drm/i915: Install fence register for tiled scanout on i915
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41                                              int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43                                                      uint64_t offset,
44                                                      uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48                                            unsigned alignment);
49 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
50 static int i915_gem_evict_something(struct drm_device *dev);
51 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
52                                 struct drm_i915_gem_pwrite *args,
53                                 struct drm_file *file_priv);
54
55 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
56                      unsigned long end)
57 {
58         drm_i915_private_t *dev_priv = dev->dev_private;
59
60         if (start >= end ||
61             (start & (PAGE_SIZE - 1)) != 0 ||
62             (end & (PAGE_SIZE - 1)) != 0) {
63                 return -EINVAL;
64         }
65
66         drm_mm_init(&dev_priv->mm.gtt_space, start,
67                     end - start);
68
69         dev->gtt_total = (uint32_t) (end - start);
70
71         return 0;
72 }
73
74 int
75 i915_gem_init_ioctl(struct drm_device *dev, void *data,
76                     struct drm_file *file_priv)
77 {
78         struct drm_i915_gem_init *args = data;
79         int ret;
80
81         mutex_lock(&dev->struct_mutex);
82         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
83         mutex_unlock(&dev->struct_mutex);
84
85         return ret;
86 }
87
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90                             struct drm_file *file_priv)
91 {
92         struct drm_i915_gem_get_aperture *args = data;
93
94         if (!(dev->driver->driver_features & DRIVER_GEM))
95                 return -ENODEV;
96
97         args->aper_size = dev->gtt_total;
98         args->aper_available_size = (args->aper_size -
99                                      atomic_read(&dev->pin_memory));
100
101         return 0;
102 }
103
104
105 /**
106  * Creates a new mm object and returns a handle to it.
107  */
108 int
109 i915_gem_create_ioctl(struct drm_device *dev, void *data,
110                       struct drm_file *file_priv)
111 {
112         struct drm_i915_gem_create *args = data;
113         struct drm_gem_object *obj;
114         int handle, ret;
115
116         args->size = roundup(args->size, PAGE_SIZE);
117
118         /* Allocate the new object */
119         obj = drm_gem_object_alloc(dev, args->size);
120         if (obj == NULL)
121                 return -ENOMEM;
122
123         ret = drm_gem_handle_create(file_priv, obj, &handle);
124         mutex_lock(&dev->struct_mutex);
125         drm_gem_object_handle_unreference(obj);
126         mutex_unlock(&dev->struct_mutex);
127
128         if (ret)
129                 return ret;
130
131         args->handle = handle;
132
133         return 0;
134 }
135
136 static inline int
137 fast_shmem_read(struct page **pages,
138                 loff_t page_base, int page_offset,
139                 char __user *data,
140                 int length)
141 {
142         char __iomem *vaddr;
143         int unwritten;
144
145         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
146         if (vaddr == NULL)
147                 return -ENOMEM;
148         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
149         kunmap_atomic(vaddr, KM_USER0);
150
151         if (unwritten)
152                 return -EFAULT;
153
154         return 0;
155 }
156
157 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
158 {
159         drm_i915_private_t *dev_priv = obj->dev->dev_private;
160         struct drm_i915_gem_object *obj_priv = obj->driver_private;
161
162         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
163                 obj_priv->tiling_mode != I915_TILING_NONE;
164 }
165
166 static inline int
167 slow_shmem_copy(struct page *dst_page,
168                 int dst_offset,
169                 struct page *src_page,
170                 int src_offset,
171                 int length)
172 {
173         char *dst_vaddr, *src_vaddr;
174
175         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
176         if (dst_vaddr == NULL)
177                 return -ENOMEM;
178
179         src_vaddr = kmap_atomic(src_page, KM_USER1);
180         if (src_vaddr == NULL) {
181                 kunmap_atomic(dst_vaddr, KM_USER0);
182                 return -ENOMEM;
183         }
184
185         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
186
187         kunmap_atomic(src_vaddr, KM_USER1);
188         kunmap_atomic(dst_vaddr, KM_USER0);
189
190         return 0;
191 }
192
193 static inline int
194 slow_shmem_bit17_copy(struct page *gpu_page,
195                       int gpu_offset,
196                       struct page *cpu_page,
197                       int cpu_offset,
198                       int length,
199                       int is_read)
200 {
201         char *gpu_vaddr, *cpu_vaddr;
202
203         /* Use the unswizzled path if this page isn't affected. */
204         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
205                 if (is_read)
206                         return slow_shmem_copy(cpu_page, cpu_offset,
207                                                gpu_page, gpu_offset, length);
208                 else
209                         return slow_shmem_copy(gpu_page, gpu_offset,
210                                                cpu_page, cpu_offset, length);
211         }
212
213         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
214         if (gpu_vaddr == NULL)
215                 return -ENOMEM;
216
217         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
218         if (cpu_vaddr == NULL) {
219                 kunmap_atomic(gpu_vaddr, KM_USER0);
220                 return -ENOMEM;
221         }
222
223         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224          * XORing with the other bits (A9 for Y, A9 and A10 for X)
225          */
226         while (length > 0) {
227                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228                 int this_length = min(cacheline_end - gpu_offset, length);
229                 int swizzled_gpu_offset = gpu_offset ^ 64;
230
231                 if (is_read) {
232                         memcpy(cpu_vaddr + cpu_offset,
233                                gpu_vaddr + swizzled_gpu_offset,
234                                this_length);
235                 } else {
236                         memcpy(gpu_vaddr + swizzled_gpu_offset,
237                                cpu_vaddr + cpu_offset,
238                                this_length);
239                 }
240                 cpu_offset += this_length;
241                 gpu_offset += this_length;
242                 length -= this_length;
243         }
244
245         kunmap_atomic(cpu_vaddr, KM_USER1);
246         kunmap_atomic(gpu_vaddr, KM_USER0);
247
248         return 0;
249 }
250
251 /**
252  * This is the fast shmem pread path, which attempts to copy_from_user directly
253  * from the backing pages of the object to the user's address space.  On a
254  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255  */
256 static int
257 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258                           struct drm_i915_gem_pread *args,
259                           struct drm_file *file_priv)
260 {
261         struct drm_i915_gem_object *obj_priv = obj->driver_private;
262         ssize_t remain;
263         loff_t offset, page_base;
264         char __user *user_data;
265         int page_offset, page_length;
266         int ret;
267
268         user_data = (char __user *) (uintptr_t) args->data_ptr;
269         remain = args->size;
270
271         mutex_lock(&dev->struct_mutex);
272
273         ret = i915_gem_object_get_pages(obj);
274         if (ret != 0)
275                 goto fail_unlock;
276
277         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278                                                         args->size);
279         if (ret != 0)
280                 goto fail_put_pages;
281
282         obj_priv = obj->driver_private;
283         offset = args->offset;
284
285         while (remain > 0) {
286                 /* Operation in this page
287                  *
288                  * page_base = page offset within aperture
289                  * page_offset = offset within page
290                  * page_length = bytes to copy for this page
291                  */
292                 page_base = (offset & ~(PAGE_SIZE-1));
293                 page_offset = offset & (PAGE_SIZE-1);
294                 page_length = remain;
295                 if ((page_offset + remain) > PAGE_SIZE)
296                         page_length = PAGE_SIZE - page_offset;
297
298                 ret = fast_shmem_read(obj_priv->pages,
299                                       page_base, page_offset,
300                                       user_data, page_length);
301                 if (ret)
302                         goto fail_put_pages;
303
304                 remain -= page_length;
305                 user_data += page_length;
306                 offset += page_length;
307         }
308
309 fail_put_pages:
310         i915_gem_object_put_pages(obj);
311 fail_unlock:
312         mutex_unlock(&dev->struct_mutex);
313
314         return ret;
315 }
316
317 /**
318  * This is the fallback shmem pread path, which allocates temporary storage
319  * in kernel space to copy_to_user into outside of the struct_mutex, so we
320  * can copy out of the object's backing pages while holding the struct mutex
321  * and not take page faults.
322  */
323 static int
324 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
325                           struct drm_i915_gem_pread *args,
326                           struct drm_file *file_priv)
327 {
328         struct drm_i915_gem_object *obj_priv = obj->driver_private;
329         struct mm_struct *mm = current->mm;
330         struct page **user_pages;
331         ssize_t remain;
332         loff_t offset, pinned_pages, i;
333         loff_t first_data_page, last_data_page, num_pages;
334         int shmem_page_index, shmem_page_offset;
335         int data_page_index,  data_page_offset;
336         int page_length;
337         int ret;
338         uint64_t data_ptr = args->data_ptr;
339         int do_bit17_swizzling;
340
341         remain = args->size;
342
343         /* Pin the user pages containing the data.  We can't fault while
344          * holding the struct mutex, yet we want to hold it while
345          * dereferencing the user data.
346          */
347         first_data_page = data_ptr / PAGE_SIZE;
348         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
349         num_pages = last_data_page - first_data_page + 1;
350
351         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
352         if (user_pages == NULL)
353                 return -ENOMEM;
354
355         down_read(&mm->mmap_sem);
356         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
357                                       num_pages, 1, 0, user_pages, NULL);
358         up_read(&mm->mmap_sem);
359         if (pinned_pages < num_pages) {
360                 ret = -EFAULT;
361                 goto fail_put_user_pages;
362         }
363
364         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
365
366         mutex_lock(&dev->struct_mutex);
367
368         ret = i915_gem_object_get_pages(obj);
369         if (ret != 0)
370                 goto fail_unlock;
371
372         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
373                                                         args->size);
374         if (ret != 0)
375                 goto fail_put_pages;
376
377         obj_priv = obj->driver_private;
378         offset = args->offset;
379
380         while (remain > 0) {
381                 /* Operation in this page
382                  *
383                  * shmem_page_index = page number within shmem file
384                  * shmem_page_offset = offset within page in shmem file
385                  * data_page_index = page number in get_user_pages return
386                  * data_page_offset = offset with data_page_index page.
387                  * page_length = bytes to copy for this page
388                  */
389                 shmem_page_index = offset / PAGE_SIZE;
390                 shmem_page_offset = offset & ~PAGE_MASK;
391                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
392                 data_page_offset = data_ptr & ~PAGE_MASK;
393
394                 page_length = remain;
395                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
396                         page_length = PAGE_SIZE - shmem_page_offset;
397                 if ((data_page_offset + page_length) > PAGE_SIZE)
398                         page_length = PAGE_SIZE - data_page_offset;
399
400                 if (do_bit17_swizzling) {
401                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
402                                                     shmem_page_offset,
403                                                     user_pages[data_page_index],
404                                                     data_page_offset,
405                                                     page_length,
406                                                     1);
407                 } else {
408                         ret = slow_shmem_copy(user_pages[data_page_index],
409                                               data_page_offset,
410                                               obj_priv->pages[shmem_page_index],
411                                               shmem_page_offset,
412                                               page_length);
413                 }
414                 if (ret)
415                         goto fail_put_pages;
416
417                 remain -= page_length;
418                 data_ptr += page_length;
419                 offset += page_length;
420         }
421
422 fail_put_pages:
423         i915_gem_object_put_pages(obj);
424 fail_unlock:
425         mutex_unlock(&dev->struct_mutex);
426 fail_put_user_pages:
427         for (i = 0; i < pinned_pages; i++) {
428                 SetPageDirty(user_pages[i]);
429                 page_cache_release(user_pages[i]);
430         }
431         drm_free_large(user_pages);
432
433         return ret;
434 }
435
436 /**
437  * Reads data from the object referenced by handle.
438  *
439  * On error, the contents of *data are undefined.
440  */
441 int
442 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443                      struct drm_file *file_priv)
444 {
445         struct drm_i915_gem_pread *args = data;
446         struct drm_gem_object *obj;
447         struct drm_i915_gem_object *obj_priv;
448         int ret;
449
450         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
451         if (obj == NULL)
452                 return -EBADF;
453         obj_priv = obj->driver_private;
454
455         /* Bounds check source.
456          *
457          * XXX: This could use review for overflow issues...
458          */
459         if (args->offset > obj->size || args->size > obj->size ||
460             args->offset + args->size > obj->size) {
461                 drm_gem_object_unreference(obj);
462                 return -EINVAL;
463         }
464
465         if (i915_gem_object_needs_bit17_swizzle(obj)) {
466                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
467         } else {
468                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
469                 if (ret != 0)
470                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
471                                                         file_priv);
472         }
473
474         drm_gem_object_unreference(obj);
475
476         return ret;
477 }
478
479 /* This is the fast write path which cannot handle
480  * page faults in the source data
481  */
482
483 static inline int
484 fast_user_write(struct io_mapping *mapping,
485                 loff_t page_base, int page_offset,
486                 char __user *user_data,
487                 int length)
488 {
489         char *vaddr_atomic;
490         unsigned long unwritten;
491
492         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
493         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
494                                                       user_data, length);
495         io_mapping_unmap_atomic(vaddr_atomic);
496         if (unwritten)
497                 return -EFAULT;
498         return 0;
499 }
500
501 /* Here's the write path which can sleep for
502  * page faults
503  */
504
505 static inline int
506 slow_kernel_write(struct io_mapping *mapping,
507                   loff_t gtt_base, int gtt_offset,
508                   struct page *user_page, int user_offset,
509                   int length)
510 {
511         char *src_vaddr, *dst_vaddr;
512         unsigned long unwritten;
513
514         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
515         src_vaddr = kmap_atomic(user_page, KM_USER1);
516         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
517                                                       src_vaddr + user_offset,
518                                                       length);
519         kunmap_atomic(src_vaddr, KM_USER1);
520         io_mapping_unmap_atomic(dst_vaddr);
521         if (unwritten)
522                 return -EFAULT;
523         return 0;
524 }
525
526 static inline int
527 fast_shmem_write(struct page **pages,
528                  loff_t page_base, int page_offset,
529                  char __user *data,
530                  int length)
531 {
532         char __iomem *vaddr;
533         unsigned long unwritten;
534
535         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
536         if (vaddr == NULL)
537                 return -ENOMEM;
538         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
539         kunmap_atomic(vaddr, KM_USER0);
540
541         if (unwritten)
542                 return -EFAULT;
543         return 0;
544 }
545
546 /**
547  * This is the fast pwrite path, where we copy the data directly from the
548  * user into the GTT, uncached.
549  */
550 static int
551 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
552                          struct drm_i915_gem_pwrite *args,
553                          struct drm_file *file_priv)
554 {
555         struct drm_i915_gem_object *obj_priv = obj->driver_private;
556         drm_i915_private_t *dev_priv = dev->dev_private;
557         ssize_t remain;
558         loff_t offset, page_base;
559         char __user *user_data;
560         int page_offset, page_length;
561         int ret;
562
563         user_data = (char __user *) (uintptr_t) args->data_ptr;
564         remain = args->size;
565         if (!access_ok(VERIFY_READ, user_data, remain))
566                 return -EFAULT;
567
568
569         mutex_lock(&dev->struct_mutex);
570         ret = i915_gem_object_pin(obj, 0);
571         if (ret) {
572                 mutex_unlock(&dev->struct_mutex);
573                 return ret;
574         }
575         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
576         if (ret)
577                 goto fail;
578
579         obj_priv = obj->driver_private;
580         offset = obj_priv->gtt_offset + args->offset;
581
582         while (remain > 0) {
583                 /* Operation in this page
584                  *
585                  * page_base = page offset within aperture
586                  * page_offset = offset within page
587                  * page_length = bytes to copy for this page
588                  */
589                 page_base = (offset & ~(PAGE_SIZE-1));
590                 page_offset = offset & (PAGE_SIZE-1);
591                 page_length = remain;
592                 if ((page_offset + remain) > PAGE_SIZE)
593                         page_length = PAGE_SIZE - page_offset;
594
595                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
596                                        page_offset, user_data, page_length);
597
598                 /* If we get a fault while copying data, then (presumably) our
599                  * source page isn't available.  Return the error and we'll
600                  * retry in the slow path.
601                  */
602                 if (ret)
603                         goto fail;
604
605                 remain -= page_length;
606                 user_data += page_length;
607                 offset += page_length;
608         }
609
610 fail:
611         i915_gem_object_unpin(obj);
612         mutex_unlock(&dev->struct_mutex);
613
614         return ret;
615 }
616
617 /**
618  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
619  * the memory and maps it using kmap_atomic for copying.
620  *
621  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
622  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
623  */
624 static int
625 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
626                          struct drm_i915_gem_pwrite *args,
627                          struct drm_file *file_priv)
628 {
629         struct drm_i915_gem_object *obj_priv = obj->driver_private;
630         drm_i915_private_t *dev_priv = dev->dev_private;
631         ssize_t remain;
632         loff_t gtt_page_base, offset;
633         loff_t first_data_page, last_data_page, num_pages;
634         loff_t pinned_pages, i;
635         struct page **user_pages;
636         struct mm_struct *mm = current->mm;
637         int gtt_page_offset, data_page_offset, data_page_index, page_length;
638         int ret;
639         uint64_t data_ptr = args->data_ptr;
640
641         remain = args->size;
642
643         /* Pin the user pages containing the data.  We can't fault while
644          * holding the struct mutex, and all of the pwrite implementations
645          * want to hold it while dereferencing the user data.
646          */
647         first_data_page = data_ptr / PAGE_SIZE;
648         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
649         num_pages = last_data_page - first_data_page + 1;
650
651         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
652         if (user_pages == NULL)
653                 return -ENOMEM;
654
655         down_read(&mm->mmap_sem);
656         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657                                       num_pages, 0, 0, user_pages, NULL);
658         up_read(&mm->mmap_sem);
659         if (pinned_pages < num_pages) {
660                 ret = -EFAULT;
661                 goto out_unpin_pages;
662         }
663
664         mutex_lock(&dev->struct_mutex);
665         ret = i915_gem_object_pin(obj, 0);
666         if (ret)
667                 goto out_unlock;
668
669         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
670         if (ret)
671                 goto out_unpin_object;
672
673         obj_priv = obj->driver_private;
674         offset = obj_priv->gtt_offset + args->offset;
675
676         while (remain > 0) {
677                 /* Operation in this page
678                  *
679                  * gtt_page_base = page offset within aperture
680                  * gtt_page_offset = offset within page in aperture
681                  * data_page_index = page number in get_user_pages return
682                  * data_page_offset = offset with data_page_index page.
683                  * page_length = bytes to copy for this page
684                  */
685                 gtt_page_base = offset & PAGE_MASK;
686                 gtt_page_offset = offset & ~PAGE_MASK;
687                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
688                 data_page_offset = data_ptr & ~PAGE_MASK;
689
690                 page_length = remain;
691                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
692                         page_length = PAGE_SIZE - gtt_page_offset;
693                 if ((data_page_offset + page_length) > PAGE_SIZE)
694                         page_length = PAGE_SIZE - data_page_offset;
695
696                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
697                                         gtt_page_base, gtt_page_offset,
698                                         user_pages[data_page_index],
699                                         data_page_offset,
700                                         page_length);
701
702                 /* If we get a fault while copying data, then (presumably) our
703                  * source page isn't available.  Return the error and we'll
704                  * retry in the slow path.
705                  */
706                 if (ret)
707                         goto out_unpin_object;
708
709                 remain -= page_length;
710                 offset += page_length;
711                 data_ptr += page_length;
712         }
713
714 out_unpin_object:
715         i915_gem_object_unpin(obj);
716 out_unlock:
717         mutex_unlock(&dev->struct_mutex);
718 out_unpin_pages:
719         for (i = 0; i < pinned_pages; i++)
720                 page_cache_release(user_pages[i]);
721         drm_free_large(user_pages);
722
723         return ret;
724 }
725
726 /**
727  * This is the fast shmem pwrite path, which attempts to directly
728  * copy_from_user into the kmapped pages backing the object.
729  */
730 static int
731 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
732                            struct drm_i915_gem_pwrite *args,
733                            struct drm_file *file_priv)
734 {
735         struct drm_i915_gem_object *obj_priv = obj->driver_private;
736         ssize_t remain;
737         loff_t offset, page_base;
738         char __user *user_data;
739         int page_offset, page_length;
740         int ret;
741
742         user_data = (char __user *) (uintptr_t) args->data_ptr;
743         remain = args->size;
744
745         mutex_lock(&dev->struct_mutex);
746
747         ret = i915_gem_object_get_pages(obj);
748         if (ret != 0)
749                 goto fail_unlock;
750
751         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
752         if (ret != 0)
753                 goto fail_put_pages;
754
755         obj_priv = obj->driver_private;
756         offset = args->offset;
757         obj_priv->dirty = 1;
758
759         while (remain > 0) {
760                 /* Operation in this page
761                  *
762                  * page_base = page offset within aperture
763                  * page_offset = offset within page
764                  * page_length = bytes to copy for this page
765                  */
766                 page_base = (offset & ~(PAGE_SIZE-1));
767                 page_offset = offset & (PAGE_SIZE-1);
768                 page_length = remain;
769                 if ((page_offset + remain) > PAGE_SIZE)
770                         page_length = PAGE_SIZE - page_offset;
771
772                 ret = fast_shmem_write(obj_priv->pages,
773                                        page_base, page_offset,
774                                        user_data, page_length);
775                 if (ret)
776                         goto fail_put_pages;
777
778                 remain -= page_length;
779                 user_data += page_length;
780                 offset += page_length;
781         }
782
783 fail_put_pages:
784         i915_gem_object_put_pages(obj);
785 fail_unlock:
786         mutex_unlock(&dev->struct_mutex);
787
788         return ret;
789 }
790
791 /**
792  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
793  * the memory and maps it using kmap_atomic for copying.
794  *
795  * This avoids taking mmap_sem for faulting on the user's address while the
796  * struct_mutex is held.
797  */
798 static int
799 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
800                            struct drm_i915_gem_pwrite *args,
801                            struct drm_file *file_priv)
802 {
803         struct drm_i915_gem_object *obj_priv = obj->driver_private;
804         struct mm_struct *mm = current->mm;
805         struct page **user_pages;
806         ssize_t remain;
807         loff_t offset, pinned_pages, i;
808         loff_t first_data_page, last_data_page, num_pages;
809         int shmem_page_index, shmem_page_offset;
810         int data_page_index,  data_page_offset;
811         int page_length;
812         int ret;
813         uint64_t data_ptr = args->data_ptr;
814         int do_bit17_swizzling;
815
816         remain = args->size;
817
818         /* Pin the user pages containing the data.  We can't fault while
819          * holding the struct mutex, and all of the pwrite implementations
820          * want to hold it while dereferencing the user data.
821          */
822         first_data_page = data_ptr / PAGE_SIZE;
823         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
824         num_pages = last_data_page - first_data_page + 1;
825
826         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
827         if (user_pages == NULL)
828                 return -ENOMEM;
829
830         down_read(&mm->mmap_sem);
831         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
832                                       num_pages, 0, 0, user_pages, NULL);
833         up_read(&mm->mmap_sem);
834         if (pinned_pages < num_pages) {
835                 ret = -EFAULT;
836                 goto fail_put_user_pages;
837         }
838
839         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840
841         mutex_lock(&dev->struct_mutex);
842
843         ret = i915_gem_object_get_pages(obj);
844         if (ret != 0)
845                 goto fail_unlock;
846
847         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
848         if (ret != 0)
849                 goto fail_put_pages;
850
851         obj_priv = obj->driver_private;
852         offset = args->offset;
853         obj_priv->dirty = 1;
854
855         while (remain > 0) {
856                 /* Operation in this page
857                  *
858                  * shmem_page_index = page number within shmem file
859                  * shmem_page_offset = offset within page in shmem file
860                  * data_page_index = page number in get_user_pages return
861                  * data_page_offset = offset with data_page_index page.
862                  * page_length = bytes to copy for this page
863                  */
864                 shmem_page_index = offset / PAGE_SIZE;
865                 shmem_page_offset = offset & ~PAGE_MASK;
866                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
867                 data_page_offset = data_ptr & ~PAGE_MASK;
868
869                 page_length = remain;
870                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
871                         page_length = PAGE_SIZE - shmem_page_offset;
872                 if ((data_page_offset + page_length) > PAGE_SIZE)
873                         page_length = PAGE_SIZE - data_page_offset;
874
875                 if (do_bit17_swizzling) {
876                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
877                                                     shmem_page_offset,
878                                                     user_pages[data_page_index],
879                                                     data_page_offset,
880                                                     page_length,
881                                                     0);
882                 } else {
883                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
884                                               shmem_page_offset,
885                                               user_pages[data_page_index],
886                                               data_page_offset,
887                                               page_length);
888                 }
889                 if (ret)
890                         goto fail_put_pages;
891
892                 remain -= page_length;
893                 data_ptr += page_length;
894                 offset += page_length;
895         }
896
897 fail_put_pages:
898         i915_gem_object_put_pages(obj);
899 fail_unlock:
900         mutex_unlock(&dev->struct_mutex);
901 fail_put_user_pages:
902         for (i = 0; i < pinned_pages; i++)
903                 page_cache_release(user_pages[i]);
904         drm_free_large(user_pages);
905
906         return ret;
907 }
908
909 /**
910  * Writes data to the object referenced by handle.
911  *
912  * On error, the contents of the buffer that were to be modified are undefined.
913  */
914 int
915 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
916                       struct drm_file *file_priv)
917 {
918         struct drm_i915_gem_pwrite *args = data;
919         struct drm_gem_object *obj;
920         struct drm_i915_gem_object *obj_priv;
921         int ret = 0;
922
923         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
924         if (obj == NULL)
925                 return -EBADF;
926         obj_priv = obj->driver_private;
927
928         /* Bounds check destination.
929          *
930          * XXX: This could use review for overflow issues...
931          */
932         if (args->offset > obj->size || args->size > obj->size ||
933             args->offset + args->size > obj->size) {
934                 drm_gem_object_unreference(obj);
935                 return -EINVAL;
936         }
937
938         /* We can only do the GTT pwrite on untiled buffers, as otherwise
939          * it would end up going through the fenced access, and we'll get
940          * different detiling behavior between reading and writing.
941          * pread/pwrite currently are reading and writing from the CPU
942          * perspective, requiring manual detiling by the client.
943          */
944         if (obj_priv->phys_obj)
945                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
946         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
947                  dev->gtt_total != 0) {
948                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
949                 if (ret == -EFAULT) {
950                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
951                                                        file_priv);
952                 }
953         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
954                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
955         } else {
956                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
957                 if (ret == -EFAULT) {
958                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
959                                                          file_priv);
960                 }
961         }
962
963 #if WATCH_PWRITE
964         if (ret)
965                 DRM_INFO("pwrite failed %d\n", ret);
966 #endif
967
968         drm_gem_object_unreference(obj);
969
970         return ret;
971 }
972
973 /**
974  * Called when user space prepares to use an object with the CPU, either
975  * through the mmap ioctl's mapping or a GTT mapping.
976  */
977 int
978 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
979                           struct drm_file *file_priv)
980 {
981         struct drm_i915_gem_set_domain *args = data;
982         struct drm_gem_object *obj;
983         uint32_t read_domains = args->read_domains;
984         uint32_t write_domain = args->write_domain;
985         int ret;
986
987         if (!(dev->driver->driver_features & DRIVER_GEM))
988                 return -ENODEV;
989
990         /* Only handle setting domains to types used by the CPU. */
991         if (write_domain & I915_GEM_GPU_DOMAINS)
992                 return -EINVAL;
993
994         if (read_domains & I915_GEM_GPU_DOMAINS)
995                 return -EINVAL;
996
997         /* Having something in the write domain implies it's in the read
998          * domain, and only that read domain.  Enforce that in the request.
999          */
1000         if (write_domain != 0 && read_domains != write_domain)
1001                 return -EINVAL;
1002
1003         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1004         if (obj == NULL)
1005                 return -EBADF;
1006
1007         mutex_lock(&dev->struct_mutex);
1008 #if WATCH_BUF
1009         DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1010                  obj, obj->size, read_domains, write_domain);
1011 #endif
1012         if (read_domains & I915_GEM_DOMAIN_GTT) {
1013                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1014
1015                 /* Silently promote "you're not bound, there was nothing to do"
1016                  * to success, since the client was just asking us to
1017                  * make sure everything was done.
1018                  */
1019                 if (ret == -EINVAL)
1020                         ret = 0;
1021         } else {
1022                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1023         }
1024
1025         drm_gem_object_unreference(obj);
1026         mutex_unlock(&dev->struct_mutex);
1027         return ret;
1028 }
1029
1030 /**
1031  * Called when user space has done writes to this buffer
1032  */
1033 int
1034 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1035                       struct drm_file *file_priv)
1036 {
1037         struct drm_i915_gem_sw_finish *args = data;
1038         struct drm_gem_object *obj;
1039         struct drm_i915_gem_object *obj_priv;
1040         int ret = 0;
1041
1042         if (!(dev->driver->driver_features & DRIVER_GEM))
1043                 return -ENODEV;
1044
1045         mutex_lock(&dev->struct_mutex);
1046         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1047         if (obj == NULL) {
1048                 mutex_unlock(&dev->struct_mutex);
1049                 return -EBADF;
1050         }
1051
1052 #if WATCH_BUF
1053         DRM_INFO("%s: sw_finish %d (%p %d)\n",
1054                  __func__, args->handle, obj, obj->size);
1055 #endif
1056         obj_priv = obj->driver_private;
1057
1058         /* Pinned buffers may be scanout, so flush the cache */
1059         if (obj_priv->pin_count)
1060                 i915_gem_object_flush_cpu_write_domain(obj);
1061
1062         drm_gem_object_unreference(obj);
1063         mutex_unlock(&dev->struct_mutex);
1064         return ret;
1065 }
1066
1067 /**
1068  * Maps the contents of an object, returning the address it is mapped
1069  * into.
1070  *
1071  * While the mapping holds a reference on the contents of the object, it doesn't
1072  * imply a ref on the object itself.
1073  */
1074 int
1075 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1076                    struct drm_file *file_priv)
1077 {
1078         struct drm_i915_gem_mmap *args = data;
1079         struct drm_gem_object *obj;
1080         loff_t offset;
1081         unsigned long addr;
1082
1083         if (!(dev->driver->driver_features & DRIVER_GEM))
1084                 return -ENODEV;
1085
1086         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1087         if (obj == NULL)
1088                 return -EBADF;
1089
1090         offset = args->offset;
1091
1092         down_write(&current->mm->mmap_sem);
1093         addr = do_mmap(obj->filp, 0, args->size,
1094                        PROT_READ | PROT_WRITE, MAP_SHARED,
1095                        args->offset);
1096         up_write(&current->mm->mmap_sem);
1097         mutex_lock(&dev->struct_mutex);
1098         drm_gem_object_unreference(obj);
1099         mutex_unlock(&dev->struct_mutex);
1100         if (IS_ERR((void *)addr))
1101                 return addr;
1102
1103         args->addr_ptr = (uint64_t) addr;
1104
1105         return 0;
1106 }
1107
1108 /**
1109  * i915_gem_fault - fault a page into the GTT
1110  * vma: VMA in question
1111  * vmf: fault info
1112  *
1113  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1114  * from userspace.  The fault handler takes care of binding the object to
1115  * the GTT (if needed), allocating and programming a fence register (again,
1116  * only if needed based on whether the old reg is still valid or the object
1117  * is tiled) and inserting a new PTE into the faulting process.
1118  *
1119  * Note that the faulting process may involve evicting existing objects
1120  * from the GTT and/or fence registers to make room.  So performance may
1121  * suffer if the GTT working set is large or there are few fence registers
1122  * left.
1123  */
1124 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1125 {
1126         struct drm_gem_object *obj = vma->vm_private_data;
1127         struct drm_device *dev = obj->dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1130         pgoff_t page_offset;
1131         unsigned long pfn;
1132         int ret = 0;
1133         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1134
1135         /* We don't use vmf->pgoff since that has the fake offset */
1136         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1137                 PAGE_SHIFT;
1138
1139         /* Now bind it into the GTT if needed */
1140         mutex_lock(&dev->struct_mutex);
1141         if (!obj_priv->gtt_space) {
1142                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1143                 if (ret) {
1144                         mutex_unlock(&dev->struct_mutex);
1145                         return VM_FAULT_SIGBUS;
1146                 }
1147
1148                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1149                 if (ret) {
1150                         mutex_unlock(&dev->struct_mutex);
1151                         return VM_FAULT_SIGBUS;
1152                 }
1153
1154                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1155         }
1156
1157         /* Need a new fence register? */
1158         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1159             obj_priv->tiling_mode != I915_TILING_NONE) {
1160                 ret = i915_gem_object_get_fence_reg(obj);
1161                 if (ret) {
1162                         mutex_unlock(&dev->struct_mutex);
1163                         return VM_FAULT_SIGBUS;
1164                 }
1165         }
1166
1167         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1168                 page_offset;
1169
1170         /* Finally, remap it using the new GTT offset */
1171         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1172
1173         mutex_unlock(&dev->struct_mutex);
1174
1175         switch (ret) {
1176         case -ENOMEM:
1177         case -EAGAIN:
1178                 return VM_FAULT_OOM;
1179         case -EFAULT:
1180         case -EINVAL:
1181                 return VM_FAULT_SIGBUS;
1182         default:
1183                 return VM_FAULT_NOPAGE;
1184         }
1185 }
1186
1187 /**
1188  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1189  * @obj: obj in question
1190  *
1191  * GEM memory mapping works by handing back to userspace a fake mmap offset
1192  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1193  * up the object based on the offset and sets up the various memory mapping
1194  * structures.
1195  *
1196  * This routine allocates and attaches a fake offset for @obj.
1197  */
1198 static int
1199 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1200 {
1201         struct drm_device *dev = obj->dev;
1202         struct drm_gem_mm *mm = dev->mm_private;
1203         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1204         struct drm_map_list *list;
1205         struct drm_local_map *map;
1206         int ret = 0;
1207
1208         /* Set the object up for mmap'ing */
1209         list = &obj->map_list;
1210         list->map = drm_calloc(1, sizeof(struct drm_map_list),
1211                                DRM_MEM_DRIVER);
1212         if (!list->map)
1213                 return -ENOMEM;
1214
1215         map = list->map;
1216         map->type = _DRM_GEM;
1217         map->size = obj->size;
1218         map->handle = obj;
1219
1220         /* Get a DRM GEM mmap offset allocated... */
1221         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1222                                                     obj->size / PAGE_SIZE, 0, 0);
1223         if (!list->file_offset_node) {
1224                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1225                 ret = -ENOMEM;
1226                 goto out_free_list;
1227         }
1228
1229         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1230                                                   obj->size / PAGE_SIZE, 0);
1231         if (!list->file_offset_node) {
1232                 ret = -ENOMEM;
1233                 goto out_free_list;
1234         }
1235
1236         list->hash.key = list->file_offset_node->start;
1237         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1238                 DRM_ERROR("failed to add to map hash\n");
1239                 goto out_free_mm;
1240         }
1241
1242         /* By now we should be all set, any drm_mmap request on the offset
1243          * below will get to our mmap & fault handler */
1244         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1245
1246         return 0;
1247
1248 out_free_mm:
1249         drm_mm_put_block(list->file_offset_node);
1250 out_free_list:
1251         drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1252
1253         return ret;
1254 }
1255
1256 static void
1257 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1258 {
1259         struct drm_device *dev = obj->dev;
1260         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1261         struct drm_gem_mm *mm = dev->mm_private;
1262         struct drm_map_list *list;
1263
1264         list = &obj->map_list;
1265         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1266
1267         if (list->file_offset_node) {
1268                 drm_mm_put_block(list->file_offset_node);
1269                 list->file_offset_node = NULL;
1270         }
1271
1272         if (list->map) {
1273                 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1274                 list->map = NULL;
1275         }
1276
1277         obj_priv->mmap_offset = 0;
1278 }
1279
1280 /**
1281  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1282  * @obj: object to check
1283  *
1284  * Return the required GTT alignment for an object, taking into account
1285  * potential fence register mapping if needed.
1286  */
1287 static uint32_t
1288 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1289 {
1290         struct drm_device *dev = obj->dev;
1291         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1292         int start, i;
1293
1294         /*
1295          * Minimum alignment is 4k (GTT page size), but might be greater
1296          * if a fence register is needed for the object.
1297          */
1298         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1299                 return 4096;
1300
1301         /*
1302          * Previous chips need to be aligned to the size of the smallest
1303          * fence register that can contain the object.
1304          */
1305         if (IS_I9XX(dev))
1306                 start = 1024*1024;
1307         else
1308                 start = 512*1024;
1309
1310         for (i = start; i < obj->size; i <<= 1)
1311                 ;
1312
1313         return i;
1314 }
1315
1316 /**
1317  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1318  * @dev: DRM device
1319  * @data: GTT mapping ioctl data
1320  * @file_priv: GEM object info
1321  *
1322  * Simply returns the fake offset to userspace so it can mmap it.
1323  * The mmap call will end up in drm_gem_mmap(), which will set things
1324  * up so we can get faults in the handler above.
1325  *
1326  * The fault handler will take care of binding the object into the GTT
1327  * (since it may have been evicted to make room for something), allocating
1328  * a fence register, and mapping the appropriate aperture address into
1329  * userspace.
1330  */
1331 int
1332 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1333                         struct drm_file *file_priv)
1334 {
1335         struct drm_i915_gem_mmap_gtt *args = data;
1336         struct drm_i915_private *dev_priv = dev->dev_private;
1337         struct drm_gem_object *obj;
1338         struct drm_i915_gem_object *obj_priv;
1339         int ret;
1340
1341         if (!(dev->driver->driver_features & DRIVER_GEM))
1342                 return -ENODEV;
1343
1344         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1345         if (obj == NULL)
1346                 return -EBADF;
1347
1348         mutex_lock(&dev->struct_mutex);
1349
1350         obj_priv = obj->driver_private;
1351
1352         if (!obj_priv->mmap_offset) {
1353                 ret = i915_gem_create_mmap_offset(obj);
1354                 if (ret) {
1355                         drm_gem_object_unreference(obj);
1356                         mutex_unlock(&dev->struct_mutex);
1357                         return ret;
1358                 }
1359         }
1360
1361         args->offset = obj_priv->mmap_offset;
1362
1363         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1364
1365         /* Make sure the alignment is correct for fence regs etc */
1366         if (obj_priv->agp_mem &&
1367             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1368                 drm_gem_object_unreference(obj);
1369                 mutex_unlock(&dev->struct_mutex);
1370                 return -EINVAL;
1371         }
1372
1373         /*
1374          * Pull it into the GTT so that we have a page list (makes the
1375          * initial fault faster and any subsequent flushing possible).
1376          */
1377         if (!obj_priv->agp_mem) {
1378                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1379                 if (ret) {
1380                         drm_gem_object_unreference(obj);
1381                         mutex_unlock(&dev->struct_mutex);
1382                         return ret;
1383                 }
1384                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1385         }
1386
1387         drm_gem_object_unreference(obj);
1388         mutex_unlock(&dev->struct_mutex);
1389
1390         return 0;
1391 }
1392
1393 void
1394 i915_gem_object_put_pages(struct drm_gem_object *obj)
1395 {
1396         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1397         int page_count = obj->size / PAGE_SIZE;
1398         int i;
1399
1400         BUG_ON(obj_priv->pages_refcount == 0);
1401
1402         if (--obj_priv->pages_refcount != 0)
1403                 return;
1404
1405         if (obj_priv->tiling_mode != I915_TILING_NONE)
1406                 i915_gem_object_save_bit_17_swizzle(obj);
1407
1408         for (i = 0; i < page_count; i++)
1409                 if (obj_priv->pages[i] != NULL) {
1410                         if (obj_priv->dirty)
1411                                 set_page_dirty(obj_priv->pages[i]);
1412                         mark_page_accessed(obj_priv->pages[i]);
1413                         page_cache_release(obj_priv->pages[i]);
1414                 }
1415         obj_priv->dirty = 0;
1416
1417         drm_free_large(obj_priv->pages);
1418         obj_priv->pages = NULL;
1419 }
1420
1421 static void
1422 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1423 {
1424         struct drm_device *dev = obj->dev;
1425         drm_i915_private_t *dev_priv = dev->dev_private;
1426         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1427
1428         /* Add a reference if we're newly entering the active list. */
1429         if (!obj_priv->active) {
1430                 drm_gem_object_reference(obj);
1431                 obj_priv->active = 1;
1432         }
1433         /* Move from whatever list we were on to the tail of execution. */
1434         spin_lock(&dev_priv->mm.active_list_lock);
1435         list_move_tail(&obj_priv->list,
1436                        &dev_priv->mm.active_list);
1437         spin_unlock(&dev_priv->mm.active_list_lock);
1438         obj_priv->last_rendering_seqno = seqno;
1439 }
1440
1441 static void
1442 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1443 {
1444         struct drm_device *dev = obj->dev;
1445         drm_i915_private_t *dev_priv = dev->dev_private;
1446         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1447
1448         BUG_ON(!obj_priv->active);
1449         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1450         obj_priv->last_rendering_seqno = 0;
1451 }
1452
1453 static void
1454 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1455 {
1456         struct drm_device *dev = obj->dev;
1457         drm_i915_private_t *dev_priv = dev->dev_private;
1458         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1459
1460         i915_verify_inactive(dev, __FILE__, __LINE__);
1461         if (obj_priv->pin_count != 0)
1462                 list_del_init(&obj_priv->list);
1463         else
1464                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1465
1466         obj_priv->last_rendering_seqno = 0;
1467         if (obj_priv->active) {
1468                 obj_priv->active = 0;
1469                 drm_gem_object_unreference(obj);
1470         }
1471         i915_verify_inactive(dev, __FILE__, __LINE__);
1472 }
1473
1474 /**
1475  * Creates a new sequence number, emitting a write of it to the status page
1476  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1477  *
1478  * Must be called with struct_lock held.
1479  *
1480  * Returned sequence numbers are nonzero on success.
1481  */
1482 static uint32_t
1483 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1484                  uint32_t flush_domains)
1485 {
1486         drm_i915_private_t *dev_priv = dev->dev_private;
1487         struct drm_i915_file_private *i915_file_priv = NULL;
1488         struct drm_i915_gem_request *request;
1489         uint32_t seqno;
1490         int was_empty;
1491         RING_LOCALS;
1492
1493         if (file_priv != NULL)
1494                 i915_file_priv = file_priv->driver_priv;
1495
1496         request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1497         if (request == NULL)
1498                 return 0;
1499
1500         /* Grab the seqno we're going to make this request be, and bump the
1501          * next (skipping 0 so it can be the reserved no-seqno value).
1502          */
1503         seqno = dev_priv->mm.next_gem_seqno;
1504         dev_priv->mm.next_gem_seqno++;
1505         if (dev_priv->mm.next_gem_seqno == 0)
1506                 dev_priv->mm.next_gem_seqno++;
1507
1508         BEGIN_LP_RING(4);
1509         OUT_RING(MI_STORE_DWORD_INDEX);
1510         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1511         OUT_RING(seqno);
1512
1513         OUT_RING(MI_USER_INTERRUPT);
1514         ADVANCE_LP_RING();
1515
1516         DRM_DEBUG("%d\n", seqno);
1517
1518         request->seqno = seqno;
1519         request->emitted_jiffies = jiffies;
1520         was_empty = list_empty(&dev_priv->mm.request_list);
1521         list_add_tail(&request->list, &dev_priv->mm.request_list);
1522         if (i915_file_priv) {
1523                 list_add_tail(&request->client_list,
1524                               &i915_file_priv->mm.request_list);
1525         } else {
1526                 INIT_LIST_HEAD(&request->client_list);
1527         }
1528
1529         /* Associate any objects on the flushing list matching the write
1530          * domain we're flushing with our flush.
1531          */
1532         if (flush_domains != 0) {
1533                 struct drm_i915_gem_object *obj_priv, *next;
1534
1535                 list_for_each_entry_safe(obj_priv, next,
1536                                          &dev_priv->mm.flushing_list, list) {
1537                         struct drm_gem_object *obj = obj_priv->obj;
1538
1539                         if ((obj->write_domain & flush_domains) ==
1540                             obj->write_domain) {
1541                                 obj->write_domain = 0;
1542                                 i915_gem_object_move_to_active(obj, seqno);
1543                         }
1544                 }
1545
1546         }
1547
1548         if (was_empty && !dev_priv->mm.suspended)
1549                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1550         return seqno;
1551 }
1552
1553 /**
1554  * Command execution barrier
1555  *
1556  * Ensures that all commands in the ring are finished
1557  * before signalling the CPU
1558  */
1559 static uint32_t
1560 i915_retire_commands(struct drm_device *dev)
1561 {
1562         drm_i915_private_t *dev_priv = dev->dev_private;
1563         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1564         uint32_t flush_domains = 0;
1565         RING_LOCALS;
1566
1567         /* The sampler always gets flushed on i965 (sigh) */
1568         if (IS_I965G(dev))
1569                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1570         BEGIN_LP_RING(2);
1571         OUT_RING(cmd);
1572         OUT_RING(0); /* noop */
1573         ADVANCE_LP_RING();
1574         return flush_domains;
1575 }
1576
1577 /**
1578  * Moves buffers associated only with the given active seqno from the active
1579  * to inactive list, potentially freeing them.
1580  */
1581 static void
1582 i915_gem_retire_request(struct drm_device *dev,
1583                         struct drm_i915_gem_request *request)
1584 {
1585         drm_i915_private_t *dev_priv = dev->dev_private;
1586
1587         /* Move any buffers on the active list that are no longer referenced
1588          * by the ringbuffer to the flushing/inactive lists as appropriate.
1589          */
1590         spin_lock(&dev_priv->mm.active_list_lock);
1591         while (!list_empty(&dev_priv->mm.active_list)) {
1592                 struct drm_gem_object *obj;
1593                 struct drm_i915_gem_object *obj_priv;
1594
1595                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1596                                             struct drm_i915_gem_object,
1597                                             list);
1598                 obj = obj_priv->obj;
1599
1600                 /* If the seqno being retired doesn't match the oldest in the
1601                  * list, then the oldest in the list must still be newer than
1602                  * this seqno.
1603                  */
1604                 if (obj_priv->last_rendering_seqno != request->seqno)
1605                         goto out;
1606
1607 #if WATCH_LRU
1608                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1609                          __func__, request->seqno, obj);
1610 #endif
1611
1612                 if (obj->write_domain != 0)
1613                         i915_gem_object_move_to_flushing(obj);
1614                 else {
1615                         /* Take a reference on the object so it won't be
1616                          * freed while the spinlock is held.  The list
1617                          * protection for this spinlock is safe when breaking
1618                          * the lock like this since the next thing we do
1619                          * is just get the head of the list again.
1620                          */
1621                         drm_gem_object_reference(obj);
1622                         i915_gem_object_move_to_inactive(obj);
1623                         spin_unlock(&dev_priv->mm.active_list_lock);
1624                         drm_gem_object_unreference(obj);
1625                         spin_lock(&dev_priv->mm.active_list_lock);
1626                 }
1627         }
1628 out:
1629         spin_unlock(&dev_priv->mm.active_list_lock);
1630 }
1631
1632 /**
1633  * Returns true if seq1 is later than seq2.
1634  */
1635 static int
1636 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1637 {
1638         return (int32_t)(seq1 - seq2) >= 0;
1639 }
1640
1641 uint32_t
1642 i915_get_gem_seqno(struct drm_device *dev)
1643 {
1644         drm_i915_private_t *dev_priv = dev->dev_private;
1645
1646         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1647 }
1648
1649 /**
1650  * This function clears the request list as sequence numbers are passed.
1651  */
1652 void
1653 i915_gem_retire_requests(struct drm_device *dev)
1654 {
1655         drm_i915_private_t *dev_priv = dev->dev_private;
1656         uint32_t seqno;
1657
1658         if (!dev_priv->hw_status_page)
1659                 return;
1660
1661         seqno = i915_get_gem_seqno(dev);
1662
1663         while (!list_empty(&dev_priv->mm.request_list)) {
1664                 struct drm_i915_gem_request *request;
1665                 uint32_t retiring_seqno;
1666
1667                 request = list_first_entry(&dev_priv->mm.request_list,
1668                                            struct drm_i915_gem_request,
1669                                            list);
1670                 retiring_seqno = request->seqno;
1671
1672                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1673                     dev_priv->mm.wedged) {
1674                         i915_gem_retire_request(dev, request);
1675
1676                         list_del(&request->list);
1677                         list_del(&request->client_list);
1678                         drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1679                 } else
1680                         break;
1681         }
1682 }
1683
1684 void
1685 i915_gem_retire_work_handler(struct work_struct *work)
1686 {
1687         drm_i915_private_t *dev_priv;
1688         struct drm_device *dev;
1689
1690         dev_priv = container_of(work, drm_i915_private_t,
1691                                 mm.retire_work.work);
1692         dev = dev_priv->dev;
1693
1694         mutex_lock(&dev->struct_mutex);
1695         i915_gem_retire_requests(dev);
1696         if (!dev_priv->mm.suspended &&
1697             !list_empty(&dev_priv->mm.request_list))
1698                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1699         mutex_unlock(&dev->struct_mutex);
1700 }
1701
1702 /**
1703  * Waits for a sequence number to be signaled, and cleans up the
1704  * request and object lists appropriately for that event.
1705  */
1706 static int
1707 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1708 {
1709         drm_i915_private_t *dev_priv = dev->dev_private;
1710         u32 ier;
1711         int ret = 0;
1712
1713         BUG_ON(seqno == 0);
1714
1715         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1716                 if (IS_IGDNG(dev))
1717                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1718                 else
1719                         ier = I915_READ(IER);
1720                 if (!ier) {
1721                         DRM_ERROR("something (likely vbetool) disabled "
1722                                   "interrupts, re-enabling\n");
1723                         i915_driver_irq_preinstall(dev);
1724                         i915_driver_irq_postinstall(dev);
1725                 }
1726
1727                 dev_priv->mm.waiting_gem_seqno = seqno;
1728                 i915_user_irq_get(dev);
1729                 ret = wait_event_interruptible(dev_priv->irq_queue,
1730                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1731                                                                  seqno) ||
1732                                                dev_priv->mm.wedged);
1733                 i915_user_irq_put(dev);
1734                 dev_priv->mm.waiting_gem_seqno = 0;
1735         }
1736         if (dev_priv->mm.wedged)
1737                 ret = -EIO;
1738
1739         if (ret && ret != -ERESTARTSYS)
1740                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1741                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1742
1743         /* Directly dispatch request retiring.  While we have the work queue
1744          * to handle this, the waiter on a request often wants an associated
1745          * buffer to have made it to the inactive list, and we would need
1746          * a separate wait queue to handle that.
1747          */
1748         if (ret == 0)
1749                 i915_gem_retire_requests(dev);
1750
1751         return ret;
1752 }
1753
1754 static void
1755 i915_gem_flush(struct drm_device *dev,
1756                uint32_t invalidate_domains,
1757                uint32_t flush_domains)
1758 {
1759         drm_i915_private_t *dev_priv = dev->dev_private;
1760         uint32_t cmd;
1761         RING_LOCALS;
1762
1763 #if WATCH_EXEC
1764         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1765                   invalidate_domains, flush_domains);
1766 #endif
1767
1768         if (flush_domains & I915_GEM_DOMAIN_CPU)
1769                 drm_agp_chipset_flush(dev);
1770
1771         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1772                 /*
1773                  * read/write caches:
1774                  *
1775                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1776                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1777                  * also flushed at 2d versus 3d pipeline switches.
1778                  *
1779                  * read-only caches:
1780                  *
1781                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1782                  * MI_READ_FLUSH is set, and is always flushed on 965.
1783                  *
1784                  * I915_GEM_DOMAIN_COMMAND may not exist?
1785                  *
1786                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1787                  * invalidated when MI_EXE_FLUSH is set.
1788                  *
1789                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1790                  * invalidated with every MI_FLUSH.
1791                  *
1792                  * TLBs:
1793                  *
1794                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1795                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1796                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1797                  * are flushed at any MI_FLUSH.
1798                  */
1799
1800                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1801                 if ((invalidate_domains|flush_domains) &
1802                     I915_GEM_DOMAIN_RENDER)
1803                         cmd &= ~MI_NO_WRITE_FLUSH;
1804                 if (!IS_I965G(dev)) {
1805                         /*
1806                          * On the 965, the sampler cache always gets flushed
1807                          * and this bit is reserved.
1808                          */
1809                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1810                                 cmd |= MI_READ_FLUSH;
1811                 }
1812                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1813                         cmd |= MI_EXE_FLUSH;
1814
1815 #if WATCH_EXEC
1816                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1817 #endif
1818                 BEGIN_LP_RING(2);
1819                 OUT_RING(cmd);
1820                 OUT_RING(0); /* noop */
1821                 ADVANCE_LP_RING();
1822         }
1823 }
1824
1825 /**
1826  * Ensures that all rendering to the object has completed and the object is
1827  * safe to unbind from the GTT or access from the CPU.
1828  */
1829 static int
1830 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1831 {
1832         struct drm_device *dev = obj->dev;
1833         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1834         int ret;
1835
1836         /* This function only exists to support waiting for existing rendering,
1837          * not for emitting required flushes.
1838          */
1839         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1840
1841         /* If there is rendering queued on the buffer being evicted, wait for
1842          * it.
1843          */
1844         if (obj_priv->active) {
1845 #if WATCH_BUF
1846                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1847                           __func__, obj, obj_priv->last_rendering_seqno);
1848 #endif
1849                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1850                 if (ret != 0)
1851                         return ret;
1852         }
1853
1854         return 0;
1855 }
1856
1857 /**
1858  * Unbinds an object from the GTT aperture.
1859  */
1860 int
1861 i915_gem_object_unbind(struct drm_gem_object *obj)
1862 {
1863         struct drm_device *dev = obj->dev;
1864         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1865         loff_t offset;
1866         int ret = 0;
1867
1868 #if WATCH_BUF
1869         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1870         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1871 #endif
1872         if (obj_priv->gtt_space == NULL)
1873                 return 0;
1874
1875         if (obj_priv->pin_count != 0) {
1876                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1877                 return -EINVAL;
1878         }
1879
1880         /* Move the object to the CPU domain to ensure that
1881          * any possible CPU writes while it's not in the GTT
1882          * are flushed when we go to remap it. This will
1883          * also ensure that all pending GPU writes are finished
1884          * before we unbind.
1885          */
1886         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1887         if (ret) {
1888                 if (ret != -ERESTARTSYS)
1889                         DRM_ERROR("set_domain failed: %d\n", ret);
1890                 return ret;
1891         }
1892
1893         if (obj_priv->agp_mem != NULL) {
1894                 drm_unbind_agp(obj_priv->agp_mem);
1895                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1896                 obj_priv->agp_mem = NULL;
1897         }
1898
1899         BUG_ON(obj_priv->active);
1900
1901         /* blow away mappings if mapped through GTT */
1902         offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1903         if (dev->dev_mapping)
1904                 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1905
1906         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1907                 i915_gem_clear_fence_reg(obj);
1908
1909         i915_gem_object_put_pages(obj);
1910
1911         if (obj_priv->gtt_space) {
1912                 atomic_dec(&dev->gtt_count);
1913                 atomic_sub(obj->size, &dev->gtt_memory);
1914
1915                 drm_mm_put_block(obj_priv->gtt_space);
1916                 obj_priv->gtt_space = NULL;
1917         }
1918
1919         /* Remove ourselves from the LRU list if present. */
1920         if (!list_empty(&obj_priv->list))
1921                 list_del_init(&obj_priv->list);
1922
1923         return 0;
1924 }
1925
1926 static int
1927 i915_gem_evict_something(struct drm_device *dev)
1928 {
1929         drm_i915_private_t *dev_priv = dev->dev_private;
1930         struct drm_gem_object *obj;
1931         struct drm_i915_gem_object *obj_priv;
1932         int ret = 0;
1933
1934         for (;;) {
1935                 /* If there's an inactive buffer available now, grab it
1936                  * and be done.
1937                  */
1938                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1939                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1940                                                     struct drm_i915_gem_object,
1941                                                     list);
1942                         obj = obj_priv->obj;
1943                         BUG_ON(obj_priv->pin_count != 0);
1944 #if WATCH_LRU
1945                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1946 #endif
1947                         BUG_ON(obj_priv->active);
1948
1949                         /* Wait on the rendering and unbind the buffer. */
1950                         ret = i915_gem_object_unbind(obj);
1951                         break;
1952                 }
1953
1954                 /* If we didn't get anything, but the ring is still processing
1955                  * things, wait for one of those things to finish and hopefully
1956                  * leave us a buffer to evict.
1957                  */
1958                 if (!list_empty(&dev_priv->mm.request_list)) {
1959                         struct drm_i915_gem_request *request;
1960
1961                         request = list_first_entry(&dev_priv->mm.request_list,
1962                                                    struct drm_i915_gem_request,
1963                                                    list);
1964
1965                         ret = i915_wait_request(dev, request->seqno);
1966                         if (ret)
1967                                 break;
1968
1969                         /* if waiting caused an object to become inactive,
1970                          * then loop around and wait for it. Otherwise, we
1971                          * assume that waiting freed and unbound something,
1972                          * so there should now be some space in the GTT
1973                          */
1974                         if (!list_empty(&dev_priv->mm.inactive_list))
1975                                 continue;
1976                         break;
1977                 }
1978
1979                 /* If we didn't have anything on the request list but there
1980                  * are buffers awaiting a flush, emit one and try again.
1981                  * When we wait on it, those buffers waiting for that flush
1982                  * will get moved to inactive.
1983                  */
1984                 if (!list_empty(&dev_priv->mm.flushing_list)) {
1985                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1986                                                     struct drm_i915_gem_object,
1987                                                     list);
1988                         obj = obj_priv->obj;
1989
1990                         i915_gem_flush(dev,
1991                                        obj->write_domain,
1992                                        obj->write_domain);
1993                         i915_add_request(dev, NULL, obj->write_domain);
1994
1995                         obj = NULL;
1996                         continue;
1997                 }
1998
1999                 DRM_ERROR("inactive empty %d request empty %d "
2000                           "flushing empty %d\n",
2001                           list_empty(&dev_priv->mm.inactive_list),
2002                           list_empty(&dev_priv->mm.request_list),
2003                           list_empty(&dev_priv->mm.flushing_list));
2004                 /* If we didn't do any of the above, there's nothing to be done
2005                  * and we just can't fit it in.
2006                  */
2007                 return -ENOSPC;
2008         }
2009         return ret;
2010 }
2011
2012 static int
2013 i915_gem_evict_everything(struct drm_device *dev)
2014 {
2015         int ret;
2016
2017         for (;;) {
2018                 ret = i915_gem_evict_something(dev);
2019                 if (ret != 0)
2020                         break;
2021         }
2022         if (ret == -ENOSPC)
2023                 return 0;
2024         return ret;
2025 }
2026
2027 int
2028 i915_gem_object_get_pages(struct drm_gem_object *obj)
2029 {
2030         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2031         int page_count, i;
2032         struct address_space *mapping;
2033         struct inode *inode;
2034         struct page *page;
2035         int ret;
2036
2037         if (obj_priv->pages_refcount++ != 0)
2038                 return 0;
2039
2040         /* Get the list of pages out of our struct file.  They'll be pinned
2041          * at this point until we release them.
2042          */
2043         page_count = obj->size / PAGE_SIZE;
2044         BUG_ON(obj_priv->pages != NULL);
2045         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2046         if (obj_priv->pages == NULL) {
2047                 DRM_ERROR("Faled to allocate page list\n");
2048                 obj_priv->pages_refcount--;
2049                 return -ENOMEM;
2050         }
2051
2052         inode = obj->filp->f_path.dentry->d_inode;
2053         mapping = inode->i_mapping;
2054         for (i = 0; i < page_count; i++) {
2055                 page = read_mapping_page(mapping, i, NULL);
2056                 if (IS_ERR(page)) {
2057                         ret = PTR_ERR(page);
2058                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2059                         i915_gem_object_put_pages(obj);
2060                         return ret;
2061                 }
2062                 obj_priv->pages[i] = page;
2063         }
2064
2065         if (obj_priv->tiling_mode != I915_TILING_NONE)
2066                 i915_gem_object_do_bit_17_swizzle(obj);
2067
2068         return 0;
2069 }
2070
2071 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2072 {
2073         struct drm_gem_object *obj = reg->obj;
2074         struct drm_device *dev = obj->dev;
2075         drm_i915_private_t *dev_priv = dev->dev_private;
2076         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2077         int regnum = obj_priv->fence_reg;
2078         uint64_t val;
2079
2080         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2081                     0xfffff000) << 32;
2082         val |= obj_priv->gtt_offset & 0xfffff000;
2083         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2084         if (obj_priv->tiling_mode == I915_TILING_Y)
2085                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2086         val |= I965_FENCE_REG_VALID;
2087
2088         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2089 }
2090
2091 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2092 {
2093         struct drm_gem_object *obj = reg->obj;
2094         struct drm_device *dev = obj->dev;
2095         drm_i915_private_t *dev_priv = dev->dev_private;
2096         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2097         int regnum = obj_priv->fence_reg;
2098         int tile_width;
2099         uint32_t fence_reg, val;
2100         uint32_t pitch_val;
2101
2102         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2103             (obj_priv->gtt_offset & (obj->size - 1))) {
2104                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2105                      __func__, obj_priv->gtt_offset, obj->size);
2106                 return;
2107         }
2108
2109         if (obj_priv->tiling_mode == I915_TILING_Y &&
2110             HAS_128_BYTE_Y_TILING(dev))
2111                 tile_width = 128;
2112         else
2113                 tile_width = 512;
2114
2115         /* Note: pitch better be a power of two tile widths */
2116         pitch_val = obj_priv->stride / tile_width;
2117         pitch_val = ffs(pitch_val) - 1;
2118
2119         val = obj_priv->gtt_offset;
2120         if (obj_priv->tiling_mode == I915_TILING_Y)
2121                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2122         val |= I915_FENCE_SIZE_BITS(obj->size);
2123         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2124         val |= I830_FENCE_REG_VALID;
2125
2126         if (regnum < 8)
2127                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2128         else
2129                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2130         I915_WRITE(fence_reg, val);
2131 }
2132
2133 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2134 {
2135         struct drm_gem_object *obj = reg->obj;
2136         struct drm_device *dev = obj->dev;
2137         drm_i915_private_t *dev_priv = dev->dev_private;
2138         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2139         int regnum = obj_priv->fence_reg;
2140         uint32_t val;
2141         uint32_t pitch_val;
2142         uint32_t fence_size_bits;
2143
2144         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2145             (obj_priv->gtt_offset & (obj->size - 1))) {
2146                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2147                      __func__, obj_priv->gtt_offset);
2148                 return;
2149         }
2150
2151         pitch_val = obj_priv->stride / 128;
2152         pitch_val = ffs(pitch_val) - 1;
2153         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2154
2155         val = obj_priv->gtt_offset;
2156         if (obj_priv->tiling_mode == I915_TILING_Y)
2157                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2158         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2159         WARN_ON(fence_size_bits & ~0x00000f00);
2160         val |= fence_size_bits;
2161         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2162         val |= I830_FENCE_REG_VALID;
2163
2164         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2165
2166 }
2167
2168 /**
2169  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2170  * @obj: object to map through a fence reg
2171  *
2172  * When mapping objects through the GTT, userspace wants to be able to write
2173  * to them without having to worry about swizzling if the object is tiled.
2174  *
2175  * This function walks the fence regs looking for a free one for @obj,
2176  * stealing one if it can't find any.
2177  *
2178  * It then sets up the reg based on the object's properties: address, pitch
2179  * and tiling format.
2180  */
2181 int
2182 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2183 {
2184         struct drm_device *dev = obj->dev;
2185         struct drm_i915_private *dev_priv = dev->dev_private;
2186         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2187         struct drm_i915_fence_reg *reg = NULL;
2188         struct drm_i915_gem_object *old_obj_priv = NULL;
2189         int i, ret, avail;
2190
2191         switch (obj_priv->tiling_mode) {
2192         case I915_TILING_NONE:
2193                 WARN(1, "allocating a fence for non-tiled object?\n");
2194                 break;
2195         case I915_TILING_X:
2196                 if (!obj_priv->stride)
2197                         return -EINVAL;
2198                 WARN((obj_priv->stride & (512 - 1)),
2199                      "object 0x%08x is X tiled but has non-512B pitch\n",
2200                      obj_priv->gtt_offset);
2201                 break;
2202         case I915_TILING_Y:
2203                 if (!obj_priv->stride)
2204                         return -EINVAL;
2205                 WARN((obj_priv->stride & (128 - 1)),
2206                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2207                      obj_priv->gtt_offset);
2208                 break;
2209         }
2210
2211         /* First try to find a free reg */
2212 try_again:
2213         avail = 0;
2214         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2215                 reg = &dev_priv->fence_regs[i];
2216                 if (!reg->obj)
2217                         break;
2218
2219                 old_obj_priv = reg->obj->driver_private;
2220                 if (!old_obj_priv->pin_count)
2221                     avail++;
2222         }
2223
2224         /* None available, try to steal one or wait for a user to finish */
2225         if (i == dev_priv->num_fence_regs) {
2226                 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2227                 loff_t offset;
2228
2229                 if (avail == 0)
2230                         return -ENOSPC;
2231
2232                 for (i = dev_priv->fence_reg_start;
2233                      i < dev_priv->num_fence_regs; i++) {
2234                         uint32_t this_seqno;
2235
2236                         reg = &dev_priv->fence_regs[i];
2237                         old_obj_priv = reg->obj->driver_private;
2238
2239                         if (old_obj_priv->pin_count)
2240                                 continue;
2241
2242                         /* i915 uses fences for GPU access to tiled buffers */
2243                         if (IS_I965G(dev) || !old_obj_priv->active)
2244                                 break;
2245
2246                         /* find the seqno of the first available fence */
2247                         this_seqno = old_obj_priv->last_rendering_seqno;
2248                         if (this_seqno != 0 &&
2249                             reg->obj->write_domain == 0 &&
2250                             i915_seqno_passed(seqno, this_seqno))
2251                                 seqno = this_seqno;
2252                 }
2253
2254                 /*
2255                  * Now things get ugly... we have to wait for one of the
2256                  * objects to finish before trying again.
2257                  */
2258                 if (i == dev_priv->num_fence_regs) {
2259                         if (seqno == dev_priv->mm.next_gem_seqno) {
2260                                 i915_gem_flush(dev,
2261                                                I915_GEM_GPU_DOMAINS,
2262                                                I915_GEM_GPU_DOMAINS);
2263                                 seqno = i915_add_request(dev, NULL,
2264                                                          I915_GEM_GPU_DOMAINS);
2265                                 if (seqno == 0)
2266                                         return -ENOMEM;
2267                         }
2268
2269                         ret = i915_wait_request(dev, seqno);
2270                         if (ret)
2271                                 return ret;
2272                         goto try_again;
2273                 }
2274
2275                 /*
2276                  * Zap this virtual mapping so we can set up a fence again
2277                  * for this object next time we need it.
2278                  */
2279                 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2280                 if (dev->dev_mapping)
2281                         unmap_mapping_range(dev->dev_mapping, offset,
2282                                             reg->obj->size, 1);
2283                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2284         }
2285
2286         obj_priv->fence_reg = i;
2287         reg->obj = obj;
2288
2289         if (IS_I965G(dev))
2290                 i965_write_fence_reg(reg);
2291         else if (IS_I9XX(dev))
2292                 i915_write_fence_reg(reg);
2293         else
2294                 i830_write_fence_reg(reg);
2295
2296         return 0;
2297 }
2298
2299 /**
2300  * i915_gem_clear_fence_reg - clear out fence register info
2301  * @obj: object to clear
2302  *
2303  * Zeroes out the fence register itself and clears out the associated
2304  * data structures in dev_priv and obj_priv.
2305  */
2306 static void
2307 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2308 {
2309         struct drm_device *dev = obj->dev;
2310         drm_i915_private_t *dev_priv = dev->dev_private;
2311         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2312
2313         if (IS_I965G(dev))
2314                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2315         else {
2316                 uint32_t fence_reg;
2317
2318                 if (obj_priv->fence_reg < 8)
2319                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2320                 else
2321                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2322                                                        8) * 4;
2323
2324                 I915_WRITE(fence_reg, 0);
2325         }
2326
2327         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2328         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2329 }
2330
2331 /**
2332  * Finds free space in the GTT aperture and binds the object there.
2333  */
2334 static int
2335 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2336 {
2337         struct drm_device *dev = obj->dev;
2338         drm_i915_private_t *dev_priv = dev->dev_private;
2339         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2340         struct drm_mm_node *free_space;
2341         int page_count, ret;
2342
2343         if (dev_priv->mm.suspended)
2344                 return -EBUSY;
2345         if (alignment == 0)
2346                 alignment = i915_gem_get_gtt_alignment(obj);
2347         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2348                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2349                 return -EINVAL;
2350         }
2351
2352  search_free:
2353         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2354                                         obj->size, alignment, 0);
2355         if (free_space != NULL) {
2356                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2357                                                        alignment);
2358                 if (obj_priv->gtt_space != NULL) {
2359                         obj_priv->gtt_space->private = obj;
2360                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2361                 }
2362         }
2363         if (obj_priv->gtt_space == NULL) {
2364                 bool lists_empty;
2365
2366                 /* If the gtt is empty and we're still having trouble
2367                  * fitting our object in, we're out of memory.
2368                  */
2369 #if WATCH_LRU
2370                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2371 #endif
2372                 spin_lock(&dev_priv->mm.active_list_lock);
2373                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2374                                list_empty(&dev_priv->mm.flushing_list) &&
2375                                list_empty(&dev_priv->mm.active_list));
2376                 spin_unlock(&dev_priv->mm.active_list_lock);
2377                 if (lists_empty) {
2378                         DRM_ERROR("GTT full, but LRU list empty\n");
2379                         return -ENOSPC;
2380                 }
2381
2382                 ret = i915_gem_evict_something(dev);
2383                 if (ret != 0) {
2384                         if (ret != -ERESTARTSYS)
2385                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2386                         return ret;
2387                 }
2388                 goto search_free;
2389         }
2390
2391 #if WATCH_BUF
2392         DRM_INFO("Binding object of size %d at 0x%08x\n",
2393                  obj->size, obj_priv->gtt_offset);
2394 #endif
2395         ret = i915_gem_object_get_pages(obj);
2396         if (ret) {
2397                 drm_mm_put_block(obj_priv->gtt_space);
2398                 obj_priv->gtt_space = NULL;
2399                 return ret;
2400         }
2401
2402         page_count = obj->size / PAGE_SIZE;
2403         /* Create an AGP memory structure pointing at our pages, and bind it
2404          * into the GTT.
2405          */
2406         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2407                                                obj_priv->pages,
2408                                                page_count,
2409                                                obj_priv->gtt_offset,
2410                                                obj_priv->agp_type);
2411         if (obj_priv->agp_mem == NULL) {
2412                 i915_gem_object_put_pages(obj);
2413                 drm_mm_put_block(obj_priv->gtt_space);
2414                 obj_priv->gtt_space = NULL;
2415                 return -ENOMEM;
2416         }
2417         atomic_inc(&dev->gtt_count);
2418         atomic_add(obj->size, &dev->gtt_memory);
2419
2420         /* Assert that the object is not currently in any GPU domain. As it
2421          * wasn't in the GTT, there shouldn't be any way it could have been in
2422          * a GPU cache
2423          */
2424         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2425         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2426
2427         return 0;
2428 }
2429
2430 void
2431 i915_gem_clflush_object(struct drm_gem_object *obj)
2432 {
2433         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2434
2435         /* If we don't have a page list set up, then we're not pinned
2436          * to GPU, and we can ignore the cache flush because it'll happen
2437          * again at bind time.
2438          */
2439         if (obj_priv->pages == NULL)
2440                 return;
2441
2442         /* XXX: The 865 in particular appears to be weird in how it handles
2443          * cache flushing.  We haven't figured it out, but the
2444          * clflush+agp_chipset_flush doesn't appear to successfully get the
2445          * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2446          */
2447         if (IS_I865G(obj->dev)) {
2448                 wbinvd();
2449                 return;
2450         }
2451
2452         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2453 }
2454
2455 /** Flushes any GPU write domain for the object if it's dirty. */
2456 static void
2457 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2458 {
2459         struct drm_device *dev = obj->dev;
2460         uint32_t seqno;
2461
2462         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2463                 return;
2464
2465         /* Queue the GPU write cache flushing we need. */
2466         i915_gem_flush(dev, 0, obj->write_domain);
2467         seqno = i915_add_request(dev, NULL, obj->write_domain);
2468         obj->write_domain = 0;
2469         i915_gem_object_move_to_active(obj, seqno);
2470 }
2471
2472 /** Flushes the GTT write domain for the object if it's dirty. */
2473 static void
2474 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2475 {
2476         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2477                 return;
2478
2479         /* No actual flushing is required for the GTT write domain.   Writes
2480          * to it immediately go to main memory as far as we know, so there's
2481          * no chipset flush.  It also doesn't land in render cache.
2482          */
2483         obj->write_domain = 0;
2484 }
2485
2486 /** Flushes the CPU write domain for the object if it's dirty. */
2487 static void
2488 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2489 {
2490         struct drm_device *dev = obj->dev;
2491
2492         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2493                 return;
2494
2495         i915_gem_clflush_object(obj);
2496         drm_agp_chipset_flush(dev);
2497         obj->write_domain = 0;
2498 }
2499
2500 /**
2501  * Moves a single object to the GTT read, and possibly write domain.
2502  *
2503  * This function returns when the move is complete, including waiting on
2504  * flushes to occur.
2505  */
2506 int
2507 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2508 {
2509         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2510         int ret;
2511
2512         /* Not valid to be called on unbound objects. */
2513         if (obj_priv->gtt_space == NULL)
2514                 return -EINVAL;
2515
2516         i915_gem_object_flush_gpu_write_domain(obj);
2517         /* Wait on any GPU rendering and flushing to occur. */
2518         ret = i915_gem_object_wait_rendering(obj);
2519         if (ret != 0)
2520                 return ret;
2521
2522         /* If we're writing through the GTT domain, then CPU and GPU caches
2523          * will need to be invalidated at next use.
2524          */
2525         if (write)
2526                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2527
2528         i915_gem_object_flush_cpu_write_domain(obj);
2529
2530         /* It should now be out of any other write domains, and we can update
2531          * the domain values for our changes.
2532          */
2533         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2534         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2535         if (write) {
2536                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2537                 obj_priv->dirty = 1;
2538         }
2539
2540         return 0;
2541 }
2542
2543 /**
2544  * Moves a single object to the CPU read, and possibly write domain.
2545  *
2546  * This function returns when the move is complete, including waiting on
2547  * flushes to occur.
2548  */
2549 static int
2550 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2551 {
2552         int ret;
2553
2554         i915_gem_object_flush_gpu_write_domain(obj);
2555         /* Wait on any GPU rendering and flushing to occur. */
2556         ret = i915_gem_object_wait_rendering(obj);
2557         if (ret != 0)
2558                 return ret;
2559
2560         i915_gem_object_flush_gtt_write_domain(obj);
2561
2562         /* If we have a partially-valid cache of the object in the CPU,
2563          * finish invalidating it and free the per-page flags.
2564          */
2565         i915_gem_object_set_to_full_cpu_read_domain(obj);
2566
2567         /* Flush the CPU cache if it's still invalid. */
2568         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2569                 i915_gem_clflush_object(obj);
2570
2571                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2572         }
2573
2574         /* It should now be out of any other write domains, and we can update
2575          * the domain values for our changes.
2576          */
2577         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2578
2579         /* If we're writing through the CPU, then the GPU read domains will
2580          * need to be invalidated at next use.
2581          */
2582         if (write) {
2583                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2584                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2585         }
2586
2587         return 0;
2588 }
2589
2590 /*
2591  * Set the next domain for the specified object. This
2592  * may not actually perform the necessary flushing/invaliding though,
2593  * as that may want to be batched with other set_domain operations
2594  *
2595  * This is (we hope) the only really tricky part of gem. The goal
2596  * is fairly simple -- track which caches hold bits of the object
2597  * and make sure they remain coherent. A few concrete examples may
2598  * help to explain how it works. For shorthand, we use the notation
2599  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2600  * a pair of read and write domain masks.
2601  *
2602  * Case 1: the batch buffer
2603  *
2604  *      1. Allocated
2605  *      2. Written by CPU
2606  *      3. Mapped to GTT
2607  *      4. Read by GPU
2608  *      5. Unmapped from GTT
2609  *      6. Freed
2610  *
2611  *      Let's take these a step at a time
2612  *
2613  *      1. Allocated
2614  *              Pages allocated from the kernel may still have
2615  *              cache contents, so we set them to (CPU, CPU) always.
2616  *      2. Written by CPU (using pwrite)
2617  *              The pwrite function calls set_domain (CPU, CPU) and
2618  *              this function does nothing (as nothing changes)
2619  *      3. Mapped by GTT
2620  *              This function asserts that the object is not
2621  *              currently in any GPU-based read or write domains
2622  *      4. Read by GPU
2623  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2624  *              As write_domain is zero, this function adds in the
2625  *              current read domains (CPU+COMMAND, 0).
2626  *              flush_domains is set to CPU.
2627  *              invalidate_domains is set to COMMAND
2628  *              clflush is run to get data out of the CPU caches
2629  *              then i915_dev_set_domain calls i915_gem_flush to
2630  *              emit an MI_FLUSH and drm_agp_chipset_flush
2631  *      5. Unmapped from GTT
2632  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2633  *              flush_domains and invalidate_domains end up both zero
2634  *              so no flushing/invalidating happens
2635  *      6. Freed
2636  *              yay, done
2637  *
2638  * Case 2: The shared render buffer
2639  *
2640  *      1. Allocated
2641  *      2. Mapped to GTT
2642  *      3. Read/written by GPU
2643  *      4. set_domain to (CPU,CPU)
2644  *      5. Read/written by CPU
2645  *      6. Read/written by GPU
2646  *
2647  *      1. Allocated
2648  *              Same as last example, (CPU, CPU)
2649  *      2. Mapped to GTT
2650  *              Nothing changes (assertions find that it is not in the GPU)
2651  *      3. Read/written by GPU
2652  *              execbuffer calls set_domain (RENDER, RENDER)
2653  *              flush_domains gets CPU
2654  *              invalidate_domains gets GPU
2655  *              clflush (obj)
2656  *              MI_FLUSH and drm_agp_chipset_flush
2657  *      4. set_domain (CPU, CPU)
2658  *              flush_domains gets GPU
2659  *              invalidate_domains gets CPU
2660  *              wait_rendering (obj) to make sure all drawing is complete.
2661  *              This will include an MI_FLUSH to get the data from GPU
2662  *              to memory
2663  *              clflush (obj) to invalidate the CPU cache
2664  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2665  *      5. Read/written by CPU
2666  *              cache lines are loaded and dirtied
2667  *      6. Read written by GPU
2668  *              Same as last GPU access
2669  *
2670  * Case 3: The constant buffer
2671  *
2672  *      1. Allocated
2673  *      2. Written by CPU
2674  *      3. Read by GPU
2675  *      4. Updated (written) by CPU again
2676  *      5. Read by GPU
2677  *
2678  *      1. Allocated
2679  *              (CPU, CPU)
2680  *      2. Written by CPU
2681  *              (CPU, CPU)
2682  *      3. Read by GPU
2683  *              (CPU+RENDER, 0)
2684  *              flush_domains = CPU
2685  *              invalidate_domains = RENDER
2686  *              clflush (obj)
2687  *              MI_FLUSH
2688  *              drm_agp_chipset_flush
2689  *      4. Updated (written) by CPU again
2690  *              (CPU, CPU)
2691  *              flush_domains = 0 (no previous write domain)
2692  *              invalidate_domains = 0 (no new read domains)
2693  *      5. Read by GPU
2694  *              (CPU+RENDER, 0)
2695  *              flush_domains = CPU
2696  *              invalidate_domains = RENDER
2697  *              clflush (obj)
2698  *              MI_FLUSH
2699  *              drm_agp_chipset_flush
2700  */
2701 static void
2702 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2703 {
2704         struct drm_device               *dev = obj->dev;
2705         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2706         uint32_t                        invalidate_domains = 0;
2707         uint32_t                        flush_domains = 0;
2708
2709         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2710         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2711
2712 #if WATCH_BUF
2713         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2714                  __func__, obj,
2715                  obj->read_domains, obj->pending_read_domains,
2716                  obj->write_domain, obj->pending_write_domain);
2717 #endif
2718         /*
2719          * If the object isn't moving to a new write domain,
2720          * let the object stay in multiple read domains
2721          */
2722         if (obj->pending_write_domain == 0)
2723                 obj->pending_read_domains |= obj->read_domains;
2724         else
2725                 obj_priv->dirty = 1;
2726
2727         /*
2728          * Flush the current write domain if
2729          * the new read domains don't match. Invalidate
2730          * any read domains which differ from the old
2731          * write domain
2732          */
2733         if (obj->write_domain &&
2734             obj->write_domain != obj->pending_read_domains) {
2735                 flush_domains |= obj->write_domain;
2736                 invalidate_domains |=
2737                         obj->pending_read_domains & ~obj->write_domain;
2738         }
2739         /*
2740          * Invalidate any read caches which may have
2741          * stale data. That is, any new read domains.
2742          */
2743         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2744         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2745 #if WATCH_BUF
2746                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2747                          __func__, flush_domains, invalidate_domains);
2748 #endif
2749                 i915_gem_clflush_object(obj);
2750         }
2751
2752         /* The actual obj->write_domain will be updated with
2753          * pending_write_domain after we emit the accumulated flush for all
2754          * of our domain changes in execbuffers (which clears objects'
2755          * write_domains).  So if we have a current write domain that we
2756          * aren't changing, set pending_write_domain to that.
2757          */
2758         if (flush_domains == 0 && obj->pending_write_domain == 0)
2759                 obj->pending_write_domain = obj->write_domain;
2760         obj->read_domains = obj->pending_read_domains;
2761
2762         dev->invalidate_domains |= invalidate_domains;
2763         dev->flush_domains |= flush_domains;
2764 #if WATCH_BUF
2765         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2766                  __func__,
2767                  obj->read_domains, obj->write_domain,
2768                  dev->invalidate_domains, dev->flush_domains);
2769 #endif
2770 }
2771
2772 /**
2773  * Moves the object from a partially CPU read to a full one.
2774  *
2775  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2776  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2777  */
2778 static void
2779 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2780 {
2781         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2782
2783         if (!obj_priv->page_cpu_valid)
2784                 return;
2785
2786         /* If we're partially in the CPU read domain, finish moving it in.
2787          */
2788         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2789                 int i;
2790
2791                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2792                         if (obj_priv->page_cpu_valid[i])
2793                                 continue;
2794                         drm_clflush_pages(obj_priv->pages + i, 1);
2795                 }
2796         }
2797
2798         /* Free the page_cpu_valid mappings which are now stale, whether
2799          * or not we've got I915_GEM_DOMAIN_CPU.
2800          */
2801         drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2802                  DRM_MEM_DRIVER);
2803         obj_priv->page_cpu_valid = NULL;
2804 }
2805
2806 /**
2807  * Set the CPU read domain on a range of the object.
2808  *
2809  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2810  * not entirely valid.  The page_cpu_valid member of the object flags which
2811  * pages have been flushed, and will be respected by
2812  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2813  * of the whole object.
2814  *
2815  * This function returns when the move is complete, including waiting on
2816  * flushes to occur.
2817  */
2818 static int
2819 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2820                                           uint64_t offset, uint64_t size)
2821 {
2822         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2823         int i, ret;
2824
2825         if (offset == 0 && size == obj->size)
2826                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2827
2828         i915_gem_object_flush_gpu_write_domain(obj);
2829         /* Wait on any GPU rendering and flushing to occur. */
2830         ret = i915_gem_object_wait_rendering(obj);
2831         if (ret != 0)
2832                 return ret;
2833         i915_gem_object_flush_gtt_write_domain(obj);
2834
2835         /* If we're already fully in the CPU read domain, we're done. */
2836         if (obj_priv->page_cpu_valid == NULL &&
2837             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2838                 return 0;
2839
2840         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2841          * newly adding I915_GEM_DOMAIN_CPU
2842          */
2843         if (obj_priv->page_cpu_valid == NULL) {
2844                 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2845                                                       DRM_MEM_DRIVER);
2846                 if (obj_priv->page_cpu_valid == NULL)
2847                         return -ENOMEM;
2848         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2849                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2850
2851         /* Flush the cache on any pages that are still invalid from the CPU's
2852          * perspective.
2853          */
2854         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2855              i++) {
2856                 if (obj_priv->page_cpu_valid[i])
2857                         continue;
2858
2859                 drm_clflush_pages(obj_priv->pages + i, 1);
2860
2861                 obj_priv->page_cpu_valid[i] = 1;
2862         }
2863
2864         /* It should now be out of any other write domains, and we can update
2865          * the domain values for our changes.
2866          */
2867         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2868
2869         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2870
2871         return 0;
2872 }
2873
2874 /**
2875  * Pin an object to the GTT and evaluate the relocations landing in it.
2876  */
2877 static int
2878 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2879                                  struct drm_file *file_priv,
2880                                  struct drm_i915_gem_exec_object *entry,
2881                                  struct drm_i915_gem_relocation_entry *relocs)
2882 {
2883         struct drm_device *dev = obj->dev;
2884         drm_i915_private_t *dev_priv = dev->dev_private;
2885         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2886         int i, ret;
2887         void __iomem *reloc_page;
2888
2889         /* Choose the GTT offset for our buffer and put it there. */
2890         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2891         if (ret)
2892                 return ret;
2893
2894         entry->offset = obj_priv->gtt_offset;
2895
2896         /* Apply the relocations, using the GTT aperture to avoid cache
2897          * flushing requirements.
2898          */
2899         for (i = 0; i < entry->relocation_count; i++) {
2900                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2901                 struct drm_gem_object *target_obj;
2902                 struct drm_i915_gem_object *target_obj_priv;
2903                 uint32_t reloc_val, reloc_offset;
2904                 uint32_t __iomem *reloc_entry;
2905
2906                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2907                                                    reloc->target_handle);
2908                 if (target_obj == NULL) {
2909                         i915_gem_object_unpin(obj);
2910                         return -EBADF;
2911                 }
2912                 target_obj_priv = target_obj->driver_private;
2913
2914                 /* The target buffer should have appeared before us in the
2915                  * exec_object list, so it should have a GTT space bound by now.
2916                  */
2917                 if (target_obj_priv->gtt_space == NULL) {
2918                         DRM_ERROR("No GTT space found for object %d\n",
2919                                   reloc->target_handle);
2920                         drm_gem_object_unreference(target_obj);
2921                         i915_gem_object_unpin(obj);
2922                         return -EINVAL;
2923                 }
2924
2925                 if (reloc->offset > obj->size - 4) {
2926                         DRM_ERROR("Relocation beyond object bounds: "
2927                                   "obj %p target %d offset %d size %d.\n",
2928                                   obj, reloc->target_handle,
2929                                   (int) reloc->offset, (int) obj->size);
2930                         drm_gem_object_unreference(target_obj);
2931                         i915_gem_object_unpin(obj);
2932                         return -EINVAL;
2933                 }
2934                 if (reloc->offset & 3) {
2935                         DRM_ERROR("Relocation not 4-byte aligned: "
2936                                   "obj %p target %d offset %d.\n",
2937                                   obj, reloc->target_handle,
2938                                   (int) reloc->offset);
2939                         drm_gem_object_unreference(target_obj);
2940                         i915_gem_object_unpin(obj);
2941                         return -EINVAL;
2942                 }
2943
2944                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2945                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2946                         DRM_ERROR("reloc with read/write CPU domains: "
2947                                   "obj %p target %d offset %d "
2948                                   "read %08x write %08x",
2949                                   obj, reloc->target_handle,
2950                                   (int) reloc->offset,
2951                                   reloc->read_domains,
2952                                   reloc->write_domain);
2953                         drm_gem_object_unreference(target_obj);
2954                         i915_gem_object_unpin(obj);
2955                         return -EINVAL;
2956                 }
2957
2958                 if (reloc->write_domain && target_obj->pending_write_domain &&
2959                     reloc->write_domain != target_obj->pending_write_domain) {
2960                         DRM_ERROR("Write domain conflict: "
2961                                   "obj %p target %d offset %d "
2962                                   "new %08x old %08x\n",
2963                                   obj, reloc->target_handle,
2964                                   (int) reloc->offset,
2965                                   reloc->write_domain,
2966                                   target_obj->pending_write_domain);
2967                         drm_gem_object_unreference(target_obj);
2968                         i915_gem_object_unpin(obj);
2969                         return -EINVAL;
2970                 }
2971
2972 #if WATCH_RELOC
2973                 DRM_INFO("%s: obj %p offset %08x target %d "
2974                          "read %08x write %08x gtt %08x "
2975                          "presumed %08x delta %08x\n",
2976                          __func__,
2977                          obj,
2978                          (int) reloc->offset,
2979                          (int) reloc->target_handle,
2980                          (int) reloc->read_domains,
2981                          (int) reloc->write_domain,
2982                          (int) target_obj_priv->gtt_offset,
2983                          (int) reloc->presumed_offset,
2984                          reloc->delta);
2985 #endif
2986
2987                 target_obj->pending_read_domains |= reloc->read_domains;
2988                 target_obj->pending_write_domain |= reloc->write_domain;
2989
2990                 /* If the relocation already has the right value in it, no
2991                  * more work needs to be done.
2992                  */
2993                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
2994                         drm_gem_object_unreference(target_obj);
2995                         continue;
2996                 }
2997
2998                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
2999                 if (ret != 0) {
3000                         drm_gem_object_unreference(target_obj);
3001                         i915_gem_object_unpin(obj);
3002                         return -EINVAL;
3003                 }
3004
3005                 /* Map the page containing the relocation we're going to
3006                  * perform.
3007                  */
3008                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3009                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3010                                                       (reloc_offset &
3011                                                        ~(PAGE_SIZE - 1)));
3012                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3013                                                    (reloc_offset & (PAGE_SIZE - 1)));
3014                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3015
3016 #if WATCH_BUF
3017                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3018                           obj, (unsigned int) reloc->offset,
3019                           readl(reloc_entry), reloc_val);
3020 #endif
3021                 writel(reloc_val, reloc_entry);
3022                 io_mapping_unmap_atomic(reloc_page);
3023
3024                 /* The updated presumed offset for this entry will be
3025                  * copied back out to the user.
3026                  */
3027                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3028
3029                 drm_gem_object_unreference(target_obj);
3030         }
3031
3032 #if WATCH_BUF
3033         if (0)
3034                 i915_gem_dump_object(obj, 128, __func__, ~0);
3035 #endif
3036         return 0;
3037 }
3038
3039 /** Dispatch a batchbuffer to the ring
3040  */
3041 static int
3042 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3043                               struct drm_i915_gem_execbuffer *exec,
3044                               struct drm_clip_rect *cliprects,
3045                               uint64_t exec_offset)
3046 {
3047         drm_i915_private_t *dev_priv = dev->dev_private;
3048         int nbox = exec->num_cliprects;
3049         int i = 0, count;
3050         uint32_t exec_start, exec_len;
3051         RING_LOCALS;
3052
3053         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3054         exec_len = (uint32_t) exec->batch_len;
3055
3056         count = nbox ? nbox : 1;
3057
3058         for (i = 0; i < count; i++) {
3059                 if (i < nbox) {
3060                         int ret = i915_emit_box(dev, cliprects, i,
3061                                                 exec->DR1, exec->DR4);
3062                         if (ret)
3063                                 return ret;
3064                 }
3065
3066                 if (IS_I830(dev) || IS_845G(dev)) {
3067                         BEGIN_LP_RING(4);
3068                         OUT_RING(MI_BATCH_BUFFER);
3069                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3070                         OUT_RING(exec_start + exec_len - 4);
3071                         OUT_RING(0);
3072                         ADVANCE_LP_RING();
3073                 } else {
3074                         BEGIN_LP_RING(2);
3075                         if (IS_I965G(dev)) {
3076                                 OUT_RING(MI_BATCH_BUFFER_START |
3077                                          (2 << 6) |
3078                                          MI_BATCH_NON_SECURE_I965);
3079                                 OUT_RING(exec_start);
3080                         } else {
3081                                 OUT_RING(MI_BATCH_BUFFER_START |
3082                                          (2 << 6));
3083                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3084                         }
3085                         ADVANCE_LP_RING();
3086                 }
3087         }
3088
3089         /* XXX breadcrumb */
3090         return 0;
3091 }
3092
3093 /* Throttle our rendering by waiting until the ring has completed our requests
3094  * emitted over 20 msec ago.
3095  *
3096  * Note that if we were to use the current jiffies each time around the loop,
3097  * we wouldn't escape the function with any frames outstanding if the time to
3098  * render a frame was over 20ms.
3099  *
3100  * This should get us reasonable parallelism between CPU and GPU but also
3101  * relatively low latency when blocking on a particular request to finish.
3102  */
3103 static int
3104 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3105 {
3106         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3107         int ret = 0;
3108         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3109
3110         mutex_lock(&dev->struct_mutex);
3111         while (!list_empty(&i915_file_priv->mm.request_list)) {
3112                 struct drm_i915_gem_request *request;
3113
3114                 request = list_first_entry(&i915_file_priv->mm.request_list,
3115                                            struct drm_i915_gem_request,
3116                                            client_list);
3117
3118                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3119                         break;
3120
3121                 ret = i915_wait_request(dev, request->seqno);
3122                 if (ret != 0)
3123                         break;
3124         }
3125         mutex_unlock(&dev->struct_mutex);
3126
3127         return ret;
3128 }
3129
3130 static int
3131 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3132                               uint32_t buffer_count,
3133                               struct drm_i915_gem_relocation_entry **relocs)
3134 {
3135         uint32_t reloc_count = 0, reloc_index = 0, i;
3136         int ret;
3137
3138         *relocs = NULL;
3139         for (i = 0; i < buffer_count; i++) {
3140                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3141                         return -EINVAL;
3142                 reloc_count += exec_list[i].relocation_count;
3143         }
3144
3145         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3146         if (*relocs == NULL)
3147                 return -ENOMEM;
3148
3149         for (i = 0; i < buffer_count; i++) {
3150                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3151
3152                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3153
3154                 ret = copy_from_user(&(*relocs)[reloc_index],
3155                                      user_relocs,
3156                                      exec_list[i].relocation_count *
3157                                      sizeof(**relocs));
3158                 if (ret != 0) {
3159                         drm_free_large(*relocs);
3160                         *relocs = NULL;
3161                         return -EFAULT;
3162                 }
3163
3164                 reloc_index += exec_list[i].relocation_count;
3165         }
3166
3167         return 0;
3168 }
3169
3170 static int
3171 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3172                             uint32_t buffer_count,
3173                             struct drm_i915_gem_relocation_entry *relocs)
3174 {
3175         uint32_t reloc_count = 0, i;
3176         int ret = 0;
3177
3178         for (i = 0; i < buffer_count; i++) {
3179                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3180                 int unwritten;
3181
3182                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3183
3184                 unwritten = copy_to_user(user_relocs,
3185                                          &relocs[reloc_count],
3186                                          exec_list[i].relocation_count *
3187                                          sizeof(*relocs));
3188
3189                 if (unwritten) {
3190                         ret = -EFAULT;
3191                         goto err;
3192                 }
3193
3194                 reloc_count += exec_list[i].relocation_count;
3195         }
3196
3197 err:
3198         drm_free_large(relocs);
3199
3200         return ret;
3201 }
3202
3203 static int
3204 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3205                            uint64_t exec_offset)
3206 {
3207         uint32_t exec_start, exec_len;
3208
3209         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3210         exec_len = (uint32_t) exec->batch_len;
3211
3212         if ((exec_start | exec_len) & 0x7)
3213                 return -EINVAL;
3214
3215         if (!exec_start)
3216                 return -EINVAL;
3217
3218         return 0;
3219 }
3220
3221 int
3222 i915_gem_execbuffer(struct drm_device *dev, void *data,
3223                     struct drm_file *file_priv)
3224 {
3225         drm_i915_private_t *dev_priv = dev->dev_private;
3226         struct drm_i915_gem_execbuffer *args = data;
3227         struct drm_i915_gem_exec_object *exec_list = NULL;
3228         struct drm_gem_object **object_list = NULL;
3229         struct drm_gem_object *batch_obj;
3230         struct drm_i915_gem_object *obj_priv;
3231         struct drm_clip_rect *cliprects = NULL;
3232         struct drm_i915_gem_relocation_entry *relocs;
3233         int ret, ret2, i, pinned = 0;
3234         uint64_t exec_offset;
3235         uint32_t seqno, flush_domains, reloc_index;
3236         int pin_tries;
3237
3238 #if WATCH_EXEC
3239         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3240                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3241 #endif
3242
3243         if (args->buffer_count < 1) {
3244                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3245                 return -EINVAL;
3246         }
3247         /* Copy in the exec list from userland */
3248         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3249         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3250         if (exec_list == NULL || object_list == NULL) {
3251                 DRM_ERROR("Failed to allocate exec or object list "
3252                           "for %d buffers\n",
3253                           args->buffer_count);
3254                 ret = -ENOMEM;
3255                 goto pre_mutex_err;
3256         }
3257         ret = copy_from_user(exec_list,
3258                              (struct drm_i915_relocation_entry __user *)
3259                              (uintptr_t) args->buffers_ptr,
3260                              sizeof(*exec_list) * args->buffer_count);
3261         if (ret != 0) {
3262                 DRM_ERROR("copy %d exec entries failed %d\n",
3263                           args->buffer_count, ret);
3264                 goto pre_mutex_err;
3265         }
3266
3267         if (args->num_cliprects != 0) {
3268                 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3269                                        DRM_MEM_DRIVER);
3270                 if (cliprects == NULL)
3271                         goto pre_mutex_err;
3272
3273                 ret = copy_from_user(cliprects,
3274                                      (struct drm_clip_rect __user *)
3275                                      (uintptr_t) args->cliprects_ptr,
3276                                      sizeof(*cliprects) * args->num_cliprects);
3277                 if (ret != 0) {
3278                         DRM_ERROR("copy %d cliprects failed: %d\n",
3279                                   args->num_cliprects, ret);
3280                         goto pre_mutex_err;
3281                 }
3282         }
3283
3284         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3285                                             &relocs);
3286         if (ret != 0)
3287                 goto pre_mutex_err;
3288
3289         mutex_lock(&dev->struct_mutex);
3290
3291         i915_verify_inactive(dev, __FILE__, __LINE__);
3292
3293         if (dev_priv->mm.wedged) {
3294                 DRM_ERROR("Execbuf while wedged\n");
3295                 mutex_unlock(&dev->struct_mutex);
3296                 ret = -EIO;
3297                 goto pre_mutex_err;
3298         }
3299
3300         if (dev_priv->mm.suspended) {
3301                 DRM_ERROR("Execbuf while VT-switched.\n");
3302                 mutex_unlock(&dev->struct_mutex);
3303                 ret = -EBUSY;
3304                 goto pre_mutex_err;
3305         }
3306
3307         /* Look up object handles */
3308         for (i = 0; i < args->buffer_count; i++) {
3309                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3310                                                        exec_list[i].handle);
3311                 if (object_list[i] == NULL) {
3312                         DRM_ERROR("Invalid object handle %d at index %d\n",
3313                                    exec_list[i].handle, i);
3314                         ret = -EBADF;
3315                         goto err;
3316                 }
3317
3318                 obj_priv = object_list[i]->driver_private;
3319                 if (obj_priv->in_execbuffer) {
3320                         DRM_ERROR("Object %p appears more than once in object list\n",
3321                                    object_list[i]);
3322                         ret = -EBADF;
3323                         goto err;
3324                 }
3325                 obj_priv->in_execbuffer = true;
3326         }
3327
3328         /* Pin and relocate */
3329         for (pin_tries = 0; ; pin_tries++) {
3330                 ret = 0;
3331                 reloc_index = 0;
3332
3333                 for (i = 0; i < args->buffer_count; i++) {
3334                         object_list[i]->pending_read_domains = 0;
3335                         object_list[i]->pending_write_domain = 0;
3336                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3337                                                                file_priv,
3338                                                                &exec_list[i],
3339                                                                &relocs[reloc_index]);
3340                         if (ret)
3341                                 break;
3342                         pinned = i + 1;
3343                         reloc_index += exec_list[i].relocation_count;
3344                 }
3345                 /* success */
3346                 if (ret == 0)
3347                         break;
3348
3349                 /* error other than GTT full, or we've already tried again */
3350                 if (ret != -ENOSPC || pin_tries >= 1) {
3351                         if (ret != -ERESTARTSYS)
3352                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3353                         goto err;
3354                 }
3355
3356                 /* unpin all of our buffers */
3357                 for (i = 0; i < pinned; i++)
3358                         i915_gem_object_unpin(object_list[i]);
3359                 pinned = 0;
3360
3361                 /* evict everyone we can from the aperture */
3362                 ret = i915_gem_evict_everything(dev);
3363                 if (ret)
3364                         goto err;
3365         }
3366
3367         /* Set the pending read domains for the batch buffer to COMMAND */
3368         batch_obj = object_list[args->buffer_count-1];
3369         if (batch_obj->pending_write_domain) {
3370                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3371                 ret = -EINVAL;
3372                 goto err;
3373         }
3374         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3375
3376         /* Sanity check the batch buffer, prior to moving objects */
3377         exec_offset = exec_list[args->buffer_count - 1].offset;
3378         ret = i915_gem_check_execbuffer (args, exec_offset);
3379         if (ret != 0) {
3380                 DRM_ERROR("execbuf with invalid offset/length\n");
3381                 goto err;
3382         }
3383
3384         i915_verify_inactive(dev, __FILE__, __LINE__);
3385
3386         /* Zero the global flush/invalidate flags. These
3387          * will be modified as new domains are computed
3388          * for each object
3389          */
3390         dev->invalidate_domains = 0;
3391         dev->flush_domains = 0;
3392
3393         for (i = 0; i < args->buffer_count; i++) {
3394                 struct drm_gem_object *obj = object_list[i];
3395
3396                 /* Compute new gpu domains and update invalidate/flush */
3397                 i915_gem_object_set_to_gpu_domain(obj);
3398         }
3399
3400         i915_verify_inactive(dev, __FILE__, __LINE__);
3401
3402         if (dev->invalidate_domains | dev->flush_domains) {
3403 #if WATCH_EXEC
3404                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3405                           __func__,
3406                          dev->invalidate_domains,
3407                          dev->flush_domains);
3408 #endif
3409                 i915_gem_flush(dev,
3410                                dev->invalidate_domains,
3411                                dev->flush_domains);
3412                 if (dev->flush_domains)
3413                         (void)i915_add_request(dev, file_priv,
3414                                                dev->flush_domains);
3415         }
3416
3417         for (i = 0; i < args->buffer_count; i++) {
3418                 struct drm_gem_object *obj = object_list[i];
3419
3420                 obj->write_domain = obj->pending_write_domain;
3421         }
3422
3423         i915_verify_inactive(dev, __FILE__, __LINE__);
3424
3425 #if WATCH_COHERENCY
3426         for (i = 0; i < args->buffer_count; i++) {
3427                 i915_gem_object_check_coherency(object_list[i],
3428                                                 exec_list[i].handle);
3429         }
3430 #endif
3431
3432 #if WATCH_EXEC
3433         i915_gem_dump_object(batch_obj,
3434                               args->batch_len,
3435                               __func__,
3436                               ~0);
3437 #endif
3438
3439         /* Exec the batchbuffer */
3440         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3441         if (ret) {
3442                 DRM_ERROR("dispatch failed %d\n", ret);
3443                 goto err;
3444         }
3445
3446         /*
3447          * Ensure that the commands in the batch buffer are
3448          * finished before the interrupt fires
3449          */
3450         flush_domains = i915_retire_commands(dev);
3451
3452         i915_verify_inactive(dev, __FILE__, __LINE__);
3453
3454         /*
3455          * Get a seqno representing the execution of the current buffer,
3456          * which we can wait on.  We would like to mitigate these interrupts,
3457          * likely by only creating seqnos occasionally (so that we have
3458          * *some* interrupts representing completion of buffers that we can
3459          * wait on when trying to clear up gtt space).
3460          */
3461         seqno = i915_add_request(dev, file_priv, flush_domains);
3462         BUG_ON(seqno == 0);
3463         for (i = 0; i < args->buffer_count; i++) {
3464                 struct drm_gem_object *obj = object_list[i];
3465
3466                 i915_gem_object_move_to_active(obj, seqno);
3467 #if WATCH_LRU
3468                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3469 #endif
3470         }
3471 #if WATCH_LRU
3472         i915_dump_lru(dev, __func__);
3473 #endif
3474
3475         i915_verify_inactive(dev, __FILE__, __LINE__);
3476
3477 err:
3478         for (i = 0; i < pinned; i++)
3479                 i915_gem_object_unpin(object_list[i]);
3480
3481         for (i = 0; i < args->buffer_count; i++) {
3482                 if (object_list[i]) {
3483                         obj_priv = object_list[i]->driver_private;
3484                         obj_priv->in_execbuffer = false;
3485                 }
3486                 drm_gem_object_unreference(object_list[i]);
3487         }
3488
3489         mutex_unlock(&dev->struct_mutex);
3490
3491         if (!ret) {
3492                 /* Copy the new buffer offsets back to the user's exec list. */
3493                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3494                                    (uintptr_t) args->buffers_ptr,
3495                                    exec_list,
3496                                    sizeof(*exec_list) * args->buffer_count);
3497                 if (ret) {
3498                         ret = -EFAULT;
3499                         DRM_ERROR("failed to copy %d exec entries "
3500                                   "back to user (%d)\n",
3501                                   args->buffer_count, ret);
3502                 }
3503         }
3504
3505         /* Copy the updated relocations out regardless of current error
3506          * state.  Failure to update the relocs would mean that the next
3507          * time userland calls execbuf, it would do so with presumed offset
3508          * state that didn't match the actual object state.
3509          */
3510         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3511                                            relocs);
3512         if (ret2 != 0) {
3513                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3514
3515                 if (ret == 0)
3516                         ret = ret2;
3517         }
3518
3519 pre_mutex_err:
3520         drm_free_large(object_list);
3521         drm_free_large(exec_list);
3522         drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3523                  DRM_MEM_DRIVER);
3524
3525         return ret;
3526 }
3527
3528 int
3529 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3530 {
3531         struct drm_device *dev = obj->dev;
3532         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3533         int ret;
3534
3535         i915_verify_inactive(dev, __FILE__, __LINE__);
3536         if (obj_priv->gtt_space == NULL) {
3537                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3538                 if (ret != 0) {
3539                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3540                                 DRM_ERROR("Failure to bind: %d\n", ret);
3541                         return ret;
3542                 }
3543         }
3544         /*
3545          * Pre-965 chips need a fence register set up in order to
3546          * properly handle tiled surfaces.
3547          */
3548         if (!IS_I965G(dev) &&
3549             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3550             obj_priv->tiling_mode != I915_TILING_NONE) {
3551                 ret = i915_gem_object_get_fence_reg(obj);
3552                 if (ret != 0) {
3553                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3554                                 DRM_ERROR("Failure to install fence: %d\n",
3555                                           ret);
3556                         return ret;
3557                 }
3558         }
3559         obj_priv->pin_count++;
3560
3561         /* If the object is not active and not pending a flush,
3562          * remove it from the inactive list
3563          */
3564         if (obj_priv->pin_count == 1) {
3565                 atomic_inc(&dev->pin_count);
3566                 atomic_add(obj->size, &dev->pin_memory);
3567                 if (!obj_priv->active &&
3568                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3569                     !list_empty(&obj_priv->list))
3570                         list_del_init(&obj_priv->list);
3571         }
3572         i915_verify_inactive(dev, __FILE__, __LINE__);
3573
3574         return 0;
3575 }
3576
3577 void
3578 i915_gem_object_unpin(struct drm_gem_object *obj)
3579 {
3580         struct drm_device *dev = obj->dev;
3581         drm_i915_private_t *dev_priv = dev->dev_private;
3582         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3583
3584         i915_verify_inactive(dev, __FILE__, __LINE__);
3585         obj_priv->pin_count--;
3586         BUG_ON(obj_priv->pin_count < 0);
3587         BUG_ON(obj_priv->gtt_space == NULL);
3588
3589         /* If the object is no longer pinned, and is
3590          * neither active nor being flushed, then stick it on
3591          * the inactive list
3592          */
3593         if (obj_priv->pin_count == 0) {
3594                 if (!obj_priv->active &&
3595                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3596                         list_move_tail(&obj_priv->list,
3597                                        &dev_priv->mm.inactive_list);
3598                 atomic_dec(&dev->pin_count);
3599                 atomic_sub(obj->size, &dev->pin_memory);
3600         }
3601         i915_verify_inactive(dev, __FILE__, __LINE__);
3602 }
3603
3604 int
3605 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3606                    struct drm_file *file_priv)
3607 {
3608         struct drm_i915_gem_pin *args = data;
3609         struct drm_gem_object *obj;
3610         struct drm_i915_gem_object *obj_priv;
3611         int ret;
3612
3613         mutex_lock(&dev->struct_mutex);
3614
3615         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3616         if (obj == NULL) {
3617                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3618                           args->handle);
3619                 mutex_unlock(&dev->struct_mutex);
3620                 return -EBADF;
3621         }
3622         obj_priv = obj->driver_private;
3623
3624         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3625                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3626                           args->handle);
3627                 drm_gem_object_unreference(obj);
3628                 mutex_unlock(&dev->struct_mutex);
3629                 return -EINVAL;
3630         }
3631
3632         obj_priv->user_pin_count++;
3633         obj_priv->pin_filp = file_priv;
3634         if (obj_priv->user_pin_count == 1) {
3635                 ret = i915_gem_object_pin(obj, args->alignment);
3636                 if (ret != 0) {
3637                         drm_gem_object_unreference(obj);
3638                         mutex_unlock(&dev->struct_mutex);
3639                         return ret;
3640                 }
3641         }
3642
3643         /* XXX - flush the CPU caches for pinned objects
3644          * as the X server doesn't manage domains yet
3645          */
3646         i915_gem_object_flush_cpu_write_domain(obj);
3647         args->offset = obj_priv->gtt_offset;
3648         drm_gem_object_unreference(obj);
3649         mutex_unlock(&dev->struct_mutex);
3650
3651         return 0;
3652 }
3653
3654 int
3655 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3656                      struct drm_file *file_priv)
3657 {
3658         struct drm_i915_gem_pin *args = data;
3659         struct drm_gem_object *obj;
3660         struct drm_i915_gem_object *obj_priv;
3661
3662         mutex_lock(&dev->struct_mutex);
3663
3664         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3665         if (obj == NULL) {
3666                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3667                           args->handle);
3668                 mutex_unlock(&dev->struct_mutex);
3669                 return -EBADF;
3670         }
3671
3672         obj_priv = obj->driver_private;
3673         if (obj_priv->pin_filp != file_priv) {
3674                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3675                           args->handle);
3676                 drm_gem_object_unreference(obj);
3677                 mutex_unlock(&dev->struct_mutex);
3678                 return -EINVAL;
3679         }
3680         obj_priv->user_pin_count--;
3681         if (obj_priv->user_pin_count == 0) {
3682                 obj_priv->pin_filp = NULL;
3683                 i915_gem_object_unpin(obj);
3684         }
3685
3686         drm_gem_object_unreference(obj);
3687         mutex_unlock(&dev->struct_mutex);
3688         return 0;
3689 }
3690
3691 int
3692 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3693                     struct drm_file *file_priv)
3694 {
3695         struct drm_i915_gem_busy *args = data;
3696         struct drm_gem_object *obj;
3697         struct drm_i915_gem_object *obj_priv;
3698
3699         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3700         if (obj == NULL) {
3701                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3702                           args->handle);
3703                 return -EBADF;
3704         }
3705
3706         mutex_lock(&dev->struct_mutex);
3707         /* Update the active list for the hardware's current position.
3708          * Otherwise this only updates on a delayed timer or when irqs are
3709          * actually unmasked, and our working set ends up being larger than
3710          * required.
3711          */
3712         i915_gem_retire_requests(dev);
3713
3714         obj_priv = obj->driver_private;
3715         /* Don't count being on the flushing list against the object being
3716          * done.  Otherwise, a buffer left on the flushing list but not getting
3717          * flushed (because nobody's flushing that domain) won't ever return
3718          * unbusy and get reused by libdrm's bo cache.  The other expected
3719          * consumer of this interface, OpenGL's occlusion queries, also specs
3720          * that the objects get unbusy "eventually" without any interference.
3721          */
3722         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3723
3724         drm_gem_object_unreference(obj);
3725         mutex_unlock(&dev->struct_mutex);
3726         return 0;
3727 }
3728
3729 int
3730 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3731                         struct drm_file *file_priv)
3732 {
3733     return i915_gem_ring_throttle(dev, file_priv);
3734 }
3735
3736 int i915_gem_init_object(struct drm_gem_object *obj)
3737 {
3738         struct drm_i915_gem_object *obj_priv;
3739
3740         obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3741         if (obj_priv == NULL)
3742                 return -ENOMEM;
3743
3744         /*
3745          * We've just allocated pages from the kernel,
3746          * so they've just been written by the CPU with
3747          * zeros. They'll need to be clflushed before we
3748          * use them with the GPU.
3749          */
3750         obj->write_domain = I915_GEM_DOMAIN_CPU;
3751         obj->read_domains = I915_GEM_DOMAIN_CPU;
3752
3753         obj_priv->agp_type = AGP_USER_MEMORY;
3754
3755         obj->driver_private = obj_priv;
3756         obj_priv->obj = obj;
3757         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3758         INIT_LIST_HEAD(&obj_priv->list);
3759
3760         return 0;
3761 }
3762
3763 void i915_gem_free_object(struct drm_gem_object *obj)
3764 {
3765         struct drm_device *dev = obj->dev;
3766         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3767
3768         while (obj_priv->pin_count > 0)
3769                 i915_gem_object_unpin(obj);
3770
3771         if (obj_priv->phys_obj)
3772                 i915_gem_detach_phys_object(dev, obj);
3773
3774         i915_gem_object_unbind(obj);
3775
3776         i915_gem_free_mmap_offset(obj);
3777
3778         drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3779         kfree(obj_priv->bit_17);
3780         drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3781 }
3782
3783 /** Unbinds all objects that are on the given buffer list. */
3784 static int
3785 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3786 {
3787         struct drm_gem_object *obj;
3788         struct drm_i915_gem_object *obj_priv;
3789         int ret;
3790
3791         while (!list_empty(head)) {
3792                 obj_priv = list_first_entry(head,
3793                                             struct drm_i915_gem_object,
3794                                             list);
3795                 obj = obj_priv->obj;
3796
3797                 if (obj_priv->pin_count != 0) {
3798                         DRM_ERROR("Pinned object in unbind list\n");
3799                         mutex_unlock(&dev->struct_mutex);
3800                         return -EINVAL;
3801                 }
3802
3803                 ret = i915_gem_object_unbind(obj);
3804                 if (ret != 0) {
3805                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3806                                   ret);
3807                         mutex_unlock(&dev->struct_mutex);
3808                         return ret;
3809                 }
3810         }
3811
3812
3813         return 0;
3814 }
3815
3816 int
3817 i915_gem_idle(struct drm_device *dev)
3818 {
3819         drm_i915_private_t *dev_priv = dev->dev_private;
3820         uint32_t seqno, cur_seqno, last_seqno;
3821         int stuck, ret;
3822
3823         mutex_lock(&dev->struct_mutex);
3824
3825         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3826                 mutex_unlock(&dev->struct_mutex);
3827                 return 0;
3828         }
3829
3830         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3831          * We need to replace this with a semaphore, or something.
3832          */
3833         dev_priv->mm.suspended = 1;
3834
3835         /* Cancel the retire work handler, wait for it to finish if running
3836          */
3837         mutex_unlock(&dev->struct_mutex);
3838         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3839         mutex_lock(&dev->struct_mutex);
3840
3841         i915_kernel_lost_context(dev);
3842
3843         /* Flush the GPU along with all non-CPU write domains
3844          */
3845         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3846         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3847
3848         if (seqno == 0) {
3849                 mutex_unlock(&dev->struct_mutex);
3850                 return -ENOMEM;
3851         }
3852
3853         dev_priv->mm.waiting_gem_seqno = seqno;
3854         last_seqno = 0;
3855         stuck = 0;
3856         for (;;) {
3857                 cur_seqno = i915_get_gem_seqno(dev);
3858                 if (i915_seqno_passed(cur_seqno, seqno))
3859                         break;
3860                 if (last_seqno == cur_seqno) {
3861                         if (stuck++ > 100) {
3862                                 DRM_ERROR("hardware wedged\n");
3863                                 dev_priv->mm.wedged = 1;
3864                                 DRM_WAKEUP(&dev_priv->irq_queue);
3865                                 break;
3866                         }
3867                 }
3868                 msleep(10);
3869                 last_seqno = cur_seqno;
3870         }
3871         dev_priv->mm.waiting_gem_seqno = 0;
3872
3873         i915_gem_retire_requests(dev);
3874
3875         spin_lock(&dev_priv->mm.active_list_lock);
3876         if (!dev_priv->mm.wedged) {
3877                 /* Active and flushing should now be empty as we've
3878                  * waited for a sequence higher than any pending execbuffer
3879                  */
3880                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3881                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3882                 /* Request should now be empty as we've also waited
3883                  * for the last request in the list
3884                  */
3885                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3886         }
3887
3888         /* Empty the active and flushing lists to inactive.  If there's
3889          * anything left at this point, it means that we're wedged and
3890          * nothing good's going to happen by leaving them there.  So strip
3891          * the GPU domains and just stuff them onto inactive.
3892          */
3893         while (!list_empty(&dev_priv->mm.active_list)) {
3894                 struct drm_i915_gem_object *obj_priv;
3895
3896                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3897                                             struct drm_i915_gem_object,
3898                                             list);
3899                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3900                 i915_gem_object_move_to_inactive(obj_priv->obj);
3901         }
3902         spin_unlock(&dev_priv->mm.active_list_lock);
3903
3904         while (!list_empty(&dev_priv->mm.flushing_list)) {
3905                 struct drm_i915_gem_object *obj_priv;
3906
3907                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3908                                             struct drm_i915_gem_object,
3909                                             list);
3910                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3911                 i915_gem_object_move_to_inactive(obj_priv->obj);
3912         }
3913
3914
3915         /* Move all inactive buffers out of the GTT. */
3916         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3917         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3918         if (ret) {
3919                 mutex_unlock(&dev->struct_mutex);
3920                 return ret;
3921         }
3922
3923         i915_gem_cleanup_ringbuffer(dev);
3924         mutex_unlock(&dev->struct_mutex);
3925
3926         return 0;
3927 }
3928
3929 static int
3930 i915_gem_init_hws(struct drm_device *dev)
3931 {
3932         drm_i915_private_t *dev_priv = dev->dev_private;
3933         struct drm_gem_object *obj;
3934         struct drm_i915_gem_object *obj_priv;
3935         int ret;
3936
3937         /* If we need a physical address for the status page, it's already
3938          * initialized at driver load time.
3939          */
3940         if (!I915_NEED_GFX_HWS(dev))
3941                 return 0;
3942
3943         obj = drm_gem_object_alloc(dev, 4096);
3944         if (obj == NULL) {
3945                 DRM_ERROR("Failed to allocate status page\n");
3946                 return -ENOMEM;
3947         }
3948         obj_priv = obj->driver_private;
3949         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3950
3951         ret = i915_gem_object_pin(obj, 4096);
3952         if (ret != 0) {
3953                 drm_gem_object_unreference(obj);
3954                 return ret;
3955         }
3956
3957         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3958
3959         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3960         if (dev_priv->hw_status_page == NULL) {
3961                 DRM_ERROR("Failed to map status page.\n");
3962                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3963                 i915_gem_object_unpin(obj);
3964                 drm_gem_object_unreference(obj);
3965                 return -EINVAL;
3966         }
3967         dev_priv->hws_obj = obj;
3968         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
3969         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
3970         I915_READ(HWS_PGA); /* posting read */
3971         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
3972
3973         return 0;
3974 }
3975
3976 static void
3977 i915_gem_cleanup_hws(struct drm_device *dev)
3978 {
3979         drm_i915_private_t *dev_priv = dev->dev_private;
3980         struct drm_gem_object *obj;
3981         struct drm_i915_gem_object *obj_priv;
3982
3983         if (dev_priv->hws_obj == NULL)
3984                 return;
3985
3986         obj = dev_priv->hws_obj;
3987         obj_priv = obj->driver_private;
3988
3989         kunmap(obj_priv->pages[0]);
3990         i915_gem_object_unpin(obj);
3991         drm_gem_object_unreference(obj);
3992         dev_priv->hws_obj = NULL;
3993
3994         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3995         dev_priv->hw_status_page = NULL;
3996
3997         /* Write high address into HWS_PGA when disabling. */
3998         I915_WRITE(HWS_PGA, 0x1ffff000);
3999 }
4000
4001 int
4002 i915_gem_init_ringbuffer(struct drm_device *dev)
4003 {
4004         drm_i915_private_t *dev_priv = dev->dev_private;
4005         struct drm_gem_object *obj;
4006         struct drm_i915_gem_object *obj_priv;
4007         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4008         int ret;
4009         u32 head;
4010
4011         ret = i915_gem_init_hws(dev);
4012         if (ret != 0)
4013                 return ret;
4014
4015         obj = drm_gem_object_alloc(dev, 128 * 1024);
4016         if (obj == NULL) {
4017                 DRM_ERROR("Failed to allocate ringbuffer\n");
4018                 i915_gem_cleanup_hws(dev);
4019                 return -ENOMEM;
4020         }
4021         obj_priv = obj->driver_private;
4022
4023         ret = i915_gem_object_pin(obj, 4096);
4024         if (ret != 0) {
4025                 drm_gem_object_unreference(obj);
4026                 i915_gem_cleanup_hws(dev);
4027                 return ret;
4028         }
4029
4030         /* Set up the kernel mapping for the ring. */
4031         ring->Size = obj->size;
4032         ring->tail_mask = obj->size - 1;
4033
4034         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4035         ring->map.size = obj->size;
4036         ring->map.type = 0;
4037         ring->map.flags = 0;
4038         ring->map.mtrr = 0;
4039
4040         drm_core_ioremap_wc(&ring->map, dev);
4041         if (ring->map.handle == NULL) {
4042                 DRM_ERROR("Failed to map ringbuffer.\n");
4043                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4044                 i915_gem_object_unpin(obj);
4045                 drm_gem_object_unreference(obj);
4046                 i915_gem_cleanup_hws(dev);
4047                 return -EINVAL;
4048         }
4049         ring->ring_obj = obj;
4050         ring->virtual_start = ring->map.handle;
4051
4052         /* Stop the ring if it's running. */
4053         I915_WRITE(PRB0_CTL, 0);
4054         I915_WRITE(PRB0_TAIL, 0);
4055         I915_WRITE(PRB0_HEAD, 0);
4056
4057         /* Initialize the ring. */
4058         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4059         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4060
4061         /* G45 ring initialization fails to reset head to zero */
4062         if (head != 0) {
4063                 DRM_ERROR("Ring head not reset to zero "
4064                           "ctl %08x head %08x tail %08x start %08x\n",
4065                           I915_READ(PRB0_CTL),
4066                           I915_READ(PRB0_HEAD),
4067                           I915_READ(PRB0_TAIL),
4068                           I915_READ(PRB0_START));
4069                 I915_WRITE(PRB0_HEAD, 0);
4070
4071                 DRM_ERROR("Ring head forced to zero "
4072                           "ctl %08x head %08x tail %08x start %08x\n",
4073                           I915_READ(PRB0_CTL),
4074                           I915_READ(PRB0_HEAD),
4075                           I915_READ(PRB0_TAIL),
4076                           I915_READ(PRB0_START));
4077         }
4078
4079         I915_WRITE(PRB0_CTL,
4080                    ((obj->size - 4096) & RING_NR_PAGES) |
4081                    RING_NO_REPORT |
4082                    RING_VALID);
4083
4084         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4085
4086         /* If the head is still not zero, the ring is dead */
4087         if (head != 0) {
4088                 DRM_ERROR("Ring initialization failed "
4089                           "ctl %08x head %08x tail %08x start %08x\n",
4090                           I915_READ(PRB0_CTL),
4091                           I915_READ(PRB0_HEAD),
4092                           I915_READ(PRB0_TAIL),
4093                           I915_READ(PRB0_START));
4094                 return -EIO;
4095         }
4096
4097         /* Update our cache of the ring state */
4098         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4099                 i915_kernel_lost_context(dev);
4100         else {
4101                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4102                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4103                 ring->space = ring->head - (ring->tail + 8);
4104                 if (ring->space < 0)
4105                         ring->space += ring->Size;
4106         }
4107
4108         return 0;
4109 }
4110
4111 void
4112 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4113 {
4114         drm_i915_private_t *dev_priv = dev->dev_private;
4115
4116         if (dev_priv->ring.ring_obj == NULL)
4117                 return;
4118
4119         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4120
4121         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4122         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4123         dev_priv->ring.ring_obj = NULL;
4124         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4125
4126         i915_gem_cleanup_hws(dev);
4127 }
4128
4129 int
4130 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4131                        struct drm_file *file_priv)
4132 {
4133         drm_i915_private_t *dev_priv = dev->dev_private;
4134         int ret;
4135
4136         if (drm_core_check_feature(dev, DRIVER_MODESET))
4137                 return 0;
4138
4139         if (dev_priv->mm.wedged) {
4140                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4141                 dev_priv->mm.wedged = 0;
4142         }
4143
4144         mutex_lock(&dev->struct_mutex);
4145         dev_priv->mm.suspended = 0;
4146
4147         ret = i915_gem_init_ringbuffer(dev);
4148         if (ret != 0) {
4149                 mutex_unlock(&dev->struct_mutex);
4150                 return ret;
4151         }
4152
4153         spin_lock(&dev_priv->mm.active_list_lock);
4154         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4155         spin_unlock(&dev_priv->mm.active_list_lock);
4156
4157         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4158         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4159         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4160         mutex_unlock(&dev->struct_mutex);
4161
4162         drm_irq_install(dev);
4163
4164         return 0;
4165 }
4166
4167 int
4168 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4169                        struct drm_file *file_priv)
4170 {
4171         int ret;
4172
4173         if (drm_core_check_feature(dev, DRIVER_MODESET))
4174                 return 0;
4175
4176         ret = i915_gem_idle(dev);
4177         drm_irq_uninstall(dev);
4178
4179         return ret;
4180 }
4181
4182 void
4183 i915_gem_lastclose(struct drm_device *dev)
4184 {
4185         int ret;
4186
4187         if (drm_core_check_feature(dev, DRIVER_MODESET))
4188                 return;
4189
4190         ret = i915_gem_idle(dev);
4191         if (ret)
4192                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4193 }
4194
4195 void
4196 i915_gem_load(struct drm_device *dev)
4197 {
4198         drm_i915_private_t *dev_priv = dev->dev_private;
4199
4200         spin_lock_init(&dev_priv->mm.active_list_lock);
4201         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4202         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4203         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4204         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4205         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4206                           i915_gem_retire_work_handler);
4207         dev_priv->mm.next_gem_seqno = 1;
4208
4209         /* Old X drivers will take 0-2 for front, back, depth buffers */
4210         dev_priv->fence_reg_start = 3;
4211
4212         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4213                 dev_priv->num_fence_regs = 16;
4214         else
4215                 dev_priv->num_fence_regs = 8;
4216
4217         i915_gem_detect_bit_6_swizzle(dev);
4218 }
4219
4220 /*
4221  * Create a physically contiguous memory object for this object
4222  * e.g. for cursor + overlay regs
4223  */
4224 int i915_gem_init_phys_object(struct drm_device *dev,
4225                               int id, int size)
4226 {
4227         drm_i915_private_t *dev_priv = dev->dev_private;
4228         struct drm_i915_gem_phys_object *phys_obj;
4229         int ret;
4230
4231         if (dev_priv->mm.phys_objs[id - 1] || !size)
4232                 return 0;
4233
4234         phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4235         if (!phys_obj)
4236                 return -ENOMEM;
4237
4238         phys_obj->id = id;
4239
4240         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4241         if (!phys_obj->handle) {
4242                 ret = -ENOMEM;
4243                 goto kfree_obj;
4244         }
4245 #ifdef CONFIG_X86
4246         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4247 #endif
4248
4249         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4250
4251         return 0;
4252 kfree_obj:
4253         drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4254         return ret;
4255 }
4256
4257 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4258 {
4259         drm_i915_private_t *dev_priv = dev->dev_private;
4260         struct drm_i915_gem_phys_object *phys_obj;
4261
4262         if (!dev_priv->mm.phys_objs[id - 1])
4263                 return;
4264
4265         phys_obj = dev_priv->mm.phys_objs[id - 1];
4266         if (phys_obj->cur_obj) {
4267                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4268         }
4269
4270 #ifdef CONFIG_X86
4271         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4272 #endif
4273         drm_pci_free(dev, phys_obj->handle);
4274         kfree(phys_obj);
4275         dev_priv->mm.phys_objs[id - 1] = NULL;
4276 }
4277
4278 void i915_gem_free_all_phys_object(struct drm_device *dev)
4279 {
4280         int i;
4281
4282         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4283                 i915_gem_free_phys_object(dev, i);
4284 }
4285
4286 void i915_gem_detach_phys_object(struct drm_device *dev,
4287                                  struct drm_gem_object *obj)
4288 {
4289         struct drm_i915_gem_object *obj_priv;
4290         int i;
4291         int ret;
4292         int page_count;
4293
4294         obj_priv = obj->driver_private;
4295         if (!obj_priv->phys_obj)
4296                 return;
4297
4298         ret = i915_gem_object_get_pages(obj);
4299         if (ret)
4300                 goto out;
4301
4302         page_count = obj->size / PAGE_SIZE;
4303
4304         for (i = 0; i < page_count; i++) {
4305                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4306                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4307
4308                 memcpy(dst, src, PAGE_SIZE);
4309                 kunmap_atomic(dst, KM_USER0);
4310         }
4311         drm_clflush_pages(obj_priv->pages, page_count);
4312         drm_agp_chipset_flush(dev);
4313
4314         i915_gem_object_put_pages(obj);
4315 out:
4316         obj_priv->phys_obj->cur_obj = NULL;
4317         obj_priv->phys_obj = NULL;
4318 }
4319
4320 int
4321 i915_gem_attach_phys_object(struct drm_device *dev,
4322                             struct drm_gem_object *obj, int id)
4323 {
4324         drm_i915_private_t *dev_priv = dev->dev_private;
4325         struct drm_i915_gem_object *obj_priv;
4326         int ret = 0;
4327         int page_count;
4328         int i;
4329
4330         if (id > I915_MAX_PHYS_OBJECT)
4331                 return -EINVAL;
4332
4333         obj_priv = obj->driver_private;
4334
4335         if (obj_priv->phys_obj) {
4336                 if (obj_priv->phys_obj->id == id)
4337                         return 0;
4338                 i915_gem_detach_phys_object(dev, obj);
4339         }
4340
4341
4342         /* create a new object */
4343         if (!dev_priv->mm.phys_objs[id - 1]) {
4344                 ret = i915_gem_init_phys_object(dev, id,
4345                                                 obj->size);
4346                 if (ret) {
4347                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4348                         goto out;
4349                 }
4350         }
4351
4352         /* bind to the object */
4353         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4354         obj_priv->phys_obj->cur_obj = obj;
4355
4356         ret = i915_gem_object_get_pages(obj);
4357         if (ret) {
4358                 DRM_ERROR("failed to get page list\n");
4359                 goto out;
4360         }
4361
4362         page_count = obj->size / PAGE_SIZE;
4363
4364         for (i = 0; i < page_count; i++) {
4365                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4366                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4367
4368                 memcpy(dst, src, PAGE_SIZE);
4369                 kunmap_atomic(src, KM_USER0);
4370         }
4371
4372         i915_gem_object_put_pages(obj);
4373
4374         return 0;
4375 out:
4376         return ret;
4377 }
4378
4379 static int
4380 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4381                      struct drm_i915_gem_pwrite *args,
4382                      struct drm_file *file_priv)
4383 {
4384         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4385         void *obj_addr;
4386         int ret;
4387         char __user *user_data;
4388
4389         user_data = (char __user *) (uintptr_t) args->data_ptr;
4390         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4391
4392         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4393         ret = copy_from_user(obj_addr, user_data, args->size);
4394         if (ret)
4395                 return -EFAULT;
4396
4397         drm_agp_chipset_flush(dev);
4398         return 0;
4399 }
4400
4401 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4402 {
4403         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4404
4405         /* Clean up our request list when the client is going away, so that
4406          * later retire_requests won't dereference our soon-to-be-gone
4407          * file_priv.
4408          */
4409         mutex_lock(&dev->struct_mutex);
4410         while (!list_empty(&i915_file_priv->mm.request_list))
4411                 list_del_init(i915_file_priv->mm.request_list.next);
4412         mutex_unlock(&dev->struct_mutex);
4413 }