drm/i915: Fix product names and #defines
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/swap.h>
35 #include <linux/pci.h>
36
37 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
38
39 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
42 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
43                                              int write);
44 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
45                                                      uint64_t offset,
46                                                      uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
48 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
49 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
50                                            unsigned alignment);
51 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
52 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
53 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
54 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
55                                 struct drm_i915_gem_pwrite *args,
56                                 struct drm_file *file_priv);
57
58 static LIST_HEAD(shrink_list);
59 static DEFINE_SPINLOCK(shrink_list_lock);
60
61 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
62                      unsigned long end)
63 {
64         drm_i915_private_t *dev_priv = dev->dev_private;
65
66         if (start >= end ||
67             (start & (PAGE_SIZE - 1)) != 0 ||
68             (end & (PAGE_SIZE - 1)) != 0) {
69                 return -EINVAL;
70         }
71
72         drm_mm_init(&dev_priv->mm.gtt_space, start,
73                     end - start);
74
75         dev->gtt_total = (uint32_t) (end - start);
76
77         return 0;
78 }
79
80 int
81 i915_gem_init_ioctl(struct drm_device *dev, void *data,
82                     struct drm_file *file_priv)
83 {
84         struct drm_i915_gem_init *args = data;
85         int ret;
86
87         mutex_lock(&dev->struct_mutex);
88         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
89         mutex_unlock(&dev->struct_mutex);
90
91         return ret;
92 }
93
94 int
95 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
96                             struct drm_file *file_priv)
97 {
98         struct drm_i915_gem_get_aperture *args = data;
99
100         if (!(dev->driver->driver_features & DRIVER_GEM))
101                 return -ENODEV;
102
103         args->aper_size = dev->gtt_total;
104         args->aper_available_size = (args->aper_size -
105                                      atomic_read(&dev->pin_memory));
106
107         return 0;
108 }
109
110
111 /**
112  * Creates a new mm object and returns a handle to it.
113  */
114 int
115 i915_gem_create_ioctl(struct drm_device *dev, void *data,
116                       struct drm_file *file_priv)
117 {
118         struct drm_i915_gem_create *args = data;
119         struct drm_gem_object *obj;
120         int ret;
121         u32 handle;
122
123         args->size = roundup(args->size, PAGE_SIZE);
124
125         /* Allocate the new object */
126         obj = drm_gem_object_alloc(dev, args->size);
127         if (obj == NULL)
128                 return -ENOMEM;
129
130         ret = drm_gem_handle_create(file_priv, obj, &handle);
131         mutex_lock(&dev->struct_mutex);
132         drm_gem_object_handle_unreference(obj);
133         mutex_unlock(&dev->struct_mutex);
134
135         if (ret)
136                 return ret;
137
138         args->handle = handle;
139
140         return 0;
141 }
142
143 static inline int
144 fast_shmem_read(struct page **pages,
145                 loff_t page_base, int page_offset,
146                 char __user *data,
147                 int length)
148 {
149         char __iomem *vaddr;
150         int unwritten;
151
152         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
153         if (vaddr == NULL)
154                 return -ENOMEM;
155         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
156         kunmap_atomic(vaddr, KM_USER0);
157
158         if (unwritten)
159                 return -EFAULT;
160
161         return 0;
162 }
163
164 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
165 {
166         drm_i915_private_t *dev_priv = obj->dev->dev_private;
167         struct drm_i915_gem_object *obj_priv = obj->driver_private;
168
169         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
170                 obj_priv->tiling_mode != I915_TILING_NONE;
171 }
172
173 static inline int
174 slow_shmem_copy(struct page *dst_page,
175                 int dst_offset,
176                 struct page *src_page,
177                 int src_offset,
178                 int length)
179 {
180         char *dst_vaddr, *src_vaddr;
181
182         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
183         if (dst_vaddr == NULL)
184                 return -ENOMEM;
185
186         src_vaddr = kmap_atomic(src_page, KM_USER1);
187         if (src_vaddr == NULL) {
188                 kunmap_atomic(dst_vaddr, KM_USER0);
189                 return -ENOMEM;
190         }
191
192         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
193
194         kunmap_atomic(src_vaddr, KM_USER1);
195         kunmap_atomic(dst_vaddr, KM_USER0);
196
197         return 0;
198 }
199
200 static inline int
201 slow_shmem_bit17_copy(struct page *gpu_page,
202                       int gpu_offset,
203                       struct page *cpu_page,
204                       int cpu_offset,
205                       int length,
206                       int is_read)
207 {
208         char *gpu_vaddr, *cpu_vaddr;
209
210         /* Use the unswizzled path if this page isn't affected. */
211         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
212                 if (is_read)
213                         return slow_shmem_copy(cpu_page, cpu_offset,
214                                                gpu_page, gpu_offset, length);
215                 else
216                         return slow_shmem_copy(gpu_page, gpu_offset,
217                                                cpu_page, cpu_offset, length);
218         }
219
220         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
221         if (gpu_vaddr == NULL)
222                 return -ENOMEM;
223
224         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
225         if (cpu_vaddr == NULL) {
226                 kunmap_atomic(gpu_vaddr, KM_USER0);
227                 return -ENOMEM;
228         }
229
230         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
231          * XORing with the other bits (A9 for Y, A9 and A10 for X)
232          */
233         while (length > 0) {
234                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
235                 int this_length = min(cacheline_end - gpu_offset, length);
236                 int swizzled_gpu_offset = gpu_offset ^ 64;
237
238                 if (is_read) {
239                         memcpy(cpu_vaddr + cpu_offset,
240                                gpu_vaddr + swizzled_gpu_offset,
241                                this_length);
242                 } else {
243                         memcpy(gpu_vaddr + swizzled_gpu_offset,
244                                cpu_vaddr + cpu_offset,
245                                this_length);
246                 }
247                 cpu_offset += this_length;
248                 gpu_offset += this_length;
249                 length -= this_length;
250         }
251
252         kunmap_atomic(cpu_vaddr, KM_USER1);
253         kunmap_atomic(gpu_vaddr, KM_USER0);
254
255         return 0;
256 }
257
258 /**
259  * This is the fast shmem pread path, which attempts to copy_from_user directly
260  * from the backing pages of the object to the user's address space.  On a
261  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
262  */
263 static int
264 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
265                           struct drm_i915_gem_pread *args,
266                           struct drm_file *file_priv)
267 {
268         struct drm_i915_gem_object *obj_priv = obj->driver_private;
269         ssize_t remain;
270         loff_t offset, page_base;
271         char __user *user_data;
272         int page_offset, page_length;
273         int ret;
274
275         user_data = (char __user *) (uintptr_t) args->data_ptr;
276         remain = args->size;
277
278         mutex_lock(&dev->struct_mutex);
279
280         ret = i915_gem_object_get_pages(obj);
281         if (ret != 0)
282                 goto fail_unlock;
283
284         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
285                                                         args->size);
286         if (ret != 0)
287                 goto fail_put_pages;
288
289         obj_priv = obj->driver_private;
290         offset = args->offset;
291
292         while (remain > 0) {
293                 /* Operation in this page
294                  *
295                  * page_base = page offset within aperture
296                  * page_offset = offset within page
297                  * page_length = bytes to copy for this page
298                  */
299                 page_base = (offset & ~(PAGE_SIZE-1));
300                 page_offset = offset & (PAGE_SIZE-1);
301                 page_length = remain;
302                 if ((page_offset + remain) > PAGE_SIZE)
303                         page_length = PAGE_SIZE - page_offset;
304
305                 ret = fast_shmem_read(obj_priv->pages,
306                                       page_base, page_offset,
307                                       user_data, page_length);
308                 if (ret)
309                         goto fail_put_pages;
310
311                 remain -= page_length;
312                 user_data += page_length;
313                 offset += page_length;
314         }
315
316 fail_put_pages:
317         i915_gem_object_put_pages(obj);
318 fail_unlock:
319         mutex_unlock(&dev->struct_mutex);
320
321         return ret;
322 }
323
324 static inline gfp_t
325 i915_gem_object_get_page_gfp_mask (struct drm_gem_object *obj)
326 {
327         return mapping_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping);
328 }
329
330 static inline void
331 i915_gem_object_set_page_gfp_mask (struct drm_gem_object *obj, gfp_t gfp)
332 {
333         mapping_set_gfp_mask(obj->filp->f_path.dentry->d_inode->i_mapping, gfp);
334 }
335
336 static int
337 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
338 {
339         int ret;
340
341         ret = i915_gem_object_get_pages(obj);
342
343         /* If we've insufficient memory to map in the pages, attempt
344          * to make some space by throwing out some old buffers.
345          */
346         if (ret == -ENOMEM) {
347                 struct drm_device *dev = obj->dev;
348                 gfp_t gfp;
349
350                 ret = i915_gem_evict_something(dev, obj->size);
351                 if (ret)
352                         return ret;
353
354                 gfp = i915_gem_object_get_page_gfp_mask(obj);
355                 i915_gem_object_set_page_gfp_mask(obj, gfp & ~__GFP_NORETRY);
356                 ret = i915_gem_object_get_pages(obj);
357                 i915_gem_object_set_page_gfp_mask (obj, gfp);
358         }
359
360         return ret;
361 }
362
363 /**
364  * This is the fallback shmem pread path, which allocates temporary storage
365  * in kernel space to copy_to_user into outside of the struct_mutex, so we
366  * can copy out of the object's backing pages while holding the struct mutex
367  * and not take page faults.
368  */
369 static int
370 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
371                           struct drm_i915_gem_pread *args,
372                           struct drm_file *file_priv)
373 {
374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
375         struct mm_struct *mm = current->mm;
376         struct page **user_pages;
377         ssize_t remain;
378         loff_t offset, pinned_pages, i;
379         loff_t first_data_page, last_data_page, num_pages;
380         int shmem_page_index, shmem_page_offset;
381         int data_page_index,  data_page_offset;
382         int page_length;
383         int ret;
384         uint64_t data_ptr = args->data_ptr;
385         int do_bit17_swizzling;
386
387         remain = args->size;
388
389         /* Pin the user pages containing the data.  We can't fault while
390          * holding the struct mutex, yet we want to hold it while
391          * dereferencing the user data.
392          */
393         first_data_page = data_ptr / PAGE_SIZE;
394         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
395         num_pages = last_data_page - first_data_page + 1;
396
397         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
398         if (user_pages == NULL)
399                 return -ENOMEM;
400
401         down_read(&mm->mmap_sem);
402         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
403                                       num_pages, 1, 0, user_pages, NULL);
404         up_read(&mm->mmap_sem);
405         if (pinned_pages < num_pages) {
406                 ret = -EFAULT;
407                 goto fail_put_user_pages;
408         }
409
410         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
411
412         mutex_lock(&dev->struct_mutex);
413
414         ret = i915_gem_object_get_pages_or_evict(obj);
415         if (ret)
416                 goto fail_unlock;
417
418         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
419                                                         args->size);
420         if (ret != 0)
421                 goto fail_put_pages;
422
423         obj_priv = obj->driver_private;
424         offset = args->offset;
425
426         while (remain > 0) {
427                 /* Operation in this page
428                  *
429                  * shmem_page_index = page number within shmem file
430                  * shmem_page_offset = offset within page in shmem file
431                  * data_page_index = page number in get_user_pages return
432                  * data_page_offset = offset with data_page_index page.
433                  * page_length = bytes to copy for this page
434                  */
435                 shmem_page_index = offset / PAGE_SIZE;
436                 shmem_page_offset = offset & ~PAGE_MASK;
437                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
438                 data_page_offset = data_ptr & ~PAGE_MASK;
439
440                 page_length = remain;
441                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
442                         page_length = PAGE_SIZE - shmem_page_offset;
443                 if ((data_page_offset + page_length) > PAGE_SIZE)
444                         page_length = PAGE_SIZE - data_page_offset;
445
446                 if (do_bit17_swizzling) {
447                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
448                                                     shmem_page_offset,
449                                                     user_pages[data_page_index],
450                                                     data_page_offset,
451                                                     page_length,
452                                                     1);
453                 } else {
454                         ret = slow_shmem_copy(user_pages[data_page_index],
455                                               data_page_offset,
456                                               obj_priv->pages[shmem_page_index],
457                                               shmem_page_offset,
458                                               page_length);
459                 }
460                 if (ret)
461                         goto fail_put_pages;
462
463                 remain -= page_length;
464                 data_ptr += page_length;
465                 offset += page_length;
466         }
467
468 fail_put_pages:
469         i915_gem_object_put_pages(obj);
470 fail_unlock:
471         mutex_unlock(&dev->struct_mutex);
472 fail_put_user_pages:
473         for (i = 0; i < pinned_pages; i++) {
474                 SetPageDirty(user_pages[i]);
475                 page_cache_release(user_pages[i]);
476         }
477         drm_free_large(user_pages);
478
479         return ret;
480 }
481
482 /**
483  * Reads data from the object referenced by handle.
484  *
485  * On error, the contents of *data are undefined.
486  */
487 int
488 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
489                      struct drm_file *file_priv)
490 {
491         struct drm_i915_gem_pread *args = data;
492         struct drm_gem_object *obj;
493         struct drm_i915_gem_object *obj_priv;
494         int ret;
495
496         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
497         if (obj == NULL)
498                 return -EBADF;
499         obj_priv = obj->driver_private;
500
501         /* Bounds check source.
502          *
503          * XXX: This could use review for overflow issues...
504          */
505         if (args->offset > obj->size || args->size > obj->size ||
506             args->offset + args->size > obj->size) {
507                 drm_gem_object_unreference(obj);
508                 return -EINVAL;
509         }
510
511         if (i915_gem_object_needs_bit17_swizzle(obj)) {
512                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
513         } else {
514                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
515                 if (ret != 0)
516                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
517                                                         file_priv);
518         }
519
520         drm_gem_object_unreference(obj);
521
522         return ret;
523 }
524
525 /* This is the fast write path which cannot handle
526  * page faults in the source data
527  */
528
529 static inline int
530 fast_user_write(struct io_mapping *mapping,
531                 loff_t page_base, int page_offset,
532                 char __user *user_data,
533                 int length)
534 {
535         char *vaddr_atomic;
536         unsigned long unwritten;
537
538         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
539         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
540                                                       user_data, length);
541         io_mapping_unmap_atomic(vaddr_atomic);
542         if (unwritten)
543                 return -EFAULT;
544         return 0;
545 }
546
547 /* Here's the write path which can sleep for
548  * page faults
549  */
550
551 static inline int
552 slow_kernel_write(struct io_mapping *mapping,
553                   loff_t gtt_base, int gtt_offset,
554                   struct page *user_page, int user_offset,
555                   int length)
556 {
557         char *src_vaddr, *dst_vaddr;
558         unsigned long unwritten;
559
560         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
561         src_vaddr = kmap_atomic(user_page, KM_USER1);
562         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
563                                                       src_vaddr + user_offset,
564                                                       length);
565         kunmap_atomic(src_vaddr, KM_USER1);
566         io_mapping_unmap_atomic(dst_vaddr);
567         if (unwritten)
568                 return -EFAULT;
569         return 0;
570 }
571
572 static inline int
573 fast_shmem_write(struct page **pages,
574                  loff_t page_base, int page_offset,
575                  char __user *data,
576                  int length)
577 {
578         char __iomem *vaddr;
579         unsigned long unwritten;
580
581         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
582         if (vaddr == NULL)
583                 return -ENOMEM;
584         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
585         kunmap_atomic(vaddr, KM_USER0);
586
587         if (unwritten)
588                 return -EFAULT;
589         return 0;
590 }
591
592 /**
593  * This is the fast pwrite path, where we copy the data directly from the
594  * user into the GTT, uncached.
595  */
596 static int
597 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
598                          struct drm_i915_gem_pwrite *args,
599                          struct drm_file *file_priv)
600 {
601         struct drm_i915_gem_object *obj_priv = obj->driver_private;
602         drm_i915_private_t *dev_priv = dev->dev_private;
603         ssize_t remain;
604         loff_t offset, page_base;
605         char __user *user_data;
606         int page_offset, page_length;
607         int ret;
608
609         user_data = (char __user *) (uintptr_t) args->data_ptr;
610         remain = args->size;
611         if (!access_ok(VERIFY_READ, user_data, remain))
612                 return -EFAULT;
613
614
615         mutex_lock(&dev->struct_mutex);
616         ret = i915_gem_object_pin(obj, 0);
617         if (ret) {
618                 mutex_unlock(&dev->struct_mutex);
619                 return ret;
620         }
621         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
622         if (ret)
623                 goto fail;
624
625         obj_priv = obj->driver_private;
626         offset = obj_priv->gtt_offset + args->offset;
627
628         while (remain > 0) {
629                 /* Operation in this page
630                  *
631                  * page_base = page offset within aperture
632                  * page_offset = offset within page
633                  * page_length = bytes to copy for this page
634                  */
635                 page_base = (offset & ~(PAGE_SIZE-1));
636                 page_offset = offset & (PAGE_SIZE-1);
637                 page_length = remain;
638                 if ((page_offset + remain) > PAGE_SIZE)
639                         page_length = PAGE_SIZE - page_offset;
640
641                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
642                                        page_offset, user_data, page_length);
643
644                 /* If we get a fault while copying data, then (presumably) our
645                  * source page isn't available.  Return the error and we'll
646                  * retry in the slow path.
647                  */
648                 if (ret)
649                         goto fail;
650
651                 remain -= page_length;
652                 user_data += page_length;
653                 offset += page_length;
654         }
655
656 fail:
657         i915_gem_object_unpin(obj);
658         mutex_unlock(&dev->struct_mutex);
659
660         return ret;
661 }
662
663 /**
664  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
665  * the memory and maps it using kmap_atomic for copying.
666  *
667  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
668  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
669  */
670 static int
671 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
672                          struct drm_i915_gem_pwrite *args,
673                          struct drm_file *file_priv)
674 {
675         struct drm_i915_gem_object *obj_priv = obj->driver_private;
676         drm_i915_private_t *dev_priv = dev->dev_private;
677         ssize_t remain;
678         loff_t gtt_page_base, offset;
679         loff_t first_data_page, last_data_page, num_pages;
680         loff_t pinned_pages, i;
681         struct page **user_pages;
682         struct mm_struct *mm = current->mm;
683         int gtt_page_offset, data_page_offset, data_page_index, page_length;
684         int ret;
685         uint64_t data_ptr = args->data_ptr;
686
687         remain = args->size;
688
689         /* Pin the user pages containing the data.  We can't fault while
690          * holding the struct mutex, and all of the pwrite implementations
691          * want to hold it while dereferencing the user data.
692          */
693         first_data_page = data_ptr / PAGE_SIZE;
694         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
695         num_pages = last_data_page - first_data_page + 1;
696
697         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
698         if (user_pages == NULL)
699                 return -ENOMEM;
700
701         down_read(&mm->mmap_sem);
702         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
703                                       num_pages, 0, 0, user_pages, NULL);
704         up_read(&mm->mmap_sem);
705         if (pinned_pages < num_pages) {
706                 ret = -EFAULT;
707                 goto out_unpin_pages;
708         }
709
710         mutex_lock(&dev->struct_mutex);
711         ret = i915_gem_object_pin(obj, 0);
712         if (ret)
713                 goto out_unlock;
714
715         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
716         if (ret)
717                 goto out_unpin_object;
718
719         obj_priv = obj->driver_private;
720         offset = obj_priv->gtt_offset + args->offset;
721
722         while (remain > 0) {
723                 /* Operation in this page
724                  *
725                  * gtt_page_base = page offset within aperture
726                  * gtt_page_offset = offset within page in aperture
727                  * data_page_index = page number in get_user_pages return
728                  * data_page_offset = offset with data_page_index page.
729                  * page_length = bytes to copy for this page
730                  */
731                 gtt_page_base = offset & PAGE_MASK;
732                 gtt_page_offset = offset & ~PAGE_MASK;
733                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
734                 data_page_offset = data_ptr & ~PAGE_MASK;
735
736                 page_length = remain;
737                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
738                         page_length = PAGE_SIZE - gtt_page_offset;
739                 if ((data_page_offset + page_length) > PAGE_SIZE)
740                         page_length = PAGE_SIZE - data_page_offset;
741
742                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
743                                         gtt_page_base, gtt_page_offset,
744                                         user_pages[data_page_index],
745                                         data_page_offset,
746                                         page_length);
747
748                 /* If we get a fault while copying data, then (presumably) our
749                  * source page isn't available.  Return the error and we'll
750                  * retry in the slow path.
751                  */
752                 if (ret)
753                         goto out_unpin_object;
754
755                 remain -= page_length;
756                 offset += page_length;
757                 data_ptr += page_length;
758         }
759
760 out_unpin_object:
761         i915_gem_object_unpin(obj);
762 out_unlock:
763         mutex_unlock(&dev->struct_mutex);
764 out_unpin_pages:
765         for (i = 0; i < pinned_pages; i++)
766                 page_cache_release(user_pages[i]);
767         drm_free_large(user_pages);
768
769         return ret;
770 }
771
772 /**
773  * This is the fast shmem pwrite path, which attempts to directly
774  * copy_from_user into the kmapped pages backing the object.
775  */
776 static int
777 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
778                            struct drm_i915_gem_pwrite *args,
779                            struct drm_file *file_priv)
780 {
781         struct drm_i915_gem_object *obj_priv = obj->driver_private;
782         ssize_t remain;
783         loff_t offset, page_base;
784         char __user *user_data;
785         int page_offset, page_length;
786         int ret;
787
788         user_data = (char __user *) (uintptr_t) args->data_ptr;
789         remain = args->size;
790
791         mutex_lock(&dev->struct_mutex);
792
793         ret = i915_gem_object_get_pages(obj);
794         if (ret != 0)
795                 goto fail_unlock;
796
797         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
798         if (ret != 0)
799                 goto fail_put_pages;
800
801         obj_priv = obj->driver_private;
802         offset = args->offset;
803         obj_priv->dirty = 1;
804
805         while (remain > 0) {
806                 /* Operation in this page
807                  *
808                  * page_base = page offset within aperture
809                  * page_offset = offset within page
810                  * page_length = bytes to copy for this page
811                  */
812                 page_base = (offset & ~(PAGE_SIZE-1));
813                 page_offset = offset & (PAGE_SIZE-1);
814                 page_length = remain;
815                 if ((page_offset + remain) > PAGE_SIZE)
816                         page_length = PAGE_SIZE - page_offset;
817
818                 ret = fast_shmem_write(obj_priv->pages,
819                                        page_base, page_offset,
820                                        user_data, page_length);
821                 if (ret)
822                         goto fail_put_pages;
823
824                 remain -= page_length;
825                 user_data += page_length;
826                 offset += page_length;
827         }
828
829 fail_put_pages:
830         i915_gem_object_put_pages(obj);
831 fail_unlock:
832         mutex_unlock(&dev->struct_mutex);
833
834         return ret;
835 }
836
837 /**
838  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
839  * the memory and maps it using kmap_atomic for copying.
840  *
841  * This avoids taking mmap_sem for faulting on the user's address while the
842  * struct_mutex is held.
843  */
844 static int
845 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
846                            struct drm_i915_gem_pwrite *args,
847                            struct drm_file *file_priv)
848 {
849         struct drm_i915_gem_object *obj_priv = obj->driver_private;
850         struct mm_struct *mm = current->mm;
851         struct page **user_pages;
852         ssize_t remain;
853         loff_t offset, pinned_pages, i;
854         loff_t first_data_page, last_data_page, num_pages;
855         int shmem_page_index, shmem_page_offset;
856         int data_page_index,  data_page_offset;
857         int page_length;
858         int ret;
859         uint64_t data_ptr = args->data_ptr;
860         int do_bit17_swizzling;
861
862         remain = args->size;
863
864         /* Pin the user pages containing the data.  We can't fault while
865          * holding the struct mutex, and all of the pwrite implementations
866          * want to hold it while dereferencing the user data.
867          */
868         first_data_page = data_ptr / PAGE_SIZE;
869         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
870         num_pages = last_data_page - first_data_page + 1;
871
872         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
873         if (user_pages == NULL)
874                 return -ENOMEM;
875
876         down_read(&mm->mmap_sem);
877         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
878                                       num_pages, 0, 0, user_pages, NULL);
879         up_read(&mm->mmap_sem);
880         if (pinned_pages < num_pages) {
881                 ret = -EFAULT;
882                 goto fail_put_user_pages;
883         }
884
885         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
886
887         mutex_lock(&dev->struct_mutex);
888
889         ret = i915_gem_object_get_pages_or_evict(obj);
890         if (ret)
891                 goto fail_unlock;
892
893         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
894         if (ret != 0)
895                 goto fail_put_pages;
896
897         obj_priv = obj->driver_private;
898         offset = args->offset;
899         obj_priv->dirty = 1;
900
901         while (remain > 0) {
902                 /* Operation in this page
903                  *
904                  * shmem_page_index = page number within shmem file
905                  * shmem_page_offset = offset within page in shmem file
906                  * data_page_index = page number in get_user_pages return
907                  * data_page_offset = offset with data_page_index page.
908                  * page_length = bytes to copy for this page
909                  */
910                 shmem_page_index = offset / PAGE_SIZE;
911                 shmem_page_offset = offset & ~PAGE_MASK;
912                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
913                 data_page_offset = data_ptr & ~PAGE_MASK;
914
915                 page_length = remain;
916                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
917                         page_length = PAGE_SIZE - shmem_page_offset;
918                 if ((data_page_offset + page_length) > PAGE_SIZE)
919                         page_length = PAGE_SIZE - data_page_offset;
920
921                 if (do_bit17_swizzling) {
922                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
923                                                     shmem_page_offset,
924                                                     user_pages[data_page_index],
925                                                     data_page_offset,
926                                                     page_length,
927                                                     0);
928                 } else {
929                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
930                                               shmem_page_offset,
931                                               user_pages[data_page_index],
932                                               data_page_offset,
933                                               page_length);
934                 }
935                 if (ret)
936                         goto fail_put_pages;
937
938                 remain -= page_length;
939                 data_ptr += page_length;
940                 offset += page_length;
941         }
942
943 fail_put_pages:
944         i915_gem_object_put_pages(obj);
945 fail_unlock:
946         mutex_unlock(&dev->struct_mutex);
947 fail_put_user_pages:
948         for (i = 0; i < pinned_pages; i++)
949                 page_cache_release(user_pages[i]);
950         drm_free_large(user_pages);
951
952         return ret;
953 }
954
955 /**
956  * Writes data to the object referenced by handle.
957  *
958  * On error, the contents of the buffer that were to be modified are undefined.
959  */
960 int
961 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
962                       struct drm_file *file_priv)
963 {
964         struct drm_i915_gem_pwrite *args = data;
965         struct drm_gem_object *obj;
966         struct drm_i915_gem_object *obj_priv;
967         int ret = 0;
968
969         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
970         if (obj == NULL)
971                 return -EBADF;
972         obj_priv = obj->driver_private;
973
974         /* Bounds check destination.
975          *
976          * XXX: This could use review for overflow issues...
977          */
978         if (args->offset > obj->size || args->size > obj->size ||
979             args->offset + args->size > obj->size) {
980                 drm_gem_object_unreference(obj);
981                 return -EINVAL;
982         }
983
984         /* We can only do the GTT pwrite on untiled buffers, as otherwise
985          * it would end up going through the fenced access, and we'll get
986          * different detiling behavior between reading and writing.
987          * pread/pwrite currently are reading and writing from the CPU
988          * perspective, requiring manual detiling by the client.
989          */
990         if (obj_priv->phys_obj)
991                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
992         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
993                  dev->gtt_total != 0) {
994                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
995                 if (ret == -EFAULT) {
996                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
997                                                        file_priv);
998                 }
999         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
1000                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1001         } else {
1002                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
1003                 if (ret == -EFAULT) {
1004                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
1005                                                          file_priv);
1006                 }
1007         }
1008
1009 #if WATCH_PWRITE
1010         if (ret)
1011                 DRM_INFO("pwrite failed %d\n", ret);
1012 #endif
1013
1014         drm_gem_object_unreference(obj);
1015
1016         return ret;
1017 }
1018
1019 /**
1020  * Called when user space prepares to use an object with the CPU, either
1021  * through the mmap ioctl's mapping or a GTT mapping.
1022  */
1023 int
1024 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1025                           struct drm_file *file_priv)
1026 {
1027         struct drm_i915_private *dev_priv = dev->dev_private;
1028         struct drm_i915_gem_set_domain *args = data;
1029         struct drm_gem_object *obj;
1030         struct drm_i915_gem_object *obj_priv;
1031         uint32_t read_domains = args->read_domains;
1032         uint32_t write_domain = args->write_domain;
1033         int ret;
1034
1035         if (!(dev->driver->driver_features & DRIVER_GEM))
1036                 return -ENODEV;
1037
1038         /* Only handle setting domains to types used by the CPU. */
1039         if (write_domain & I915_GEM_GPU_DOMAINS)
1040                 return -EINVAL;
1041
1042         if (read_domains & I915_GEM_GPU_DOMAINS)
1043                 return -EINVAL;
1044
1045         /* Having something in the write domain implies it's in the read
1046          * domain, and only that read domain.  Enforce that in the request.
1047          */
1048         if (write_domain != 0 && read_domains != write_domain)
1049                 return -EINVAL;
1050
1051         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1052         if (obj == NULL)
1053                 return -EBADF;
1054         obj_priv = obj->driver_private;
1055
1056         mutex_lock(&dev->struct_mutex);
1057
1058         intel_mark_busy(dev, obj);
1059
1060 #if WATCH_BUF
1061         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1062                  obj, obj->size, read_domains, write_domain);
1063 #endif
1064         if (read_domains & I915_GEM_DOMAIN_GTT) {
1065                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1066
1067                 /* Update the LRU on the fence for the CPU access that's
1068                  * about to occur.
1069                  */
1070                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1071                         list_move_tail(&obj_priv->fence_list,
1072                                        &dev_priv->mm.fence_list);
1073                 }
1074
1075                 /* Silently promote "you're not bound, there was nothing to do"
1076                  * to success, since the client was just asking us to
1077                  * make sure everything was done.
1078                  */
1079                 if (ret == -EINVAL)
1080                         ret = 0;
1081         } else {
1082                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1083         }
1084
1085         drm_gem_object_unreference(obj);
1086         mutex_unlock(&dev->struct_mutex);
1087         return ret;
1088 }
1089
1090 /**
1091  * Called when user space has done writes to this buffer
1092  */
1093 int
1094 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1095                       struct drm_file *file_priv)
1096 {
1097         struct drm_i915_gem_sw_finish *args = data;
1098         struct drm_gem_object *obj;
1099         struct drm_i915_gem_object *obj_priv;
1100         int ret = 0;
1101
1102         if (!(dev->driver->driver_features & DRIVER_GEM))
1103                 return -ENODEV;
1104
1105         mutex_lock(&dev->struct_mutex);
1106         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1107         if (obj == NULL) {
1108                 mutex_unlock(&dev->struct_mutex);
1109                 return -EBADF;
1110         }
1111
1112 #if WATCH_BUF
1113         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1114                  __func__, args->handle, obj, obj->size);
1115 #endif
1116         obj_priv = obj->driver_private;
1117
1118         /* Pinned buffers may be scanout, so flush the cache */
1119         if (obj_priv->pin_count)
1120                 i915_gem_object_flush_cpu_write_domain(obj);
1121
1122         drm_gem_object_unreference(obj);
1123         mutex_unlock(&dev->struct_mutex);
1124         return ret;
1125 }
1126
1127 /**
1128  * Maps the contents of an object, returning the address it is mapped
1129  * into.
1130  *
1131  * While the mapping holds a reference on the contents of the object, it doesn't
1132  * imply a ref on the object itself.
1133  */
1134 int
1135 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1136                    struct drm_file *file_priv)
1137 {
1138         struct drm_i915_gem_mmap *args = data;
1139         struct drm_gem_object *obj;
1140         loff_t offset;
1141         unsigned long addr;
1142
1143         if (!(dev->driver->driver_features & DRIVER_GEM))
1144                 return -ENODEV;
1145
1146         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1147         if (obj == NULL)
1148                 return -EBADF;
1149
1150         offset = args->offset;
1151
1152         down_write(&current->mm->mmap_sem);
1153         addr = do_mmap(obj->filp, 0, args->size,
1154                        PROT_READ | PROT_WRITE, MAP_SHARED,
1155                        args->offset);
1156         up_write(&current->mm->mmap_sem);
1157         mutex_lock(&dev->struct_mutex);
1158         drm_gem_object_unreference(obj);
1159         mutex_unlock(&dev->struct_mutex);
1160         if (IS_ERR((void *)addr))
1161                 return addr;
1162
1163         args->addr_ptr = (uint64_t) addr;
1164
1165         return 0;
1166 }
1167
1168 /**
1169  * i915_gem_fault - fault a page into the GTT
1170  * vma: VMA in question
1171  * vmf: fault info
1172  *
1173  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1174  * from userspace.  The fault handler takes care of binding the object to
1175  * the GTT (if needed), allocating and programming a fence register (again,
1176  * only if needed based on whether the old reg is still valid or the object
1177  * is tiled) and inserting a new PTE into the faulting process.
1178  *
1179  * Note that the faulting process may involve evicting existing objects
1180  * from the GTT and/or fence registers to make room.  So performance may
1181  * suffer if the GTT working set is large or there are few fence registers
1182  * left.
1183  */
1184 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1185 {
1186         struct drm_gem_object *obj = vma->vm_private_data;
1187         struct drm_device *dev = obj->dev;
1188         struct drm_i915_private *dev_priv = dev->dev_private;
1189         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1190         pgoff_t page_offset;
1191         unsigned long pfn;
1192         int ret = 0;
1193         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1194
1195         /* We don't use vmf->pgoff since that has the fake offset */
1196         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1197                 PAGE_SHIFT;
1198
1199         /* Now bind it into the GTT if needed */
1200         mutex_lock(&dev->struct_mutex);
1201         if (!obj_priv->gtt_space) {
1202                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1203                 if (ret)
1204                         goto unlock;
1205
1206                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1207
1208                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1209                 if (ret)
1210                         goto unlock;
1211         }
1212
1213         /* Need a new fence register? */
1214         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1215                 ret = i915_gem_object_get_fence_reg(obj);
1216                 if (ret)
1217                         goto unlock;
1218         }
1219
1220         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1221                 page_offset;
1222
1223         /* Finally, remap it using the new GTT offset */
1224         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1225 unlock:
1226         mutex_unlock(&dev->struct_mutex);
1227
1228         switch (ret) {
1229         case 0:
1230         case -ERESTARTSYS:
1231                 return VM_FAULT_NOPAGE;
1232         case -ENOMEM:
1233         case -EAGAIN:
1234                 return VM_FAULT_OOM;
1235         default:
1236                 return VM_FAULT_SIGBUS;
1237         }
1238 }
1239
1240 /**
1241  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1242  * @obj: obj in question
1243  *
1244  * GEM memory mapping works by handing back to userspace a fake mmap offset
1245  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1246  * up the object based on the offset and sets up the various memory mapping
1247  * structures.
1248  *
1249  * This routine allocates and attaches a fake offset for @obj.
1250  */
1251 static int
1252 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1253 {
1254         struct drm_device *dev = obj->dev;
1255         struct drm_gem_mm *mm = dev->mm_private;
1256         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1257         struct drm_map_list *list;
1258         struct drm_local_map *map;
1259         int ret = 0;
1260
1261         /* Set the object up for mmap'ing */
1262         list = &obj->map_list;
1263         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1264         if (!list->map)
1265                 return -ENOMEM;
1266
1267         map = list->map;
1268         map->type = _DRM_GEM;
1269         map->size = obj->size;
1270         map->handle = obj;
1271
1272         /* Get a DRM GEM mmap offset allocated... */
1273         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1274                                                     obj->size / PAGE_SIZE, 0, 0);
1275         if (!list->file_offset_node) {
1276                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1277                 ret = -ENOMEM;
1278                 goto out_free_list;
1279         }
1280
1281         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1282                                                   obj->size / PAGE_SIZE, 0);
1283         if (!list->file_offset_node) {
1284                 ret = -ENOMEM;
1285                 goto out_free_list;
1286         }
1287
1288         list->hash.key = list->file_offset_node->start;
1289         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1290                 DRM_ERROR("failed to add to map hash\n");
1291                 goto out_free_mm;
1292         }
1293
1294         /* By now we should be all set, any drm_mmap request on the offset
1295          * below will get to our mmap & fault handler */
1296         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1297
1298         return 0;
1299
1300 out_free_mm:
1301         drm_mm_put_block(list->file_offset_node);
1302 out_free_list:
1303         kfree(list->map);
1304
1305         return ret;
1306 }
1307
1308 /**
1309  * i915_gem_release_mmap - remove physical page mappings
1310  * @obj: obj in question
1311  *
1312  * Preserve the reservation of the mmaping with the DRM core code, but
1313  * relinquish ownership of the pages back to the system.
1314  *
1315  * It is vital that we remove the page mapping if we have mapped a tiled
1316  * object through the GTT and then lose the fence register due to
1317  * resource pressure. Similarly if the object has been moved out of the
1318  * aperture, than pages mapped into userspace must be revoked. Removing the
1319  * mapping will then trigger a page fault on the next user access, allowing
1320  * fixup by i915_gem_fault().
1321  */
1322 void
1323 i915_gem_release_mmap(struct drm_gem_object *obj)
1324 {
1325         struct drm_device *dev = obj->dev;
1326         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1327
1328         if (dev->dev_mapping)
1329                 unmap_mapping_range(dev->dev_mapping,
1330                                     obj_priv->mmap_offset, obj->size, 1);
1331 }
1332
1333 static void
1334 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1335 {
1336         struct drm_device *dev = obj->dev;
1337         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1338         struct drm_gem_mm *mm = dev->mm_private;
1339         struct drm_map_list *list;
1340
1341         list = &obj->map_list;
1342         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1343
1344         if (list->file_offset_node) {
1345                 drm_mm_put_block(list->file_offset_node);
1346                 list->file_offset_node = NULL;
1347         }
1348
1349         if (list->map) {
1350                 kfree(list->map);
1351                 list->map = NULL;
1352         }
1353
1354         obj_priv->mmap_offset = 0;
1355 }
1356
1357 /**
1358  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1359  * @obj: object to check
1360  *
1361  * Return the required GTT alignment for an object, taking into account
1362  * potential fence register mapping if needed.
1363  */
1364 static uint32_t
1365 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1366 {
1367         struct drm_device *dev = obj->dev;
1368         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1369         int start, i;
1370
1371         /*
1372          * Minimum alignment is 4k (GTT page size), but might be greater
1373          * if a fence register is needed for the object.
1374          */
1375         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1376                 return 4096;
1377
1378         /*
1379          * Previous chips need to be aligned to the size of the smallest
1380          * fence register that can contain the object.
1381          */
1382         if (IS_I9XX(dev))
1383                 start = 1024*1024;
1384         else
1385                 start = 512*1024;
1386
1387         for (i = start; i < obj->size; i <<= 1)
1388                 ;
1389
1390         return i;
1391 }
1392
1393 /**
1394  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1395  * @dev: DRM device
1396  * @data: GTT mapping ioctl data
1397  * @file_priv: GEM object info
1398  *
1399  * Simply returns the fake offset to userspace so it can mmap it.
1400  * The mmap call will end up in drm_gem_mmap(), which will set things
1401  * up so we can get faults in the handler above.
1402  *
1403  * The fault handler will take care of binding the object into the GTT
1404  * (since it may have been evicted to make room for something), allocating
1405  * a fence register, and mapping the appropriate aperture address into
1406  * userspace.
1407  */
1408 int
1409 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1410                         struct drm_file *file_priv)
1411 {
1412         struct drm_i915_gem_mmap_gtt *args = data;
1413         struct drm_i915_private *dev_priv = dev->dev_private;
1414         struct drm_gem_object *obj;
1415         struct drm_i915_gem_object *obj_priv;
1416         int ret;
1417
1418         if (!(dev->driver->driver_features & DRIVER_GEM))
1419                 return -ENODEV;
1420
1421         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1422         if (obj == NULL)
1423                 return -EBADF;
1424
1425         mutex_lock(&dev->struct_mutex);
1426
1427         obj_priv = obj->driver_private;
1428
1429         if (obj_priv->madv != I915_MADV_WILLNEED) {
1430                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1431                 drm_gem_object_unreference(obj);
1432                 mutex_unlock(&dev->struct_mutex);
1433                 return -EINVAL;
1434         }
1435
1436
1437         if (!obj_priv->mmap_offset) {
1438                 ret = i915_gem_create_mmap_offset(obj);
1439                 if (ret) {
1440                         drm_gem_object_unreference(obj);
1441                         mutex_unlock(&dev->struct_mutex);
1442                         return ret;
1443                 }
1444         }
1445
1446         args->offset = obj_priv->mmap_offset;
1447
1448         /*
1449          * Pull it into the GTT so that we have a page list (makes the
1450          * initial fault faster and any subsequent flushing possible).
1451          */
1452         if (!obj_priv->agp_mem) {
1453                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1454                 if (ret) {
1455                         drm_gem_object_unreference(obj);
1456                         mutex_unlock(&dev->struct_mutex);
1457                         return ret;
1458                 }
1459                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1460         }
1461
1462         drm_gem_object_unreference(obj);
1463         mutex_unlock(&dev->struct_mutex);
1464
1465         return 0;
1466 }
1467
1468 void
1469 i915_gem_object_put_pages(struct drm_gem_object *obj)
1470 {
1471         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1472         int page_count = obj->size / PAGE_SIZE;
1473         int i;
1474
1475         BUG_ON(obj_priv->pages_refcount == 0);
1476         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1477
1478         if (--obj_priv->pages_refcount != 0)
1479                 return;
1480
1481         if (obj_priv->tiling_mode != I915_TILING_NONE)
1482                 i915_gem_object_save_bit_17_swizzle(obj);
1483
1484         if (obj_priv->madv == I915_MADV_DONTNEED)
1485                 obj_priv->dirty = 0;
1486
1487         for (i = 0; i < page_count; i++) {
1488                 if (obj_priv->pages[i] == NULL)
1489                         break;
1490
1491                 if (obj_priv->dirty)
1492                         set_page_dirty(obj_priv->pages[i]);
1493
1494                 if (obj_priv->madv == I915_MADV_WILLNEED)
1495                         mark_page_accessed(obj_priv->pages[i]);
1496
1497                 page_cache_release(obj_priv->pages[i]);
1498         }
1499         obj_priv->dirty = 0;
1500
1501         drm_free_large(obj_priv->pages);
1502         obj_priv->pages = NULL;
1503 }
1504
1505 static void
1506 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1507 {
1508         struct drm_device *dev = obj->dev;
1509         drm_i915_private_t *dev_priv = dev->dev_private;
1510         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1511
1512         /* Add a reference if we're newly entering the active list. */
1513         if (!obj_priv->active) {
1514                 drm_gem_object_reference(obj);
1515                 obj_priv->active = 1;
1516         }
1517         /* Move from whatever list we were on to the tail of execution. */
1518         spin_lock(&dev_priv->mm.active_list_lock);
1519         list_move_tail(&obj_priv->list,
1520                        &dev_priv->mm.active_list);
1521         spin_unlock(&dev_priv->mm.active_list_lock);
1522         obj_priv->last_rendering_seqno = seqno;
1523 }
1524
1525 static void
1526 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1527 {
1528         struct drm_device *dev = obj->dev;
1529         drm_i915_private_t *dev_priv = dev->dev_private;
1530         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1531
1532         BUG_ON(!obj_priv->active);
1533         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1534         obj_priv->last_rendering_seqno = 0;
1535 }
1536
1537 /* Immediately discard the backing storage */
1538 static void
1539 i915_gem_object_truncate(struct drm_gem_object *obj)
1540 {
1541         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1542         struct inode *inode;
1543
1544         inode = obj->filp->f_path.dentry->d_inode;
1545         if (inode->i_op->truncate)
1546                 inode->i_op->truncate (inode);
1547
1548         obj_priv->madv = __I915_MADV_PURGED;
1549 }
1550
1551 static inline int
1552 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1553 {
1554         return obj_priv->madv == I915_MADV_DONTNEED;
1555 }
1556
1557 static void
1558 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1559 {
1560         struct drm_device *dev = obj->dev;
1561         drm_i915_private_t *dev_priv = dev->dev_private;
1562         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1563
1564         i915_verify_inactive(dev, __FILE__, __LINE__);
1565         if (obj_priv->pin_count != 0)
1566                 list_del_init(&obj_priv->list);
1567         else
1568                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1569
1570         obj_priv->last_rendering_seqno = 0;
1571         if (obj_priv->active) {
1572                 obj_priv->active = 0;
1573                 drm_gem_object_unreference(obj);
1574         }
1575         i915_verify_inactive(dev, __FILE__, __LINE__);
1576 }
1577
1578 /**
1579  * Creates a new sequence number, emitting a write of it to the status page
1580  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1581  *
1582  * Must be called with struct_lock held.
1583  *
1584  * Returned sequence numbers are nonzero on success.
1585  */
1586 uint32_t
1587 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1588                  uint32_t flush_domains)
1589 {
1590         drm_i915_private_t *dev_priv = dev->dev_private;
1591         struct drm_i915_file_private *i915_file_priv = NULL;
1592         struct drm_i915_gem_request *request;
1593         uint32_t seqno;
1594         int was_empty;
1595         RING_LOCALS;
1596
1597         if (file_priv != NULL)
1598                 i915_file_priv = file_priv->driver_priv;
1599
1600         request = kzalloc(sizeof(*request), GFP_KERNEL);
1601         if (request == NULL)
1602                 return 0;
1603
1604         /* Grab the seqno we're going to make this request be, and bump the
1605          * next (skipping 0 so it can be the reserved no-seqno value).
1606          */
1607         seqno = dev_priv->mm.next_gem_seqno;
1608         dev_priv->mm.next_gem_seqno++;
1609         if (dev_priv->mm.next_gem_seqno == 0)
1610                 dev_priv->mm.next_gem_seqno++;
1611
1612         BEGIN_LP_RING(4);
1613         OUT_RING(MI_STORE_DWORD_INDEX);
1614         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1615         OUT_RING(seqno);
1616
1617         OUT_RING(MI_USER_INTERRUPT);
1618         ADVANCE_LP_RING();
1619
1620         DRM_DEBUG_DRIVER("%d\n", seqno);
1621
1622         request->seqno = seqno;
1623         request->emitted_jiffies = jiffies;
1624         was_empty = list_empty(&dev_priv->mm.request_list);
1625         list_add_tail(&request->list, &dev_priv->mm.request_list);
1626         if (i915_file_priv) {
1627                 list_add_tail(&request->client_list,
1628                               &i915_file_priv->mm.request_list);
1629         } else {
1630                 INIT_LIST_HEAD(&request->client_list);
1631         }
1632
1633         /* Associate any objects on the flushing list matching the write
1634          * domain we're flushing with our flush.
1635          */
1636         if (flush_domains != 0) {
1637                 struct drm_i915_gem_object *obj_priv, *next;
1638
1639                 list_for_each_entry_safe(obj_priv, next,
1640                                          &dev_priv->mm.flushing_list, list) {
1641                         struct drm_gem_object *obj = obj_priv->obj;
1642
1643                         if ((obj->write_domain & flush_domains) ==
1644                             obj->write_domain) {
1645                                 uint32_t old_write_domain = obj->write_domain;
1646
1647                                 obj->write_domain = 0;
1648                                 i915_gem_object_move_to_active(obj, seqno);
1649
1650                                 trace_i915_gem_object_change_domain(obj,
1651                                                                     obj->read_domains,
1652                                                                     old_write_domain);
1653                         }
1654                 }
1655
1656         }
1657
1658         if (!dev_priv->mm.suspended) {
1659                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1660                 if (was_empty)
1661                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1662         }
1663         return seqno;
1664 }
1665
1666 /**
1667  * Command execution barrier
1668  *
1669  * Ensures that all commands in the ring are finished
1670  * before signalling the CPU
1671  */
1672 static uint32_t
1673 i915_retire_commands(struct drm_device *dev)
1674 {
1675         drm_i915_private_t *dev_priv = dev->dev_private;
1676         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1677         uint32_t flush_domains = 0;
1678         RING_LOCALS;
1679
1680         /* The sampler always gets flushed on i965 (sigh) */
1681         if (IS_I965G(dev))
1682                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1683         BEGIN_LP_RING(2);
1684         OUT_RING(cmd);
1685         OUT_RING(0); /* noop */
1686         ADVANCE_LP_RING();
1687         return flush_domains;
1688 }
1689
1690 /**
1691  * Moves buffers associated only with the given active seqno from the active
1692  * to inactive list, potentially freeing them.
1693  */
1694 static void
1695 i915_gem_retire_request(struct drm_device *dev,
1696                         struct drm_i915_gem_request *request)
1697 {
1698         drm_i915_private_t *dev_priv = dev->dev_private;
1699
1700         trace_i915_gem_request_retire(dev, request->seqno);
1701
1702         /* Move any buffers on the active list that are no longer referenced
1703          * by the ringbuffer to the flushing/inactive lists as appropriate.
1704          */
1705         spin_lock(&dev_priv->mm.active_list_lock);
1706         while (!list_empty(&dev_priv->mm.active_list)) {
1707                 struct drm_gem_object *obj;
1708                 struct drm_i915_gem_object *obj_priv;
1709
1710                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1711                                             struct drm_i915_gem_object,
1712                                             list);
1713                 obj = obj_priv->obj;
1714
1715                 /* If the seqno being retired doesn't match the oldest in the
1716                  * list, then the oldest in the list must still be newer than
1717                  * this seqno.
1718                  */
1719                 if (obj_priv->last_rendering_seqno != request->seqno)
1720                         goto out;
1721
1722 #if WATCH_LRU
1723                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1724                          __func__, request->seqno, obj);
1725 #endif
1726
1727                 if (obj->write_domain != 0)
1728                         i915_gem_object_move_to_flushing(obj);
1729                 else {
1730                         /* Take a reference on the object so it won't be
1731                          * freed while the spinlock is held.  The list
1732                          * protection for this spinlock is safe when breaking
1733                          * the lock like this since the next thing we do
1734                          * is just get the head of the list again.
1735                          */
1736                         drm_gem_object_reference(obj);
1737                         i915_gem_object_move_to_inactive(obj);
1738                         spin_unlock(&dev_priv->mm.active_list_lock);
1739                         drm_gem_object_unreference(obj);
1740                         spin_lock(&dev_priv->mm.active_list_lock);
1741                 }
1742         }
1743 out:
1744         spin_unlock(&dev_priv->mm.active_list_lock);
1745 }
1746
1747 /**
1748  * Returns true if seq1 is later than seq2.
1749  */
1750 bool
1751 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1752 {
1753         return (int32_t)(seq1 - seq2) >= 0;
1754 }
1755
1756 uint32_t
1757 i915_get_gem_seqno(struct drm_device *dev)
1758 {
1759         drm_i915_private_t *dev_priv = dev->dev_private;
1760
1761         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1762 }
1763
1764 /**
1765  * This function clears the request list as sequence numbers are passed.
1766  */
1767 void
1768 i915_gem_retire_requests(struct drm_device *dev)
1769 {
1770         drm_i915_private_t *dev_priv = dev->dev_private;
1771         uint32_t seqno;
1772
1773         if (!dev_priv->hw_status_page || list_empty(&dev_priv->mm.request_list))
1774                 return;
1775
1776         seqno = i915_get_gem_seqno(dev);
1777
1778         while (!list_empty(&dev_priv->mm.request_list)) {
1779                 struct drm_i915_gem_request *request;
1780                 uint32_t retiring_seqno;
1781
1782                 request = list_first_entry(&dev_priv->mm.request_list,
1783                                            struct drm_i915_gem_request,
1784                                            list);
1785                 retiring_seqno = request->seqno;
1786
1787                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1788                     atomic_read(&dev_priv->mm.wedged)) {
1789                         i915_gem_retire_request(dev, request);
1790
1791                         list_del(&request->list);
1792                         list_del(&request->client_list);
1793                         kfree(request);
1794                 } else
1795                         break;
1796         }
1797
1798         if (unlikely (dev_priv->trace_irq_seqno &&
1799                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1800                 i915_user_irq_put(dev);
1801                 dev_priv->trace_irq_seqno = 0;
1802         }
1803 }
1804
1805 void
1806 i915_gem_retire_work_handler(struct work_struct *work)
1807 {
1808         drm_i915_private_t *dev_priv;
1809         struct drm_device *dev;
1810
1811         dev_priv = container_of(work, drm_i915_private_t,
1812                                 mm.retire_work.work);
1813         dev = dev_priv->dev;
1814
1815         mutex_lock(&dev->struct_mutex);
1816         i915_gem_retire_requests(dev);
1817         if (!dev_priv->mm.suspended &&
1818             !list_empty(&dev_priv->mm.request_list))
1819                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1820         mutex_unlock(&dev->struct_mutex);
1821 }
1822
1823 int
1824 i915_do_wait_request(struct drm_device *dev, uint32_t seqno, int interruptible)
1825 {
1826         drm_i915_private_t *dev_priv = dev->dev_private;
1827         u32 ier;
1828         int ret = 0;
1829
1830         BUG_ON(seqno == 0);
1831
1832         if (atomic_read(&dev_priv->mm.wedged))
1833                 return -EIO;
1834
1835         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1836                 if (IS_IRONLAKE(dev))
1837                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1838                 else
1839                         ier = I915_READ(IER);
1840                 if (!ier) {
1841                         DRM_ERROR("something (likely vbetool) disabled "
1842                                   "interrupts, re-enabling\n");
1843                         i915_driver_irq_preinstall(dev);
1844                         i915_driver_irq_postinstall(dev);
1845                 }
1846
1847                 trace_i915_gem_request_wait_begin(dev, seqno);
1848
1849                 dev_priv->mm.waiting_gem_seqno = seqno;
1850                 i915_user_irq_get(dev);
1851                 if (interruptible)
1852                         ret = wait_event_interruptible(dev_priv->irq_queue,
1853                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1854                                 atomic_read(&dev_priv->mm.wedged));
1855                 else
1856                         wait_event(dev_priv->irq_queue,
1857                                 i915_seqno_passed(i915_get_gem_seqno(dev), seqno) ||
1858                                 atomic_read(&dev_priv->mm.wedged));
1859
1860                 i915_user_irq_put(dev);
1861                 dev_priv->mm.waiting_gem_seqno = 0;
1862
1863                 trace_i915_gem_request_wait_end(dev, seqno);
1864         }
1865         if (atomic_read(&dev_priv->mm.wedged))
1866                 ret = -EIO;
1867
1868         if (ret && ret != -ERESTARTSYS)
1869                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1870                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1871
1872         /* Directly dispatch request retiring.  While we have the work queue
1873          * to handle this, the waiter on a request often wants an associated
1874          * buffer to have made it to the inactive list, and we would need
1875          * a separate wait queue to handle that.
1876          */
1877         if (ret == 0)
1878                 i915_gem_retire_requests(dev);
1879
1880         return ret;
1881 }
1882
1883 /**
1884  * Waits for a sequence number to be signaled, and cleans up the
1885  * request and object lists appropriately for that event.
1886  */
1887 static int
1888 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1889 {
1890         return i915_do_wait_request(dev, seqno, 1);
1891 }
1892
1893 static void
1894 i915_gem_flush(struct drm_device *dev,
1895                uint32_t invalidate_domains,
1896                uint32_t flush_domains)
1897 {
1898         drm_i915_private_t *dev_priv = dev->dev_private;
1899         uint32_t cmd;
1900         RING_LOCALS;
1901
1902 #if WATCH_EXEC
1903         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1904                   invalidate_domains, flush_domains);
1905 #endif
1906         trace_i915_gem_request_flush(dev, dev_priv->mm.next_gem_seqno,
1907                                      invalidate_domains, flush_domains);
1908
1909         if (flush_domains & I915_GEM_DOMAIN_CPU)
1910                 drm_agp_chipset_flush(dev);
1911
1912         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1913                 /*
1914                  * read/write caches:
1915                  *
1916                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1917                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1918                  * also flushed at 2d versus 3d pipeline switches.
1919                  *
1920                  * read-only caches:
1921                  *
1922                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1923                  * MI_READ_FLUSH is set, and is always flushed on 965.
1924                  *
1925                  * I915_GEM_DOMAIN_COMMAND may not exist?
1926                  *
1927                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1928                  * invalidated when MI_EXE_FLUSH is set.
1929                  *
1930                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1931                  * invalidated with every MI_FLUSH.
1932                  *
1933                  * TLBs:
1934                  *
1935                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1936                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1937                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1938                  * are flushed at any MI_FLUSH.
1939                  */
1940
1941                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1942                 if ((invalidate_domains|flush_domains) &
1943                     I915_GEM_DOMAIN_RENDER)
1944                         cmd &= ~MI_NO_WRITE_FLUSH;
1945                 if (!IS_I965G(dev)) {
1946                         /*
1947                          * On the 965, the sampler cache always gets flushed
1948                          * and this bit is reserved.
1949                          */
1950                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1951                                 cmd |= MI_READ_FLUSH;
1952                 }
1953                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1954                         cmd |= MI_EXE_FLUSH;
1955
1956 #if WATCH_EXEC
1957                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1958 #endif
1959                 BEGIN_LP_RING(2);
1960                 OUT_RING(cmd);
1961                 OUT_RING(MI_NOOP);
1962                 ADVANCE_LP_RING();
1963         }
1964 }
1965
1966 /**
1967  * Ensures that all rendering to the object has completed and the object is
1968  * safe to unbind from the GTT or access from the CPU.
1969  */
1970 static int
1971 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1972 {
1973         struct drm_device *dev = obj->dev;
1974         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1975         int ret;
1976
1977         /* This function only exists to support waiting for existing rendering,
1978          * not for emitting required flushes.
1979          */
1980         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1981
1982         /* If there is rendering queued on the buffer being evicted, wait for
1983          * it.
1984          */
1985         if (obj_priv->active) {
1986 #if WATCH_BUF
1987                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1988                           __func__, obj, obj_priv->last_rendering_seqno);
1989 #endif
1990                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1991                 if (ret != 0)
1992                         return ret;
1993         }
1994
1995         return 0;
1996 }
1997
1998 /**
1999  * Unbinds an object from the GTT aperture.
2000  */
2001 int
2002 i915_gem_object_unbind(struct drm_gem_object *obj)
2003 {
2004         struct drm_device *dev = obj->dev;
2005         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2006         int ret = 0;
2007
2008 #if WATCH_BUF
2009         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
2010         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
2011 #endif
2012         if (obj_priv->gtt_space == NULL)
2013                 return 0;
2014
2015         if (obj_priv->pin_count != 0) {
2016                 DRM_ERROR("Attempting to unbind pinned buffer\n");
2017                 return -EINVAL;
2018         }
2019
2020         /* blow away mappings if mapped through GTT */
2021         i915_gem_release_mmap(obj);
2022
2023         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
2024                 i915_gem_clear_fence_reg(obj);
2025
2026         /* Move the object to the CPU domain to ensure that
2027          * any possible CPU writes while it's not in the GTT
2028          * are flushed when we go to remap it. This will
2029          * also ensure that all pending GPU writes are finished
2030          * before we unbind.
2031          */
2032         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2033         if (ret) {
2034                 if (ret != -ERESTARTSYS)
2035                         DRM_ERROR("set_domain failed: %d\n", ret);
2036                 return ret;
2037         }
2038
2039         BUG_ON(obj_priv->active);
2040
2041         if (obj_priv->agp_mem != NULL) {
2042                 drm_unbind_agp(obj_priv->agp_mem);
2043                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2044                 obj_priv->agp_mem = NULL;
2045         }
2046
2047         i915_gem_object_put_pages(obj);
2048         BUG_ON(obj_priv->pages_refcount);
2049
2050         if (obj_priv->gtt_space) {
2051                 atomic_dec(&dev->gtt_count);
2052                 atomic_sub(obj->size, &dev->gtt_memory);
2053
2054                 drm_mm_put_block(obj_priv->gtt_space);
2055                 obj_priv->gtt_space = NULL;
2056         }
2057
2058         /* Remove ourselves from the LRU list if present. */
2059         if (!list_empty(&obj_priv->list))
2060                 list_del_init(&obj_priv->list);
2061
2062         if (i915_gem_object_is_purgeable(obj_priv))
2063                 i915_gem_object_truncate(obj);
2064
2065         trace_i915_gem_object_unbind(obj);
2066
2067         return 0;
2068 }
2069
2070 static struct drm_gem_object *
2071 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2072 {
2073         drm_i915_private_t *dev_priv = dev->dev_private;
2074         struct drm_i915_gem_object *obj_priv;
2075         struct drm_gem_object *best = NULL;
2076         struct drm_gem_object *first = NULL;
2077
2078         /* Try to find the smallest clean object */
2079         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2080                 struct drm_gem_object *obj = obj_priv->obj;
2081                 if (obj->size >= min_size) {
2082                         if ((!obj_priv->dirty ||
2083                              i915_gem_object_is_purgeable(obj_priv)) &&
2084                             (!best || obj->size < best->size)) {
2085                                 best = obj;
2086                                 if (best->size == min_size)
2087                                         return best;
2088                         }
2089                         if (!first)
2090                             first = obj;
2091                 }
2092         }
2093
2094         return best ? best : first;
2095 }
2096
2097 static int
2098 i915_gem_evict_everything(struct drm_device *dev)
2099 {
2100         drm_i915_private_t *dev_priv = dev->dev_private;
2101         uint32_t seqno;
2102         int ret;
2103         bool lists_empty;
2104
2105         spin_lock(&dev_priv->mm.active_list_lock);
2106         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2107                        list_empty(&dev_priv->mm.flushing_list) &&
2108                        list_empty(&dev_priv->mm.active_list));
2109         spin_unlock(&dev_priv->mm.active_list_lock);
2110
2111         if (lists_empty)
2112                 return -ENOSPC;
2113
2114         /* Flush everything (on to the inactive lists) and evict */
2115         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2116         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
2117         if (seqno == 0)
2118                 return -ENOMEM;
2119
2120         ret = i915_wait_request(dev, seqno);
2121         if (ret)
2122                 return ret;
2123
2124         ret = i915_gem_evict_from_inactive_list(dev);
2125         if (ret)
2126                 return ret;
2127
2128         spin_lock(&dev_priv->mm.active_list_lock);
2129         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2130                        list_empty(&dev_priv->mm.flushing_list) &&
2131                        list_empty(&dev_priv->mm.active_list));
2132         spin_unlock(&dev_priv->mm.active_list_lock);
2133         BUG_ON(!lists_empty);
2134
2135         return 0;
2136 }
2137
2138 static int
2139 i915_gem_evict_something(struct drm_device *dev, int min_size)
2140 {
2141         drm_i915_private_t *dev_priv = dev->dev_private;
2142         struct drm_gem_object *obj;
2143         int ret;
2144
2145         for (;;) {
2146                 i915_gem_retire_requests(dev);
2147
2148                 /* If there's an inactive buffer available now, grab it
2149                  * and be done.
2150                  */
2151                 obj = i915_gem_find_inactive_object(dev, min_size);
2152                 if (obj) {
2153                         struct drm_i915_gem_object *obj_priv;
2154
2155 #if WATCH_LRU
2156                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2157 #endif
2158                         obj_priv = obj->driver_private;
2159                         BUG_ON(obj_priv->pin_count != 0);
2160                         BUG_ON(obj_priv->active);
2161
2162                         /* Wait on the rendering and unbind the buffer. */
2163                         return i915_gem_object_unbind(obj);
2164                 }
2165
2166                 /* If we didn't get anything, but the ring is still processing
2167                  * things, wait for the next to finish and hopefully leave us
2168                  * a buffer to evict.
2169                  */
2170                 if (!list_empty(&dev_priv->mm.request_list)) {
2171                         struct drm_i915_gem_request *request;
2172
2173                         request = list_first_entry(&dev_priv->mm.request_list,
2174                                                    struct drm_i915_gem_request,
2175                                                    list);
2176
2177                         ret = i915_wait_request(dev, request->seqno);
2178                         if (ret)
2179                                 return ret;
2180
2181                         continue;
2182                 }
2183
2184                 /* If we didn't have anything on the request list but there
2185                  * are buffers awaiting a flush, emit one and try again.
2186                  * When we wait on it, those buffers waiting for that flush
2187                  * will get moved to inactive.
2188                  */
2189                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2190                         struct drm_i915_gem_object *obj_priv;
2191
2192                         /* Find an object that we can immediately reuse */
2193                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2194                                 obj = obj_priv->obj;
2195                                 if (obj->size >= min_size)
2196                                         break;
2197
2198                                 obj = NULL;
2199                         }
2200
2201                         if (obj != NULL) {
2202                                 uint32_t seqno;
2203
2204                                 i915_gem_flush(dev,
2205                                                obj->write_domain,
2206                                                obj->write_domain);
2207                                 seqno = i915_add_request(dev, NULL, obj->write_domain);
2208                                 if (seqno == 0)
2209                                         return -ENOMEM;
2210
2211                                 ret = i915_wait_request(dev, seqno);
2212                                 if (ret)
2213                                         return ret;
2214
2215                                 continue;
2216                         }
2217                 }
2218
2219                 /* If we didn't do any of the above, there's no single buffer
2220                  * large enough to swap out for the new one, so just evict
2221                  * everything and start again. (This should be rare.)
2222                  */
2223                 if (!list_empty (&dev_priv->mm.inactive_list))
2224                         return i915_gem_evict_from_inactive_list(dev);
2225                 else
2226                         return i915_gem_evict_everything(dev);
2227         }
2228 }
2229
2230 int
2231 i915_gem_object_get_pages(struct drm_gem_object *obj)
2232 {
2233         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2234         int page_count, i;
2235         struct address_space *mapping;
2236         struct inode *inode;
2237         struct page *page;
2238         int ret;
2239
2240         if (obj_priv->pages_refcount++ != 0)
2241                 return 0;
2242
2243         /* Get the list of pages out of our struct file.  They'll be pinned
2244          * at this point until we release them.
2245          */
2246         page_count = obj->size / PAGE_SIZE;
2247         BUG_ON(obj_priv->pages != NULL);
2248         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2249         if (obj_priv->pages == NULL) {
2250                 obj_priv->pages_refcount--;
2251                 return -ENOMEM;
2252         }
2253
2254         inode = obj->filp->f_path.dentry->d_inode;
2255         mapping = inode->i_mapping;
2256         for (i = 0; i < page_count; i++) {
2257                 page = read_mapping_page(mapping, i, NULL);
2258                 if (IS_ERR(page)) {
2259                         ret = PTR_ERR(page);
2260                         i915_gem_object_put_pages(obj);
2261                         return ret;
2262                 }
2263                 obj_priv->pages[i] = page;
2264         }
2265
2266         if (obj_priv->tiling_mode != I915_TILING_NONE)
2267                 i915_gem_object_do_bit_17_swizzle(obj);
2268
2269         return 0;
2270 }
2271
2272 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2273 {
2274         struct drm_gem_object *obj = reg->obj;
2275         struct drm_device *dev = obj->dev;
2276         drm_i915_private_t *dev_priv = dev->dev_private;
2277         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2278         int regnum = obj_priv->fence_reg;
2279         uint64_t val;
2280
2281         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2282                     0xfffff000) << 32;
2283         val |= obj_priv->gtt_offset & 0xfffff000;
2284         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2285         if (obj_priv->tiling_mode == I915_TILING_Y)
2286                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2287         val |= I965_FENCE_REG_VALID;
2288
2289         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2290 }
2291
2292 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2293 {
2294         struct drm_gem_object *obj = reg->obj;
2295         struct drm_device *dev = obj->dev;
2296         drm_i915_private_t *dev_priv = dev->dev_private;
2297         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2298         int regnum = obj_priv->fence_reg;
2299         int tile_width;
2300         uint32_t fence_reg, val;
2301         uint32_t pitch_val;
2302
2303         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2304             (obj_priv->gtt_offset & (obj->size - 1))) {
2305                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2306                      __func__, obj_priv->gtt_offset, obj->size);
2307                 return;
2308         }
2309
2310         if (obj_priv->tiling_mode == I915_TILING_Y &&
2311             HAS_128_BYTE_Y_TILING(dev))
2312                 tile_width = 128;
2313         else
2314                 tile_width = 512;
2315
2316         /* Note: pitch better be a power of two tile widths */
2317         pitch_val = obj_priv->stride / tile_width;
2318         pitch_val = ffs(pitch_val) - 1;
2319
2320         val = obj_priv->gtt_offset;
2321         if (obj_priv->tiling_mode == I915_TILING_Y)
2322                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2323         val |= I915_FENCE_SIZE_BITS(obj->size);
2324         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2325         val |= I830_FENCE_REG_VALID;
2326
2327         if (regnum < 8)
2328                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2329         else
2330                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2331         I915_WRITE(fence_reg, val);
2332 }
2333
2334 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2335 {
2336         struct drm_gem_object *obj = reg->obj;
2337         struct drm_device *dev = obj->dev;
2338         drm_i915_private_t *dev_priv = dev->dev_private;
2339         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2340         int regnum = obj_priv->fence_reg;
2341         uint32_t val;
2342         uint32_t pitch_val;
2343         uint32_t fence_size_bits;
2344
2345         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2346             (obj_priv->gtt_offset & (obj->size - 1))) {
2347                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2348                      __func__, obj_priv->gtt_offset);
2349                 return;
2350         }
2351
2352         pitch_val = obj_priv->stride / 128;
2353         pitch_val = ffs(pitch_val) - 1;
2354         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2355
2356         val = obj_priv->gtt_offset;
2357         if (obj_priv->tiling_mode == I915_TILING_Y)
2358                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2359         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2360         WARN_ON(fence_size_bits & ~0x00000f00);
2361         val |= fence_size_bits;
2362         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2363         val |= I830_FENCE_REG_VALID;
2364
2365         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2366 }
2367
2368 /**
2369  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2370  * @obj: object to map through a fence reg
2371  *
2372  * When mapping objects through the GTT, userspace wants to be able to write
2373  * to them without having to worry about swizzling if the object is tiled.
2374  *
2375  * This function walks the fence regs looking for a free one for @obj,
2376  * stealing one if it can't find any.
2377  *
2378  * It then sets up the reg based on the object's properties: address, pitch
2379  * and tiling format.
2380  */
2381 int
2382 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2383 {
2384         struct drm_device *dev = obj->dev;
2385         struct drm_i915_private *dev_priv = dev->dev_private;
2386         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2387         struct drm_i915_fence_reg *reg = NULL;
2388         struct drm_i915_gem_object *old_obj_priv = NULL;
2389         int i, ret, avail;
2390
2391         /* Just update our place in the LRU if our fence is getting used. */
2392         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2393                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2394                 return 0;
2395         }
2396
2397         switch (obj_priv->tiling_mode) {
2398         case I915_TILING_NONE:
2399                 WARN(1, "allocating a fence for non-tiled object?\n");
2400                 break;
2401         case I915_TILING_X:
2402                 if (!obj_priv->stride)
2403                         return -EINVAL;
2404                 WARN((obj_priv->stride & (512 - 1)),
2405                      "object 0x%08x is X tiled but has non-512B pitch\n",
2406                      obj_priv->gtt_offset);
2407                 break;
2408         case I915_TILING_Y:
2409                 if (!obj_priv->stride)
2410                         return -EINVAL;
2411                 WARN((obj_priv->stride & (128 - 1)),
2412                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2413                      obj_priv->gtt_offset);
2414                 break;
2415         }
2416
2417         /* First try to find a free reg */
2418         avail = 0;
2419         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2420                 reg = &dev_priv->fence_regs[i];
2421                 if (!reg->obj)
2422                         break;
2423
2424                 old_obj_priv = reg->obj->driver_private;
2425                 if (!old_obj_priv->pin_count)
2426                     avail++;
2427         }
2428
2429         /* None available, try to steal one or wait for a user to finish */
2430         if (i == dev_priv->num_fence_regs) {
2431                 struct drm_gem_object *old_obj = NULL;
2432
2433                 if (avail == 0)
2434                         return -ENOSPC;
2435
2436                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2437                                     fence_list) {
2438                         old_obj = old_obj_priv->obj;
2439
2440                         if (old_obj_priv->pin_count)
2441                                 continue;
2442
2443                         /* Take a reference, as otherwise the wait_rendering
2444                          * below may cause the object to get freed out from
2445                          * under us.
2446                          */
2447                         drm_gem_object_reference(old_obj);
2448
2449                         /* i915 uses fences for GPU access to tiled buffers */
2450                         if (IS_I965G(dev) || !old_obj_priv->active)
2451                                 break;
2452
2453                         /* This brings the object to the head of the LRU if it
2454                          * had been written to.  The only way this should
2455                          * result in us waiting longer than the expected
2456                          * optimal amount of time is if there was a
2457                          * fence-using buffer later that was read-only.
2458                          */
2459                         i915_gem_object_flush_gpu_write_domain(old_obj);
2460                         ret = i915_gem_object_wait_rendering(old_obj);
2461                         if (ret != 0) {
2462                                 drm_gem_object_unreference(old_obj);
2463                                 return ret;
2464                         }
2465
2466                         break;
2467                 }
2468
2469                 /*
2470                  * Zap this virtual mapping so we can set up a fence again
2471                  * for this object next time we need it.
2472                  */
2473                 i915_gem_release_mmap(old_obj);
2474
2475                 i = old_obj_priv->fence_reg;
2476                 reg = &dev_priv->fence_regs[i];
2477
2478                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2479                 list_del_init(&old_obj_priv->fence_list);
2480
2481                 drm_gem_object_unreference(old_obj);
2482         }
2483
2484         obj_priv->fence_reg = i;
2485         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2486
2487         reg->obj = obj;
2488
2489         if (IS_I965G(dev))
2490                 i965_write_fence_reg(reg);
2491         else if (IS_I9XX(dev))
2492                 i915_write_fence_reg(reg);
2493         else
2494                 i830_write_fence_reg(reg);
2495
2496         trace_i915_gem_object_get_fence(obj, i, obj_priv->tiling_mode);
2497
2498         return 0;
2499 }
2500
2501 /**
2502  * i915_gem_clear_fence_reg - clear out fence register info
2503  * @obj: object to clear
2504  *
2505  * Zeroes out the fence register itself and clears out the associated
2506  * data structures in dev_priv and obj_priv.
2507  */
2508 static void
2509 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2510 {
2511         struct drm_device *dev = obj->dev;
2512         drm_i915_private_t *dev_priv = dev->dev_private;
2513         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2514
2515         if (IS_I965G(dev))
2516                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2517         else {
2518                 uint32_t fence_reg;
2519
2520                 if (obj_priv->fence_reg < 8)
2521                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2522                 else
2523                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2524                                                        8) * 4;
2525
2526                 I915_WRITE(fence_reg, 0);
2527         }
2528
2529         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2530         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2531         list_del_init(&obj_priv->fence_list);
2532 }
2533
2534 /**
2535  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2536  * to the buffer to finish, and then resets the fence register.
2537  * @obj: tiled object holding a fence register.
2538  *
2539  * Zeroes out the fence register itself and clears out the associated
2540  * data structures in dev_priv and obj_priv.
2541  */
2542 int
2543 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2544 {
2545         struct drm_device *dev = obj->dev;
2546         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2547
2548         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2549                 return 0;
2550
2551         /* On the i915, GPU access to tiled buffers is via a fence,
2552          * therefore we must wait for any outstanding access to complete
2553          * before clearing the fence.
2554          */
2555         if (!IS_I965G(dev)) {
2556                 int ret;
2557
2558                 i915_gem_object_flush_gpu_write_domain(obj);
2559                 i915_gem_object_flush_gtt_write_domain(obj);
2560                 ret = i915_gem_object_wait_rendering(obj);
2561                 if (ret != 0)
2562                         return ret;
2563         }
2564
2565         i915_gem_clear_fence_reg (obj);
2566
2567         return 0;
2568 }
2569
2570 /**
2571  * Finds free space in the GTT aperture and binds the object there.
2572  */
2573 static int
2574 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2575 {
2576         struct drm_device *dev = obj->dev;
2577         drm_i915_private_t *dev_priv = dev->dev_private;
2578         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2579         struct drm_mm_node *free_space;
2580         bool retry_alloc = false;
2581         int ret;
2582
2583         if (dev_priv->mm.suspended)
2584                 return -EBUSY;
2585
2586         if (obj_priv->madv != I915_MADV_WILLNEED) {
2587                 DRM_ERROR("Attempting to bind a purgeable object\n");
2588                 return -EINVAL;
2589         }
2590
2591         if (alignment == 0)
2592                 alignment = i915_gem_get_gtt_alignment(obj);
2593         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2594                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2595                 return -EINVAL;
2596         }
2597
2598  search_free:
2599         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2600                                         obj->size, alignment, 0);
2601         if (free_space != NULL) {
2602                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2603                                                        alignment);
2604                 if (obj_priv->gtt_space != NULL) {
2605                         obj_priv->gtt_space->private = obj;
2606                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2607                 }
2608         }
2609         if (obj_priv->gtt_space == NULL) {
2610                 /* If the gtt is empty and we're still having trouble
2611                  * fitting our object in, we're out of memory.
2612                  */
2613 #if WATCH_LRU
2614                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2615 #endif
2616                 ret = i915_gem_evict_something(dev, obj->size);
2617                 if (ret)
2618                         return ret;
2619
2620                 goto search_free;
2621         }
2622
2623 #if WATCH_BUF
2624         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2625                  obj->size, obj_priv->gtt_offset);
2626 #endif
2627         if (retry_alloc) {
2628                 i915_gem_object_set_page_gfp_mask (obj,
2629                                                    i915_gem_object_get_page_gfp_mask (obj) & ~__GFP_NORETRY);
2630         }
2631         ret = i915_gem_object_get_pages(obj);
2632         if (retry_alloc) {
2633                 i915_gem_object_set_page_gfp_mask (obj,
2634                                                    i915_gem_object_get_page_gfp_mask (obj) | __GFP_NORETRY);
2635         }
2636         if (ret) {
2637                 drm_mm_put_block(obj_priv->gtt_space);
2638                 obj_priv->gtt_space = NULL;
2639
2640                 if (ret == -ENOMEM) {
2641                         /* first try to clear up some space from the GTT */
2642                         ret = i915_gem_evict_something(dev, obj->size);
2643                         if (ret) {
2644                                 /* now try to shrink everyone else */
2645                                 if (! retry_alloc) {
2646                                     retry_alloc = true;
2647                                     goto search_free;
2648                                 }
2649
2650                                 return ret;
2651                         }
2652
2653                         goto search_free;
2654                 }
2655
2656                 return ret;
2657         }
2658
2659         /* Create an AGP memory structure pointing at our pages, and bind it
2660          * into the GTT.
2661          */
2662         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2663                                                obj_priv->pages,
2664                                                obj->size >> PAGE_SHIFT,
2665                                                obj_priv->gtt_offset,
2666                                                obj_priv->agp_type);
2667         if (obj_priv->agp_mem == NULL) {
2668                 i915_gem_object_put_pages(obj);
2669                 drm_mm_put_block(obj_priv->gtt_space);
2670                 obj_priv->gtt_space = NULL;
2671
2672                 ret = i915_gem_evict_something(dev, obj->size);
2673                 if (ret)
2674                         return ret;
2675
2676                 goto search_free;
2677         }
2678         atomic_inc(&dev->gtt_count);
2679         atomic_add(obj->size, &dev->gtt_memory);
2680
2681         /* Assert that the object is not currently in any GPU domain. As it
2682          * wasn't in the GTT, there shouldn't be any way it could have been in
2683          * a GPU cache
2684          */
2685         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2686         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2687
2688         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2689
2690         return 0;
2691 }
2692
2693 void
2694 i915_gem_clflush_object(struct drm_gem_object *obj)
2695 {
2696         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2697
2698         /* If we don't have a page list set up, then we're not pinned
2699          * to GPU, and we can ignore the cache flush because it'll happen
2700          * again at bind time.
2701          */
2702         if (obj_priv->pages == NULL)
2703                 return;
2704
2705         trace_i915_gem_object_clflush(obj);
2706
2707         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2708 }
2709
2710 /** Flushes any GPU write domain for the object if it's dirty. */
2711 static void
2712 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2713 {
2714         struct drm_device *dev = obj->dev;
2715         uint32_t seqno;
2716         uint32_t old_write_domain;
2717
2718         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2719                 return;
2720
2721         /* Queue the GPU write cache flushing we need. */
2722         old_write_domain = obj->write_domain;
2723         i915_gem_flush(dev, 0, obj->write_domain);
2724         seqno = i915_add_request(dev, NULL, obj->write_domain);
2725         obj->write_domain = 0;
2726         i915_gem_object_move_to_active(obj, seqno);
2727
2728         trace_i915_gem_object_change_domain(obj,
2729                                             obj->read_domains,
2730                                             old_write_domain);
2731 }
2732
2733 /** Flushes the GTT write domain for the object if it's dirty. */
2734 static void
2735 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2736 {
2737         uint32_t old_write_domain;
2738
2739         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2740                 return;
2741
2742         /* No actual flushing is required for the GTT write domain.   Writes
2743          * to it immediately go to main memory as far as we know, so there's
2744          * no chipset flush.  It also doesn't land in render cache.
2745          */
2746         old_write_domain = obj->write_domain;
2747         obj->write_domain = 0;
2748
2749         trace_i915_gem_object_change_domain(obj,
2750                                             obj->read_domains,
2751                                             old_write_domain);
2752 }
2753
2754 /** Flushes the CPU write domain for the object if it's dirty. */
2755 static void
2756 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2757 {
2758         struct drm_device *dev = obj->dev;
2759         uint32_t old_write_domain;
2760
2761         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2762                 return;
2763
2764         i915_gem_clflush_object(obj);
2765         drm_agp_chipset_flush(dev);
2766         old_write_domain = obj->write_domain;
2767         obj->write_domain = 0;
2768
2769         trace_i915_gem_object_change_domain(obj,
2770                                             obj->read_domains,
2771                                             old_write_domain);
2772 }
2773
2774 void
2775 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2776 {
2777         switch (obj->write_domain) {
2778         case I915_GEM_DOMAIN_GTT:
2779                 i915_gem_object_flush_gtt_write_domain(obj);
2780                 break;
2781         case I915_GEM_DOMAIN_CPU:
2782                 i915_gem_object_flush_cpu_write_domain(obj);
2783                 break;
2784         default:
2785                 i915_gem_object_flush_gpu_write_domain(obj);
2786                 break;
2787         }
2788 }
2789
2790 /**
2791  * Moves a single object to the GTT read, and possibly write domain.
2792  *
2793  * This function returns when the move is complete, including waiting on
2794  * flushes to occur.
2795  */
2796 int
2797 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2798 {
2799         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2800         uint32_t old_write_domain, old_read_domains;
2801         int ret;
2802
2803         /* Not valid to be called on unbound objects. */
2804         if (obj_priv->gtt_space == NULL)
2805                 return -EINVAL;
2806
2807         i915_gem_object_flush_gpu_write_domain(obj);
2808         /* Wait on any GPU rendering and flushing to occur. */
2809         ret = i915_gem_object_wait_rendering(obj);
2810         if (ret != 0)
2811                 return ret;
2812
2813         old_write_domain = obj->write_domain;
2814         old_read_domains = obj->read_domains;
2815
2816         /* If we're writing through the GTT domain, then CPU and GPU caches
2817          * will need to be invalidated at next use.
2818          */
2819         if (write)
2820                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2821
2822         i915_gem_object_flush_cpu_write_domain(obj);
2823
2824         /* It should now be out of any other write domains, and we can update
2825          * the domain values for our changes.
2826          */
2827         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2828         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2829         if (write) {
2830                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2831                 obj_priv->dirty = 1;
2832         }
2833
2834         trace_i915_gem_object_change_domain(obj,
2835                                             old_read_domains,
2836                                             old_write_domain);
2837
2838         return 0;
2839 }
2840
2841 /**
2842  * Moves a single object to the CPU read, and possibly write domain.
2843  *
2844  * This function returns when the move is complete, including waiting on
2845  * flushes to occur.
2846  */
2847 static int
2848 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2849 {
2850         uint32_t old_write_domain, old_read_domains;
2851         int ret;
2852
2853         i915_gem_object_flush_gpu_write_domain(obj);
2854         /* Wait on any GPU rendering and flushing to occur. */
2855         ret = i915_gem_object_wait_rendering(obj);
2856         if (ret != 0)
2857                 return ret;
2858
2859         i915_gem_object_flush_gtt_write_domain(obj);
2860
2861         /* If we have a partially-valid cache of the object in the CPU,
2862          * finish invalidating it and free the per-page flags.
2863          */
2864         i915_gem_object_set_to_full_cpu_read_domain(obj);
2865
2866         old_write_domain = obj->write_domain;
2867         old_read_domains = obj->read_domains;
2868
2869         /* Flush the CPU cache if it's still invalid. */
2870         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2871                 i915_gem_clflush_object(obj);
2872
2873                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2874         }
2875
2876         /* It should now be out of any other write domains, and we can update
2877          * the domain values for our changes.
2878          */
2879         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2880
2881         /* If we're writing through the CPU, then the GPU read domains will
2882          * need to be invalidated at next use.
2883          */
2884         if (write) {
2885                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2886                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2887         }
2888
2889         trace_i915_gem_object_change_domain(obj,
2890                                             old_read_domains,
2891                                             old_write_domain);
2892
2893         return 0;
2894 }
2895
2896 /*
2897  * Set the next domain for the specified object. This
2898  * may not actually perform the necessary flushing/invaliding though,
2899  * as that may want to be batched with other set_domain operations
2900  *
2901  * This is (we hope) the only really tricky part of gem. The goal
2902  * is fairly simple -- track which caches hold bits of the object
2903  * and make sure they remain coherent. A few concrete examples may
2904  * help to explain how it works. For shorthand, we use the notation
2905  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2906  * a pair of read and write domain masks.
2907  *
2908  * Case 1: the batch buffer
2909  *
2910  *      1. Allocated
2911  *      2. Written by CPU
2912  *      3. Mapped to GTT
2913  *      4. Read by GPU
2914  *      5. Unmapped from GTT
2915  *      6. Freed
2916  *
2917  *      Let's take these a step at a time
2918  *
2919  *      1. Allocated
2920  *              Pages allocated from the kernel may still have
2921  *              cache contents, so we set them to (CPU, CPU) always.
2922  *      2. Written by CPU (using pwrite)
2923  *              The pwrite function calls set_domain (CPU, CPU) and
2924  *              this function does nothing (as nothing changes)
2925  *      3. Mapped by GTT
2926  *              This function asserts that the object is not
2927  *              currently in any GPU-based read or write domains
2928  *      4. Read by GPU
2929  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2930  *              As write_domain is zero, this function adds in the
2931  *              current read domains (CPU+COMMAND, 0).
2932  *              flush_domains is set to CPU.
2933  *              invalidate_domains is set to COMMAND
2934  *              clflush is run to get data out of the CPU caches
2935  *              then i915_dev_set_domain calls i915_gem_flush to
2936  *              emit an MI_FLUSH and drm_agp_chipset_flush
2937  *      5. Unmapped from GTT
2938  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2939  *              flush_domains and invalidate_domains end up both zero
2940  *              so no flushing/invalidating happens
2941  *      6. Freed
2942  *              yay, done
2943  *
2944  * Case 2: The shared render buffer
2945  *
2946  *      1. Allocated
2947  *      2. Mapped to GTT
2948  *      3. Read/written by GPU
2949  *      4. set_domain to (CPU,CPU)
2950  *      5. Read/written by CPU
2951  *      6. Read/written by GPU
2952  *
2953  *      1. Allocated
2954  *              Same as last example, (CPU, CPU)
2955  *      2. Mapped to GTT
2956  *              Nothing changes (assertions find that it is not in the GPU)
2957  *      3. Read/written by GPU
2958  *              execbuffer calls set_domain (RENDER, RENDER)
2959  *              flush_domains gets CPU
2960  *              invalidate_domains gets GPU
2961  *              clflush (obj)
2962  *              MI_FLUSH and drm_agp_chipset_flush
2963  *      4. set_domain (CPU, CPU)
2964  *              flush_domains gets GPU
2965  *              invalidate_domains gets CPU
2966  *              wait_rendering (obj) to make sure all drawing is complete.
2967  *              This will include an MI_FLUSH to get the data from GPU
2968  *              to memory
2969  *              clflush (obj) to invalidate the CPU cache
2970  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2971  *      5. Read/written by CPU
2972  *              cache lines are loaded and dirtied
2973  *      6. Read written by GPU
2974  *              Same as last GPU access
2975  *
2976  * Case 3: The constant buffer
2977  *
2978  *      1. Allocated
2979  *      2. Written by CPU
2980  *      3. Read by GPU
2981  *      4. Updated (written) by CPU again
2982  *      5. Read by GPU
2983  *
2984  *      1. Allocated
2985  *              (CPU, CPU)
2986  *      2. Written by CPU
2987  *              (CPU, CPU)
2988  *      3. Read by GPU
2989  *              (CPU+RENDER, 0)
2990  *              flush_domains = CPU
2991  *              invalidate_domains = RENDER
2992  *              clflush (obj)
2993  *              MI_FLUSH
2994  *              drm_agp_chipset_flush
2995  *      4. Updated (written) by CPU again
2996  *              (CPU, CPU)
2997  *              flush_domains = 0 (no previous write domain)
2998  *              invalidate_domains = 0 (no new read domains)
2999  *      5. Read by GPU
3000  *              (CPU+RENDER, 0)
3001  *              flush_domains = CPU
3002  *              invalidate_domains = RENDER
3003  *              clflush (obj)
3004  *              MI_FLUSH
3005  *              drm_agp_chipset_flush
3006  */
3007 static void
3008 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3009 {
3010         struct drm_device               *dev = obj->dev;
3011         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
3012         uint32_t                        invalidate_domains = 0;
3013         uint32_t                        flush_domains = 0;
3014         uint32_t                        old_read_domains;
3015
3016         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3017         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3018
3019         intel_mark_busy(dev, obj);
3020
3021 #if WATCH_BUF
3022         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3023                  __func__, obj,
3024                  obj->read_domains, obj->pending_read_domains,
3025                  obj->write_domain, obj->pending_write_domain);
3026 #endif
3027         /*
3028          * If the object isn't moving to a new write domain,
3029          * let the object stay in multiple read domains
3030          */
3031         if (obj->pending_write_domain == 0)
3032                 obj->pending_read_domains |= obj->read_domains;
3033         else
3034                 obj_priv->dirty = 1;
3035
3036         /*
3037          * Flush the current write domain if
3038          * the new read domains don't match. Invalidate
3039          * any read domains which differ from the old
3040          * write domain
3041          */
3042         if (obj->write_domain &&
3043             obj->write_domain != obj->pending_read_domains) {
3044                 flush_domains |= obj->write_domain;
3045                 invalidate_domains |=
3046                         obj->pending_read_domains & ~obj->write_domain;
3047         }
3048         /*
3049          * Invalidate any read caches which may have
3050          * stale data. That is, any new read domains.
3051          */
3052         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3053         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3054 #if WATCH_BUF
3055                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3056                          __func__, flush_domains, invalidate_domains);
3057 #endif
3058                 i915_gem_clflush_object(obj);
3059         }
3060
3061         old_read_domains = obj->read_domains;
3062
3063         /* The actual obj->write_domain will be updated with
3064          * pending_write_domain after we emit the accumulated flush for all
3065          * of our domain changes in execbuffers (which clears objects'
3066          * write_domains).  So if we have a current write domain that we
3067          * aren't changing, set pending_write_domain to that.
3068          */
3069         if (flush_domains == 0 && obj->pending_write_domain == 0)
3070                 obj->pending_write_domain = obj->write_domain;
3071         obj->read_domains = obj->pending_read_domains;
3072
3073         dev->invalidate_domains |= invalidate_domains;
3074         dev->flush_domains |= flush_domains;
3075 #if WATCH_BUF
3076         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3077                  __func__,
3078                  obj->read_domains, obj->write_domain,
3079                  dev->invalidate_domains, dev->flush_domains);
3080 #endif
3081
3082         trace_i915_gem_object_change_domain(obj,
3083                                             old_read_domains,
3084                                             obj->write_domain);
3085 }
3086
3087 /**
3088  * Moves the object from a partially CPU read to a full one.
3089  *
3090  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3091  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3092  */
3093 static void
3094 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3095 {
3096         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3097
3098         if (!obj_priv->page_cpu_valid)
3099                 return;
3100
3101         /* If we're partially in the CPU read domain, finish moving it in.
3102          */
3103         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3104                 int i;
3105
3106                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3107                         if (obj_priv->page_cpu_valid[i])
3108                                 continue;
3109                         drm_clflush_pages(obj_priv->pages + i, 1);
3110                 }
3111         }
3112
3113         /* Free the page_cpu_valid mappings which are now stale, whether
3114          * or not we've got I915_GEM_DOMAIN_CPU.
3115          */
3116         kfree(obj_priv->page_cpu_valid);
3117         obj_priv->page_cpu_valid = NULL;
3118 }
3119
3120 /**
3121  * Set the CPU read domain on a range of the object.
3122  *
3123  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3124  * not entirely valid.  The page_cpu_valid member of the object flags which
3125  * pages have been flushed, and will be respected by
3126  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3127  * of the whole object.
3128  *
3129  * This function returns when the move is complete, including waiting on
3130  * flushes to occur.
3131  */
3132 static int
3133 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3134                                           uint64_t offset, uint64_t size)
3135 {
3136         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3137         uint32_t old_read_domains;
3138         int i, ret;
3139
3140         if (offset == 0 && size == obj->size)
3141                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3142
3143         i915_gem_object_flush_gpu_write_domain(obj);
3144         /* Wait on any GPU rendering and flushing to occur. */
3145         ret = i915_gem_object_wait_rendering(obj);
3146         if (ret != 0)
3147                 return ret;
3148         i915_gem_object_flush_gtt_write_domain(obj);
3149
3150         /* If we're already fully in the CPU read domain, we're done. */
3151         if (obj_priv->page_cpu_valid == NULL &&
3152             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3153                 return 0;
3154
3155         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3156          * newly adding I915_GEM_DOMAIN_CPU
3157          */
3158         if (obj_priv->page_cpu_valid == NULL) {
3159                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3160                                                    GFP_KERNEL);
3161                 if (obj_priv->page_cpu_valid == NULL)
3162                         return -ENOMEM;
3163         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3164                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3165
3166         /* Flush the cache on any pages that are still invalid from the CPU's
3167          * perspective.
3168          */
3169         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3170              i++) {
3171                 if (obj_priv->page_cpu_valid[i])
3172                         continue;
3173
3174                 drm_clflush_pages(obj_priv->pages + i, 1);
3175
3176                 obj_priv->page_cpu_valid[i] = 1;
3177         }
3178
3179         /* It should now be out of any other write domains, and we can update
3180          * the domain values for our changes.
3181          */
3182         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3183
3184         old_read_domains = obj->read_domains;
3185         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3186
3187         trace_i915_gem_object_change_domain(obj,
3188                                             old_read_domains,
3189                                             obj->write_domain);
3190
3191         return 0;
3192 }
3193
3194 /**
3195  * Pin an object to the GTT and evaluate the relocations landing in it.
3196  */
3197 static int
3198 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3199                                  struct drm_file *file_priv,
3200                                  struct drm_i915_gem_exec_object *entry,
3201                                  struct drm_i915_gem_relocation_entry *relocs)
3202 {
3203         struct drm_device *dev = obj->dev;
3204         drm_i915_private_t *dev_priv = dev->dev_private;
3205         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3206         int i, ret;
3207         void __iomem *reloc_page;
3208
3209         /* Choose the GTT offset for our buffer and put it there. */
3210         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3211         if (ret)
3212                 return ret;
3213
3214         entry->offset = obj_priv->gtt_offset;
3215
3216         /* Apply the relocations, using the GTT aperture to avoid cache
3217          * flushing requirements.
3218          */
3219         for (i = 0; i < entry->relocation_count; i++) {
3220                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3221                 struct drm_gem_object *target_obj;
3222                 struct drm_i915_gem_object *target_obj_priv;
3223                 uint32_t reloc_val, reloc_offset;
3224                 uint32_t __iomem *reloc_entry;
3225
3226                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3227                                                    reloc->target_handle);
3228                 if (target_obj == NULL) {
3229                         i915_gem_object_unpin(obj);
3230                         return -EBADF;
3231                 }
3232                 target_obj_priv = target_obj->driver_private;
3233
3234 #if WATCH_RELOC
3235                 DRM_INFO("%s: obj %p offset %08x target %d "
3236                          "read %08x write %08x gtt %08x "
3237                          "presumed %08x delta %08x\n",
3238                          __func__,
3239                          obj,
3240                          (int) reloc->offset,
3241                          (int) reloc->target_handle,
3242                          (int) reloc->read_domains,
3243                          (int) reloc->write_domain,
3244                          (int) target_obj_priv->gtt_offset,
3245                          (int) reloc->presumed_offset,
3246                          reloc->delta);
3247 #endif
3248
3249                 /* The target buffer should have appeared before us in the
3250                  * exec_object list, so it should have a GTT space bound by now.
3251                  */
3252                 if (target_obj_priv->gtt_space == NULL) {
3253                         DRM_ERROR("No GTT space found for object %d\n",
3254                                   reloc->target_handle);
3255                         drm_gem_object_unreference(target_obj);
3256                         i915_gem_object_unpin(obj);
3257                         return -EINVAL;
3258                 }
3259
3260                 /* Validate that the target is in a valid r/w GPU domain */
3261                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3262                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3263                         DRM_ERROR("reloc with read/write CPU domains: "
3264                                   "obj %p target %d offset %d "
3265                                   "read %08x write %08x",
3266                                   obj, reloc->target_handle,
3267                                   (int) reloc->offset,
3268                                   reloc->read_domains,
3269                                   reloc->write_domain);
3270                         drm_gem_object_unreference(target_obj);
3271                         i915_gem_object_unpin(obj);
3272                         return -EINVAL;
3273                 }
3274                 if (reloc->write_domain && target_obj->pending_write_domain &&
3275                     reloc->write_domain != target_obj->pending_write_domain) {
3276                         DRM_ERROR("Write domain conflict: "
3277                                   "obj %p target %d offset %d "
3278                                   "new %08x old %08x\n",
3279                                   obj, reloc->target_handle,
3280                                   (int) reloc->offset,
3281                                   reloc->write_domain,
3282                                   target_obj->pending_write_domain);
3283                         drm_gem_object_unreference(target_obj);
3284                         i915_gem_object_unpin(obj);
3285                         return -EINVAL;
3286                 }
3287
3288                 target_obj->pending_read_domains |= reloc->read_domains;
3289                 target_obj->pending_write_domain |= reloc->write_domain;
3290
3291                 /* If the relocation already has the right value in it, no
3292                  * more work needs to be done.
3293                  */
3294                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3295                         drm_gem_object_unreference(target_obj);
3296                         continue;
3297                 }
3298
3299                 /* Check that the relocation address is valid... */
3300                 if (reloc->offset > obj->size - 4) {
3301                         DRM_ERROR("Relocation beyond object bounds: "
3302                                   "obj %p target %d offset %d size %d.\n",
3303                                   obj, reloc->target_handle,
3304                                   (int) reloc->offset, (int) obj->size);
3305                         drm_gem_object_unreference(target_obj);
3306                         i915_gem_object_unpin(obj);
3307                         return -EINVAL;
3308                 }
3309                 if (reloc->offset & 3) {
3310                         DRM_ERROR("Relocation not 4-byte aligned: "
3311                                   "obj %p target %d offset %d.\n",
3312                                   obj, reloc->target_handle,
3313                                   (int) reloc->offset);
3314                         drm_gem_object_unreference(target_obj);
3315                         i915_gem_object_unpin(obj);
3316                         return -EINVAL;
3317                 }
3318
3319                 /* and points to somewhere within the target object. */
3320                 if (reloc->delta >= target_obj->size) {
3321                         DRM_ERROR("Relocation beyond target object bounds: "
3322                                   "obj %p target %d delta %d size %d.\n",
3323                                   obj, reloc->target_handle,
3324                                   (int) reloc->delta, (int) target_obj->size);
3325                         drm_gem_object_unreference(target_obj);
3326                         i915_gem_object_unpin(obj);
3327                         return -EINVAL;
3328                 }
3329
3330                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3331                 if (ret != 0) {
3332                         drm_gem_object_unreference(target_obj);
3333                         i915_gem_object_unpin(obj);
3334                         return -EINVAL;
3335                 }
3336
3337                 /* Map the page containing the relocation we're going to
3338                  * perform.
3339                  */
3340                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3341                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3342                                                       (reloc_offset &
3343                                                        ~(PAGE_SIZE - 1)));
3344                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3345                                                    (reloc_offset & (PAGE_SIZE - 1)));
3346                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3347
3348 #if WATCH_BUF
3349                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3350                           obj, (unsigned int) reloc->offset,
3351                           readl(reloc_entry), reloc_val);
3352 #endif
3353                 writel(reloc_val, reloc_entry);
3354                 io_mapping_unmap_atomic(reloc_page);
3355
3356                 /* The updated presumed offset for this entry will be
3357                  * copied back out to the user.
3358                  */
3359                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3360
3361                 drm_gem_object_unreference(target_obj);
3362         }
3363
3364 #if WATCH_BUF
3365         if (0)
3366                 i915_gem_dump_object(obj, 128, __func__, ~0);
3367 #endif
3368         return 0;
3369 }
3370
3371 /** Dispatch a batchbuffer to the ring
3372  */
3373 static int
3374 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3375                               struct drm_i915_gem_execbuffer *exec,
3376                               struct drm_clip_rect *cliprects,
3377                               uint64_t exec_offset)
3378 {
3379         drm_i915_private_t *dev_priv = dev->dev_private;
3380         int nbox = exec->num_cliprects;
3381         int i = 0, count;
3382         uint32_t exec_start, exec_len;
3383         RING_LOCALS;
3384
3385         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3386         exec_len = (uint32_t) exec->batch_len;
3387
3388         trace_i915_gem_request_submit(dev, dev_priv->mm.next_gem_seqno + 1);
3389
3390         count = nbox ? nbox : 1;
3391
3392         for (i = 0; i < count; i++) {
3393                 if (i < nbox) {
3394                         int ret = i915_emit_box(dev, cliprects, i,
3395                                                 exec->DR1, exec->DR4);
3396                         if (ret)
3397                                 return ret;
3398                 }
3399
3400                 if (IS_I830(dev) || IS_845G(dev)) {
3401                         BEGIN_LP_RING(4);
3402                         OUT_RING(MI_BATCH_BUFFER);
3403                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3404                         OUT_RING(exec_start + exec_len - 4);
3405                         OUT_RING(0);
3406                         ADVANCE_LP_RING();
3407                 } else {
3408                         BEGIN_LP_RING(2);
3409                         if (IS_I965G(dev)) {
3410                                 OUT_RING(MI_BATCH_BUFFER_START |
3411                                          (2 << 6) |
3412                                          MI_BATCH_NON_SECURE_I965);
3413                                 OUT_RING(exec_start);
3414                         } else {
3415                                 OUT_RING(MI_BATCH_BUFFER_START |
3416                                          (2 << 6));
3417                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3418                         }
3419                         ADVANCE_LP_RING();
3420                 }
3421         }
3422
3423         /* XXX breadcrumb */
3424         return 0;
3425 }
3426
3427 /* Throttle our rendering by waiting until the ring has completed our requests
3428  * emitted over 20 msec ago.
3429  *
3430  * Note that if we were to use the current jiffies each time around the loop,
3431  * we wouldn't escape the function with any frames outstanding if the time to
3432  * render a frame was over 20ms.
3433  *
3434  * This should get us reasonable parallelism between CPU and GPU but also
3435  * relatively low latency when blocking on a particular request to finish.
3436  */
3437 static int
3438 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3439 {
3440         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3441         int ret = 0;
3442         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3443
3444         mutex_lock(&dev->struct_mutex);
3445         while (!list_empty(&i915_file_priv->mm.request_list)) {
3446                 struct drm_i915_gem_request *request;
3447
3448                 request = list_first_entry(&i915_file_priv->mm.request_list,
3449                                            struct drm_i915_gem_request,
3450                                            client_list);
3451
3452                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3453                         break;
3454
3455                 ret = i915_wait_request(dev, request->seqno);
3456                 if (ret != 0)
3457                         break;
3458         }
3459         mutex_unlock(&dev->struct_mutex);
3460
3461         return ret;
3462 }
3463
3464 static int
3465 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3466                               uint32_t buffer_count,
3467                               struct drm_i915_gem_relocation_entry **relocs)
3468 {
3469         uint32_t reloc_count = 0, reloc_index = 0, i;
3470         int ret;
3471
3472         *relocs = NULL;
3473         for (i = 0; i < buffer_count; i++) {
3474                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3475                         return -EINVAL;
3476                 reloc_count += exec_list[i].relocation_count;
3477         }
3478
3479         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3480         if (*relocs == NULL)
3481                 return -ENOMEM;
3482
3483         for (i = 0; i < buffer_count; i++) {
3484                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3485
3486                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3487
3488                 ret = copy_from_user(&(*relocs)[reloc_index],
3489                                      user_relocs,
3490                                      exec_list[i].relocation_count *
3491                                      sizeof(**relocs));
3492                 if (ret != 0) {
3493                         drm_free_large(*relocs);
3494                         *relocs = NULL;
3495                         return -EFAULT;
3496                 }
3497
3498                 reloc_index += exec_list[i].relocation_count;
3499         }
3500
3501         return 0;
3502 }
3503
3504 static int
3505 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3506                             uint32_t buffer_count,
3507                             struct drm_i915_gem_relocation_entry *relocs)
3508 {
3509         uint32_t reloc_count = 0, i;
3510         int ret = 0;
3511
3512         for (i = 0; i < buffer_count; i++) {
3513                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3514                 int unwritten;
3515
3516                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3517
3518                 unwritten = copy_to_user(user_relocs,
3519                                          &relocs[reloc_count],
3520                                          exec_list[i].relocation_count *
3521                                          sizeof(*relocs));
3522
3523                 if (unwritten) {
3524                         ret = -EFAULT;
3525                         goto err;
3526                 }
3527
3528                 reloc_count += exec_list[i].relocation_count;
3529         }
3530
3531 err:
3532         drm_free_large(relocs);
3533
3534         return ret;
3535 }
3536
3537 static int
3538 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3539                            uint64_t exec_offset)
3540 {
3541         uint32_t exec_start, exec_len;
3542
3543         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3544         exec_len = (uint32_t) exec->batch_len;
3545
3546         if ((exec_start | exec_len) & 0x7)
3547                 return -EINVAL;
3548
3549         if (!exec_start)
3550                 return -EINVAL;
3551
3552         return 0;
3553 }
3554
3555 static int
3556 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3557                                struct drm_gem_object **object_list,
3558                                int count)
3559 {
3560         drm_i915_private_t *dev_priv = dev->dev_private;
3561         struct drm_i915_gem_object *obj_priv;
3562         DEFINE_WAIT(wait);
3563         int i, ret = 0;
3564
3565         for (;;) {
3566                 prepare_to_wait(&dev_priv->pending_flip_queue,
3567                                 &wait, TASK_INTERRUPTIBLE);
3568                 for (i = 0; i < count; i++) {
3569                         obj_priv = object_list[i]->driver_private;
3570                         if (atomic_read(&obj_priv->pending_flip) > 0)
3571                                 break;
3572                 }
3573                 if (i == count)
3574                         break;
3575
3576                 if (!signal_pending(current)) {
3577                         mutex_unlock(&dev->struct_mutex);
3578                         schedule();
3579                         mutex_lock(&dev->struct_mutex);
3580                         continue;
3581                 }
3582                 ret = -ERESTARTSYS;
3583                 break;
3584         }
3585         finish_wait(&dev_priv->pending_flip_queue, &wait);
3586
3587         return ret;
3588 }
3589
3590 int
3591 i915_gem_execbuffer(struct drm_device *dev, void *data,
3592                     struct drm_file *file_priv)
3593 {
3594         drm_i915_private_t *dev_priv = dev->dev_private;
3595         struct drm_i915_gem_execbuffer *args = data;
3596         struct drm_i915_gem_exec_object *exec_list = NULL;
3597         struct drm_gem_object **object_list = NULL;
3598         struct drm_gem_object *batch_obj;
3599         struct drm_i915_gem_object *obj_priv;
3600         struct drm_clip_rect *cliprects = NULL;
3601         struct drm_i915_gem_relocation_entry *relocs;
3602         int ret, ret2, i, pinned = 0;
3603         uint64_t exec_offset;
3604         uint32_t seqno, flush_domains, reloc_index;
3605         int pin_tries, flips;
3606
3607 #if WATCH_EXEC
3608         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3609                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3610 #endif
3611
3612         if (args->buffer_count < 1) {
3613                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3614                 return -EINVAL;
3615         }
3616         /* Copy in the exec list from userland */
3617         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
3618         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3619         if (exec_list == NULL || object_list == NULL) {
3620                 DRM_ERROR("Failed to allocate exec or object list "
3621                           "for %d buffers\n",
3622                           args->buffer_count);
3623                 ret = -ENOMEM;
3624                 goto pre_mutex_err;
3625         }
3626         ret = copy_from_user(exec_list,
3627                              (struct drm_i915_relocation_entry __user *)
3628                              (uintptr_t) args->buffers_ptr,
3629                              sizeof(*exec_list) * args->buffer_count);
3630         if (ret != 0) {
3631                 DRM_ERROR("copy %d exec entries failed %d\n",
3632                           args->buffer_count, ret);
3633                 goto pre_mutex_err;
3634         }
3635
3636         if (args->num_cliprects != 0) {
3637                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3638                                     GFP_KERNEL);
3639                 if (cliprects == NULL)
3640                         goto pre_mutex_err;
3641
3642                 ret = copy_from_user(cliprects,
3643                                      (struct drm_clip_rect __user *)
3644                                      (uintptr_t) args->cliprects_ptr,
3645                                      sizeof(*cliprects) * args->num_cliprects);
3646                 if (ret != 0) {
3647                         DRM_ERROR("copy %d cliprects failed: %d\n",
3648                                   args->num_cliprects, ret);
3649                         goto pre_mutex_err;
3650                 }
3651         }
3652
3653         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3654                                             &relocs);
3655         if (ret != 0)
3656                 goto pre_mutex_err;
3657
3658         mutex_lock(&dev->struct_mutex);
3659
3660         i915_verify_inactive(dev, __FILE__, __LINE__);
3661
3662         if (atomic_read(&dev_priv->mm.wedged)) {
3663                 mutex_unlock(&dev->struct_mutex);
3664                 ret = -EIO;
3665                 goto pre_mutex_err;
3666         }
3667
3668         if (dev_priv->mm.suspended) {
3669                 mutex_unlock(&dev->struct_mutex);
3670                 ret = -EBUSY;
3671                 goto pre_mutex_err;
3672         }
3673
3674         /* Look up object handles */
3675         flips = 0;
3676         for (i = 0; i < args->buffer_count; i++) {
3677                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3678                                                        exec_list[i].handle);
3679                 if (object_list[i] == NULL) {
3680                         DRM_ERROR("Invalid object handle %d at index %d\n",
3681                                    exec_list[i].handle, i);
3682                         ret = -EBADF;
3683                         goto err;
3684                 }
3685
3686                 obj_priv = object_list[i]->driver_private;
3687                 if (obj_priv->in_execbuffer) {
3688                         DRM_ERROR("Object %p appears more than once in object list\n",
3689                                    object_list[i]);
3690                         ret = -EBADF;
3691                         goto err;
3692                 }
3693                 obj_priv->in_execbuffer = true;
3694                 flips += atomic_read(&obj_priv->pending_flip);
3695         }
3696
3697         if (flips > 0) {
3698                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3699                                                      args->buffer_count);
3700                 if (ret)
3701                         goto err;
3702         }
3703
3704         /* Pin and relocate */
3705         for (pin_tries = 0; ; pin_tries++) {
3706                 ret = 0;
3707                 reloc_index = 0;
3708
3709                 for (i = 0; i < args->buffer_count; i++) {
3710                         object_list[i]->pending_read_domains = 0;
3711                         object_list[i]->pending_write_domain = 0;
3712                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3713                                                                file_priv,
3714                                                                &exec_list[i],
3715                                                                &relocs[reloc_index]);
3716                         if (ret)
3717                                 break;
3718                         pinned = i + 1;
3719                         reloc_index += exec_list[i].relocation_count;
3720                 }
3721                 /* success */
3722                 if (ret == 0)
3723                         break;
3724
3725                 /* error other than GTT full, or we've already tried again */
3726                 if (ret != -ENOSPC || pin_tries >= 1) {
3727                         if (ret != -ERESTARTSYS) {
3728                                 unsigned long long total_size = 0;
3729                                 for (i = 0; i < args->buffer_count; i++)
3730                                         total_size += object_list[i]->size;
3731                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes: %d\n",
3732                                           pinned+1, args->buffer_count,
3733                                           total_size, ret);
3734                                 DRM_ERROR("%d objects [%d pinned], "
3735                                           "%d object bytes [%d pinned], "
3736                                           "%d/%d gtt bytes\n",
3737                                           atomic_read(&dev->object_count),
3738                                           atomic_read(&dev->pin_count),
3739                                           atomic_read(&dev->object_memory),
3740                                           atomic_read(&dev->pin_memory),
3741                                           atomic_read(&dev->gtt_memory),
3742                                           dev->gtt_total);
3743                         }
3744                         goto err;
3745                 }
3746
3747                 /* unpin all of our buffers */
3748                 for (i = 0; i < pinned; i++)
3749                         i915_gem_object_unpin(object_list[i]);
3750                 pinned = 0;
3751
3752                 /* evict everyone we can from the aperture */
3753                 ret = i915_gem_evict_everything(dev);
3754                 if (ret && ret != -ENOSPC)
3755                         goto err;
3756         }
3757
3758         /* Set the pending read domains for the batch buffer to COMMAND */
3759         batch_obj = object_list[args->buffer_count-1];
3760         if (batch_obj->pending_write_domain) {
3761                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3762                 ret = -EINVAL;
3763                 goto err;
3764         }
3765         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3766
3767         /* Sanity check the batch buffer, prior to moving objects */
3768         exec_offset = exec_list[args->buffer_count - 1].offset;
3769         ret = i915_gem_check_execbuffer (args, exec_offset);
3770         if (ret != 0) {
3771                 DRM_ERROR("execbuf with invalid offset/length\n");
3772                 goto err;
3773         }
3774
3775         i915_verify_inactive(dev, __FILE__, __LINE__);
3776
3777         /* Zero the global flush/invalidate flags. These
3778          * will be modified as new domains are computed
3779          * for each object
3780          */
3781         dev->invalidate_domains = 0;
3782         dev->flush_domains = 0;
3783
3784         for (i = 0; i < args->buffer_count; i++) {
3785                 struct drm_gem_object *obj = object_list[i];
3786
3787                 /* Compute new gpu domains and update invalidate/flush */
3788                 i915_gem_object_set_to_gpu_domain(obj);
3789         }
3790
3791         i915_verify_inactive(dev, __FILE__, __LINE__);
3792
3793         if (dev->invalidate_domains | dev->flush_domains) {
3794 #if WATCH_EXEC
3795                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3796                           __func__,
3797                          dev->invalidate_domains,
3798                          dev->flush_domains);
3799 #endif
3800                 i915_gem_flush(dev,
3801                                dev->invalidate_domains,
3802                                dev->flush_domains);
3803                 if (dev->flush_domains)
3804                         (void)i915_add_request(dev, file_priv,
3805                                                dev->flush_domains);
3806         }
3807
3808         for (i = 0; i < args->buffer_count; i++) {
3809                 struct drm_gem_object *obj = object_list[i];
3810                 uint32_t old_write_domain = obj->write_domain;
3811
3812                 obj->write_domain = obj->pending_write_domain;
3813                 trace_i915_gem_object_change_domain(obj,
3814                                                     obj->read_domains,
3815                                                     old_write_domain);
3816         }
3817
3818         i915_verify_inactive(dev, __FILE__, __LINE__);
3819
3820 #if WATCH_COHERENCY
3821         for (i = 0; i < args->buffer_count; i++) {
3822                 i915_gem_object_check_coherency(object_list[i],
3823                                                 exec_list[i].handle);
3824         }
3825 #endif
3826
3827 #if WATCH_EXEC
3828         i915_gem_dump_object(batch_obj,
3829                               args->batch_len,
3830                               __func__,
3831                               ~0);
3832 #endif
3833
3834         /* Exec the batchbuffer */
3835         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3836         if (ret) {
3837                 DRM_ERROR("dispatch failed %d\n", ret);
3838                 goto err;
3839         }
3840
3841         /*
3842          * Ensure that the commands in the batch buffer are
3843          * finished before the interrupt fires
3844          */
3845         flush_domains = i915_retire_commands(dev);
3846
3847         i915_verify_inactive(dev, __FILE__, __LINE__);
3848
3849         /*
3850          * Get a seqno representing the execution of the current buffer,
3851          * which we can wait on.  We would like to mitigate these interrupts,
3852          * likely by only creating seqnos occasionally (so that we have
3853          * *some* interrupts representing completion of buffers that we can
3854          * wait on when trying to clear up gtt space).
3855          */
3856         seqno = i915_add_request(dev, file_priv, flush_domains);
3857         BUG_ON(seqno == 0);
3858         for (i = 0; i < args->buffer_count; i++) {
3859                 struct drm_gem_object *obj = object_list[i];
3860
3861                 i915_gem_object_move_to_active(obj, seqno);
3862 #if WATCH_LRU
3863                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3864 #endif
3865         }
3866 #if WATCH_LRU
3867         i915_dump_lru(dev, __func__);
3868 #endif
3869
3870         i915_verify_inactive(dev, __FILE__, __LINE__);
3871
3872 err:
3873         for (i = 0; i < pinned; i++)
3874                 i915_gem_object_unpin(object_list[i]);
3875
3876         for (i = 0; i < args->buffer_count; i++) {
3877                 if (object_list[i]) {
3878                         obj_priv = object_list[i]->driver_private;
3879                         obj_priv->in_execbuffer = false;
3880                 }
3881                 drm_gem_object_unreference(object_list[i]);
3882         }
3883
3884         mutex_unlock(&dev->struct_mutex);
3885
3886         if (!ret) {
3887                 /* Copy the new buffer offsets back to the user's exec list. */
3888                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3889                                    (uintptr_t) args->buffers_ptr,
3890                                    exec_list,
3891                                    sizeof(*exec_list) * args->buffer_count);
3892                 if (ret) {
3893                         ret = -EFAULT;
3894                         DRM_ERROR("failed to copy %d exec entries "
3895                                   "back to user (%d)\n",
3896                                   args->buffer_count, ret);
3897                 }
3898         }
3899
3900         /* Copy the updated relocations out regardless of current error
3901          * state.  Failure to update the relocs would mean that the next
3902          * time userland calls execbuf, it would do so with presumed offset
3903          * state that didn't match the actual object state.
3904          */
3905         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3906                                            relocs);
3907         if (ret2 != 0) {
3908                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3909
3910                 if (ret == 0)
3911                         ret = ret2;
3912         }
3913
3914 pre_mutex_err:
3915         drm_free_large(object_list);
3916         drm_free_large(exec_list);
3917         kfree(cliprects);
3918
3919         return ret;
3920 }
3921
3922 int
3923 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3924 {
3925         struct drm_device *dev = obj->dev;
3926         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3927         int ret;
3928
3929         i915_verify_inactive(dev, __FILE__, __LINE__);
3930         if (obj_priv->gtt_space == NULL) {
3931                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3932                 if (ret)
3933                         return ret;
3934         }
3935         /*
3936          * Pre-965 chips need a fence register set up in order to
3937          * properly handle tiled surfaces.
3938          */
3939         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3940                 ret = i915_gem_object_get_fence_reg(obj);
3941                 if (ret != 0) {
3942                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3943                                 DRM_ERROR("Failure to install fence: %d\n",
3944                                           ret);
3945                         return ret;
3946                 }
3947         }
3948         obj_priv->pin_count++;
3949
3950         /* If the object is not active and not pending a flush,
3951          * remove it from the inactive list
3952          */
3953         if (obj_priv->pin_count == 1) {
3954                 atomic_inc(&dev->pin_count);
3955                 atomic_add(obj->size, &dev->pin_memory);
3956                 if (!obj_priv->active &&
3957                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3958                     !list_empty(&obj_priv->list))
3959                         list_del_init(&obj_priv->list);
3960         }
3961         i915_verify_inactive(dev, __FILE__, __LINE__);
3962
3963         return 0;
3964 }
3965
3966 void
3967 i915_gem_object_unpin(struct drm_gem_object *obj)
3968 {
3969         struct drm_device *dev = obj->dev;
3970         drm_i915_private_t *dev_priv = dev->dev_private;
3971         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3972
3973         i915_verify_inactive(dev, __FILE__, __LINE__);
3974         obj_priv->pin_count--;
3975         BUG_ON(obj_priv->pin_count < 0);
3976         BUG_ON(obj_priv->gtt_space == NULL);
3977
3978         /* If the object is no longer pinned, and is
3979          * neither active nor being flushed, then stick it on
3980          * the inactive list
3981          */
3982         if (obj_priv->pin_count == 0) {
3983                 if (!obj_priv->active &&
3984                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3985                         list_move_tail(&obj_priv->list,
3986                                        &dev_priv->mm.inactive_list);
3987                 atomic_dec(&dev->pin_count);
3988                 atomic_sub(obj->size, &dev->pin_memory);
3989         }
3990         i915_verify_inactive(dev, __FILE__, __LINE__);
3991 }
3992
3993 int
3994 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3995                    struct drm_file *file_priv)
3996 {
3997         struct drm_i915_gem_pin *args = data;
3998         struct drm_gem_object *obj;
3999         struct drm_i915_gem_object *obj_priv;
4000         int ret;
4001
4002         mutex_lock(&dev->struct_mutex);
4003
4004         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4005         if (obj == NULL) {
4006                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4007                           args->handle);
4008                 mutex_unlock(&dev->struct_mutex);
4009                 return -EBADF;
4010         }
4011         obj_priv = obj->driver_private;
4012
4013         if (obj_priv->madv != I915_MADV_WILLNEED) {
4014                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4015                 drm_gem_object_unreference(obj);
4016                 mutex_unlock(&dev->struct_mutex);
4017                 return -EINVAL;
4018         }
4019
4020         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4021                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4022                           args->handle);
4023                 drm_gem_object_unreference(obj);
4024                 mutex_unlock(&dev->struct_mutex);
4025                 return -EINVAL;
4026         }
4027
4028         obj_priv->user_pin_count++;
4029         obj_priv->pin_filp = file_priv;
4030         if (obj_priv->user_pin_count == 1) {
4031                 ret = i915_gem_object_pin(obj, args->alignment);
4032                 if (ret != 0) {
4033                         drm_gem_object_unreference(obj);
4034                         mutex_unlock(&dev->struct_mutex);
4035                         return ret;
4036                 }
4037         }
4038
4039         /* XXX - flush the CPU caches for pinned objects
4040          * as the X server doesn't manage domains yet
4041          */
4042         i915_gem_object_flush_cpu_write_domain(obj);
4043         args->offset = obj_priv->gtt_offset;
4044         drm_gem_object_unreference(obj);
4045         mutex_unlock(&dev->struct_mutex);
4046
4047         return 0;
4048 }
4049
4050 int
4051 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4052                      struct drm_file *file_priv)
4053 {
4054         struct drm_i915_gem_pin *args = data;
4055         struct drm_gem_object *obj;
4056         struct drm_i915_gem_object *obj_priv;
4057
4058         mutex_lock(&dev->struct_mutex);
4059
4060         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4061         if (obj == NULL) {
4062                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4063                           args->handle);
4064                 mutex_unlock(&dev->struct_mutex);
4065                 return -EBADF;
4066         }
4067
4068         obj_priv = obj->driver_private;
4069         if (obj_priv->pin_filp != file_priv) {
4070                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4071                           args->handle);
4072                 drm_gem_object_unreference(obj);
4073                 mutex_unlock(&dev->struct_mutex);
4074                 return -EINVAL;
4075         }
4076         obj_priv->user_pin_count--;
4077         if (obj_priv->user_pin_count == 0) {
4078                 obj_priv->pin_filp = NULL;
4079                 i915_gem_object_unpin(obj);
4080         }
4081
4082         drm_gem_object_unreference(obj);
4083         mutex_unlock(&dev->struct_mutex);
4084         return 0;
4085 }
4086
4087 int
4088 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4089                     struct drm_file *file_priv)
4090 {
4091         struct drm_i915_gem_busy *args = data;
4092         struct drm_gem_object *obj;
4093         struct drm_i915_gem_object *obj_priv;
4094
4095         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4096         if (obj == NULL) {
4097                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4098                           args->handle);
4099                 return -EBADF;
4100         }
4101
4102         mutex_lock(&dev->struct_mutex);
4103         /* Update the active list for the hardware's current position.
4104          * Otherwise this only updates on a delayed timer or when irqs are
4105          * actually unmasked, and our working set ends up being larger than
4106          * required.
4107          */
4108         i915_gem_retire_requests(dev);
4109
4110         obj_priv = obj->driver_private;
4111         /* Don't count being on the flushing list against the object being
4112          * done.  Otherwise, a buffer left on the flushing list but not getting
4113          * flushed (because nobody's flushing that domain) won't ever return
4114          * unbusy and get reused by libdrm's bo cache.  The other expected
4115          * consumer of this interface, OpenGL's occlusion queries, also specs
4116          * that the objects get unbusy "eventually" without any interference.
4117          */
4118         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4119
4120         drm_gem_object_unreference(obj);
4121         mutex_unlock(&dev->struct_mutex);
4122         return 0;
4123 }
4124
4125 int
4126 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4127                         struct drm_file *file_priv)
4128 {
4129     return i915_gem_ring_throttle(dev, file_priv);
4130 }
4131
4132 int
4133 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4134                        struct drm_file *file_priv)
4135 {
4136         struct drm_i915_gem_madvise *args = data;
4137         struct drm_gem_object *obj;
4138         struct drm_i915_gem_object *obj_priv;
4139
4140         switch (args->madv) {
4141         case I915_MADV_DONTNEED:
4142         case I915_MADV_WILLNEED:
4143             break;
4144         default:
4145             return -EINVAL;
4146         }
4147
4148         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4149         if (obj == NULL) {
4150                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4151                           args->handle);
4152                 return -EBADF;
4153         }
4154
4155         mutex_lock(&dev->struct_mutex);
4156         obj_priv = obj->driver_private;
4157
4158         if (obj_priv->pin_count) {
4159                 drm_gem_object_unreference(obj);
4160                 mutex_unlock(&dev->struct_mutex);
4161
4162                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4163                 return -EINVAL;
4164         }
4165
4166         if (obj_priv->madv != __I915_MADV_PURGED)
4167                 obj_priv->madv = args->madv;
4168
4169         /* if the object is no longer bound, discard its backing storage */
4170         if (i915_gem_object_is_purgeable(obj_priv) &&
4171             obj_priv->gtt_space == NULL)
4172                 i915_gem_object_truncate(obj);
4173
4174         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4175
4176         drm_gem_object_unreference(obj);
4177         mutex_unlock(&dev->struct_mutex);
4178
4179         return 0;
4180 }
4181
4182 int i915_gem_init_object(struct drm_gem_object *obj)
4183 {
4184         struct drm_i915_gem_object *obj_priv;
4185
4186         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
4187         if (obj_priv == NULL)
4188                 return -ENOMEM;
4189
4190         /*
4191          * We've just allocated pages from the kernel,
4192          * so they've just been written by the CPU with
4193          * zeros. They'll need to be clflushed before we
4194          * use them with the GPU.
4195          */
4196         obj->write_domain = I915_GEM_DOMAIN_CPU;
4197         obj->read_domains = I915_GEM_DOMAIN_CPU;
4198
4199         obj_priv->agp_type = AGP_USER_MEMORY;
4200
4201         obj->driver_private = obj_priv;
4202         obj_priv->obj = obj;
4203         obj_priv->fence_reg = I915_FENCE_REG_NONE;
4204         INIT_LIST_HEAD(&obj_priv->list);
4205         INIT_LIST_HEAD(&obj_priv->fence_list);
4206         obj_priv->madv = I915_MADV_WILLNEED;
4207
4208         trace_i915_gem_object_create(obj);
4209
4210         return 0;
4211 }
4212
4213 void i915_gem_free_object(struct drm_gem_object *obj)
4214 {
4215         struct drm_device *dev = obj->dev;
4216         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4217
4218         trace_i915_gem_object_destroy(obj);
4219
4220         while (obj_priv->pin_count > 0)
4221                 i915_gem_object_unpin(obj);
4222
4223         if (obj_priv->phys_obj)
4224                 i915_gem_detach_phys_object(dev, obj);
4225
4226         i915_gem_object_unbind(obj);
4227
4228         if (obj_priv->mmap_offset)
4229                 i915_gem_free_mmap_offset(obj);
4230
4231         kfree(obj_priv->page_cpu_valid);
4232         kfree(obj_priv->bit_17);
4233         kfree(obj->driver_private);
4234 }
4235
4236 /** Unbinds all inactive objects. */
4237 static int
4238 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4239 {
4240         drm_i915_private_t *dev_priv = dev->dev_private;
4241
4242         while (!list_empty(&dev_priv->mm.inactive_list)) {
4243                 struct drm_gem_object *obj;
4244                 int ret;
4245
4246                 obj = list_first_entry(&dev_priv->mm.inactive_list,
4247                                        struct drm_i915_gem_object,
4248                                        list)->obj;
4249
4250                 ret = i915_gem_object_unbind(obj);
4251                 if (ret != 0) {
4252                         DRM_ERROR("Error unbinding object: %d\n", ret);
4253                         return ret;
4254                 }
4255         }
4256
4257         return 0;
4258 }
4259
4260 int
4261 i915_gem_idle(struct drm_device *dev)
4262 {
4263         drm_i915_private_t *dev_priv = dev->dev_private;
4264         uint32_t seqno, cur_seqno, last_seqno;
4265         int stuck, ret;
4266
4267         mutex_lock(&dev->struct_mutex);
4268
4269         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
4270                 mutex_unlock(&dev->struct_mutex);
4271                 return 0;
4272         }
4273
4274         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4275          * We need to replace this with a semaphore, or something.
4276          */
4277         dev_priv->mm.suspended = 1;
4278         del_timer(&dev_priv->hangcheck_timer);
4279
4280         /* Cancel the retire work handler, wait for it to finish if running
4281          */
4282         mutex_unlock(&dev->struct_mutex);
4283         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4284         mutex_lock(&dev->struct_mutex);
4285
4286         i915_kernel_lost_context(dev);
4287
4288         /* Flush the GPU along with all non-CPU write domains
4289          */
4290         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
4291         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
4292
4293         if (seqno == 0) {
4294                 mutex_unlock(&dev->struct_mutex);
4295                 return -ENOMEM;
4296         }
4297
4298         dev_priv->mm.waiting_gem_seqno = seqno;
4299         last_seqno = 0;
4300         stuck = 0;
4301         for (;;) {
4302                 cur_seqno = i915_get_gem_seqno(dev);
4303                 if (i915_seqno_passed(cur_seqno, seqno))
4304                         break;
4305                 if (last_seqno == cur_seqno) {
4306                         if (stuck++ > 100) {
4307                                 DRM_ERROR("hardware wedged\n");
4308                                 atomic_set(&dev_priv->mm.wedged, 1);
4309                                 DRM_WAKEUP(&dev_priv->irq_queue);
4310                                 break;
4311                         }
4312                 }
4313                 msleep(10);
4314                 last_seqno = cur_seqno;
4315         }
4316         dev_priv->mm.waiting_gem_seqno = 0;
4317
4318         i915_gem_retire_requests(dev);
4319
4320         spin_lock(&dev_priv->mm.active_list_lock);
4321         if (!atomic_read(&dev_priv->mm.wedged)) {
4322                 /* Active and flushing should now be empty as we've
4323                  * waited for a sequence higher than any pending execbuffer
4324                  */
4325                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4326                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4327                 /* Request should now be empty as we've also waited
4328                  * for the last request in the list
4329                  */
4330                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4331         }
4332
4333         /* Empty the active and flushing lists to inactive.  If there's
4334          * anything left at this point, it means that we're wedged and
4335          * nothing good's going to happen by leaving them there.  So strip
4336          * the GPU domains and just stuff them onto inactive.
4337          */
4338         while (!list_empty(&dev_priv->mm.active_list)) {
4339                 struct drm_gem_object *obj;
4340                 uint32_t old_write_domain;
4341
4342                 obj = list_first_entry(&dev_priv->mm.active_list,
4343                                        struct drm_i915_gem_object,
4344                                        list)->obj;
4345                 old_write_domain = obj->write_domain;
4346                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4347                 i915_gem_object_move_to_inactive(obj);
4348
4349                 trace_i915_gem_object_change_domain(obj,
4350                                                     obj->read_domains,
4351                                                     old_write_domain);
4352         }
4353         spin_unlock(&dev_priv->mm.active_list_lock);
4354
4355         while (!list_empty(&dev_priv->mm.flushing_list)) {
4356                 struct drm_gem_object *obj;
4357                 uint32_t old_write_domain;
4358
4359                 obj = list_first_entry(&dev_priv->mm.flushing_list,
4360                                        struct drm_i915_gem_object,
4361                                        list)->obj;
4362                 old_write_domain = obj->write_domain;
4363                 obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4364                 i915_gem_object_move_to_inactive(obj);
4365
4366                 trace_i915_gem_object_change_domain(obj,
4367                                                     obj->read_domains,
4368                                                     old_write_domain);
4369         }
4370
4371
4372         /* Move all inactive buffers out of the GTT. */
4373         ret = i915_gem_evict_from_inactive_list(dev);
4374         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4375         if (ret) {
4376                 mutex_unlock(&dev->struct_mutex);
4377                 return ret;
4378         }
4379
4380         i915_gem_cleanup_ringbuffer(dev);
4381         mutex_unlock(&dev->struct_mutex);
4382
4383         return 0;
4384 }
4385
4386 static int
4387 i915_gem_init_hws(struct drm_device *dev)
4388 {
4389         drm_i915_private_t *dev_priv = dev->dev_private;
4390         struct drm_gem_object *obj;
4391         struct drm_i915_gem_object *obj_priv;
4392         int ret;
4393
4394         /* If we need a physical address for the status page, it's already
4395          * initialized at driver load time.
4396          */
4397         if (!I915_NEED_GFX_HWS(dev))
4398                 return 0;
4399
4400         obj = drm_gem_object_alloc(dev, 4096);
4401         if (obj == NULL) {
4402                 DRM_ERROR("Failed to allocate status page\n");
4403                 return -ENOMEM;
4404         }
4405         obj_priv = obj->driver_private;
4406         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4407
4408         ret = i915_gem_object_pin(obj, 4096);
4409         if (ret != 0) {
4410                 drm_gem_object_unreference(obj);
4411                 return ret;
4412         }
4413
4414         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4415
4416         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4417         if (dev_priv->hw_status_page == NULL) {
4418                 DRM_ERROR("Failed to map status page.\n");
4419                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4420                 i915_gem_object_unpin(obj);
4421                 drm_gem_object_unreference(obj);
4422                 return -EINVAL;
4423         }
4424         dev_priv->hws_obj = obj;
4425         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4426         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4427         I915_READ(HWS_PGA); /* posting read */
4428         DRM_DEBUG_DRIVER("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4429
4430         return 0;
4431 }
4432
4433 static void
4434 i915_gem_cleanup_hws(struct drm_device *dev)
4435 {
4436         drm_i915_private_t *dev_priv = dev->dev_private;
4437         struct drm_gem_object *obj;
4438         struct drm_i915_gem_object *obj_priv;
4439
4440         if (dev_priv->hws_obj == NULL)
4441                 return;
4442
4443         obj = dev_priv->hws_obj;
4444         obj_priv = obj->driver_private;
4445
4446         kunmap(obj_priv->pages[0]);
4447         i915_gem_object_unpin(obj);
4448         drm_gem_object_unreference(obj);
4449         dev_priv->hws_obj = NULL;
4450
4451         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4452         dev_priv->hw_status_page = NULL;
4453
4454         /* Write high address into HWS_PGA when disabling. */
4455         I915_WRITE(HWS_PGA, 0x1ffff000);
4456 }
4457
4458 int
4459 i915_gem_init_ringbuffer(struct drm_device *dev)
4460 {
4461         drm_i915_private_t *dev_priv = dev->dev_private;
4462         struct drm_gem_object *obj;
4463         struct drm_i915_gem_object *obj_priv;
4464         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4465         int ret;
4466         u32 head;
4467
4468         ret = i915_gem_init_hws(dev);
4469         if (ret != 0)
4470                 return ret;
4471
4472         obj = drm_gem_object_alloc(dev, 128 * 1024);
4473         if (obj == NULL) {
4474                 DRM_ERROR("Failed to allocate ringbuffer\n");
4475                 i915_gem_cleanup_hws(dev);
4476                 return -ENOMEM;
4477         }
4478         obj_priv = obj->driver_private;
4479
4480         ret = i915_gem_object_pin(obj, 4096);
4481         if (ret != 0) {
4482                 drm_gem_object_unreference(obj);
4483                 i915_gem_cleanup_hws(dev);
4484                 return ret;
4485         }
4486
4487         /* Set up the kernel mapping for the ring. */
4488         ring->Size = obj->size;
4489
4490         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4491         ring->map.size = obj->size;
4492         ring->map.type = 0;
4493         ring->map.flags = 0;
4494         ring->map.mtrr = 0;
4495
4496         drm_core_ioremap_wc(&ring->map, dev);
4497         if (ring->map.handle == NULL) {
4498                 DRM_ERROR("Failed to map ringbuffer.\n");
4499                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4500                 i915_gem_object_unpin(obj);
4501                 drm_gem_object_unreference(obj);
4502                 i915_gem_cleanup_hws(dev);
4503                 return -EINVAL;
4504         }
4505         ring->ring_obj = obj;
4506         ring->virtual_start = ring->map.handle;
4507
4508         /* Stop the ring if it's running. */
4509         I915_WRITE(PRB0_CTL, 0);
4510         I915_WRITE(PRB0_TAIL, 0);
4511         I915_WRITE(PRB0_HEAD, 0);
4512
4513         /* Initialize the ring. */
4514         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4515         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4516
4517         /* G45 ring initialization fails to reset head to zero */
4518         if (head != 0) {
4519                 DRM_ERROR("Ring head not reset to zero "
4520                           "ctl %08x head %08x tail %08x start %08x\n",
4521                           I915_READ(PRB0_CTL),
4522                           I915_READ(PRB0_HEAD),
4523                           I915_READ(PRB0_TAIL),
4524                           I915_READ(PRB0_START));
4525                 I915_WRITE(PRB0_HEAD, 0);
4526
4527                 DRM_ERROR("Ring head forced to zero "
4528                           "ctl %08x head %08x tail %08x start %08x\n",
4529                           I915_READ(PRB0_CTL),
4530                           I915_READ(PRB0_HEAD),
4531                           I915_READ(PRB0_TAIL),
4532                           I915_READ(PRB0_START));
4533         }
4534
4535         I915_WRITE(PRB0_CTL,
4536                    ((obj->size - 4096) & RING_NR_PAGES) |
4537                    RING_NO_REPORT |
4538                    RING_VALID);
4539
4540         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4541
4542         /* If the head is still not zero, the ring is dead */
4543         if (head != 0) {
4544                 DRM_ERROR("Ring initialization failed "
4545                           "ctl %08x head %08x tail %08x start %08x\n",
4546                           I915_READ(PRB0_CTL),
4547                           I915_READ(PRB0_HEAD),
4548                           I915_READ(PRB0_TAIL),
4549                           I915_READ(PRB0_START));
4550                 return -EIO;
4551         }
4552
4553         /* Update our cache of the ring state */
4554         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4555                 i915_kernel_lost_context(dev);
4556         else {
4557                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4558                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4559                 ring->space = ring->head - (ring->tail + 8);
4560                 if (ring->space < 0)
4561                         ring->space += ring->Size;
4562         }
4563
4564         return 0;
4565 }
4566
4567 void
4568 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4569 {
4570         drm_i915_private_t *dev_priv = dev->dev_private;
4571
4572         if (dev_priv->ring.ring_obj == NULL)
4573                 return;
4574
4575         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4576
4577         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4578         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4579         dev_priv->ring.ring_obj = NULL;
4580         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4581
4582         i915_gem_cleanup_hws(dev);
4583 }
4584
4585 int
4586 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4587                        struct drm_file *file_priv)
4588 {
4589         drm_i915_private_t *dev_priv = dev->dev_private;
4590         int ret;
4591
4592         if (drm_core_check_feature(dev, DRIVER_MODESET))
4593                 return 0;
4594
4595         if (atomic_read(&dev_priv->mm.wedged)) {
4596                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4597                 atomic_set(&dev_priv->mm.wedged, 0);
4598         }
4599
4600         mutex_lock(&dev->struct_mutex);
4601         dev_priv->mm.suspended = 0;
4602
4603         ret = i915_gem_init_ringbuffer(dev);
4604         if (ret != 0) {
4605                 mutex_unlock(&dev->struct_mutex);
4606                 return ret;
4607         }
4608
4609         spin_lock(&dev_priv->mm.active_list_lock);
4610         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4611         spin_unlock(&dev_priv->mm.active_list_lock);
4612
4613         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4614         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4615         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4616         mutex_unlock(&dev->struct_mutex);
4617
4618         drm_irq_install(dev);
4619
4620         return 0;
4621 }
4622
4623 int
4624 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4625                        struct drm_file *file_priv)
4626 {
4627         if (drm_core_check_feature(dev, DRIVER_MODESET))
4628                 return 0;
4629
4630         drm_irq_uninstall(dev);
4631         return i915_gem_idle(dev);
4632 }
4633
4634 void
4635 i915_gem_lastclose(struct drm_device *dev)
4636 {
4637         int ret;
4638
4639         if (drm_core_check_feature(dev, DRIVER_MODESET))
4640                 return;
4641
4642         ret = i915_gem_idle(dev);
4643         if (ret)
4644                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4645 }
4646
4647 void
4648 i915_gem_load(struct drm_device *dev)
4649 {
4650         int i;
4651         drm_i915_private_t *dev_priv = dev->dev_private;
4652
4653         spin_lock_init(&dev_priv->mm.active_list_lock);
4654         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4655         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4656         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4657         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4658         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4659         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4660                           i915_gem_retire_work_handler);
4661         dev_priv->mm.next_gem_seqno = 1;
4662
4663         spin_lock(&shrink_list_lock);
4664         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4665         spin_unlock(&shrink_list_lock);
4666
4667         /* Old X drivers will take 0-2 for front, back, depth buffers */
4668         dev_priv->fence_reg_start = 3;
4669
4670         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4671                 dev_priv->num_fence_regs = 16;
4672         else
4673                 dev_priv->num_fence_regs = 8;
4674
4675         /* Initialize fence registers to zero */
4676         if (IS_I965G(dev)) {
4677                 for (i = 0; i < 16; i++)
4678                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4679         } else {
4680                 for (i = 0; i < 8; i++)
4681                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4682                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4683                         for (i = 0; i < 8; i++)
4684                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4685         }
4686         i915_gem_detect_bit_6_swizzle(dev);
4687         init_waitqueue_head(&dev_priv->pending_flip_queue);
4688 }
4689
4690 /*
4691  * Create a physically contiguous memory object for this object
4692  * e.g. for cursor + overlay regs
4693  */
4694 int i915_gem_init_phys_object(struct drm_device *dev,
4695                               int id, int size)
4696 {
4697         drm_i915_private_t *dev_priv = dev->dev_private;
4698         struct drm_i915_gem_phys_object *phys_obj;
4699         int ret;
4700
4701         if (dev_priv->mm.phys_objs[id - 1] || !size)
4702                 return 0;
4703
4704         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4705         if (!phys_obj)
4706                 return -ENOMEM;
4707
4708         phys_obj->id = id;
4709
4710         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4711         if (!phys_obj->handle) {
4712                 ret = -ENOMEM;
4713                 goto kfree_obj;
4714         }
4715 #ifdef CONFIG_X86
4716         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4717 #endif
4718
4719         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4720
4721         return 0;
4722 kfree_obj:
4723         kfree(phys_obj);
4724         return ret;
4725 }
4726
4727 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4728 {
4729         drm_i915_private_t *dev_priv = dev->dev_private;
4730         struct drm_i915_gem_phys_object *phys_obj;
4731
4732         if (!dev_priv->mm.phys_objs[id - 1])
4733                 return;
4734
4735         phys_obj = dev_priv->mm.phys_objs[id - 1];
4736         if (phys_obj->cur_obj) {
4737                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4738         }
4739
4740 #ifdef CONFIG_X86
4741         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4742 #endif
4743         drm_pci_free(dev, phys_obj->handle);
4744         kfree(phys_obj);
4745         dev_priv->mm.phys_objs[id - 1] = NULL;
4746 }
4747
4748 void i915_gem_free_all_phys_object(struct drm_device *dev)
4749 {
4750         int i;
4751
4752         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4753                 i915_gem_free_phys_object(dev, i);
4754 }
4755
4756 void i915_gem_detach_phys_object(struct drm_device *dev,
4757                                  struct drm_gem_object *obj)
4758 {
4759         struct drm_i915_gem_object *obj_priv;
4760         int i;
4761         int ret;
4762         int page_count;
4763
4764         obj_priv = obj->driver_private;
4765         if (!obj_priv->phys_obj)
4766                 return;
4767
4768         ret = i915_gem_object_get_pages(obj);
4769         if (ret)
4770                 goto out;
4771
4772         page_count = obj->size / PAGE_SIZE;
4773
4774         for (i = 0; i < page_count; i++) {
4775                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4776                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4777
4778                 memcpy(dst, src, PAGE_SIZE);
4779                 kunmap_atomic(dst, KM_USER0);
4780         }
4781         drm_clflush_pages(obj_priv->pages, page_count);
4782         drm_agp_chipset_flush(dev);
4783
4784         i915_gem_object_put_pages(obj);
4785 out:
4786         obj_priv->phys_obj->cur_obj = NULL;
4787         obj_priv->phys_obj = NULL;
4788 }
4789
4790 int
4791 i915_gem_attach_phys_object(struct drm_device *dev,
4792                             struct drm_gem_object *obj, int id)
4793 {
4794         drm_i915_private_t *dev_priv = dev->dev_private;
4795         struct drm_i915_gem_object *obj_priv;
4796         int ret = 0;
4797         int page_count;
4798         int i;
4799
4800         if (id > I915_MAX_PHYS_OBJECT)
4801                 return -EINVAL;
4802
4803         obj_priv = obj->driver_private;
4804
4805         if (obj_priv->phys_obj) {
4806                 if (obj_priv->phys_obj->id == id)
4807                         return 0;
4808                 i915_gem_detach_phys_object(dev, obj);
4809         }
4810
4811
4812         /* create a new object */
4813         if (!dev_priv->mm.phys_objs[id - 1]) {
4814                 ret = i915_gem_init_phys_object(dev, id,
4815                                                 obj->size);
4816                 if (ret) {
4817                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4818                         goto out;
4819                 }
4820         }
4821
4822         /* bind to the object */
4823         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4824         obj_priv->phys_obj->cur_obj = obj;
4825
4826         ret = i915_gem_object_get_pages(obj);
4827         if (ret) {
4828                 DRM_ERROR("failed to get page list\n");
4829                 goto out;
4830         }
4831
4832         page_count = obj->size / PAGE_SIZE;
4833
4834         for (i = 0; i < page_count; i++) {
4835                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4836                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4837
4838                 memcpy(dst, src, PAGE_SIZE);
4839                 kunmap_atomic(src, KM_USER0);
4840         }
4841
4842         i915_gem_object_put_pages(obj);
4843
4844         return 0;
4845 out:
4846         return ret;
4847 }
4848
4849 static int
4850 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4851                      struct drm_i915_gem_pwrite *args,
4852                      struct drm_file *file_priv)
4853 {
4854         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4855         void *obj_addr;
4856         int ret;
4857         char __user *user_data;
4858
4859         user_data = (char __user *) (uintptr_t) args->data_ptr;
4860         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4861
4862         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4863         ret = copy_from_user(obj_addr, user_data, args->size);
4864         if (ret)
4865                 return -EFAULT;
4866
4867         drm_agp_chipset_flush(dev);
4868         return 0;
4869 }
4870
4871 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4872 {
4873         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4874
4875         /* Clean up our request list when the client is going away, so that
4876          * later retire_requests won't dereference our soon-to-be-gone
4877          * file_priv.
4878          */
4879         mutex_lock(&dev->struct_mutex);
4880         while (!list_empty(&i915_file_priv->mm.request_list))
4881                 list_del_init(i915_file_priv->mm.request_list.next);
4882         mutex_unlock(&dev->struct_mutex);
4883 }
4884
4885 static int
4886 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4887 {
4888         drm_i915_private_t *dev_priv, *next_dev;
4889         struct drm_i915_gem_object *obj_priv, *next_obj;
4890         int cnt = 0;
4891         int would_deadlock = 1;
4892
4893         /* "fast-path" to count number of available objects */
4894         if (nr_to_scan == 0) {
4895                 spin_lock(&shrink_list_lock);
4896                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4897                         struct drm_device *dev = dev_priv->dev;
4898
4899                         if (mutex_trylock(&dev->struct_mutex)) {
4900                                 list_for_each_entry(obj_priv,
4901                                                     &dev_priv->mm.inactive_list,
4902                                                     list)
4903                                         cnt++;
4904                                 mutex_unlock(&dev->struct_mutex);
4905                         }
4906                 }
4907                 spin_unlock(&shrink_list_lock);
4908
4909                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4910         }
4911
4912         spin_lock(&shrink_list_lock);
4913
4914         /* first scan for clean buffers */
4915         list_for_each_entry_safe(dev_priv, next_dev,
4916                                  &shrink_list, mm.shrink_list) {
4917                 struct drm_device *dev = dev_priv->dev;
4918
4919                 if (! mutex_trylock(&dev->struct_mutex))
4920                         continue;
4921
4922                 spin_unlock(&shrink_list_lock);
4923
4924                 i915_gem_retire_requests(dev);
4925
4926                 list_for_each_entry_safe(obj_priv, next_obj,
4927                                          &dev_priv->mm.inactive_list,
4928                                          list) {
4929                         if (i915_gem_object_is_purgeable(obj_priv)) {
4930                                 i915_gem_object_unbind(obj_priv->obj);
4931                                 if (--nr_to_scan <= 0)
4932                                         break;
4933                         }
4934                 }
4935
4936                 spin_lock(&shrink_list_lock);
4937                 mutex_unlock(&dev->struct_mutex);
4938
4939                 would_deadlock = 0;
4940
4941                 if (nr_to_scan <= 0)
4942                         break;
4943         }
4944
4945         /* second pass, evict/count anything still on the inactive list */
4946         list_for_each_entry_safe(dev_priv, next_dev,
4947                                  &shrink_list, mm.shrink_list) {
4948                 struct drm_device *dev = dev_priv->dev;
4949
4950                 if (! mutex_trylock(&dev->struct_mutex))
4951                         continue;
4952
4953                 spin_unlock(&shrink_list_lock);
4954
4955                 list_for_each_entry_safe(obj_priv, next_obj,
4956                                          &dev_priv->mm.inactive_list,
4957                                          list) {
4958                         if (nr_to_scan > 0) {
4959                                 i915_gem_object_unbind(obj_priv->obj);
4960                                 nr_to_scan--;
4961                         } else
4962                                 cnt++;
4963                 }
4964
4965                 spin_lock(&shrink_list_lock);
4966                 mutex_unlock(&dev->struct_mutex);
4967
4968                 would_deadlock = 0;
4969         }
4970
4971         spin_unlock(&shrink_list_lock);
4972
4973         if (would_deadlock)
4974                 return -1;
4975         else if (cnt > 0)
4976                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4977         else
4978                 return 0;
4979 }
4980
4981 static struct shrinker shrinker = {
4982         .shrink = i915_gem_shrink,
4983         .seeks = DEFAULT_SEEKS,
4984 };
4985
4986 __init void
4987 i915_gem_shrinker_init(void)
4988 {
4989     register_shrinker(&shrinker);
4990 }
4991
4992 __exit void
4993 i915_gem_shrinker_exit(void)
4994 {
4995     unregister_shrinker(&shrinker);
4996 }