drm/i915: Add tracepoints
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_list(struct drm_device *dev,
54                                     struct list_head *head);
55 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
56                                 struct drm_i915_gem_pwrite *args,
57                                 struct drm_file *file_priv);
58
59 static LIST_HEAD(shrink_list);
60 static DEFINE_SPINLOCK(shrink_list_lock);
61
62 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
63                      unsigned long end)
64 {
65         drm_i915_private_t *dev_priv = dev->dev_private;
66
67         if (start >= end ||
68             (start & (PAGE_SIZE - 1)) != 0 ||
69             (end & (PAGE_SIZE - 1)) != 0) {
70                 return -EINVAL;
71         }
72
73         drm_mm_init(&dev_priv->mm.gtt_space, start,
74                     end - start);
75
76         dev->gtt_total = (uint32_t) (end - start);
77
78         return 0;
79 }
80
81 int
82 i915_gem_init_ioctl(struct drm_device *dev, void *data,
83                     struct drm_file *file_priv)
84 {
85         struct drm_i915_gem_init *args = data;
86         int ret;
87
88         mutex_lock(&dev->struct_mutex);
89         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
90         mutex_unlock(&dev->struct_mutex);
91
92         return ret;
93 }
94
95 int
96 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
97                             struct drm_file *file_priv)
98 {
99         struct drm_i915_gem_get_aperture *args = data;
100
101         if (!(dev->driver->driver_features & DRIVER_GEM))
102                 return -ENODEV;
103
104         args->aper_size = dev->gtt_total;
105         args->aper_available_size = (args->aper_size -
106                                      atomic_read(&dev->pin_memory));
107
108         return 0;
109 }
110
111
112 /**
113  * Creates a new mm object and returns a handle to it.
114  */
115 int
116 i915_gem_create_ioctl(struct drm_device *dev, void *data,
117                       struct drm_file *file_priv)
118 {
119         struct drm_i915_gem_create *args = data;
120         struct drm_gem_object *obj;
121         int ret;
122         u32 handle;
123
124         args->size = roundup(args->size, PAGE_SIZE);
125
126         /* Allocate the new object */
127         obj = drm_gem_object_alloc(dev, args->size);
128         if (obj == NULL)
129                 return -ENOMEM;
130
131         ret = drm_gem_handle_create(file_priv, obj, &handle);
132         mutex_lock(&dev->struct_mutex);
133         drm_gem_object_handle_unreference(obj);
134         mutex_unlock(&dev->struct_mutex);
135
136         if (ret)
137                 return ret;
138
139         args->handle = handle;
140
141         return 0;
142 }
143
144 static inline int
145 fast_shmem_read(struct page **pages,
146                 loff_t page_base, int page_offset,
147                 char __user *data,
148                 int length)
149 {
150         char __iomem *vaddr;
151         int unwritten;
152
153         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
154         if (vaddr == NULL)
155                 return -ENOMEM;
156         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
157         kunmap_atomic(vaddr, KM_USER0);
158
159         if (unwritten)
160                 return -EFAULT;
161
162         return 0;
163 }
164
165 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
166 {
167         drm_i915_private_t *dev_priv = obj->dev->dev_private;
168         struct drm_i915_gem_object *obj_priv = obj->driver_private;
169
170         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
171                 obj_priv->tiling_mode != I915_TILING_NONE;
172 }
173
174 static inline int
175 slow_shmem_copy(struct page *dst_page,
176                 int dst_offset,
177                 struct page *src_page,
178                 int src_offset,
179                 int length)
180 {
181         char *dst_vaddr, *src_vaddr;
182
183         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
184         if (dst_vaddr == NULL)
185                 return -ENOMEM;
186
187         src_vaddr = kmap_atomic(src_page, KM_USER1);
188         if (src_vaddr == NULL) {
189                 kunmap_atomic(dst_vaddr, KM_USER0);
190                 return -ENOMEM;
191         }
192
193         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
194
195         kunmap_atomic(src_vaddr, KM_USER1);
196         kunmap_atomic(dst_vaddr, KM_USER0);
197
198         return 0;
199 }
200
201 static inline int
202 slow_shmem_bit17_copy(struct page *gpu_page,
203                       int gpu_offset,
204                       struct page *cpu_page,
205                       int cpu_offset,
206                       int length,
207                       int is_read)
208 {
209         char *gpu_vaddr, *cpu_vaddr;
210
211         /* Use the unswizzled path if this page isn't affected. */
212         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
213                 if (is_read)
214                         return slow_shmem_copy(cpu_page, cpu_offset,
215                                                gpu_page, gpu_offset, length);
216                 else
217                         return slow_shmem_copy(gpu_page, gpu_offset,
218                                                cpu_page, cpu_offset, length);
219         }
220
221         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
222         if (gpu_vaddr == NULL)
223                 return -ENOMEM;
224
225         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
226         if (cpu_vaddr == NULL) {
227                 kunmap_atomic(gpu_vaddr, KM_USER0);
228                 return -ENOMEM;
229         }
230
231         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
232          * XORing with the other bits (A9 for Y, A9 and A10 for X)
233          */
234         while (length > 0) {
235                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
236                 int this_length = min(cacheline_end - gpu_offset, length);
237                 int swizzled_gpu_offset = gpu_offset ^ 64;
238
239                 if (is_read) {
240                         memcpy(cpu_vaddr + cpu_offset,
241                                gpu_vaddr + swizzled_gpu_offset,
242                                this_length);
243                 } else {
244                         memcpy(gpu_vaddr + swizzled_gpu_offset,
245                                cpu_vaddr + cpu_offset,
246                                this_length);
247                 }
248                 cpu_offset += this_length;
249                 gpu_offset += this_length;
250                 length -= this_length;
251         }
252
253         kunmap_atomic(cpu_vaddr, KM_USER1);
254         kunmap_atomic(gpu_vaddr, KM_USER0);
255
256         return 0;
257 }
258
259 /**
260  * This is the fast shmem pread path, which attempts to copy_from_user directly
261  * from the backing pages of the object to the user's address space.  On a
262  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
263  */
264 static int
265 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
266                           struct drm_i915_gem_pread *args,
267                           struct drm_file *file_priv)
268 {
269         struct drm_i915_gem_object *obj_priv = obj->driver_private;
270         ssize_t remain;
271         loff_t offset, page_base;
272         char __user *user_data;
273         int page_offset, page_length;
274         int ret;
275
276         user_data = (char __user *) (uintptr_t) args->data_ptr;
277         remain = args->size;
278
279         mutex_lock(&dev->struct_mutex);
280
281         ret = i915_gem_object_get_pages(obj);
282         if (ret != 0)
283                 goto fail_unlock;
284
285         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
286                                                         args->size);
287         if (ret != 0)
288                 goto fail_put_pages;
289
290         obj_priv = obj->driver_private;
291         offset = args->offset;
292
293         while (remain > 0) {
294                 /* Operation in this page
295                  *
296                  * page_base = page offset within aperture
297                  * page_offset = offset within page
298                  * page_length = bytes to copy for this page
299                  */
300                 page_base = (offset & ~(PAGE_SIZE-1));
301                 page_offset = offset & (PAGE_SIZE-1);
302                 page_length = remain;
303                 if ((page_offset + remain) > PAGE_SIZE)
304                         page_length = PAGE_SIZE - page_offset;
305
306                 ret = fast_shmem_read(obj_priv->pages,
307                                       page_base, page_offset,
308                                       user_data, page_length);
309                 if (ret)
310                         goto fail_put_pages;
311
312                 remain -= page_length;
313                 user_data += page_length;
314                 offset += page_length;
315         }
316
317 fail_put_pages:
318         i915_gem_object_put_pages(obj);
319 fail_unlock:
320         mutex_unlock(&dev->struct_mutex);
321
322         return ret;
323 }
324
325 static inline gfp_t
326 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
327 {
328         return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
329 }
330
331 static inline void
332 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
333 {
334         mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
335 }
336
337 static int
338 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
339 {
340         int ret;
341
342         ret = i915_gem_object_get_pages(obj);
343
344         /* If we've insufficient memory to map in the pages, attempt
345          * to make some space by throwing out some old buffers.
346          */
347         if (ret == -ENOMEM) {
348                 struct drm_device *dev = obj->dev;
349                 gfp_t gfp;
350
351                 ret = i915_gem_evict_something(dev, obj->size);
352                 if (ret)
353                         return ret;
354
355                 gfp = i915_gem_object_get_page_gfp_mask(obj);
356                 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
357                 ret = i915_gem_object_get_pages(obj);
358                 i915_gem_object_set_page_gfp_mask (obj, gfp);
359         }
360
361         return ret;
362 }
363
364 /**
365  * This is the fallback shmem pread path, which allocates temporary storage
366  * in kernel space to copy_to_user into outside of the struct_mutex, so we
367  * can copy out of the object's backing pages while holding the struct mutex
368  * and not take page faults.
369  */
370 static int
371 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
372                           struct drm_i915_gem_pread *args,
373                           struct drm_file *file_priv)
374 {
375         struct drm_i915_gem_object *obj_priv = obj->driver_private;
376         struct mm_struct *mm = current->mm;
377         struct page **user_pages;
378         ssize_t remain;
379         loff_t offset, pinned_pages, i;
380         loff_t first_data_page, last_data_page, num_pages;
381         int shmem_page_index, shmem_page_offset;
382         int data_page_index,  data_page_offset;
383         int page_length;
384         int ret;
385         uint64_t data_ptr = args->data_ptr;
386         int do_bit17_swizzling;
387
388         remain = args->size;
389
390         /* Pin the user pages containing the data.  We can't fault while
391          * holding the struct mutex, yet we want to hold it while
392          * dereferencing the user data.
393          */
394         first_data_page = data_ptr / PAGE_SIZE;
395         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
396         num_pages = last_data_page - first_data_page + 1;
397
398         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
399         if (user_pages == NULL)
400                 return -ENOMEM;
401
402         down_read(&mm->mmap_sem);
403         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
404                                       num_pages, 1, 0, user_pages, NULL);
405         up_read(&mm->mmap_sem);
406         if (pinned_pages < num_pages) {
407                 ret = -EFAULT;
408                 goto fail_put_user_pages;
409         }
410
411         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
412
413         mutex_lock(&dev->struct_mutex);
414
415         ret = i915_gem_object_get_pages_or_evict(obj);
416         if (ret)
417                 goto fail_unlock;
418
419         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
420                                                         args->size);
421         if (ret != 0)
422                 goto fail_put_pages;
423
424         obj_priv = obj->driver_private;
425         offset = args->offset;
426
427         while (remain > 0) {
428                 /* Operation in this page
429                  *
430                  * shmem_page_index = page number within shmem file
431                  * shmem_page_offset = offset within page in shmem file
432                  * data_page_index = page number in get_user_pages return
433                  * data_page_offset = offset with data_page_index page.
434                  * page_length = bytes to copy for this page
435                  */
436                 shmem_page_index = offset / PAGE_SIZE;
437                 shmem_page_offset = offset & ~PAGE_MASK;
438                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
439                 data_page_offset = data_ptr & ~PAGE_MASK;
440
441                 page_length = remain;
442                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
443                         page_length = PAGE_SIZE - shmem_page_offset;
444                 if ((data_page_offset + page_length) > PAGE_SIZE)
445                         page_length = PAGE_SIZE - data_page_offset;
446
447                 if (do_bit17_swizzling) {
448                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
449                                                     shmem_page_offset,
450                                                     user_pages[data_page_index],
451                                                     data_page_offset,
452                                                     page_length,
453                                                     1);
454                 } else {
455                         ret = slow_shmem_copy(user_pages[data_page_index],
456                                               data_page_offset,
457                                               obj_priv->pages[shmem_page_index],
458                                               shmem_page_offset,
459                                               page_length);
460                 }
461                 if (ret)
462                         goto fail_put_pages;
463
464                 remain -= page_length;
465                 data_ptr += page_length;
466                 offset += page_length;
467         }
468
469 fail_put_pages:
470         i915_gem_object_put_pages(obj);
471 fail_unlock:
472         mutex_unlock(&dev->struct_mutex);
473 fail_put_user_pages:
474         for (i = 0; i < pinned_pages; i++) {
475                 SetPageDirty(user_pages[i]);
476                 page_cache_release(user_pages[i]);
477         }
478         drm_free_large(user_pages);
479
480         return ret;
481 }
482
483 /**
484  * Reads data from the object referenced by handle.
485  *
486  * On error, the contents of *data are undefined.
487  */
488 int
489 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
490                      struct drm_file *file_priv)
491 {
492         struct drm_i915_gem_pread *args = data;
493         struct drm_gem_object *obj;
494         struct drm_i915_gem_object *obj_priv;
495         int ret;
496
497         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
498         if (obj == NULL)
499                 return -EBADF;
500         obj_priv = obj->driver_private;
501
502         /* Bounds check source.
503          *
504          * XXX: This could use review for overflow issues...
505          */
506         if (args->offset > obj->size || args->size > obj->size ||
507             args->offset + args->size > obj->size) {
508                 drm_gem_object_unreference(obj);
509                 return -EINVAL;
510         }
511
512         if (i915_gem_object_needs_bit17_swizzle(obj)) {
513                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
514         } else {
515                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
516                 if (ret != 0)
517                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
518                                                         file_priv);
519         }
520
521         drm_gem_object_unreference(obj);
522
523         return ret;
524 }
525
526 /* This is the fast write path which cannot handle
527  * page faults in the source data
528  */
529
530 static inline int
531 fast_user_write(struct io_mapping *mapping,
532                 loff_t page_base, int page_offset,
533                 char __user *user_data,
534                 int length)
535 {
536         char *vaddr_atomic;
537         unsigned long unwritten;
538
539         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
540         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
541                                                       user_data, length);
542         io_mapping_unmap_atomic(vaddr_atomic);
543         if (unwritten)
544                 return -EFAULT;
545         return 0;
546 }
547
548 /* Here's the write path which can sleep for
549  * page faults
550  */
551
552 static inline int
553 slow_kernel_write(struct io_mapping *mapping,
554                   loff_t gtt_base, int gtt_offset,
555                   struct page *user_page, int user_offset,
556                   int length)
557 {
558         char *src_vaddr, *dst_vaddr;
559         unsigned long unwritten;
560
561         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
562         src_vaddr = kmap_atomic(user_page, KM_USER1);
563         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
564                                                       src_vaddr + user_offset,
565                                                       length);
566         kunmap_atomic(src_vaddr, KM_USER1);
567         io_mapping_unmap_atomic(dst_vaddr);
568         if (unwritten)
569                 return -EFAULT;
570         return 0;
571 }
572
573 static inline int
574 fast_shmem_write(struct page **pages,
575                  loff_t page_base, int page_offset,
576                  char __user *data,
577                  int length)
578 {
579         char __iomem *vaddr;
580         unsigned long unwritten;
581
582         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
583         if (vaddr == NULL)
584                 return -ENOMEM;
585         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
586         kunmap_atomic(vaddr, KM_USER0);
587
588         if (unwritten)
589                 return -EFAULT;
590         return 0;
591 }
592
593 /**
594  * This is the fast pwrite path, where we copy the data directly from the
595  * user into the GTT, uncached.
596  */
597 static int
598 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
599                          struct drm_i915_gem_pwrite *args,
600                          struct drm_file *file_priv)
601 {
602         struct drm_i915_gem_object *obj_priv = obj->driver_private;
603         drm_i915_private_t *dev_priv = dev->dev_private;
604         ssize_t remain;
605         loff_t offset, page_base;
606         char __user *user_data;
607         int page_offset, page_length;
608         int ret;
609
610         user_data = (char __user *) (uintptr_t) args->data_ptr;
611         remain = args->size;
612         if (!access_ok(VERIFY_READ, user_data, remain))
613                 return -EFAULT;
614
615
616         mutex_lock(&dev->struct_mutex);
617         ret = i915_gem_object_pin(obj, 0);
618         if (ret) {
619                 mutex_unlock(&dev->struct_mutex);
620                 return ret;
621         }
622         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
623         if (ret)
624                 goto fail;
625
626         obj_priv = obj->driver_private;
627         offset = obj_priv->gtt_offset + args->offset;
628
629         while (remain > 0) {
630                 /* Operation in this page
631                  *
632                  * page_base = page offset within aperture
633                  * page_offset = offset within page
634                  * page_length = bytes to copy for this page
635                  */
636                 page_base = (offset & ~(PAGE_SIZE-1));
637                 page_offset = offset & (PAGE_SIZE-1);
638                 page_length = remain;
639                 if ((page_offset + remain) > PAGE_SIZE)
640                         page_length = PAGE_SIZE - page_offset;
641
642                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
643                                        page_offset, user_data, page_length);
644
645                 /* If we get a fault while copying data, then (presumably) our
646                  * source page isn't available.  Return the error and we'll
647                  * retry in the slow path.
648                  */
649                 if (ret)
650                         goto fail;
651
652                 remain -= page_length;
653                 user_data += page_length;
654                 offset += page_length;
655         }
656
657 fail:
658         i915_gem_object_unpin(obj);
659         mutex_unlock(&dev->struct_mutex);
660
661         return ret;
662 }
663
664 /**
665  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
666  * the memory and maps it using kmap_atomic for copying.
667  *
668  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
669  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
670  */
671 static int
672 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
673                          struct drm_i915_gem_pwrite *args,
674                          struct drm_file *file_priv)
675 {
676         struct drm_i915_gem_object *obj_priv = obj->driver_private;
677         drm_i915_private_t *dev_priv = dev->dev_private;
678         ssize_t remain;
679         loff_t gtt_page_base, offset;
680         loff_t first_data_page, last_data_page, num_pages;
681         loff_t pinned_pages, i;
682         struct page **user_pages;
683         struct mm_struct *mm = current->mm;
684         int gtt_page_offset, data_page_offset, data_page_index, page_length;
685         int ret;
686         uint64_t data_ptr = args->data_ptr;
687
688         remain = args->size;
689
690         /* Pin the user pages containing the data.  We can't fault while
691          * holding the struct mutex, and all of the pwrite implementations
692          * want to hold it while dereferencing the user data.
693          */
694         first_data_page = data_ptr / PAGE_SIZE;
695         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
696         num_pages = last_data_page - first_data_page + 1;
697
698         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
699         if (user_pages == NULL)
700                 return -ENOMEM;
701
702         down_read(&mm->mmap_sem);
703         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
704                                       num_pages, 0, 0, user_pages, NULL);
705         up_read(&mm->mmap_sem);
706         if (pinned_pages < num_pages) {
707                 ret = -EFAULT;
708                 goto out_unpin_pages;
709         }
710
711         mutex_lock(&dev->struct_mutex);
712         ret = i915_gem_object_pin(obj, 0);
713         if (ret)
714                 goto out_unlock;
715
716         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
717         if (ret)
718                 goto out_unpin_object;
719
720         obj_priv = obj->driver_private;
721         offset = obj_priv->gtt_offset + args->offset;
722
723         while (remain > 0) {
724                 /* Operation in this page
725                  *
726                  * gtt_page_base = page offset within aperture
727                  * gtt_page_offset = offset within page in aperture
728                  * data_page_index = page number in get_user_pages return
729                  * data_page_offset = offset with data_page_index page.
730                  * page_length = bytes to copy for this page
731                  */
732                 gtt_page_base = offset & PAGE_MASK;
733                 gtt_page_offset = offset & ~PAGE_MASK;
734                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
735                 data_page_offset = data_ptr & ~PAGE_MASK;
736
737                 page_length = remain;
738                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
739                         page_length = PAGE_SIZE - gtt_page_offset;
740                 if ((data_page_offset + page_length) > PAGE_SIZE)
741                         page_length = PAGE_SIZE - data_page_offset;
742
743                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
744                                         gtt_page_base, gtt_page_offset,
745                                         user_pages[data_page_index],
746                                         data_page_offset,
747                                         page_length);
748
749                 /* If we get a fault while copying data, then (presumably) our
750                  * source page isn't available.  Return the error and we'll
751                  * retry in the slow path.
752                  */
753                 if (ret)
754                         goto out_unpin_object;
755
756                 remain -= page_length;
757                 offset += page_length;
758                 data_ptr += page_length;
759         }
760
761 out_unpin_object:
762         i915_gem_object_unpin(obj);
763 out_unlock:
764         mutex_unlock(&dev->struct_mutex);
765 out_unpin_pages:
766         for (i = 0; i < pinned_pages; i++)
767                 page_cache_release(user_pages[i]);
768         drm_free_large(user_pages);
769
770         return ret;
771 }
772
773 /**
774  * This is the fast shmem pwrite path, which attempts to directly
775  * copy_from_user into the kmapped pages backing the object.
776  */
777 static int
778 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
779                            struct drm_i915_gem_pwrite *args,
780                            struct drm_file *file_priv)
781 {
782         struct drm_i915_gem_object *obj_priv = obj->driver_private;
783         ssize_t remain;
784         loff_t offset, page_base;
785         char __user *user_data;
786         int page_offset, page_length;
787         int ret;
788
789         user_data = (char __user *) (uintptr_t) args->data_ptr;
790         remain = args->size;
791
792         mutex_lock(&dev->struct_mutex);
793
794         ret = i915_gem_object_get_pages(obj);
795         if (ret != 0)
796                 goto fail_unlock;
797
798         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
799         if (ret != 0)
800                 goto fail_put_pages;
801
802         obj_priv = obj->driver_private;
803         offset = args->offset;
804         obj_priv->dirty = 1;
805
806         while (remain > 0) {
807                 /* Operation in this page
808                  *
809                  * page_base = page offset within aperture
810                  * page_offset = offset within page
811                  * page_length = bytes to copy for this page
812                  */
813                 page_base = (offset & ~(PAGE_SIZE-1));
814                 page_offset = offset & (PAGE_SIZE-1);
815                 page_length = remain;
816                 if ((page_offset + remain) > PAGE_SIZE)
817                         page_length = PAGE_SIZE - page_offset;
818
819                 ret = fast_shmem_write(obj_priv->pages,
820                                        page_base, page_offset,
821                                        user_data, page_length);
822                 if (ret)
823                         goto fail_put_pages;
824
825                 remain -= page_length;
826                 user_data += page_length;
827                 offset += page_length;
828         }
829
830 fail_put_pages:
831         i915_gem_object_put_pages(obj);
832 fail_unlock:
833         mutex_unlock(&dev->struct_mutex);
834
835         return ret;
836 }
837
838 /**
839  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
840  * the memory and maps it using kmap_atomic for copying.
841  *
842  * This avoids taking mmap_sem for faulting on the user's address while the
843  * struct_mutex is held.
844  */
845 static int
846 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
847                            struct drm_i915_gem_pwrite *args,
848                            struct drm_file *file_priv)
849 {
850         struct drm_i915_gem_object *obj_priv = obj->driver_private;
851         struct mm_struct *mm = current->mm;
852         struct page **user_pages;
853         ssize_t remain;
854         loff_t offset, pinned_pages, i;
855         loff_t first_data_page, last_data_page, num_pages;
856         int shmem_page_index, shmem_page_offset;
857         int data_page_index,  data_page_offset;
858         int page_length;
859         int ret;
860         uint64_t data_ptr = args->data_ptr;
861         int do_bit17_swizzling;
862
863         remain = args->size;
864
865         /* Pin the user pages containing the data.  We can't fault while
866          * holding the struct mutex, and all of the pwrite implementations
867          * want to hold it while dereferencing the user data.
868          */
869         first_data_page = data_ptr / PAGE_SIZE;
870         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
871         num_pages = last_data_page - first_data_page + 1;
872
873         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
874         if (user_pages == NULL)
875                 return -ENOMEM;
876
877         down_read(&mm->mmap_sem);
878         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
879                                       num_pages, 0, 0, user_pages, NULL);
880         up_read(&mm->mmap_sem);
881         if (pinned_pages < num_pages) {
882                 ret = -EFAULT;
883                 goto fail_put_user_pages;
884         }
885
886         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
887
888         mutex_lock(&dev->struct_mutex);
889
890         ret = i915_gem_object_get_pages_or_evict(obj);
891         if (ret)
892                 goto fail_unlock;
893
894         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
895         if (ret != 0)
896                 goto fail_put_pages;
897
898         obj_priv = obj->driver_private;
899         offset = args->offset;
900         obj_priv->dirty = 1;
901
902         while (remain > 0) {
903                 /* Operation in this page
904                  *
905                  * shmem_page_index = page number within shmem file
906                  * shmem_page_offset = offset within page in shmem file
907                  * data_page_index = page number in get_user_pages return
908                  * data_page_offset = offset with data_page_index page.
909                  * page_length = bytes to copy for this page
910                  */
911                 shmem_page_index = offset / PAGE_SIZE;
912                 shmem_page_offset = offset & ~PAGE_MASK;
913                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
914                 data_page_offset = data_ptr & ~PAGE_MASK;
915
916                 page_length = remain;
917                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
918                         page_length = PAGE_SIZE - shmem_page_offset;
919                 if ((data_page_offset + page_length) > PAGE_SIZE)
920                         page_length = PAGE_SIZE - data_page_offset;
921
922                 if (do_bit17_swizzling) {
923                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
924                                                     shmem_page_offset,
925                                                     user_pages[data_page_index],
926                                                     data_page_offset,
927                                                     page_length,
928                                                     0);
929                 } else {
930                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
931                                               shmem_page_offset,
932                                               user_pages[data_page_index],
933                                               data_page_offset,
934                                               page_length);
935                 }
936                 if (ret)
937                         goto fail_put_pages;
938
939                 remain -= page_length;
940                 data_ptr += page_length;
941                 offset += page_length;
942         }
943
944 fail_put_pages:
945         i915_gem_object_put_pages(obj);
946 fail_unlock:
947         mutex_unlock(&dev->struct_mutex);
948 fail_put_user_pages:
949         for (i = 0; i < pinned_pages; i++)
950                 page_cache_release(user_pages[i]);
951         drm_free_large(user_pages);
952
953         return ret;
954 }
955
956 /**
957  * Writes data to the object referenced by handle.
958  *
959  * On error, the contents of the buffer that were to be modified are undefined.
960  */
961 int
962 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
963                       struct drm_file *file_priv)
964 {
965         struct drm_i915_gem_pwrite *args = data;
966         struct drm_gem_object *obj;
967         struct drm_i915_gem_object *obj_priv;
968         int ret = 0;
969
970         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
971         if (obj == NULL)
972                 return -EBADF;
973         obj_priv = obj->driver_private;
974
975         /* Bounds check destination.
976          *
977          * XXX: This could use review for overflow issues...
978          */
979         if (args->offset > obj->size || args->size > obj->size ||
980             args->offset + args->size > obj->size) {
981                 drm_gem_object_unreference(obj);
982                 return -EINVAL;
983         }
984
985         /* We can only do the GTT pwrite on untiled buffers, as otherwise
986          * it would end up going through the fenced access, and we'll get
987          * different detiling behavior between reading and writing.
988          * pread/pwrite currently are reading and writing from the CPU
989          * perspective, requiring manual detiling by the client.
990          */
991         if (obj_priv->phys_obj)
992                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
993         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
994                  dev->gtt_total != 0) {
995                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
996                 if (ret == -EFAULT) {
997                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
998                                                        file_priv);
999                 }
1000         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1001                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1002         } else {
1003                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1004                 if (ret == -EFAULT) {
1005                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1006                                                          file_priv);
1007                 }
1008         }
1009
1010 #if WATCH_PWRITE
1011         if (ret)
1012                 DRM_INFO("pwrite failed %d\n", ret);
1013 #endif
1014
1015         drm_gem_object_unreference(obj);
1016
1017         return ret;
1018 }
1019
1020 /**
1021  * Called when user space prepares to use an object with the CPU, either
1022  * through the mmap ioctl's mapping or a GTT mapping.
1023  */
1024 int
1025 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1026                           struct drm_file *file_priv)
1027 {
1028         struct drm_i915_private *dev_priv = dev->dev_private;
1029         struct drm_i915_gem_set_domain *args = data;
1030         struct drm_gem_object *obj;
1031         struct drm_i915_gem_object *obj_priv;
1032         uint32_t read_domains = args->read_domains;
1033         uint32_t write_domain = args->write_domain;
1034         int ret;
1035
1036         if (!(dev->driver->driver_features & DRIVER_GEM))
1037                 return -ENODEV;
1038
1039         /* Only handle setting domains to types used by the CPU. */
1040         if (write_domain & I915_GEM_GPU_DOMAINS)
1041                 return -EINVAL;
1042
1043         if (read_domains & I915_GEM_GPU_DOMAINS)
1044                 return -EINVAL;
1045
1046         /* Having something in the write domain implies it's in the read
1047          * domain, and only that read domain.  Enforce that in the request.
1048          */
1049         if (write_domain != 0 && read_domains != write_domain)
1050                 return -EINVAL;
1051
1052         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1053         if (obj == NULL)
1054                 return -EBADF;
1055         obj_priv = obj->driver_private;
1056
1057         mutex_lock(&dev->struct_mutex);
1058
1059         intel_mark_busy(dev, obj);
1060
1061 #if WATCH_BUF
1062         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1063                  obj, obj->size, read_domains, write_domain);
1064 #endif
1065         if (read_domains & I915_GEM_DOMAIN_GTT) {
1066                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1067
1068                 /* Update the LRU on the fence for the CPU access that's
1069                  * about to occur.
1070                  */
1071                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1072                         list_move_tail(&obj_priv->fence_list,
1073                                        &dev_priv->mm.fence_list);
1074                 }
1075
1076                 /* Silently promote "you're not bound, there was nothing to do"
1077                  * to success, since the client was just asking us to
1078                  * make sure everything was done.
1079                  */
1080                 if (ret == -EINVAL)
1081                         ret = 0;
1082         } else {
1083                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1084         }
1085
1086         drm_gem_object_unreference(obj);
1087         mutex_unlock(&dev->struct_mutex);
1088         return ret;
1089 }
1090
1091 /**
1092  * Called when user space has done writes to this buffer
1093  */
1094 int
1095 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1096                       struct drm_file *file_priv)
1097 {
1098         struct drm_i915_gem_sw_finish *args = data;
1099         struct drm_gem_object *obj;
1100         struct drm_i915_gem_object *obj_priv;
1101         int ret = 0;
1102
1103         if (!(dev->driver->driver_features & DRIVER_GEM))
1104                 return -ENODEV;
1105
1106         mutex_lock(&dev->struct_mutex);
1107         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1108         if (obj == NULL) {
1109                 mutex_unlock(&dev->struct_mutex);
1110                 return -EBADF;
1111         }
1112
1113 #if WATCH_BUF
1114         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1115                  __func__, args->handle, obj, obj->size);
1116 #endif
1117         obj_priv = obj->driver_private;
1118
1119         /* Pinned buffers may be scanout, so flush the cache */
1120         if (obj_priv->pin_count)
1121                 i915_gem_object_flush_cpu_write_domain(obj);
1122
1123         drm_gem_object_unreference(obj);
1124         mutex_unlock(&dev->struct_mutex);
1125         return ret;
1126 }
1127
1128 /**
1129  * Maps the contents of an object, returning the address it is mapped
1130  * into.
1131  *
1132  * While the mapping holds a reference on the contents of the object, it doesn't
1133  * imply a ref on the object itself.
1134  */
1135 int
1136 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1137                    struct drm_file *file_priv)
1138 {
1139         struct drm_i915_gem_mmap *args = data;
1140         struct drm_gem_object *obj;
1141         loff_t offset;
1142         unsigned long addr;
1143
1144         if (!(dev->driver->driver_features & DRIVER_GEM))
1145                 return -ENODEV;
1146
1147         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1148         if (obj == NULL)
1149                 return -EBADF;
1150
1151         offset = args->offset;
1152
1153         down_write(&current->mm->mmap_sem);
1154         addr = do_mmap(obj->filp, 0, args->size,
1155                        PROT_READ | PROT_WRITE, MAP_SHARED,
1156                        args->offset);
1157         up_write(&current->mm->mmap_sem);
1158         mutex_lock(&dev->struct_mutex);
1159         drm_gem_object_unreference(obj);
1160         mutex_unlock(&dev->struct_mutex);
1161         if (IS_ERR((void *)addr))
1162                 return addr;
1163
1164         args->addr_ptr = (uint64_t) addr;
1165
1166         return 0;
1167 }
1168
1169 /**
1170  * i915_gem_fault - fault a page into the GTT
1171  * vma: VMA in question
1172  * vmf: fault info
1173  *
1174  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1175  * from userspace.  The fault handler takes care of binding the object to
1176  * the GTT (if needed), allocating and programming a fence register (again,
1177  * only if needed based on whether the old reg is still valid or the object
1178  * is tiled) and inserting a new PTE into the faulting process.
1179  *
1180  * Note that the faulting process may involve evicting existing objects
1181  * from the GTT and/or fence registers to make room.  So performance may
1182  * suffer if the GTT working set is large or there are few fence registers
1183  * left.
1184  */
1185 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1186 {
1187         struct drm_gem_object *obj = vma->vm_private_data;
1188         struct drm_device *dev = obj->dev;
1189         struct drm_i915_private *dev_priv = dev->dev_private;
1190         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1191         pgoff_t page_offset;
1192         unsigned long pfn;
1193         int ret = 0;
1194         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1195
1196         /* We don't use vmf->pgoff since that has the fake offset */
1197         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1198                 PAGE_SHIFT;
1199
1200         /* Now bind it into the GTT if needed */
1201         mutex_lock(&dev->struct_mutex);
1202         if (!obj_priv->gtt_space) {
1203                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1204                 if (ret) {
1205                         mutex_unlock(&dev->struct_mutex);
1206                         return VM_FAULT_SIGBUS;
1207                 }
1208                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1209
1210                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1211                 if (ret) {
1212                         mutex_unlock(&dev->struct_mutex);
1213                         return VM_FAULT_SIGBUS;
1214                 }
1215         }
1216
1217         /* Need a new fence register? */
1218         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1219                 ret = i915_gem_object_get_fence_reg(obj);
1220                 if (ret) {
1221                         mutex_unlock(&dev->struct_mutex);
1222                         return VM_FAULT_SIGBUS;
1223                 }
1224         }
1225
1226         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1227                 page_offset;
1228
1229         /* Finally, remap it using the new GTT offset */
1230         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1231
1232         mutex_unlock(&dev->struct_mutex);
1233
1234         switch (ret) {
1235         case -ENOMEM:
1236         case -EAGAIN:
1237                 return VM_FAULT_OOM;
1238         case -EFAULT:
1239         case -EINVAL:
1240                 return VM_FAULT_SIGBUS;
1241         default:
1242                 return VM_FAULT_NOPAGE;
1243         }
1244 }
1245
1246 /**
1247  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1248  * @obj: obj in question
1249  *
1250  * GEM memory mapping works by handing back to userspace a fake mmap offset
1251  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1252  * up the object based on the offset and sets up the various memory mapping
1253  * structures.
1254  *
1255  * This routine allocates and attaches a fake offset for @obj.
1256  */
1257 static int
1258 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1259 {
1260         struct drm_device *dev = obj->dev;
1261         struct drm_gem_mm *mm = dev->mm_private;
1262         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1263         struct drm_map_list *list;
1264         struct drm_local_map *map;
1265         int ret = 0;
1266
1267         /* Set the object up for mmap'ing */
1268         list = &obj->map_list;
1269         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1270         if (!list->map)
1271                 return -ENOMEM;
1272
1273         map = list->map;
1274         map->type = _DRM_GEM;
1275         map->size = obj->size;
1276         map->handle = obj;
1277
1278         /* Get a DRM GEM mmap offset allocated... */
1279         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1280                                                     obj->size / PAGE_SIZE, 0, 0);
1281         if (!list->file_offset_node) {
1282                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1283                 ret = -ENOMEM;
1284                 goto out_free_list;
1285         }
1286
1287         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1288                                                   obj->size / PAGE_SIZE, 0);
1289         if (!list->file_offset_node) {
1290                 ret = -ENOMEM;
1291                 goto out_free_list;
1292         }
1293
1294         list->hash.key = list->file_offset_node->start;
1295         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1296                 DRM_ERROR("failed to add to map hash\n");
1297                 goto out_free_mm;
1298         }
1299
1300         /* By now we should be all set, any drm_mmap request on the offset
1301          * below will get to our mmap & fault handler */
1302         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1303
1304         return 0;
1305
1306 out_free_mm:
1307         drm_mm_put_block(list->file_offset_node);
1308 out_free_list:
1309         kfree(list->map);
1310
1311         return ret;
1312 }
1313
1314 /**
1315  * i915_gem_release_mmap - remove physical page mappings
1316  * @obj: obj in question
1317  *
1318  * Preserve the reservation of the mmaping with the DRM core code, but
1319  * relinquish ownership of the pages back to the system.
1320  *
1321  * It is vital that we remove the page mapping if we have mapped a tiled
1322  * object through the GTT and then lose the fence register due to
1323  * resource pressure. Similarly if the object has been moved out of the
1324  * aperture, than pages mapped into userspace must be revoked. Removing the
1325  * mapping will then trigger a page fault on the next user access, allowing
1326  * fixup by i915_gem_fault().
1327  */
1328 void
1329 i915_gem_release_mmap(struct drm_gem_object *obj)
1330 {
1331         struct drm_device *dev = obj->dev;
1332         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1333
1334         if (dev->dev_mapping)
1335                 unmap_mapping_range(dev->dev_mapping,
1336                                     obj_priv->mmap_offset, obj->size, 1);
1337 }
1338
1339 static void
1340 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1341 {
1342         struct drm_device *dev = obj->dev;
1343         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1344         struct drm_gem_mm *mm = dev->mm_private;
1345         struct drm_map_list *list;
1346
1347         list = &obj->map_list;
1348         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1349
1350         if (list->file_offset_node) {
1351                 drm_mm_put_block(list->file_offset_node);
1352                 list->file_offset_node = NULL;
1353         }
1354
1355         if (list->map) {
1356                 kfree(list->map);
1357                 list->map = NULL;
1358         }
1359
1360         obj_priv->mmap_offset = 0;
1361 }
1362
1363 /**
1364  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1365  * @obj: object to check
1366  *
1367  * Return the required GTT alignment for an object, taking into account
1368  * potential fence register mapping if needed.
1369  */
1370 static uint32_t
1371 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1372 {
1373         struct drm_device *dev = obj->dev;
1374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1375         int start, i;
1376
1377         /*
1378          * Minimum alignment is 4k (GTT page size), but might be greater
1379          * if a fence register is needed for the object.
1380          */
1381         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1382                 return 4096;
1383
1384         /*
1385          * Previous chips need to be aligned to the size of the smallest
1386          * fence register that can contain the object.
1387          */
1388         if (IS_I9XX(dev))
1389                 start = 1024*1024;
1390         else
1391                 start = 512*1024;
1392
1393         for (i = start; i < obj->size; i <<= 1)
1394                 ;
1395
1396         return i;
1397 }
1398
1399 /**
1400  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1401  * @dev: DRM device
1402  * @data: GTT mapping ioctl data
1403  * @file_priv: GEM object info
1404  *
1405  * Simply returns the fake offset to userspace so it can mmap it.
1406  * The mmap call will end up in drm_gem_mmap(), which will set things
1407  * up so we can get faults in the handler above.
1408  *
1409  * The fault handler will take care of binding the object into the GTT
1410  * (since it may have been evicted to make room for something), allocating
1411  * a fence register, and mapping the appropriate aperture address into
1412  * userspace.
1413  */
1414 int
1415 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1416                         struct drm_file *file_priv)
1417 {
1418         struct drm_i915_gem_mmap_gtt *args = data;
1419         struct drm_i915_private *dev_priv = dev->dev_private;
1420         struct drm_gem_object *obj;
1421         struct drm_i915_gem_object *obj_priv;
1422         int ret;
1423
1424         if (!(dev->driver->driver_features & DRIVER_GEM))
1425                 return -ENODEV;
1426
1427         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1428         if (obj == NULL)
1429                 return -EBADF;
1430
1431         mutex_lock(&dev->struct_mutex);
1432
1433         obj_priv = obj->driver_private;
1434
1435         if (!obj_priv->mmap_offset) {
1436                 ret = i915_gem_create_mmap_offset(obj);
1437                 if (ret) {
1438                         drm_gem_object_unreference(obj);
1439                         mutex_unlock(&dev->struct_mutex);
1440                         return ret;
1441                 }
1442         }
1443
1444         args->offset = obj_priv->mmap_offset;
1445
1446         /*
1447          * Pull it into the GTT so that we have a page list (makes the
1448          * initial fault faster and any subsequent flushing possible).
1449          */
1450         if (!obj_priv->agp_mem) {
1451                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1452                 if (ret) {
1453                         drm_gem_object_unreference(obj);
1454                         mutex_unlock(&dev->struct_mutex);
1455                         return ret;
1456                 }
1457                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1458         }
1459
1460         drm_gem_object_unreference(obj);
1461         mutex_unlock(&dev->struct_mutex);
1462
1463         return 0;
1464 }
1465
1466 void
1467 i915_gem_object_put_pages(struct drm_gem_object *obj)
1468 {
1469         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1470         int page_count = obj->size / PAGE_SIZE;
1471         int i;
1472
1473         BUG_ON(obj_priv->pages_refcount == 0);
1474
1475         if (--obj_priv->pages_refcount != 0)
1476                 return;
1477
1478         if (obj_priv->tiling_mode != I915_TILING_NONE)
1479                 i915_gem_object_save_bit_17_swizzle(obj);
1480
1481         if (obj_priv->madv == I915_MADV_DONTNEED)
1482             obj_priv->dirty = 0;
1483
1484         for (i = 0; i < page_count; i++) {
1485                 if (obj_priv->pages[i] == NULL)
1486                         break;
1487
1488                 if (obj_priv->dirty)
1489                         set_page_dirty(obj_priv->pages[i]);
1490
1491                 if (obj_priv->madv == I915_MADV_WILLNEED)
1492                     mark_page_accessed(obj_priv->pages[i]);
1493
1494                 page_cache_release(obj_priv->pages[i]);
1495         }
1496         obj_priv->dirty = 0;
1497
1498         drm_free_large(obj_priv->pages);
1499         obj_priv->pages = NULL;
1500 }
1501
1502 static void
1503 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1504 {
1505         struct drm_device *dev = obj->dev;
1506         drm_i915_private_t *dev_priv = dev->dev_private;
1507         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1508
1509         /* Add a reference if we're newly entering the active list. */
1510         if (!obj_priv->active) {
1511                 drm_gem_object_reference(obj);
1512                 obj_priv->active = 1;
1513         }
1514         /* Move from whatever list we were on to the tail of execution. */
1515         spin_lock(&dev_priv->mm.active_list_lock);
1516         list_move_tail(&obj_priv->list,
1517                        &dev_priv->mm.active_list);
1518         spin_unlock(&dev_priv->mm.active_list_lock);
1519         obj_priv->last_rendering_seqno = seqno;
1520 }
1521
1522 static void
1523 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1524 {
1525         struct drm_device *dev = obj->dev;
1526         drm_i915_private_t *dev_priv = dev->dev_private;
1527         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1528
1529         BUG_ON(!obj_priv->active);
1530         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1531         obj_priv->last_rendering_seqno = 0;
1532 }
1533
1534 static void
1535 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1536 {
1537         struct drm_device *dev = obj->dev;
1538         drm_i915_private_t *dev_priv = dev->dev_private;
1539         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1540
1541         i915_verify_inactive(dev, __FILE__, __LINE__);
1542         if (obj_priv->pin_count != 0)
1543                 list_del_init(&obj_priv->list);
1544         else
1545                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1546
1547         obj_priv->last_rendering_seqno = 0;
1548         if (obj_priv->active) {
1549                 obj_priv->active = 0;
1550                 drm_gem_object_unreference(obj);
1551         }
1552         i915_verify_inactive(dev, __FILE__, __LINE__);
1553 }
1554
1555 /**
1556  * Creates a new sequence number, emitting a write of it to the status page
1557  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1558  *
1559  * Must be called with struct_lock held.
1560  *
1561  * Returned sequence numbers are nonzero on success.
1562  */
1563 static uint32_t
1564 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1565                  uint32_t flush_domains)
1566 {
1567         drm_i915_private_t *dev_priv = dev->dev_private;
1568         struct drm_i915_file_private *i915_file_priv = NULL;
1569         struct drm_i915_gem_request *request;
1570         uint32_t seqno;
1571         int was_empty;
1572         RING_LOCALS;
1573
1574         if (file_priv != NULL)
1575                 i915_file_priv = file_priv->driver_priv;
1576
1577         request = kzalloc(sizeof(*request), GFP_KERNEL);
1578         if (request == NULL)
1579                 return 0;
1580
1581         /* Grab the seqno we're going to make this request be, and bump the
1582          * next (skipping 0 so it can be the reserved no-seqno value).
1583          */
1584         seqno = dev_priv->mm.next_gem_seqno;
1585         dev_priv->mm.next_gem_seqno++;
1586         if (dev_priv->mm.next_gem_seqno == 0)
1587                 dev_priv->mm.next_gem_seqno++;
1588
1589         BEGIN_LP_RING(4);
1590         OUT_RING(MI_STORE_DWORD_INDEX);
1591         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1592         OUT_RING(seqno);
1593
1594         OUT_RING(MI_USER_INTERRUPT);
1595         ADVANCE_LP_RING();
1596
1597         DRM_DEBUG("%d\n", seqno);
1598
1599         request->seqno = seqno;
1600         request->emitted_jiffies = jiffies;
1601         was_empty = list_empty(&dev_priv->mm.request_list);
1602         list_add_tail(&request->list, &dev_priv->mm.request_list);
1603         if (i915_file_priv) {
1604                 list_add_tail(&request->client_list,
1605                               &i915_file_priv->mm.request_list);
1606         } else {
1607                 INIT_LIST_HEAD(&request->client_list);
1608         }
1609
1610         /* Associate any objects on the flushing list matching the write
1611          * domain we're flushing with our flush.
1612          */
1613         if (flush_domains != 0) {
1614                 struct drm_i915_gem_object *obj_priv, *next;
1615
1616                 list_for_each_entry_safe(obj_priv, next,
1617                                          &dev_priv->mm.flushing_list, list) {
1618                         struct drm_gem_object *obj = obj_priv->obj;
1619
1620                         if ((obj->write_domain & flush_domains) ==
1621                             obj->write_domain) {
1622                                 uint32_t old_write_domain = obj->write_domain;
1623
1624                                 obj->write_domain = 0;
1625                                 i915_gem_object_move_to_active(obj, seqno);
1626
1627                                 trace_i915_gem_object_change_domain(obj,
1628                                                                     obj->read_domains,
1629                                                                     old_write_domain);
1630                         }
1631                 }
1632
1633         }
1634
1635         if (!dev_priv->mm.suspended) {
1636                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1637                 if (was_empty)
1638                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1639         }
1640         return seqno;
1641 }
1642
1643 /**
1644  * Command execution barrier
1645  *
1646  * Ensures that all commands in the ring are finished
1647  * before signalling the CPU
1648  */
1649 static uint32_t
1650 i915_retire_commands(struct drm_device *dev)
1651 {
1652         drm_i915_private_t *dev_priv = dev->dev_private;
1653         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1654         uint32_t flush_domains = 0;
1655         RING_LOCALS;
1656
1657         /* The sampler always gets flushed on i965 (sigh) */
1658         if (IS_I965G(dev))
1659                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1660         BEGIN_LP_RING(2);
1661         OUT_RING(cmd);
1662         OUT_RING(0); /* noop */
1663         ADVANCE_LP_RING();
1664         return flush_domains;
1665 }
1666
1667 /**
1668  * Moves buffers associated only with the given active seqno from the active
1669  * to inactive list, potentially freeing them.
1670  */
1671 static void
1672 i915_gem_retire_request(struct drm_device *dev,
1673                         struct drm_i915_gem_request *request)
1674 {
1675         drm_i915_private_t *dev_priv = dev->dev_private;
1676
1677         trace_i915_gem_request_retire(dev, request->seqno);
1678
1679         /* Move any buffers on the active list that are no longer referenced
1680          * by the ringbuffer to the flushing/inactive lists as appropriate.
1681          */
1682         spin_lock(&dev_priv->mm.active_list_lock);
1683         while (!list_empty(&dev_priv->mm.active_list)) {
1684                 struct drm_gem_object *obj;
1685                 struct drm_i915_gem_object *obj_priv;
1686
1687                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1688                                             struct drm_i915_gem_object,
1689                                             list);
1690                 obj = obj_priv->obj;
1691
1692                 /* If the seqno being retired doesn't match the oldest in the
1693                  * list, then the oldest in the list must still be newer than
1694                  * this seqno.
1695                  */
1696                 if (obj_priv->last_rendering_seqno != request->seqno)
1697                         goto out;
1698
1699 #if WATCH_LRU
1700                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1701                          __func__, request->seqno, obj);
1702 #endif
1703
1704                 if (obj->write_domain != 0)
1705                         i915_gem_object_move_to_flushing(obj);
1706                 else {
1707                         /* Take a reference on the object so it won't be
1708                          * freed while the spinlock is held.  The list
1709                          * protection for this spinlock is safe when breaking
1710                          * the lock like this since the next thing we do
1711                          * is just get the head of the list again.
1712                          */
1713                         drm_gem_object_reference(obj);
1714                         i915_gem_object_move_to_inactive(obj);
1715                         spin_unlock(&dev_priv->mm.active_list_lock);
1716                         drm_gem_object_unreference(obj);
1717                         spin_lock(&dev_priv->mm.active_list_lock);
1718                 }
1719         }
1720 out:
1721         spin_unlock(&dev_priv->mm.active_list_lock);
1722 }
1723
1724 /**
1725  * Returns true if seq1 is later than seq2.
1726  */
1727 bool
1728 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1729 {
1730         return (int32_t)(seq1 - seq2) >= 0;
1731 }
1732
1733 uint32_t
1734 i915_get_gem_seqno(struct drm_device *dev)
1735 {
1736         drm_i915_private_t *dev_priv = dev->dev_private;
1737
1738         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1739 }
1740
1741 /**
1742  * This function clears the request list as sequence numbers are passed.
1743  */
1744 void
1745 i915_gem_retire_requests(struct drm_device *dev)
1746 {
1747         drm_i915_private_t *dev_priv = dev->dev_private;
1748         uint32_t seqno;
1749
1750         if (!dev_priv->hw_status_page)
1751                 return;
1752
1753         seqno = i915_get_gem_seqno(dev);
1754
1755         while (!list_empty(&dev_priv->mm.request_list)) {
1756                 struct drm_i915_gem_request *request;
1757                 uint32_t retiring_seqno;
1758
1759                 request = list_first_entry(&dev_priv->mm.request_list,
1760                                            struct drm_i915_gem_request,
1761                                            list);
1762                 retiring_seqno = request->seqno;
1763
1764                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1765                     atomic_read(&dev_priv->mm.wedged)) {
1766                         i915_gem_retire_request(dev, request);
1767
1768                         list_del(&request->list);
1769                         list_del(&request->client_list);
1770                         kfree(request);
1771                 } else
1772                         break;
1773         }
1774 }
1775
1776 void
1777 i915_gem_retire_work_handler(struct work_struct *work)
1778 {
1779         drm_i915_private_t *dev_priv;
1780         struct drm_device *dev;
1781
1782         dev_priv = container_of(work, drm_i915_private_t,
1783                                 mm.retire_work.work);
1784         dev = dev_priv->dev;
1785
1786         mutex_lock(&dev->struct_mutex);
1787         i915_gem_retire_requests(dev);
1788         if (!dev_priv->mm.suspended &&
1789             !list_empty(&dev_priv->mm.request_list))
1790                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1791         mutex_unlock(&dev->struct_mutex);
1792 }
1793
1794 /**
1795  * Waits for a sequence number to be signaled, and cleans up the
1796  * request and object lists appropriately for that event.
1797  */
1798 static int
1799 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1800 {
1801         drm_i915_private_t *dev_priv = dev->dev_private;
1802         u32 ier;
1803         int ret = 0;
1804
1805         BUG_ON(seqno == 0);
1806
1807         if (atomic_read(&dev_priv->mm.wedged))
1808                 return -EIO;
1809
1810         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1811                 if (IS_IGDNG(dev))
1812                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1813                 else
1814                         ier = I915_READ(IER);
1815                 if (!ier) {
1816                         DRM_ERROR("something (likely vbetool) disabled "
1817                                   "interrupts, re-enabling\n");
1818                         i915_driver_irq_preinstall(dev);
1819                         i915_driver_irq_postinstall(dev);
1820                 }
1821
1822                 trace_i915_gem_request_wait_begin(dev, seqno);
1823
1824                 dev_priv->mm.waiting_gem_seqno = seqno;
1825                 i915_user_irq_get(dev);
1826                 ret = wait_event_interruptible(dev_priv->irq_queue,
1827                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1828                                                                  seqno) ||
1829                                                atomic_read(&dev_priv->mm.wedged));
1830                 i915_user_irq_put(dev);
1831                 dev_priv->mm.waiting_gem_seqno = 0;
1832
1833                 trace_i915_gem_request_wait_end(dev, seqno);
1834         }
1835         if (atomic_read(&dev_priv->mm.wedged))
1836                 ret = -EIO;
1837
1838         if (ret && ret != -ERESTARTSYS)
1839                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1840                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1841
1842         /* Directly dispatch request retiring.  While we have the work queue
1843          * to handle this, the waiter on a request often wants an associated
1844          * buffer to have made it to the inactive list, and we would need
1845          * a separate wait queue to handle that.
1846          */
1847         if (ret == 0)
1848                 i915_gem_retire_requests(dev);
1849
1850         return ret;
1851 }
1852
1853 static void
1854 i915_gem_flush(struct drm_device *dev,
1855                uint32_t invalidate_domains,
1856                uint32_t flush_domains)
1857 {
1858         drm_i915_private_t *dev_priv = dev->dev_private;
1859         uint32_t cmd;
1860         RING_LOCALS;
1861
1862 #if WATCH_EXEC
1863         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1864                   invalidate_domains, flush_domains);
1865 #endif
1866         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1867                                      invalidate_domains, flush_domains);
1868
1869         if (flush_domains & I915_GEM_DOMAIN_CPU)
1870                 drm_agp_chipset_flush(dev);
1871
1872         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1873                 /*
1874                  * read/write caches:
1875                  *
1876                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1877                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1878                  * also flushed at 2d versus 3d pipeline switches.
1879                  *
1880                  * read-only caches:
1881                  *
1882                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1883                  * MI_READ_FLUSH is set, and is always flushed on 965.
1884                  *
1885                  * I915_GEM_DOMAIN_COMMAND may not exist?
1886                  *
1887                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1888                  * invalidated when MI_EXE_FLUSH is set.
1889                  *
1890                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1891                  * invalidated with every MI_FLUSH.
1892                  *
1893                  * TLBs:
1894                  *
1895                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1896                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1897                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1898                  * are flushed at any MI_FLUSH.
1899                  */
1900
1901                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1902                 if ((invalidate_domains|flush_domains) &
1903                     I915_GEM_DOMAIN_RENDER)
1904                         cmd &= ~MI_NO_WRITE_FLUSH;
1905                 if (!IS_I965G(dev)) {
1906                         /*
1907                          * On the 965, the sampler cache always gets flushed
1908                          * and this bit is reserved.
1909                          */
1910                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1911                                 cmd |= MI_READ_FLUSH;
1912                 }
1913                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1914                         cmd |= MI_EXE_FLUSH;
1915
1916 #if WATCH_EXEC
1917                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1918 #endif
1919                 BEGIN_LP_RING(2);
1920                 OUT_RING(cmd);
1921                 OUT_RING(0); /* noop */
1922                 ADVANCE_LP_RING();
1923         }
1924 }
1925
1926 /**
1927  * Ensures that all rendering to the object has completed and the object is
1928  * safe to unbind from the GTT or access from the CPU.
1929  */
1930 static int
1931 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1932 {
1933         struct drm_device *dev = obj->dev;
1934         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1935         int ret;
1936
1937         /* This function only exists to support waiting for existing rendering,
1938          * not for emitting required flushes.
1939          */
1940         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1941
1942         /* If there is rendering queued on the buffer being evicted, wait for
1943          * it.
1944          */
1945         if (obj_priv->active) {
1946 #if WATCH_BUF
1947                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1948                           __func__, obj, obj_priv->last_rendering_seqno);
1949 #endif
1950                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1951                 if (ret != 0)
1952                         return ret;
1953         }
1954
1955         return 0;
1956 }
1957
1958 /**
1959  * Unbinds an object from the GTT aperture.
1960  */
1961 int
1962 i915_gem_object_unbind(struct drm_gem_object *obj)
1963 {
1964         struct drm_device *dev = obj->dev;
1965         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1966         int ret = 0;
1967
1968 #if WATCH_BUF
1969         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1970         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1971 #endif
1972         if (obj_priv->gtt_space == NULL)
1973                 return 0;
1974
1975         if (obj_priv->pin_count != 0) {
1976                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1977                 return -EINVAL;
1978         }
1979
1980         /* blow away mappings if mapped through GTT */
1981         i915_gem_release_mmap(obj);
1982
1983         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1984                 i915_gem_clear_fence_reg(obj);
1985
1986         /* Move the object to the CPU domain to ensure that
1987          * any possible CPU writes while it's not in the GTT
1988          * are flushed when we go to remap it. This will
1989          * also ensure that all pending GPU writes are finished
1990          * before we unbind.
1991          */
1992         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1993         if (ret) {
1994                 if (ret != -ERESTARTSYS)
1995                         DRM_ERROR("set_domain failed: %d\n", ret);
1996                 return ret;
1997         }
1998
1999         BUG_ON(obj_priv->active);
2000
2001         if (obj_priv->agp_mem != NULL) {
2002                 drm_unbind_agp(obj_priv->agp_mem);
2003                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2004                 obj_priv->agp_mem = NULL;
2005         }
2006
2007         i915_gem_object_put_pages(obj);
2008
2009         if (obj_priv->gtt_space) {
2010                 atomic_dec(&dev->gtt_count);
2011                 atomic_sub(obj->size, &dev->gtt_memory);
2012
2013                 drm_mm_put_block(obj_priv->gtt_space);
2014                 obj_priv->gtt_space = NULL;
2015         }
2016
2017         /* Remove ourselves from the LRU list if present. */
2018         if (!list_empty(&obj_priv->list))
2019                 list_del_init(&obj_priv->list);
2020
2021         trace_i915_gem_object_unbind(obj);
2022
2023         return 0;
2024 }
2025
2026 static inline int
2027 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
2028 {
2029         return !obj_priv->dirty || obj_priv->madv == I915_MADV_DONTNEED;
2030 }
2031
2032 static struct drm_gem_object *
2033 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2034 {
2035         drm_i915_private_t *dev_priv = dev->dev_private;
2036         struct drm_i915_gem_object *obj_priv;
2037         struct drm_gem_object *best = NULL;
2038         struct drm_gem_object *first = NULL;
2039
2040         /* Try to find the smallest clean object */
2041         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2042                 struct drm_gem_object *obj = obj_priv->obj;
2043                 if (obj->size >= min_size) {
2044                         if (i915_gem_object_is_purgeable(obj_priv) &&
2045                             (!best || obj->size < best->size)) {
2046                                 best = obj;
2047                                 if (best->size == min_size)
2048                                         return best;
2049                         }
2050                         if (!first)
2051                             first = obj;
2052                 }
2053         }
2054
2055         return best ? best : first;
2056 }
2057
2058 static int
2059 i915_gem_evict_everything(struct drm_device *dev)
2060 {
2061         drm_i915_private_t *dev_priv = dev->dev_private;
2062         uint32_t seqno;
2063         int ret;
2064         bool lists_empty;
2065
2066         DRM_INFO("GTT full, evicting everything: "
2067                  "%d objects [%d pinned], "
2068                  "%d object bytes [%d pinned], "
2069                  "%d/%d gtt bytes\n",
2070                  atomic_read(&dev->object_count),
2071                  atomic_read(&dev->pin_count),
2072                  atomic_read(&dev->object_memory),
2073                  atomic_read(&dev->pin_memory),
2074                  atomic_read(&dev->gtt_memory),
2075                  dev->gtt_total);
2076
2077         spin_lock(&dev_priv->mm.active_list_lock);
2078         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2079                        list_empty(&dev_priv->mm.flushing_list) &&
2080                        list_empty(&dev_priv->mm.active_list));
2081         spin_unlock(&dev_priv->mm.active_list_lock);
2082
2083         if (lists_empty) {
2084                 DRM_ERROR("GTT full, but lists empty!\n");
2085                 return -ENOSPC;
2086         }
2087
2088         /* Flush everything (on to the inactive lists) and evict */
2089         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2090         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2091         if (seqno == 0)
2092                 return -ENOMEM;
2093
2094         ret = i915_wait_request(dev, seqno);
2095         if (ret)
2096                 return ret;
2097
2098         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
2099         if (ret)
2100                 return ret;
2101
2102         spin_lock(&dev_priv->mm.active_list_lock);
2103         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2104                        list_empty(&dev_priv->mm.flushing_list) &&
2105                        list_empty(&dev_priv->mm.active_list));
2106         spin_unlock(&dev_priv->mm.active_list_lock);
2107         BUG_ON(!lists_empty);
2108
2109         return 0;
2110 }
2111
2112 static int
2113 i915_gem_evict_something(struct drm_device *dev, int min_size)
2114 {
2115         drm_i915_private_t *dev_priv = dev->dev_private;
2116         struct drm_gem_object *obj;
2117         int have_waited = 0;
2118         int ret;
2119
2120         for (;;) {
2121                 i915_gem_retire_requests(dev);
2122
2123                 /* If there's an inactive buffer available now, grab it
2124                  * and be done.
2125                  */
2126                 obj = i915_gem_find_inactive_object(dev, min_size);
2127                 if (obj) {
2128                         struct drm_i915_gem_object *obj_priv;
2129
2130 #if WATCH_LRU
2131                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2132 #endif
2133                         obj_priv = obj->driver_private;
2134                         BUG_ON(obj_priv->pin_count != 0);
2135                         BUG_ON(obj_priv->active);
2136
2137                         /* Wait on the rendering and unbind the buffer. */
2138                         return i915_gem_object_unbind(obj);
2139                 }
2140
2141                 if (have_waited)
2142                         return 0;
2143
2144                 /* If we didn't get anything, but the ring is still processing
2145                  * things, wait for the next to finish and hopefully leave us
2146                  * a buffer to evict.
2147                  */
2148                 if (!list_empty(&dev_priv->mm.request_list)) {
2149                         struct drm_i915_gem_request *request;
2150
2151                         request = list_first_entry(&dev_priv->mm.request_list,
2152                                                    struct drm_i915_gem_request,
2153                                                    list);
2154
2155                         ret = i915_wait_request(dev, request->seqno);
2156                         if (ret)
2157                                 return ret;
2158
2159                         have_waited = 1;
2160                         continue;
2161                 }
2162
2163                 /* If we didn't have anything on the request list but there
2164                  * are buffers awaiting a flush, emit one and try again.
2165                  * When we wait on it, those buffers waiting for that flush
2166                  * will get moved to inactive.
2167                  */
2168                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2169                         struct drm_i915_gem_object *obj_priv;
2170                         uint32_t seqno;
2171
2172                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2173                                                     struct drm_i915_gem_object,
2174                                                     list);
2175                         obj = obj_priv->obj;
2176
2177                         i915_gem_flush(dev,
2178                                        obj->write_domain,
2179                                        obj->write_domain);
2180                         seqno = i915_add_request(dev, NULL, obj->write_domain);
2181                         if (seqno == 0)
2182                                 return -ENOMEM;
2183
2184                         ret = i915_wait_request(dev, seqno);
2185                         if (ret)
2186                                 return ret;
2187
2188                         have_waited = 1;
2189                         continue;
2190                 }
2191
2192                 /* If we didn't do any of the above, there's no single buffer
2193                  * large enough to swap out for the new one, so just evict
2194                  * everything and start again. (This should be rare.)
2195                  */
2196                 if (!list_empty (&dev_priv->mm.inactive_list)) {
2197                         DRM_INFO("GTT full, evicting inactive buffers\n");
2198                         return i915_gem_evict_from_list(dev,
2199                                                         &dev_priv->mm.inactive_list);
2200                 } else
2201                         return i915_gem_evict_everything(dev);
2202         }
2203 }
2204
2205 int
2206 i915_gem_object_get_pages(struct drm_gem_object *obj)
2207 {
2208         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2209         int page_count, i;
2210         struct address_space *mapping;
2211         struct inode *inode;
2212         struct page *page;
2213         int ret;
2214
2215         if (obj_priv->pages_refcount++ != 0)
2216                 return 0;
2217
2218         /* Get the list of pages out of our struct file.  They'll be pinned
2219          * at this point until we release them.
2220          */
2221         page_count = obj->size / PAGE_SIZE;
2222         BUG_ON(obj_priv->pages != NULL);
2223         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2224         if (obj_priv->pages == NULL) {
2225                 DRM_ERROR("Failed to allocate page list\n");
2226                 obj_priv->pages_refcount--;
2227                 return -ENOMEM;
2228         }
2229
2230         inode = obj->filp->f_path.dentry->d_inode;
2231         mapping = inode->i_mapping;
2232         for (i = 0; i < page_count; i++) {
2233                 page = read_mapping_page(mapping, i, NULL);
2234                 if (IS_ERR(page)) {
2235                         ret = PTR_ERR(page);
2236                         i915_gem_object_put_pages(obj);
2237                         return ret;
2238                 }
2239                 obj_priv->pages[i] = page;
2240         }
2241
2242         if (obj_priv->tiling_mode != I915_TILING_NONE)
2243                 i915_gem_object_do_bit_17_swizzle(obj);
2244
2245         return 0;
2246 }
2247
2248 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2249 {
2250         struct drm_gem_object *obj = reg->obj;
2251         struct drm_device *dev = obj->dev;
2252         drm_i915_private_t *dev_priv = dev->dev_private;
2253         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2254         int regnum = obj_priv->fence_reg;
2255         uint64_t val;
2256
2257         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2258                     0xfffff000) << 32;
2259         val |= obj_priv->gtt_offset & 0xfffff000;
2260         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2261         if (obj_priv->tiling_mode == I915_TILING_Y)
2262                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2263         val |= I965_FENCE_REG_VALID;
2264
2265         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2266 }
2267
2268 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2269 {
2270         struct drm_gem_object *obj = reg->obj;
2271         struct drm_device *dev = obj->dev;
2272         drm_i915_private_t *dev_priv = dev->dev_private;
2273         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2274         int regnum = obj_priv->fence_reg;
2275         int tile_width;
2276         uint32_t fence_reg, val;
2277         uint32_t pitch_val;
2278
2279         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2280             (obj_priv->gtt_offset & (obj->size - 1))) {
2281                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2282                      __func__, obj_priv->gtt_offset, obj->size);
2283                 return;
2284         }
2285
2286         if (obj_priv->tiling_mode == I915_TILING_Y &&
2287             HAS_128_BYTE_Y_TILING(dev))
2288                 tile_width = 128;
2289         else
2290                 tile_width = 512;
2291
2292         /* Note: pitch better be a power of two tile widths */
2293         pitch_val = obj_priv->stride / tile_width;
2294         pitch_val = ffs(pitch_val) - 1;
2295
2296         val = obj_priv->gtt_offset;
2297         if (obj_priv->tiling_mode == I915_TILING_Y)
2298                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2299         val |= I915_FENCE_SIZE_BITS(obj->size);
2300         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2301         val |= I830_FENCE_REG_VALID;
2302
2303         if (regnum < 8)
2304                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2305         else
2306                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2307         I915_WRITE(fence_reg, val);
2308 }
2309
2310 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2311 {
2312         struct drm_gem_object *obj = reg->obj;
2313         struct drm_device *dev = obj->dev;
2314         drm_i915_private_t *dev_priv = dev->dev_private;
2315         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2316         int regnum = obj_priv->fence_reg;
2317         uint32_t val;
2318         uint32_t pitch_val;
2319         uint32_t fence_size_bits;
2320
2321         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2322             (obj_priv->gtt_offset & (obj->size - 1))) {
2323                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2324                      __func__, obj_priv->gtt_offset);
2325                 return;
2326         }
2327
2328         pitch_val = obj_priv->stride / 128;
2329         pitch_val = ffs(pitch_val) - 1;
2330         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2331
2332         val = obj_priv->gtt_offset;
2333         if (obj_priv->tiling_mode == I915_TILING_Y)
2334                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2335         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2336         WARN_ON(fence_size_bits & ~0x00000f00);
2337         val |= fence_size_bits;
2338         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2339         val |= I830_FENCE_REG_VALID;
2340
2341         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2342 }
2343
2344 /**
2345  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2346  * @obj: object to map through a fence reg
2347  *
2348  * When mapping objects through the GTT, userspace wants to be able to write
2349  * to them without having to worry about swizzling if the object is tiled.
2350  *
2351  * This function walks the fence regs looking for a free one for @obj,
2352  * stealing one if it can't find any.
2353  *
2354  * It then sets up the reg based on the object's properties: address, pitch
2355  * and tiling format.
2356  */
2357 int
2358 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2359 {
2360         struct drm_device *dev = obj->dev;
2361         struct drm_i915_private *dev_priv = dev->dev_private;
2362         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2363         struct drm_i915_fence_reg *reg = NULL;
2364         struct drm_i915_gem_object *old_obj_priv = NULL;
2365         int i, ret, avail;
2366
2367         /* Just update our place in the LRU if our fence is getting used. */
2368         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2369                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2370                 return 0;
2371         }
2372
2373         switch (obj_priv->tiling_mode) {
2374         case I915_TILING_NONE:
2375                 WARN(1, "allocating a fence for non-tiled object?\n");
2376                 break;
2377         case I915_TILING_X:
2378                 if (!obj_priv->stride)
2379                         return -EINVAL;
2380                 WARN((obj_priv->stride & (512 - 1)),
2381                      "object 0x%08x is X tiled but has non-512B pitch\n",
2382                      obj_priv->gtt_offset);
2383                 break;
2384         case I915_TILING_Y:
2385                 if (!obj_priv->stride)
2386                         return -EINVAL;
2387                 WARN((obj_priv->stride & (128 - 1)),
2388                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2389                      obj_priv->gtt_offset);
2390                 break;
2391         }
2392
2393         /* First try to find a free reg */
2394         avail = 0;
2395         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2396                 reg = &dev_priv->fence_regs[i];
2397                 if (!reg->obj)
2398                         break;
2399
2400                 old_obj_priv = reg->obj->driver_private;
2401                 if (!old_obj_priv->pin_count)
2402                     avail++;
2403         }
2404
2405         /* None available, try to steal one or wait for a user to finish */
2406         if (i == dev_priv->num_fence_regs) {
2407                 struct drm_gem_object *old_obj = NULL;
2408
2409                 if (avail == 0)
2410                         return -ENOSPC;
2411
2412                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2413                                     fence_list) {
2414                         old_obj = old_obj_priv->obj;
2415
2416                         if (old_obj_priv->pin_count)
2417                                 continue;
2418
2419                         /* Take a reference, as otherwise the wait_rendering
2420                          * below may cause the object to get freed out from
2421                          * under us.
2422                          */
2423                         drm_gem_object_reference(old_obj);
2424
2425                         /* i915 uses fences for GPU access to tiled buffers */
2426                         if (IS_I965G(dev) || !old_obj_priv->active)
2427                                 break;
2428
2429                         /* This brings the object to the head of the LRU if it
2430                          * had been written to.  The only way this should
2431                          * result in us waiting longer than the expected
2432                          * optimal amount of time is if there was a
2433                          * fence-using buffer later that was read-only.
2434                          */
2435                         i915_gem_object_flush_gpu_write_domain(old_obj);
2436                         ret = i915_gem_object_wait_rendering(old_obj);
2437                         if (ret != 0) {
2438                                 drm_gem_object_unreference(old_obj);
2439                                 return ret;
2440                         }
2441
2442                         break;
2443                 }
2444
2445                 /*
2446                  * Zap this virtual mapping so we can set up a fence again
2447                  * for this object next time we need it.
2448                  */
2449                 i915_gem_release_mmap(old_obj);
2450
2451                 i = old_obj_priv->fence_reg;
2452                 reg = &dev_priv->fence_regs[i];
2453
2454                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2455                 list_del_init(&old_obj_priv->fence_list);
2456
2457                 drm_gem_object_unreference(old_obj);
2458         }
2459
2460         obj_priv->fence_reg = i;
2461         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2462
2463         reg->obj = obj;
2464
2465         if (IS_I965G(dev))
2466                 i965_write_fence_reg(reg);
2467         else if (IS_I9XX(dev))
2468                 i915_write_fence_reg(reg);
2469         else
2470                 i830_write_fence_reg(reg);
2471
2472         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2473
2474         return 0;
2475 }
2476
2477 /**
2478  * i915_gem_clear_fence_reg - clear out fence register info
2479  * @obj: object to clear
2480  *
2481  * Zeroes out the fence register itself and clears out the associated
2482  * data structures in dev_priv and obj_priv.
2483  */
2484 static void
2485 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2486 {
2487         struct drm_device *dev = obj->dev;
2488         drm_i915_private_t *dev_priv = dev->dev_private;
2489         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2490
2491         if (IS_I965G(dev))
2492                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2493         else {
2494                 uint32_t fence_reg;
2495
2496                 if (obj_priv->fence_reg < 8)
2497                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2498                 else
2499                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2500                                                        8) * 4;
2501
2502                 I915_WRITE(fence_reg, 0);
2503         }
2504
2505         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2506         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2507         list_del_init(&obj_priv->fence_list);
2508 }
2509
2510 /**
2511  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2512  * to the buffer to finish, and then resets the fence register.
2513  * @obj: tiled object holding a fence register.
2514  *
2515  * Zeroes out the fence register itself and clears out the associated
2516  * data structures in dev_priv and obj_priv.
2517  */
2518 int
2519 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2520 {
2521         struct drm_device *dev = obj->dev;
2522         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2523
2524         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2525                 return 0;
2526
2527         /* On the i915, GPU access to tiled buffers is via a fence,
2528          * therefore we must wait for any outstanding access to complete
2529          * before clearing the fence.
2530          */
2531         if (!IS_I965G(dev)) {
2532                 int ret;
2533
2534                 i915_gem_object_flush_gpu_write_domain(obj);
2535                 i915_gem_object_flush_gtt_write_domain(obj);
2536                 ret = i915_gem_object_wait_rendering(obj);
2537                 if (ret != 0)
2538                         return ret;
2539         }
2540
2541         i915_gem_clear_fence_reg (obj);
2542
2543         return 0;
2544 }
2545
2546 /**
2547  * Finds free space in the GTT aperture and binds the object there.
2548  */
2549 static int
2550 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2551 {
2552         struct drm_device *dev = obj->dev;
2553         drm_i915_private_t *dev_priv = dev->dev_private;
2554         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2555         struct drm_mm_node *free_space;
2556         bool retry_alloc = false;
2557         int ret;
2558
2559         if (dev_priv->mm.suspended)
2560                 return -EBUSY;
2561
2562         if (obj_priv->madv == I915_MADV_DONTNEED) {
2563                 DRM_ERROR("Attempting to bind a purgeable object\n");
2564                 return -EINVAL;
2565         }
2566
2567         if (alignment == 0)
2568                 alignment = i915_gem_get_gtt_alignment(obj);
2569         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2570                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2571                 return -EINVAL;
2572         }
2573
2574  search_free:
2575         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2576                                         obj->size, alignment, 0);
2577         if (free_space != NULL) {
2578                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2579                                                        alignment);
2580                 if (obj_priv->gtt_space != NULL) {
2581                         obj_priv->gtt_space->private = obj;
2582                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2583                 }
2584         }
2585         if (obj_priv->gtt_space == NULL) {
2586                 /* If the gtt is empty and we're still having trouble
2587                  * fitting our object in, we're out of memory.
2588                  */
2589 #if WATCH_LRU
2590                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2591 #endif
2592                 ret = i915_gem_evict_something(dev, obj->size);
2593                 if (ret != 0) {
2594                         if (ret != -ERESTARTSYS)
2595                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2596                         return ret;
2597                 }
2598                 goto search_free;
2599         }
2600
2601 #if WATCH_BUF
2602         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2603                  obj->size, obj_priv->gtt_offset);
2604 #endif
2605         if (retry_alloc) {
2606                 i915_gem_object_set_page_gfp_mask (obj,
2607                                                    i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2608         }
2609         ret = i915_gem_object_get_pages(obj);
2610         if (retry_alloc) {
2611                 i915_gem_object_set_page_gfp_mask (obj,
2612                                                    i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2613         }
2614         if (ret) {
2615                 drm_mm_put_block(obj_priv->gtt_space);
2616                 obj_priv->gtt_space = NULL;
2617
2618                 if (ret == -ENOMEM) {
2619                         /* first try to clear up some space from the GTT */
2620                         ret = i915_gem_evict_something(dev, obj->size);
2621                         if (ret) {
2622                                 if (ret != -ERESTARTSYS)
2623                                         DRM_ERROR("Failed to allocate space for backing pages %d\n", ret);
2624
2625                                 /* now try to shrink everyone else */
2626                                 if (! retry_alloc) {
2627                                     retry_alloc = true;
2628                                     goto search_free;
2629                                 }
2630
2631                                 return ret;
2632                         }
2633
2634                         goto search_free;
2635                 }
2636
2637                 return ret;
2638         }
2639
2640         /* Create an AGP memory structure pointing at our pages, and bind it
2641          * into the GTT.
2642          */
2643         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2644                                                obj_priv->pages,
2645                                                obj->size >> PAGE_SHIFT,
2646                                                obj_priv->gtt_offset,
2647                                                obj_priv->agp_type);
2648         if (obj_priv->agp_mem == NULL) {
2649                 i915_gem_object_put_pages(obj);
2650                 drm_mm_put_block(obj_priv->gtt_space);
2651                 obj_priv->gtt_space = NULL;
2652
2653                 ret = i915_gem_evict_something(dev, obj->size);
2654                 if (ret) {
2655                         if (ret != -ERESTARTSYS)
2656                                 DRM_ERROR("Failed to allocate space to bind AGP: %d\n", ret);
2657                         return ret;
2658                 }
2659
2660                 goto search_free;
2661         }
2662         atomic_inc(&dev->gtt_count);
2663         atomic_add(obj->size, &dev->gtt_memory);
2664
2665         /* Assert that the object is not currently in any GPU domain. As it
2666          * wasn't in the GTT, there shouldn't be any way it could have been in
2667          * a GPU cache
2668          */
2669         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2670         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2671
2672         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2673
2674         return 0;
2675 }
2676
2677 void
2678 i915_gem_clflush_object(struct drm_gem_object *obj)
2679 {
2680         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2681
2682         /* If we don't have a page list set up, then we're not pinned
2683          * to GPU, and we can ignore the cache flush because it'll happen
2684          * again at bind time.
2685          */
2686         if (obj_priv->pages == NULL)
2687                 return;
2688
2689         trace_i915_gem_object_clflush(obj);
2690
2691         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2692 }
2693
2694 /** Flushes any GPU write domain for the object if it's dirty. */
2695 static void
2696 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2697 {
2698         struct drm_device *dev = obj->dev;
2699         uint32_t seqno;
2700         uint32_t old_write_domain;
2701
2702         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2703                 return;
2704
2705         /* Queue the GPU write cache flushing we need. */
2706         old_write_domain = obj->write_domain;
2707         i915_gem_flush(dev, 0, obj->write_domain);
2708         seqno = i915_add_request(dev, NULL, obj->write_domain);
2709         obj->write_domain = 0;
2710         i915_gem_object_move_to_active(obj, seqno);
2711
2712         trace_i915_gem_object_change_domain(obj,
2713                                             obj->read_domains,
2714                                             old_write_domain);
2715 }
2716
2717 /** Flushes the GTT write domain for the object if it's dirty. */
2718 static void
2719 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2720 {
2721         uint32_t old_write_domain;
2722
2723         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2724                 return;
2725
2726         /* No actual flushing is required for the GTT write domain.   Writes
2727          * to it immediately go to main memory as far as we know, so there's
2728          * no chipset flush.  It also doesn't land in render cache.
2729          */
2730         old_write_domain = obj->write_domain;
2731         obj->write_domain = 0;
2732
2733         trace_i915_gem_object_change_domain(obj,
2734                                             obj->read_domains,
2735                                             old_write_domain);
2736 }
2737
2738 /** Flushes the CPU write domain for the object if it's dirty. */
2739 static void
2740 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2741 {
2742         struct drm_device *dev = obj->dev;
2743         uint32_t old_write_domain;
2744
2745         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2746                 return;
2747
2748         i915_gem_clflush_object(obj);
2749         drm_agp_chipset_flush(dev);
2750         old_write_domain = obj->write_domain;
2751         obj->write_domain = 0;
2752
2753         trace_i915_gem_object_change_domain(obj,
2754                                             obj->read_domains,
2755                                             old_write_domain);
2756 }
2757
2758 /**
2759  * Moves a single object to the GTT read, and possibly write domain.
2760  *
2761  * This function returns when the move is complete, including waiting on
2762  * flushes to occur.
2763  */
2764 int
2765 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2766 {
2767         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2768         uint32_t old_write_domain, old_read_domains;
2769         int ret;
2770
2771         /* Not valid to be called on unbound objects. */
2772         if (obj_priv->gtt_space == NULL)
2773                 return -EINVAL;
2774
2775         i915_gem_object_flush_gpu_write_domain(obj);
2776         /* Wait on any GPU rendering and flushing to occur. */
2777         ret = i915_gem_object_wait_rendering(obj);
2778         if (ret != 0)
2779                 return ret;
2780
2781         old_write_domain = obj->write_domain;
2782         old_read_domains = obj->read_domains;
2783
2784         /* If we're writing through the GTT domain, then CPU and GPU caches
2785          * will need to be invalidated at next use.
2786          */
2787         if (write)
2788                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2789
2790         i915_gem_object_flush_cpu_write_domain(obj);
2791
2792         /* It should now be out of any other write domains, and we can update
2793          * the domain values for our changes.
2794          */
2795         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2796         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2797         if (write) {
2798                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2799                 obj_priv->dirty = 1;
2800         }
2801
2802         trace_i915_gem_object_change_domain(obj,
2803                                             old_read_domains,
2804                                             old_write_domain);
2805
2806         return 0;
2807 }
2808
2809 /**
2810  * Moves a single object to the CPU read, and possibly write domain.
2811  *
2812  * This function returns when the move is complete, including waiting on
2813  * flushes to occur.
2814  */
2815 static int
2816 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2817 {
2818         uint32_t old_write_domain, old_read_domains;
2819         int ret;
2820
2821         i915_gem_object_flush_gpu_write_domain(obj);
2822         /* Wait on any GPU rendering and flushing to occur. */
2823         ret = i915_gem_object_wait_rendering(obj);
2824         if (ret != 0)
2825                 return ret;
2826
2827         i915_gem_object_flush_gtt_write_domain(obj);
2828
2829         /* If we have a partially-valid cache of the object in the CPU,
2830          * finish invalidating it and free the per-page flags.
2831          */
2832         i915_gem_object_set_to_full_cpu_read_domain(obj);
2833
2834         old_write_domain = obj->write_domain;
2835         old_read_domains = obj->read_domains;
2836
2837         /* Flush the CPU cache if it's still invalid. */
2838         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2839                 i915_gem_clflush_object(obj);
2840
2841                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2842         }
2843
2844         /* It should now be out of any other write domains, and we can update
2845          * the domain values for our changes.
2846          */
2847         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2848
2849         /* If we're writing through the CPU, then the GPU read domains will
2850          * need to be invalidated at next use.
2851          */
2852         if (write) {
2853                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2854                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2855         }
2856
2857         trace_i915_gem_object_change_domain(obj,
2858                                             old_read_domains,
2859                                             old_write_domain);
2860
2861         return 0;
2862 }
2863
2864 /*
2865  * Set the next domain for the specified object. This
2866  * may not actually perform the necessary flushing/invaliding though,
2867  * as that may want to be batched with other set_domain operations
2868  *
2869  * This is (we hope) the only really tricky part of gem. The goal
2870  * is fairly simple -- track which caches hold bits of the object
2871  * and make sure they remain coherent. A few concrete examples may
2872  * help to explain how it works. For shorthand, we use the notation
2873  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2874  * a pair of read and write domain masks.
2875  *
2876  * Case 1: the batch buffer
2877  *
2878  *      1. Allocated
2879  *      2. Written by CPU
2880  *      3. Mapped to GTT
2881  *      4. Read by GPU
2882  *      5. Unmapped from GTT
2883  *      6. Freed
2884  *
2885  *      Let's take these a step at a time
2886  *
2887  *      1. Allocated
2888  *              Pages allocated from the kernel may still have
2889  *              cache contents, so we set them to (CPU, CPU) always.
2890  *      2. Written by CPU (using pwrite)
2891  *              The pwrite function calls set_domain (CPU, CPU) and
2892  *              this function does nothing (as nothing changes)
2893  *      3. Mapped by GTT
2894  *              This function asserts that the object is not
2895  *              currently in any GPU-based read or write domains
2896  *      4. Read by GPU
2897  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2898  *              As write_domain is zero, this function adds in the
2899  *              current read domains (CPU+COMMAND, 0).
2900  *              flush_domains is set to CPU.
2901  *              invalidate_domains is set to COMMAND
2902  *              clflush is run to get data out of the CPU caches
2903  *              then i915_dev_set_domain calls i915_gem_flush to
2904  *              emit an MI_FLUSH and drm_agp_chipset_flush
2905  *      5. Unmapped from GTT
2906  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2907  *              flush_domains and invalidate_domains end up both zero
2908  *              so no flushing/invalidating happens
2909  *      6. Freed
2910  *              yay, done
2911  *
2912  * Case 2: The shared render buffer
2913  *
2914  *      1. Allocated
2915  *      2. Mapped to GTT
2916  *      3. Read/written by GPU
2917  *      4. set_domain to (CPU,CPU)
2918  *      5. Read/written by CPU
2919  *      6. Read/written by GPU
2920  *
2921  *      1. Allocated
2922  *              Same as last example, (CPU, CPU)
2923  *      2. Mapped to GTT
2924  *              Nothing changes (assertions find that it is not in the GPU)
2925  *      3. Read/written by GPU
2926  *              execbuffer calls set_domain (RENDER, RENDER)
2927  *              flush_domains gets CPU
2928  *              invalidate_domains gets GPU
2929  *              clflush (obj)
2930  *              MI_FLUSH and drm_agp_chipset_flush
2931  *      4. set_domain (CPU, CPU)
2932  *              flush_domains gets GPU
2933  *              invalidate_domains gets CPU
2934  *              wait_rendering (obj) to make sure all drawing is complete.
2935  *              This will include an MI_FLUSH to get the data from GPU
2936  *              to memory
2937  *              clflush (obj) to invalidate the CPU cache
2938  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2939  *      5. Read/written by CPU
2940  *              cache lines are loaded and dirtied
2941  *      6. Read written by GPU
2942  *              Same as last GPU access
2943  *
2944  * Case 3: The constant buffer
2945  *
2946  *      1. Allocated
2947  *      2. Written by CPU
2948  *      3. Read by GPU
2949  *      4. Updated (written) by CPU again
2950  *      5. Read by GPU
2951  *
2952  *      1. Allocated
2953  *              (CPU, CPU)
2954  *      2. Written by CPU
2955  *              (CPU, CPU)
2956  *      3. Read by GPU
2957  *              (CPU+RENDER, 0)
2958  *              flush_domains = CPU
2959  *              invalidate_domains = RENDER
2960  *              clflush (obj)
2961  *              MI_FLUSH
2962  *              drm_agp_chipset_flush
2963  *      4. Updated (written) by CPU again
2964  *              (CPU, CPU)
2965  *              flush_domains = 0 (no previous write domain)
2966  *              invalidate_domains = 0 (no new read domains)
2967  *      5. Read by GPU
2968  *              (CPU+RENDER, 0)
2969  *              flush_domains = CPU
2970  *              invalidate_domains = RENDER
2971  *              clflush (obj)
2972  *              MI_FLUSH
2973  *              drm_agp_chipset_flush
2974  */
2975 static void
2976 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2977 {
2978         struct drm_device               *dev = obj->dev;
2979         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2980         uint32_t                        invalidate_domains = 0;
2981         uint32_t                        flush_domains = 0;
2982         uint32_t                        old_read_domains;
2983
2984         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2985         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2986
2987         intel_mark_busy(dev, obj);
2988
2989 #if WATCH_BUF
2990         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2991                  __func__, obj,
2992                  obj->read_domains, obj->pending_read_domains,
2993                  obj->write_domain, obj->pending_write_domain);
2994 #endif
2995         /*
2996          * If the object isn't moving to a new write domain,
2997          * let the object stay in multiple read domains
2998          */
2999         if (obj->pending_write_domain == 0)
3000                 obj->pending_read_domains |= obj->read_domains;
3001         else
3002                 obj_priv->dirty = 1;
3003
3004         /*
3005          * Flush the current write domain if
3006          * the new read domains don't match. Invalidate
3007          * any read domains which differ from the old
3008          * write domain
3009          */
3010         if (obj->write_domain &&
3011             obj->write_domain != obj->pending_read_domains) {
3012                 flush_domains |= obj->write_domain;
3013                 invalidate_domains |=
3014                         obj->pending_read_domains & ~obj->write_domain;
3015         }
3016         /*
3017          * Invalidate any read caches which may have
3018          * stale data. That is, any new read domains.
3019          */
3020         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3021         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3022 #if WATCH_BUF
3023                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3024                          __func__, flush_domains, invalidate_domains);
3025 #endif
3026                 i915_gem_clflush_object(obj);
3027         }
3028
3029         old_read_domains = obj->read_domains;
3030
3031         /* The actual obj->write_domain will be updated with
3032          * pending_write_domain after we emit the accumulated flush for all
3033          * of our domain changes in execbuffers (which clears objects'
3034          * write_domains).  So if we have a current write domain that we
3035          * aren't changing, set pending_write_domain to that.
3036          */
3037         if (flush_domains == 0 && obj->pending_write_domain == 0)
3038                 obj->pending_write_domain = obj->write_domain;
3039         obj->read_domains = obj->pending_read_domains;
3040
3041         dev->invalidate_domains |= invalidate_domains;
3042         dev->flush_domains |= flush_domains;
3043 #if WATCH_BUF
3044         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3045                  __func__,
3046                  obj->read_domains, obj->write_domain,
3047                  dev->invalidate_domains, dev->flush_domains);
3048 #endif
3049
3050         trace_i915_gem_object_change_domain(obj,
3051                                             old_read_domains,
3052                                             obj->write_domain);
3053 }
3054
3055 /**
3056  * Moves the object from a partially CPU read to a full one.
3057  *
3058  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3059  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3060  */
3061 static void
3062 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3063 {
3064         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3065
3066         if (!obj_priv->page_cpu_valid)
3067                 return;
3068
3069         /* If we're partially in the CPU read domain, finish moving it in.
3070          */
3071         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3072                 int i;
3073
3074                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3075                         if (obj_priv->page_cpu_valid[i])
3076                                 continue;
3077                         drm_clflush_pages(obj_priv->pages + i, 1);
3078                 }
3079         }
3080
3081         /* Free the page_cpu_valid mappings which are now stale, whether
3082          * or not we've got I915_GEM_DOMAIN_CPU.
3083          */
3084         kfree(obj_priv->page_cpu_valid);
3085         obj_priv->page_cpu_valid = NULL;
3086 }
3087
3088 /**
3089  * Set the CPU read domain on a range of the object.
3090  *
3091  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3092  * not entirely valid.  The page_cpu_valid member of the object flags which
3093  * pages have been flushed, and will be respected by
3094  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3095  * of the whole object.
3096  *
3097  * This function returns when the move is complete, including waiting on
3098  * flushes to occur.
3099  */
3100 static int
3101 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3102                                           uint64_t offset, uint64_t size)
3103 {
3104         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3105         uint32_t old_read_domains;
3106         int i, ret;
3107
3108         if (offset == 0 && size == obj->size)
3109                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3110
3111         i915_gem_object_flush_gpu_write_domain(obj);
3112         /* Wait on any GPU rendering and flushing to occur. */
3113         ret = i915_gem_object_wait_rendering(obj);
3114         if (ret != 0)
3115                 return ret;
3116         i915_gem_object_flush_gtt_write_domain(obj);
3117
3118         /* If we're already fully in the CPU read domain, we're done. */
3119         if (obj_priv->page_cpu_valid == NULL &&
3120             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3121                 return 0;
3122
3123         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3124          * newly adding I915_GEM_DOMAIN_CPU
3125          */
3126         if (obj_priv->page_cpu_valid == NULL) {
3127                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3128                                                    GFP_KERNEL);
3129                 if (obj_priv->page_cpu_valid == NULL)
3130                         return -ENOMEM;
3131         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3132                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3133
3134         /* Flush the cache on any pages that are still invalid from the CPU's
3135          * perspective.
3136          */
3137         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3138              i++) {
3139                 if (obj_priv->page_cpu_valid[i])
3140                         continue;
3141
3142                 drm_clflush_pages(obj_priv->pages + i, 1);
3143
3144                 obj_priv->page_cpu_valid[i] = 1;
3145         }
3146
3147         /* It should now be out of any other write domains, and we can update
3148          * the domain values for our changes.
3149          */
3150         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3151
3152         old_read_domains = obj->read_domains;
3153         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3154
3155         trace_i915_gem_object_change_domain(obj,
3156                                             old_read_domains,
3157                                             obj->write_domain);
3158
3159         return 0;
3160 }
3161
3162 /**
3163  * Pin an object to the GTT and evaluate the relocations landing in it.
3164  */
3165 static int
3166 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3167                                  struct drm_file *file_priv,
3168                                  struct drm_i915_gem_exec_object *entry,
3169                                  struct drm_i915_gem_relocation_entry *relocs)
3170 {
3171         struct drm_device *dev = obj->dev;
3172         drm_i915_private_t *dev_priv = dev->dev_private;
3173         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3174         int i, ret;
3175         void __iomem *reloc_page;
3176
3177         /* Choose the GTT offset for our buffer and put it there. */
3178         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3179         if (ret)
3180                 return ret;
3181
3182         entry->offset = obj_priv->gtt_offset;
3183
3184         /* Apply the relocations, using the GTT aperture to avoid cache
3185          * flushing requirements.
3186          */
3187         for (i = 0; i < entry->relocation_count; i++) {
3188                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3189                 struct drm_gem_object *target_obj;
3190                 struct drm_i915_gem_object *target_obj_priv;
3191                 uint32_t reloc_val, reloc_offset;
3192                 uint32_t __iomem *reloc_entry;
3193
3194                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3195                                                    reloc->target_handle);
3196                 if (target_obj == NULL) {
3197                         i915_gem_object_unpin(obj);
3198                         return -EBADF;
3199                 }
3200                 target_obj_priv = target_obj->driver_private;
3201
3202 #if WATCH_RELOC
3203                 DRM_INFO("%s: obj %p offset %08x target %d "
3204                          "read %08x write %08x gtt %08x "
3205                          "presumed %08x delta %08x\n",
3206                          __func__,
3207                          obj,
3208                          (int) reloc->offset,
3209                          (int) reloc->target_handle,
3210                          (int) reloc->read_domains,
3211                          (int) reloc->write_domain,
3212                          (int) target_obj_priv->gtt_offset,
3213                          (int) reloc->presumed_offset,
3214                          reloc->delta);
3215 #endif
3216
3217                 /* The target buffer should have appeared before us in the
3218                  * exec_object list, so it should have a GTT space bound by now.
3219                  */
3220                 if (target_obj_priv->gtt_space == NULL) {
3221                         DRM_ERROR("No GTT space found for object %d\n",
3222                                   reloc->target_handle);
3223                         drm_gem_object_unreference(target_obj);
3224                         i915_gem_object_unpin(obj);
3225                         return -EINVAL;
3226                 }
3227
3228                 /* Validate that the target is in a valid r/w GPU domain */
3229                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3230                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3231                         DRM_ERROR("reloc with read/write CPU domains: "
3232                                   "obj %p target %d offset %d "
3233                                   "read %08x write %08x",
3234                                   obj, reloc->target_handle,
3235                                   (int) reloc->offset,
3236                                   reloc->read_domains,
3237                                   reloc->write_domain);
3238                         drm_gem_object_unreference(target_obj);
3239                         i915_gem_object_unpin(obj);
3240                         return -EINVAL;
3241                 }
3242                 if (reloc->write_domain && target_obj->pending_write_domain &&
3243                     reloc->write_domain != target_obj->pending_write_domain) {
3244                         DRM_ERROR("Write domain conflict: "
3245                                   "obj %p target %d offset %d "
3246                                   "new %08x old %08x\n",
3247                                   obj, reloc->target_handle,
3248                                   (int) reloc->offset,
3249                                   reloc->write_domain,
3250                                   target_obj->pending_write_domain);
3251                         drm_gem_object_unreference(target_obj);
3252                         i915_gem_object_unpin(obj);
3253                         return -EINVAL;
3254                 }
3255
3256                 target_obj->pending_read_domains |= reloc->read_domains;
3257                 target_obj->pending_write_domain |= reloc->write_domain;
3258
3259                 /* If the relocation already has the right value in it, no
3260                  * more work needs to be done.
3261                  */
3262                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3263                         drm_gem_object_unreference(target_obj);
3264                         continue;
3265                 }
3266
3267                 /* Check that the relocation address is valid... */
3268                 if (reloc->offset > obj->size - 4) {
3269                         DRM_ERROR("Relocation beyond object bounds: "
3270                                   "obj %p target %d offset %d size %d.\n",
3271                                   obj, reloc->target_handle,
3272                                   (int) reloc->offset, (int) obj->size);
3273                         drm_gem_object_unreference(target_obj);
3274                         i915_gem_object_unpin(obj);
3275                         return -EINVAL;
3276                 }
3277                 if (reloc->offset & 3) {
3278                         DRM_ERROR("Relocation not 4-byte aligned: "
3279                                   "obj %p target %d offset %d.\n",
3280                                   obj, reloc->target_handle,
3281                                   (int) reloc->offset);
3282                         drm_gem_object_unreference(target_obj);
3283                         i915_gem_object_unpin(obj);
3284                         return -EINVAL;
3285                 }
3286
3287                 /* and points to somewhere within the target object. */
3288                 if (reloc->delta >= target_obj->size) {
3289                         DRM_ERROR("Relocation beyond target object bounds: "
3290                                   "obj %p target %d delta %d size %d.\n",
3291                                   obj, reloc->target_handle,
3292                                   (int) reloc->delta, (int) target_obj->size);
3293                         drm_gem_object_unreference(target_obj);
3294                         i915_gem_object_unpin(obj);
3295                         return -EINVAL;
3296                 }
3297
3298                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3299                 if (ret != 0) {
3300                         drm_gem_object_unreference(target_obj);
3301                         i915_gem_object_unpin(obj);
3302                         return -EINVAL;
3303                 }
3304
3305                 /* Map the page containing the relocation we're going to
3306                  * perform.
3307                  */
3308                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3309                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3310                                                       (reloc_offset &
3311                                                        ~(PAGE_SIZE - 1)));
3312                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3313                                                    (reloc_offset & (PAGE_SIZE - 1)));
3314                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3315
3316 #if WATCH_BUF
3317                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3318                           obj, (unsigned int) reloc->offset,
3319                           readl(reloc_entry), reloc_val);
3320 #endif
3321                 writel(reloc_val, reloc_entry);
3322                 io_mapping_unmap_atomic(reloc_page);
3323
3324                 /* The updated presumed offset for this entry will be
3325                  * copied back out to the user.
3326                  */
3327                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3328
3329                 drm_gem_object_unreference(target_obj);
3330         }
3331
3332 #if WATCH_BUF
3333         if (0)
3334                 i915_gem_dump_object(obj, 128, __func__, ~0);
3335 #endif
3336         return 0;
3337 }
3338
3339 /** Dispatch a batchbuffer to the ring
3340  */
3341 static int
3342 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3343                               struct drm_i915_gem_execbuffer *exec,
3344                               struct drm_clip_rect *cliprects,
3345                               uint64_t exec_offset)
3346 {
3347         drm_i915_private_t *dev_priv = dev->dev_private;
3348         int nbox = exec->num_cliprects;
3349         int i = 0, count;
3350         uint32_t exec_start, exec_len;
3351         RING_LOCALS;
3352
3353         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3354         exec_len = (uint32_t) exec->batch_len;
3355
3356         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno);
3357
3358         count = nbox ? nbox : 1;
3359
3360         for (i = 0; i < count; i++) {
3361                 if (i < nbox) {
3362                         int ret = i915_emit_box(dev, cliprects, i,
3363                                                 exec->DR1, exec->DR4);
3364                         if (ret)
3365                                 return ret;
3366                 }
3367
3368                 if (IS_I830(dev) || IS_845G(dev)) {
3369                         BEGIN_LP_RING(4);
3370                         OUT_RING(MI_BATCH_BUFFER);
3371                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3372                         OUT_RING(exec_start + exec_len - 4);
3373                         OUT_RING(0);
3374                         ADVANCE_LP_RING();
3375                 } else {
3376                         BEGIN_LP_RING(2);
3377                         if (IS_I965G(dev)) {
3378                                 OUT_RING(MI_BATCH_BUFFER_START |
3379                                          (2 << 6) |
3380                                          MI_BATCH_NON_SECURE_I965);
3381                                 OUT_RING(exec_start);
3382                         } else {
3383                                 OUT_RING(MI_BATCH_BUFFER_START |
3384                                          (2 << 6));
3385                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3386                         }
3387                         ADVANCE_LP_RING();
3388                 }
3389         }
3390
3391         /* XXX breadcrumb */
3392         return 0;
3393 }
3394
3395 /* Throttle our rendering by waiting until the ring has completed our requests
3396  * emitted over 20 msec ago.
3397  *
3398  * Note that if we were to use the current jiffies each time around the loop,
3399  * we wouldn't escape the function with any frames outstanding if the time to
3400  * render a frame was over 20ms.
3401  *
3402  * This should get us reasonable parallelism between CPU and GPU but also
3403  * relatively low latency when blocking on a particular request to finish.
3404  */
3405 static int
3406 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3407 {
3408         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3409         int ret = 0;
3410         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3411
3412         mutex_lock(&dev->struct_mutex);
3413         while (!list_empty(&i915_file_priv->mm.request_list)) {
3414                 struct drm_i915_gem_request *request;
3415
3416                 request = list_first_entry(&i915_file_priv->mm.request_list,
3417                                            struct drm_i915_gem_request,
3418                                            client_list);
3419
3420                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3421                         break;
3422
3423                 ret = i915_wait_request(dev, request->seqno);
3424                 if (ret != 0)
3425                         break;
3426         }
3427         mutex_unlock(&dev->struct_mutex);
3428
3429         return ret;
3430 }
3431
3432 static int
3433 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3434                               uint32_t buffer_count,
3435                               struct drm_i915_gem_relocation_entry **relocs)
3436 {
3437         uint32_t reloc_count = 0, reloc_index = 0, i;
3438         int ret;
3439
3440         *relocs = NULL;
3441         for (i = 0; i < buffer_count; i++) {
3442                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3443                         return -EINVAL;
3444                 reloc_count += exec_list[i].relocation_count;
3445         }
3446
3447         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3448         if (*relocs == NULL)
3449                 return -ENOMEM;
3450
3451         for (i = 0; i < buffer_count; i++) {
3452                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3453
3454                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3455
3456                 ret = copy_from_user(&(*relocs)[reloc_index],
3457                                      user_relocs,
3458                                      exec_list[i].relocation_count *
3459                                      sizeof(**relocs));
3460                 if (ret != 0) {
3461                         drm_free_large(*relocs);
3462                         *relocs = NULL;
3463                         return -EFAULT;
3464                 }
3465
3466                 reloc_index += exec_list[i].relocation_count;
3467         }
3468
3469         return 0;
3470 }
3471
3472 static int
3473 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3474                             uint32_t buffer_count,
3475                             struct drm_i915_gem_relocation_entry *relocs)
3476 {
3477         uint32_t reloc_count = 0, i;
3478         int ret = 0;
3479
3480         for (i = 0; i < buffer_count; i++) {
3481                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3482                 int unwritten;
3483
3484                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3485
3486                 unwritten = copy_to_user(user_relocs,
3487                                          &relocs[reloc_count],
3488                                          exec_list[i].relocation_count *
3489                                          sizeof(*relocs));
3490
3491                 if (unwritten) {
3492                         ret = -EFAULT;
3493                         goto err;
3494                 }
3495
3496                 reloc_count += exec_list[i].relocation_count;
3497         }
3498
3499 err:
3500         drm_free_large(relocs);
3501
3502         return ret;
3503 }
3504
3505 static int
3506 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3507                            uint64_t exec_offset)
3508 {
3509         uint32_t exec_start, exec_len;
3510
3511         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3512         exec_len = (uint32_t) exec->batch_len;
3513
3514         if ((exec_start | exec_len) & 0x7)
3515                 return -EINVAL;
3516
3517         if (!exec_start)
3518                 return -EINVAL;
3519
3520         return 0;
3521 }
3522
3523 int
3524 i915_gem_execbuffer(struct drm_device *dev, void *data,
3525                     struct drm_file *file_priv)
3526 {
3527         drm_i915_private_t *dev_priv = dev->dev_private;
3528         struct drm_i915_gem_execbuffer *args = data;
3529         struct drm_i915_gem_exec_object *exec_list = NULL;
3530         struct drm_gem_object **object_list = NULL;
3531         struct drm_gem_object *batch_obj;
3532         struct drm_i915_gem_object *obj_priv;
3533         struct drm_clip_rect *cliprects = NULL;
3534         struct drm_i915_gem_relocation_entry *relocs;
3535         int ret, ret2, i, pinned = 0;
3536         uint64_t exec_offset;
3537         uint32_t seqno, flush_domains, reloc_index;
3538         int pin_tries;
3539
3540 #if WATCH_EXEC
3541         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3542                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3543 #endif
3544
3545         if (args->buffer_count < 1) {
3546                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3547                 return -EINVAL;
3548         }
3549         /* Copy in the exec list from userland */
3550         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3551         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3552         if (exec_list == NULL || object_list == NULL) {
3553                 DRM_ERROR("Failed to allocate exec or object list "
3554                           "for %d buffers\n",
3555                           args->buffer_count);
3556                 ret = -ENOMEM;
3557                 goto pre_mutex_err;
3558         }
3559         ret = copy_from_user(exec_list,
3560                              (struct drm_i915_relocation_entry __user *)
3561                              (uintptr_t) args->buffers_ptr,
3562                              sizeof(*exec_list) * args->buffer_count);
3563         if (ret != 0) {
3564                 DRM_ERROR("copy %d exec entries failed %d\n",
3565                           args->buffer_count, ret);
3566                 goto pre_mutex_err;
3567         }
3568
3569         if (args->num_cliprects != 0) {
3570                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3571                                     GFP_KERNEL);
3572                 if (cliprects == NULL)
3573                         goto pre_mutex_err;
3574
3575                 ret = copy_from_user(cliprects,
3576                                      (struct drm_clip_rect __user *)
3577                                      (uintptr_t) args->cliprects_ptr,
3578                                      sizeof(*cliprects) * args->num_cliprects);
3579                 if (ret != 0) {
3580                         DRM_ERROR("copy %d cliprects failed: %d\n",
3581                                   args->num_cliprects, ret);
3582                         goto pre_mutex_err;
3583                 }
3584         }
3585
3586         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3587                                             &relocs);
3588         if (ret != 0)
3589                 goto pre_mutex_err;
3590
3591         mutex_lock(&dev->struct_mutex);
3592
3593         i915_verify_inactive(dev, __FILE__, __LINE__);
3594
3595         if (atomic_read(&dev_priv->mm.wedged)) {
3596                 DRM_ERROR("Execbuf while wedged\n");
3597                 mutex_unlock(&dev->struct_mutex);
3598                 ret = -EIO;
3599                 goto pre_mutex_err;
3600         }
3601
3602         if (dev_priv->mm.suspended) {
3603                 DRM_ERROR("Execbuf while VT-switched.\n");
3604                 mutex_unlock(&dev->struct_mutex);
3605                 ret = -EBUSY;
3606                 goto pre_mutex_err;
3607         }
3608
3609         /* Look up object handles */
3610         for (i = 0; i < args->buffer_count; i++) {
3611                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3612                                                        exec_list[i].handle);
3613                 if (object_list[i] == NULL) {
3614                         DRM_ERROR("Invalid object handle %d at index %d\n",
3615                                    exec_list[i].handle, i);
3616                         ret = -EBADF;
3617                         goto err;
3618                 }
3619
3620                 obj_priv = object_list[i]->driver_private;
3621                 if (obj_priv->in_execbuffer) {
3622                         DRM_ERROR("Object %p appears more than once in object list\n",
3623                                    object_list[i]);
3624                         ret = -EBADF;
3625                         goto err;
3626                 }
3627                 obj_priv->in_execbuffer = true;
3628         }
3629
3630         /* Pin and relocate */
3631         for (pin_tries = 0; ; pin_tries++) {
3632                 ret = 0;
3633                 reloc_index = 0;
3634
3635                 for (i = 0; i < args->buffer_count; i++) {
3636                         object_list[i]->pending_read_domains = 0;
3637                         object_list[i]->pending_write_domain = 0;
3638                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3639                                                                file_priv,
3640                                                                &exec_list[i],
3641                                                                &relocs[reloc_index]);
3642                         if (ret)
3643                                 break;
3644                         pinned = i + 1;
3645                         reloc_index += exec_list[i].relocation_count;
3646                 }
3647                 /* success */
3648                 if (ret == 0)
3649                         break;
3650
3651                 /* error other than GTT full, or we've already tried again */
3652                 if (ret != -ENOSPC || pin_tries >= 1) {
3653                         if (ret != -ERESTARTSYS) {
3654                                 unsigned long long total_size = 0;
3655                                 for (i = 0; i < args->buffer_count; i++)
3656                                         total_size += object_list[i]->size;
3657                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3658                                           pinned+1, args->buffer_count,
3659                                           total_size, ret);
3660                                 DRM_ERROR("%d objects [%d pinned], "
3661                                           "%d object bytes [%d pinned], "
3662                                           "%d/%d gtt bytes\n",
3663                                           atomic_read(&dev->object_count),
3664                                           atomic_read(&dev->pin_count),
3665                                           atomic_read(&dev->object_memory),
3666                                           atomic_read(&dev->pin_memory),
3667                                           atomic_read(&dev->gtt_memory),
3668                                           dev->gtt_total);
3669                         }
3670                         goto err;
3671                 }
3672
3673                 /* unpin all of our buffers */
3674                 for (i = 0; i < pinned; i++)
3675                         i915_gem_object_unpin(object_list[i]);
3676                 pinned = 0;
3677
3678                 /* evict everyone we can from the aperture */
3679                 ret = i915_gem_evict_everything(dev);
3680                 if (ret && ret != -ENOSPC)
3681                         goto err;
3682         }
3683
3684         /* Set the pending read domains for the batch buffer to COMMAND */
3685         batch_obj = object_list[args->buffer_count-1];
3686         if (batch_obj->pending_write_domain) {
3687                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3688                 ret = -EINVAL;
3689                 goto err;
3690         }
3691         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3692
3693         /* Sanity check the batch buffer, prior to moving objects */
3694         exec_offset = exec_list[args->buffer_count - 1].offset;
3695         ret = i915_gem_check_execbuffer (args, exec_offset);
3696         if (ret != 0) {
3697                 DRM_ERROR("execbuf with invalid offset/length\n");
3698                 goto err;
3699         }
3700
3701         i915_verify_inactive(dev, __FILE__, __LINE__);
3702
3703         /* Zero the global flush/invalidate flags. These
3704          * will be modified as new domains are computed
3705          * for each object
3706          */
3707         dev->invalidate_domains = 0;
3708         dev->flush_domains = 0;
3709
3710         for (i = 0; i < args->buffer_count; i++) {
3711                 struct drm_gem_object *obj = object_list[i];
3712
3713                 /* Compute new gpu domains and update invalidate/flush */
3714                 i915_gem_object_set_to_gpu_domain(obj);
3715         }
3716
3717         i915_verify_inactive(dev, __FILE__, __LINE__);
3718
3719         if (dev->invalidate_domains | dev->flush_domains) {
3720 #if WATCH_EXEC
3721                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3722                           __func__,
3723                          dev->invalidate_domains,
3724                          dev->flush_domains);
3725 #endif
3726                 i915_gem_flush(dev,
3727                                dev->invalidate_domains,
3728                                dev->flush_domains);
3729                 if (dev->flush_domains)
3730                         (void)i915_add_request(dev, file_priv,
3731                                                dev->flush_domains);
3732         }
3733
3734         for (i = 0; i < args->buffer_count; i++) {
3735                 struct drm_gem_object *obj = object_list[i];
3736                 uint32_t old_write_domain = obj->write_domain;
3737
3738                 obj->write_domain = obj->pending_write_domain;
3739                 trace_i915_gem_object_change_domain(obj,
3740                                                     obj->read_domains,
3741                                                     old_write_domain);
3742         }
3743
3744         i915_verify_inactive(dev, __FILE__, __LINE__);
3745
3746 #if WATCH_COHERENCY
3747         for (i = 0; i < args->buffer_count; i++) {
3748                 i915_gem_object_check_coherency(object_list[i],
3749                                                 exec_list[i].handle);
3750         }
3751 #endif
3752
3753 #if WATCH_EXEC
3754         i915_gem_dump_object(batch_obj,
3755                               args->batch_len,
3756                               __func__,
3757                               ~0);
3758 #endif
3759
3760         /* Exec the batchbuffer */
3761         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3762         if (ret) {
3763                 DRM_ERROR("dispatch failed %d\n", ret);
3764                 goto err;
3765         }
3766
3767         /*
3768          * Ensure that the commands in the batch buffer are
3769          * finished before the interrupt fires
3770          */
3771         flush_domains = i915_retire_commands(dev);
3772
3773         i915_verify_inactive(dev, __FILE__, __LINE__);
3774
3775         /*
3776          * Get a seqno representing the execution of the current buffer,
3777          * which we can wait on.  We would like to mitigate these interrupts,
3778          * likely by only creating seqnos occasionally (so that we have
3779          * *some* interrupts representing completion of buffers that we can
3780          * wait on when trying to clear up gtt space).
3781          */
3782         seqno = i915_add_request(dev, file_priv, flush_domains);
3783         BUG_ON(seqno == 0);
3784         for (i = 0; i < args->buffer_count; i++) {
3785                 struct drm_gem_object *obj = object_list[i];
3786
3787                 i915_gem_object_move_to_active(obj, seqno);
3788 #if WATCH_LRU
3789                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3790 #endif
3791         }
3792 #if WATCH_LRU
3793         i915_dump_lru(dev, __func__);
3794 #endif
3795
3796         i915_verify_inactive(dev, __FILE__, __LINE__);
3797
3798 err:
3799         for (i = 0; i < pinned; i++)
3800                 i915_gem_object_unpin(object_list[i]);
3801
3802         for (i = 0; i < args->buffer_count; i++) {
3803                 if (object_list[i]) {
3804                         obj_priv = object_list[i]->driver_private;
3805                         obj_priv->in_execbuffer = false;
3806                 }
3807                 drm_gem_object_unreference(object_list[i]);
3808         }
3809
3810         mutex_unlock(&dev->struct_mutex);
3811
3812         if (!ret) {
3813                 /* Copy the new buffer offsets back to the user's exec list. */
3814                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3815                                    (uintptr_t) args->buffers_ptr,
3816                                    exec_list,
3817                                    sizeof(*exec_list) * args->buffer_count);
3818                 if (ret) {
3819                         ret = -EFAULT;
3820                         DRM_ERROR("failed to copy %d exec entries "
3821                                   "back to user (%d)\n",
3822                                   args->buffer_count, ret);
3823                 }
3824         }
3825
3826         /* Copy the updated relocations out regardless of current error
3827          * state.  Failure to update the relocs would mean that the next
3828          * time userland calls execbuf, it would do so with presumed offset
3829          * state that didn't match the actual object state.
3830          */
3831         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3832                                            relocs);
3833         if (ret2 != 0) {
3834                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3835
3836                 if (ret == 0)
3837                         ret = ret2;
3838         }
3839
3840 pre_mutex_err:
3841         drm_free_large(object_list);
3842         drm_free_large(exec_list);
3843         kfree(cliprects);
3844
3845         return ret;
3846 }
3847
3848 int
3849 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3850 {
3851         struct drm_device *dev = obj->dev;
3852         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3853         int ret;
3854
3855         i915_verify_inactive(dev, __FILE__, __LINE__);
3856         if (obj_priv->gtt_space == NULL) {
3857                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3858                 if (ret != 0) {
3859                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3860                                 DRM_ERROR("Failure to bind: %d\n", ret);
3861                         return ret;
3862                 }
3863         }
3864         /*
3865          * Pre-965 chips need a fence register set up in order to
3866          * properly handle tiled surfaces.
3867          */
3868         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3869                 ret = i915_gem_object_get_fence_reg(obj);
3870                 if (ret != 0) {
3871                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3872                                 DRM_ERROR("Failure to install fence: %d\n",
3873                                           ret);
3874                         return ret;
3875                 }
3876         }
3877         obj_priv->pin_count++;
3878
3879         /* If the object is not active and not pending a flush,
3880          * remove it from the inactive list
3881          */
3882         if (obj_priv->pin_count == 1) {
3883                 atomic_inc(&dev->pin_count);
3884                 atomic_add(obj->size, &dev->pin_memory);
3885                 if (!obj_priv->active &&
3886                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3887                     !list_empty(&obj_priv->list))
3888                         list_del_init(&obj_priv->list);
3889         }
3890         i915_verify_inactive(dev, __FILE__, __LINE__);
3891
3892         return 0;
3893 }
3894
3895 void
3896 i915_gem_object_unpin(struct drm_gem_object *obj)
3897 {
3898         struct drm_device *dev = obj->dev;
3899         drm_i915_private_t *dev_priv = dev->dev_private;
3900         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3901
3902         i915_verify_inactive(dev, __FILE__, __LINE__);
3903         obj_priv->pin_count--;
3904         BUG_ON(obj_priv->pin_count < 0);
3905         BUG_ON(obj_priv->gtt_space == NULL);
3906
3907         /* If the object is no longer pinned, and is
3908          * neither active nor being flushed, then stick it on
3909          * the inactive list
3910          */
3911         if (obj_priv->pin_count == 0) {
3912                 if (!obj_priv->active &&
3913                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3914                         list_move_tail(&obj_priv->list,
3915                                        &dev_priv->mm.inactive_list);
3916                 atomic_dec(&dev->pin_count);
3917                 atomic_sub(obj->size, &dev->pin_memory);
3918         }
3919         i915_verify_inactive(dev, __FILE__, __LINE__);
3920 }
3921
3922 int
3923 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3924                    struct drm_file *file_priv)
3925 {
3926         struct drm_i915_gem_pin *args = data;
3927         struct drm_gem_object *obj;
3928         struct drm_i915_gem_object *obj_priv;
3929         int ret;
3930
3931         mutex_lock(&dev->struct_mutex);
3932
3933         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3934         if (obj == NULL) {
3935                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3936                           args->handle);
3937                 mutex_unlock(&dev->struct_mutex);
3938                 return -EBADF;
3939         }
3940         obj_priv = obj->driver_private;
3941
3942         if (obj_priv->madv == I915_MADV_DONTNEED) {
3943                 DRM_ERROR("Attempting to pin a I915_MADV_DONTNEED buffer\n");
3944                 drm_gem_object_unreference(obj);
3945                 mutex_unlock(&dev->struct_mutex);
3946                 return -EINVAL;
3947         }
3948
3949         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3950                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3951                           args->handle);
3952                 drm_gem_object_unreference(obj);
3953                 mutex_unlock(&dev->struct_mutex);
3954                 return -EINVAL;
3955         }
3956
3957         obj_priv->user_pin_count++;
3958         obj_priv->pin_filp = file_priv;
3959         if (obj_priv->user_pin_count == 1) {
3960                 ret = i915_gem_object_pin(obj, args->alignment);
3961                 if (ret != 0) {
3962                         drm_gem_object_unreference(obj);
3963                         mutex_unlock(&dev->struct_mutex);
3964                         return ret;
3965                 }
3966         }
3967
3968         /* XXX - flush the CPU caches for pinned objects
3969          * as the X server doesn't manage domains yet
3970          */
3971         i915_gem_object_flush_cpu_write_domain(obj);
3972         args->offset = obj_priv->gtt_offset;
3973         drm_gem_object_unreference(obj);
3974         mutex_unlock(&dev->struct_mutex);
3975
3976         return 0;
3977 }
3978
3979 int
3980 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3981                      struct drm_file *file_priv)
3982 {
3983         struct drm_i915_gem_pin *args = data;
3984         struct drm_gem_object *obj;
3985         struct drm_i915_gem_object *obj_priv;
3986
3987         mutex_lock(&dev->struct_mutex);
3988
3989         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3990         if (obj == NULL) {
3991                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3992                           args->handle);
3993                 mutex_unlock(&dev->struct_mutex);
3994                 return -EBADF;
3995         }
3996
3997         obj_priv = obj->driver_private;
3998         if (obj_priv->pin_filp != file_priv) {
3999                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4000                           args->handle);
4001                 drm_gem_object_unreference(obj);
4002                 mutex_unlock(&dev->struct_mutex);
4003                 return -EINVAL;
4004         }
4005         obj_priv->user_pin_count--;
4006         if (obj_priv->user_pin_count == 0) {
4007                 obj_priv->pin_filp = NULL;
4008                 i915_gem_object_unpin(obj);
4009         }
4010
4011         drm_gem_object_unreference(obj);
4012         mutex_unlock(&dev->struct_mutex);
4013         return 0;
4014 }
4015
4016 int
4017 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4018                     struct drm_file *file_priv)
4019 {
4020         struct drm_i915_gem_busy *args = data;
4021         struct drm_gem_object *obj;
4022         struct drm_i915_gem_object *obj_priv;
4023
4024         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4025         if (obj == NULL) {
4026                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4027                           args->handle);
4028                 return -EBADF;
4029         }
4030
4031         mutex_lock(&dev->struct_mutex);
4032         /* Update the active list for the hardware's current position.
4033          * Otherwise this only updates on a delayed timer or when irqs are
4034          * actually unmasked, and our working set ends up being larger than
4035          * required.
4036          */
4037         i915_gem_retire_requests(dev);
4038
4039         obj_priv = obj->driver_private;
4040         /* Don't count being on the flushing list against the object being
4041          * done.  Otherwise, a buffer left on the flushing list but not getting
4042          * flushed (because nobody's flushing that domain) won't ever return
4043          * unbusy and get reused by libdrm's bo cache.  The other expected
4044          * consumer of this interface, OpenGL's occlusion queries, also specs
4045          * that the objects get unbusy "eventually" without any interference.
4046          */
4047         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4048
4049         drm_gem_object_unreference(obj);
4050         mutex_unlock(&dev->struct_mutex);
4051         return 0;
4052 }
4053
4054 int
4055 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4056                         struct drm_file *file_priv)
4057 {
4058     return i915_gem_ring_throttle(dev, file_priv);
4059 }
4060
4061 int
4062 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4063                        struct drm_file *file_priv)
4064 {
4065         struct drm_i915_gem_madvise *args = data;
4066         struct drm_gem_object *obj;
4067         struct drm_i915_gem_object *obj_priv;
4068
4069         switch (args->madv) {
4070         case I915_MADV_DONTNEED:
4071         case I915_MADV_WILLNEED:
4072             break;
4073         default:
4074             return -EINVAL;
4075         }
4076
4077         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4078         if (obj == NULL) {
4079                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4080                           args->handle);
4081                 return -EBADF;
4082         }
4083
4084         mutex_lock(&dev->struct_mutex);
4085         obj_priv = obj->driver_private;
4086
4087         if (obj_priv->pin_count) {
4088                 drm_gem_object_unreference(obj);
4089                 mutex_unlock(&dev->struct_mutex);
4090
4091                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4092                 return -EINVAL;
4093         }
4094
4095         obj_priv->madv = args->madv;
4096         args->retained = obj_priv->gtt_space != NULL;
4097
4098         drm_gem_object_unreference(obj);
4099         mutex_unlock(&dev->struct_mutex);
4100
4101         return 0;
4102 }
4103
4104 int i915_gem_init_object(struct drm_gem_object *obj)
4105 {
4106         struct drm_i915_gem_object *obj_priv;
4107
4108         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4109         if (obj_priv == NULL)
4110                 return -ENOMEM;
4111
4112         /*
4113          * We've just allocated pages from the kernel,
4114          * so they've just been written by the CPU with
4115          * zeros. They'll need to be clflushed before we
4116          * use them with the GPU.
4117          */
4118         obj->write_domain = I915_GEM_DOMAIN_CPU;
4119         obj->read_domains = I915_GEM_DOMAIN_CPU;
4120
4121         obj_priv->agp_type = AGP_USER_MEMORY;
4122
4123         obj->driver_private = obj_priv;
4124         obj_priv->obj = obj;
4125         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4126         INIT_LIST_HEAD(&obj_priv->list);
4127         INIT_LIST_HEAD(&obj_priv->fence_list);
4128         obj_priv->madv = I915_MADV_WILLNEED;
4129
4130         trace_i915_gem_object_create(obj);
4131
4132         return 0;
4133 }
4134
4135 void i915_gem_free_object(struct drm_gem_object *obj)
4136 {
4137         struct drm_device *dev = obj->dev;
4138         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4139
4140         trace_i915_gem_object_destroy(obj);
4141
4142         while (obj_priv->pin_count > 0)
4143                 i915_gem_object_unpin(obj);
4144
4145         if (obj_priv->phys_obj)
4146                 i915_gem_detach_phys_object(dev, obj);
4147
4148         i915_gem_object_unbind(obj);
4149
4150         if (obj_priv->mmap_offset)
4151                 i915_gem_free_mmap_offset(obj);
4152
4153         kfree(obj_priv->page_cpu_valid);
4154         kfree(obj_priv->bit_17);
4155         kfree(obj->driver_private);
4156 }
4157
4158 /** Unbinds all objects that are on the given buffer list. */
4159 static int
4160 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
4161 {
4162         struct drm_gem_object *obj;
4163         struct drm_i915_gem_object *obj_priv;
4164         int ret;
4165
4166         while (!list_empty(head)) {
4167                 obj_priv = list_first_entry(head,
4168                                             struct drm_i915_gem_object,
4169                                             list);
4170                 obj = obj_priv->obj;
4171
4172                 if (obj_priv->pin_count != 0) {
4173                         DRM_ERROR("Pinned object in unbind list\n");
4174                         mutex_unlock(&dev->struct_mutex);
4175                         return -EINVAL;
4176                 }
4177
4178                 ret = i915_gem_object_unbind(obj);
4179                 if (ret != 0) {
4180                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
4181                                   ret);
4182                         mutex_unlock(&dev->struct_mutex);
4183                         return ret;
4184                 }
4185         }
4186
4187
4188         return 0;
4189 }
4190
4191 int
4192 i915_gem_idle(struct drm_device *dev)
4193 {
4194         drm_i915_private_t *dev_priv = dev->dev_private;
4195         uint32_t seqno, cur_seqno, last_seqno;
4196         int stuck, ret;
4197
4198         mutex_lock(&dev->struct_mutex);
4199
4200         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4201                 mutex_unlock(&dev->struct_mutex);
4202                 return 0;
4203         }
4204
4205         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4206          * We need to replace this with a semaphore, or something.
4207          */
4208         dev_priv->mm.suspended = 1;
4209         del_timer(&dev_priv->hangcheck_timer);
4210
4211         /* Cancel the retire work handler, wait for it to finish if running
4212          */
4213         mutex_unlock(&dev->struct_mutex);
4214         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4215         mutex_lock(&dev->struct_mutex);
4216
4217         i915_kernel_lost_context(dev);
4218
4219         /* Flush the GPU along with all non-CPU write domains
4220          */
4221         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4222         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4223
4224         if (seqno == 0) {
4225                 mutex_unlock(&dev->struct_mutex);
4226                 return -ENOMEM;
4227         }
4228
4229         dev_priv->mm.waiting_gem_seqno = seqno;
4230         last_seqno = 0;
4231         stuck = 0;
4232         for (;;) {
4233                 cur_seqno = i915_get_gem_seqno(dev);
4234                 if (i915_seqno_passed(cur_seqno, seqno))
4235                         break;
4236                 if (last_seqno == cur_seqno) {
4237                         if (stuck++ > 100) {
4238                                 DRM_ERROR("hardware wedged\n");
4239                                 atomic_set(&dev_priv->mm.wedged, 1);
4240                                 DRM_WAKEUP(&dev_priv->irq_queue);
4241                                 break;
4242                         }
4243                 }
4244                 msleep(10);
4245                 last_seqno = cur_seqno;
4246         }
4247         dev_priv->mm.waiting_gem_seqno = 0;
4248
4249         i915_gem_retire_requests(dev);
4250
4251         spin_lock(&dev_priv->mm.active_list_lock);
4252         if (!atomic_read(&dev_priv->mm.wedged)) {
4253                 /* Active and flushing should now be empty as we've
4254                  * waited for a sequence higher than any pending execbuffer
4255                  */
4256                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4257                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4258                 /* Request should now be empty as we've also waited
4259                  * for the last request in the list
4260                  */
4261                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4262         }
4263
4264         /* Empty the active and flushing lists to inactive.  If there's
4265          * anything left at this point, it means that we're wedged and
4266          * nothing good's going to happen by leaving them there.  So strip
4267          * the GPU domains and just stuff them onto inactive.
4268          */
4269         while (!list_empty(&dev_priv->mm.active_list)) {
4270                 struct drm_gem_object *obj;
4271                 uint32_t old_write_domain;
4272
4273                 obj = list_first_entry(&dev_priv->mm.active_list,
4274                                        struct drm_i915_gem_object,
4275                                        list)->obj;
4276                 old_write_domain = obj->write_domain;
4277                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4278                 i915_gem_object_move_to_inactive(obj);
4279
4280                 trace_i915_gem_object_change_domain(obj,
4281                                                     obj->read_domains,
4282                                                     old_write_domain);
4283         }
4284         spin_unlock(&dev_priv->mm.active_list_lock);
4285
4286         while (!list_empty(&dev_priv->mm.flushing_list)) {
4287                 struct drm_gem_object *obj;
4288                 uint32_t old_write_domain;
4289
4290                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4291                                        struct drm_i915_gem_object,
4292                                        list)->obj;
4293                 old_write_domain = obj->write_domain;
4294                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4295                 i915_gem_object_move_to_inactive(obj);
4296
4297                 trace_i915_gem_object_change_domain(obj,
4298                                                     obj->read_domains,
4299                                                     old_write_domain);
4300         }
4301
4302
4303         /* Move all inactive buffers out of the GTT. */
4304         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
4305         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4306         if (ret) {
4307                 mutex_unlock(&dev->struct_mutex);
4308                 return ret;
4309         }
4310
4311         i915_gem_cleanup_ringbuffer(dev);
4312         mutex_unlock(&dev->struct_mutex);
4313
4314         return 0;
4315 }
4316
4317 static int
4318 i915_gem_init_hws(struct drm_device *dev)
4319 {
4320         drm_i915_private_t *dev_priv = dev->dev_private;
4321         struct drm_gem_object *obj;
4322         struct drm_i915_gem_object *obj_priv;
4323         int ret;
4324
4325         /* If we need a physical address for the status page, it's already
4326          * initialized at driver load time.
4327          */
4328         if (!I915_NEED_GFX_HWS(dev))
4329                 return 0;
4330
4331         obj = drm_gem_object_alloc(dev, 4096);
4332         if (obj == NULL) {
4333                 DRM_ERROR("Failed to allocate status page\n");
4334                 return -ENOMEM;
4335         }
4336         obj_priv = obj->driver_private;
4337         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4338
4339         ret = i915_gem_object_pin(obj, 4096);
4340         if (ret != 0) {
4341                 drm_gem_object_unreference(obj);
4342                 return ret;
4343         }
4344
4345         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4346
4347         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4348         if (dev_priv->hw_status_page == NULL) {
4349                 DRM_ERROR("Failed to map status page.\n");
4350                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4351                 i915_gem_object_unpin(obj);
4352                 drm_gem_object_unreference(obj);
4353                 return -EINVAL;
4354         }
4355         dev_priv->hws_obj = obj;
4356         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4357         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4358         I915_READ(HWS_PGA); /* posting read */
4359         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4360
4361         return 0;
4362 }
4363
4364 static void
4365 i915_gem_cleanup_hws(struct drm_device *dev)
4366 {
4367         drm_i915_private_t *dev_priv = dev->dev_private;
4368         struct drm_gem_object *obj;
4369         struct drm_i915_gem_object *obj_priv;
4370
4371         if (dev_priv->hws_obj == NULL)
4372                 return;
4373
4374         obj = dev_priv->hws_obj;
4375         obj_priv = obj->driver_private;
4376
4377         kunmap(obj_priv->pages[0]);
4378         i915_gem_object_unpin(obj);
4379         drm_gem_object_unreference(obj);
4380         dev_priv->hws_obj = NULL;
4381
4382         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4383         dev_priv->hw_status_page = NULL;
4384
4385         /* Write high address into HWS_PGA when disabling. */
4386         I915_WRITE(HWS_PGA, 0x1ffff000);
4387 }
4388
4389 int
4390 i915_gem_init_ringbuffer(struct drm_device *dev)
4391 {
4392         drm_i915_private_t *dev_priv = dev->dev_private;
4393         struct drm_gem_object *obj;
4394         struct drm_i915_gem_object *obj_priv;
4395         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4396         int ret;
4397         u32 head;
4398
4399         ret = i915_gem_init_hws(dev);
4400         if (ret != 0)
4401                 return ret;
4402
4403         obj = drm_gem_object_alloc(dev, 128 * 1024);
4404         if (obj == NULL) {
4405                 DRM_ERROR("Failed to allocate ringbuffer\n");
4406                 i915_gem_cleanup_hws(dev);
4407                 return -ENOMEM;
4408         }
4409         obj_priv = obj->driver_private;
4410
4411         ret = i915_gem_object_pin(obj, 4096);
4412         if (ret != 0) {
4413                 drm_gem_object_unreference(obj);
4414                 i915_gem_cleanup_hws(dev);
4415                 return ret;
4416         }
4417
4418         /* Set up the kernel mapping for the ring. */
4419         ring->Size = obj->size;
4420
4421         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4422         ring->map.size = obj->size;
4423         ring->map.type = 0;
4424         ring->map.flags = 0;
4425         ring->map.mtrr = 0;
4426
4427         drm_core_ioremap_wc(&ring->map, dev);
4428         if (ring->map.handle == NULL) {
4429                 DRM_ERROR("Failed to map ringbuffer.\n");
4430                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4431                 i915_gem_object_unpin(obj);
4432                 drm_gem_object_unreference(obj);
4433                 i915_gem_cleanup_hws(dev);
4434                 return -EINVAL;
4435         }
4436         ring->ring_obj = obj;
4437         ring->virtual_start = ring->map.handle;
4438
4439         /* Stop the ring if it's running. */
4440         I915_WRITE(PRB0_CTL, 0);
4441         I915_WRITE(PRB0_TAIL, 0);
4442         I915_WRITE(PRB0_HEAD, 0);
4443
4444         /* Initialize the ring. */
4445         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4446         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4447
4448         /* G45 ring initialization fails to reset head to zero */
4449         if (head != 0) {
4450                 DRM_ERROR("Ring head not reset to zero "
4451                           "ctl %08x head %08x tail %08x start %08x\n",
4452                           I915_READ(PRB0_CTL),
4453                           I915_READ(PRB0_HEAD),
4454                           I915_READ(PRB0_TAIL),
4455                           I915_READ(PRB0_START));
4456                 I915_WRITE(PRB0_HEAD, 0);
4457
4458                 DRM_ERROR("Ring head forced to zero "
4459                           "ctl %08x head %08x tail %08x start %08x\n",
4460                           I915_READ(PRB0_CTL),
4461                           I915_READ(PRB0_HEAD),
4462                           I915_READ(PRB0_TAIL),
4463                           I915_READ(PRB0_START));
4464         }
4465
4466         I915_WRITE(PRB0_CTL,
4467                    ((obj->size - 4096) & RING_NR_PAGES) |
4468                    RING_NO_REPORT |
4469                    RING_VALID);
4470
4471         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4472
4473         /* If the head is still not zero, the ring is dead */
4474         if (head != 0) {
4475                 DRM_ERROR("Ring initialization failed "
4476                           "ctl %08x head %08x tail %08x start %08x\n",
4477                           I915_READ(PRB0_CTL),
4478                           I915_READ(PRB0_HEAD),
4479                           I915_READ(PRB0_TAIL),
4480                           I915_READ(PRB0_START));
4481                 return -EIO;
4482         }
4483
4484         /* Update our cache of the ring state */
4485         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4486                 i915_kernel_lost_context(dev);
4487         else {
4488                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4489                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4490                 ring->space = ring->head - (ring->tail + 8);
4491                 if (ring->space < 0)
4492                         ring->space += ring->Size;
4493         }
4494
4495         return 0;
4496 }
4497
4498 void
4499 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4500 {
4501         drm_i915_private_t *dev_priv = dev->dev_private;
4502
4503         if (dev_priv->ring.ring_obj == NULL)
4504                 return;
4505
4506         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4507
4508         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4509         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4510         dev_priv->ring.ring_obj = NULL;
4511         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4512
4513         i915_gem_cleanup_hws(dev);
4514 }
4515
4516 int
4517 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4518                        struct drm_file *file_priv)
4519 {
4520         drm_i915_private_t *dev_priv = dev->dev_private;
4521         int ret;
4522
4523         if (drm_core_check_feature(dev, DRIVER_MODESET))
4524                 return 0;
4525
4526         if (atomic_read(&dev_priv->mm.wedged)) {
4527                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4528                 atomic_set(&dev_priv->mm.wedged, 0);
4529         }
4530
4531         mutex_lock(&dev->struct_mutex);
4532         dev_priv->mm.suspended = 0;
4533
4534         ret = i915_gem_init_ringbuffer(dev);
4535         if (ret != 0) {
4536                 mutex_unlock(&dev->struct_mutex);
4537                 return ret;
4538         }
4539
4540         spin_lock(&dev_priv->mm.active_list_lock);
4541         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4542         spin_unlock(&dev_priv->mm.active_list_lock);
4543
4544         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4545         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4546         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4547         mutex_unlock(&dev->struct_mutex);
4548
4549         drm_irq_install(dev);
4550
4551         return 0;
4552 }
4553
4554 int
4555 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4556                        struct drm_file *file_priv)
4557 {
4558         int ret;
4559
4560         if (drm_core_check_feature(dev, DRIVER_MODESET))
4561                 return 0;
4562
4563         ret = i915_gem_idle(dev);
4564         drm_irq_uninstall(dev);
4565
4566         return ret;
4567 }
4568
4569 void
4570 i915_gem_lastclose(struct drm_device *dev)
4571 {
4572         int ret;
4573
4574         if (drm_core_check_feature(dev, DRIVER_MODESET))
4575                 return;
4576
4577         ret = i915_gem_idle(dev);
4578         if (ret)
4579                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4580 }
4581
4582 void
4583 i915_gem_load(struct drm_device *dev)
4584 {
4585         int i;
4586         drm_i915_private_t *dev_priv = dev->dev_private;
4587
4588         spin_lock_init(&dev_priv->mm.active_list_lock);
4589         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4590         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4591         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4592         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4593         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4594         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4595                           i915_gem_retire_work_handler);
4596         dev_priv->mm.next_gem_seqno = 1;
4597
4598         spin_lock(&shrink_list_lock);
4599         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4600         spin_unlock(&shrink_list_lock);
4601
4602         /* Old X drivers will take 0-2 for front, back, depth buffers */
4603         dev_priv->fence_reg_start = 3;
4604
4605         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4606                 dev_priv->num_fence_regs = 16;
4607         else
4608                 dev_priv->num_fence_regs = 8;
4609
4610         /* Initialize fence registers to zero */
4611         if (IS_I965G(dev)) {
4612                 for (i = 0; i < 16; i++)
4613                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4614         } else {
4615                 for (i = 0; i < 8; i++)
4616                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4617                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4618                         for (i = 0; i < 8; i++)
4619                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4620         }
4621
4622         i915_gem_detect_bit_6_swizzle(dev);
4623 }
4624
4625 /*
4626  * Create a physically contiguous memory object for this object
4627  * e.g. for cursor + overlay regs
4628  */
4629 int i915_gem_init_phys_object(struct drm_device *dev,
4630                               int id, int size)
4631 {
4632         drm_i915_private_t *dev_priv = dev->dev_private;
4633         struct drm_i915_gem_phys_object *phys_obj;
4634         int ret;
4635
4636         if (dev_priv->mm.phys_objs[id - 1] || !size)
4637                 return 0;
4638
4639         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4640         if (!phys_obj)
4641                 return -ENOMEM;
4642
4643         phys_obj->id = id;
4644
4645         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4646         if (!phys_obj->handle) {
4647                 ret = -ENOMEM;
4648                 goto kfree_obj;
4649         }
4650 #ifdef CONFIG_X86
4651         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4652 #endif
4653
4654         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4655
4656         return 0;
4657 kfree_obj:
4658         kfree(phys_obj);
4659         return ret;
4660 }
4661
4662 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4663 {
4664         drm_i915_private_t *dev_priv = dev->dev_private;
4665         struct drm_i915_gem_phys_object *phys_obj;
4666
4667         if (!dev_priv->mm.phys_objs[id - 1])
4668                 return;
4669
4670         phys_obj = dev_priv->mm.phys_objs[id - 1];
4671         if (phys_obj->cur_obj) {
4672                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4673         }
4674
4675 #ifdef CONFIG_X86
4676         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4677 #endif
4678         drm_pci_free(dev, phys_obj->handle);
4679         kfree(phys_obj);
4680         dev_priv->mm.phys_objs[id - 1] = NULL;
4681 }
4682
4683 void i915_gem_free_all_phys_object(struct drm_device *dev)
4684 {
4685         int i;
4686
4687         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4688                 i915_gem_free_phys_object(dev, i);
4689 }
4690
4691 void i915_gem_detach_phys_object(struct drm_device *dev,
4692                                  struct drm_gem_object *obj)
4693 {
4694         struct drm_i915_gem_object *obj_priv;
4695         int i;
4696         int ret;
4697         int page_count;
4698
4699         obj_priv = obj->driver_private;
4700         if (!obj_priv->phys_obj)
4701                 return;
4702
4703         ret = i915_gem_object_get_pages(obj);
4704         if (ret)
4705                 goto out;
4706
4707         page_count = obj->size / PAGE_SIZE;
4708
4709         for (i = 0; i < page_count; i++) {
4710                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4711                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4712
4713                 memcpy(dst, src, PAGE_SIZE);
4714                 kunmap_atomic(dst, KM_USER0);
4715         }
4716         drm_clflush_pages(obj_priv->pages, page_count);
4717         drm_agp_chipset_flush(dev);
4718
4719         i915_gem_object_put_pages(obj);
4720 out:
4721         obj_priv->phys_obj->cur_obj = NULL;
4722         obj_priv->phys_obj = NULL;
4723 }
4724
4725 int
4726 i915_gem_attach_phys_object(struct drm_device *dev,
4727                             struct drm_gem_object *obj, int id)
4728 {
4729         drm_i915_private_t *dev_priv = dev->dev_private;
4730         struct drm_i915_gem_object *obj_priv;
4731         int ret = 0;
4732         int page_count;
4733         int i;
4734
4735         if (id > I915_MAX_PHYS_OBJECT)
4736                 return -EINVAL;
4737
4738         obj_priv = obj->driver_private;
4739
4740         if (obj_priv->phys_obj) {
4741                 if (obj_priv->phys_obj->id == id)
4742                         return 0;
4743                 i915_gem_detach_phys_object(dev, obj);
4744         }
4745
4746
4747         /* create a new object */
4748         if (!dev_priv->mm.phys_objs[id - 1]) {
4749                 ret = i915_gem_init_phys_object(dev, id,
4750                                                 obj->size);
4751                 if (ret) {
4752                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4753                         goto out;
4754                 }
4755         }
4756
4757         /* bind to the object */
4758         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4759         obj_priv->phys_obj->cur_obj = obj;
4760
4761         ret = i915_gem_object_get_pages(obj);
4762         if (ret) {
4763                 DRM_ERROR("failed to get page list\n");
4764                 goto out;
4765         }
4766
4767         page_count = obj->size / PAGE_SIZE;
4768
4769         for (i = 0; i < page_count; i++) {
4770                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4771                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4772
4773                 memcpy(dst, src, PAGE_SIZE);
4774                 kunmap_atomic(src, KM_USER0);
4775         }
4776
4777         i915_gem_object_put_pages(obj);
4778
4779         return 0;
4780 out:
4781         return ret;
4782 }
4783
4784 static int
4785 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4786                      struct drm_i915_gem_pwrite *args,
4787                      struct drm_file *file_priv)
4788 {
4789         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4790         void *obj_addr;
4791         int ret;
4792         char __user *user_data;
4793
4794         user_data = (char __user *) (uintptr_t) args->data_ptr;
4795         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4796
4797         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4798         ret = copy_from_user(obj_addr, user_data, args->size);
4799         if (ret)
4800                 return -EFAULT;
4801
4802         drm_agp_chipset_flush(dev);
4803         return 0;
4804 }
4805
4806 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4807 {
4808         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4809
4810         /* Clean up our request list when the client is going away, so that
4811          * later retire_requests won't dereference our soon-to-be-gone
4812          * file_priv.
4813          */
4814         mutex_lock(&dev->struct_mutex);
4815         while (!list_empty(&i915_file_priv->mm.request_list))
4816                 list_del_init(i915_file_priv->mm.request_list.next);
4817         mutex_unlock(&dev->struct_mutex);
4818 }
4819
4820 /* Immediately discard the backing storage */
4821 static void
4822 i915_gem_object_truncate(struct drm_gem_object *obj)
4823 {
4824     struct inode *inode;
4825
4826     inode = obj->filp->f_path.dentry->d_inode;
4827
4828     mutex_lock(&inode->i_mutex);
4829     truncate_inode_pages(inode->i_mapping, 0);
4830     mutex_unlock(&inode->i_mutex);
4831 }
4832
4833 static int
4834 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4835 {
4836         drm_i915_private_t *dev_priv, *next_dev;
4837         struct drm_i915_gem_object *obj_priv, *next_obj;
4838         int cnt = 0;
4839         int would_deadlock = 1;
4840
4841         /* "fast-path" to count number of available objects */
4842         if (nr_to_scan == 0) {
4843                 spin_lock(&shrink_list_lock);
4844                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4845                         struct drm_device *dev = dev_priv->dev;
4846
4847                         if (mutex_trylock(&dev->struct_mutex)) {
4848                                 list_for_each_entry(obj_priv,
4849                                                     &dev_priv->mm.inactive_list,
4850                                                     list)
4851                                         cnt++;
4852                                 mutex_unlock(&dev->struct_mutex);
4853                         }
4854                 }
4855                 spin_unlock(&shrink_list_lock);
4856
4857                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4858         }
4859
4860         spin_lock(&shrink_list_lock);
4861
4862         /* first scan for clean buffers */
4863         list_for_each_entry_safe(dev_priv, next_dev,
4864                                  &shrink_list, mm.shrink_list) {
4865                 struct drm_device *dev = dev_priv->dev;
4866
4867                 if (! mutex_trylock(&dev->struct_mutex))
4868                         continue;
4869
4870                 spin_unlock(&shrink_list_lock);
4871
4872                 i915_gem_retire_requests(dev);
4873
4874                 list_for_each_entry_safe(obj_priv, next_obj,
4875                                          &dev_priv->mm.inactive_list,
4876                                          list) {
4877                         if (i915_gem_object_is_purgeable(obj_priv)) {
4878                                 struct drm_gem_object *obj = obj_priv->obj;
4879                                 i915_gem_object_unbind(obj);
4880                                 i915_gem_object_truncate(obj);
4881
4882                                 if (--nr_to_scan <= 0)
4883                                         break;
4884                         }
4885                 }
4886
4887                 spin_lock(&shrink_list_lock);
4888                 mutex_unlock(&dev->struct_mutex);
4889
4890                 if (nr_to_scan <= 0)
4891                         break;
4892         }
4893
4894         /* second pass, evict/count anything still on the inactive list */
4895         list_for_each_entry_safe(dev_priv, next_dev,
4896                                  &shrink_list, mm.shrink_list) {
4897                 struct drm_device *dev = dev_priv->dev;
4898
4899                 if (! mutex_trylock(&dev->struct_mutex))
4900                         continue;
4901
4902                 spin_unlock(&shrink_list_lock);
4903
4904                 list_for_each_entry_safe(obj_priv, next_obj,
4905                                          &dev_priv->mm.inactive_list,
4906                                          list) {
4907                         if (nr_to_scan > 0) {
4908                                 struct drm_gem_object *obj = obj_priv->obj;
4909                                 i915_gem_object_unbind(obj);
4910                                 if (i915_gem_object_is_purgeable(obj_priv))
4911                                         i915_gem_object_truncate(obj);
4912
4913                                 nr_to_scan--;
4914                         } else
4915                                 cnt++;
4916                 }
4917
4918                 spin_lock(&shrink_list_lock);
4919                 mutex_unlock(&dev->struct_mutex);
4920
4921                 would_deadlock = 0;
4922         }
4923
4924         spin_unlock(&shrink_list_lock);
4925
4926         if (would_deadlock)
4927                 return -1;
4928         else if (cnt > 0)
4929                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4930         else
4931                 return 0;
4932 }
4933
4934 static struct shrinker shrinker = {
4935         .shrink = i915_gem_shrink,
4936         .seeks = DEFAULT_SEEKS,
4937 };
4938
4939 __init void
4940 i915_gem_shrinker_init(void)
4941 {
4942     register_shrinker(&shrinker);
4943 }
4944
4945 __exit void
4946 i915_gem_shrinker_exit(void)
4947 {
4948     unregister_shrinker(&shrinker);
4949 }