77cc6f57166c6fc39976681f4661fc819c5ca024
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include <linux/swap.h>
34 #include <linux/pci.h>
35
36 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55
56 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
57                      unsigned long end)
58 {
59         drm_i915_private_t *dev_priv = dev->dev_private;
60
61         if (start >= end ||
62             (start & (PAGE_SIZE - 1)) != 0 ||
63             (end & (PAGE_SIZE - 1)) != 0) {
64                 return -EINVAL;
65         }
66
67         drm_mm_init(&dev_priv->mm.gtt_space, start,
68                     end - start);
69
70         dev->gtt_total = (uint32_t) (end - start);
71
72         return 0;
73 }
74
75 int
76 i915_gem_init_ioctl(struct drm_device *dev, void *data,
77                     struct drm_file *file_priv)
78 {
79         struct drm_i915_gem_init *args = data;
80         int ret;
81
82         mutex_lock(&dev->struct_mutex);
83         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
84         mutex_unlock(&dev->struct_mutex);
85
86         return ret;
87 }
88
89 int
90 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
91                             struct drm_file *file_priv)
92 {
93         struct drm_i915_gem_get_aperture *args = data;
94
95         if (!(dev->driver->driver_features & DRIVER_GEM))
96                 return -ENODEV;
97
98         args->aper_size = dev->gtt_total;
99         args->aper_available_size = (args->aper_size -
100                                      atomic_read(&dev->pin_memory));
101
102         return 0;
103 }
104
105
106 /**
107  * Creates a new mm object and returns a handle to it.
108  */
109 int
110 i915_gem_create_ioctl(struct drm_device *dev, void *data,
111                       struct drm_file *file_priv)
112 {
113         struct drm_i915_gem_create *args = data;
114         struct drm_gem_object *obj;
115         int ret;
116         u32 handle;
117
118         args->size = roundup(args->size, PAGE_SIZE);
119
120         /* Allocate the new object */
121         obj = drm_gem_object_alloc(dev, args->size);
122         if (obj == NULL)
123                 return -ENOMEM;
124
125         ret = drm_gem_handle_create(file_priv, obj, &handle);
126         mutex_lock(&dev->struct_mutex);
127         drm_gem_object_handle_unreference(obj);
128         mutex_unlock(&dev->struct_mutex);
129
130         if (ret)
131                 return ret;
132
133         args->handle = handle;
134
135         return 0;
136 }
137
138 static inline int
139 fast_shmem_read(struct page **pages,
140                 loff_t page_base, int page_offset,
141                 char __user *data,
142                 int length)
143 {
144         char __iomem *vaddr;
145         int unwritten;
146
147         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
148         if (vaddr == NULL)
149                 return -ENOMEM;
150         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
151         kunmap_atomic(vaddr, KM_USER0);
152
153         if (unwritten)
154                 return -EFAULT;
155
156         return 0;
157 }
158
159 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
160 {
161         drm_i915_private_t *dev_priv = obj->dev->dev_private;
162         struct drm_i915_gem_object *obj_priv = obj->driver_private;
163
164         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
165                 obj_priv->tiling_mode != I915_TILING_NONE;
166 }
167
168 static inline int
169 slow_shmem_copy(struct page *dst_page,
170                 int dst_offset,
171                 struct page *src_page,
172                 int src_offset,
173                 int length)
174 {
175         char *dst_vaddr, *src_vaddr;
176
177         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
178         if (dst_vaddr == NULL)
179                 return -ENOMEM;
180
181         src_vaddr = kmap_atomic(src_page, KM_USER1);
182         if (src_vaddr == NULL) {
183                 kunmap_atomic(dst_vaddr, KM_USER0);
184                 return -ENOMEM;
185         }
186
187         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
188
189         kunmap_atomic(src_vaddr, KM_USER1);
190         kunmap_atomic(dst_vaddr, KM_USER0);
191
192         return 0;
193 }
194
195 static inline int
196 slow_shmem_bit17_copy(struct page *gpu_page,
197                       int gpu_offset,
198                       struct page *cpu_page,
199                       int cpu_offset,
200                       int length,
201                       int is_read)
202 {
203         char *gpu_vaddr, *cpu_vaddr;
204
205         /* Use the unswizzled path if this page isn't affected. */
206         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
207                 if (is_read)
208                         return slow_shmem_copy(cpu_page, cpu_offset,
209                                                gpu_page, gpu_offset, length);
210                 else
211                         return slow_shmem_copy(gpu_page, gpu_offset,
212                                                cpu_page, cpu_offset, length);
213         }
214
215         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
216         if (gpu_vaddr == NULL)
217                 return -ENOMEM;
218
219         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
220         if (cpu_vaddr == NULL) {
221                 kunmap_atomic(gpu_vaddr, KM_USER0);
222                 return -ENOMEM;
223         }
224
225         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
226          * XORing with the other bits (A9 for Y, A9 and A10 for X)
227          */
228         while (length > 0) {
229                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
230                 int this_length = min(cacheline_end - gpu_offset, length);
231                 int swizzled_gpu_offset = gpu_offset ^ 64;
232
233                 if (is_read) {
234                         memcpy(cpu_vaddr + cpu_offset,
235                                gpu_vaddr + swizzled_gpu_offset,
236                                this_length);
237                 } else {
238                         memcpy(gpu_vaddr + swizzled_gpu_offset,
239                                cpu_vaddr + cpu_offset,
240                                this_length);
241                 }
242                 cpu_offset += this_length;
243                 gpu_offset += this_length;
244                 length -= this_length;
245         }
246
247         kunmap_atomic(cpu_vaddr, KM_USER1);
248         kunmap_atomic(gpu_vaddr, KM_USER0);
249
250         return 0;
251 }
252
253 /**
254  * This is the fast shmem pread path, which attempts to copy_from_user directly
255  * from the backing pages of the object to the user's address space.  On a
256  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
257  */
258 static int
259 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
260                           struct drm_i915_gem_pread *args,
261                           struct drm_file *file_priv)
262 {
263         struct drm_i915_gem_object *obj_priv = obj->driver_private;
264         ssize_t remain;
265         loff_t offset, page_base;
266         char __user *user_data;
267         int page_offset, page_length;
268         int ret;
269
270         user_data = (char __user *) (uintptr_t) args->data_ptr;
271         remain = args->size;
272
273         mutex_lock(&dev->struct_mutex);
274
275         ret = i915_gem_object_get_pages(obj);
276         if (ret != 0)
277                 goto fail_unlock;
278
279         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
280                                                         args->size);
281         if (ret != 0)
282                 goto fail_put_pages;
283
284         obj_priv = obj->driver_private;
285         offset = args->offset;
286
287         while (remain > 0) {
288                 /* Operation in this page
289                  *
290                  * page_base = page offset within aperture
291                  * page_offset = offset within page
292                  * page_length = bytes to copy for this page
293                  */
294                 page_base = (offset & ~(PAGE_SIZE-1));
295                 page_offset = offset & (PAGE_SIZE-1);
296                 page_length = remain;
297                 if ((page_offset + remain) > PAGE_SIZE)
298                         page_length = PAGE_SIZE - page_offset;
299
300                 ret = fast_shmem_read(obj_priv->pages,
301                                       page_base, page_offset,
302                                       user_data, page_length);
303                 if (ret)
304                         goto fail_put_pages;
305
306                 remain -= page_length;
307                 user_data += page_length;
308                 offset += page_length;
309         }
310
311 fail_put_pages:
312         i915_gem_object_put_pages(obj);
313 fail_unlock:
314         mutex_unlock(&dev->struct_mutex);
315
316         return ret;
317 }
318
319 /**
320  * This is the fallback shmem pread path, which allocates temporary storage
321  * in kernel space to copy_to_user into outside of the struct_mutex, so we
322  * can copy out of the object's backing pages while holding the struct mutex
323  * and not take page faults.
324  */
325 static int
326 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
327                           struct drm_i915_gem_pread *args,
328                           struct drm_file *file_priv)
329 {
330         struct drm_i915_gem_object *obj_priv = obj->driver_private;
331         struct mm_struct *mm = current->mm;
332         struct page **user_pages;
333         ssize_t remain;
334         loff_t offset, pinned_pages, i;
335         loff_t first_data_page, last_data_page, num_pages;
336         int shmem_page_index, shmem_page_offset;
337         int data_page_index,  data_page_offset;
338         int page_length;
339         int ret;
340         uint64_t data_ptr = args->data_ptr;
341         int do_bit17_swizzling;
342
343         remain = args->size;
344
345         /* Pin the user pages containing the data.  We can't fault while
346          * holding the struct mutex, yet we want to hold it while
347          * dereferencing the user data.
348          */
349         first_data_page = data_ptr / PAGE_SIZE;
350         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
351         num_pages = last_data_page - first_data_page + 1;
352
353         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
354         if (user_pages == NULL)
355                 return -ENOMEM;
356
357         down_read(&mm->mmap_sem);
358         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
359                                       num_pages, 1, 0, user_pages, NULL);
360         up_read(&mm->mmap_sem);
361         if (pinned_pages < num_pages) {
362                 ret = -EFAULT;
363                 goto fail_put_user_pages;
364         }
365
366         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
367
368         mutex_lock(&dev->struct_mutex);
369
370         ret = i915_gem_object_get_pages(obj);
371         if (ret != 0)
372                 goto fail_unlock;
373
374         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
375                                                         args->size);
376         if (ret != 0)
377                 goto fail_put_pages;
378
379         obj_priv = obj->driver_private;
380         offset = args->offset;
381
382         while (remain > 0) {
383                 /* Operation in this page
384                  *
385                  * shmem_page_index = page number within shmem file
386                  * shmem_page_offset = offset within page in shmem file
387                  * data_page_index = page number in get_user_pages return
388                  * data_page_offset = offset with data_page_index page.
389                  * page_length = bytes to copy for this page
390                  */
391                 shmem_page_index = offset / PAGE_SIZE;
392                 shmem_page_offset = offset & ~PAGE_MASK;
393                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
394                 data_page_offset = data_ptr & ~PAGE_MASK;
395
396                 page_length = remain;
397                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
398                         page_length = PAGE_SIZE - shmem_page_offset;
399                 if ((data_page_offset + page_length) > PAGE_SIZE)
400                         page_length = PAGE_SIZE - data_page_offset;
401
402                 if (do_bit17_swizzling) {
403                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
404                                                     shmem_page_offset,
405                                                     user_pages[data_page_index],
406                                                     data_page_offset,
407                                                     page_length,
408                                                     1);
409                 } else {
410                         ret = slow_shmem_copy(user_pages[data_page_index],
411                                               data_page_offset,
412                                               obj_priv->pages[shmem_page_index],
413                                               shmem_page_offset,
414                                               page_length);
415                 }
416                 if (ret)
417                         goto fail_put_pages;
418
419                 remain -= page_length;
420                 data_ptr += page_length;
421                 offset += page_length;
422         }
423
424 fail_put_pages:
425         i915_gem_object_put_pages(obj);
426 fail_unlock:
427         mutex_unlock(&dev->struct_mutex);
428 fail_put_user_pages:
429         for (i = 0; i < pinned_pages; i++) {
430                 SetPageDirty(user_pages[i]);
431                 page_cache_release(user_pages[i]);
432         }
433         drm_free_large(user_pages);
434
435         return ret;
436 }
437
438 /**
439  * Reads data from the object referenced by handle.
440  *
441  * On error, the contents of *data are undefined.
442  */
443 int
444 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
445                      struct drm_file *file_priv)
446 {
447         struct drm_i915_gem_pread *args = data;
448         struct drm_gem_object *obj;
449         struct drm_i915_gem_object *obj_priv;
450         int ret;
451
452         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
453         if (obj == NULL)
454                 return -EBADF;
455         obj_priv = obj->driver_private;
456
457         /* Bounds check source.
458          *
459          * XXX: This could use review for overflow issues...
460          */
461         if (args->offset > obj->size || args->size > obj->size ||
462             args->offset + args->size > obj->size) {
463                 drm_gem_object_unreference(obj);
464                 return -EINVAL;
465         }
466
467         if (i915_gem_object_needs_bit17_swizzle(obj)) {
468                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
469         } else {
470                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
471                 if (ret != 0)
472                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
473                                                         file_priv);
474         }
475
476         drm_gem_object_unreference(obj);
477
478         return ret;
479 }
480
481 /* This is the fast write path which cannot handle
482  * page faults in the source data
483  */
484
485 static inline int
486 fast_user_write(struct io_mapping *mapping,
487                 loff_t page_base, int page_offset,
488                 char __user *user_data,
489                 int length)
490 {
491         char *vaddr_atomic;
492         unsigned long unwritten;
493
494         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
495         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
496                                                       user_data, length);
497         io_mapping_unmap_atomic(vaddr_atomic);
498         if (unwritten)
499                 return -EFAULT;
500         return 0;
501 }
502
503 /* Here's the write path which can sleep for
504  * page faults
505  */
506
507 static inline int
508 slow_kernel_write(struct io_mapping *mapping,
509                   loff_t gtt_base, int gtt_offset,
510                   struct page *user_page, int user_offset,
511                   int length)
512 {
513         char *src_vaddr, *dst_vaddr;
514         unsigned long unwritten;
515
516         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
517         src_vaddr = kmap_atomic(user_page, KM_USER1);
518         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
519                                                       src_vaddr + user_offset,
520                                                       length);
521         kunmap_atomic(src_vaddr, KM_USER1);
522         io_mapping_unmap_atomic(dst_vaddr);
523         if (unwritten)
524                 return -EFAULT;
525         return 0;
526 }
527
528 static inline int
529 fast_shmem_write(struct page **pages,
530                  loff_t page_base, int page_offset,
531                  char __user *data,
532                  int length)
533 {
534         char __iomem *vaddr;
535         unsigned long unwritten;
536
537         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
538         if (vaddr == NULL)
539                 return -ENOMEM;
540         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
541         kunmap_atomic(vaddr, KM_USER0);
542
543         if (unwritten)
544                 return -EFAULT;
545         return 0;
546 }
547
548 /**
549  * This is the fast pwrite path, where we copy the data directly from the
550  * user into the GTT, uncached.
551  */
552 static int
553 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
554                          struct drm_i915_gem_pwrite *args,
555                          struct drm_file *file_priv)
556 {
557         struct drm_i915_gem_object *obj_priv = obj->driver_private;
558         drm_i915_private_t *dev_priv = dev->dev_private;
559         ssize_t remain;
560         loff_t offset, page_base;
561         char __user *user_data;
562         int page_offset, page_length;
563         int ret;
564
565         user_data = (char __user *) (uintptr_t) args->data_ptr;
566         remain = args->size;
567         if (!access_ok(VERIFY_READ, user_data, remain))
568                 return -EFAULT;
569
570
571         mutex_lock(&dev->struct_mutex);
572         ret = i915_gem_object_pin(obj, 0);
573         if (ret) {
574                 mutex_unlock(&dev->struct_mutex);
575                 return ret;
576         }
577         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
578         if (ret)
579                 goto fail;
580
581         obj_priv = obj->driver_private;
582         offset = obj_priv->gtt_offset + args->offset;
583
584         while (remain > 0) {
585                 /* Operation in this page
586                  *
587                  * page_base = page offset within aperture
588                  * page_offset = offset within page
589                  * page_length = bytes to copy for this page
590                  */
591                 page_base = (offset & ~(PAGE_SIZE-1));
592                 page_offset = offset & (PAGE_SIZE-1);
593                 page_length = remain;
594                 if ((page_offset + remain) > PAGE_SIZE)
595                         page_length = PAGE_SIZE - page_offset;
596
597                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
598                                        page_offset, user_data, page_length);
599
600                 /* If we get a fault while copying data, then (presumably) our
601                  * source page isn't available.  Return the error and we'll
602                  * retry in the slow path.
603                  */
604                 if (ret)
605                         goto fail;
606
607                 remain -= page_length;
608                 user_data += page_length;
609                 offset += page_length;
610         }
611
612 fail:
613         i915_gem_object_unpin(obj);
614         mutex_unlock(&dev->struct_mutex);
615
616         return ret;
617 }
618
619 /**
620  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
621  * the memory and maps it using kmap_atomic for copying.
622  *
623  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
624  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
625  */
626 static int
627 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
628                          struct drm_i915_gem_pwrite *args,
629                          struct drm_file *file_priv)
630 {
631         struct drm_i915_gem_object *obj_priv = obj->driver_private;
632         drm_i915_private_t *dev_priv = dev->dev_private;
633         ssize_t remain;
634         loff_t gtt_page_base, offset;
635         loff_t first_data_page, last_data_page, num_pages;
636         loff_t pinned_pages, i;
637         struct page **user_pages;
638         struct mm_struct *mm = current->mm;
639         int gtt_page_offset, data_page_offset, data_page_index, page_length;
640         int ret;
641         uint64_t data_ptr = args->data_ptr;
642
643         remain = args->size;
644
645         /* Pin the user pages containing the data.  We can't fault while
646          * holding the struct mutex, and all of the pwrite implementations
647          * want to hold it while dereferencing the user data.
648          */
649         first_data_page = data_ptr / PAGE_SIZE;
650         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
651         num_pages = last_data_page - first_data_page + 1;
652
653         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
654         if (user_pages == NULL)
655                 return -ENOMEM;
656
657         down_read(&mm->mmap_sem);
658         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
659                                       num_pages, 0, 0, user_pages, NULL);
660         up_read(&mm->mmap_sem);
661         if (pinned_pages < num_pages) {
662                 ret = -EFAULT;
663                 goto out_unpin_pages;
664         }
665
666         mutex_lock(&dev->struct_mutex);
667         ret = i915_gem_object_pin(obj, 0);
668         if (ret)
669                 goto out_unlock;
670
671         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
672         if (ret)
673                 goto out_unpin_object;
674
675         obj_priv = obj->driver_private;
676         offset = obj_priv->gtt_offset + args->offset;
677
678         while (remain > 0) {
679                 /* Operation in this page
680                  *
681                  * gtt_page_base = page offset within aperture
682                  * gtt_page_offset = offset within page in aperture
683                  * data_page_index = page number in get_user_pages return
684                  * data_page_offset = offset with data_page_index page.
685                  * page_length = bytes to copy for this page
686                  */
687                 gtt_page_base = offset & PAGE_MASK;
688                 gtt_page_offset = offset & ~PAGE_MASK;
689                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
690                 data_page_offset = data_ptr & ~PAGE_MASK;
691
692                 page_length = remain;
693                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
694                         page_length = PAGE_SIZE - gtt_page_offset;
695                 if ((data_page_offset + page_length) > PAGE_SIZE)
696                         page_length = PAGE_SIZE - data_page_offset;
697
698                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
699                                         gtt_page_base, gtt_page_offset,
700                                         user_pages[data_page_index],
701                                         data_page_offset,
702                                         page_length);
703
704                 /* If we get a fault while copying data, then (presumably) our
705                  * source page isn't available.  Return the error and we'll
706                  * retry in the slow path.
707                  */
708                 if (ret)
709                         goto out_unpin_object;
710
711                 remain -= page_length;
712                 offset += page_length;
713                 data_ptr += page_length;
714         }
715
716 out_unpin_object:
717         i915_gem_object_unpin(obj);
718 out_unlock:
719         mutex_unlock(&dev->struct_mutex);
720 out_unpin_pages:
721         for (i = 0; i < pinned_pages; i++)
722                 page_cache_release(user_pages[i]);
723         drm_free_large(user_pages);
724
725         return ret;
726 }
727
728 /**
729  * This is the fast shmem pwrite path, which attempts to directly
730  * copy_from_user into the kmapped pages backing the object.
731  */
732 static int
733 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
734                            struct drm_i915_gem_pwrite *args,
735                            struct drm_file *file_priv)
736 {
737         struct drm_i915_gem_object *obj_priv = obj->driver_private;
738         ssize_t remain;
739         loff_t offset, page_base;
740         char __user *user_data;
741         int page_offset, page_length;
742         int ret;
743
744         user_data = (char __user *) (uintptr_t) args->data_ptr;
745         remain = args->size;
746
747         mutex_lock(&dev->struct_mutex);
748
749         ret = i915_gem_object_get_pages(obj);
750         if (ret != 0)
751                 goto fail_unlock;
752
753         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
754         if (ret != 0)
755                 goto fail_put_pages;
756
757         obj_priv = obj->driver_private;
758         offset = args->offset;
759         obj_priv->dirty = 1;
760
761         while (remain > 0) {
762                 /* Operation in this page
763                  *
764                  * page_base = page offset within aperture
765                  * page_offset = offset within page
766                  * page_length = bytes to copy for this page
767                  */
768                 page_base = (offset & ~(PAGE_SIZE-1));
769                 page_offset = offset & (PAGE_SIZE-1);
770                 page_length = remain;
771                 if ((page_offset + remain) > PAGE_SIZE)
772                         page_length = PAGE_SIZE - page_offset;
773
774                 ret = fast_shmem_write(obj_priv->pages,
775                                        page_base, page_offset,
776                                        user_data, page_length);
777                 if (ret)
778                         goto fail_put_pages;
779
780                 remain -= page_length;
781                 user_data += page_length;
782                 offset += page_length;
783         }
784
785 fail_put_pages:
786         i915_gem_object_put_pages(obj);
787 fail_unlock:
788         mutex_unlock(&dev->struct_mutex);
789
790         return ret;
791 }
792
793 /**
794  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
795  * the memory and maps it using kmap_atomic for copying.
796  *
797  * This avoids taking mmap_sem for faulting on the user's address while the
798  * struct_mutex is held.
799  */
800 static int
801 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
802                            struct drm_i915_gem_pwrite *args,
803                            struct drm_file *file_priv)
804 {
805         struct drm_i915_gem_object *obj_priv = obj->driver_private;
806         struct mm_struct *mm = current->mm;
807         struct page **user_pages;
808         ssize_t remain;
809         loff_t offset, pinned_pages, i;
810         loff_t first_data_page, last_data_page, num_pages;
811         int shmem_page_index, shmem_page_offset;
812         int data_page_index,  data_page_offset;
813         int page_length;
814         int ret;
815         uint64_t data_ptr = args->data_ptr;
816         int do_bit17_swizzling;
817
818         remain = args->size;
819
820         /* Pin the user pages containing the data.  We can't fault while
821          * holding the struct mutex, and all of the pwrite implementations
822          * want to hold it while dereferencing the user data.
823          */
824         first_data_page = data_ptr / PAGE_SIZE;
825         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
826         num_pages = last_data_page - first_data_page + 1;
827
828         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
829         if (user_pages == NULL)
830                 return -ENOMEM;
831
832         down_read(&mm->mmap_sem);
833         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
834                                       num_pages, 0, 0, user_pages, NULL);
835         up_read(&mm->mmap_sem);
836         if (pinned_pages < num_pages) {
837                 ret = -EFAULT;
838                 goto fail_put_user_pages;
839         }
840
841         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
842
843         mutex_lock(&dev->struct_mutex);
844
845         ret = i915_gem_object_get_pages(obj);
846         if (ret != 0)
847                 goto fail_unlock;
848
849         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
850         if (ret != 0)
851                 goto fail_put_pages;
852
853         obj_priv = obj->driver_private;
854         offset = args->offset;
855         obj_priv->dirty = 1;
856
857         while (remain > 0) {
858                 /* Operation in this page
859                  *
860                  * shmem_page_index = page number within shmem file
861                  * shmem_page_offset = offset within page in shmem file
862                  * data_page_index = page number in get_user_pages return
863                  * data_page_offset = offset with data_page_index page.
864                  * page_length = bytes to copy for this page
865                  */
866                 shmem_page_index = offset / PAGE_SIZE;
867                 shmem_page_offset = offset & ~PAGE_MASK;
868                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
869                 data_page_offset = data_ptr & ~PAGE_MASK;
870
871                 page_length = remain;
872                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
873                         page_length = PAGE_SIZE - shmem_page_offset;
874                 if ((data_page_offset + page_length) > PAGE_SIZE)
875                         page_length = PAGE_SIZE - data_page_offset;
876
877                 if (do_bit17_swizzling) {
878                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
879                                                     shmem_page_offset,
880                                                     user_pages[data_page_index],
881                                                     data_page_offset,
882                                                     page_length,
883                                                     0);
884                 } else {
885                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
886                                               shmem_page_offset,
887                                               user_pages[data_page_index],
888                                               data_page_offset,
889                                               page_length);
890                 }
891                 if (ret)
892                         goto fail_put_pages;
893
894                 remain -= page_length;
895                 data_ptr += page_length;
896                 offset += page_length;
897         }
898
899 fail_put_pages:
900         i915_gem_object_put_pages(obj);
901 fail_unlock:
902         mutex_unlock(&dev->struct_mutex);
903 fail_put_user_pages:
904         for (i = 0; i < pinned_pages; i++)
905                 page_cache_release(user_pages[i]);
906         drm_free_large(user_pages);
907
908         return ret;
909 }
910
911 /**
912  * Writes data to the object referenced by handle.
913  *
914  * On error, the contents of the buffer that were to be modified are undefined.
915  */
916 int
917 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
918                       struct drm_file *file_priv)
919 {
920         struct drm_i915_gem_pwrite *args = data;
921         struct drm_gem_object *obj;
922         struct drm_i915_gem_object *obj_priv;
923         int ret = 0;
924
925         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
926         if (obj == NULL)
927                 return -EBADF;
928         obj_priv = obj->driver_private;
929
930         /* Bounds check destination.
931          *
932          * XXX: This could use review for overflow issues...
933          */
934         if (args->offset > obj->size || args->size > obj->size ||
935             args->offset + args->size > obj->size) {
936                 drm_gem_object_unreference(obj);
937                 return -EINVAL;
938         }
939
940         /* We can only do the GTT pwrite on untiled buffers, as otherwise
941          * it would end up going through the fenced access, and we'll get
942          * different detiling behavior between reading and writing.
943          * pread/pwrite currently are reading and writing from the CPU
944          * perspective, requiring manual detiling by the client.
945          */
946         if (obj_priv->phys_obj)
947                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
948         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
949                  dev->gtt_total != 0) {
950                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
951                 if (ret == -EFAULT) {
952                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
953                                                        file_priv);
954                 }
955         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
956                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
957         } else {
958                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
959                 if (ret == -EFAULT) {
960                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
961                                                          file_priv);
962                 }
963         }
964
965 #if WATCH_PWRITE
966         if (ret)
967                 DRM_INFO("pwrite failed %d\n", ret);
968 #endif
969
970         drm_gem_object_unreference(obj);
971
972         return ret;
973 }
974
975 /**
976  * Called when user space prepares to use an object with the CPU, either
977  * through the mmap ioctl's mapping or a GTT mapping.
978  */
979 int
980 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
981                           struct drm_file *file_priv)
982 {
983         struct drm_i915_private *dev_priv = dev->dev_private;
984         struct drm_i915_gem_set_domain *args = data;
985         struct drm_gem_object *obj;
986         struct drm_i915_gem_object *obj_priv;
987         uint32_t read_domains = args->read_domains;
988         uint32_t write_domain = args->write_domain;
989         int ret;
990
991         if (!(dev->driver->driver_features & DRIVER_GEM))
992                 return -ENODEV;
993
994         /* Only handle setting domains to types used by the CPU. */
995         if (write_domain & I915_GEM_GPU_DOMAINS)
996                 return -EINVAL;
997
998         if (read_domains & I915_GEM_GPU_DOMAINS)
999                 return -EINVAL;
1000
1001         /* Having something in the write domain implies it's in the read
1002          * domain, and only that read domain.  Enforce that in the request.
1003          */
1004         if (write_domain != 0 && read_domains != write_domain)
1005                 return -EINVAL;
1006
1007         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1008         if (obj == NULL)
1009                 return -EBADF;
1010         obj_priv = obj->driver_private;
1011
1012         mutex_lock(&dev->struct_mutex);
1013
1014         intel_mark_busy(dev, obj);
1015
1016 #if WATCH_BUF
1017         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1018                  obj, obj->size, read_domains, write_domain);
1019 #endif
1020         if (read_domains & I915_GEM_DOMAIN_GTT) {
1021                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1022
1023                 /* Update the LRU on the fence for the CPU access that's
1024                  * about to occur.
1025                  */
1026                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1027                         list_move_tail(&obj_priv->fence_list,
1028                                        &dev_priv->mm.fence_list);
1029                 }
1030
1031                 /* Silently promote "you're not bound, there was nothing to do"
1032                  * to success, since the client was just asking us to
1033                  * make sure everything was done.
1034                  */
1035                 if (ret == -EINVAL)
1036                         ret = 0;
1037         } else {
1038                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1039         }
1040
1041         drm_gem_object_unreference(obj);
1042         mutex_unlock(&dev->struct_mutex);
1043         return ret;
1044 }
1045
1046 /**
1047  * Called when user space has done writes to this buffer
1048  */
1049 int
1050 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1051                       struct drm_file *file_priv)
1052 {
1053         struct drm_i915_gem_sw_finish *args = data;
1054         struct drm_gem_object *obj;
1055         struct drm_i915_gem_object *obj_priv;
1056         int ret = 0;
1057
1058         if (!(dev->driver->driver_features & DRIVER_GEM))
1059                 return -ENODEV;
1060
1061         mutex_lock(&dev->struct_mutex);
1062         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1063         if (obj == NULL) {
1064                 mutex_unlock(&dev->struct_mutex);
1065                 return -EBADF;
1066         }
1067
1068 #if WATCH_BUF
1069         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1070                  __func__, args->handle, obj, obj->size);
1071 #endif
1072         obj_priv = obj->driver_private;
1073
1074         /* Pinned buffers may be scanout, so flush the cache */
1075         if (obj_priv->pin_count)
1076                 i915_gem_object_flush_cpu_write_domain(obj);
1077
1078         drm_gem_object_unreference(obj);
1079         mutex_unlock(&dev->struct_mutex);
1080         return ret;
1081 }
1082
1083 /**
1084  * Maps the contents of an object, returning the address it is mapped
1085  * into.
1086  *
1087  * While the mapping holds a reference on the contents of the object, it doesn't
1088  * imply a ref on the object itself.
1089  */
1090 int
1091 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1092                    struct drm_file *file_priv)
1093 {
1094         struct drm_i915_gem_mmap *args = data;
1095         struct drm_gem_object *obj;
1096         loff_t offset;
1097         unsigned long addr;
1098
1099         if (!(dev->driver->driver_features & DRIVER_GEM))
1100                 return -ENODEV;
1101
1102         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1103         if (obj == NULL)
1104                 return -EBADF;
1105
1106         offset = args->offset;
1107
1108         down_write(&current->mm->mmap_sem);
1109         addr = do_mmap(obj->filp, 0, args->size,
1110                        PROT_READ | PROT_WRITE, MAP_SHARED,
1111                        args->offset);
1112         up_write(&current->mm->mmap_sem);
1113         mutex_lock(&dev->struct_mutex);
1114         drm_gem_object_unreference(obj);
1115         mutex_unlock(&dev->struct_mutex);
1116         if (IS_ERR((void *)addr))
1117                 return addr;
1118
1119         args->addr_ptr = (uint64_t) addr;
1120
1121         return 0;
1122 }
1123
1124 /**
1125  * i915_gem_fault - fault a page into the GTT
1126  * vma: VMA in question
1127  * vmf: fault info
1128  *
1129  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1130  * from userspace.  The fault handler takes care of binding the object to
1131  * the GTT (if needed), allocating and programming a fence register (again,
1132  * only if needed based on whether the old reg is still valid or the object
1133  * is tiled) and inserting a new PTE into the faulting process.
1134  *
1135  * Note that the faulting process may involve evicting existing objects
1136  * from the GTT and/or fence registers to make room.  So performance may
1137  * suffer if the GTT working set is large or there are few fence registers
1138  * left.
1139  */
1140 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1141 {
1142         struct drm_gem_object *obj = vma->vm_private_data;
1143         struct drm_device *dev = obj->dev;
1144         struct drm_i915_private *dev_priv = dev->dev_private;
1145         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1146         pgoff_t page_offset;
1147         unsigned long pfn;
1148         int ret = 0;
1149         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1150
1151         /* We don't use vmf->pgoff since that has the fake offset */
1152         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1153                 PAGE_SHIFT;
1154
1155         /* Now bind it into the GTT if needed */
1156         mutex_lock(&dev->struct_mutex);
1157         if (!obj_priv->gtt_space) {
1158                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1159                 if (ret) {
1160                         mutex_unlock(&dev->struct_mutex);
1161                         return VM_FAULT_SIGBUS;
1162                 }
1163                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1164
1165                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1166                 if (ret) {
1167                         mutex_unlock(&dev->struct_mutex);
1168                         return VM_FAULT_SIGBUS;
1169                 }
1170         }
1171
1172         /* Need a new fence register? */
1173         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1174                 ret = i915_gem_object_get_fence_reg(obj);
1175                 if (ret) {
1176                         mutex_unlock(&dev->struct_mutex);
1177                         return VM_FAULT_SIGBUS;
1178                 }
1179         }
1180
1181         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1182                 page_offset;
1183
1184         /* Finally, remap it using the new GTT offset */
1185         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1186
1187         mutex_unlock(&dev->struct_mutex);
1188
1189         switch (ret) {
1190         case -ENOMEM:
1191         case -EAGAIN:
1192                 return VM_FAULT_OOM;
1193         case -EFAULT:
1194         case -EINVAL:
1195                 return VM_FAULT_SIGBUS;
1196         default:
1197                 return VM_FAULT_NOPAGE;
1198         }
1199 }
1200
1201 /**
1202  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1203  * @obj: obj in question
1204  *
1205  * GEM memory mapping works by handing back to userspace a fake mmap offset
1206  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1207  * up the object based on the offset and sets up the various memory mapping
1208  * structures.
1209  *
1210  * This routine allocates and attaches a fake offset for @obj.
1211  */
1212 static int
1213 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1214 {
1215         struct drm_device *dev = obj->dev;
1216         struct drm_gem_mm *mm = dev->mm_private;
1217         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1218         struct drm_map_list *list;
1219         struct drm_local_map *map;
1220         int ret = 0;
1221
1222         /* Set the object up for mmap'ing */
1223         list = &obj->map_list;
1224         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1225         if (!list->map)
1226                 return -ENOMEM;
1227
1228         map = list->map;
1229         map->type = _DRM_GEM;
1230         map->size = obj->size;
1231         map->handle = obj;
1232
1233         /* Get a DRM GEM mmap offset allocated... */
1234         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1235                                                     obj->size / PAGE_SIZE, 0, 0);
1236         if (!list->file_offset_node) {
1237                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1238                 ret = -ENOMEM;
1239                 goto out_free_list;
1240         }
1241
1242         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1243                                                   obj->size / PAGE_SIZE, 0);
1244         if (!list->file_offset_node) {
1245                 ret = -ENOMEM;
1246                 goto out_free_list;
1247         }
1248
1249         list->hash.key = list->file_offset_node->start;
1250         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1251                 DRM_ERROR("failed to add to map hash\n");
1252                 goto out_free_mm;
1253         }
1254
1255         /* By now we should be all set, any drm_mmap request on the offset
1256          * below will get to our mmap & fault handler */
1257         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1258
1259         return 0;
1260
1261 out_free_mm:
1262         drm_mm_put_block(list->file_offset_node);
1263 out_free_list:
1264         kfree(list->map);
1265
1266         return ret;
1267 }
1268
1269 /**
1270  * i915_gem_release_mmap - remove physical page mappings
1271  * @obj: obj in question
1272  *
1273  * Preserve the reservation of the mmaping with the DRM core code, but
1274  * relinquish ownership of the pages back to the system.
1275  *
1276  * It is vital that we remove the page mapping if we have mapped a tiled
1277  * object through the GTT and then lose the fence register due to
1278  * resource pressure. Similarly if the object has been moved out of the
1279  * aperture, than pages mapped into userspace must be revoked. Removing the
1280  * mapping will then trigger a page fault on the next user access, allowing
1281  * fixup by i915_gem_fault().
1282  */
1283 void
1284 i915_gem_release_mmap(struct drm_gem_object *obj)
1285 {
1286         struct drm_device *dev = obj->dev;
1287         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1288
1289         if (dev->dev_mapping)
1290                 unmap_mapping_range(dev->dev_mapping,
1291                                     obj_priv->mmap_offset, obj->size, 1);
1292 }
1293
1294 static void
1295 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1296 {
1297         struct drm_device *dev = obj->dev;
1298         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1299         struct drm_gem_mm *mm = dev->mm_private;
1300         struct drm_map_list *list;
1301
1302         list = &obj->map_list;
1303         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1304
1305         if (list->file_offset_node) {
1306                 drm_mm_put_block(list->file_offset_node);
1307                 list->file_offset_node = NULL;
1308         }
1309
1310         if (list->map) {
1311                 kfree(list->map);
1312                 list->map = NULL;
1313         }
1314
1315         obj_priv->mmap_offset = 0;
1316 }
1317
1318 /**
1319  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1320  * @obj: object to check
1321  *
1322  * Return the required GTT alignment for an object, taking into account
1323  * potential fence register mapping if needed.
1324  */
1325 static uint32_t
1326 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1327 {
1328         struct drm_device *dev = obj->dev;
1329         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1330         int start, i;
1331
1332         /*
1333          * Minimum alignment is 4k (GTT page size), but might be greater
1334          * if a fence register is needed for the object.
1335          */
1336         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1337                 return 4096;
1338
1339         /*
1340          * Previous chips need to be aligned to the size of the smallest
1341          * fence register that can contain the object.
1342          */
1343         if (IS_I9XX(dev))
1344                 start = 1024*1024;
1345         else
1346                 start = 512*1024;
1347
1348         for (i = start; i < obj->size; i <<= 1)
1349                 ;
1350
1351         return i;
1352 }
1353
1354 /**
1355  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1356  * @dev: DRM device
1357  * @data: GTT mapping ioctl data
1358  * @file_priv: GEM object info
1359  *
1360  * Simply returns the fake offset to userspace so it can mmap it.
1361  * The mmap call will end up in drm_gem_mmap(), which will set things
1362  * up so we can get faults in the handler above.
1363  *
1364  * The fault handler will take care of binding the object into the GTT
1365  * (since it may have been evicted to make room for something), allocating
1366  * a fence register, and mapping the appropriate aperture address into
1367  * userspace.
1368  */
1369 int
1370 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1371                         struct drm_file *file_priv)
1372 {
1373         struct drm_i915_gem_mmap_gtt *args = data;
1374         struct drm_i915_private *dev_priv = dev->dev_private;
1375         struct drm_gem_object *obj;
1376         struct drm_i915_gem_object *obj_priv;
1377         int ret;
1378
1379         if (!(dev->driver->driver_features & DRIVER_GEM))
1380                 return -ENODEV;
1381
1382         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1383         if (obj == NULL)
1384                 return -EBADF;
1385
1386         mutex_lock(&dev->struct_mutex);
1387
1388         obj_priv = obj->driver_private;
1389
1390         if (!obj_priv->mmap_offset) {
1391                 ret = i915_gem_create_mmap_offset(obj);
1392                 if (ret) {
1393                         drm_gem_object_unreference(obj);
1394                         mutex_unlock(&dev->struct_mutex);
1395                         return ret;
1396                 }
1397         }
1398
1399         args->offset = obj_priv->mmap_offset;
1400
1401         /*
1402          * Pull it into the GTT so that we have a page list (makes the
1403          * initial fault faster and any subsequent flushing possible).
1404          */
1405         if (!obj_priv->agp_mem) {
1406                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1407                 if (ret) {
1408                         drm_gem_object_unreference(obj);
1409                         mutex_unlock(&dev->struct_mutex);
1410                         return ret;
1411                 }
1412                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1413         }
1414
1415         drm_gem_object_unreference(obj);
1416         mutex_unlock(&dev->struct_mutex);
1417
1418         return 0;
1419 }
1420
1421 void
1422 i915_gem_object_put_pages(struct drm_gem_object *obj)
1423 {
1424         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1425         int page_count = obj->size / PAGE_SIZE;
1426         int i;
1427
1428         BUG_ON(obj_priv->pages_refcount == 0);
1429
1430         if (--obj_priv->pages_refcount != 0)
1431                 return;
1432
1433         if (obj_priv->tiling_mode != I915_TILING_NONE)
1434                 i915_gem_object_save_bit_17_swizzle(obj);
1435
1436         for (i = 0; i < page_count; i++)
1437                 if (obj_priv->pages[i] != NULL) {
1438                         if (obj_priv->dirty)
1439                                 set_page_dirty(obj_priv->pages[i]);
1440                         mark_page_accessed(obj_priv->pages[i]);
1441                         page_cache_release(obj_priv->pages[i]);
1442                 }
1443         obj_priv->dirty = 0;
1444
1445         drm_free_large(obj_priv->pages);
1446         obj_priv->pages = NULL;
1447 }
1448
1449 static void
1450 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1451 {
1452         struct drm_device *dev = obj->dev;
1453         drm_i915_private_t *dev_priv = dev->dev_private;
1454         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1455
1456         /* Add a reference if we're newly entering the active list. */
1457         if (!obj_priv->active) {
1458                 drm_gem_object_reference(obj);
1459                 obj_priv->active = 1;
1460         }
1461         /* Move from whatever list we were on to the tail of execution. */
1462         spin_lock(&dev_priv->mm.active_list_lock);
1463         list_move_tail(&obj_priv->list,
1464                        &dev_priv->mm.active_list);
1465         spin_unlock(&dev_priv->mm.active_list_lock);
1466         obj_priv->last_rendering_seqno = seqno;
1467 }
1468
1469 static void
1470 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1471 {
1472         struct drm_device *dev = obj->dev;
1473         drm_i915_private_t *dev_priv = dev->dev_private;
1474         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1475
1476         BUG_ON(!obj_priv->active);
1477         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1478         obj_priv->last_rendering_seqno = 0;
1479 }
1480
1481 static void
1482 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1483 {
1484         struct drm_device *dev = obj->dev;
1485         drm_i915_private_t *dev_priv = dev->dev_private;
1486         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1487
1488         i915_verify_inactive(dev, __FILE__, __LINE__);
1489         if (obj_priv->pin_count != 0)
1490                 list_del_init(&obj_priv->list);
1491         else
1492                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1493
1494         obj_priv->last_rendering_seqno = 0;
1495         if (obj_priv->active) {
1496                 obj_priv->active = 0;
1497                 drm_gem_object_unreference(obj);
1498         }
1499         i915_verify_inactive(dev, __FILE__, __LINE__);
1500 }
1501
1502 /**
1503  * Creates a new sequence number, emitting a write of it to the status page
1504  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1505  *
1506  * Must be called with struct_lock held.
1507  *
1508  * Returned sequence numbers are nonzero on success.
1509  */
1510 static uint32_t
1511 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1512                  uint32_t flush_domains)
1513 {
1514         drm_i915_private_t *dev_priv = dev->dev_private;
1515         struct drm_i915_file_private *i915_file_priv = NULL;
1516         struct drm_i915_gem_request *request;
1517         uint32_t seqno;
1518         int was_empty;
1519         RING_LOCALS;
1520
1521         if (file_priv != NULL)
1522                 i915_file_priv = file_priv->driver_priv;
1523
1524         request = kzalloc(sizeof(*request), GFP_KERNEL);
1525         if (request == NULL)
1526                 return 0;
1527
1528         /* Grab the seqno we're going to make this request be, and bump the
1529          * next (skipping 0 so it can be the reserved no-seqno value).
1530          */
1531         seqno = dev_priv->mm.next_gem_seqno;
1532         dev_priv->mm.next_gem_seqno++;
1533         if (dev_priv->mm.next_gem_seqno == 0)
1534                 dev_priv->mm.next_gem_seqno++;
1535
1536         BEGIN_LP_RING(4);
1537         OUT_RING(MI_STORE_DWORD_INDEX);
1538         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1539         OUT_RING(seqno);
1540
1541         OUT_RING(MI_USER_INTERRUPT);
1542         ADVANCE_LP_RING();
1543
1544         DRM_DEBUG("%d\n", seqno);
1545
1546         request->seqno = seqno;
1547         request->emitted_jiffies = jiffies;
1548         was_empty = list_empty(&dev_priv->mm.request_list);
1549         list_add_tail(&request->list, &dev_priv->mm.request_list);
1550         if (i915_file_priv) {
1551                 list_add_tail(&request->client_list,
1552                               &i915_file_priv->mm.request_list);
1553         } else {
1554                 INIT_LIST_HEAD(&request->client_list);
1555         }
1556
1557         /* Associate any objects on the flushing list matching the write
1558          * domain we're flushing with our flush.
1559          */
1560         if (flush_domains != 0) {
1561                 struct drm_i915_gem_object *obj_priv, *next;
1562
1563                 list_for_each_entry_safe(obj_priv, next,
1564                                          &dev_priv->mm.flushing_list, list) {
1565                         struct drm_gem_object *obj = obj_priv->obj;
1566
1567                         if ((obj->write_domain & flush_domains) ==
1568                             obj->write_domain) {
1569                                 obj->write_domain = 0;
1570                                 i915_gem_object_move_to_active(obj, seqno);
1571                         }
1572                 }
1573
1574         }
1575
1576         if (!dev_priv->mm.suspended) {
1577                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1578                 if (was_empty)
1579                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1580         }
1581         return seqno;
1582 }
1583
1584 /**
1585  * Command execution barrier
1586  *
1587  * Ensures that all commands in the ring are finished
1588  * before signalling the CPU
1589  */
1590 static uint32_t
1591 i915_retire_commands(struct drm_device *dev)
1592 {
1593         drm_i915_private_t *dev_priv = dev->dev_private;
1594         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1595         uint32_t flush_domains = 0;
1596         RING_LOCALS;
1597
1598         /* The sampler always gets flushed on i965 (sigh) */
1599         if (IS_I965G(dev))
1600                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1601         BEGIN_LP_RING(2);
1602         OUT_RING(cmd);
1603         OUT_RING(0); /* noop */
1604         ADVANCE_LP_RING();
1605         return flush_domains;
1606 }
1607
1608 /**
1609  * Moves buffers associated only with the given active seqno from the active
1610  * to inactive list, potentially freeing them.
1611  */
1612 static void
1613 i915_gem_retire_request(struct drm_device *dev,
1614                         struct drm_i915_gem_request *request)
1615 {
1616         drm_i915_private_t *dev_priv = dev->dev_private;
1617
1618         /* Move any buffers on the active list that are no longer referenced
1619          * by the ringbuffer to the flushing/inactive lists as appropriate.
1620          */
1621         spin_lock(&dev_priv->mm.active_list_lock);
1622         while (!list_empty(&dev_priv->mm.active_list)) {
1623                 struct drm_gem_object *obj;
1624                 struct drm_i915_gem_object *obj_priv;
1625
1626                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1627                                             struct drm_i915_gem_object,
1628                                             list);
1629                 obj = obj_priv->obj;
1630
1631                 /* If the seqno being retired doesn't match the oldest in the
1632                  * list, then the oldest in the list must still be newer than
1633                  * this seqno.
1634                  */
1635                 if (obj_priv->last_rendering_seqno != request->seqno)
1636                         goto out;
1637
1638 #if WATCH_LRU
1639                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1640                          __func__, request->seqno, obj);
1641 #endif
1642
1643                 if (obj->write_domain != 0)
1644                         i915_gem_object_move_to_flushing(obj);
1645                 else {
1646                         /* Take a reference on the object so it won't be
1647                          * freed while the spinlock is held.  The list
1648                          * protection for this spinlock is safe when breaking
1649                          * the lock like this since the next thing we do
1650                          * is just get the head of the list again.
1651                          */
1652                         drm_gem_object_reference(obj);
1653                         i915_gem_object_move_to_inactive(obj);
1654                         spin_unlock(&dev_priv->mm.active_list_lock);
1655                         drm_gem_object_unreference(obj);
1656                         spin_lock(&dev_priv->mm.active_list_lock);
1657                 }
1658         }
1659 out:
1660         spin_unlock(&dev_priv->mm.active_list_lock);
1661 }
1662
1663 /**
1664  * Returns true if seq1 is later than seq2.
1665  */
1666 bool
1667 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1668 {
1669         return (int32_t)(seq1 - seq2) >= 0;
1670 }
1671
1672 uint32_t
1673 i915_get_gem_seqno(struct drm_device *dev)
1674 {
1675         drm_i915_private_t *dev_priv = dev->dev_private;
1676
1677         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1678 }
1679
1680 /**
1681  * This function clears the request list as sequence numbers are passed.
1682  */
1683 void
1684 i915_gem_retire_requests(struct drm_device *dev)
1685 {
1686         drm_i915_private_t *dev_priv = dev->dev_private;
1687         uint32_t seqno;
1688
1689         if (!dev_priv->hw_status_page)
1690                 return;
1691
1692         seqno = i915_get_gem_seqno(dev);
1693
1694         while (!list_empty(&dev_priv->mm.request_list)) {
1695                 struct drm_i915_gem_request *request;
1696                 uint32_t retiring_seqno;
1697
1698                 request = list_first_entry(&dev_priv->mm.request_list,
1699                                            struct drm_i915_gem_request,
1700                                            list);
1701                 retiring_seqno = request->seqno;
1702
1703                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1704                     atomic_read(&dev_priv->mm.wedged)) {
1705                         i915_gem_retire_request(dev, request);
1706
1707                         list_del(&request->list);
1708                         list_del(&request->client_list);
1709                         kfree(request);
1710                 } else
1711                         break;
1712         }
1713 }
1714
1715 void
1716 i915_gem_retire_work_handler(struct work_struct *work)
1717 {
1718         drm_i915_private_t *dev_priv;
1719         struct drm_device *dev;
1720
1721         dev_priv = container_of(work, drm_i915_private_t,
1722                                 mm.retire_work.work);
1723         dev = dev_priv->dev;
1724
1725         mutex_lock(&dev->struct_mutex);
1726         i915_gem_retire_requests(dev);
1727         if (!dev_priv->mm.suspended &&
1728             !list_empty(&dev_priv->mm.request_list))
1729                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1730         mutex_unlock(&dev->struct_mutex);
1731 }
1732
1733 /**
1734  * Waits for a sequence number to be signaled, and cleans up the
1735  * request and object lists appropriately for that event.
1736  */
1737 static int
1738 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1739 {
1740         drm_i915_private_t *dev_priv = dev->dev_private;
1741         u32 ier;
1742         int ret = 0;
1743
1744         BUG_ON(seqno == 0);
1745
1746         if (atomic_read(&dev_priv->mm.wedged))
1747                 return -EIO;
1748
1749         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1750                 if (IS_IGDNG(dev))
1751                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1752                 else
1753                         ier = I915_READ(IER);
1754                 if (!ier) {
1755                         DRM_ERROR("something (likely vbetool) disabled "
1756                                   "interrupts, re-enabling\n");
1757                         i915_driver_irq_preinstall(dev);
1758                         i915_driver_irq_postinstall(dev);
1759                 }
1760
1761                 dev_priv->mm.waiting_gem_seqno = seqno;
1762                 i915_user_irq_get(dev);
1763                 ret = wait_event_interruptible(dev_priv->irq_queue,
1764                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1765                                                                  seqno) ||
1766                                                atomic_read(&dev_priv->mm.wedged));
1767                 i915_user_irq_put(dev);
1768                 dev_priv->mm.waiting_gem_seqno = 0;
1769         }
1770         if (atomic_read(&dev_priv->mm.wedged))
1771                 ret = -EIO;
1772
1773         if (ret && ret != -ERESTARTSYS)
1774                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1775                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1776
1777         /* Directly dispatch request retiring.  While we have the work queue
1778          * to handle this, the waiter on a request often wants an associated
1779          * buffer to have made it to the inactive list, and we would need
1780          * a separate wait queue to handle that.
1781          */
1782         if (ret == 0)
1783                 i915_gem_retire_requests(dev);
1784
1785         return ret;
1786 }
1787
1788 static void
1789 i915_gem_flush(struct drm_device *dev,
1790                uint32_t invalidate_domains,
1791                uint32_t flush_domains)
1792 {
1793         drm_i915_private_t *dev_priv = dev->dev_private;
1794         uint32_t cmd;
1795         RING_LOCALS;
1796
1797 #if WATCH_EXEC
1798         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1799                   invalidate_domains, flush_domains);
1800 #endif
1801
1802         if (flush_domains & I915_GEM_DOMAIN_CPU)
1803                 drm_agp_chipset_flush(dev);
1804
1805         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1806                 /*
1807                  * read/write caches:
1808                  *
1809                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1810                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1811                  * also flushed at 2d versus 3d pipeline switches.
1812                  *
1813                  * read-only caches:
1814                  *
1815                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1816                  * MI_READ_FLUSH is set, and is always flushed on 965.
1817                  *
1818                  * I915_GEM_DOMAIN_COMMAND may not exist?
1819                  *
1820                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1821                  * invalidated when MI_EXE_FLUSH is set.
1822                  *
1823                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1824                  * invalidated with every MI_FLUSH.
1825                  *
1826                  * TLBs:
1827                  *
1828                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1829                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1830                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1831                  * are flushed at any MI_FLUSH.
1832                  */
1833
1834                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1835                 if ((invalidate_domains|flush_domains) &
1836                     I915_GEM_DOMAIN_RENDER)
1837                         cmd &= ~MI_NO_WRITE_FLUSH;
1838                 if (!IS_I965G(dev)) {
1839                         /*
1840                          * On the 965, the sampler cache always gets flushed
1841                          * and this bit is reserved.
1842                          */
1843                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1844                                 cmd |= MI_READ_FLUSH;
1845                 }
1846                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1847                         cmd |= MI_EXE_FLUSH;
1848
1849 #if WATCH_EXEC
1850                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1851 #endif
1852                 BEGIN_LP_RING(2);
1853                 OUT_RING(cmd);
1854                 OUT_RING(0); /* noop */
1855                 ADVANCE_LP_RING();
1856         }
1857 }
1858
1859 /**
1860  * Ensures that all rendering to the object has completed and the object is
1861  * safe to unbind from the GTT or access from the CPU.
1862  */
1863 static int
1864 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1865 {
1866         struct drm_device *dev = obj->dev;
1867         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1868         int ret;
1869
1870         /* This function only exists to support waiting for existing rendering,
1871          * not for emitting required flushes.
1872          */
1873         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1874
1875         /* If there is rendering queued on the buffer being evicted, wait for
1876          * it.
1877          */
1878         if (obj_priv->active) {
1879 #if WATCH_BUF
1880                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1881                           __func__, obj, obj_priv->last_rendering_seqno);
1882 #endif
1883                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1884                 if (ret != 0)
1885                         return ret;
1886         }
1887
1888         return 0;
1889 }
1890
1891 /**
1892  * Unbinds an object from the GTT aperture.
1893  */
1894 int
1895 i915_gem_object_unbind(struct drm_gem_object *obj)
1896 {
1897         struct drm_device *dev = obj->dev;
1898         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1899         int ret = 0;
1900
1901 #if WATCH_BUF
1902         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1903         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1904 #endif
1905         if (obj_priv->gtt_space == NULL)
1906                 return 0;
1907
1908         if (obj_priv->pin_count != 0) {
1909                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1910                 return -EINVAL;
1911         }
1912
1913         /* blow away mappings if mapped through GTT */
1914         i915_gem_release_mmap(obj);
1915
1916         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1917                 i915_gem_clear_fence_reg(obj);
1918
1919         /* Move the object to the CPU domain to ensure that
1920          * any possible CPU writes while it's not in the GTT
1921          * are flushed when we go to remap it. This will
1922          * also ensure that all pending GPU writes are finished
1923          * before we unbind.
1924          */
1925         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1926         if (ret) {
1927                 if (ret != -ERESTARTSYS)
1928                         DRM_ERROR("set_domain failed: %d\n", ret);
1929                 return ret;
1930         }
1931
1932         BUG_ON(obj_priv->active);
1933
1934         if (obj_priv->agp_mem != NULL) {
1935                 drm_unbind_agp(obj_priv->agp_mem);
1936                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1937                 obj_priv->agp_mem = NULL;
1938         }
1939
1940         i915_gem_object_put_pages(obj);
1941
1942         if (obj_priv->gtt_space) {
1943                 atomic_dec(&dev->gtt_count);
1944                 atomic_sub(obj->size, &dev->gtt_memory);
1945
1946                 drm_mm_put_block(obj_priv->gtt_space);
1947                 obj_priv->gtt_space = NULL;
1948         }
1949
1950         /* Remove ourselves from the LRU list if present. */
1951         if (!list_empty(&obj_priv->list))
1952                 list_del_init(&obj_priv->list);
1953
1954         return 0;
1955 }
1956
1957 static int
1958 i915_gem_evict_something(struct drm_device *dev)
1959 {
1960         drm_i915_private_t *dev_priv = dev->dev_private;
1961         struct drm_gem_object *obj;
1962         struct drm_i915_gem_object *obj_priv;
1963         int ret = 0;
1964
1965         for (;;) {
1966                 /* If there's an inactive buffer available now, grab it
1967                  * and be done.
1968                  */
1969                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1970                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1971                                                     struct drm_i915_gem_object,
1972                                                     list);
1973                         obj = obj_priv->obj;
1974                         BUG_ON(obj_priv->pin_count != 0);
1975 #if WATCH_LRU
1976                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1977 #endif
1978                         BUG_ON(obj_priv->active);
1979
1980                         /* Wait on the rendering and unbind the buffer. */
1981                         ret = i915_gem_object_unbind(obj);
1982                         break;
1983                 }
1984
1985                 /* If we didn't get anything, but the ring is still processing
1986                  * things, wait for one of those things to finish and hopefully
1987                  * leave us a buffer to evict.
1988                  */
1989                 if (!list_empty(&dev_priv->mm.request_list)) {
1990                         struct drm_i915_gem_request *request;
1991
1992                         request = list_first_entry(&dev_priv->mm.request_list,
1993                                                    struct drm_i915_gem_request,
1994                                                    list);
1995
1996                         ret = i915_wait_request(dev, request->seqno);
1997                         if (ret)
1998                                 break;
1999
2000                         /* if waiting caused an object to become inactive,
2001                          * then loop around and wait for it. Otherwise, we
2002                          * assume that waiting freed and unbound something,
2003                          * so there should now be some space in the GTT
2004                          */
2005                         if (!list_empty(&dev_priv->mm.inactive_list))
2006                                 continue;
2007                         break;
2008                 }
2009
2010                 /* If we didn't have anything on the request list but there
2011                  * are buffers awaiting a flush, emit one and try again.
2012                  * When we wait on it, those buffers waiting for that flush
2013                  * will get moved to inactive.
2014                  */
2015                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2016                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2017                                                     struct drm_i915_gem_object,
2018                                                     list);
2019                         obj = obj_priv->obj;
2020
2021                         i915_gem_flush(dev,
2022                                        obj->write_domain,
2023                                        obj->write_domain);
2024                         i915_add_request(dev, NULL, obj->write_domain);
2025
2026                         obj = NULL;
2027                         continue;
2028                 }
2029
2030                 DRM_ERROR("inactive empty %d request empty %d "
2031                           "flushing empty %d\n",
2032                           list_empty(&dev_priv->mm.inactive_list),
2033                           list_empty(&dev_priv->mm.request_list),
2034                           list_empty(&dev_priv->mm.flushing_list));
2035                 /* If we didn't do any of the above, there's nothing to be done
2036                  * and we just can't fit it in.
2037                  */
2038                 return -ENOSPC;
2039         }
2040         return ret;
2041 }
2042
2043 static int
2044 i915_gem_evict_everything(struct drm_device *dev)
2045 {
2046         int ret;
2047
2048         for (;;) {
2049                 ret = i915_gem_evict_something(dev);
2050                 if (ret != 0)
2051                         break;
2052         }
2053         if (ret == -ENOSPC)
2054                 return 0;
2055         return ret;
2056 }
2057
2058 int
2059 i915_gem_object_get_pages(struct drm_gem_object *obj)
2060 {
2061         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2062         int page_count, i;
2063         struct address_space *mapping;
2064         struct inode *inode;
2065         struct page *page;
2066         int ret;
2067
2068         if (obj_priv->pages_refcount++ != 0)
2069                 return 0;
2070
2071         /* Get the list of pages out of our struct file.  They'll be pinned
2072          * at this point until we release them.
2073          */
2074         page_count = obj->size / PAGE_SIZE;
2075         BUG_ON(obj_priv->pages != NULL);
2076         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2077         if (obj_priv->pages == NULL) {
2078                 DRM_ERROR("Faled to allocate page list\n");
2079                 obj_priv->pages_refcount--;
2080                 return -ENOMEM;
2081         }
2082
2083         inode = obj->filp->f_path.dentry->d_inode;
2084         mapping = inode->i_mapping;
2085         for (i = 0; i < page_count; i++) {
2086                 page = read_mapping_page(mapping, i, NULL);
2087                 if (IS_ERR(page)) {
2088                         ret = PTR_ERR(page);
2089                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2090                         i915_gem_object_put_pages(obj);
2091                         return ret;
2092                 }
2093                 obj_priv->pages[i] = page;
2094         }
2095
2096         if (obj_priv->tiling_mode != I915_TILING_NONE)
2097                 i915_gem_object_do_bit_17_swizzle(obj);
2098
2099         return 0;
2100 }
2101
2102 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2103 {
2104         struct drm_gem_object *obj = reg->obj;
2105         struct drm_device *dev = obj->dev;
2106         drm_i915_private_t *dev_priv = dev->dev_private;
2107         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2108         int regnum = obj_priv->fence_reg;
2109         uint64_t val;
2110
2111         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2112                     0xfffff000) << 32;
2113         val |= obj_priv->gtt_offset & 0xfffff000;
2114         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2115         if (obj_priv->tiling_mode == I915_TILING_Y)
2116                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2117         val |= I965_FENCE_REG_VALID;
2118
2119         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2120 }
2121
2122 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2123 {
2124         struct drm_gem_object *obj = reg->obj;
2125         struct drm_device *dev = obj->dev;
2126         drm_i915_private_t *dev_priv = dev->dev_private;
2127         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2128         int regnum = obj_priv->fence_reg;
2129         int tile_width;
2130         uint32_t fence_reg, val;
2131         uint32_t pitch_val;
2132
2133         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2134             (obj_priv->gtt_offset & (obj->size - 1))) {
2135                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2136                      __func__, obj_priv->gtt_offset, obj->size);
2137                 return;
2138         }
2139
2140         if (obj_priv->tiling_mode == I915_TILING_Y &&
2141             HAS_128_BYTE_Y_TILING(dev))
2142                 tile_width = 128;
2143         else
2144                 tile_width = 512;
2145
2146         /* Note: pitch better be a power of two tile widths */
2147         pitch_val = obj_priv->stride / tile_width;
2148         pitch_val = ffs(pitch_val) - 1;
2149
2150         val = obj_priv->gtt_offset;
2151         if (obj_priv->tiling_mode == I915_TILING_Y)
2152                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2153         val |= I915_FENCE_SIZE_BITS(obj->size);
2154         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2155         val |= I830_FENCE_REG_VALID;
2156
2157         if (regnum < 8)
2158                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2159         else
2160                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2161         I915_WRITE(fence_reg, val);
2162 }
2163
2164 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2165 {
2166         struct drm_gem_object *obj = reg->obj;
2167         struct drm_device *dev = obj->dev;
2168         drm_i915_private_t *dev_priv = dev->dev_private;
2169         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2170         int regnum = obj_priv->fence_reg;
2171         uint32_t val;
2172         uint32_t pitch_val;
2173         uint32_t fence_size_bits;
2174
2175         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2176             (obj_priv->gtt_offset & (obj->size - 1))) {
2177                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2178                      __func__, obj_priv->gtt_offset);
2179                 return;
2180         }
2181
2182         pitch_val = obj_priv->stride / 128;
2183         pitch_val = ffs(pitch_val) - 1;
2184         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2185
2186         val = obj_priv->gtt_offset;
2187         if (obj_priv->tiling_mode == I915_TILING_Y)
2188                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2189         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2190         WARN_ON(fence_size_bits & ~0x00000f00);
2191         val |= fence_size_bits;
2192         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2193         val |= I830_FENCE_REG_VALID;
2194
2195         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2196 }
2197
2198 /**
2199  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2200  * @obj: object to map through a fence reg
2201  *
2202  * When mapping objects through the GTT, userspace wants to be able to write
2203  * to them without having to worry about swizzling if the object is tiled.
2204  *
2205  * This function walks the fence regs looking for a free one for @obj,
2206  * stealing one if it can't find any.
2207  *
2208  * It then sets up the reg based on the object's properties: address, pitch
2209  * and tiling format.
2210  */
2211 int
2212 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2213 {
2214         struct drm_device *dev = obj->dev;
2215         struct drm_i915_private *dev_priv = dev->dev_private;
2216         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2217         struct drm_i915_fence_reg *reg = NULL;
2218         struct drm_i915_gem_object *old_obj_priv = NULL;
2219         int i, ret, avail;
2220
2221         /* Just update our place in the LRU if our fence is getting used. */
2222         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2223                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2224                 return 0;
2225         }
2226
2227         switch (obj_priv->tiling_mode) {
2228         case I915_TILING_NONE:
2229                 WARN(1, "allocating a fence for non-tiled object?\n");
2230                 break;
2231         case I915_TILING_X:
2232                 if (!obj_priv->stride)
2233                         return -EINVAL;
2234                 WARN((obj_priv->stride & (512 - 1)),
2235                      "object 0x%08x is X tiled but has non-512B pitch\n",
2236                      obj_priv->gtt_offset);
2237                 break;
2238         case I915_TILING_Y:
2239                 if (!obj_priv->stride)
2240                         return -EINVAL;
2241                 WARN((obj_priv->stride & (128 - 1)),
2242                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2243                      obj_priv->gtt_offset);
2244                 break;
2245         }
2246
2247         /* First try to find a free reg */
2248         avail = 0;
2249         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2250                 reg = &dev_priv->fence_regs[i];
2251                 if (!reg->obj)
2252                         break;
2253
2254                 old_obj_priv = reg->obj->driver_private;
2255                 if (!old_obj_priv->pin_count)
2256                     avail++;
2257         }
2258
2259         /* None available, try to steal one or wait for a user to finish */
2260         if (i == dev_priv->num_fence_regs) {
2261                 struct drm_gem_object *old_obj = NULL;
2262
2263                 if (avail == 0)
2264                         return -ENOSPC;
2265
2266                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2267                                     fence_list) {
2268                         old_obj = old_obj_priv->obj;
2269
2270                         if (old_obj_priv->pin_count)
2271                                 continue;
2272
2273                         /* Take a reference, as otherwise the wait_rendering
2274                          * below may cause the object to get freed out from
2275                          * under us.
2276                          */
2277                         drm_gem_object_reference(old_obj);
2278
2279                         /* i915 uses fences for GPU access to tiled buffers */
2280                         if (IS_I965G(dev) || !old_obj_priv->active)
2281                                 break;
2282
2283                         /* This brings the object to the head of the LRU if it
2284                          * had been written to.  The only way this should
2285                          * result in us waiting longer than the expected
2286                          * optimal amount of time is if there was a
2287                          * fence-using buffer later that was read-only.
2288                          */
2289                         i915_gem_object_flush_gpu_write_domain(old_obj);
2290                         ret = i915_gem_object_wait_rendering(old_obj);
2291                         if (ret != 0) {
2292                                 drm_gem_object_unreference(old_obj);
2293                                 return ret;
2294                         }
2295
2296                         break;
2297                 }
2298
2299                 /*
2300                  * Zap this virtual mapping so we can set up a fence again
2301                  * for this object next time we need it.
2302                  */
2303                 i915_gem_release_mmap(old_obj);
2304
2305                 i = old_obj_priv->fence_reg;
2306                 reg = &dev_priv->fence_regs[i];
2307
2308                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2309                 list_del_init(&old_obj_priv->fence_list);
2310
2311                 drm_gem_object_unreference(old_obj);
2312         }
2313
2314         obj_priv->fence_reg = i;
2315         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2316
2317         reg->obj = obj;
2318
2319         if (IS_I965G(dev))
2320                 i965_write_fence_reg(reg);
2321         else if (IS_I9XX(dev))
2322                 i915_write_fence_reg(reg);
2323         else
2324                 i830_write_fence_reg(reg);
2325
2326         return 0;
2327 }
2328
2329 /**
2330  * i915_gem_clear_fence_reg - clear out fence register info
2331  * @obj: object to clear
2332  *
2333  * Zeroes out the fence register itself and clears out the associated
2334  * data structures in dev_priv and obj_priv.
2335  */
2336 static void
2337 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2338 {
2339         struct drm_device *dev = obj->dev;
2340         drm_i915_private_t *dev_priv = dev->dev_private;
2341         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342
2343         if (IS_I965G(dev))
2344                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2345         else {
2346                 uint32_t fence_reg;
2347
2348                 if (obj_priv->fence_reg < 8)
2349                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2350                 else
2351                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2352                                                        8) * 4;
2353
2354                 I915_WRITE(fence_reg, 0);
2355         }
2356
2357         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2358         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2359         list_del_init(&obj_priv->fence_list);
2360 }
2361
2362 /**
2363  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2364  * to the buffer to finish, and then resets the fence register.
2365  * @obj: tiled object holding a fence register.
2366  *
2367  * Zeroes out the fence register itself and clears out the associated
2368  * data structures in dev_priv and obj_priv.
2369  */
2370 int
2371 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2372 {
2373         struct drm_device *dev = obj->dev;
2374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2375
2376         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2377                 return 0;
2378
2379         /* On the i915, GPU access to tiled buffers is via a fence,
2380          * therefore we must wait for any outstanding access to complete
2381          * before clearing the fence.
2382          */
2383         if (!IS_I965G(dev)) {
2384                 int ret;
2385
2386                 i915_gem_object_flush_gpu_write_domain(obj);
2387                 i915_gem_object_flush_gtt_write_domain(obj);
2388                 ret = i915_gem_object_wait_rendering(obj);
2389                 if (ret != 0)
2390                         return ret;
2391         }
2392
2393         i915_gem_clear_fence_reg (obj);
2394
2395         return 0;
2396 }
2397
2398 /**
2399  * Finds free space in the GTT aperture and binds the object there.
2400  */
2401 static int
2402 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2403 {
2404         struct drm_device *dev = obj->dev;
2405         drm_i915_private_t *dev_priv = dev->dev_private;
2406         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2407         struct drm_mm_node *free_space;
2408         int page_count, ret;
2409
2410         if (dev_priv->mm.suspended)
2411                 return -EBUSY;
2412         if (alignment == 0)
2413                 alignment = i915_gem_get_gtt_alignment(obj);
2414         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2415                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2416                 return -EINVAL;
2417         }
2418
2419  search_free:
2420         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2421                                         obj->size, alignment, 0);
2422         if (free_space != NULL) {
2423                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2424                                                        alignment);
2425                 if (obj_priv->gtt_space != NULL) {
2426                         obj_priv->gtt_space->private = obj;
2427                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2428                 }
2429         }
2430         if (obj_priv->gtt_space == NULL) {
2431                 bool lists_empty;
2432
2433                 /* If the gtt is empty and we're still having trouble
2434                  * fitting our object in, we're out of memory.
2435                  */
2436 #if WATCH_LRU
2437                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2438 #endif
2439                 spin_lock(&dev_priv->mm.active_list_lock);
2440                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2441                                list_empty(&dev_priv->mm.flushing_list) &&
2442                                list_empty(&dev_priv->mm.active_list));
2443                 spin_unlock(&dev_priv->mm.active_list_lock);
2444                 if (lists_empty) {
2445                         DRM_ERROR("GTT full, but LRU list empty\n");
2446                         return -ENOSPC;
2447                 }
2448
2449                 ret = i915_gem_evict_something(dev);
2450                 if (ret != 0) {
2451                         if (ret != -ERESTARTSYS)
2452                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2453                         return ret;
2454                 }
2455                 goto search_free;
2456         }
2457
2458 #if WATCH_BUF
2459         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2460                  obj->size, obj_priv->gtt_offset);
2461 #endif
2462         ret = i915_gem_object_get_pages(obj);
2463         if (ret) {
2464                 drm_mm_put_block(obj_priv->gtt_space);
2465                 obj_priv->gtt_space = NULL;
2466                 return ret;
2467         }
2468
2469         page_count = obj->size / PAGE_SIZE;
2470         /* Create an AGP memory structure pointing at our pages, and bind it
2471          * into the GTT.
2472          */
2473         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2474                                                obj_priv->pages,
2475                                                page_count,
2476                                                obj_priv->gtt_offset,
2477                                                obj_priv->agp_type);
2478         if (obj_priv->agp_mem == NULL) {
2479                 i915_gem_object_put_pages(obj);
2480                 drm_mm_put_block(obj_priv->gtt_space);
2481                 obj_priv->gtt_space = NULL;
2482                 return -ENOMEM;
2483         }
2484         atomic_inc(&dev->gtt_count);
2485         atomic_add(obj->size, &dev->gtt_memory);
2486
2487         /* Assert that the object is not currently in any GPU domain. As it
2488          * wasn't in the GTT, there shouldn't be any way it could have been in
2489          * a GPU cache
2490          */
2491         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2492         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2493
2494         return 0;
2495 }
2496
2497 void
2498 i915_gem_clflush_object(struct drm_gem_object *obj)
2499 {
2500         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2501
2502         /* If we don't have a page list set up, then we're not pinned
2503          * to GPU, and we can ignore the cache flush because it'll happen
2504          * again at bind time.
2505          */
2506         if (obj_priv->pages == NULL)
2507                 return;
2508
2509         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2510 }
2511
2512 /** Flushes any GPU write domain for the object if it's dirty. */
2513 static void
2514 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2515 {
2516         struct drm_device *dev = obj->dev;
2517         uint32_t seqno;
2518
2519         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2520                 return;
2521
2522         /* Queue the GPU write cache flushing we need. */
2523         i915_gem_flush(dev, 0, obj->write_domain);
2524         seqno = i915_add_request(dev, NULL, obj->write_domain);
2525         obj->write_domain = 0;
2526         i915_gem_object_move_to_active(obj, seqno);
2527 }
2528
2529 /** Flushes the GTT write domain for the object if it's dirty. */
2530 static void
2531 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2532 {
2533         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2534                 return;
2535
2536         /* No actual flushing is required for the GTT write domain.   Writes
2537          * to it immediately go to main memory as far as we know, so there's
2538          * no chipset flush.  It also doesn't land in render cache.
2539          */
2540         obj->write_domain = 0;
2541 }
2542
2543 /** Flushes the CPU write domain for the object if it's dirty. */
2544 static void
2545 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2546 {
2547         struct drm_device *dev = obj->dev;
2548
2549         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2550                 return;
2551
2552         i915_gem_clflush_object(obj);
2553         drm_agp_chipset_flush(dev);
2554         obj->write_domain = 0;
2555 }
2556
2557 /**
2558  * Moves a single object to the GTT read, and possibly write domain.
2559  *
2560  * This function returns when the move is complete, including waiting on
2561  * flushes to occur.
2562  */
2563 int
2564 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2565 {
2566         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2567         int ret;
2568
2569         /* Not valid to be called on unbound objects. */
2570         if (obj_priv->gtt_space == NULL)
2571                 return -EINVAL;
2572
2573         i915_gem_object_flush_gpu_write_domain(obj);
2574         /* Wait on any GPU rendering and flushing to occur. */
2575         ret = i915_gem_object_wait_rendering(obj);
2576         if (ret != 0)
2577                 return ret;
2578
2579         /* If we're writing through the GTT domain, then CPU and GPU caches
2580          * will need to be invalidated at next use.
2581          */
2582         if (write)
2583                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2584
2585         i915_gem_object_flush_cpu_write_domain(obj);
2586
2587         /* It should now be out of any other write domains, and we can update
2588          * the domain values for our changes.
2589          */
2590         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2591         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2592         if (write) {
2593                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2594                 obj_priv->dirty = 1;
2595         }
2596
2597         return 0;
2598 }
2599
2600 /**
2601  * Moves a single object to the CPU read, and possibly write domain.
2602  *
2603  * This function returns when the move is complete, including waiting on
2604  * flushes to occur.
2605  */
2606 static int
2607 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2608 {
2609         int ret;
2610
2611         i915_gem_object_flush_gpu_write_domain(obj);
2612         /* Wait on any GPU rendering and flushing to occur. */
2613         ret = i915_gem_object_wait_rendering(obj);
2614         if (ret != 0)
2615                 return ret;
2616
2617         i915_gem_object_flush_gtt_write_domain(obj);
2618
2619         /* If we have a partially-valid cache of the object in the CPU,
2620          * finish invalidating it and free the per-page flags.
2621          */
2622         i915_gem_object_set_to_full_cpu_read_domain(obj);
2623
2624         /* Flush the CPU cache if it's still invalid. */
2625         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2626                 i915_gem_clflush_object(obj);
2627
2628                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2629         }
2630
2631         /* It should now be out of any other write domains, and we can update
2632          * the domain values for our changes.
2633          */
2634         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2635
2636         /* If we're writing through the CPU, then the GPU read domains will
2637          * need to be invalidated at next use.
2638          */
2639         if (write) {
2640                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2641                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2642         }
2643
2644         return 0;
2645 }
2646
2647 /*
2648  * Set the next domain for the specified object. This
2649  * may not actually perform the necessary flushing/invaliding though,
2650  * as that may want to be batched with other set_domain operations
2651  *
2652  * This is (we hope) the only really tricky part of gem. The goal
2653  * is fairly simple -- track which caches hold bits of the object
2654  * and make sure they remain coherent. A few concrete examples may
2655  * help to explain how it works. For shorthand, we use the notation
2656  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2657  * a pair of read and write domain masks.
2658  *
2659  * Case 1: the batch buffer
2660  *
2661  *      1. Allocated
2662  *      2. Written by CPU
2663  *      3. Mapped to GTT
2664  *      4. Read by GPU
2665  *      5. Unmapped from GTT
2666  *      6. Freed
2667  *
2668  *      Let's take these a step at a time
2669  *
2670  *      1. Allocated
2671  *              Pages allocated from the kernel may still have
2672  *              cache contents, so we set them to (CPU, CPU) always.
2673  *      2. Written by CPU (using pwrite)
2674  *              The pwrite function calls set_domain (CPU, CPU) and
2675  *              this function does nothing (as nothing changes)
2676  *      3. Mapped by GTT
2677  *              This function asserts that the object is not
2678  *              currently in any GPU-based read or write domains
2679  *      4. Read by GPU
2680  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2681  *              As write_domain is zero, this function adds in the
2682  *              current read domains (CPU+COMMAND, 0).
2683  *              flush_domains is set to CPU.
2684  *              invalidate_domains is set to COMMAND
2685  *              clflush is run to get data out of the CPU caches
2686  *              then i915_dev_set_domain calls i915_gem_flush to
2687  *              emit an MI_FLUSH and drm_agp_chipset_flush
2688  *      5. Unmapped from GTT
2689  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2690  *              flush_domains and invalidate_domains end up both zero
2691  *              so no flushing/invalidating happens
2692  *      6. Freed
2693  *              yay, done
2694  *
2695  * Case 2: The shared render buffer
2696  *
2697  *      1. Allocated
2698  *      2. Mapped to GTT
2699  *      3. Read/written by GPU
2700  *      4. set_domain to (CPU,CPU)
2701  *      5. Read/written by CPU
2702  *      6. Read/written by GPU
2703  *
2704  *      1. Allocated
2705  *              Same as last example, (CPU, CPU)
2706  *      2. Mapped to GTT
2707  *              Nothing changes (assertions find that it is not in the GPU)
2708  *      3. Read/written by GPU
2709  *              execbuffer calls set_domain (RENDER, RENDER)
2710  *              flush_domains gets CPU
2711  *              invalidate_domains gets GPU
2712  *              clflush (obj)
2713  *              MI_FLUSH and drm_agp_chipset_flush
2714  *      4. set_domain (CPU, CPU)
2715  *              flush_domains gets GPU
2716  *              invalidate_domains gets CPU
2717  *              wait_rendering (obj) to make sure all drawing is complete.
2718  *              This will include an MI_FLUSH to get the data from GPU
2719  *              to memory
2720  *              clflush (obj) to invalidate the CPU cache
2721  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2722  *      5. Read/written by CPU
2723  *              cache lines are loaded and dirtied
2724  *      6. Read written by GPU
2725  *              Same as last GPU access
2726  *
2727  * Case 3: The constant buffer
2728  *
2729  *      1. Allocated
2730  *      2. Written by CPU
2731  *      3. Read by GPU
2732  *      4. Updated (written) by CPU again
2733  *      5. Read by GPU
2734  *
2735  *      1. Allocated
2736  *              (CPU, CPU)
2737  *      2. Written by CPU
2738  *              (CPU, CPU)
2739  *      3. Read by GPU
2740  *              (CPU+RENDER, 0)
2741  *              flush_domains = CPU
2742  *              invalidate_domains = RENDER
2743  *              clflush (obj)
2744  *              MI_FLUSH
2745  *              drm_agp_chipset_flush
2746  *      4. Updated (written) by CPU again
2747  *              (CPU, CPU)
2748  *              flush_domains = 0 (no previous write domain)
2749  *              invalidate_domains = 0 (no new read domains)
2750  *      5. Read by GPU
2751  *              (CPU+RENDER, 0)
2752  *              flush_domains = CPU
2753  *              invalidate_domains = RENDER
2754  *              clflush (obj)
2755  *              MI_FLUSH
2756  *              drm_agp_chipset_flush
2757  */
2758 static void
2759 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2760 {
2761         struct drm_device               *dev = obj->dev;
2762         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2763         uint32_t                        invalidate_domains = 0;
2764         uint32_t                        flush_domains = 0;
2765
2766         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2767         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2768
2769         intel_mark_busy(dev, obj);
2770
2771 #if WATCH_BUF
2772         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2773                  __func__, obj,
2774                  obj->read_domains, obj->pending_read_domains,
2775                  obj->write_domain, obj->pending_write_domain);
2776 #endif
2777         /*
2778          * If the object isn't moving to a new write domain,
2779          * let the object stay in multiple read domains
2780          */
2781         if (obj->pending_write_domain == 0)
2782                 obj->pending_read_domains |= obj->read_domains;
2783         else
2784                 obj_priv->dirty = 1;
2785
2786         /*
2787          * Flush the current write domain if
2788          * the new read domains don't match. Invalidate
2789          * any read domains which differ from the old
2790          * write domain
2791          */
2792         if (obj->write_domain &&
2793             obj->write_domain != obj->pending_read_domains) {
2794                 flush_domains |= obj->write_domain;
2795                 invalidate_domains |=
2796                         obj->pending_read_domains & ~obj->write_domain;
2797         }
2798         /*
2799          * Invalidate any read caches which may have
2800          * stale data. That is, any new read domains.
2801          */
2802         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2803         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2804 #if WATCH_BUF
2805                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2806                          __func__, flush_domains, invalidate_domains);
2807 #endif
2808                 i915_gem_clflush_object(obj);
2809         }
2810
2811         /* The actual obj->write_domain will be updated with
2812          * pending_write_domain after we emit the accumulated flush for all
2813          * of our domain changes in execbuffers (which clears objects'
2814          * write_domains).  So if we have a current write domain that we
2815          * aren't changing, set pending_write_domain to that.
2816          */
2817         if (flush_domains == 0 && obj->pending_write_domain == 0)
2818                 obj->pending_write_domain = obj->write_domain;
2819         obj->read_domains = obj->pending_read_domains;
2820
2821         dev->invalidate_domains |= invalidate_domains;
2822         dev->flush_domains |= flush_domains;
2823 #if WATCH_BUF
2824         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2825                  __func__,
2826                  obj->read_domains, obj->write_domain,
2827                  dev->invalidate_domains, dev->flush_domains);
2828 #endif
2829 }
2830
2831 /**
2832  * Moves the object from a partially CPU read to a full one.
2833  *
2834  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2835  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2836  */
2837 static void
2838 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2839 {
2840         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2841
2842         if (!obj_priv->page_cpu_valid)
2843                 return;
2844
2845         /* If we're partially in the CPU read domain, finish moving it in.
2846          */
2847         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2848                 int i;
2849
2850                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2851                         if (obj_priv->page_cpu_valid[i])
2852                                 continue;
2853                         drm_clflush_pages(obj_priv->pages + i, 1);
2854                 }
2855         }
2856
2857         /* Free the page_cpu_valid mappings which are now stale, whether
2858          * or not we've got I915_GEM_DOMAIN_CPU.
2859          */
2860         kfree(obj_priv->page_cpu_valid);
2861         obj_priv->page_cpu_valid = NULL;
2862 }
2863
2864 /**
2865  * Set the CPU read domain on a range of the object.
2866  *
2867  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2868  * not entirely valid.  The page_cpu_valid member of the object flags which
2869  * pages have been flushed, and will be respected by
2870  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2871  * of the whole object.
2872  *
2873  * This function returns when the move is complete, including waiting on
2874  * flushes to occur.
2875  */
2876 static int
2877 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2878                                           uint64_t offset, uint64_t size)
2879 {
2880         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2881         int i, ret;
2882
2883         if (offset == 0 && size == obj->size)
2884                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2885
2886         i915_gem_object_flush_gpu_write_domain(obj);
2887         /* Wait on any GPU rendering and flushing to occur. */
2888         ret = i915_gem_object_wait_rendering(obj);
2889         if (ret != 0)
2890                 return ret;
2891         i915_gem_object_flush_gtt_write_domain(obj);
2892
2893         /* If we're already fully in the CPU read domain, we're done. */
2894         if (obj_priv->page_cpu_valid == NULL &&
2895             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2896                 return 0;
2897
2898         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2899          * newly adding I915_GEM_DOMAIN_CPU
2900          */
2901         if (obj_priv->page_cpu_valid == NULL) {
2902                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2903                                                    GFP_KERNEL);
2904                 if (obj_priv->page_cpu_valid == NULL)
2905                         return -ENOMEM;
2906         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2907                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2908
2909         /* Flush the cache on any pages that are still invalid from the CPU's
2910          * perspective.
2911          */
2912         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2913              i++) {
2914                 if (obj_priv->page_cpu_valid[i])
2915                         continue;
2916
2917                 drm_clflush_pages(obj_priv->pages + i, 1);
2918
2919                 obj_priv->page_cpu_valid[i] = 1;
2920         }
2921
2922         /* It should now be out of any other write domains, and we can update
2923          * the domain values for our changes.
2924          */
2925         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2926
2927         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2928
2929         return 0;
2930 }
2931
2932 /**
2933  * Pin an object to the GTT and evaluate the relocations landing in it.
2934  */
2935 static int
2936 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2937                                  struct drm_file *file_priv,
2938                                  struct drm_i915_gem_exec_object *entry,
2939                                  struct drm_i915_gem_relocation_entry *relocs)
2940 {
2941         struct drm_device *dev = obj->dev;
2942         drm_i915_private_t *dev_priv = dev->dev_private;
2943         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2944         int i, ret;
2945         void __iomem *reloc_page;
2946
2947         /* Choose the GTT offset for our buffer and put it there. */
2948         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2949         if (ret)
2950                 return ret;
2951
2952         entry->offset = obj_priv->gtt_offset;
2953
2954         /* Apply the relocations, using the GTT aperture to avoid cache
2955          * flushing requirements.
2956          */
2957         for (i = 0; i < entry->relocation_count; i++) {
2958                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2959                 struct drm_gem_object *target_obj;
2960                 struct drm_i915_gem_object *target_obj_priv;
2961                 uint32_t reloc_val, reloc_offset;
2962                 uint32_t __iomem *reloc_entry;
2963
2964                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2965                                                    reloc->target_handle);
2966                 if (target_obj == NULL) {
2967                         i915_gem_object_unpin(obj);
2968                         return -EBADF;
2969                 }
2970                 target_obj_priv = target_obj->driver_private;
2971
2972                 /* The target buffer should have appeared before us in the
2973                  * exec_object list, so it should have a GTT space bound by now.
2974                  */
2975                 if (target_obj_priv->gtt_space == NULL) {
2976                         DRM_ERROR("No GTT space found for object %d\n",
2977                                   reloc->target_handle);
2978                         drm_gem_object_unreference(target_obj);
2979                         i915_gem_object_unpin(obj);
2980                         return -EINVAL;
2981                 }
2982
2983                 if (reloc->offset > obj->size - 4) {
2984                         DRM_ERROR("Relocation beyond object bounds: "
2985                                   "obj %p target %d offset %d size %d.\n",
2986                                   obj, reloc->target_handle,
2987                                   (int) reloc->offset, (int) obj->size);
2988                         drm_gem_object_unreference(target_obj);
2989                         i915_gem_object_unpin(obj);
2990                         return -EINVAL;
2991                 }
2992                 if (reloc->offset & 3) {
2993                         DRM_ERROR("Relocation not 4-byte aligned: "
2994                                   "obj %p target %d offset %d.\n",
2995                                   obj, reloc->target_handle,
2996                                   (int) reloc->offset);
2997                         drm_gem_object_unreference(target_obj);
2998                         i915_gem_object_unpin(obj);
2999                         return -EINVAL;
3000                 }
3001
3002                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3003                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3004                         DRM_ERROR("reloc with read/write CPU domains: "
3005                                   "obj %p target %d offset %d "
3006                                   "read %08x write %08x",
3007                                   obj, reloc->target_handle,
3008                                   (int) reloc->offset,
3009                                   reloc->read_domains,
3010                                   reloc->write_domain);
3011                         drm_gem_object_unreference(target_obj);
3012                         i915_gem_object_unpin(obj);
3013                         return -EINVAL;
3014                 }
3015
3016                 if (reloc->write_domain && target_obj->pending_write_domain &&
3017                     reloc->write_domain != target_obj->pending_write_domain) {
3018                         DRM_ERROR("Write domain conflict: "
3019                                   "obj %p target %d offset %d "
3020                                   "new %08x old %08x\n",
3021                                   obj, reloc->target_handle,
3022                                   (int) reloc->offset,
3023                                   reloc->write_domain,
3024                                   target_obj->pending_write_domain);
3025                         drm_gem_object_unreference(target_obj);
3026                         i915_gem_object_unpin(obj);
3027                         return -EINVAL;
3028                 }
3029
3030 #if WATCH_RELOC
3031                 DRM_INFO("%s: obj %p offset %08x target %d "
3032                          "read %08x write %08x gtt %08x "
3033                          "presumed %08x delta %08x\n",
3034                          __func__,
3035                          obj,
3036                          (int) reloc->offset,
3037                          (int) reloc->target_handle,
3038                          (int) reloc->read_domains,
3039                          (int) reloc->write_domain,
3040                          (int) target_obj_priv->gtt_offset,
3041                          (int) reloc->presumed_offset,
3042                          reloc->delta);
3043 #endif
3044
3045                 target_obj->pending_read_domains |= reloc->read_domains;
3046                 target_obj->pending_write_domain |= reloc->write_domain;
3047
3048                 /* If the relocation already has the right value in it, no
3049                  * more work needs to be done.
3050                  */
3051                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3052                         drm_gem_object_unreference(target_obj);
3053                         continue;
3054                 }
3055
3056                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3057                 if (ret != 0) {
3058                         drm_gem_object_unreference(target_obj);
3059                         i915_gem_object_unpin(obj);
3060                         return -EINVAL;
3061                 }
3062
3063                 /* Map the page containing the relocation we're going to
3064                  * perform.
3065                  */
3066                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3067                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3068                                                       (reloc_offset &
3069                                                        ~(PAGE_SIZE - 1)));
3070                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3071                                                    (reloc_offset & (PAGE_SIZE - 1)));
3072                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3073
3074 #if WATCH_BUF
3075                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3076                           obj, (unsigned int) reloc->offset,
3077                           readl(reloc_entry), reloc_val);
3078 #endif
3079                 writel(reloc_val, reloc_entry);
3080                 io_mapping_unmap_atomic(reloc_page);
3081
3082                 /* The updated presumed offset for this entry will be
3083                  * copied back out to the user.
3084                  */
3085                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3086
3087                 drm_gem_object_unreference(target_obj);
3088         }
3089
3090 #if WATCH_BUF
3091         if (0)
3092                 i915_gem_dump_object(obj, 128, __func__, ~0);
3093 #endif
3094         return 0;
3095 }
3096
3097 /** Dispatch a batchbuffer to the ring
3098  */
3099 static int
3100 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3101                               struct drm_i915_gem_execbuffer *exec,
3102                               struct drm_clip_rect *cliprects,
3103                               uint64_t exec_offset)
3104 {
3105         drm_i915_private_t *dev_priv = dev->dev_private;
3106         int nbox = exec->num_cliprects;
3107         int i = 0, count;
3108         uint32_t exec_start, exec_len;
3109         RING_LOCALS;
3110
3111         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3112         exec_len = (uint32_t) exec->batch_len;
3113
3114         count = nbox ? nbox : 1;
3115
3116         for (i = 0; i < count; i++) {
3117                 if (i < nbox) {
3118                         int ret = i915_emit_box(dev, cliprects, i,
3119                                                 exec->DR1, exec->DR4);
3120                         if (ret)
3121                                 return ret;
3122                 }
3123
3124                 if (IS_I830(dev) || IS_845G(dev)) {
3125                         BEGIN_LP_RING(4);
3126                         OUT_RING(MI_BATCH_BUFFER);
3127                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3128                         OUT_RING(exec_start + exec_len - 4);
3129                         OUT_RING(0);
3130                         ADVANCE_LP_RING();
3131                 } else {
3132                         BEGIN_LP_RING(2);
3133                         if (IS_I965G(dev)) {
3134                                 OUT_RING(MI_BATCH_BUFFER_START |
3135                                          (2 << 6) |
3136                                          MI_BATCH_NON_SECURE_I965);
3137                                 OUT_RING(exec_start);
3138                         } else {
3139                                 OUT_RING(MI_BATCH_BUFFER_START |
3140                                          (2 << 6));
3141                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3142                         }
3143                         ADVANCE_LP_RING();
3144                 }
3145         }
3146
3147         /* XXX breadcrumb */
3148         return 0;
3149 }
3150
3151 /* Throttle our rendering by waiting until the ring has completed our requests
3152  * emitted over 20 msec ago.
3153  *
3154  * Note that if we were to use the current jiffies each time around the loop,
3155  * we wouldn't escape the function with any frames outstanding if the time to
3156  * render a frame was over 20ms.
3157  *
3158  * This should get us reasonable parallelism between CPU and GPU but also
3159  * relatively low latency when blocking on a particular request to finish.
3160  */
3161 static int
3162 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3163 {
3164         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3165         int ret = 0;
3166         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3167
3168         mutex_lock(&dev->struct_mutex);
3169         while (!list_empty(&i915_file_priv->mm.request_list)) {
3170                 struct drm_i915_gem_request *request;
3171
3172                 request = list_first_entry(&i915_file_priv->mm.request_list,
3173                                            struct drm_i915_gem_request,
3174                                            client_list);
3175
3176                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3177                         break;
3178
3179                 ret = i915_wait_request(dev, request->seqno);
3180                 if (ret != 0)
3181                         break;
3182         }
3183         mutex_unlock(&dev->struct_mutex);
3184
3185         return ret;
3186 }
3187
3188 static int
3189 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3190                               uint32_t buffer_count,
3191                               struct drm_i915_gem_relocation_entry **relocs)
3192 {
3193         uint32_t reloc_count = 0, reloc_index = 0, i;
3194         int ret;
3195
3196         *relocs = NULL;
3197         for (i = 0; i < buffer_count; i++) {
3198                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3199                         return -EINVAL;
3200                 reloc_count += exec_list[i].relocation_count;
3201         }
3202
3203         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3204         if (*relocs == NULL)
3205                 return -ENOMEM;
3206
3207         for (i = 0; i < buffer_count; i++) {
3208                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3209
3210                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3211
3212                 ret = copy_from_user(&(*relocs)[reloc_index],
3213                                      user_relocs,
3214                                      exec_list[i].relocation_count *
3215                                      sizeof(**relocs));
3216                 if (ret != 0) {
3217                         drm_free_large(*relocs);
3218                         *relocs = NULL;
3219                         return -EFAULT;
3220                 }
3221
3222                 reloc_index += exec_list[i].relocation_count;
3223         }
3224
3225         return 0;
3226 }
3227
3228 static int
3229 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3230                             uint32_t buffer_count,
3231                             struct drm_i915_gem_relocation_entry *relocs)
3232 {
3233         uint32_t reloc_count = 0, i;
3234         int ret = 0;
3235
3236         for (i = 0; i < buffer_count; i++) {
3237                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3238                 int unwritten;
3239
3240                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3241
3242                 unwritten = copy_to_user(user_relocs,
3243                                          &relocs[reloc_count],
3244                                          exec_list[i].relocation_count *
3245                                          sizeof(*relocs));
3246
3247                 if (unwritten) {
3248                         ret = -EFAULT;
3249                         goto err;
3250                 }
3251
3252                 reloc_count += exec_list[i].relocation_count;
3253         }
3254
3255 err:
3256         drm_free_large(relocs);
3257
3258         return ret;
3259 }
3260
3261 static int
3262 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3263                            uint64_t exec_offset)
3264 {
3265         uint32_t exec_start, exec_len;
3266
3267         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3268         exec_len = (uint32_t) exec->batch_len;
3269
3270         if ((exec_start | exec_len) & 0x7)
3271                 return -EINVAL;
3272
3273         if (!exec_start)
3274                 return -EINVAL;
3275
3276         return 0;
3277 }
3278
3279 int
3280 i915_gem_execbuffer(struct drm_device *dev, void *data,
3281                     struct drm_file *file_priv)
3282 {
3283         drm_i915_private_t *dev_priv = dev->dev_private;
3284         struct drm_i915_gem_execbuffer *args = data;
3285         struct drm_i915_gem_exec_object *exec_list = NULL;
3286         struct drm_gem_object **object_list = NULL;
3287         struct drm_gem_object *batch_obj;
3288         struct drm_i915_gem_object *obj_priv;
3289         struct drm_clip_rect *cliprects = NULL;
3290         struct drm_i915_gem_relocation_entry *relocs;
3291         int ret, ret2, i, pinned = 0;
3292         uint64_t exec_offset;
3293         uint32_t seqno, flush_domains, reloc_index;
3294         int pin_tries;
3295
3296 #if WATCH_EXEC
3297         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3298                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3299 #endif
3300
3301         if (args->buffer_count < 1) {
3302                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3303                 return -EINVAL;
3304         }
3305         /* Copy in the exec list from userland */
3306         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3307         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3308         if (exec_list == NULL || object_list == NULL) {
3309                 DRM_ERROR("Failed to allocate exec or object list "
3310                           "for %d buffers\n",
3311                           args->buffer_count);
3312                 ret = -ENOMEM;
3313                 goto pre_mutex_err;
3314         }
3315         ret = copy_from_user(exec_list,
3316                              (struct drm_i915_relocation_entry __user *)
3317                              (uintptr_t) args->buffers_ptr,
3318                              sizeof(*exec_list) * args->buffer_count);
3319         if (ret != 0) {
3320                 DRM_ERROR("copy %d exec entries failed %d\n",
3321                           args->buffer_count, ret);
3322                 goto pre_mutex_err;
3323         }
3324
3325         if (args->num_cliprects != 0) {
3326                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3327                                     GFP_KERNEL);
3328                 if (cliprects == NULL)
3329                         goto pre_mutex_err;
3330
3331                 ret = copy_from_user(cliprects,
3332                                      (struct drm_clip_rect __user *)
3333                                      (uintptr_t) args->cliprects_ptr,
3334                                      sizeof(*cliprects) * args->num_cliprects);
3335                 if (ret != 0) {
3336                         DRM_ERROR("copy %d cliprects failed: %d\n",
3337                                   args->num_cliprects, ret);
3338                         goto pre_mutex_err;
3339                 }
3340         }
3341
3342         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3343                                             &relocs);
3344         if (ret != 0)
3345                 goto pre_mutex_err;
3346
3347         mutex_lock(&dev->struct_mutex);
3348
3349         i915_verify_inactive(dev, __FILE__, __LINE__);
3350
3351         if (atomic_read(&dev_priv->mm.wedged)) {
3352                 DRM_ERROR("Execbuf while wedged\n");
3353                 mutex_unlock(&dev->struct_mutex);
3354                 ret = -EIO;
3355                 goto pre_mutex_err;
3356         }
3357
3358         if (dev_priv->mm.suspended) {
3359                 DRM_ERROR("Execbuf while VT-switched.\n");
3360                 mutex_unlock(&dev->struct_mutex);
3361                 ret = -EBUSY;
3362                 goto pre_mutex_err;
3363         }
3364
3365         /* Look up object handles */
3366         for (i = 0; i < args->buffer_count; i++) {
3367                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3368                                                        exec_list[i].handle);
3369                 if (object_list[i] == NULL) {
3370                         DRM_ERROR("Invalid object handle %d at index %d\n",
3371                                    exec_list[i].handle, i);
3372                         ret = -EBADF;
3373                         goto err;
3374                 }
3375
3376                 obj_priv = object_list[i]->driver_private;
3377                 if (obj_priv->in_execbuffer) {
3378                         DRM_ERROR("Object %p appears more than once in object list\n",
3379                                    object_list[i]);
3380                         ret = -EBADF;
3381                         goto err;
3382                 }
3383                 obj_priv->in_execbuffer = true;
3384         }
3385
3386         /* Pin and relocate */
3387         for (pin_tries = 0; ; pin_tries++) {
3388                 ret = 0;
3389                 reloc_index = 0;
3390
3391                 for (i = 0; i < args->buffer_count; i++) {
3392                         object_list[i]->pending_read_domains = 0;
3393                         object_list[i]->pending_write_domain = 0;
3394                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3395                                                                file_priv,
3396                                                                &exec_list[i],
3397                                                                &relocs[reloc_index]);
3398                         if (ret)
3399                                 break;
3400                         pinned = i + 1;
3401                         reloc_index += exec_list[i].relocation_count;
3402                 }
3403                 /* success */
3404                 if (ret == 0)
3405                         break;
3406
3407                 /* error other than GTT full, or we've already tried again */
3408                 if (ret != -ENOSPC || pin_tries >= 1) {
3409                         if (ret != -ERESTARTSYS)
3410                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3411                         goto err;
3412                 }
3413
3414                 /* unpin all of our buffers */
3415                 for (i = 0; i < pinned; i++)
3416                         i915_gem_object_unpin(object_list[i]);
3417                 pinned = 0;
3418
3419                 /* evict everyone we can from the aperture */
3420                 ret = i915_gem_evict_everything(dev);
3421                 if (ret)
3422                         goto err;
3423         }
3424
3425         /* Set the pending read domains for the batch buffer to COMMAND */
3426         batch_obj = object_list[args->buffer_count-1];
3427         if (batch_obj->pending_write_domain) {
3428                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3429                 ret = -EINVAL;
3430                 goto err;
3431         }
3432         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3433
3434         /* Sanity check the batch buffer, prior to moving objects */
3435         exec_offset = exec_list[args->buffer_count - 1].offset;
3436         ret = i915_gem_check_execbuffer (args, exec_offset);
3437         if (ret != 0) {
3438                 DRM_ERROR("execbuf with invalid offset/length\n");
3439                 goto err;
3440         }
3441
3442         i915_verify_inactive(dev, __FILE__, __LINE__);
3443
3444         /* Zero the global flush/invalidate flags. These
3445          * will be modified as new domains are computed
3446          * for each object
3447          */
3448         dev->invalidate_domains = 0;
3449         dev->flush_domains = 0;
3450
3451         for (i = 0; i < args->buffer_count; i++) {
3452                 struct drm_gem_object *obj = object_list[i];
3453
3454                 /* Compute new gpu domains and update invalidate/flush */
3455                 i915_gem_object_set_to_gpu_domain(obj);
3456         }
3457
3458         i915_verify_inactive(dev, __FILE__, __LINE__);
3459
3460         if (dev->invalidate_domains | dev->flush_domains) {
3461 #if WATCH_EXEC
3462                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3463                           __func__,
3464                          dev->invalidate_domains,
3465                          dev->flush_domains);
3466 #endif
3467                 i915_gem_flush(dev,
3468                                dev->invalidate_domains,
3469                                dev->flush_domains);
3470                 if (dev->flush_domains)
3471                         (void)i915_add_request(dev, file_priv,
3472                                                dev->flush_domains);
3473         }
3474
3475         for (i = 0; i < args->buffer_count; i++) {
3476                 struct drm_gem_object *obj = object_list[i];
3477
3478                 obj->write_domain = obj->pending_write_domain;
3479         }
3480
3481         i915_verify_inactive(dev, __FILE__, __LINE__);
3482
3483 #if WATCH_COHERENCY
3484         for (i = 0; i < args->buffer_count; i++) {
3485                 i915_gem_object_check_coherency(object_list[i],
3486                                                 exec_list[i].handle);
3487         }
3488 #endif
3489
3490 #if WATCH_EXEC
3491         i915_gem_dump_object(batch_obj,
3492                               args->batch_len,
3493                               __func__,
3494                               ~0);
3495 #endif
3496
3497         /* Exec the batchbuffer */
3498         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3499         if (ret) {
3500                 DRM_ERROR("dispatch failed %d\n", ret);
3501                 goto err;
3502         }
3503
3504         /*
3505          * Ensure that the commands in the batch buffer are
3506          * finished before the interrupt fires
3507          */
3508         flush_domains = i915_retire_commands(dev);
3509
3510         i915_verify_inactive(dev, __FILE__, __LINE__);
3511
3512         /*
3513          * Get a seqno representing the execution of the current buffer,
3514          * which we can wait on.  We would like to mitigate these interrupts,
3515          * likely by only creating seqnos occasionally (so that we have
3516          * *some* interrupts representing completion of buffers that we can
3517          * wait on when trying to clear up gtt space).
3518          */
3519         seqno = i915_add_request(dev, file_priv, flush_domains);
3520         BUG_ON(seqno == 0);
3521         for (i = 0; i < args->buffer_count; i++) {
3522                 struct drm_gem_object *obj = object_list[i];
3523
3524                 i915_gem_object_move_to_active(obj, seqno);
3525 #if WATCH_LRU
3526                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3527 #endif
3528         }
3529 #if WATCH_LRU
3530         i915_dump_lru(dev, __func__);
3531 #endif
3532
3533         i915_verify_inactive(dev, __FILE__, __LINE__);
3534
3535 err:
3536         for (i = 0; i < pinned; i++)
3537                 i915_gem_object_unpin(object_list[i]);
3538
3539         for (i = 0; i < args->buffer_count; i++) {
3540                 if (object_list[i]) {
3541                         obj_priv = object_list[i]->driver_private;
3542                         obj_priv->in_execbuffer = false;
3543                 }
3544                 drm_gem_object_unreference(object_list[i]);
3545         }
3546
3547         mutex_unlock(&dev->struct_mutex);
3548
3549         if (!ret) {
3550                 /* Copy the new buffer offsets back to the user's exec list. */
3551                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3552                                    (uintptr_t) args->buffers_ptr,
3553                                    exec_list,
3554                                    sizeof(*exec_list) * args->buffer_count);
3555                 if (ret) {
3556                         ret = -EFAULT;
3557                         DRM_ERROR("failed to copy %d exec entries "
3558                                   "back to user (%d)\n",
3559                                   args->buffer_count, ret);
3560                 }
3561         }
3562
3563         /* Copy the updated relocations out regardless of current error
3564          * state.  Failure to update the relocs would mean that the next
3565          * time userland calls execbuf, it would do so with presumed offset
3566          * state that didn't match the actual object state.
3567          */
3568         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3569                                            relocs);
3570         if (ret2 != 0) {
3571                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3572
3573                 if (ret == 0)
3574                         ret = ret2;
3575         }
3576
3577 pre_mutex_err:
3578         drm_free_large(object_list);
3579         drm_free_large(exec_list);
3580         kfree(cliprects);
3581
3582         return ret;
3583 }
3584
3585 int
3586 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3587 {
3588         struct drm_device *dev = obj->dev;
3589         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3590         int ret;
3591
3592         i915_verify_inactive(dev, __FILE__, __LINE__);
3593         if (obj_priv->gtt_space == NULL) {
3594                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3595                 if (ret != 0) {
3596                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3597                                 DRM_ERROR("Failure to bind: %d\n", ret);
3598                         return ret;
3599                 }
3600         }
3601         /*
3602          * Pre-965 chips need a fence register set up in order to
3603          * properly handle tiled surfaces.
3604          */
3605         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3606                 ret = i915_gem_object_get_fence_reg(obj);
3607                 if (ret != 0) {
3608                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3609                                 DRM_ERROR("Failure to install fence: %d\n",
3610                                           ret);
3611                         return ret;
3612                 }
3613         }
3614         obj_priv->pin_count++;
3615
3616         /* If the object is not active and not pending a flush,
3617          * remove it from the inactive list
3618          */
3619         if (obj_priv->pin_count == 1) {
3620                 atomic_inc(&dev->pin_count);
3621                 atomic_add(obj->size, &dev->pin_memory);
3622                 if (!obj_priv->active &&
3623                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3624                     !list_empty(&obj_priv->list))
3625                         list_del_init(&obj_priv->list);
3626         }
3627         i915_verify_inactive(dev, __FILE__, __LINE__);
3628
3629         return 0;
3630 }
3631
3632 void
3633 i915_gem_object_unpin(struct drm_gem_object *obj)
3634 {
3635         struct drm_device *dev = obj->dev;
3636         drm_i915_private_t *dev_priv = dev->dev_private;
3637         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3638
3639         i915_verify_inactive(dev, __FILE__, __LINE__);
3640         obj_priv->pin_count--;
3641         BUG_ON(obj_priv->pin_count < 0);
3642         BUG_ON(obj_priv->gtt_space == NULL);
3643
3644         /* If the object is no longer pinned, and is
3645          * neither active nor being flushed, then stick it on
3646          * the inactive list
3647          */
3648         if (obj_priv->pin_count == 0) {
3649                 if (!obj_priv->active &&
3650                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3651                         list_move_tail(&obj_priv->list,
3652                                        &dev_priv->mm.inactive_list);
3653                 atomic_dec(&dev->pin_count);
3654                 atomic_sub(obj->size, &dev->pin_memory);
3655         }
3656         i915_verify_inactive(dev, __FILE__, __LINE__);
3657 }
3658
3659 int
3660 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3661                    struct drm_file *file_priv)
3662 {
3663         struct drm_i915_gem_pin *args = data;
3664         struct drm_gem_object *obj;
3665         struct drm_i915_gem_object *obj_priv;
3666         int ret;
3667
3668         mutex_lock(&dev->struct_mutex);
3669
3670         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3671         if (obj == NULL) {
3672                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3673                           args->handle);
3674                 mutex_unlock(&dev->struct_mutex);
3675                 return -EBADF;
3676         }
3677         obj_priv = obj->driver_private;
3678
3679         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3680                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3681                           args->handle);
3682                 drm_gem_object_unreference(obj);
3683                 mutex_unlock(&dev->struct_mutex);
3684                 return -EINVAL;
3685         }
3686
3687         obj_priv->user_pin_count++;
3688         obj_priv->pin_filp = file_priv;
3689         if (obj_priv->user_pin_count == 1) {
3690                 ret = i915_gem_object_pin(obj, args->alignment);
3691                 if (ret != 0) {
3692                         drm_gem_object_unreference(obj);
3693                         mutex_unlock(&dev->struct_mutex);
3694                         return ret;
3695                 }
3696         }
3697
3698         /* XXX - flush the CPU caches for pinned objects
3699          * as the X server doesn't manage domains yet
3700          */
3701         i915_gem_object_flush_cpu_write_domain(obj);
3702         args->offset = obj_priv->gtt_offset;
3703         drm_gem_object_unreference(obj);
3704         mutex_unlock(&dev->struct_mutex);
3705
3706         return 0;
3707 }
3708
3709 int
3710 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3711                      struct drm_file *file_priv)
3712 {
3713         struct drm_i915_gem_pin *args = data;
3714         struct drm_gem_object *obj;
3715         struct drm_i915_gem_object *obj_priv;
3716
3717         mutex_lock(&dev->struct_mutex);
3718
3719         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3720         if (obj == NULL) {
3721                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3722                           args->handle);
3723                 mutex_unlock(&dev->struct_mutex);
3724                 return -EBADF;
3725         }
3726
3727         obj_priv = obj->driver_private;
3728         if (obj_priv->pin_filp != file_priv) {
3729                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3730                           args->handle);
3731                 drm_gem_object_unreference(obj);
3732                 mutex_unlock(&dev->struct_mutex);
3733                 return -EINVAL;
3734         }
3735         obj_priv->user_pin_count--;
3736         if (obj_priv->user_pin_count == 0) {
3737                 obj_priv->pin_filp = NULL;
3738                 i915_gem_object_unpin(obj);
3739         }
3740
3741         drm_gem_object_unreference(obj);
3742         mutex_unlock(&dev->struct_mutex);
3743         return 0;
3744 }
3745
3746 int
3747 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3748                     struct drm_file *file_priv)
3749 {
3750         struct drm_i915_gem_busy *args = data;
3751         struct drm_gem_object *obj;
3752         struct drm_i915_gem_object *obj_priv;
3753
3754         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3755         if (obj == NULL) {
3756                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3757                           args->handle);
3758                 return -EBADF;
3759         }
3760
3761         mutex_lock(&dev->struct_mutex);
3762         /* Update the active list for the hardware's current position.
3763          * Otherwise this only updates on a delayed timer or when irqs are
3764          * actually unmasked, and our working set ends up being larger than
3765          * required.
3766          */
3767         i915_gem_retire_requests(dev);
3768
3769         obj_priv = obj->driver_private;
3770         /* Don't count being on the flushing list against the object being
3771          * done.  Otherwise, a buffer left on the flushing list but not getting
3772          * flushed (because nobody's flushing that domain) won't ever return
3773          * unbusy and get reused by libdrm's bo cache.  The other expected
3774          * consumer of this interface, OpenGL's occlusion queries, also specs
3775          * that the objects get unbusy "eventually" without any interference.
3776          */
3777         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3778
3779         drm_gem_object_unreference(obj);
3780         mutex_unlock(&dev->struct_mutex);
3781         return 0;
3782 }
3783
3784 int
3785 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3786                         struct drm_file *file_priv)
3787 {
3788     return i915_gem_ring_throttle(dev, file_priv);
3789 }
3790
3791 int i915_gem_init_object(struct drm_gem_object *obj)
3792 {
3793         struct drm_i915_gem_object *obj_priv;
3794
3795         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3796         if (obj_priv == NULL)
3797                 return -ENOMEM;
3798
3799         /*
3800          * We've just allocated pages from the kernel,
3801          * so they've just been written by the CPU with
3802          * zeros. They'll need to be clflushed before we
3803          * use them with the GPU.
3804          */
3805         obj->write_domain = I915_GEM_DOMAIN_CPU;
3806         obj->read_domains = I915_GEM_DOMAIN_CPU;
3807
3808         obj_priv->agp_type = AGP_USER_MEMORY;
3809
3810         obj->driver_private = obj_priv;
3811         obj_priv->obj = obj;
3812         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3813         INIT_LIST_HEAD(&obj_priv->list);
3814         INIT_LIST_HEAD(&obj_priv->fence_list);
3815
3816         return 0;
3817 }
3818
3819 void i915_gem_free_object(struct drm_gem_object *obj)
3820 {
3821         struct drm_device *dev = obj->dev;
3822         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3823
3824         while (obj_priv->pin_count > 0)
3825                 i915_gem_object_unpin(obj);
3826
3827         if (obj_priv->phys_obj)
3828                 i915_gem_detach_phys_object(dev, obj);
3829
3830         i915_gem_object_unbind(obj);
3831
3832         if (obj_priv->mmap_offset)
3833                 i915_gem_free_mmap_offset(obj);
3834
3835         kfree(obj_priv->page_cpu_valid);
3836         kfree(obj_priv->bit_17);
3837         kfree(obj->driver_private);
3838 }
3839
3840 /** Unbinds all objects that are on the given buffer list. */
3841 static int
3842 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3843 {
3844         struct drm_gem_object *obj;
3845         struct drm_i915_gem_object *obj_priv;
3846         int ret;
3847
3848         while (!list_empty(head)) {
3849                 obj_priv = list_first_entry(head,
3850                                             struct drm_i915_gem_object,
3851                                             list);
3852                 obj = obj_priv->obj;
3853
3854                 if (obj_priv->pin_count != 0) {
3855                         DRM_ERROR("Pinned object in unbind list\n");
3856                         mutex_unlock(&dev->struct_mutex);
3857                         return -EINVAL;
3858                 }
3859
3860                 ret = i915_gem_object_unbind(obj);
3861                 if (ret != 0) {
3862                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3863                                   ret);
3864                         mutex_unlock(&dev->struct_mutex);
3865                         return ret;
3866                 }
3867         }
3868
3869
3870         return 0;
3871 }
3872
3873 int
3874 i915_gem_idle(struct drm_device *dev)
3875 {
3876         drm_i915_private_t *dev_priv = dev->dev_private;
3877         uint32_t seqno, cur_seqno, last_seqno;
3878         int stuck, ret;
3879
3880         mutex_lock(&dev->struct_mutex);
3881
3882         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3883                 mutex_unlock(&dev->struct_mutex);
3884                 return 0;
3885         }
3886
3887         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3888          * We need to replace this with a semaphore, or something.
3889          */
3890         dev_priv->mm.suspended = 1;
3891         del_timer(&dev_priv->hangcheck_timer);
3892
3893         /* Cancel the retire work handler, wait for it to finish if running
3894          */
3895         mutex_unlock(&dev->struct_mutex);
3896         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3897         mutex_lock(&dev->struct_mutex);
3898
3899         i915_kernel_lost_context(dev);
3900
3901         /* Flush the GPU along with all non-CPU write domains
3902          */
3903         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3904         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3905
3906         if (seqno == 0) {
3907                 mutex_unlock(&dev->struct_mutex);
3908                 return -ENOMEM;
3909         }
3910
3911         dev_priv->mm.waiting_gem_seqno = seqno;
3912         last_seqno = 0;
3913         stuck = 0;
3914         for (;;) {
3915                 cur_seqno = i915_get_gem_seqno(dev);
3916                 if (i915_seqno_passed(cur_seqno, seqno))
3917                         break;
3918                 if (last_seqno == cur_seqno) {
3919                         if (stuck++ > 100) {
3920                                 DRM_ERROR("hardware wedged\n");
3921                                 atomic_set(&dev_priv->mm.wedged, 1);
3922                                 DRM_WAKEUP(&dev_priv->irq_queue);
3923                                 break;
3924                         }
3925                 }
3926                 msleep(10);
3927                 last_seqno = cur_seqno;
3928         }
3929         dev_priv->mm.waiting_gem_seqno = 0;
3930
3931         i915_gem_retire_requests(dev);
3932
3933         spin_lock(&dev_priv->mm.active_list_lock);
3934         if (!atomic_read(&dev_priv->mm.wedged)) {
3935                 /* Active and flushing should now be empty as we've
3936                  * waited for a sequence higher than any pending execbuffer
3937                  */
3938                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3939                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3940                 /* Request should now be empty as we've also waited
3941                  * for the last request in the list
3942                  */
3943                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3944         }
3945
3946         /* Empty the active and flushing lists to inactive.  If there's
3947          * anything left at this point, it means that we're wedged and
3948          * nothing good's going to happen by leaving them there.  So strip
3949          * the GPU domains and just stuff them onto inactive.
3950          */
3951         while (!list_empty(&dev_priv->mm.active_list)) {
3952                 struct drm_i915_gem_object *obj_priv;
3953
3954                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3955                                             struct drm_i915_gem_object,
3956                                             list);
3957                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3958                 i915_gem_object_move_to_inactive(obj_priv->obj);
3959         }
3960         spin_unlock(&dev_priv->mm.active_list_lock);
3961
3962         while (!list_empty(&dev_priv->mm.flushing_list)) {
3963                 struct drm_i915_gem_object *obj_priv;
3964
3965                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3966                                             struct drm_i915_gem_object,
3967                                             list);
3968                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3969                 i915_gem_object_move_to_inactive(obj_priv->obj);
3970         }
3971
3972
3973         /* Move all inactive buffers out of the GTT. */
3974         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3975         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3976         if (ret) {
3977                 mutex_unlock(&dev->struct_mutex);
3978                 return ret;
3979         }
3980
3981         i915_gem_cleanup_ringbuffer(dev);
3982         mutex_unlock(&dev->struct_mutex);
3983
3984         return 0;
3985 }
3986
3987 static int
3988 i915_gem_init_hws(struct drm_device *dev)
3989 {
3990         drm_i915_private_t *dev_priv = dev->dev_private;
3991         struct drm_gem_object *obj;
3992         struct drm_i915_gem_object *obj_priv;
3993         int ret;
3994
3995         /* If we need a physical address for the status page, it's already
3996          * initialized at driver load time.
3997          */
3998         if (!I915_NEED_GFX_HWS(dev))
3999                 return 0;
4000
4001         obj = drm_gem_object_alloc(dev, 4096);
4002         if (obj == NULL) {
4003                 DRM_ERROR("Failed to allocate status page\n");
4004                 return -ENOMEM;
4005         }
4006         obj_priv = obj->driver_private;
4007         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4008
4009         ret = i915_gem_object_pin(obj, 4096);
4010         if (ret != 0) {
4011                 drm_gem_object_unreference(obj);
4012                 return ret;
4013         }
4014
4015         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4016
4017         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4018         if (dev_priv->hw_status_page == NULL) {
4019                 DRM_ERROR("Failed to map status page.\n");
4020                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4021                 i915_gem_object_unpin(obj);
4022                 drm_gem_object_unreference(obj);
4023                 return -EINVAL;
4024         }
4025         dev_priv->hws_obj = obj;
4026         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4027         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4028         I915_READ(HWS_PGA); /* posting read */
4029         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4030
4031         return 0;
4032 }
4033
4034 static void
4035 i915_gem_cleanup_hws(struct drm_device *dev)
4036 {
4037         drm_i915_private_t *dev_priv = dev->dev_private;
4038         struct drm_gem_object *obj;
4039         struct drm_i915_gem_object *obj_priv;
4040
4041         if (dev_priv->hws_obj == NULL)
4042                 return;
4043
4044         obj = dev_priv->hws_obj;
4045         obj_priv = obj->driver_private;
4046
4047         kunmap(obj_priv->pages[0]);
4048         i915_gem_object_unpin(obj);
4049         drm_gem_object_unreference(obj);
4050         dev_priv->hws_obj = NULL;
4051
4052         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4053         dev_priv->hw_status_page = NULL;
4054
4055         /* Write high address into HWS_PGA when disabling. */
4056         I915_WRITE(HWS_PGA, 0x1ffff000);
4057 }
4058
4059 int
4060 i915_gem_init_ringbuffer(struct drm_device *dev)
4061 {
4062         drm_i915_private_t *dev_priv = dev->dev_private;
4063         struct drm_gem_object *obj;
4064         struct drm_i915_gem_object *obj_priv;
4065         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4066         int ret;
4067         u32 head;
4068
4069         ret = i915_gem_init_hws(dev);
4070         if (ret != 0)
4071                 return ret;
4072
4073         obj = drm_gem_object_alloc(dev, 128 * 1024);
4074         if (obj == NULL) {
4075                 DRM_ERROR("Failed to allocate ringbuffer\n");
4076                 i915_gem_cleanup_hws(dev);
4077                 return -ENOMEM;
4078         }
4079         obj_priv = obj->driver_private;
4080
4081         ret = i915_gem_object_pin(obj, 4096);
4082         if (ret != 0) {
4083                 drm_gem_object_unreference(obj);
4084                 i915_gem_cleanup_hws(dev);
4085                 return ret;
4086         }
4087
4088         /* Set up the kernel mapping for the ring. */
4089         ring->Size = obj->size;
4090
4091         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4092         ring->map.size = obj->size;
4093         ring->map.type = 0;
4094         ring->map.flags = 0;
4095         ring->map.mtrr = 0;
4096
4097         drm_core_ioremap_wc(&ring->map, dev);
4098         if (ring->map.handle == NULL) {
4099                 DRM_ERROR("Failed to map ringbuffer.\n");
4100                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4101                 i915_gem_object_unpin(obj);
4102                 drm_gem_object_unreference(obj);
4103                 i915_gem_cleanup_hws(dev);
4104                 return -EINVAL;
4105         }
4106         ring->ring_obj = obj;
4107         ring->virtual_start = ring->map.handle;
4108
4109         /* Stop the ring if it's running. */
4110         I915_WRITE(PRB0_CTL, 0);
4111         I915_WRITE(PRB0_TAIL, 0);
4112         I915_WRITE(PRB0_HEAD, 0);
4113
4114         /* Initialize the ring. */
4115         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4116         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4117
4118         /* G45 ring initialization fails to reset head to zero */
4119         if (head != 0) {
4120                 DRM_ERROR("Ring head not reset to zero "
4121                           "ctl %08x head %08x tail %08x start %08x\n",
4122                           I915_READ(PRB0_CTL),
4123                           I915_READ(PRB0_HEAD),
4124                           I915_READ(PRB0_TAIL),
4125                           I915_READ(PRB0_START));
4126                 I915_WRITE(PRB0_HEAD, 0);
4127
4128                 DRM_ERROR("Ring head forced to zero "
4129                           "ctl %08x head %08x tail %08x start %08x\n",
4130                           I915_READ(PRB0_CTL),
4131                           I915_READ(PRB0_HEAD),
4132                           I915_READ(PRB0_TAIL),
4133                           I915_READ(PRB0_START));
4134         }
4135
4136         I915_WRITE(PRB0_CTL,
4137                    ((obj->size - 4096) & RING_NR_PAGES) |
4138                    RING_NO_REPORT |
4139                    RING_VALID);
4140
4141         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4142
4143         /* If the head is still not zero, the ring is dead */
4144         if (head != 0) {
4145                 DRM_ERROR("Ring initialization failed "
4146                           "ctl %08x head %08x tail %08x start %08x\n",
4147                           I915_READ(PRB0_CTL),
4148                           I915_READ(PRB0_HEAD),
4149                           I915_READ(PRB0_TAIL),
4150                           I915_READ(PRB0_START));
4151                 return -EIO;
4152         }
4153
4154         /* Update our cache of the ring state */
4155         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4156                 i915_kernel_lost_context(dev);
4157         else {
4158                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4159                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4160                 ring->space = ring->head - (ring->tail + 8);
4161                 if (ring->space < 0)
4162                         ring->space += ring->Size;
4163         }
4164
4165         return 0;
4166 }
4167
4168 void
4169 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4170 {
4171         drm_i915_private_t *dev_priv = dev->dev_private;
4172
4173         if (dev_priv->ring.ring_obj == NULL)
4174                 return;
4175
4176         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4177
4178         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4179         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4180         dev_priv->ring.ring_obj = NULL;
4181         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4182
4183         i915_gem_cleanup_hws(dev);
4184 }
4185
4186 int
4187 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4188                        struct drm_file *file_priv)
4189 {
4190         drm_i915_private_t *dev_priv = dev->dev_private;
4191         int ret;
4192
4193         if (drm_core_check_feature(dev, DRIVER_MODESET))
4194                 return 0;
4195
4196         if (atomic_read(&dev_priv->mm.wedged)) {
4197                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4198                 atomic_set(&dev_priv->mm.wedged, 0);
4199         }
4200
4201         mutex_lock(&dev->struct_mutex);
4202         dev_priv->mm.suspended = 0;
4203
4204         ret = i915_gem_init_ringbuffer(dev);
4205         if (ret != 0) {
4206                 mutex_unlock(&dev->struct_mutex);
4207                 return ret;
4208         }
4209
4210         spin_lock(&dev_priv->mm.active_list_lock);
4211         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4212         spin_unlock(&dev_priv->mm.active_list_lock);
4213
4214         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4215         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4216         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4217         mutex_unlock(&dev->struct_mutex);
4218
4219         drm_irq_install(dev);
4220
4221         return 0;
4222 }
4223
4224 int
4225 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4226                        struct drm_file *file_priv)
4227 {
4228         int ret;
4229
4230         if (drm_core_check_feature(dev, DRIVER_MODESET))
4231                 return 0;
4232
4233         ret = i915_gem_idle(dev);
4234         drm_irq_uninstall(dev);
4235
4236         return ret;
4237 }
4238
4239 void
4240 i915_gem_lastclose(struct drm_device *dev)
4241 {
4242         int ret;
4243
4244         if (drm_core_check_feature(dev, DRIVER_MODESET))
4245                 return;
4246
4247         ret = i915_gem_idle(dev);
4248         if (ret)
4249                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4250 }
4251
4252 void
4253 i915_gem_load(struct drm_device *dev)
4254 {
4255         int i;
4256         drm_i915_private_t *dev_priv = dev->dev_private;
4257
4258         spin_lock_init(&dev_priv->mm.active_list_lock);
4259         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4260         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4261         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4262         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4263         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4264         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4265                           i915_gem_retire_work_handler);
4266         dev_priv->mm.next_gem_seqno = 1;
4267
4268         /* Old X drivers will take 0-2 for front, back, depth buffers */
4269         dev_priv->fence_reg_start = 3;
4270
4271         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4272                 dev_priv->num_fence_regs = 16;
4273         else
4274                 dev_priv->num_fence_regs = 8;
4275
4276         /* Initialize fence registers to zero */
4277         if (IS_I965G(dev)) {
4278                 for (i = 0; i < 16; i++)
4279                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4280         } else {
4281                 for (i = 0; i < 8; i++)
4282                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4283                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4284                         for (i = 0; i < 8; i++)
4285                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4286         }
4287
4288         i915_gem_detect_bit_6_swizzle(dev);
4289 }
4290
4291 /*
4292  * Create a physically contiguous memory object for this object
4293  * e.g. for cursor + overlay regs
4294  */
4295 int i915_gem_init_phys_object(struct drm_device *dev,
4296                               int id, int size)
4297 {
4298         drm_i915_private_t *dev_priv = dev->dev_private;
4299         struct drm_i915_gem_phys_object *phys_obj;
4300         int ret;
4301
4302         if (dev_priv->mm.phys_objs[id - 1] || !size)
4303                 return 0;
4304
4305         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4306         if (!phys_obj)
4307                 return -ENOMEM;
4308
4309         phys_obj->id = id;
4310
4311         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4312         if (!phys_obj->handle) {
4313                 ret = -ENOMEM;
4314                 goto kfree_obj;
4315         }
4316 #ifdef CONFIG_X86
4317         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4318 #endif
4319
4320         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4321
4322         return 0;
4323 kfree_obj:
4324         kfree(phys_obj);
4325         return ret;
4326 }
4327
4328 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4329 {
4330         drm_i915_private_t *dev_priv = dev->dev_private;
4331         struct drm_i915_gem_phys_object *phys_obj;
4332
4333         if (!dev_priv->mm.phys_objs[id - 1])
4334                 return;
4335
4336         phys_obj = dev_priv->mm.phys_objs[id - 1];
4337         if (phys_obj->cur_obj) {
4338                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4339         }
4340
4341 #ifdef CONFIG_X86
4342         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4343 #endif
4344         drm_pci_free(dev, phys_obj->handle);
4345         kfree(phys_obj);
4346         dev_priv->mm.phys_objs[id - 1] = NULL;
4347 }
4348
4349 void i915_gem_free_all_phys_object(struct drm_device *dev)
4350 {
4351         int i;
4352
4353         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4354                 i915_gem_free_phys_object(dev, i);
4355 }
4356
4357 void i915_gem_detach_phys_object(struct drm_device *dev,
4358                                  struct drm_gem_object *obj)
4359 {
4360         struct drm_i915_gem_object *obj_priv;
4361         int i;
4362         int ret;
4363         int page_count;
4364
4365         obj_priv = obj->driver_private;
4366         if (!obj_priv->phys_obj)
4367                 return;
4368
4369         ret = i915_gem_object_get_pages(obj);
4370         if (ret)
4371                 goto out;
4372
4373         page_count = obj->size / PAGE_SIZE;
4374
4375         for (i = 0; i < page_count; i++) {
4376                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4377                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4378
4379                 memcpy(dst, src, PAGE_SIZE);
4380                 kunmap_atomic(dst, KM_USER0);
4381         }
4382         drm_clflush_pages(obj_priv->pages, page_count);
4383         drm_agp_chipset_flush(dev);
4384
4385         i915_gem_object_put_pages(obj);
4386 out:
4387         obj_priv->phys_obj->cur_obj = NULL;
4388         obj_priv->phys_obj = NULL;
4389 }
4390
4391 int
4392 i915_gem_attach_phys_object(struct drm_device *dev,
4393                             struct drm_gem_object *obj, int id)
4394 {
4395         drm_i915_private_t *dev_priv = dev->dev_private;
4396         struct drm_i915_gem_object *obj_priv;
4397         int ret = 0;
4398         int page_count;
4399         int i;
4400
4401         if (id > I915_MAX_PHYS_OBJECT)
4402                 return -EINVAL;
4403
4404         obj_priv = obj->driver_private;
4405
4406         if (obj_priv->phys_obj) {
4407                 if (obj_priv->phys_obj->id == id)
4408                         return 0;
4409                 i915_gem_detach_phys_object(dev, obj);
4410         }
4411
4412
4413         /* create a new object */
4414         if (!dev_priv->mm.phys_objs[id - 1]) {
4415                 ret = i915_gem_init_phys_object(dev, id,
4416                                                 obj->size);
4417                 if (ret) {
4418                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4419                         goto out;
4420                 }
4421         }
4422
4423         /* bind to the object */
4424         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4425         obj_priv->phys_obj->cur_obj = obj;
4426
4427         ret = i915_gem_object_get_pages(obj);
4428         if (ret) {
4429                 DRM_ERROR("failed to get page list\n");
4430                 goto out;
4431         }
4432
4433         page_count = obj->size / PAGE_SIZE;
4434
4435         for (i = 0; i < page_count; i++) {
4436                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4437                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4438
4439                 memcpy(dst, src, PAGE_SIZE);
4440                 kunmap_atomic(src, KM_USER0);
4441         }
4442
4443         i915_gem_object_put_pages(obj);
4444
4445         return 0;
4446 out:
4447         return ret;
4448 }
4449
4450 static int
4451 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4452                      struct drm_i915_gem_pwrite *args,
4453                      struct drm_file *file_priv)
4454 {
4455         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4456         void *obj_addr;
4457         int ret;
4458         char __user *user_data;
4459
4460         user_data = (char __user *) (uintptr_t) args->data_ptr;
4461         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4462
4463         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4464         ret = copy_from_user(obj_addr, user_data, args->size);
4465         if (ret)
4466                 return -EFAULT;
4467
4468         drm_agp_chipset_flush(dev);
4469         return 0;
4470 }
4471
4472 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4473 {
4474         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4475
4476         /* Clean up our request list when the client is going away, so that
4477          * later retire_requests won't dereference our soon-to-be-gone
4478          * file_priv.
4479          */
4480         mutex_lock(&dev->struct_mutex);
4481         while (!list_empty(&i915_file_priv->mm.request_list))
4482                 list_del_init(i915_file_priv->mm.request_list.next);
4483         mutex_unlock(&dev->struct_mutex);
4484 }