 i915_gem_object_set_to_gpu_domain(obj);
3713         }
3714
3715         i915_verify_inactive(dev, __FILE__, __LINE__);
3716
3717         if (dev->invalidate_domains | dev->flush_domains) {
3718 #if WATCH_EXEC
3719                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3720                           __func__,
3721                          dev->invalidate_domains,
3722                          dev->flush_domains);
3723 #endif
3724                 i915_gem_flush(dev,
3725                                dev->invalidate_domains,
3726                                dev->flush_domains);
3727                 if (dev->flush_domains)
3728                         (void)i915_add_request(dev, file_priv,
3729                                                dev->flush_domains);
3730         }
3731
3732         for (i = 0; i < args->buffer_count; i++) {
3733                 struct drm_gem_object *obj = object_list[i];
3734                 uint32_t old_write_domain = obj->write_domain;
3735
3736                 obj->write_domain = obj->pending_write_domain;
3737                 trace_i915_gem_object_change_domain(obj,
3738                                                     obj->read_domains,
3739                                                     old_write_domain);
3740         }
3741
3742         i915_verify_inactive(dev, __FILE__, __LINE__);
3743
3744 #if WATCH_COHERENCY
3745         for (i = 0; i < args->buffer_count; i++) {
3746                 i915_gem_object_check_coherency(object_list[i],
3747                                                 exec_list[i].handle);
3748         }
3749 #endif
3750
3751 #if WATCH_EXEC
3752         i915_gem_dump_object(batch_obj,
3753                               args->batch_len,
3754                               __func__,
3755                               ~0);
3756 #endif
3757
3758         /* Exec the batchbuffer */
3759         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3760         if (ret) {
3761                 DRM_ERROR("dispatch failed %d\n", ret);
3762                 goto err;
3763         }
3764
3765         /*
3766          * Ensure that the commands in the batch buffer are
3767          * finished before the interrupt fires
3768          */
3769         flush_domains = i915_retire_commands(dev);
3770
3771         i915_verify_inactive(dev, __FILE__, __LINE__);
3772
3773         /*
3774          * Get a seqno representing the execution of the current buffer,
3775          * which we can wait on.  We would like to mitigate these interrupts,
3776          * likely by only creating seqnos occasionally (so that we have
3777          * *some* interrupts representing completion of buffers that we can
3778          * wait on when trying to clear up gtt space).
3779          */
3780         seqno = i915_add_request(dev, file_priv, flush_domains);
3781         BUG_ON(seqno == 0);
3782         for (i = 0; i < args->buffer_count; i++) {
3783                 struct drm_gem_object *obj = object_list[i];
3784
3785                 i915_gem_object_move_to_active(obj, seqno);
3786 #if WATCH_LRU
3787                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3788 #endif
3789         }
3790 #if WATCH_LRU
3791         i915_dump_lru(dev, __func__);
3792 #endif
3793
3794         i915_verify_inactive(dev, __FILE__, __LINE__);
3795
3796 err:
3797         for (i = 0; i < pinned; i++)
3798                 i915_gem_object_unpin(object_list[i]);
3799
3800         for (i = 0; i < args->buffer_count; i++) {
3801                 if (object_list[i]) {
3802                         obj_priv = object_list[i]->driver_private;
3803                         obj_priv->in_execbuffer = false;
3804                 }
3805                 drm_gem_object_unreference(object_list[i]);
3806         }
3807
3808         mutex_unlock(&dev->struct_mutex);
3809
3810         if (!ret) {
3811                 /* Copy the new buffer offsets back to the user's exec list. */
3812                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3813                                    (uintptr_t) args->buffers_ptr,
3814                                    exec_list,
3815                                    sizeof(*exec_list) * args->buffer_count);
3816                 if (ret) {
3817                         ret = -EFAULT;
3818                         DRM_ERROR("failed to copy %d exec entries "
3819                                   "back to user (%d)\n",
3820                                   args->buffer_count, ret);
3821                 }
3822         }
3823
3824         /* Copy the updated relocations out regardless of current error
3825          * state.  Failure to update the relocs would mean that the next
3826          * time userland calls execbuf, it would do so with presumed offset
3827          * state that didn't match the actual object state.
3828          */
3829         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3830                                            relocs);
3831         if (ret2 != 0) {
3832                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3833
3834                 if (ret == 0)
3835                         ret = ret2;
3836         }
3837
3838 pre_mutex_err:
3839         drm_free_large(object_list);
3840         drm_free_large(exec_list);
3841         kfree(cliprects);
3842
3843         return ret;
3844 }
3845
3846 int
3847 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3848 {
3849         struct drm_device *dev = obj->dev;
3850         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3851         int ret;
3852
3853         i915_verify_inactive(dev, __FILE__, __LINE__);
3854         if (obj_priv->gtt_space == NULL) {
3855                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3856                 if (ret != 0) {
3857                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3858                                 DRM_ERROR("Failure to bind: %d\n", ret);
3859                         return ret;
3860                 }
3861         }
3862         /*
3863          * Pre-965 chips need a fence register set up in order to
3864          * properly handle tiled surfaces.
3865          */
3866         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3867                 ret = i915_gem_object_get_fence_reg(obj);
3868                 if (ret != 0) {
3869                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3870                                 DRM_ERROR("Failure to install fence: %d\n",
3871                                           ret);
3872                         return ret;
3873                 }
3874         }
3875         obj_priv->pin_count++;
3876
3877         /* If the object is not active and not pending a flush,
3878          * remove it from the inactive list
3879          */
3880         if (obj_priv->pin_count == 1) {
3881                 atomic_inc(&dev->pin_count);
3882                 atomic_add(obj->size, &dev->pin_memory);
3883                 if (!obj_priv->active &&
3884                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3885                     !list_empty(&obj_priv->list))
3886                         list_del_init(&obj_priv->list);
3887         }
3888         i915_verify_inactive(dev, __FILE__, __LINE__);
3889
3890         return 0;
3891 }
3892
3893 void
3894 i915_gem_object_unpin(struct drm_gem_object *obj)
3895 {
3896         struct drm_device *dev = obj->dev;
3897         drm_i915_private_t *dev_priv = dev->dev_private;
3898         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3899
3900         i915_verify_inactive(dev, __FILE__, __LINE__);
3901         obj_priv->pin_count--;
3902         BUG_ON(obj_priv->pin_count < 0);
3903         BUG_ON(obj_priv->gtt_space == NULL);
3904
3905         /* If the object is no longer pinned, and is
3906          * neither active nor being flushed, then stick it on
3907          * the inactive list
3908          */
3909         if (obj_priv->pin_count == 0) {
3910                 if (!obj_priv->active &&
3911                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3912                         list_move_tail(&obj_priv->list,
3913                                        &dev_priv->mm.inactive_list);
3914                 atomic_dec(&dev->pin_count);
3915                 atomic_sub(obj->size, &dev->pin_memory);
3916         }
3917         i915_verify_inactive(dev, __FILE__, __LINE__);
3918 }
3919
3920 int
3921 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3922                    struct drm_file *file_priv)
3923 {
3924         struct drm_i915_gem_pin *args = data;
3925         struct drm_gem_object *obj;
3926         struct drm_i915_gem_object *obj_priv;
3927         int ret;
3928
3929         mutex_lock(&dev->struct_mutex);
3930
3931         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3932         if (obj == NULL) {
3933                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3934                           args->handle);
3935                 mutex_unlock(&dev->struct_mutex);
3936                 return -EBADF;
3937         }
3938         obj_priv = obj->driver_private;
3939
3940         if (obj_priv->madv == I915_MADV_DONTNEED) {
3941                 DRM_ERROR("Attempting to pin a I915_MADV_DONTNEED buffer\n");
3942                 drm_gem_object_unreference(obj);
3943                 mutex_unlock(&dev->struct_mutex);
3944                 return -EINVAL;
3945         }
3946
3947         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3948                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3949                           args->handle);
3950                 drm_gem_object_unreference(obj);
3951                 mutex_unlock(&dev->struct_mutex);
3952                 return -EINVAL;
3953         }
3954
3955         obj_priv->user_pin_count++;
3956         obj_priv->pin_filp = file_priv;
3957         if (obj_priv->user_pin_count == 1) {
3958                 ret = i915_gem_object_pin(obj, args->alignment);
3959                 if (ret != 0) {
3960                         drm_gem_object_unreference(obj);
3961                         mutex_unlock(&dev->struct_mutex);
3962                         return ret;
3963                 }
3964         }
3965
3966         /* XXX - flush the CPU caches for pinned objects
3967          * as the X server doesn't manage domains yet
3968          */
3969         i915_gem_object_flush_cpu_write_domain(obj);
3970         args->offset = obj_priv->gtt_offset;
3971         drm_gem_object_unreference(obj);
3972         mutex_unlock(&dev->struct_mutex);
3973
3974         return 0;
3975 }
3976
3977 int
3978 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3979                      struct drm_file *file_priv)
3980 {
3981         struct drm_i915_gem_pin *args = data;
3982         struct drm_gem_object *obj;
3983         struct drm_i915_gem_object *obj_priv;
3984
3985         mutex_lock(&dev->struct_mutex);
3986
3987         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3988         if (obj == NULL) {
3989                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3990                           args->handle);
3991                 mutex_unlock(&dev->struct_mutex);
3992                 return -EBADF;
3993         }
3994
3995         obj_priv = obj->driver_private;
3996         if (obj_priv->pin_filp != file_priv) {
3997                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3998                           args->handle);
3999                 drm_gem_object_unreference(obj);
4000                 mutex_unlock(&dev->struct_mutex);
4001                 return -EINVAL;
4002         }
4003         obj_priv->user_pin_count--;
4004         if (obj_priv->user_pin_count == 0) {
4005                 obj_priv->pin_filp = NULL;
4006                 i915_gem_object_unpin(obj);
4007         }
4008
4009         drm_gem_object_unreference(obj);
4010         mutex_unlock(&dev->struct_mutex);
4011         return 0;
4012 }
4013
4014 int
4015 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4016                     struct drm_file *file_priv)
4017 {
4018         struct drm_i915_gem_busy *args = data;
4019         struct drm_gem_object *obj;
4020         struct drm_i915_gem_object *obj_priv;
4021
4022         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4023         if (obj == NULL) {
4024                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4025                           args->handle);
4026                 return -EBADF;
4027         }
4028
4029         mutex_lock(&dev->struct_mutex);
4030         /* Update the active list for the hardware's current position.
4031          * Otherwise this only updates on a delayed timer or when irqs are
4032          * actually unmasked, and our working set ends up being larger than
4033          * required.
4034          */
4035         i915_gem_retire_requests(dev);
4036
4037         obj_priv = obj->driver_private;
4038         /* Don't count being on the flushing list against the object being
4039          * done.  Otherwise, a buffer left on the flushing list but not getting
4040          * flushed (because nobody's flushing that domain) won't ever return
4041          * unbusy and get reused by libdrm's bo cache.  The other expected
4042          * consumer of this interface, OpenGL's occlusion queries, also specs
4043          * that the objects get unbusy "eventually" without any interference.
4044          */
4045         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4046
4047         drm_gem_object_unreference(obj);
4048         mutex_unlock(&dev->struct_mutex);
4049         return 0;
4050 }
4051
4052 int
4053 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4054                         struct drm_file *file_priv)
4055 {
4056     return i915_gem_ring_throttle(dev, file_priv);
4057 }
4058
4059 int
4060 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4061                        struct drm_file *file_priv)
4062 {
4063         struct drm_i915_gem_madvise *args = data;
4064         struct drm_gem_object *obj;
4065         struct drm_i915_gem_object *obj_priv;
4066
4067         switch (args->madv) {
4068         case I915_MADV_DONTNEED:
4069         case I915_MADV_WILLNEED:
4070             break;
4071         default:
4072             return -EINVAL;
4073         }
4074
4075         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4076         if (obj == NULL) {
4077                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4078                           args->handle);
4079                 return -EBADF;
4080         }
4081
4082         mutex_lock(&dev->struct_mutex);
4083         obj_priv = obj->driver_private;
4084
4085         if (obj_priv->pin_count) {
4086                 drm_gem_object_unreference(obj);
4087                 mutex_unlock(&dev->struct_mutex);
4088
4089                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4090                 return -EINVAL;
4091         }
4092
4093         obj_priv->madv = args->madv;
4094         args->retained = obj_priv->gtt_space != NULL;
4095
4096         drm_gem_object_unreference(obj);
4097         mutex_unlock(&dev->struct_mutex);
4098
4099         return 0;
4100 }
4101
4102 int i915_gem_init_object(struct drm_gem_object *obj)
4103 {
4104         struct drm_i915_gem_object *obj_priv;
4105
4106         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4107         if (obj_priv == NULL)
4108                 return -ENOMEM;
4109
4110         /*
4111          * We've just allocated pages from the kernel,
4112          * so they've just been written by the CPU with
4113          * zeros. They'll need to be clflushed before we
4114          * use them with the GPU.
4115          */
4116         obj->write_domain = I915_GEM_DOMAIN_CPU;
4117         obj->read_domains = I915_GEM_DOMAIN_CPU;
4118
4119         obj_priv->agp_type = AGP_USER_MEMORY;
4120
4121         obj->driver_private = obj_priv;
4122         obj_priv->obj = obj;
4123         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4124         INIT_LIST_HEAD(&obj_priv->list);
4125         INIT_LIST_HEAD(&obj_priv->fence_list);
4126         obj_priv->madv = I915_MADV_WILLNEED;
4127
4128         trace_i915_gem_object_create(obj);
4129
4130         return 0;
4131 }
4132
4133 void i915_gem_free_object(struct drm_gem_object *obj)
4134 {
4135         struct drm_device *dev = obj->dev;
4136         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4137
4138         trace_i915_gem_object_destroy(obj);
4139
4140         while (obj_priv->pin_count > 0)
4141                 i915_gem_object_unpin(obj);
4142
4143         if (obj_priv->phys_obj)
4144                 i915_gem_detach_phys_object(dev, obj);
4145
4146         i915_gem_object_unbind(obj);
4147
4148         if (obj_priv->mmap_offset)
4149                 i915_gem_free_mmap_offset(obj);
4150
4151         kfree(obj_priv->page_cpu_valid);
4152         kfree(obj_priv->bit_17);
4153         kfree(obj->driver_private);
4154 }
4155
4156 /** Unbinds all inactive objects. */
4157 static int
4158 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4159 {
4160         drm_i915_private_t *dev_priv = dev->dev_private;
4161
4162         while (!list_empty(&dev_priv->mm.inactive_list)) {
4163                 struct drm_gem_object *obj;
4164                 int ret;
4165
4166                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4167                                        struct drm_i915_gem_object,
4168                                        list)->obj;
4169
4170                 ret = i915_gem_object_unbind(obj);
4171                 if (ret != 0) {
4172                         DRM_ERROR("Error unbinding object: %d\n", ret);
4173                         return ret;
4174                 }
4175         }
4176
4177         return 0;
4178 }
4179
4180 int
4181 i915_gem_idle(struct drm_device *dev)
4182 {
4183         drm_i915_private_t *dev_priv = dev->dev_private;
4184         uint32_t seqno, cur_seqno, last_seqno;
4185         int stuck, ret;
4186
4187         mutex_lock(&dev->struct_mutex);
4188
4189         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4190                 mutex_unlock(&dev->struct_mutex);
4191                 return 0;
4192         }
4193
4194         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4195          * We need to replace this with a semaphore, or something.
4196          */
4197         dev_priv->mm.suspended = 1;
4198         del_timer(&dev_priv->hangcheck_timer);
4199
4200         /* Cancel the retire work handler, wait for it to finish if running
4201          */
4202         mutex_unlock(&dev->struct_mutex);
4203         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4204         mutex_lock(&dev->struct_mutex);
4205
4206         i915_kernel_lost_context(dev);
4207
4208         /* Flush the GPU along with all non-CPU write domains
4209          */
4210         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4211         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4212
4213         if (seqno == 0) {
4214                 mutex_unlock(&dev->struct_mutex);
4215                 return -ENOMEM;
4216         }
4217
4218         dev_priv->mm.waiting_gem_seqno = seqno;
4219         last_seqno = 0;
4220         stuck = 0;
4221         for (;;) {
4222                 cur_seqno = i915_get_gem_seqno(dev);
4223                 if (i915_seqno_passed(cur_seqno, seqno))
4224                         break;
4225                 if (last_seqno == cur_seqno) {
4226                         if (stuck++ > 100) {
4227                                 DRM_ERROR("hardware wedged\n");
4228                                 atomic_set(&dev_priv->mm.wedged, 1);
4229                                 DRM_WAKEUP(&dev_priv->irq_queue);
4230                                 break;
4231                         }
4232                 }
4233                 msleep(10);
4234                 last_seqno = cur_seqno;
4235         }
4236         dev_priv->mm.waiting_gem_seqno = 0;
4237
4238         i915_gem_retire_requests(dev);
4239
4240         spin_lock(&dev_priv->mm.active_list_lock);
4241         if (!atomic_read(&dev_priv->mm.wedged)) {
4242                 /* Active and flushing should now be empty as we've
4243                  * waited for a sequence higher than any pending execbuffer
4244                  */
4245                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4246                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4247                 /* Request should now be empty as we've also waited
4248                  * for the last request in the list
4249                  */
4250                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4251         }
4252
4253         /* Empty the active and flushing lists to inactive.  If there's
4254          * anything left at this point, it means that we're wedged and
4255          * nothing good's going to happen by leaving them there.  So strip
4256          * the GPU domains and just stuff them onto inactive.
4257          */
4258         while (!list_empty(&dev_priv->mm.active_list)) {
4259                 struct drm_gem_object *obj;
4260                 uint32_t old_write_domain;
4261
4262                 obj = list_first_entry(&dev_priv->mm.active_list,
4263                                        struct drm_i915_gem_object,
4264                                        list)->obj;
4265                 old_write_domain = obj->write_domain;
4266                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4267                 i915_gem_object_move_to_inactive(obj);
4268
4269                 trace_i915_gem_object_change_domain(obj,
4270                                                     obj->read_domains,
4271                                                     old_write_domain);
4272         }
4273         spin_unlock(&dev_priv->mm.active_list_lock);
4274
4275         while (!list_empty(&dev_priv->mm.flushing_list)) {
4276                 struct drm_gem_object *obj;
4277                 uint32_t old_write_domain;
4278
4279                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4280                                        struct drm_i915_gem_object,
4281                                        list)->obj;
4282                 old_write_domain = obj->write_domain;
4283                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4284                 i915_gem_object_move_to_inactive(obj);
4285
4286                 trace_i915_gem_object_change_domain(obj,
4287                                                     obj->read_domains,
4288                                                     old_write_domain);
4289         }
4290
4291
4292         /* Move all inactive buffers out of the GTT. */
4293         ret = i915_gem_evict_from_inactive_list(dev);
4294         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4295         if (ret) {
4296                 mutex_unlock(&dev->struct_mutex);
4297                 return ret;
4298         }
4299
4300         i915_gem_cleanup_ringbuffer(dev);
4301         mutex_unlock(&dev->struct_mutex);
4302
4303         return 0;
4304 }
4305
4306 static int
4307 i915_gem_init_hws(struct drm_device *dev)
4308 {
4309         drm_i915_private_t *dev_priv = dev->dev_private;
4310         struct drm_gem_object *obj;
4311         struct drm_i915_gem_object *obj_priv;
4312         int ret;
4313
4314         /* If we need a physical address for the status page, it's already
4315          * initialized at driver load time.
4316          */
4317         if (!I915_NEED_GFX_HWS(dev))
4318                 return 0;
4319
4320         obj = drm_gem_object_alloc(dev, 4096);
4321         if (obj == NULL) {
4322                 DRM_ERROR("Failed to allocate status page\n");
4323                 return -ENOMEM;
4324         }
4325         obj_priv = obj->driver_private;
4326         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4327
4328         ret = i915_gem_object_pin(obj, 4096);
4329         if (ret != 0) {
4330                 drm_gem_object_unreference(obj);
4331                 return ret;
4332         }
4333
4334         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4335
4336         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4337         if (dev_priv->hw_status_page == NULL) {
4338                 DRM_ERROR("Failed to map status page.\n");
4339                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4340                 i915_gem_object_unpin(obj);
4341                 drm_gem_object_unreference(obj);
4342                 return -EINVAL;
4343         }
4344         dev_priv->hws_obj = obj;
4345         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4346         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4347         I915_READ(HWS_PGA); /* posting read */
4348         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4349
4350         return 0;
4351 }
4352
4353 static void
4354 i915_gem_cleanup_hws(struct drm_device *dev)
4355 {
4356         drm_i915_private_t *dev_priv = dev->dev_private;
4357         struct drm_gem_object *obj;
4358         struct drm_i915_gem_object *obj_priv;
4359
4360         if (dev_priv->hws_obj == NULL)
4361                 return;
4362
4363         obj = dev_priv->hws_obj;
4364         obj_priv = obj->driver_private;
4365
4366         kunmap(obj_priv->pages[0]);
4367         i915_gem_object_unpin(obj);
4368         drm_gem_object_unreference(obj);
4369         dev_priv->hws_obj = NULL;
4370
4371         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4372         dev_priv->hw_status_page = NULL;
4373
4374         /* Write high address into HWS_PGA when disabling. */
4375         I915_WRITE(HWS_PGA, 0x1ffff000);
4376 }
4377
4378 int
4379 i915_gem_init_ringbuffer(struct drm_device *dev)
4380 {
4381         drm_i915_private_t *dev_priv = dev->dev_private;
4382         struct drm_gem_object *obj;
4383         struct drm_i915_gem_object *obj_priv;
4384         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4385         int ret;
4386         u32 head;
4387
4388         ret = i915_gem_init_hws(dev);
4389         if (ret != 0)
4390                 return ret;
4391
4392         obj = drm_gem_object_alloc(dev, 128 * 1024);
4393         if (obj == NULL) {
4394                 DRM_ERROR("Failed to allocate ringbuffer\n");
4395                 i915_gem_cleanup_hws(dev);
4396                 return -ENOMEM;
4397         }
4398         obj_priv = obj->driver_private;
4399
4400         ret = i915_gem_object_pin(obj, 4096);
4401         if (ret != 0) {
4402                 drm_gem_object_unreference(obj);
4403                 i915_gem_cleanup_hws(dev);
4404                 return ret;
4405         }
4406
4407         /* Set up the kernel mapping for the ring. */
4408         ring->Size = obj->size;
4409
4410         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4411         ring->map.size = obj->size;
4412         ring->map.type = 0;
4413         ring->map.flags = 0;
4414         ring->map.mtrr = 0;
4415
4416         drm_core_ioremap_wc(&ring->map, dev);
4417         if (ring->map.handle == NULL) {
4418                 DRM_ERROR("Failed to map ringbuffer.\n");
4419                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4420                 i915_gem_object_unpin(obj);
4421                 drm_gem_object_unreference(obj);
4422                 i915_gem_cleanup_hws(dev);
4423                 return -EINVAL;
4424         }
4425         ring->ring_obj = obj;
4426         ring->virtual_start = ring->map.handle;
4427
4428         /* Stop the ring if it's running. */
4429         I915_WRITE(PRB0_CTL, 0);
4430         I915_WRITE(PRB0_TAIL, 0);
4431         I915_WRITE(PRB0_HEAD, 0);
4432
4433         /* Initialize the ring. */
4434         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4435         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4436
4437         /* G45 ring initialization fails to reset head to zero */
4438         if (head != 0) {
4439                 DRM_ERROR("Ring head not reset to zero "
4440                           "ctl %08x head %08x tail %08x start %08x\n",
4441                           I915_READ(PRB0_CTL),
4442                           I915_READ(PRB0_HEAD),
4443                           I915_READ(PRB0_TAIL),
4444                           I915_READ(PRB0_START));
4445                 I915_WRITE(PRB0_HEAD, 0);
4446
4447                 DRM_ERROR("Ring head forced to zero "
4448                           "ctl %08x head %08x tail %08x start %08x\n",
4449                           I915_READ(PRB0_CTL),
4450                           I915_READ(PRB0_HEAD),
4451                           I915_READ(PRB0_TAIL),
4452                           I915_READ(PRB0_START));
4453         }
4454
4455         I915_WRITE(PRB0_CTL,
4456                    ((obj->size - 4096) & RING_NR_PAGES) |
4457                    RING_NO_REPORT |
4458                    RING_VALID);
4459
4460         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4461
4462         /* If the head is still not zero, the ring is dead */
4463         if (head != 0) {
4464                 DRM_ERROR("Ring initialization failed "
4465                           "ctl %08x head %08x tail %08x start %08x\n",
4466                           I915_READ(PRB0_CTL),
4467                           I915_READ(PRB0_HEAD),
4468                           I915_READ(PRB0_TAIL),
4469                           I915_READ(PRB0_START));
4470                 return -EIO;
4471         }
4472
4473         /* Update our cache of the ring state */
4474         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4475                 i915_kernel_lost_context(dev);
4476         else {
4477                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4478                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4479                 ring->space = ring->head - (ring->tail + 8);
4480                 if (ring->space < 0)
4481                         ring->space += ring->Size;
4482         }
4483
4484         return 0;
4485 }
4486
4487 void
4488 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4489 {
4490         drm_i915_private_t *dev_priv = dev->dev_private;
4491
4492         if (dev_priv->ring.ring_obj == NULL)
4493                 return;
4494
4495         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4496
4497         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4498         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4499         dev_priv->ring.ring_obj = NULL;
4500         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4501
4502         i915_gem_cleanup_hws(dev);
4503 }
4504
4505 int
4506 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4507                        struct drm_file *file_priv)
4508 {
4509         drm_i915_private_t *dev_priv = dev->dev_private;
4510         int ret;
4511
4512         if (drm_core_check_feature(dev, DRIVER_MODESET))
4513                 return 0;
4514
4515         if (atomic_read(&dev_priv->mm.wedged)) {
4516                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4517                 atomic_set(&dev_priv->mm.wedged, 0);
4518         }
4519
4520         mutex_lock(&dev->struct_mutex);
4521         dev_priv->mm.suspended = 0;
4522
4523         ret = i915_gem_init_ringbuffer(dev);
4524         if (ret != 0) {
4525                 mutex_unlock(&dev->struct_mutex);
4526                 return ret;
4527         }
4528
4529         spin_lock(&dev_priv->mm.active_list_lock);
4530         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4531         spin_unlock(&dev_priv->mm.active_list_lock);
4532
4533         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4534         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4535         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4536         mutex_unlock(&dev->struct_mutex);
4537
4538         drm_irq_install(dev);
4539
4540         return 0;
4541 }
4542
4543 int
4544 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4545                        struct drm_file *file_priv)
4546 {
4547         int ret;
4548
4549         if (drm_core_check_feature(dev, DRIVER_MODESET))
4550                 return 0;
4551
4552         ret = i915_gem_idle(dev);
4553         drm_irq_uninstall(dev);
4554
4555         return ret;
4556 }
4557
4558 void
4559 i915_gem_lastclose(struct drm_device *dev)
4560 {
4561         int ret;
4562
4563         if (drm_core_check_feature(dev, DRIVER_MODESET))
4564                 return;
4565
4566         ret = i915_gem_idle(dev);
4567         if (ret)
4568                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4569 }
4570
4571 void
4572 i915_gem_load(struct drm_device *dev)
4573 {
4574         int i;
4575         drm_i915_private_t *dev_priv = dev->dev_private;
4576
4577         spin_lock_init(&dev_priv->mm.active_list_lock);
4578         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4579         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4580         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4581         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4582         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4583         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4584                           i915_gem_retire_work_handler);
4585         dev_priv->mm.next_gem_seqno = 1;
4586
4587         spin_lock(&shrink_list_lock);
4588         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4589         spin_unlock(&shrink_list_lock);
4590
4591         /* Old X drivers will take 0-2 for front, back, depth buffers */
4592         dev_priv->fence_reg_start = 3;
4593
4594         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4595                 dev_priv->num_fence_regs = 16;
4596         else
4597                 dev_priv->num_fence_regs = 8;
4598
4599         /* Initialize fence registers to zero */
4600         if (IS_I965G(dev)) {
4601                 for (i = 0; i < 16; i++)
4602                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4603         } else {
4604                 for (i = 0; i < 8; i++)
4605                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4606                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4607                         for (i = 0; i < 8; i++)
4608                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4609         }
4610
4611         i915_gem_detect_bit_6_swizzle(dev);
4612 }
4613
4614 /*
4615  * Create a physically contiguous memory object for this object
4616  * e.g. for cursor + overlay regs
4617  */
4618 int i915_gem_init_phys_object(struct drm_device *dev,
4619                               int id, int size)
4620 {
4621         drm_i915_private_t *dev_priv = dev->dev_private;
4622         struct drm_i915_gem_phys_object *phys_obj;
4623         int ret;
4624
4625         if (dev_priv->mm.phys_objs[id - 1] || !size)
4626                 return 0;
4627
4628         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4629         if (!phys_obj)
4630                 return -ENOMEM;
4631
4632         phys_obj->id = id;
4633
4634         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4635         if (!phys_obj->handle) {
4636                 ret = -ENOMEM;
4637                 goto kfree_obj;
4638         }
4639 #ifdef CONFIG_X86
4640         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4641 #endif
4642
4643         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4644
4645         return 0;
4646 kfree_obj:
4647         kfree(phys_obj);
4648         return ret;
4649 }
4650
4651 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4652 {
4653         drm_i915_private_t *dev_priv = dev->dev_private;
4654         struct drm_i915_gem_phys_object *phys_obj;
4655
4656         if (!dev_priv->mm.phys_objs[id - 1])
4657                 return;
4658
4659         phys_obj = dev_priv->mm.phys_objs[id - 1];
4660         if (phys_obj->cur_obj) {
4661                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4662         }
4663
4664 #ifdef CONFIG_X86
4665         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4666 #endif
4667         drm_pci_free(dev, phys_obj->handle);
4668         kfree(phys_obj);
4669         dev_priv->mm.phys_objs[id - 1] = NULL;
4670 }
4671
4672 void i915_gem_free_all_phys_object(struct drm_device *dev)
4673 {
4674         int i;
4675
4676         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4677                 i915_gem_free_phys_object(dev, i);
4678 }
4679
4680 void i915_gem_detach_phys_object(struct drm_device *dev,
4681                                  struct drm_gem_object *obj)
4682 {
4683         struct drm_i915_gem_object *obj_priv;
4684         int i;
4685         int ret;
4686         int page_count;
4687
4688         obj_priv = obj->driver_private;
4689         if (!obj_priv->phys_obj)
4690                 return;
4691
4692         ret = i915_gem_object_get_pages(obj);
4693         if (ret)
4694                 goto out;
4695
4696         page_count = obj->size / PAGE_SIZE;
4697
4698         for (i = 0; i < page_count; i++) {
4699                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4700                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4701
4702                 memcpy(dst, src, PAGE_SIZE);
4703                 kunmap_atomic(dst, KM_USER0);
4704         }
4705         drm_clflush_pages(obj_priv->pages, page_count);
4706         drm_agp_chipset_flush(dev);
4707
4708         i915_gem_object_put_pages(obj);
4709 out:
4710         obj_priv->phys_obj->cur_obj = NULL;
4711         obj_priv->phys_obj = NULL;
4712 }
4713
4714 int
4715 i915_gem_attach_phys_object(struct drm_device *dev,
4716                             struct drm_gem_object *obj, int id)
4717 {
4718         drm_i915_private_t *dev_priv = dev->dev_private;
4719         struct drm_i915_gem_object *obj_priv;
4720         int ret = 0;
4721         int page_count;
4722         int i;
4723
4724         if (id > I915_MAX_PHYS_OBJECT)
4725                 return -EINVAL;
4726
4727         obj_priv = obj->driver_private;
4728
4729         if (obj_priv->phys_obj) {
4730                 if (obj_priv->phys_obj->id == id)
4731                         return 0;
4732                 i915_gem_detach_phys_object(dev, obj);
4733         }
4734
4735
4736         /* create a new object */
4737         if (!dev_priv->mm.phys_objs[id - 1]) {
4738                 ret = i915_gem_init_phys_object(dev, id,
4739                                                 obj->size);
4740                 if (ret) {
4741                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4742                         goto out;
4743                 }
4744         }
4745
4746         /* bind to the object */
4747         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4748         obj_priv->phys_obj->cur_obj = obj;
4749
4750         ret = i915_gem_object_get_pages(obj);
4751         if (ret) {
4752                 DRM_ERROR("failed to get page list\n");
4753                 goto out;
4754         }
4755
4756         page_count = obj->size / PAGE_SIZE;
4757
4758         for (i = 0; i < page_count; i++) {
4759                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4760                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4761
4762                 memcpy(dst, src, PAGE_SIZE);
4763                 kunmap_atomic(src, KM_USER0);
4764         }
4765
4766         i915_gem_object_put_pages(obj);
4767
4768         return 0;
4769 out:
4770         return ret;
4771 }
4772
4773 static int
4774 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4775                      struct drm_i915_gem_pwrite *args,
4776                      struct drm_file *file_priv)
4777 {
4778         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4779         void *obj_addr;
4780         int ret;
4781         char __user *user_data;
4782
4783         user_data = (char __user *) (uintptr_t) args->data_ptr;
4784         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4785
4786         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4787         ret = copy_from_user(obj_addr, user_data, args->size);
4788         if (ret)
4789                 return -EFAULT;
4790
4791         drm_agp_chipset_flush(dev);
4792         return 0;
4793 }
4794
4795 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4796 {
4797         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4798
4799         /* Clean up our request list when the client is going away, so that
4800          * later retire_requests won't dereference our soon-to-be-gone
4801          * file_priv.
4802          */
4803         mutex_lock(&dev->struct_mutex);
4804         while (!list_empty(&i915_file_priv->mm.request_list))
4805                 list_del_init(i915_file_priv->mm.request_list.next);
4806         mutex_unlock(&dev->struct_mutex);
4807 }
4808
4809 /* Immediately discard the backing storage */
4810 static void
4811 i915_gem_object_truncate(struct drm_gem_object *obj)
4812 {
4813     struct inode *inode;
4814
4815     inode = obj->filp->f_path.dentry->d_inode;
4816
4817     mutex_lock(&inode->i_mutex);
4818     truncate_inode_pages(inode->i_mapping, 0);
4819     mutex_unlock(&inode->i_mutex);
4820 }
4821
4822 static int
4823 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4824 {
4825         drm_i915_private_t *dev_priv, *next_dev;
4826         struct drm_i915_gem_object *obj_priv, *next_obj;
4827         int cnt = 0;
4828         int would_deadlock = 1;
4829
4830         /* "fast-path" to count number of available objects */
4831         if (nr_to_scan == 0) {
4832                 spin_lock(&shrink_list_lock);
4833                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4834                         struct drm_device *dev = dev_priv->dev;
4835
4836                         if (mutex_trylock(&dev->struct_mutex)) {
4837                                 list_for_each_entry(obj_priv,
4838                                                     &dev_priv->mm.inactive_list,
4839                                                     list)
4840                                         cnt++;
4841                                 mutex_unlock(&dev->struct_mutex);
4842                         }
4843                 }
4844                 spin_unlock(&shrink_list_lock);
4845
4846                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4847         }
4848
4849         spin_lock(&shrink_list_lock);
4850
4851         /* first scan for clean buffers */
4852         list_for_each_entry_safe(dev_priv, next_dev,
4853                                  &shrink_list, mm.shrink_list) {
4854                 struct drm_device *dev = dev_priv->dev;
4855
4856                 if (! mutex_trylock(&dev->struct_mutex))
4857                         continue;
4858
4859                 spin_unlock(&shrink_list_lock);
4860
4861                 i915_gem_retire_requests(dev);
4862
4863                 list_for_each_entry_safe(obj_priv, next_obj,
4864                                          &dev_priv->mm.inactive_list,
4865                                          list) {
4866                         if (i915_gem_object_is_purgeable(obj_priv)) {
4867                                 struct drm_gem_object *obj = obj_priv->obj;
4868                                 i915_gem_object_unbind(obj);
4869                                 i915_gem_object_truncate(obj);
4870
4871                                 if (--nr_to_scan <= 0)
4872                                         break;
4873                         }
4874                 }
4875
4876                 spin_lock(&shrink_list_lock);
4877                 mutex_unlock(&dev->struct_mutex);
4878
4879                 if (nr_to_scan <= 0)
4880                         break;
4881         }
4882
4883         /* second pass, evict/count anything still on the inactive list */
4884         list_for_each_entry_safe(dev_priv, next_dev,
4885                                  &shrink_list, mm.shrink_list) {
4886                 struct drm_device *dev = dev_priv->dev;
4887
4888                 if (! mutex_trylock(&dev->struct_mutex))
4889                         continue;
4890
4891                 spin_unlock(&shrink_list_lock);
4892
4893                 list_for_each_entry_safe(obj_priv, next_obj,
4894                                          &dev_priv->mm.inactive_list,
4895                                          list) {
4896                         if (nr_to_scan > 0) {
4897                                 struct drm_gem_object *obj = obj_priv->obj;
4898                                 i915_gem_object_unbind(obj);
4899                                 if (i915_gem_object_is_purgeable(obj_priv))
4900                                         i915_gem_object_truncate(obj);
4901
4902                                 nr_to_scan--;
4903                         } else
4904                                 cnt++;
4905                 }
4906
4907                 spin_lock(&shrink_list_lock);
4908                 mutex_unlock(&dev->struct_mutex);
4909
4910                 would_deadlock = 0;
4911         }
4912
4913         spin_unlock(&shrink_list_lock);
4914
4915         if (would_deadlock)
4916                 return -1;
4917         else if (cnt > 0)
4918                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4919         else
4920                 return 0;
4921 }
4922
4923 static struct shrinker shrinker = {
4924         .shrink = i915_gem_shrink,
4925         .seeks = DEFAULT_SEEKS,
4926 };
4927
4928 __init void
4929 i915_gem_shrinker_init(void)
4930 {
4931     register_shrinker(&shrinker);
4932 }
4933
4934 __exit void
4935 i915_gem_shrinker_exit(void)
4936 {
4937     unregister_shrinker(&shrinker);
4938 }