drm/i915: Avoid moving from CPU domain during pwrite
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file_priv);
56
57 static LIST_HEAD(shrink_list);
58 static DEFINE_SPINLOCK(shrink_list_lock);
59
60 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
61                      unsigned long end)
62 {
63         drm_i915_private_t *dev_priv = dev->dev_private;
64
65         if (start >= end ||
66             (start & (PAGE_SIZE - 1)) != 0 ||
67             (end & (PAGE_SIZE - 1)) != 0) {
68                 return -EINVAL;
69         }
70
71         drm_mm_init(&dev_priv->mm.gtt_space, start,
72                     end - start);
73
74         dev->gtt_total = (uint32_t) (end - start);
75
76         return 0;
77 }
78
79 int
80 i915_gem_init_ioctl(struct drm_device *dev, void *data,
81                     struct drm_file *file_priv)
82 {
83         struct drm_i915_gem_init *args = data;
84         int ret;
85
86         mutex_lock(&dev->struct_mutex);
87         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
88         mutex_unlock(&dev->struct_mutex);
89
90         return ret;
91 }
92
93 int
94 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
95                             struct drm_file *file_priv)
96 {
97         struct drm_i915_gem_get_aperture *args = data;
98
99         if (!(dev->driver->driver_features & DRIVER_GEM))
100                 return -ENODEV;
101
102         args->aper_size = dev->gtt_total;
103         args->aper_available_size = (args->aper_size -
104                                      atomic_read(&dev->pin_memory));
105
106         return 0;
107 }
108
109
110 /**
111  * Creates a new mm object and returns a handle to it.
112  */
113 int
114 i915_gem_create_ioctl(struct drm_device *dev, void *data,
115                       struct drm_file *file_priv)
116 {
117         struct drm_i915_gem_create *args = data;
118         struct drm_gem_object *obj;
119         int ret;
120         u32 handle;
121
122         args->size = roundup(args->size, PAGE_SIZE);
123
124         /* Allocate the new object */
125         obj = i915_gem_alloc_object(dev, args->size);
126         if (obj == NULL)
127                 return -ENOMEM;
128
129         ret = drm_gem_handle_create(file_priv, obj, &handle);
130         drm_gem_object_handle_unreference_unlocked(obj);
131
132         if (ret)
133                 return ret;
134
135         args->handle = handle;
136
137         return 0;
138 }
139
140 static inline int
141 fast_shmem_read(struct page **pages,
142                 loff_t page_base, int page_offset,
143                 char __user *data,
144                 int length)
145 {
146         char __iomem *vaddr;
147         int unwritten;
148
149         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
150         if (vaddr == NULL)
151                 return -ENOMEM;
152         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
153         kunmap_atomic(vaddr, KM_USER0);
154
155         if (unwritten)
156                 return -EFAULT;
157
158         return 0;
159 }
160
161 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
162 {
163         drm_i915_private_t *dev_priv = obj->dev->dev_private;
164         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
165
166         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
167                 obj_priv->tiling_mode != I915_TILING_NONE;
168 }
169
170 static inline int
171 slow_shmem_copy(struct page *dst_page,
172                 int dst_offset,
173                 struct page *src_page,
174                 int src_offset,
175                 int length)
176 {
177         char *dst_vaddr, *src_vaddr;
178
179         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
180         if (dst_vaddr == NULL)
181                 return -ENOMEM;
182
183         src_vaddr = kmap_atomic(src_page, KM_USER1);
184         if (src_vaddr == NULL) {
185                 kunmap_atomic(dst_vaddr, KM_USER0);
186                 return -ENOMEM;
187         }
188
189         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
190
191         kunmap_atomic(src_vaddr, KM_USER1);
192         kunmap_atomic(dst_vaddr, KM_USER0);
193
194         return 0;
195 }
196
197 static inline int
198 slow_shmem_bit17_copy(struct page *gpu_page,
199                       int gpu_offset,
200                       struct page *cpu_page,
201                       int cpu_offset,
202                       int length,
203                       int is_read)
204 {
205         char *gpu_vaddr, *cpu_vaddr;
206
207         /* Use the unswizzled path if this page isn't affected. */
208         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
209                 if (is_read)
210                         return slow_shmem_copy(cpu_page, cpu_offset,
211                                                gpu_page, gpu_offset, length);
212                 else
213                         return slow_shmem_copy(gpu_page, gpu_offset,
214                                                cpu_page, cpu_offset, length);
215         }
216
217         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
218         if (gpu_vaddr == NULL)
219                 return -ENOMEM;
220
221         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
222         if (cpu_vaddr == NULL) {
223                 kunmap_atomic(gpu_vaddr, KM_USER0);
224                 return -ENOMEM;
225         }
226
227         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
228          * XORing with the other bits (A9 for Y, A9 and A10 for X)
229          */
230         while (length > 0) {
231                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
232                 int this_length = min(cacheline_end - gpu_offset, length);
233                 int swizzled_gpu_offset = gpu_offset ^ 64;
234
235                 if (is_read) {
236                         memcpy(cpu_vaddr + cpu_offset,
237                                gpu_vaddr + swizzled_gpu_offset,
238                                this_length);
239                 } else {
240                         memcpy(gpu_vaddr + swizzled_gpu_offset,
241                                cpu_vaddr + cpu_offset,
242                                this_length);
243                 }
244                 cpu_offset += this_length;
245                 gpu_offset += this_length;
246                 length -= this_length;
247         }
248
249         kunmap_atomic(cpu_vaddr, KM_USER1);
250         kunmap_atomic(gpu_vaddr, KM_USER0);
251
252         return 0;
253 }
254
255 /**
256  * This is the fast shmem pread path, which attempts to copy_from_user directly
257  * from the backing pages of the object to the user's address space.  On a
258  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
259  */
260 static int
261 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
262                           struct drm_i915_gem_pread *args,
263                           struct drm_file *file_priv)
264 {
265         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
266         ssize_t remain;
267         loff_t offset, page_base;
268         char __user *user_data;
269         int page_offset, page_length;
270         int ret;
271
272         user_data = (char __user *) (uintptr_t) args->data_ptr;
273         remain = args->size;
274
275         mutex_lock(&dev->struct_mutex);
276
277         ret = i915_gem_object_get_pages(obj, 0);
278         if (ret != 0)
279                 goto fail_unlock;
280
281         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
282                                                         args->size);
283         if (ret != 0)
284                 goto fail_put_pages;
285
286         obj_priv = to_intel_bo(obj);
287         offset = args->offset;
288
289         while (remain > 0) {
290                 /* Operation in this page
291                  *
292                  * page_base = page offset within aperture
293                  * page_offset = offset within page
294                  * page_length = bytes to copy for this page
295                  */
296                 page_base = (offset & ~(PAGE_SIZE-1));
297                 page_offset = offset & (PAGE_SIZE-1);
298                 page_length = remain;
299                 if ((page_offset + remain) > PAGE_SIZE)
300                         page_length = PAGE_SIZE - page_offset;
301
302                 ret = fast_shmem_read(obj_priv->pages,
303                                       page_base, page_offset,
304                                       user_data, page_length);
305                 if (ret)
306                         goto fail_put_pages;
307
308                 remain -= page_length;
309                 user_data += page_length;
310                 offset += page_length;
311         }
312
313 fail_put_pages:
314         i915_gem_object_put_pages(obj);
315 fail_unlock:
316         mutex_unlock(&dev->struct_mutex);
317
318         return ret;
319 }
320
321 static int
322 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
323 {
324         int ret;
325
326         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
327
328         /* If we've insufficient memory to map in the pages, attempt
329          * to make some space by throwing out some old buffers.
330          */
331         if (ret == -ENOMEM) {
332                 struct drm_device *dev = obj->dev;
333
334                 ret = i915_gem_evict_something(dev, obj->size);
335                 if (ret)
336                         return ret;
337
338                 ret = i915_gem_object_get_pages(obj, 0);
339         }
340
341         return ret;
342 }
343
344 /**
345  * This is the fallback shmem pread path, which allocates temporary storage
346  * in kernel space to copy_to_user into outside of the struct_mutex, so we
347  * can copy out of the object's backing pages while holding the struct mutex
348  * and not take page faults.
349  */
350 static int
351 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
352                           struct drm_i915_gem_pread *args,
353                           struct drm_file *file_priv)
354 {
355         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
356         struct mm_struct *mm = current->mm;
357         struct page **user_pages;
358         ssize_t remain;
359         loff_t offset, pinned_pages, i;
360         loff_t first_data_page, last_data_page, num_pages;
361         int shmem_page_index, shmem_page_offset;
362         int data_page_index,  data_page_offset;
363         int page_length;
364         int ret;
365         uint64_t data_ptr = args->data_ptr;
366         int do_bit17_swizzling;
367
368         remain = args->size;
369
370         /* Pin the user pages containing the data.  We can't fault while
371          * holding the struct mutex, yet we want to hold it while
372          * dereferencing the user data.
373          */
374         first_data_page = data_ptr / PAGE_SIZE;
375         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
376         num_pages = last_data_page - first_data_page + 1;
377
378         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
379         if (user_pages == NULL)
380                 return -ENOMEM;
381
382         down_read(&mm->mmap_sem);
383         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
384                                       num_pages, 1, 0, user_pages, NULL);
385         up_read(&mm->mmap_sem);
386         if (pinned_pages < num_pages) {
387                 ret = -EFAULT;
388                 goto fail_put_user_pages;
389         }
390
391         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
392
393         mutex_lock(&dev->struct_mutex);
394
395         ret = i915_gem_object_get_pages_or_evict(obj);
396         if (ret)
397                 goto fail_unlock;
398
399         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
400                                                         args->size);
401         if (ret != 0)
402                 goto fail_put_pages;
403
404         obj_priv = to_intel_bo(obj);
405         offset = args->offset;
406
407         while (remain > 0) {
408                 /* Operation in this page
409                  *
410                  * shmem_page_index = page number within shmem file
411                  * shmem_page_offset = offset within page in shmem file
412                  * data_page_index = page number in get_user_pages return
413                  * data_page_offset = offset with data_page_index page.
414                  * page_length = bytes to copy for this page
415                  */
416                 shmem_page_index = offset / PAGE_SIZE;
417                 shmem_page_offset = offset & ~PAGE_MASK;
418                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
419                 data_page_offset = data_ptr & ~PAGE_MASK;
420
421                 page_length = remain;
422                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
423                         page_length = PAGE_SIZE - shmem_page_offset;
424                 if ((data_page_offset + page_length) > PAGE_SIZE)
425                         page_length = PAGE_SIZE - data_page_offset;
426
427                 if (do_bit17_swizzling) {
428                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
429                                                     shmem_page_offset,
430                                                     user_pages[data_page_index],
431                                                     data_page_offset,
432                                                     page_length,
433                                                     1);
434                 } else {
435                         ret = slow_shmem_copy(user_pages[data_page_index],
436                                               data_page_offset,
437                                               obj_priv->pages[shmem_page_index],
438                                               shmem_page_offset,
439                                               page_length);
440                 }
441                 if (ret)
442                         goto fail_put_pages;
443
444                 remain -= page_length;
445                 data_ptr += page_length;
446                 offset += page_length;
447         }
448
449 fail_put_pages:
450         i915_gem_object_put_pages(obj);
451 fail_unlock:
452         mutex_unlock(&dev->struct_mutex);
453 fail_put_user_pages:
454         for (i = 0; i < pinned_pages; i++) {
455                 SetPageDirty(user_pages[i]);
456                 page_cache_release(user_pages[i]);
457         }
458         drm_free_large(user_pages);
459
460         return ret;
461 }
462
463 /**
464  * Reads data from the object referenced by handle.
465  *
466  * On error, the contents of *data are undefined.
467  */
468 int
469 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
470                      struct drm_file *file_priv)
471 {
472         struct drm_i915_gem_pread *args = data;
473         struct drm_gem_object *obj;
474         struct drm_i915_gem_object *obj_priv;
475         int ret;
476
477         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
478         if (obj == NULL)
479                 return -EBADF;
480         obj_priv = to_intel_bo(obj);
481
482         /* Bounds check source.
483          *
484          * XXX: This could use review for overflow issues...
485          */
486         if (args->offset > obj->size || args->size > obj->size ||
487             args->offset + args->size > obj->size) {
488                 drm_gem_object_unreference_unlocked(obj);
489                 return -EINVAL;
490         }
491
492         if (i915_gem_object_needs_bit17_swizzle(obj)) {
493                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
494         } else {
495                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
496                 if (ret != 0)
497                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
498                                                         file_priv);
499         }
500
501         drm_gem_object_unreference_unlocked(obj);
502
503         return ret;
504 }
505
506 /* This is the fast write path which cannot handle
507  * page faults in the source data
508  */
509
510 static inline int
511 fast_user_write(struct io_mapping *mapping,
512                 loff_t page_base, int page_offset,
513                 char __user *user_data,
514                 int length)
515 {
516         char *vaddr_atomic;
517         unsigned long unwritten;
518
519         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
520         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
521                                                       user_data, length);
522         io_mapping_unmap_atomic(vaddr_atomic);
523         if (unwritten)
524                 return -EFAULT;
525         return 0;
526 }
527
528 /* Here's the write path which can sleep for
529  * page faults
530  */
531
532 static inline int
533 slow_kernel_write(struct io_mapping *mapping,
534                   loff_t gtt_base, int gtt_offset,
535                   struct page *user_page, int user_offset,
536                   int length)
537 {
538         char *src_vaddr, *dst_vaddr;
539         unsigned long unwritten;
540
541         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
542         src_vaddr = kmap_atomic(user_page, KM_USER1);
543         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
544                                                       src_vaddr + user_offset,
545                                                       length);
546         kunmap_atomic(src_vaddr, KM_USER1);
547         io_mapping_unmap_atomic(dst_vaddr);
548         if (unwritten)
549                 return -EFAULT;
550         return 0;
551 }
552
553 static inline int
554 fast_shmem_write(struct page **pages,
555                  loff_t page_base, int page_offset,
556                  char __user *data,
557                  int length)
558 {
559         char __iomem *vaddr;
560         unsigned long unwritten;
561
562         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
563         if (vaddr == NULL)
564                 return -ENOMEM;
565         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
566         kunmap_atomic(vaddr, KM_USER0);
567
568         if (unwritten)
569                 return -EFAULT;
570         return 0;
571 }
572
573 /**
574  * This is the fast pwrite path, where we copy the data directly from the
575  * user into the GTT, uncached.
576  */
577 static int
578 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
579                          struct drm_i915_gem_pwrite *args,
580                          struct drm_file *file_priv)
581 {
582         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
583         drm_i915_private_t *dev_priv = dev->dev_private;
584         ssize_t remain;
585         loff_t offset, page_base;
586         char __user *user_data;
587         int page_offset, page_length;
588         int ret;
589
590         user_data = (char __user *) (uintptr_t) args->data_ptr;
591         remain = args->size;
592         if (!access_ok(VERIFY_READ, user_data, remain))
593                 return -EFAULT;
594
595
596         mutex_lock(&dev->struct_mutex);
597         ret = i915_gem_object_pin(obj, 0);
598         if (ret) {
599                 mutex_unlock(&dev->struct_mutex);
600                 return ret;
601         }
602         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
603         if (ret)
604                 goto fail;
605
606         obj_priv = to_intel_bo(obj);
607         offset = obj_priv->gtt_offset + args->offset;
608
609         while (remain > 0) {
610                 /* Operation in this page
611                  *
612                  * page_base = page offset within aperture
613                  * page_offset = offset within page
614                  * page_length = bytes to copy for this page
615                  */
616                 page_base = (offset & ~(PAGE_SIZE-1));
617                 page_offset = offset & (PAGE_SIZE-1);
618                 page_length = remain;
619                 if ((page_offset + remain) > PAGE_SIZE)
620                         page_length = PAGE_SIZE - page_offset;
621
622                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
623                                        page_offset, user_data, page_length);
624
625                 /* If we get a fault while copying data, then (presumably) our
626                  * source page isn't available.  Return the error and we'll
627                  * retry in the slow path.
628                  */
629                 if (ret)
630                         goto fail;
631
632                 remain -= page_length;
633                 user_data += page_length;
634                 offset += page_length;
635         }
636
637 fail:
638         i915_gem_object_unpin(obj);
639         mutex_unlock(&dev->struct_mutex);
640
641         return ret;
642 }
643
644 /**
645  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
646  * the memory and maps it using kmap_atomic for copying.
647  *
648  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
649  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
650  */
651 static int
652 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
653                          struct drm_i915_gem_pwrite *args,
654                          struct drm_file *file_priv)
655 {
656         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
657         drm_i915_private_t *dev_priv = dev->dev_private;
658         ssize_t remain;
659         loff_t gtt_page_base, offset;
660         loff_t first_data_page, last_data_page, num_pages;
661         loff_t pinned_pages, i;
662         struct page **user_pages;
663         struct mm_struct *mm = current->mm;
664         int gtt_page_offset, data_page_offset, data_page_index, page_length;
665         int ret;
666         uint64_t data_ptr = args->data_ptr;
667
668         remain = args->size;
669
670         /* Pin the user pages containing the data.  We can't fault while
671          * holding the struct mutex, and all of the pwrite implementations
672          * want to hold it while dereferencing the user data.
673          */
674         first_data_page = data_ptr / PAGE_SIZE;
675         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
676         num_pages = last_data_page - first_data_page + 1;
677
678         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
679         if (user_pages == NULL)
680                 return -ENOMEM;
681
682         down_read(&mm->mmap_sem);
683         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
684                                       num_pages, 0, 0, user_pages, NULL);
685         up_read(&mm->mmap_sem);
686         if (pinned_pages < num_pages) {
687                 ret = -EFAULT;
688                 goto out_unpin_pages;
689         }
690
691         mutex_lock(&dev->struct_mutex);
692         ret = i915_gem_object_pin(obj, 0);
693         if (ret)
694                 goto out_unlock;
695
696         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
697         if (ret)
698                 goto out_unpin_object;
699
700         obj_priv = to_intel_bo(obj);
701         offset = obj_priv->gtt_offset + args->offset;
702
703         while (remain > 0) {
704                 /* Operation in this page
705                  *
706                  * gtt_page_base = page offset within aperture
707                  * gtt_page_offset = offset within page in aperture
708                  * data_page_index = page number in get_user_pages return
709                  * data_page_offset = offset with data_page_index page.
710                  * page_length = bytes to copy for this page
711                  */
712                 gtt_page_base = offset & PAGE_MASK;
713                 gtt_page_offset = offset & ~PAGE_MASK;
714                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
715                 data_page_offset = data_ptr & ~PAGE_MASK;
716
717                 page_length = remain;
718                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
719                         page_length = PAGE_SIZE - gtt_page_offset;
720                 if ((data_page_offset + page_length) > PAGE_SIZE)
721                         page_length = PAGE_SIZE - data_page_offset;
722
723                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
724                                         gtt_page_base, gtt_page_offset,
725                                         user_pages[data_page_index],
726                                         data_page_offset,
727                                         page_length);
728
729                 /* If we get a fault while copying data, then (presumably) our
730                  * source page isn't available.  Return the error and we'll
731                  * retry in the slow path.
732                  */
733                 if (ret)
734                         goto out_unpin_object;
735
736                 remain -= page_length;
737                 offset += page_length;
738                 data_ptr += page_length;
739         }
740
741 out_unpin_object:
742         i915_gem_object_unpin(obj);
743 out_unlock:
744         mutex_unlock(&dev->struct_mutex);
745 out_unpin_pages:
746         for (i = 0; i < pinned_pages; i++)
747                 page_cache_release(user_pages[i]);
748         drm_free_large(user_pages);
749
750         return ret;
751 }
752
753 /**
754  * This is the fast shmem pwrite path, which attempts to directly
755  * copy_from_user into the kmapped pages backing the object.
756  */
757 static int
758 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
759                            struct drm_i915_gem_pwrite *args,
760                            struct drm_file *file_priv)
761 {
762         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
763         ssize_t remain;
764         loff_t offset, page_base;
765         char __user *user_data;
766         int page_offset, page_length;
767         int ret;
768
769         user_data = (char __user *) (uintptr_t) args->data_ptr;
770         remain = args->size;
771
772         mutex_lock(&dev->struct_mutex);
773
774         ret = i915_gem_object_get_pages(obj, 0);
775         if (ret != 0)
776                 goto fail_unlock;
777
778         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
779         if (ret != 0)
780                 goto fail_put_pages;
781
782         obj_priv = to_intel_bo(obj);
783         offset = args->offset;
784         obj_priv->dirty = 1;
785
786         while (remain > 0) {
787                 /* Operation in this page
788                  *
789                  * page_base = page offset within aperture
790                  * page_offset = offset within page
791                  * page_length = bytes to copy for this page
792                  */
793                 page_base = (offset & ~(PAGE_SIZE-1));
794                 page_offset = offset & (PAGE_SIZE-1);
795                 page_length = remain;
796                 if ((page_offset + remain) > PAGE_SIZE)
797                         page_length = PAGE_SIZE - page_offset;
798
799                 ret = fast_shmem_write(obj_priv->pages,
800                                        page_base, page_offset,
801                                        user_data, page_length);
802                 if (ret)
803                         goto fail_put_pages;
804
805                 remain -= page_length;
806                 user_data += page_length;
807                 offset += page_length;
808         }
809
810 fail_put_pages:
811         i915_gem_object_put_pages(obj);
812 fail_unlock:
813         mutex_unlock(&dev->struct_mutex);
814
815         return ret;
816 }
817
818 /**
819  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
820  * the memory and maps it using kmap_atomic for copying.
821  *
822  * This avoids taking mmap_sem for faulting on the user's address while the
823  * struct_mutex is held.
824  */
825 static int
826 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
827                            struct drm_i915_gem_pwrite *args,
828                            struct drm_file *file_priv)
829 {
830         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
831         struct mm_struct *mm = current->mm;
832         struct page **user_pages;
833         ssize_t remain;
834         loff_t offset, pinned_pages, i;
835         loff_t first_data_page, last_data_page, num_pages;
836         int shmem_page_index, shmem_page_offset;
837         int data_page_index,  data_page_offset;
838         int page_length;
839         int ret;
840         uint64_t data_ptr = args->data_ptr;
841         int do_bit17_swizzling;
842
843         remain = args->size;
844
845         /* Pin the user pages containing the data.  We can't fault while
846          * holding the struct mutex, and all of the pwrite implementations
847          * want to hold it while dereferencing the user data.
848          */
849         first_data_page = data_ptr / PAGE_SIZE;
850         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
851         num_pages = last_data_page - first_data_page + 1;
852
853         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
854         if (user_pages == NULL)
855                 return -ENOMEM;
856
857         down_read(&mm->mmap_sem);
858         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
859                                       num_pages, 0, 0, user_pages, NULL);
860         up_read(&mm->mmap_sem);
861         if (pinned_pages < num_pages) {
862                 ret = -EFAULT;
863                 goto fail_put_user_pages;
864         }
865
866         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
867
868         mutex_lock(&dev->struct_mutex);
869
870         ret = i915_gem_object_get_pages_or_evict(obj);
871         if (ret)
872                 goto fail_unlock;
873
874         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
875         if (ret != 0)
876                 goto fail_put_pages;
877
878         obj_priv = to_intel_bo(obj);
879         offset = args->offset;
880         obj_priv->dirty = 1;
881
882         while (remain > 0) {
883                 /* Operation in this page
884                  *
885                  * shmem_page_index = page number within shmem file
886                  * shmem_page_offset = offset within page in shmem file
887                  * data_page_index = page number in get_user_pages return
888                  * data_page_offset = offset with data_page_index page.
889                  * page_length = bytes to copy for this page
890                  */
891                 shmem_page_index = offset / PAGE_SIZE;
892                 shmem_page_offset = offset & ~PAGE_MASK;
893                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
894                 data_page_offset = data_ptr & ~PAGE_MASK;
895
896                 page_length = remain;
897                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
898                         page_length = PAGE_SIZE - shmem_page_offset;
899                 if ((data_page_offset + page_length) > PAGE_SIZE)
900                         page_length = PAGE_SIZE - data_page_offset;
901
902                 if (do_bit17_swizzling) {
903                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
904                                                     shmem_page_offset,
905                                                     user_pages[data_page_index],
906                                                     data_page_offset,
907                                                     page_length,
908                                                     0);
909                 } else {
910                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
911                                               shmem_page_offset,
912                                               user_pages[data_page_index],
913                                               data_page_offset,
914                                               page_length);
915                 }
916                 if (ret)
917                         goto fail_put_pages;
918
919                 remain -= page_length;
920                 data_ptr += page_length;
921                 offset += page_length;
922         }
923
924 fail_put_pages:
925         i915_gem_object_put_pages(obj);
926 fail_unlock:
927         mutex_unlock(&dev->struct_mutex);
928 fail_put_user_pages:
929         for (i = 0; i < pinned_pages; i++)
930                 page_cache_release(user_pages[i]);
931         drm_free_large(user_pages);
932
933         return ret;
934 }
935
936 /**
937  * Writes data to the object referenced by handle.
938  *
939  * On error, the contents of the buffer that were to be modified are undefined.
940  */
941 int
942 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
943                       struct drm_file *file_priv)
944 {
945         struct drm_i915_gem_pwrite *args = data;
946         struct drm_gem_object *obj;
947         struct drm_i915_gem_object *obj_priv;
948         int ret = 0;
949
950         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
951         if (obj == NULL)
952                 return -EBADF;
953         obj_priv = to_intel_bo(obj);
954
955         /* Bounds check destination.
956          *
957          * XXX: This could use review for overflow issues...
958          */
959         if (args->offset > obj->size || args->size > obj->size ||
960             args->offset + args->size > obj->size) {
961                 drm_gem_object_unreference_unlocked(obj);
962                 return -EINVAL;
963         }
964
965         /* We can only do the GTT pwrite on untiled buffers, as otherwise
966          * it would end up going through the fenced access, and we'll get
967          * different detiling behavior between reading and writing.
968          * pread/pwrite currently are reading and writing from the CPU
969          * perspective, requiring manual detiling by the client.
970          */
971         if (obj_priv->phys_obj)
972                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
973         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
974                  dev->gtt_total != 0 &&
975                  obj->write_domain != I915_GEM_DOMAIN_CPU) {
976                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
977                 if (ret == -EFAULT) {
978                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
979                                                        file_priv);
980                 }
981         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
982                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
983         } else {
984                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
985                 if (ret == -EFAULT) {
986                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
987                                                          file_priv);
988                 }
989         }
990
991 #if WATCH_PWRITE
992         if (ret)
993                 DRM_INFO("pwrite failed %d\n", ret);
994 #endif
995
996         drm_gem_object_unreference_unlocked(obj);
997
998         return ret;
999 }
1000
1001 /**
1002  * Called when user space prepares to use an object with the CPU, either
1003  * through the mmap ioctl's mapping or a GTT mapping.
1004  */
1005 int
1006 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1007                           struct drm_file *file_priv)
1008 {
1009         struct drm_i915_private *dev_priv = dev->dev_private;
1010         struct drm_i915_gem_set_domain *args = data;
1011         struct drm_gem_object *obj;
1012         struct drm_i915_gem_object *obj_priv;
1013         uint32_t read_domains = args->read_domains;
1014         uint32_t write_domain = args->write_domain;
1015         int ret;
1016
1017         if (!(dev->driver->driver_features & DRIVER_GEM))
1018                 return -ENODEV;
1019
1020         /* Only handle setting domains to types used by the CPU. */
1021         if (write_domain & I915_GEM_GPU_DOMAINS)
1022                 return -EINVAL;
1023
1024         if (read_domains & I915_GEM_GPU_DOMAINS)
1025                 return -EINVAL;
1026
1027         /* Having something in the write domain implies it's in the read
1028          * domain, and only that read domain.  Enforce that in the request.
1029          */
1030         if (write_domain != 0 && read_domains != write_domain)
1031                 return -EINVAL;
1032
1033         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1034         if (obj == NULL)
1035                 return -EBADF;
1036         obj_priv = to_intel_bo(obj);
1037
1038         mutex_lock(&dev->struct_mutex);
1039
1040         intel_mark_busy(dev, obj);
1041
1042 #if WATCH_BUF
1043         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1044                  obj, obj->size, read_domains, write_domain);
1045 #endif
1046         if (read_domains & I915_GEM_DOMAIN_GTT) {
1047                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1048
1049                 /* Update the LRU on the fence for the CPU access that's
1050                  * about to occur.
1051                  */
1052                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1053                         struct drm_i915_fence_reg *reg =
1054                                 &dev_priv->fence_regs[obj_priv->fence_reg];
1055                         list_move_tail(&reg->lru_list,
1056                                        &dev_priv->mm.fence_list);
1057                 }
1058
1059                 /* Silently promote "you're not bound, there was nothing to do"
1060                  * to success, since the client was just asking us to
1061                  * make sure everything was done.
1062                  */
1063                 if (ret == -EINVAL)
1064                         ret = 0;
1065         } else {
1066                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1067         }
1068
1069         drm_gem_object_unreference(obj);
1070         mutex_unlock(&dev->struct_mutex);
1071         return ret;
1072 }
1073
1074 /**
1075  * Called when user space has done writes to this buffer
1076  */
1077 int
1078 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1079                       struct drm_file *file_priv)
1080 {
1081         struct drm_i915_gem_sw_finish *args = data;
1082         struct drm_gem_object *obj;
1083         struct drm_i915_gem_object *obj_priv;
1084         int ret = 0;
1085
1086         if (!(dev->driver->driver_features & DRIVER_GEM))
1087                 return -ENODEV;
1088
1089         mutex_lock(&dev->struct_mutex);
1090         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1091         if (obj == NULL) {
1092                 mutex_unlock(&dev->struct_mutex);
1093                 return -EBADF;
1094         }
1095
1096 #if WATCH_BUF
1097         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1098                  __func__, args->handle, obj, obj->size);
1099 #endif
1100         obj_priv = to_intel_bo(obj);
1101
1102         /* Pinned buffers may be scanout, so flush the cache */
1103         if (obj_priv->pin_count)
1104                 i915_gem_object_flush_cpu_write_domain(obj);
1105
1106         drm_gem_object_unreference(obj);
1107         mutex_unlock(&dev->struct_mutex);
1108         return ret;
1109 }
1110
1111 /**
1112  * Maps the contents of an object, returning the address it is mapped
1113  * into.
1114  *
1115  * While the mapping holds a reference on the contents of the object, it doesn't
1116  * imply a ref on the object itself.
1117  */
1118 int
1119 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1120                    struct drm_file *file_priv)
1121 {
1122         struct drm_i915_gem_mmap *args = data;
1123         struct drm_gem_object *obj;
1124         loff_t offset;
1125         unsigned long addr;
1126
1127         if (!(dev->driver->driver_features & DRIVER_GEM))
1128                 return -ENODEV;
1129
1130         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1131         if (obj == NULL)
1132                 return -EBADF;
1133
1134         offset = args->offset;
1135
1136         down_write(&current->mm->mmap_sem);
1137         addr = do_mmap(obj->filp, 0, args->size,
1138                        PROT_READ | PROT_WRITE, MAP_SHARED,
1139                        args->offset);
1140         up_write(&current->mm->mmap_sem);
1141         drm_gem_object_unreference_unlocked(obj);
1142         if (IS_ERR((void *)addr))
1143                 return addr;
1144
1145         args->addr_ptr = (uint64_t) addr;
1146
1147         return 0;
1148 }
1149
1150 /**
1151  * i915_gem_fault - fault a page into the GTT
1152  * vma: VMA in question
1153  * vmf: fault info
1154  *
1155  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1156  * from userspace.  The fault handler takes care of binding the object to
1157  * the GTT (if needed), allocating and programming a fence register (again,
1158  * only if needed based on whether the old reg is still valid or the object
1159  * is tiled) and inserting a new PTE into the faulting process.
1160  *
1161  * Note that the faulting process may involve evicting existing objects
1162  * from the GTT and/or fence registers to make room.  So performance may
1163  * suffer if the GTT working set is large or there are few fence registers
1164  * left.
1165  */
1166 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1167 {
1168         struct drm_gem_object *obj = vma->vm_private_data;
1169         struct drm_device *dev = obj->dev;
1170         struct drm_i915_private *dev_priv = dev->dev_private;
1171         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1172         pgoff_t page_offset;
1173         unsigned long pfn;
1174         int ret = 0;
1175         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1176
1177         /* We don't use vmf->pgoff since that has the fake offset */
1178         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1179                 PAGE_SHIFT;
1180
1181         /* Now bind it into the GTT if needed */
1182         mutex_lock(&dev->struct_mutex);
1183         if (!obj_priv->gtt_space) {
1184                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1185                 if (ret)
1186                         goto unlock;
1187
1188                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1189
1190                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1191                 if (ret)
1192                         goto unlock;
1193         }
1194
1195         /* Need a new fence register? */
1196         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1197                 ret = i915_gem_object_get_fence_reg(obj);
1198                 if (ret)
1199                         goto unlock;
1200         }
1201
1202         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1203                 page_offset;
1204
1205         /* Finally, remap it using the new GTT offset */
1206         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1207 unlock:
1208         mutex_unlock(&dev->struct_mutex);
1209
1210         switch (ret) {
1211         case 0:
1212         case -ERESTARTSYS:
1213                 return VM_FAULT_NOPAGE;
1214         case -ENOMEM:
1215         case -EAGAIN:
1216                 return VM_FAULT_OOM;
1217         default:
1218                 return VM_FAULT_SIGBUS;
1219         }
1220 }
1221
1222 /**
1223  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1224  * @obj: obj in question
1225  *
1226  * GEM memory mapping works by handing back to userspace a fake mmap offset
1227  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1228  * up the object based on the offset and sets up the various memory mapping
1229  * structures.
1230  *
1231  * This routine allocates and attaches a fake offset for @obj.
1232  */
1233 static int
1234 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1235 {
1236         struct drm_device *dev = obj->dev;
1237         struct drm_gem_mm *mm = dev->mm_private;
1238         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1239         struct drm_map_list *list;
1240         struct drm_local_map *map;
1241         int ret = 0;
1242
1243         /* Set the object up for mmap'ing */
1244         list = &obj->map_list;
1245         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1246         if (!list->map)
1247                 return -ENOMEM;
1248
1249         map = list->map;
1250         map->type = _DRM_GEM;
1251         map->size = obj->size;
1252         map->handle = obj;
1253
1254         /* Get a DRM GEM mmap offset allocated... */
1255         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1256                                                     obj->size / PAGE_SIZE, 0, 0);
1257         if (!list->file_offset_node) {
1258                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1259                 ret = -ENOMEM;
1260                 goto out_free_list;
1261         }
1262
1263         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1264                                                   obj->size / PAGE_SIZE, 0);
1265         if (!list->file_offset_node) {
1266                 ret = -ENOMEM;
1267                 goto out_free_list;
1268         }
1269
1270         list->hash.key = list->file_offset_node->start;
1271         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1272                 DRM_ERROR("failed to add to map hash\n");
1273                 ret = -ENOMEM;
1274                 goto out_free_mm;
1275         }
1276
1277         /* By now we should be all set, any drm_mmap request on the offset
1278          * below will get to our mmap & fault handler */
1279         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1280
1281         return 0;
1282
1283 out_free_mm:
1284         drm_mm_put_block(list->file_offset_node);
1285 out_free_list:
1286         kfree(list->map);
1287
1288         return ret;
1289 }
1290
1291 /**
1292  * i915_gem_release_mmap - remove physical page mappings
1293  * @obj: obj in question
1294  *
1295  * Preserve the reservation of the mmapping with the DRM core code, but
1296  * relinquish ownership of the pages back to the system.
1297  *
1298  * It is vital that we remove the page mapping if we have mapped a tiled
1299  * object through the GTT and then lose the fence register due to
1300  * resource pressure. Similarly if the object has been moved out of the
1301  * aperture, than pages mapped into userspace must be revoked. Removing the
1302  * mapping will then trigger a page fault on the next user access, allowing
1303  * fixup by i915_gem_fault().
1304  */
1305 void
1306 i915_gem_release_mmap(struct drm_gem_object *obj)
1307 {
1308         struct drm_device *dev = obj->dev;
1309         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1310
1311         if (dev->dev_mapping)
1312                 unmap_mapping_range(dev->dev_mapping,
1313                                     obj_priv->mmap_offset, obj->size, 1);
1314 }
1315
1316 static void
1317 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1318 {
1319         struct drm_device *dev = obj->dev;
1320         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1321         struct drm_gem_mm *mm = dev->mm_private;
1322         struct drm_map_list *list;
1323
1324         list = &obj->map_list;
1325         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1326
1327         if (list->file_offset_node) {
1328                 drm_mm_put_block(list->file_offset_node);
1329                 list->file_offset_node = NULL;
1330         }
1331
1332         if (list->map) {
1333                 kfree(list->map);
1334                 list->map = NULL;
1335         }
1336
1337         obj_priv->mmap_offset = 0;
1338 }
1339
1340 /**
1341  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1342  * @obj: object to check
1343  *
1344  * Return the required GTT alignment for an object, taking into account
1345  * potential fence register mapping if needed.
1346  */
1347 static uint32_t
1348 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1349 {
1350         struct drm_device *dev = obj->dev;
1351         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1352         int start, i;
1353
1354         /*
1355          * Minimum alignment is 4k (GTT page size), but might be greater
1356          * if a fence register is needed for the object.
1357          */
1358         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1359                 return 4096;
1360
1361         /*
1362          * Previous chips need to be aligned to the size of the smallest
1363          * fence register that can contain the object.
1364          */
1365         if (IS_I9XX(dev))
1366                 start = 1024*1024;
1367         else
1368                 start = 512*1024;
1369
1370         for (i = start; i < obj->size; i <<= 1)
1371                 ;
1372
1373         return i;
1374 }
1375
1376 /**
1377  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1378  * @dev: DRM device
1379  * @data: GTT mapping ioctl data
1380  * @file_priv: GEM object info
1381  *
1382  * Simply returns the fake offset to userspace so it can mmap it.
1383  * The mmap call will end up in drm_gem_mmap(), which will set things
1384  * up so we can get faults in the handler above.
1385  *
1386  * The fault handler will take care of binding the object into the GTT
1387  * (since it may have been evicted to make room for something), allocating
1388  * a fence register, and mapping the appropriate aperture address into
1389  * userspace.
1390  */
1391 int
1392 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1393                         struct drm_file *file_priv)
1394 {
1395         struct drm_i915_gem_mmap_gtt *args = data;
1396         struct drm_i915_private *dev_priv = dev->dev_private;
1397         struct drm_gem_object *obj;
1398         struct drm_i915_gem_object *obj_priv;
1399         int ret;
1400
1401         if (!(dev->driver->driver_features & DRIVER_GEM))
1402                 return -ENODEV;
1403
1404         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1405         if (obj == NULL)
1406                 return -EBADF;
1407
1408         mutex_lock(&dev->struct_mutex);
1409
1410         obj_priv = to_intel_bo(obj);
1411
1412         if (obj_priv->madv != I915_MADV_WILLNEED) {
1413                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1414                 drm_gem_object_unreference(obj);
1415                 mutex_unlock(&dev->struct_mutex);
1416                 return -EINVAL;
1417         }
1418
1419
1420         if (!obj_priv->mmap_offset) {
1421                 ret = i915_gem_create_mmap_offset(obj);
1422                 if (ret) {
1423                         drm_gem_object_unreference(obj);
1424                         mutex_unlock(&dev->struct_mutex);
1425                         return ret;
1426                 }
1427         }
1428
1429         args->offset = obj_priv->mmap_offset;
1430
1431         /*
1432          * Pull it into the GTT so that we have a page list (makes the
1433          * initial fault faster and any subsequent flushing possible).
1434          */
1435         if (!obj_priv->agp_mem) {
1436                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1437                 if (ret) {
1438                         drm_gem_object_unreference(obj);
1439                         mutex_unlock(&dev->struct_mutex);
1440                         return ret;
1441                 }
1442                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1443         }
1444
1445         drm_gem_object_unreference(obj);
1446         mutex_unlock(&dev->struct_mutex);
1447
1448         return 0;
1449 }
1450
1451 void
1452 i915_gem_object_put_pages(struct drm_gem_object *obj)
1453 {
1454         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1455         int page_count = obj->size / PAGE_SIZE;
1456         int i;
1457
1458         BUG_ON(obj_priv->pages_refcount == 0);
1459         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1460
1461         if (--obj_priv->pages_refcount != 0)
1462                 return;
1463
1464         if (obj_priv->tiling_mode != I915_TILING_NONE)
1465                 i915_gem_object_save_bit_17_swizzle(obj);
1466
1467         if (obj_priv->madv == I915_MADV_DONTNEED)
1468                 obj_priv->dirty = 0;
1469
1470         for (i = 0; i < page_count; i++) {
1471                 if (obj_priv->dirty)
1472                         set_page_dirty(obj_priv->pages[i]);
1473
1474                 if (obj_priv->madv == I915_MADV_WILLNEED)
1475                         mark_page_accessed(obj_priv->pages[i]);
1476
1477                 page_cache_release(obj_priv->pages[i]);
1478         }
1479         obj_priv->dirty = 0;
1480
1481         drm_free_large(obj_priv->pages);
1482         obj_priv->pages = NULL;
1483 }
1484
1485 static void
1486 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1487                                struct intel_ring_buffer *ring)
1488 {
1489         struct drm_device *dev = obj->dev;
1490         drm_i915_private_t *dev_priv = dev->dev_private;
1491         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1492         BUG_ON(ring == NULL);
1493         obj_priv->ring = ring;
1494
1495         /* Add a reference if we're newly entering the active list. */
1496         if (!obj_priv->active) {
1497                 drm_gem_object_reference(obj);
1498                 obj_priv->active = 1;
1499         }
1500         /* Move from whatever list we were on to the tail of execution. */
1501         spin_lock(&dev_priv->mm.active_list_lock);
1502         list_move_tail(&obj_priv->list, &ring->active_list);
1503         spin_unlock(&dev_priv->mm.active_list_lock);
1504         obj_priv->last_rendering_seqno = seqno;
1505 }
1506
1507 static void
1508 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1509 {
1510         struct drm_device *dev = obj->dev;
1511         drm_i915_private_t *dev_priv = dev->dev_private;
1512         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1513
1514         BUG_ON(!obj_priv->active);
1515         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1516         obj_priv->last_rendering_seqno = 0;
1517 }
1518
1519 /* Immediately discard the backing storage */
1520 static void
1521 i915_gem_object_truncate(struct drm_gem_object *obj)
1522 {
1523         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1524         struct inode *inode;
1525
1526         inode = obj->filp->f_path.dentry->d_inode;
1527         if (inode->i_op->truncate)
1528                 inode->i_op->truncate (inode);
1529
1530         obj_priv->madv = __I915_MADV_PURGED;
1531 }
1532
1533 static inline int
1534 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1535 {
1536         return obj_priv->madv == I915_MADV_DONTNEED;
1537 }
1538
1539 static void
1540 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1541 {
1542         struct drm_device *dev = obj->dev;
1543         drm_i915_private_t *dev_priv = dev->dev_private;
1544         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1545
1546         i915_verify_inactive(dev, __FILE__, __LINE__);
1547         if (obj_priv->pin_count != 0)
1548                 list_del_init(&obj_priv->list);
1549         else
1550                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1551
1552         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1553
1554         obj_priv->last_rendering_seqno = 0;
1555         obj_priv->ring = NULL;
1556         if (obj_priv->active) {
1557                 obj_priv->active = 0;
1558                 drm_gem_object_unreference(obj);
1559         }
1560         i915_verify_inactive(dev, __FILE__, __LINE__);
1561 }
1562
1563 static void
1564 i915_gem_process_flushing_list(struct drm_device *dev,
1565                                uint32_t flush_domains, uint32_t seqno,
1566                                struct intel_ring_buffer *ring)
1567 {
1568         drm_i915_private_t *dev_priv = dev->dev_private;
1569         struct drm_i915_gem_object *obj_priv, *next;
1570
1571         list_for_each_entry_safe(obj_priv, next,
1572                                  &dev_priv->mm.gpu_write_list,
1573                                  gpu_write_list) {
1574                 struct drm_gem_object *obj = &obj_priv->base;
1575
1576                 if ((obj->write_domain & flush_domains) ==
1577                     obj->write_domain &&
1578                     obj_priv->ring->ring_flag == ring->ring_flag) {
1579                         uint32_t old_write_domain = obj->write_domain;
1580
1581                         obj->write_domain = 0;
1582                         list_del_init(&obj_priv->gpu_write_list);
1583                         i915_gem_object_move_to_active(obj, seqno, ring);
1584
1585                         /* update the fence lru list */
1586                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1587                                 struct drm_i915_fence_reg *reg =
1588                                         &dev_priv->fence_regs[obj_priv->fence_reg];
1589                                 list_move_tail(&reg->lru_list,
1590                                                 &dev_priv->mm.fence_list);
1591                         }
1592
1593                         trace_i915_gem_object_change_domain(obj,
1594                                                             obj->read_domains,
1595                                                             old_write_domain);
1596                 }
1597         }
1598 }
1599
1600 uint32_t
1601 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1602                  uint32_t flush_domains, struct intel_ring_buffer *ring)
1603 {
1604         drm_i915_private_t *dev_priv = dev->dev_private;
1605         struct drm_i915_file_private *i915_file_priv = NULL;
1606         struct drm_i915_gem_request *request;
1607         uint32_t seqno;
1608         int was_empty;
1609
1610         if (file_priv != NULL)
1611                 i915_file_priv = file_priv->driver_priv;
1612
1613         request = kzalloc(sizeof(*request), GFP_KERNEL);
1614         if (request == NULL)
1615                 return 0;
1616
1617         seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1618
1619         request->seqno = seqno;
1620         request->ring = ring;
1621         request->emitted_jiffies = jiffies;
1622         was_empty = list_empty(&ring->request_list);
1623         list_add_tail(&request->list, &ring->request_list);
1624
1625         if (i915_file_priv) {
1626                 list_add_tail(&request->client_list,
1627                               &i915_file_priv->mm.request_list);
1628         } else {
1629                 INIT_LIST_HEAD(&request->client_list);
1630         }
1631
1632         /* Associate any objects on the flushing list matching the write
1633          * domain we're flushing with our flush.
1634          */
1635         if (flush_domains != 0) 
1636                 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1637
1638         if (!dev_priv->mm.suspended) {
1639                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1640                 if (was_empty)
1641                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1642         }
1643         return seqno;
1644 }
1645
1646 /**
1647  * Command execution barrier
1648  *
1649  * Ensures that all commands in the ring are finished
1650  * before signalling the CPU
1651  */
1652 static uint32_t
1653 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1654 {
1655         uint32_t flush_domains = 0;
1656
1657         /* The sampler always gets flushed on i965 (sigh) */
1658         if (IS_I965G(dev))
1659                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1660
1661         ring->flush(dev, ring,
1662                         I915_GEM_DOMAIN_COMMAND, flush_domains);
1663         return flush_domains;
1664 }
1665
1666 /**
1667  * Moves buffers associated only with the given active seqno from the active
1668  * to inactive list, potentially freeing them.
1669  */
1670 static void
1671 i915_gem_retire_request(struct drm_device *dev,
1672                         struct drm_i915_gem_request *request)
1673 {
1674         drm_i915_private_t *dev_priv = dev->dev_private;
1675
1676         trace_i915_gem_request_retire(dev, request->seqno);
1677
1678         /* Move any buffers on the active list that are no longer referenced
1679          * by the ringbuffer to the flushing/inactive lists as appropriate.
1680          */
1681         spin_lock(&dev_priv->mm.active_list_lock);
1682         while (!list_empty(&request->ring->active_list)) {
1683                 struct drm_gem_object *obj;
1684                 struct drm_i915_gem_object *obj_priv;
1685
1686                 obj_priv = list_first_entry(&request->ring->active_list,
1687                                             struct drm_i915_gem_object,
1688                                             list);
1689                 obj = &obj_priv->base;
1690
1691                 /* If the seqno being retired doesn't match the oldest in the
1692                  * list, then the oldest in the list must still be newer than
1693                  * this seqno.
1694                  */
1695                 if (obj_priv->last_rendering_seqno != request->seqno)
1696                         goto out;
1697
1698 #if WATCH_LRU
1699                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1700                          __func__, request->seqno, obj);
1701 #endif
1702
1703                 if (obj->write_domain != 0)
1704                         i915_gem_object_move_to_flushing(obj);
1705                 else {
1706                         /* Take a reference on the object so it won't be
1707                          * freed while the spinlock is held.  The list
1708                          * protection for this spinlock is safe when breaking
1709                          * the lock like this since the next thing we do
1710                          * is just get the head of the list again.
1711                          */
1712                         drm_gem_object_reference(obj);
1713                         i915_gem_object_move_to_inactive(obj);
1714                         spin_unlock(&dev_priv->mm.active_list_lock);
1715                         drm_gem_object_unreference(obj);
1716                         spin_lock(&dev_priv->mm.active_list_lock);
1717                 }
1718         }
1719 out:
1720         spin_unlock(&dev_priv->mm.active_list_lock);
1721 }
1722
1723 /**
1724  * Returns true if seq1 is later than seq2.
1725  */
1726 bool
1727 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1728 {
1729         return (int32_t)(seq1 - seq2) >= 0;
1730 }
1731
1732 uint32_t
1733 i915_get_gem_seqno(struct drm_device *dev,
1734                    struct intel_ring_buffer *ring)
1735 {
1736         return ring->get_gem_seqno(dev, ring);
1737 }
1738
1739 /**
1740  * This function clears the request list as sequence numbers are passed.
1741  */
1742 void
1743 i915_gem_retire_requests(struct drm_device *dev,
1744                 struct intel_ring_buffer *ring)
1745 {
1746         drm_i915_private_t *dev_priv = dev->dev_private;
1747         uint32_t seqno;
1748
1749         if (!ring->status_page.page_addr
1750                         || list_empty(&ring->request_list))
1751                 return;
1752
1753         seqno = i915_get_gem_seqno(dev, ring);
1754
1755         while (!list_empty(&ring->request_list)) {
1756                 struct drm_i915_gem_request *request;
1757                 uint32_t retiring_seqno;
1758
1759                 request = list_first_entry(&ring->request_list,
1760                                            struct drm_i915_gem_request,
1761                                            list);
1762                 retiring_seqno = request->seqno;
1763
1764                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1765                     atomic_read(&dev_priv->mm.wedged)) {
1766                         i915_gem_retire_request(dev, request);
1767
1768                         list_del(&request->list);
1769                         list_del(&request->client_list);
1770                         kfree(request);
1771                 } else
1772                         break;
1773         }
1774
1775         if (unlikely (dev_priv->trace_irq_seqno &&
1776                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1777
1778                 ring->user_irq_put(dev, ring);
1779                 dev_priv->trace_irq_seqno = 0;
1780         }
1781 }
1782
1783 void
1784 i915_gem_retire_work_handler(struct work_struct *work)
1785 {
1786         drm_i915_private_t *dev_priv;
1787         struct drm_device *dev;
1788
1789         dev_priv = container_of(work, drm_i915_private_t,
1790                                 mm.retire_work.work);
1791         dev = dev_priv->dev;
1792
1793         mutex_lock(&dev->struct_mutex);
1794         i915_gem_retire_requests(dev, &dev_priv->render_ring);
1795
1796         if (HAS_BSD(dev))
1797                 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
1798
1799         if (!dev_priv->mm.suspended &&
1800                 (!list_empty(&dev_priv->render_ring.request_list) ||
1801                         (HAS_BSD(dev) &&
1802                          !list_empty(&dev_priv->bsd_ring.request_list))))
1803                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1804         mutex_unlock(&dev->struct_mutex);
1805 }
1806
1807 int
1808 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1809                 int interruptible, struct intel_ring_buffer *ring)
1810 {
1811         drm_i915_private_t *dev_priv = dev->dev_private;
1812         u32 ier;
1813         int ret = 0;
1814
1815         BUG_ON(seqno == 0);
1816
1817         if (atomic_read(&dev_priv->mm.wedged))
1818                 return -EIO;
1819
1820         if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1821                 if (HAS_PCH_SPLIT(dev))
1822                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1823                 else
1824                         ier = I915_READ(IER);
1825                 if (!ier) {
1826                         DRM_ERROR("something (likely vbetool) disabled "
1827                                   "interrupts, re-enabling\n");
1828                         i915_driver_irq_preinstall(dev);
1829                         i915_driver_irq_postinstall(dev);
1830                 }
1831
1832                 trace_i915_gem_request_wait_begin(dev, seqno);
1833
1834                 ring->waiting_gem_seqno = seqno;
1835                 ring->user_irq_get(dev, ring);
1836                 if (interruptible)
1837                         ret = wait_event_interruptible(ring->irq_queue,
1838                                 i915_seqno_passed(
1839                                         ring->get_gem_seqno(dev, ring), seqno)
1840                                 || atomic_read(&dev_priv->mm.wedged));
1841                 else
1842                         wait_event(ring->irq_queue,
1843                                 i915_seqno_passed(
1844                                         ring->get_gem_seqno(dev, ring), seqno)
1845                                 || atomic_read(&dev_priv->mm.wedged));
1846
1847                 ring->user_irq_put(dev, ring);
1848                 ring->waiting_gem_seqno = 0;
1849
1850                 trace_i915_gem_request_wait_end(dev, seqno);
1851         }
1852         if (atomic_read(&dev_priv->mm.wedged))
1853                 ret = -EIO;
1854
1855         if (ret && ret != -ERESTARTSYS)
1856                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1857                           __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1858
1859         /* Directly dispatch request retiring.  While we have the work queue
1860          * to handle this, the waiter on a request often wants an associated
1861          * buffer to have made it to the inactive list, and we would need
1862          * a separate wait queue to handle that.
1863          */
1864         if (ret == 0)
1865                 i915_gem_retire_requests(dev, ring);
1866
1867         return ret;
1868 }
1869
1870 /**
1871  * Waits for a sequence number to be signaled, and cleans up the
1872  * request and object lists appropriately for that event.
1873  */
1874 static int
1875 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1876                 struct intel_ring_buffer *ring)
1877 {
1878         return i915_do_wait_request(dev, seqno, 1, ring);
1879 }
1880
1881 static void
1882 i915_gem_flush(struct drm_device *dev,
1883                uint32_t invalidate_domains,
1884                uint32_t flush_domains)
1885 {
1886         drm_i915_private_t *dev_priv = dev->dev_private;
1887         if (flush_domains & I915_GEM_DOMAIN_CPU)
1888                 drm_agp_chipset_flush(dev);
1889         dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1890                         invalidate_domains,
1891                         flush_domains);
1892
1893         if (HAS_BSD(dev))
1894                 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1895                                 invalidate_domains,
1896                                 flush_domains);
1897 }
1898
1899 static void
1900 i915_gem_flush_ring(struct drm_device *dev,
1901                uint32_t invalidate_domains,
1902                uint32_t flush_domains,
1903                struct intel_ring_buffer *ring)
1904 {
1905         if (flush_domains & I915_GEM_DOMAIN_CPU)
1906                 drm_agp_chipset_flush(dev);
1907         ring->flush(dev, ring,
1908                         invalidate_domains,
1909                         flush_domains);
1910 }
1911
1912 /**
1913  * Ensures that all rendering to the object has completed and the object is
1914  * safe to unbind from the GTT or access from the CPU.
1915  */
1916 static int
1917 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1918 {
1919         struct drm_device *dev = obj->dev;
1920         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1921         int ret;
1922
1923         /* This function only exists to support waiting for existing rendering,
1924          * not for emitting required flushes.
1925          */
1926         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1927
1928         /* If there is rendering queued on the buffer being evicted, wait for
1929          * it.
1930          */
1931         if (obj_priv->active) {
1932 #if WATCH_BUF
1933                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1934                           __func__, obj, obj_priv->last_rendering_seqno);
1935 #endif
1936                 ret = i915_wait_request(dev,
1937                                 obj_priv->last_rendering_seqno, obj_priv->ring);
1938                 if (ret != 0)
1939                         return ret;
1940         }
1941
1942         return 0;
1943 }
1944
1945 /**
1946  * Unbinds an object from the GTT aperture.
1947  */
1948 int
1949 i915_gem_object_unbind(struct drm_gem_object *obj)
1950 {
1951         struct drm_device *dev = obj->dev;
1952         drm_i915_private_t *dev_priv = dev->dev_private;
1953         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1954         int ret = 0;
1955
1956 #if WATCH_BUF
1957         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1958         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1959 #endif
1960         if (obj_priv->gtt_space == NULL)
1961                 return 0;
1962
1963         if (obj_priv->pin_count != 0) {
1964                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1965                 return -EINVAL;
1966         }
1967
1968         /* blow away mappings if mapped through GTT */
1969         i915_gem_release_mmap(obj);
1970
1971         /* Move the object to the CPU domain to ensure that
1972          * any possible CPU writes while it's not in the GTT
1973          * are flushed when we go to remap it. This will
1974          * also ensure that all pending GPU writes are finished
1975          * before we unbind.
1976          */
1977         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1978         if (ret) {
1979                 if (ret != -ERESTARTSYS)
1980                         DRM_ERROR("set_domain failed: %d\n", ret);
1981                 return ret;
1982         }
1983
1984         BUG_ON(obj_priv->active);
1985
1986         /* release the fence reg _after_ flushing */
1987         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1988                 i915_gem_clear_fence_reg(obj);
1989
1990         if (obj_priv->agp_mem != NULL) {
1991                 drm_unbind_agp(obj_priv->agp_mem);
1992                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1993                 obj_priv->agp_mem = NULL;
1994         }
1995
1996         i915_gem_object_put_pages(obj);
1997         BUG_ON(obj_priv->pages_refcount);
1998
1999         if (obj_priv->gtt_space) {
2000                 atomic_dec(&dev->gtt_count);
2001                 atomic_sub(obj->size, &dev->gtt_memory);
2002
2003                 drm_mm_put_block(obj_priv->gtt_space);
2004                 obj_priv->gtt_space = NULL;
2005         }
2006
2007         /* Remove ourselves from the LRU list if present. */
2008         spin_lock(&dev_priv->mm.active_list_lock);
2009         if (!list_empty(&obj_priv->list))
2010                 list_del_init(&obj_priv->list);
2011         spin_unlock(&dev_priv->mm.active_list_lock);
2012
2013         if (i915_gem_object_is_purgeable(obj_priv))
2014                 i915_gem_object_truncate(obj);
2015
2016         trace_i915_gem_object_unbind(obj);
2017
2018         return 0;
2019 }
2020
2021 static struct drm_gem_object *
2022 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
2023 {
2024         drm_i915_private_t *dev_priv = dev->dev_private;
2025         struct drm_i915_gem_object *obj_priv;
2026         struct drm_gem_object *best = NULL;
2027         struct drm_gem_object *first = NULL;
2028
2029         /* Try to find the smallest clean object */
2030         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2031                 struct drm_gem_object *obj = &obj_priv->base;
2032                 if (obj->size >= min_size) {
2033                         if ((!obj_priv->dirty ||
2034                              i915_gem_object_is_purgeable(obj_priv)) &&
2035                             (!best || obj->size < best->size)) {
2036                                 best = obj;
2037                                 if (best->size == min_size)
2038                                         return best;
2039                         }
2040                         if (!first)
2041                             first = obj;
2042                 }
2043         }
2044
2045         return best ? best : first;
2046 }
2047
2048 static int
2049 i915_gpu_idle(struct drm_device *dev)
2050 {
2051         drm_i915_private_t *dev_priv = dev->dev_private;
2052         bool lists_empty;
2053         uint32_t seqno1, seqno2;
2054         int ret;
2055
2056         spin_lock(&dev_priv->mm.active_list_lock);
2057         lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2058                        list_empty(&dev_priv->render_ring.active_list) &&
2059                        (!HAS_BSD(dev) ||
2060                         list_empty(&dev_priv->bsd_ring.active_list)));
2061         spin_unlock(&dev_priv->mm.active_list_lock);
2062
2063         if (lists_empty)
2064                 return 0;
2065
2066         /* Flush everything onto the inactive list. */
2067         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2068         seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2069                         &dev_priv->render_ring);
2070         if (seqno1 == 0)
2071                 return -ENOMEM;
2072         ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2073
2074         if (HAS_BSD(dev)) {
2075                 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2076                                 &dev_priv->bsd_ring);
2077                 if (seqno2 == 0)
2078                         return -ENOMEM;
2079
2080                 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2081                 if (ret)
2082                         return ret;
2083         }
2084
2085
2086         return ret;
2087 }
2088
2089 static int
2090 i915_gem_evict_everything(struct drm_device *dev)
2091 {
2092         drm_i915_private_t *dev_priv = dev->dev_private;
2093         int ret;
2094         bool lists_empty;
2095
2096         spin_lock(&dev_priv->mm.active_list_lock);
2097         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2098                        list_empty(&dev_priv->mm.flushing_list) &&
2099                        list_empty(&dev_priv->render_ring.active_list) &&
2100                        (!HAS_BSD(dev)
2101                         || list_empty(&dev_priv->bsd_ring.active_list)));
2102         spin_unlock(&dev_priv->mm.active_list_lock);
2103
2104         if (lists_empty)
2105                 return -ENOSPC;
2106
2107         /* Flush everything (on to the inactive lists) and evict */
2108         ret = i915_gpu_idle(dev);
2109         if (ret)
2110                 return ret;
2111
2112         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2113
2114         ret = i915_gem_evict_from_inactive_list(dev);
2115         if (ret)
2116                 return ret;
2117
2118         spin_lock(&dev_priv->mm.active_list_lock);
2119         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2120                        list_empty(&dev_priv->mm.flushing_list) &&
2121                        list_empty(&dev_priv->render_ring.active_list) &&
2122                        (!HAS_BSD(dev)
2123                         || list_empty(&dev_priv->bsd_ring.active_list)));
2124         spin_unlock(&dev_priv->mm.active_list_lock);
2125         BUG_ON(!lists_empty);
2126
2127         return 0;
2128 }
2129
2130 static int
2131 i915_gem_evict_something(struct drm_device *dev, int min_size)
2132 {
2133         drm_i915_private_t *dev_priv = dev->dev_private;
2134         struct drm_gem_object *obj;
2135         int ret;
2136
2137         struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
2138         struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
2139         for (;;) {
2140                 i915_gem_retire_requests(dev, render_ring);
2141
2142                 if (HAS_BSD(dev))
2143                         i915_gem_retire_requests(dev, bsd_ring);
2144
2145                 /* If there's an inactive buffer available now, grab it
2146                  * and be done.
2147                  */
2148                 obj = i915_gem_find_inactive_object(dev, min_size);
2149                 if (obj) {
2150                         struct drm_i915_gem_object *obj_priv;
2151
2152 #if WATCH_LRU
2153                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2154 #endif
2155                         obj_priv = to_intel_bo(obj);
2156                         BUG_ON(obj_priv->pin_count != 0);
2157                         BUG_ON(obj_priv->active);
2158
2159                         /* Wait on the rendering and unbind the buffer. */
2160                         return i915_gem_object_unbind(obj);
2161                 }
2162
2163                 /* If we didn't get anything, but the ring is still processing
2164                  * things, wait for the next to finish and hopefully leave us
2165                  * a buffer to evict.
2166                  */
2167                 if (!list_empty(&render_ring->request_list)) {
2168                         struct drm_i915_gem_request *request;
2169
2170                         request = list_first_entry(&render_ring->request_list,
2171                                                    struct drm_i915_gem_request,
2172                                                    list);
2173
2174                         ret = i915_wait_request(dev,
2175                                         request->seqno, request->ring);
2176                         if (ret)
2177                                 return ret;
2178
2179                         continue;
2180                 }
2181
2182                 if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
2183                         struct drm_i915_gem_request *request;
2184
2185                         request = list_first_entry(&bsd_ring->request_list,
2186                                                    struct drm_i915_gem_request,
2187                                                    list);
2188
2189                         ret = i915_wait_request(dev,
2190                                         request->seqno, request->ring);
2191                         if (ret)
2192                                 return ret;
2193
2194                         continue;
2195                 }
2196
2197                 /* If we didn't have anything on the request list but there
2198                  * are buffers awaiting a flush, emit one and try again.
2199                  * When we wait on it, those buffers waiting for that flush
2200                  * will get moved to inactive.
2201                  */
2202                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2203                         struct drm_i915_gem_object *obj_priv;
2204
2205                         /* Find an object that we can immediately reuse */
2206                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2207                                 obj = &obj_priv->base;
2208                                 if (obj->size >= min_size)
2209                                         break;
2210
2211                                 obj = NULL;
2212                         }
2213
2214                         if (obj != NULL) {
2215                                 uint32_t seqno;
2216
2217                                 i915_gem_flush_ring(dev,
2218                                                obj->write_domain,
2219                                                obj->write_domain,
2220                                                obj_priv->ring);
2221                                 seqno = i915_add_request(dev, NULL,
2222                                                 obj->write_domain,
2223                                                 obj_priv->ring);
2224                                 if (seqno == 0)
2225                                         return -ENOMEM;
2226                                 continue;
2227                         }
2228                 }
2229
2230                 /* If we didn't do any of the above, there's no single buffer
2231                  * large enough to swap out for the new one, so just evict
2232                  * everything and start again. (This should be rare.)
2233                  */
2234                 if (!list_empty (&dev_priv->mm.inactive_list))
2235                         return i915_gem_evict_from_inactive_list(dev);
2236                 else
2237                         return i915_gem_evict_everything(dev);
2238         }
2239 }
2240
2241 int
2242 i915_gem_object_get_pages(struct drm_gem_object *obj,
2243                           gfp_t gfpmask)
2244 {
2245         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2246         int page_count, i;
2247         struct address_space *mapping;
2248         struct inode *inode;
2249         struct page *page;
2250
2251         BUG_ON(obj_priv->pages_refcount
2252                         == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2253
2254         if (obj_priv->pages_refcount++ != 0)
2255                 return 0;
2256
2257         /* Get the list of pages out of our struct file.  They'll be pinned
2258          * at this point until we release them.
2259          */
2260         page_count = obj->size / PAGE_SIZE;
2261         BUG_ON(obj_priv->pages != NULL);
2262         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2263         if (obj_priv->pages == NULL) {
2264                 obj_priv->pages_refcount--;
2265                 return -ENOMEM;
2266         }
2267
2268         inode = obj->filp->f_path.dentry->d_inode;
2269         mapping = inode->i_mapping;
2270         for (i = 0; i < page_count; i++) {
2271                 page = read_cache_page_gfp(mapping, i,
2272                                            mapping_gfp_mask (mapping) |
2273                                            __GFP_COLD |
2274                                            gfpmask);
2275                 if (IS_ERR(page))
2276                         goto err_pages;
2277
2278                 obj_priv->pages[i] = page;
2279         }
2280
2281         if (obj_priv->tiling_mode != I915_TILING_NONE)
2282                 i915_gem_object_do_bit_17_swizzle(obj);
2283
2284         return 0;
2285
2286 err_pages:
2287         while (i--)
2288                 page_cache_release(obj_priv->pages[i]);
2289
2290         drm_free_large(obj_priv->pages);
2291         obj_priv->pages = NULL;
2292         obj_priv->pages_refcount--;
2293         return PTR_ERR(page);
2294 }
2295
2296 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2297 {
2298         struct drm_gem_object *obj = reg->obj;
2299         struct drm_device *dev = obj->dev;
2300         drm_i915_private_t *dev_priv = dev->dev_private;
2301         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2302         int regnum = obj_priv->fence_reg;
2303         uint64_t val;
2304
2305         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2306                     0xfffff000) << 32;
2307         val |= obj_priv->gtt_offset & 0xfffff000;
2308         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2309                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2310
2311         if (obj_priv->tiling_mode == I915_TILING_Y)
2312                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2313         val |= I965_FENCE_REG_VALID;
2314
2315         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2316 }
2317
2318 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2319 {
2320         struct drm_gem_object *obj = reg->obj;
2321         struct drm_device *dev = obj->dev;
2322         drm_i915_private_t *dev_priv = dev->dev_private;
2323         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2324         int regnum = obj_priv->fence_reg;
2325         uint64_t val;
2326
2327         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2328                     0xfffff000) << 32;
2329         val |= obj_priv->gtt_offset & 0xfffff000;
2330         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2331         if (obj_priv->tiling_mode == I915_TILING_Y)
2332                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2333         val |= I965_FENCE_REG_VALID;
2334
2335         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2336 }
2337
2338 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2339 {
2340         struct drm_gem_object *obj = reg->obj;
2341         struct drm_device *dev = obj->dev;
2342         drm_i915_private_t *dev_priv = dev->dev_private;
2343         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2344         int regnum = obj_priv->fence_reg;
2345         int tile_width;
2346         uint32_t fence_reg, val;
2347         uint32_t pitch_val;
2348
2349         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2350             (obj_priv->gtt_offset & (obj->size - 1))) {
2351                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2352                      __func__, obj_priv->gtt_offset, obj->size);
2353                 return;
2354         }
2355
2356         if (obj_priv->tiling_mode == I915_TILING_Y &&
2357             HAS_128_BYTE_Y_TILING(dev))
2358                 tile_width = 128;
2359         else
2360                 tile_width = 512;
2361
2362         /* Note: pitch better be a power of two tile widths */
2363         pitch_val = obj_priv->stride / tile_width;
2364         pitch_val = ffs(pitch_val) - 1;
2365
2366         if (obj_priv->tiling_mode == I915_TILING_Y &&
2367             HAS_128_BYTE_Y_TILING(dev))
2368                 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2369         else
2370                 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2371
2372         val = obj_priv->gtt_offset;
2373         if (obj_priv->tiling_mode == I915_TILING_Y)
2374                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2375         val |= I915_FENCE_SIZE_BITS(obj->size);
2376         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2377         val |= I830_FENCE_REG_VALID;
2378
2379         if (regnum < 8)
2380                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2381         else
2382                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2383         I915_WRITE(fence_reg, val);
2384 }
2385
2386 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2387 {
2388         struct drm_gem_object *obj = reg->obj;
2389         struct drm_device *dev = obj->dev;
2390         drm_i915_private_t *dev_priv = dev->dev_private;
2391         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2392         int regnum = obj_priv->fence_reg;
2393         uint32_t val;
2394         uint32_t pitch_val;
2395         uint32_t fence_size_bits;
2396
2397         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2398             (obj_priv->gtt_offset & (obj->size - 1))) {
2399                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2400                      __func__, obj_priv->gtt_offset);
2401                 return;
2402         }
2403
2404         pitch_val = obj_priv->stride / 128;
2405         pitch_val = ffs(pitch_val) - 1;
2406         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2407
2408         val = obj_priv->gtt_offset;
2409         if (obj_priv->tiling_mode == I915_TILING_Y)
2410                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2411         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2412         WARN_ON(fence_size_bits & ~0x00000f00);
2413         val |= fence_size_bits;
2414         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2415         val |= I830_FENCE_REG_VALID;
2416
2417         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2418 }
2419
2420 static int i915_find_fence_reg(struct drm_device *dev)
2421 {
2422         struct drm_i915_fence_reg *reg = NULL;
2423         struct drm_i915_gem_object *obj_priv = NULL;
2424         struct drm_i915_private *dev_priv = dev->dev_private;
2425         struct drm_gem_object *obj = NULL;
2426         int i, avail, ret;
2427
2428         /* First try to find a free reg */
2429         avail = 0;
2430         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2431                 reg = &dev_priv->fence_regs[i];
2432                 if (!reg->obj)
2433                         return i;
2434
2435                 obj_priv = to_intel_bo(reg->obj);
2436                 if (!obj_priv->pin_count)
2437                     avail++;
2438         }
2439
2440         if (avail == 0)
2441                 return -ENOSPC;
2442
2443         /* None available, try to steal one or wait for a user to finish */
2444         i = I915_FENCE_REG_NONE;
2445         list_for_each_entry(reg, &dev_priv->mm.fence_list,
2446                             lru_list) {
2447                 obj = reg->obj;
2448                 obj_priv = to_intel_bo(obj);
2449
2450                 if (obj_priv->pin_count)
2451                         continue;
2452
2453                 /* found one! */
2454                 i = obj_priv->fence_reg;
2455                 break;
2456         }
2457
2458         BUG_ON(i == I915_FENCE_REG_NONE);
2459
2460         /* We only have a reference on obj from the active list. put_fence_reg
2461          * might drop that one, causing a use-after-free in it. So hold a
2462          * private reference to obj like the other callers of put_fence_reg
2463          * (set_tiling ioctl) do. */
2464         drm_gem_object_reference(obj);
2465         ret = i915_gem_object_put_fence_reg(obj);
2466         drm_gem_object_unreference(obj);
2467         if (ret != 0)
2468                 return ret;
2469
2470         return i;
2471 }
2472
2473 /**
2474  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2475  * @obj: object to map through a fence reg
2476  *
2477  * When mapping objects through the GTT, userspace wants to be able to write
2478  * to them without having to worry about swizzling if the object is tiled.
2479  *
2480  * This function walks the fence regs looking for a free one for @obj,
2481  * stealing one if it can't find any.
2482  *
2483  * It then sets up the reg based on the object's properties: address, pitch
2484  * and tiling format.
2485  */
2486 int
2487 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2488 {
2489         struct drm_device *dev = obj->dev;
2490         struct drm_i915_private *dev_priv = dev->dev_private;
2491         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2492         struct drm_i915_fence_reg *reg = NULL;
2493         int ret;
2494
2495         /* Just update our place in the LRU if our fence is getting used. */
2496         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2497                 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2498                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2499                 return 0;
2500         }
2501
2502         switch (obj_priv->tiling_mode) {
2503         case I915_TILING_NONE:
2504                 WARN(1, "allocating a fence for non-tiled object?\n");
2505                 break;
2506         case I915_TILING_X:
2507                 if (!obj_priv->stride)
2508                         return -EINVAL;
2509                 WARN((obj_priv->stride & (512 - 1)),
2510                      "object 0x%08x is X tiled but has non-512B pitch\n",
2511                      obj_priv->gtt_offset);
2512                 break;
2513         case I915_TILING_Y:
2514                 if (!obj_priv->stride)
2515                         return -EINVAL;
2516                 WARN((obj_priv->stride & (128 - 1)),
2517                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2518                      obj_priv->gtt_offset);
2519                 break;
2520         }
2521
2522         ret = i915_find_fence_reg(dev);
2523         if (ret < 0)
2524                 return ret;
2525
2526         obj_priv->fence_reg = ret;
2527         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2528         list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2529
2530         reg->obj = obj;
2531
2532         if (IS_GEN6(dev))
2533                 sandybridge_write_fence_reg(reg);
2534         else if (IS_I965G(dev))
2535                 i965_write_fence_reg(reg);
2536         else if (IS_I9XX(dev))
2537                 i915_write_fence_reg(reg);
2538         else
2539                 i830_write_fence_reg(reg);
2540
2541         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2542                         obj_priv->tiling_mode);
2543
2544         return 0;
2545 }
2546
2547 /**
2548  * i915_gem_clear_fence_reg - clear out fence register info
2549  * @obj: object to clear
2550  *
2551  * Zeroes out the fence register itself and clears out the associated
2552  * data structures in dev_priv and obj_priv.
2553  */
2554 static void
2555 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2556 {
2557         struct drm_device *dev = obj->dev;
2558         drm_i915_private_t *dev_priv = dev->dev_private;
2559         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2560         struct drm_i915_fence_reg *reg =
2561                 &dev_priv->fence_regs[obj_priv->fence_reg];
2562
2563         if (IS_GEN6(dev)) {
2564                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2565                              (obj_priv->fence_reg * 8), 0);
2566         } else if (IS_I965G(dev)) {
2567                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2568         } else {
2569                 uint32_t fence_reg;
2570
2571                 if (obj_priv->fence_reg < 8)
2572                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2573                 else
2574                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2575                                                        8) * 4;
2576
2577                 I915_WRITE(fence_reg, 0);
2578         }
2579
2580         reg->obj = NULL;
2581         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2582         list_del_init(&reg->lru_list);
2583 }
2584
2585 /**
2586  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2587  * to the buffer to finish, and then resets the fence register.
2588  * @obj: tiled object holding a fence register.
2589  *
2590  * Zeroes out the fence register itself and clears out the associated
2591  * data structures in dev_priv and obj_priv.
2592  */
2593 int
2594 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2595 {
2596         struct drm_device *dev = obj->dev;
2597         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2598
2599         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2600                 return 0;
2601
2602         /* If we've changed tiling, GTT-mappings of the object
2603          * need to re-fault to ensure that the correct fence register
2604          * setup is in place.
2605          */
2606         i915_gem_release_mmap(obj);
2607
2608         /* On the i915, GPU access to tiled buffers is via a fence,
2609          * therefore we must wait for any outstanding access to complete
2610          * before clearing the fence.
2611          */
2612         if (!IS_I965G(dev)) {
2613                 int ret;
2614
2615                 i915_gem_object_flush_gpu_write_domain(obj);
2616                 ret = i915_gem_object_wait_rendering(obj);
2617                 if (ret != 0)
2618                         return ret;
2619         }
2620
2621         i915_gem_object_flush_gtt_write_domain(obj);
2622         i915_gem_clear_fence_reg (obj);
2623
2624         return 0;
2625 }
2626
2627 /**
2628  * Finds free space in the GTT aperture and binds the object there.
2629  */
2630 static int
2631 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2632 {
2633         struct drm_device *dev = obj->dev;
2634         drm_i915_private_t *dev_priv = dev->dev_private;
2635         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2636         struct drm_mm_node *free_space;
2637         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2638         int ret;
2639
2640         if (obj_priv->madv != I915_MADV_WILLNEED) {
2641                 DRM_ERROR("Attempting to bind a purgeable object\n");
2642                 return -EINVAL;
2643         }
2644
2645         if (alignment == 0)
2646                 alignment = i915_gem_get_gtt_alignment(obj);
2647         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2648                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2649                 return -EINVAL;
2650         }
2651
2652         /* If the object is bigger than the entire aperture, reject it early
2653          * before evicting everything in a vain attempt to find space.
2654          */
2655         if (obj->size > dev->gtt_total) {
2656                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2657                 return -E2BIG;
2658         }
2659
2660  search_free:
2661         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2662                                         obj->size, alignment, 0);
2663         if (free_space != NULL) {
2664                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2665                                                        alignment);
2666                 if (obj_priv->gtt_space != NULL) {
2667                         obj_priv->gtt_space->private = obj;
2668                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2669                 }
2670         }
2671         if (obj_priv->gtt_space == NULL) {
2672                 /* If the gtt is empty and we're still having trouble
2673                  * fitting our object in, we're out of memory.
2674                  */
2675 #if WATCH_LRU
2676                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2677 #endif
2678                 ret = i915_gem_evict_something(dev, obj->size);
2679                 if (ret)
2680                         return ret;
2681
2682                 goto search_free;
2683         }
2684
2685 #if WATCH_BUF
2686         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2687                  obj->size, obj_priv->gtt_offset);
2688 #endif
2689         ret = i915_gem_object_get_pages(obj, gfpmask);
2690         if (ret) {
2691                 drm_mm_put_block(obj_priv->gtt_space);
2692                 obj_priv->gtt_space = NULL;
2693
2694                 if (ret == -ENOMEM) {
2695                         /* first try to clear up some space from the GTT */
2696                         ret = i915_gem_evict_something(dev, obj->size);
2697                         if (ret) {
2698                                 /* now try to shrink everyone else */
2699                                 if (gfpmask) {
2700                                         gfpmask = 0;
2701                                         goto search_free;
2702                                 }
2703
2704                                 return ret;
2705                         }
2706
2707                         goto search_free;
2708                 }
2709
2710                 return ret;
2711         }
2712
2713         /* Create an AGP memory structure pointing at our pages, and bind it
2714          * into the GTT.
2715          */
2716         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2717                                                obj_priv->pages,
2718                                                obj->size >> PAGE_SHIFT,
2719                                                obj_priv->gtt_offset,
2720                                                obj_priv->agp_type);
2721         if (obj_priv->agp_mem == NULL) {
2722                 i915_gem_object_put_pages(obj);
2723                 drm_mm_put_block(obj_priv->gtt_space);
2724                 obj_priv->gtt_space = NULL;
2725
2726                 ret = i915_gem_evict_something(dev, obj->size);
2727                 if (ret)
2728                         return ret;
2729
2730                 goto search_free;
2731         }
2732         atomic_inc(&dev->gtt_count);
2733         atomic_add(obj->size, &dev->gtt_memory);
2734
2735         /* Assert that the object is not currently in any GPU domain. As it
2736          * wasn't in the GTT, there shouldn't be any way it could have been in
2737          * a GPU cache
2738          */
2739         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2740         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2741
2742         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2743
2744         return 0;
2745 }
2746
2747 void
2748 i915_gem_clflush_object(struct drm_gem_object *obj)
2749 {
2750         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2751
2752         /* If we don't have a page list set up, then we're not pinned
2753          * to GPU, and we can ignore the cache flush because it'll happen
2754          * again at bind time.
2755          */
2756         if (obj_priv->pages == NULL)
2757                 return;
2758
2759         trace_i915_gem_object_clflush(obj);
2760
2761         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2762 }
2763
2764 /** Flushes any GPU write domain for the object if it's dirty. */
2765 static void
2766 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2767 {
2768         struct drm_device *dev = obj->dev;
2769         uint32_t old_write_domain;
2770         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2771
2772         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2773                 return;
2774
2775         /* Queue the GPU write cache flushing we need. */
2776         old_write_domain = obj->write_domain;
2777         i915_gem_flush(dev, 0, obj->write_domain);
2778         (void) i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring);
2779         BUG_ON(obj->write_domain);
2780
2781         trace_i915_gem_object_change_domain(obj,
2782                                             obj->read_domains,
2783                                             old_write_domain);
2784 }
2785
2786 /** Flushes the GTT write domain for the object if it's dirty. */
2787 static void
2788 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2789 {
2790         uint32_t old_write_domain;
2791
2792         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2793                 return;
2794
2795         /* No actual flushing is required for the GTT write domain.   Writes
2796          * to it immediately go to main memory as far as we know, so there's
2797          * no chipset flush.  It also doesn't land in render cache.
2798          */
2799         old_write_domain = obj->write_domain;
2800         obj->write_domain = 0;
2801
2802         trace_i915_gem_object_change_domain(obj,
2803                                             obj->read_domains,
2804                                             old_write_domain);
2805 }
2806
2807 /** Flushes the CPU write domain for the object if it's dirty. */
2808 static void
2809 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2810 {
2811         struct drm_device *dev = obj->dev;
2812         uint32_t old_write_domain;
2813
2814         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2815                 return;
2816
2817         i915_gem_clflush_object(obj);
2818         drm_agp_chipset_flush(dev);
2819         old_write_domain = obj->write_domain;
2820         obj->write_domain = 0;
2821
2822         trace_i915_gem_object_change_domain(obj,
2823                                             obj->read_domains,
2824                                             old_write_domain);
2825 }
2826
2827 void
2828 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2829 {
2830         switch (obj->write_domain) {
2831         case I915_GEM_DOMAIN_GTT:
2832                 i915_gem_object_flush_gtt_write_domain(obj);
2833                 break;
2834         case I915_GEM_DOMAIN_CPU:
2835                 i915_gem_object_flush_cpu_write_domain(obj);
2836                 break;
2837         default:
2838                 i915_gem_object_flush_gpu_write_domain(obj);
2839                 break;
2840         }
2841 }
2842
2843 /**
2844  * Moves a single object to the GTT read, and possibly write domain.
2845  *
2846  * This function returns when the move is complete, including waiting on
2847  * flushes to occur.
2848  */
2849 int
2850 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2851 {
2852         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2853         uint32_t old_write_domain, old_read_domains;
2854         int ret;
2855
2856         /* Not valid to be called on unbound objects. */
2857         if (obj_priv->gtt_space == NULL)
2858                 return -EINVAL;
2859
2860         i915_gem_object_flush_gpu_write_domain(obj);
2861         /* Wait on any GPU rendering and flushing to occur. */
2862         ret = i915_gem_object_wait_rendering(obj);
2863         if (ret != 0)
2864                 return ret;
2865
2866         old_write_domain = obj->write_domain;
2867         old_read_domains = obj->read_domains;
2868
2869         /* If we're writing through the GTT domain, then CPU and GPU caches
2870          * will need to be invalidated at next use.
2871          */
2872         if (write)
2873                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2874
2875         i915_gem_object_flush_cpu_write_domain(obj);
2876
2877         /* It should now be out of any other write domains, and we can update
2878          * the domain values for our changes.
2879          */
2880         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2881         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2882         if (write) {
2883                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2884                 obj_priv->dirty = 1;
2885         }
2886
2887         trace_i915_gem_object_change_domain(obj,
2888                                             old_read_domains,
2889                                             old_write_domain);
2890
2891         return 0;
2892 }
2893
2894 /*
2895  * Prepare buffer for display plane. Use uninterruptible for possible flush
2896  * wait, as in modesetting process we're not supposed to be interrupted.
2897  */
2898 int
2899 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2900 {
2901         struct drm_device *dev = obj->dev;
2902         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2903         uint32_t old_write_domain, old_read_domains;
2904         int ret;
2905
2906         /* Not valid to be called on unbound objects. */
2907         if (obj_priv->gtt_space == NULL)
2908                 return -EINVAL;
2909
2910         i915_gem_object_flush_gpu_write_domain(obj);
2911
2912         /* Wait on any GPU rendering and flushing to occur. */
2913         if (obj_priv->active) {
2914 #if WATCH_BUF
2915                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2916                           __func__, obj, obj_priv->last_rendering_seqno);
2917 #endif
2918                 ret = i915_do_wait_request(dev,
2919                                 obj_priv->last_rendering_seqno,
2920                                 0,
2921                                 obj_priv->ring);
2922                 if (ret != 0)
2923                         return ret;
2924         }
2925
2926         i915_gem_object_flush_cpu_write_domain(obj);
2927
2928         old_write_domain = obj->write_domain;
2929         old_read_domains = obj->read_domains;
2930
2931         /* It should now be out of any other write domains, and we can update
2932          * the domain values for our changes.
2933          */
2934         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2935         obj->read_domains = I915_GEM_DOMAIN_GTT;
2936         obj->write_domain = I915_GEM_DOMAIN_GTT;
2937         obj_priv->dirty = 1;
2938
2939         trace_i915_gem_object_change_domain(obj,
2940                                             old_read_domains,
2941                                             old_write_domain);
2942
2943         return 0;
2944 }
2945
2946 /**
2947  * Moves a single object to the CPU read, and possibly write domain.
2948  *
2949  * This function returns when the move is complete, including waiting on
2950  * flushes to occur.
2951  */
2952 static int
2953 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2954 {
2955         uint32_t old_write_domain, old_read_domains;
2956         int ret;
2957
2958         i915_gem_object_flush_gpu_write_domain(obj);
2959         /* Wait on any GPU rendering and flushing to occur. */
2960         ret = i915_gem_object_wait_rendering(obj);
2961         if (ret != 0)
2962                 return ret;
2963
2964         i915_gem_object_flush_gtt_write_domain(obj);
2965
2966         /* If we have a partially-valid cache of the object in the CPU,
2967          * finish invalidating it and free the per-page flags.
2968          */
2969         i915_gem_object_set_to_full_cpu_read_domain(obj);
2970
2971         old_write_domain = obj->write_domain;
2972         old_read_domains = obj->read_domains;
2973
2974         /* Flush the CPU cache if it's still invalid. */
2975         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2976                 i915_gem_clflush_object(obj);
2977
2978                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2979         }
2980
2981         /* It should now be out of any other write domains, and we can update
2982          * the domain values for our changes.
2983          */
2984         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2985
2986         /* If we're writing through the CPU, then the GPU read domains will
2987          * need to be invalidated at next use.
2988          */
2989         if (write) {
2990                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2991                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2992         }
2993
2994         trace_i915_gem_object_change_domain(obj,
2995                                             old_read_domains,
2996                                             old_write_domain);
2997
2998         return 0;
2999 }
3000
3001 /*
3002  * Set the next domain for the specified object. This
3003  * may not actually perform the necessary flushing/invaliding though,
3004  * as that may want to be batched with other set_domain operations
3005  *
3006  * This is (we hope) the only really tricky part of gem. The goal
3007  * is fairly simple -- track which caches hold bits of the object
3008  * and make sure they remain coherent. A few concrete examples may
3009  * help to explain how it works. For shorthand, we use the notation
3010  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
3011  * a pair of read and write domain masks.
3012  *
3013  * Case 1: the batch buffer
3014  *
3015  *      1. Allocated
3016  *      2. Written by CPU
3017  *      3. Mapped to GTT
3018  *      4. Read by GPU
3019  *      5. Unmapped from GTT
3020  *      6. Freed
3021  *
3022  *      Let's take these a step at a time
3023  *
3024  *      1. Allocated
3025  *              Pages allocated from the kernel may still have
3026  *              cache contents, so we set them to (CPU, CPU) always.
3027  *      2. Written by CPU (using pwrite)
3028  *              The pwrite function calls set_domain (CPU, CPU) and
3029  *              this function does nothing (as nothing changes)
3030  *      3. Mapped by GTT
3031  *              This function asserts that the object is not
3032  *              currently in any GPU-based read or write domains
3033  *      4. Read by GPU
3034  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
3035  *              As write_domain is zero, this function adds in the
3036  *              current read domains (CPU+COMMAND, 0).
3037  *              flush_domains is set to CPU.
3038  *              invalidate_domains is set to COMMAND
3039  *              clflush is run to get data out of the CPU caches
3040  *              then i915_dev_set_domain calls i915_gem_flush to
3041  *              emit an MI_FLUSH and drm_agp_chipset_flush
3042  *      5. Unmapped from GTT
3043  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
3044  *              flush_domains and invalidate_domains end up both zero
3045  *              so no flushing/invalidating happens
3046  *      6. Freed
3047  *              yay, done
3048  *
3049  * Case 2: The shared render buffer
3050  *
3051  *      1. Allocated
3052  *      2. Mapped to GTT
3053  *      3. Read/written by GPU
3054  *      4. set_domain to (CPU,CPU)
3055  *      5. Read/written by CPU
3056  *      6. Read/written by GPU
3057  *
3058  *      1. Allocated
3059  *              Same as last example, (CPU, CPU)
3060  *      2. Mapped to GTT
3061  *              Nothing changes (assertions find that it is not in the GPU)
3062  *      3. Read/written by GPU
3063  *              execbuffer calls set_domain (RENDER, RENDER)
3064  *              flush_domains gets CPU
3065  *              invalidate_domains gets GPU
3066  *              clflush (obj)
3067  *              MI_FLUSH and drm_agp_chipset_flush
3068  *      4. set_domain (CPU, CPU)
3069  *              flush_domains gets GPU
3070  *              invalidate_domains gets CPU
3071  *              wait_rendering (obj) to make sure all drawing is complete.
3072  *              This will include an MI_FLUSH to get the data from GPU
3073  *              to memory
3074  *              clflush (obj) to invalidate the CPU cache
3075  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3076  *      5. Read/written by CPU
3077  *              cache lines are loaded and dirtied
3078  *      6. Read written by GPU
3079  *              Same as last GPU access
3080  *
3081  * Case 3: The constant buffer
3082  *
3083  *      1. Allocated
3084  *      2. Written by CPU
3085  *      3. Read by GPU
3086  *      4. Updated (written) by CPU again
3087  *      5. Read by GPU
3088  *
3089  *      1. Allocated
3090  *              (CPU, CPU)
3091  *      2. Written by CPU
3092  *              (CPU, CPU)
3093  *      3. Read by GPU
3094  *              (CPU+RENDER, 0)
3095  *              flush_domains = CPU
3096  *              invalidate_domains = RENDER
3097  *              clflush (obj)
3098  *              MI_FLUSH
3099  *              drm_agp_chipset_flush
3100  *      4. Updated (written) by CPU again
3101  *              (CPU, CPU)
3102  *              flush_domains = 0 (no previous write domain)
3103  *              invalidate_domains = 0 (no new read domains)
3104  *      5. Read by GPU
3105  *              (CPU+RENDER, 0)
3106  *              flush_domains = CPU
3107  *              invalidate_domains = RENDER
3108  *              clflush (obj)
3109  *              MI_FLUSH
3110  *              drm_agp_chipset_flush
3111  */
3112 static void
3113 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3114 {
3115         struct drm_device               *dev = obj->dev;
3116         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
3117         uint32_t                        invalidate_domains = 0;
3118         uint32_t                        flush_domains = 0;
3119         uint32_t                        old_read_domains;
3120
3121         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3122         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3123
3124         intel_mark_busy(dev, obj);
3125
3126 #if WATCH_BUF
3127         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3128                  __func__, obj,
3129                  obj->read_domains, obj->pending_read_domains,
3130                  obj->write_domain, obj->pending_write_domain);
3131 #endif
3132         /*
3133          * If the object isn't moving to a new write domain,
3134          * let the object stay in multiple read domains
3135          */
3136         if (obj->pending_write_domain == 0)
3137                 obj->pending_read_domains |= obj->read_domains;
3138         else
3139                 obj_priv->dirty = 1;
3140
3141         /*
3142          * Flush the current write domain if
3143          * the new read domains don't match. Invalidate
3144          * any read domains which differ from the old
3145          * write domain
3146          */
3147         if (obj->write_domain &&
3148             obj->write_domain != obj->pending_read_domains) {
3149                 flush_domains |= obj->write_domain;
3150                 invalidate_domains |=
3151                         obj->pending_read_domains & ~obj->write_domain;
3152         }
3153         /*
3154          * Invalidate any read caches which may have
3155          * stale data. That is, any new read domains.
3156          */
3157         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3158         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3159 #if WATCH_BUF
3160                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3161                          __func__, flush_domains, invalidate_domains);
3162 #endif
3163                 i915_gem_clflush_object(obj);
3164         }
3165
3166         old_read_domains = obj->read_domains;
3167
3168         /* The actual obj->write_domain will be updated with
3169          * pending_write_domain after we emit the accumulated flush for all
3170          * of our domain changes in execbuffers (which clears objects'
3171          * write_domains).  So if we have a current write domain that we
3172          * aren't changing, set pending_write_domain to that.
3173          */
3174         if (flush_domains == 0 && obj->pending_write_domain == 0)
3175                 obj->pending_write_domain = obj->write_domain;
3176         obj->read_domains = obj->pending_read_domains;
3177
3178         dev->invalidate_domains |= invalidate_domains;
3179         dev->flush_domains |= flush_domains;
3180 #if WATCH_BUF
3181         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3182                  __func__,
3183                  obj->read_domains, obj->write_domain,
3184                  dev->invalidate_domains, dev->flush_domains);
3185 #endif
3186
3187         trace_i915_gem_object_change_domain(obj,
3188                                             old_read_domains,
3189                                             obj->write_domain);
3190 }
3191
3192 /**
3193  * Moves the object from a partially CPU read to a full one.
3194  *
3195  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3196  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3197  */
3198 static void
3199 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3200 {
3201         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3202
3203         if (!obj_priv->page_cpu_valid)
3204                 return;
3205
3206         /* If we're partially in the CPU read domain, finish moving it in.
3207          */
3208         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3209                 int i;
3210
3211                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3212                         if (obj_priv->page_cpu_valid[i])
3213                                 continue;
3214                         drm_clflush_pages(obj_priv->pages + i, 1);
3215                 }
3216         }
3217
3218         /* Free the page_cpu_valid mappings which are now stale, whether
3219          * or not we've got I915_GEM_DOMAIN_CPU.
3220          */
3221         kfree(obj_priv->page_cpu_valid);
3222         obj_priv->page_cpu_valid = NULL;
3223 }
3224
3225 /**
3226  * Set the CPU read domain on a range of the object.
3227  *
3228  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3229  * not entirely valid.  The page_cpu_valid member of the object flags which
3230  * pages have been flushed, and will be respected by
3231  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3232  * of the whole object.
3233  *
3234  * This function returns when the move is complete, including waiting on
3235  * flushes to occur.
3236  */
3237 static int
3238 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3239                                           uint64_t offset, uint64_t size)
3240 {
3241         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3242         uint32_t old_read_domains;
3243         int i, ret;
3244
3245         if (offset == 0 && size == obj->size)
3246                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3247
3248         i915_gem_object_flush_gpu_write_domain(obj);
3249         /* Wait on any GPU rendering and flushing to occur. */
3250         ret = i915_gem_object_wait_rendering(obj);
3251         if (ret != 0)
3252                 return ret;
3253         i915_gem_object_flush_gtt_write_domain(obj);
3254
3255         /* If we're already fully in the CPU read domain, we're done. */
3256         if (obj_priv->page_cpu_valid == NULL &&
3257             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3258                 return 0;
3259
3260         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3261          * newly adding I915_GEM_DOMAIN_CPU
3262          */
3263         if (obj_priv->page_cpu_valid == NULL) {
3264                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3265                                                    GFP_KERNEL);
3266                 if (obj_priv->page_cpu_valid == NULL)
3267                         return -ENOMEM;
3268         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3269                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3270
3271         /* Flush the cache on any pages that are still invalid from the CPU's
3272          * perspective.
3273          */
3274         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3275              i++) {
3276                 if (obj_priv->page_cpu_valid[i])
3277                         continue;
3278
3279                 drm_clflush_pages(obj_priv->pages + i, 1);
3280
3281                 obj_priv->page_cpu_valid[i] = 1;
3282         }
3283
3284         /* It should now be out of any other write domains, and we can update
3285          * the domain values for our changes.
3286          */
3287         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3288
3289         old_read_domains = obj->read_domains;
3290         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3291
3292         trace_i915_gem_object_change_domain(obj,
3293                                             old_read_domains,
3294                                             obj->write_domain);
3295
3296         return 0;
3297 }
3298
3299 /**
3300  * Pin an object to the GTT and evaluate the relocations landing in it.
3301  */
3302 static int
3303 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3304                                  struct drm_file *file_priv,
3305                                  struct drm_i915_gem_exec_object2 *entry,
3306                                  struct drm_i915_gem_relocation_entry *relocs)
3307 {
3308         struct drm_device *dev = obj->dev;
3309         drm_i915_private_t *dev_priv = dev->dev_private;
3310         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3311         int i, ret;
3312         void __iomem *reloc_page;
3313         bool need_fence;
3314
3315         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3316                      obj_priv->tiling_mode != I915_TILING_NONE;
3317
3318         /* Check fence reg constraints and rebind if necessary */
3319         if (need_fence &&
3320             !i915_gem_object_fence_offset_ok(obj,
3321                                              obj_priv->tiling_mode)) {
3322                 ret = i915_gem_object_unbind(obj);
3323                 if (ret)
3324                         return ret;
3325         }
3326
3327         /* Choose the GTT offset for our buffer and put it there. */
3328         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3329         if (ret)
3330                 return ret;
3331
3332         /*
3333          * Pre-965 chips need a fence register set up in order to
3334          * properly handle blits to/from tiled surfaces.
3335          */
3336         if (need_fence) {
3337                 ret = i915_gem_object_get_fence_reg(obj);
3338                 if (ret != 0) {
3339                         i915_gem_object_unpin(obj);
3340                         return ret;
3341                 }
3342         }
3343
3344         entry->offset = obj_priv->gtt_offset;
3345
3346         /* Apply the relocations, using the GTT aperture to avoid cache
3347          * flushing requirements.
3348          */
3349         for (i = 0; i < entry->relocation_count; i++) {
3350                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3351                 struct drm_gem_object *target_obj;
3352                 struct drm_i915_gem_object *target_obj_priv;
3353                 uint32_t reloc_val, reloc_offset;
3354                 uint32_t __iomem *reloc_entry;
3355
3356                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3357                                                    reloc->target_handle);
3358                 if (target_obj == NULL) {
3359                         i915_gem_object_unpin(obj);
3360                         return -EBADF;
3361                 }
3362                 target_obj_priv = to_intel_bo(target_obj);
3363
3364 #if WATCH_RELOC
3365                 DRM_INFO("%s: obj %p offset %08x target %d "
3366                          "read %08x write %08x gtt %08x "
3367                          "presumed %08x delta %08x\n",
3368                          __func__,
3369                          obj,
3370                          (int) reloc->offset,
3371                          (int) reloc->target_handle,
3372                          (int) reloc->read_domains,
3373                          (int) reloc->write_domain,
3374                          (int) target_obj_priv->gtt_offset,
3375                          (int) reloc->presumed_offset,
3376                          reloc->delta);
3377 #endif
3378
3379                 /* The target buffer should have appeared before us in the
3380                  * exec_object list, so it should have a GTT space bound by now.
3381                  */
3382                 if (target_obj_priv->gtt_space == NULL) {
3383                         DRM_ERROR("No GTT space found for object %d\n",
3384                                   reloc->target_handle);
3385                         drm_gem_object_unreference(target_obj);
3386                         i915_gem_object_unpin(obj);
3387                         return -EINVAL;
3388                 }
3389
3390                 /* Validate that the target is in a valid r/w GPU domain */
3391                 if (reloc->write_domain & (reloc->write_domain - 1)) {
3392                         DRM_ERROR("reloc with multiple write domains: "
3393                                   "obj %p target %d offset %d "
3394                                   "read %08x write %08x",
3395                                   obj, reloc->target_handle,
3396                                   (int) reloc->offset,
3397                                   reloc->read_domains,
3398                                   reloc->write_domain);
3399                         return -EINVAL;
3400                 }
3401                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3402                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3403                         DRM_ERROR("reloc with read/write CPU domains: "
3404                                   "obj %p target %d offset %d "
3405                                   "read %08x write %08x",
3406                                   obj, reloc->target_handle,
3407                                   (int) reloc->offset,
3408                                   reloc->read_domains,
3409                                   reloc->write_domain);
3410                         drm_gem_object_unreference(target_obj);
3411                         i915_gem_object_unpin(obj);
3412                         return -EINVAL;
3413                 }
3414                 if (reloc->write_domain && target_obj->pending_write_domain &&
3415                     reloc->write_domain != target_obj->pending_write_domain) {
3416                         DRM_ERROR("Write domain conflict: "
3417                                   "obj %p target %d offset %d "
3418                                   "new %08x old %08x\n",
3419                                   obj, reloc->target_handle,
3420                                   (int) reloc->offset,
3421                                   reloc->write_domain,
3422                                   target_obj->pending_write_domain);
3423                         drm_gem_object_unreference(target_obj);
3424                         i915_gem_object_unpin(obj);
3425                         return -EINVAL;
3426                 }
3427
3428                 target_obj->pending_read_domains |= reloc->read_domains;
3429                 target_obj->pending_write_domain |= reloc->write_domain;
3430
3431                 /* If the relocation already has the right value in it, no
3432                  * more work needs to be done.
3433                  */
3434                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3435                         drm_gem_object_unreference(target_obj);
3436                         continue;
3437                 }
3438
3439                 /* Check that the relocation address is valid... */
3440                 if (reloc->offset > obj->size - 4) {
3441                         DRM_ERROR("Relocation beyond object bounds: "
3442                                   "obj %p target %d offset %d size %d.\n",
3443                                   obj, reloc->target_handle,
3444                                   (int) reloc->offset, (int) obj->size);
3445                         drm_gem_object_unreference(target_obj);
3446                         i915_gem_object_unpin(obj);
3447                         return -EINVAL;
3448                 }
3449                 if (reloc->offset & 3) {
3450                         DRM_ERROR("Relocation not 4-byte aligned: "
3451                                   "obj %p target %d offset %d.\n",
3452                                   obj, reloc->target_handle,
3453                                   (int) reloc->offset);
3454                         drm_gem_object_unreference(target_obj);
3455                         i915_gem_object_unpin(obj);
3456                         return -EINVAL;
3457                 }
3458
3459                 /* and points to somewhere within the target object. */
3460                 if (reloc->delta >= target_obj->size) {
3461                         DRM_ERROR("Relocation beyond target object bounds: "
3462                                   "obj %p target %d delta %d size %d.\n",
3463                                   obj, reloc->target_handle,
3464                                   (int) reloc->delta, (int) target_obj->size);
3465                         drm_gem_object_unreference(target_obj);
3466                         i915_gem_object_unpin(obj);
3467                         return -EINVAL;
3468                 }
3469
3470                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3471                 if (ret != 0) {
3472                         drm_gem_object_unreference(target_obj);
3473                         i915_gem_object_unpin(obj);
3474                         return -EINVAL;
3475                 }
3476
3477                 /* Map the page containing the relocation we're going to
3478                  * perform.
3479                  */
3480                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3481                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3482                                                       (reloc_offset &
3483                                                        ~(PAGE_SIZE - 1)));
3484                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3485                                                    (reloc_offset & (PAGE_SIZE - 1)));
3486                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3487
3488 #if WATCH_BUF
3489                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3490                           obj, (unsigned int) reloc->offset,
3491                           readl(reloc_entry), reloc_val);
3492 #endif
3493                 writel(reloc_val, reloc_entry);
3494                 io_mapping_unmap_atomic(reloc_page);
3495
3496                 /* The updated presumed offset for this entry will be
3497                  * copied back out to the user.
3498                  */
3499                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3500
3501                 drm_gem_object_unreference(target_obj);
3502         }
3503
3504 #if WATCH_BUF
3505         if (0)
3506                 i915_gem_dump_object(obj, 128, __func__, ~0);
3507 #endif
3508         return 0;
3509 }
3510
3511 /* Throttle our rendering by waiting until the ring has completed our requests
3512  * emitted over 20 msec ago.
3513  *
3514  * Note that if we were to use the current jiffies each time around the loop,
3515  * we wouldn't escape the function with any frames outstanding if the time to
3516  * render a frame was over 20ms.
3517  *
3518  * This should get us reasonable parallelism between CPU and GPU but also
3519  * relatively low latency when blocking on a particular request to finish.
3520  */
3521 static int
3522 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3523 {
3524         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3525         int ret = 0;
3526         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3527
3528         mutex_lock(&dev->struct_mutex);
3529         while (!list_empty(&i915_file_priv->mm.request_list)) {
3530                 struct drm_i915_gem_request *request;
3531
3532                 request = list_first_entry(&i915_file_priv->mm.request_list,
3533                                            struct drm_i915_gem_request,
3534                                            client_list);
3535
3536                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3537                         break;
3538
3539                 ret = i915_wait_request(dev, request->seqno, request->ring);
3540                 if (ret != 0)
3541                         break;
3542         }
3543         mutex_unlock(&dev->struct_mutex);
3544
3545         return ret;
3546 }
3547
3548 static int
3549 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3550                               uint32_t buffer_count,
3551                               struct drm_i915_gem_relocation_entry **relocs)
3552 {
3553         uint32_t reloc_count = 0, reloc_index = 0, i;
3554         int ret;
3555
3556         *relocs = NULL;
3557         for (i = 0; i < buffer_count; i++) {
3558                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3559                         return -EINVAL;
3560                 reloc_count += exec_list[i].relocation_count;
3561         }
3562
3563         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3564         if (*relocs == NULL) {
3565                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3566                 return -ENOMEM;
3567         }
3568
3569         for (i = 0; i < buffer_count; i++) {
3570                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3571
3572                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3573
3574                 ret = copy_from_user(&(*relocs)[reloc_index],
3575                                      user_relocs,
3576                                      exec_list[i].relocation_count *
3577                                      sizeof(**relocs));
3578                 if (ret != 0) {
3579                         drm_free_large(*relocs);
3580                         *relocs = NULL;
3581                         return -EFAULT;
3582                 }
3583
3584                 reloc_index += exec_list[i].relocation_count;
3585         }
3586
3587         return 0;
3588 }
3589
3590 static int
3591 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3592                             uint32_t buffer_count,
3593                             struct drm_i915_gem_relocation_entry *relocs)
3594 {
3595         uint32_t reloc_count = 0, i;
3596         int ret = 0;
3597
3598         if (relocs == NULL)
3599             return 0;
3600
3601         for (i = 0; i < buffer_count; i++) {
3602                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3603                 int unwritten;
3604
3605                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3606
3607                 unwritten = copy_to_user(user_relocs,
3608                                          &relocs[reloc_count],
3609                                          exec_list[i].relocation_count *
3610                                          sizeof(*relocs));
3611
3612                 if (unwritten) {
3613                         ret = -EFAULT;
3614                         goto err;
3615                 }
3616
3617                 reloc_count += exec_list[i].relocation_count;
3618         }
3619
3620 err:
3621         drm_free_large(relocs);
3622
3623         return ret;
3624 }
3625
3626 static int
3627 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3628                            uint64_t exec_offset)
3629 {
3630         uint32_t exec_start, exec_len;
3631
3632         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3633         exec_len = (uint32_t) exec->batch_len;
3634
3635         if ((exec_start | exec_len) & 0x7)
3636                 return -EINVAL;
3637
3638         if (!exec_start)
3639                 return -EINVAL;
3640
3641         return 0;
3642 }
3643
3644 static int
3645 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3646                                struct drm_gem_object **object_list,
3647                                int count)
3648 {
3649         drm_i915_private_t *dev_priv = dev->dev_private;
3650         struct drm_i915_gem_object *obj_priv;
3651         DEFINE_WAIT(wait);
3652         int i, ret = 0;
3653
3654         for (;;) {
3655                 prepare_to_wait(&dev_priv->pending_flip_queue,
3656                                 &wait, TASK_INTERRUPTIBLE);
3657                 for (i = 0; i < count; i++) {
3658                         obj_priv = to_intel_bo(object_list[i]);
3659                         if (atomic_read(&obj_priv->pending_flip) > 0)
3660                                 break;
3661                 }
3662                 if (i == count)
3663                         break;
3664
3665                 if (!signal_pending(current)) {
3666                         mutex_unlock(&dev->struct_mutex);
3667                         schedule();
3668                         mutex_lock(&dev->struct_mutex);
3669                         continue;
3670                 }
3671                 ret = -ERESTARTSYS;
3672                 break;
3673         }
3674         finish_wait(&dev_priv->pending_flip_queue, &wait);
3675
3676         return ret;
3677 }
3678
3679 int
3680 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3681                        struct drm_file *file_priv,
3682                        struct drm_i915_gem_execbuffer2 *args,
3683                        struct drm_i915_gem_exec_object2 *exec_list)
3684 {
3685         drm_i915_private_t *dev_priv = dev->dev_private;
3686         struct drm_gem_object **object_list = NULL;
3687         struct drm_gem_object *batch_obj;
3688         struct drm_i915_gem_object *obj_priv;
3689         struct drm_clip_rect *cliprects = NULL;
3690         struct drm_i915_gem_relocation_entry *relocs = NULL;
3691         int ret = 0, ret2, i, pinned = 0;
3692         uint64_t exec_offset;
3693         uint32_t seqno, flush_domains, reloc_index;
3694         int pin_tries, flips;
3695
3696         struct intel_ring_buffer *ring = NULL;
3697
3698 #if WATCH_EXEC
3699         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3700                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3701 #endif
3702         if (args->flags & I915_EXEC_BSD) {
3703                 if (!HAS_BSD(dev)) {
3704                         DRM_ERROR("execbuf with wrong flag\n");
3705                         return -EINVAL;
3706                 }
3707                 ring = &dev_priv->bsd_ring;
3708         } else {
3709                 ring = &dev_priv->render_ring;
3710         }
3711
3712
3713         if (args->buffer_count < 1) {
3714                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3715                 return -EINVAL;
3716         }
3717         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3718         if (object_list == NULL) {
3719                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3720                           args->buffer_count);
3721                 ret = -ENOMEM;
3722                 goto pre_mutex_err;
3723         }
3724
3725         if (args->num_cliprects != 0) {
3726                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3727                                     GFP_KERNEL);
3728                 if (cliprects == NULL) {
3729                         ret = -ENOMEM;
3730                         goto pre_mutex_err;
3731                 }
3732
3733                 ret = copy_from_user(cliprects,
3734                                      (struct drm_clip_rect __user *)
3735                                      (uintptr_t) args->cliprects_ptr,
3736                                      sizeof(*cliprects) * args->num_cliprects);
3737                 if (ret != 0) {
3738                         DRM_ERROR("copy %d cliprects failed: %d\n",
3739                                   args->num_cliprects, ret);
3740                         goto pre_mutex_err;
3741                 }
3742         }
3743
3744         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3745                                             &relocs);
3746         if (ret != 0)
3747                 goto pre_mutex_err;
3748
3749         mutex_lock(&dev->struct_mutex);
3750
3751         i915_verify_inactive(dev, __FILE__, __LINE__);
3752
3753         if (atomic_read(&dev_priv->mm.wedged)) {
3754                 mutex_unlock(&dev->struct_mutex);
3755                 ret = -EIO;
3756                 goto pre_mutex_err;
3757         }
3758
3759         if (dev_priv->mm.suspended) {
3760                 mutex_unlock(&dev->struct_mutex);
3761                 ret = -EBUSY;
3762                 goto pre_mutex_err;
3763         }
3764
3765         /* Look up object handles */
3766         flips = 0;
3767         for (i = 0; i < args->buffer_count; i++) {
3768                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3769                                                        exec_list[i].handle);
3770                 if (object_list[i] == NULL) {
3771                         DRM_ERROR("Invalid object handle %d at index %d\n",
3772                                    exec_list[i].handle, i);
3773                         /* prevent error path from reading uninitialized data */
3774                         args->buffer_count = i + 1;
3775                         ret = -EBADF;
3776                         goto err;
3777                 }
3778
3779                 obj_priv = to_intel_bo(object_list[i]);
3780                 if (obj_priv->in_execbuffer) {
3781                         DRM_ERROR("Object %p appears more than once in object list\n",
3782                                    object_list[i]);
3783                         /* prevent error path from reading uninitialized data */
3784                         args->buffer_count = i + 1;
3785                         ret = -EBADF;
3786                         goto err;
3787                 }
3788                 obj_priv->in_execbuffer = true;
3789                 flips += atomic_read(&obj_priv->pending_flip);
3790         }
3791
3792         if (flips > 0) {
3793                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3794                                                      args->buffer_count);
3795                 if (ret)
3796                         goto err;
3797         }
3798
3799         /* Pin and relocate */
3800         for (pin_tries = 0; ; pin_tries++) {
3801                 ret = 0;
3802                 reloc_index = 0;
3803
3804                 for (i = 0; i < args->buffer_count; i++) {
3805                         object_list[i]->pending_read_domains = 0;
3806                         object_list[i]->pending_write_domain = 0;
3807                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3808                                                                file_priv,
3809                                                                &exec_list[i],
3810                                                                &relocs[reloc_index]);
3811                         if (ret)
3812                                 break;
3813                         pinned = i + 1;
3814                         reloc_index += exec_list[i].relocation_count;
3815                 }
3816                 /* success */
3817                 if (ret == 0)
3818                         break;
3819
3820                 /* error other than GTT full, or we've already tried again */
3821                 if (ret != -ENOSPC || pin_tries >= 1) {
3822                         if (ret != -ERESTARTSYS) {
3823                                 unsigned long long total_size = 0;
3824                                 int num_fences = 0;
3825                                 for (i = 0; i < args->buffer_count; i++) {
3826                                         obj_priv = object_list[i]->driver_private;
3827
3828                                         total_size += object_list[i]->size;
3829                                         num_fences +=
3830                                                 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3831                                                 obj_priv->tiling_mode != I915_TILING_NONE;
3832                                 }
3833                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3834                                           pinned+1, args->buffer_count,
3835                                           total_size, num_fences,
3836                                           ret);
3837                                 DRM_ERROR("%d objects [%d pinned], "
3838                                           "%d object bytes [%d pinned], "
3839                                           "%d/%d gtt bytes\n",
3840                                           atomic_read(&dev->object_count),
3841                                           atomic_read(&dev->pin_count),
3842                                           atomic_read(&dev->object_memory),
3843                                           atomic_read(&dev->pin_memory),
3844                                           atomic_read(&dev->gtt_memory),
3845                                           dev->gtt_total);
3846                         }
3847                         goto err;
3848                 }
3849
3850                 /* unpin all of our buffers */
3851                 for (i = 0; i < pinned; i++)
3852                         i915_gem_object_unpin(object_list[i]);
3853                 pinned = 0;
3854
3855                 /* evict everyone we can from the aperture */
3856                 ret = i915_gem_evict_everything(dev);
3857                 if (ret && ret != -ENOSPC)
3858                         goto err;
3859         }
3860
3861         /* Set the pending read domains for the batch buffer to COMMAND */
3862         batch_obj = object_list[args->buffer_count-1];
3863         if (batch_obj->pending_write_domain) {
3864                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3865                 ret = -EINVAL;
3866                 goto err;
3867         }
3868         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3869
3870         /* Sanity check the batch buffer, prior to moving objects */
3871         exec_offset = exec_list[args->buffer_count - 1].offset;
3872         ret = i915_gem_check_execbuffer (args, exec_offset);
3873         if (ret != 0) {
3874                 DRM_ERROR("execbuf with invalid offset/length\n");
3875                 goto err;
3876         }
3877
3878         i915_verify_inactive(dev, __FILE__, __LINE__);
3879
3880         /* Zero the global flush/invalidate flags. These
3881          * will be modified as new domains are computed
3882          * for each object
3883          */
3884         dev->invalidate_domains = 0;
3885         dev->flush_domains = 0;
3886
3887         for (i = 0; i < args->buffer_count; i++) {
3888                 struct drm_gem_object *obj = object_list[i];
3889
3890                 /* Compute new gpu domains and update invalidate/flush */
3891                 i915_gem_object_set_to_gpu_domain(obj);
3892         }
3893
3894         i915_verify_inactive(dev, __FILE__, __LINE__);
3895
3896         if (dev->invalidate_domains | dev->flush_domains) {
3897 #if WATCH_EXEC
3898                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3899                           __func__,
3900                          dev->invalidate_domains,
3901                          dev->flush_domains);
3902 #endif
3903                 i915_gem_flush(dev,
3904                                dev->invalidate_domains,
3905                                dev->flush_domains);
3906                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
3907                         (void)i915_add_request(dev, file_priv,
3908                                         dev->flush_domains,
3909                                         &dev_priv->render_ring);
3910
3911                         if (HAS_BSD(dev))
3912                                 (void)i915_add_request(dev, file_priv,
3913                                                 dev->flush_domains,
3914                                                 &dev_priv->bsd_ring);
3915                 }
3916         }
3917
3918         for (i = 0; i < args->buffer_count; i++) {
3919                 struct drm_gem_object *obj = object_list[i];
3920                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3921                 uint32_t old_write_domain = obj->write_domain;
3922
3923                 obj->write_domain = obj->pending_write_domain;
3924                 if (obj->write_domain)
3925                         list_move_tail(&obj_priv->gpu_write_list,
3926                                        &dev_priv->mm.gpu_write_list);
3927                 else
3928                         list_del_init(&obj_priv->gpu_write_list);
3929
3930                 trace_i915_gem_object_change_domain(obj,
3931                                                     obj->read_domains,
3932                                                     old_write_domain);
3933         }
3934
3935         i915_verify_inactive(dev, __FILE__, __LINE__);
3936
3937 #if WATCH_COHERENCY
3938         for (i = 0; i < args->buffer_count; i++) {
3939                 i915_gem_object_check_coherency(object_list[i],
3940                                                 exec_list[i].handle);
3941         }
3942 #endif
3943
3944 #if WATCH_EXEC
3945         i915_gem_dump_object(batch_obj,
3946                               args->batch_len,
3947                               __func__,
3948                               ~0);
3949 #endif
3950
3951         /* Exec the batchbuffer */
3952         ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3953                         cliprects, exec_offset);
3954         if (ret) {
3955                 DRM_ERROR("dispatch failed %d\n", ret);
3956                 goto err;
3957         }
3958
3959         /*
3960          * Ensure that the commands in the batch buffer are
3961          * finished before the interrupt fires
3962          */
3963         flush_domains = i915_retire_commands(dev, ring);
3964
3965         i915_verify_inactive(dev, __FILE__, __LINE__);
3966
3967         /*
3968          * Get a seqno representing the execution of the current buffer,
3969          * which we can wait on.  We would like to mitigate these interrupts,
3970          * likely by only creating seqnos occasionally (so that we have
3971          * *some* interrupts representing completion of buffers that we can
3972          * wait on when trying to clear up gtt space).
3973          */
3974         seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3975         BUG_ON(seqno == 0);
3976         for (i = 0; i < args->buffer_count; i++) {
3977                 struct drm_gem_object *obj = object_list[i];
3978                 obj_priv = to_intel_bo(obj);
3979
3980                 i915_gem_object_move_to_active(obj, seqno, ring);
3981 #if WATCH_LRU
3982                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3983 #endif
3984         }
3985 #if WATCH_LRU
3986         i915_dump_lru(dev, __func__);
3987 #endif
3988
3989         i915_verify_inactive(dev, __FILE__, __LINE__);
3990
3991 err:
3992         for (i = 0; i < pinned; i++)
3993                 i915_gem_object_unpin(object_list[i]);
3994
3995         for (i = 0; i < args->buffer_count; i++) {
3996                 if (object_list[i]) {
3997                         obj_priv = to_intel_bo(object_list[i]);
3998                         obj_priv->in_execbuffer = false;
3999                 }
4000                 drm_gem_object_unreference(object_list[i]);
4001         }
4002
4003         mutex_unlock(&dev->struct_mutex);
4004
4005 pre_mutex_err:
4006         /* Copy the updated relocations out regardless of current error
4007          * state.  Failure to update the relocs would mean that the next
4008          * time userland calls execbuf, it would do so with presumed offset
4009          * state that didn't match the actual object state.
4010          */
4011         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
4012                                            relocs);
4013         if (ret2 != 0) {
4014                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
4015
4016                 if (ret == 0)
4017                         ret = ret2;
4018         }
4019
4020         drm_free_large(object_list);
4021         kfree(cliprects);
4022
4023         return ret;
4024 }
4025
4026 /*
4027  * Legacy execbuffer just creates an exec2 list from the original exec object
4028  * list array and passes it to the real function.
4029  */
4030 int
4031 i915_gem_execbuffer(struct drm_device *dev, void *data,
4032                     struct drm_file *file_priv)
4033 {
4034         struct drm_i915_gem_execbuffer *args = data;
4035         struct drm_i915_gem_execbuffer2 exec2;
4036         struct drm_i915_gem_exec_object *exec_list = NULL;
4037         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4038         int ret, i;
4039
4040 #if WATCH_EXEC
4041         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4042                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4043 #endif
4044
4045         if (args->buffer_count < 1) {
4046                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4047                 return -EINVAL;
4048         }
4049
4050         /* Copy in the exec list from userland */
4051         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4052         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4053         if (exec_list == NULL || exec2_list == NULL) {
4054                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4055                           args->buffer_count);
4056                 drm_free_large(exec_list);
4057                 drm_free_large(exec2_list);
4058                 return -ENOMEM;
4059         }
4060         ret = copy_from_user(exec_list,
4061                              (struct drm_i915_relocation_entry __user *)
4062                              (uintptr_t) args->buffers_ptr,
4063                              sizeof(*exec_list) * args->buffer_count);
4064         if (ret != 0) {
4065                 DRM_ERROR("copy %d exec entries failed %d\n",
4066                           args->buffer_count, ret);
4067                 drm_free_large(exec_list);
4068                 drm_free_large(exec2_list);
4069                 return -EFAULT;
4070         }
4071
4072         for (i = 0; i < args->buffer_count; i++) {
4073                 exec2_list[i].handle = exec_list[i].handle;
4074                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4075                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4076                 exec2_list[i].alignment = exec_list[i].alignment;
4077                 exec2_list[i].offset = exec_list[i].offset;
4078                 if (!IS_I965G(dev))
4079                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4080                 else
4081                         exec2_list[i].flags = 0;
4082         }
4083
4084         exec2.buffers_ptr = args->buffers_ptr;
4085         exec2.buffer_count = args->buffer_count;
4086         exec2.batch_start_offset = args->batch_start_offset;
4087         exec2.batch_len = args->batch_len;
4088         exec2.DR1 = args->DR1;
4089         exec2.DR4 = args->DR4;
4090         exec2.num_cliprects = args->num_cliprects;
4091         exec2.cliprects_ptr = args->cliprects_ptr;
4092         exec2.flags = I915_EXEC_RENDER;
4093
4094         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4095         if (!ret) {
4096                 /* Copy the new buffer offsets back to the user's exec list. */
4097                 for (i = 0; i < args->buffer_count; i++)
4098                         exec_list[i].offset = exec2_list[i].offset;
4099                 /* ... and back out to userspace */
4100                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4101                                    (uintptr_t) args->buffers_ptr,
4102                                    exec_list,
4103                                    sizeof(*exec_list) * args->buffer_count);
4104                 if (ret) {
4105                         ret = -EFAULT;
4106                         DRM_ERROR("failed to copy %d exec entries "
4107                                   "back to user (%d)\n",
4108                                   args->buffer_count, ret);
4109                 }
4110         }
4111
4112         drm_free_large(exec_list);
4113         drm_free_large(exec2_list);
4114         return ret;
4115 }
4116
4117 int
4118 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4119                      struct drm_file *file_priv)
4120 {
4121         struct drm_i915_gem_execbuffer2 *args = data;
4122         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4123         int ret;
4124
4125 #if WATCH_EXEC
4126         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4127                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4128 #endif
4129
4130         if (args->buffer_count < 1) {
4131                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4132                 return -EINVAL;
4133         }
4134
4135         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4136         if (exec2_list == NULL) {
4137                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4138                           args->buffer_count);
4139                 return -ENOMEM;
4140         }
4141         ret = copy_from_user(exec2_list,
4142                              (struct drm_i915_relocation_entry __user *)
4143                              (uintptr_t) args->buffers_ptr,
4144                              sizeof(*exec2_list) * args->buffer_count);
4145         if (ret != 0) {
4146                 DRM_ERROR("copy %d exec entries failed %d\n",
4147                           args->buffer_count, ret);
4148                 drm_free_large(exec2_list);
4149                 return -EFAULT;
4150         }
4151
4152         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4153         if (!ret) {
4154                 /* Copy the new buffer offsets back to the user's exec list. */
4155                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4156                                    (uintptr_t) args->buffers_ptr,
4157                                    exec2_list,
4158                                    sizeof(*exec2_list) * args->buffer_count);
4159                 if (ret) {
4160                         ret = -EFAULT;
4161                         DRM_ERROR("failed to copy %d exec entries "
4162                                   "back to user (%d)\n",
4163                                   args->buffer_count, ret);
4164                 }
4165         }
4166
4167         drm_free_large(exec2_list);
4168         return ret;
4169 }
4170
4171 int
4172 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4173 {
4174         struct drm_device *dev = obj->dev;
4175         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4176         int ret;
4177
4178         BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4179
4180         i915_verify_inactive(dev, __FILE__, __LINE__);
4181
4182         if (obj_priv->gtt_space != NULL) {
4183                 if (alignment == 0)
4184                         alignment = i915_gem_get_gtt_alignment(obj);
4185                 if (obj_priv->gtt_offset & (alignment - 1)) {
4186                         ret = i915_gem_object_unbind(obj);
4187                         if (ret)
4188                                 return ret;
4189                 }
4190         }
4191
4192         if (obj_priv->gtt_space == NULL) {
4193                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4194                 if (ret)
4195                         return ret;
4196         }
4197
4198         obj_priv->pin_count++;
4199
4200         /* If the object is not active and not pending a flush,
4201          * remove it from the inactive list
4202          */
4203         if (obj_priv->pin_count == 1) {
4204                 atomic_inc(&dev->pin_count);
4205                 atomic_add(obj->size, &dev->pin_memory);
4206                 if (!obj_priv->active &&
4207                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4208                     !list_empty(&obj_priv->list))
4209                         list_del_init(&obj_priv->list);
4210         }
4211         i915_verify_inactive(dev, __FILE__, __LINE__);
4212
4213         return 0;
4214 }
4215
4216 void
4217 i915_gem_object_unpin(struct drm_gem_object *obj)
4218 {
4219         struct drm_device *dev = obj->dev;
4220         drm_i915_private_t *dev_priv = dev->dev_private;
4221         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4222
4223         i915_verify_inactive(dev, __FILE__, __LINE__);
4224         obj_priv->pin_count--;
4225         BUG_ON(obj_priv->pin_count < 0);
4226         BUG_ON(obj_priv->gtt_space == NULL);
4227
4228         /* If the object is no longer pinned, and is
4229          * neither active nor being flushed, then stick it on
4230          * the inactive list
4231          */
4232         if (obj_priv->pin_count == 0) {
4233                 if (!obj_priv->active &&
4234                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4235                         list_move_tail(&obj_priv->list,
4236                                        &dev_priv->mm.inactive_list);
4237                 atomic_dec(&dev->pin_count);
4238                 atomic_sub(obj->size, &dev->pin_memory);
4239         }
4240         i915_verify_inactive(dev, __FILE__, __LINE__);
4241 }
4242
4243 int
4244 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4245                    struct drm_file *file_priv)
4246 {
4247         struct drm_i915_gem_pin *args = data;
4248         struct drm_gem_object *obj;
4249         struct drm_i915_gem_object *obj_priv;
4250         int ret;
4251
4252         mutex_lock(&dev->struct_mutex);
4253
4254         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4255         if (obj == NULL) {
4256                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4257                           args->handle);
4258                 mutex_unlock(&dev->struct_mutex);
4259                 return -EBADF;
4260         }
4261         obj_priv = to_intel_bo(obj);
4262
4263         if (obj_priv->madv != I915_MADV_WILLNEED) {
4264                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4265                 drm_gem_object_unreference(obj);
4266                 mutex_unlock(&dev->struct_mutex);
4267                 return -EINVAL;
4268         }
4269
4270         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4271                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4272                           args->handle);
4273                 drm_gem_object_unreference(obj);
4274                 mutex_unlock(&dev->struct_mutex);
4275                 return -EINVAL;
4276         }
4277
4278         obj_priv->user_pin_count++;
4279         obj_priv->pin_filp = file_priv;
4280         if (obj_priv->user_pin_count == 1) {
4281                 ret = i915_gem_object_pin(obj, args->alignment);
4282                 if (ret != 0) {
4283                         drm_gem_object_unreference(obj);
4284                         mutex_unlock(&dev->struct_mutex);
4285                         return ret;
4286                 }
4287         }
4288
4289         /* XXX - flush the CPU caches for pinned objects
4290          * as the X server doesn't manage domains yet
4291          */
4292         i915_gem_object_flush_cpu_write_domain(obj);
4293         args->offset = obj_priv->gtt_offset;
4294         drm_gem_object_unreference(obj);
4295         mutex_unlock(&dev->struct_mutex);
4296
4297         return 0;
4298 }
4299
4300 int
4301 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4302                      struct drm_file *file_priv)
4303 {
4304         struct drm_i915_gem_pin *args = data;
4305         struct drm_gem_object *obj;
4306         struct drm_i915_gem_object *obj_priv;
4307
4308         mutex_lock(&dev->struct_mutex);
4309
4310         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4311         if (obj == NULL) {
4312                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4313                           args->handle);
4314                 mutex_unlock(&dev->struct_mutex);
4315                 return -EBADF;
4316         }
4317
4318         obj_priv = to_intel_bo(obj);
4319         if (obj_priv->pin_filp != file_priv) {
4320                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4321                           args->handle);
4322                 drm_gem_object_unreference(obj);
4323                 mutex_unlock(&dev->struct_mutex);
4324                 return -EINVAL;
4325         }
4326         obj_priv->user_pin_count--;
4327         if (obj_priv->user_pin_count == 0) {
4328                 obj_priv->pin_filp = NULL;
4329                 i915_gem_object_unpin(obj);
4330         }
4331
4332         drm_gem_object_unreference(obj);
4333         mutex_unlock(&dev->struct_mutex);
4334         return 0;
4335 }
4336
4337 int
4338 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4339                     struct drm_file *file_priv)
4340 {
4341         struct drm_i915_gem_busy *args = data;
4342         struct drm_gem_object *obj;
4343         struct drm_i915_gem_object *obj_priv;
4344         drm_i915_private_t *dev_priv = dev->dev_private;
4345
4346         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4347         if (obj == NULL) {
4348                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4349                           args->handle);
4350                 return -EBADF;
4351         }
4352
4353         mutex_lock(&dev->struct_mutex);
4354         /* Update the active list for the hardware's current position.
4355          * Otherwise this only updates on a delayed timer or when irqs are
4356          * actually unmasked, and our working set ends up being larger than
4357          * required.
4358          */
4359         i915_gem_retire_requests(dev, &dev_priv->render_ring);
4360
4361         if (HAS_BSD(dev))
4362                 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
4363
4364         obj_priv = to_intel_bo(obj);
4365         /* Don't count being on the flushing list against the object being
4366          * done.  Otherwise, a buffer left on the flushing list but not getting
4367          * flushed (because nobody's flushing that domain) won't ever return
4368          * unbusy and get reused by libdrm's bo cache.  The other expected
4369          * consumer of this interface, OpenGL's occlusion queries, also specs
4370          * that the objects get unbusy "eventually" without any interference.
4371          */
4372         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4373
4374         drm_gem_object_unreference(obj);
4375         mutex_unlock(&dev->struct_mutex);
4376         return 0;
4377 }
4378
4379 int
4380 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4381                         struct drm_file *file_priv)
4382 {
4383     return i915_gem_ring_throttle(dev, file_priv);
4384 }
4385
4386 int
4387 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4388                        struct drm_file *file_priv)
4389 {
4390         struct drm_i915_gem_madvise *args = data;
4391         struct drm_gem_object *obj;
4392         struct drm_i915_gem_object *obj_priv;
4393
4394         switch (args->madv) {
4395         case I915_MADV_DONTNEED:
4396         case I915_MADV_WILLNEED:
4397             break;
4398         default:
4399             return -EINVAL;
4400         }
4401
4402         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4403         if (obj == NULL) {
4404                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4405                           args->handle);
4406                 return -EBADF;
4407         }
4408
4409         mutex_lock(&dev->struct_mutex);
4410         obj_priv = to_intel_bo(obj);
4411
4412         if (obj_priv->pin_count) {
4413                 drm_gem_object_unreference(obj);
4414                 mutex_unlock(&dev->struct_mutex);
4415
4416                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4417                 return -EINVAL;
4418         }
4419
4420         if (obj_priv->madv != __I915_MADV_PURGED)
4421                 obj_priv->madv = args->madv;
4422
4423         /* if the object is no longer bound, discard its backing storage */
4424         if (i915_gem_object_is_purgeable(obj_priv) &&
4425             obj_priv->gtt_space == NULL)
4426                 i915_gem_object_truncate(obj);
4427
4428         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4429
4430         drm_gem_object_unreference(obj);
4431         mutex_unlock(&dev->struct_mutex);
4432
4433         return 0;
4434 }
4435
4436 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4437                                               size_t size)
4438 {
4439         struct drm_i915_gem_object *obj;
4440
4441         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4442         if (obj == NULL)
4443                 return NULL;
4444
4445         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4446                 kfree(obj);
4447                 return NULL;
4448         }
4449
4450         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4451         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4452
4453         obj->agp_type = AGP_USER_MEMORY;
4454         obj->base.driver_private = NULL;
4455         obj->fence_reg = I915_FENCE_REG_NONE;
4456         INIT_LIST_HEAD(&obj->list);
4457         INIT_LIST_HEAD(&obj->gpu_write_list);
4458         obj->madv = I915_MADV_WILLNEED;
4459
4460         trace_i915_gem_object_create(&obj->base);
4461
4462         return &obj->base;
4463 }
4464
4465 int i915_gem_init_object(struct drm_gem_object *obj)
4466 {
4467         BUG();
4468
4469         return 0;
4470 }
4471
4472 void i915_gem_free_object(struct drm_gem_object *obj)
4473 {
4474         struct drm_device *dev = obj->dev;
4475         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4476
4477         trace_i915_gem_object_destroy(obj);
4478
4479         while (obj_priv->pin_count > 0)
4480                 i915_gem_object_unpin(obj);
4481
4482         if (obj_priv->phys_obj)
4483                 i915_gem_detach_phys_object(dev, obj);
4484
4485         i915_gem_object_unbind(obj);
4486
4487         if (obj_priv->mmap_offset)
4488                 i915_gem_free_mmap_offset(obj);
4489
4490         drm_gem_object_release(obj);
4491
4492         kfree(obj_priv->page_cpu_valid);
4493         kfree(obj_priv->bit_17);
4494         kfree(obj_priv);
4495 }
4496
4497 /** Unbinds all inactive objects. */
4498 static int
4499 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4500 {
4501         drm_i915_private_t *dev_priv = dev->dev_private;
4502
4503         while (!list_empty(&dev_priv->mm.inactive_list)) {
4504                 struct drm_gem_object *obj;
4505                 int ret;
4506
4507                 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4508                                         struct drm_i915_gem_object,
4509                                         list)->base;
4510
4511                 ret = i915_gem_object_unbind(obj);
4512                 if (ret != 0) {
4513                         DRM_ERROR("Error unbinding object: %d\n", ret);
4514                         return ret;
4515                 }
4516         }
4517
4518         return 0;
4519 }
4520
4521 int
4522 i915_gem_idle(struct drm_device *dev)
4523 {
4524         drm_i915_private_t *dev_priv = dev->dev_private;
4525         int ret;
4526
4527         mutex_lock(&dev->struct_mutex);
4528
4529         if (dev_priv->mm.suspended ||
4530                         (dev_priv->render_ring.gem_object == NULL) ||
4531                         (HAS_BSD(dev) &&
4532                          dev_priv->bsd_ring.gem_object == NULL)) {
4533                 mutex_unlock(&dev->struct_mutex);
4534                 return 0;
4535         }
4536
4537         ret = i915_gpu_idle(dev);
4538         if (ret) {
4539                 mutex_unlock(&dev->struct_mutex);
4540                 return ret;
4541         }
4542
4543         /* Under UMS, be paranoid and evict. */
4544         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4545                 ret = i915_gem_evict_from_inactive_list(dev);
4546                 if (ret) {
4547                         mutex_unlock(&dev->struct_mutex);
4548                         return ret;
4549                 }
4550         }
4551
4552         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4553          * We need to replace this with a semaphore, or something.
4554          * And not confound mm.suspended!
4555          */
4556         dev_priv->mm.suspended = 1;
4557         del_timer(&dev_priv->hangcheck_timer);
4558
4559         i915_kernel_lost_context(dev);
4560         i915_gem_cleanup_ringbuffer(dev);
4561
4562         mutex_unlock(&dev->struct_mutex);
4563
4564         /* Cancel the retire work handler, which should be idle now. */
4565         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4566
4567         return 0;
4568 }
4569
4570 /*
4571  * 965+ support PIPE_CONTROL commands, which provide finer grained control
4572  * over cache flushing.
4573  */
4574 static int
4575 i915_gem_init_pipe_control(struct drm_device *dev)
4576 {
4577         drm_i915_private_t *dev_priv = dev->dev_private;
4578         struct drm_gem_object *obj;
4579         struct drm_i915_gem_object *obj_priv;
4580         int ret;
4581
4582         obj = i915_gem_alloc_object(dev, 4096);
4583         if (obj == NULL) {
4584                 DRM_ERROR("Failed to allocate seqno page\n");
4585                 ret = -ENOMEM;
4586                 goto err;
4587         }
4588         obj_priv = to_intel_bo(obj);
4589         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4590
4591         ret = i915_gem_object_pin(obj, 4096);
4592         if (ret)
4593                 goto err_unref;
4594
4595         dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4596         dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
4597         if (dev_priv->seqno_page == NULL)
4598                 goto err_unpin;
4599
4600         dev_priv->seqno_obj = obj;
4601         memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4602
4603         return 0;
4604
4605 err_unpin:
4606         i915_gem_object_unpin(obj);
4607 err_unref:
4608         drm_gem_object_unreference(obj);
4609 err:
4610         return ret;
4611 }
4612
4613
4614 static void
4615 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4616 {
4617         drm_i915_private_t *dev_priv = dev->dev_private;
4618         struct drm_gem_object *obj;
4619         struct drm_i915_gem_object *obj_priv;
4620
4621         obj = dev_priv->seqno_obj;
4622         obj_priv = to_intel_bo(obj);
4623         kunmap(obj_priv->pages[0]);
4624         i915_gem_object_unpin(obj);
4625         drm_gem_object_unreference(obj);
4626         dev_priv->seqno_obj = NULL;
4627
4628         dev_priv->seqno_page = NULL;
4629 }
4630
4631 int
4632 i915_gem_init_ringbuffer(struct drm_device *dev)
4633 {
4634         drm_i915_private_t *dev_priv = dev->dev_private;
4635         int ret;
4636
4637         dev_priv->render_ring = render_ring;
4638
4639         if (!I915_NEED_GFX_HWS(dev)) {
4640                 dev_priv->render_ring.status_page.page_addr
4641                         = dev_priv->status_page_dmah->vaddr;
4642                 memset(dev_priv->render_ring.status_page.page_addr,
4643                                 0, PAGE_SIZE);
4644         }
4645
4646         if (HAS_PIPE_CONTROL(dev)) {
4647                 ret = i915_gem_init_pipe_control(dev);
4648                 if (ret)
4649                         return ret;
4650         }
4651
4652         ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4653         if (ret)
4654                 goto cleanup_pipe_control;
4655
4656         if (HAS_BSD(dev)) {
4657                 dev_priv->bsd_ring = bsd_ring;
4658                 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4659                 if (ret)
4660                         goto cleanup_render_ring;
4661         }
4662
4663         return 0;
4664
4665 cleanup_render_ring:
4666         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4667 cleanup_pipe_control:
4668         if (HAS_PIPE_CONTROL(dev))
4669                 i915_gem_cleanup_pipe_control(dev);
4670         return ret;
4671 }
4672
4673 void
4674 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4675 {
4676         drm_i915_private_t *dev_priv = dev->dev_private;
4677
4678         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4679         if (HAS_BSD(dev))
4680                 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4681         if (HAS_PIPE_CONTROL(dev))
4682                 i915_gem_cleanup_pipe_control(dev);
4683 }
4684
4685 int
4686 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4687                        struct drm_file *file_priv)
4688 {
4689         drm_i915_private_t *dev_priv = dev->dev_private;
4690         int ret;
4691
4692         if (drm_core_check_feature(dev, DRIVER_MODESET))
4693                 return 0;
4694
4695         if (atomic_read(&dev_priv->mm.wedged)) {
4696                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4697                 atomic_set(&dev_priv->mm.wedged, 0);
4698         }
4699
4700         mutex_lock(&dev->struct_mutex);
4701         dev_priv->mm.suspended = 0;
4702
4703         ret = i915_gem_init_ringbuffer(dev);
4704         if (ret != 0) {
4705                 mutex_unlock(&dev->struct_mutex);
4706                 return ret;
4707         }
4708
4709         spin_lock(&dev_priv->mm.active_list_lock);
4710         BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4711         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4712         spin_unlock(&dev_priv->mm.active_list_lock);
4713
4714         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4715         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4716         BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4717         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4718         mutex_unlock(&dev->struct_mutex);
4719
4720         drm_irq_install(dev);
4721
4722         return 0;
4723 }
4724
4725 int
4726 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4727                        struct drm_file *file_priv)
4728 {
4729         if (drm_core_check_feature(dev, DRIVER_MODESET))
4730                 return 0;
4731
4732         drm_irq_uninstall(dev);
4733         return i915_gem_idle(dev);
4734 }
4735
4736 void
4737 i915_gem_lastclose(struct drm_device *dev)
4738 {
4739         int ret;
4740
4741         if (drm_core_check_feature(dev, DRIVER_MODESET))
4742                 return;
4743
4744         ret = i915_gem_idle(dev);
4745         if (ret)
4746                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4747 }
4748
4749 void
4750 i915_gem_load(struct drm_device *dev)
4751 {
4752         int i;
4753         drm_i915_private_t *dev_priv = dev->dev_private;
4754
4755         spin_lock_init(&dev_priv->mm.active_list_lock);
4756         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4757         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4758         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4759         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4760         INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4761         INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4762         if (HAS_BSD(dev)) {
4763                 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4764                 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4765         }
4766         for (i = 0; i < 16; i++)
4767                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4768         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4769                           i915_gem_retire_work_handler);
4770         spin_lock(&shrink_list_lock);
4771         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4772         spin_unlock(&shrink_list_lock);
4773
4774         /* Old X drivers will take 0-2 for front, back, depth buffers */
4775         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4776                 dev_priv->fence_reg_start = 3;
4777
4778         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4779                 dev_priv->num_fence_regs = 16;
4780         else
4781                 dev_priv->num_fence_regs = 8;
4782
4783         /* Initialize fence registers to zero */
4784         if (IS_I965G(dev)) {
4785                 for (i = 0; i < 16; i++)
4786                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4787         } else {
4788                 for (i = 0; i < 8; i++)
4789                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4790                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4791                         for (i = 0; i < 8; i++)
4792                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4793         }
4794         i915_gem_detect_bit_6_swizzle(dev);
4795         init_waitqueue_head(&dev_priv->pending_flip_queue);
4796 }
4797
4798 /*
4799  * Create a physically contiguous memory object for this object
4800  * e.g. for cursor + overlay regs
4801  */
4802 int i915_gem_init_phys_object(struct drm_device *dev,
4803                               int id, int size)
4804 {
4805         drm_i915_private_t *dev_priv = dev->dev_private;
4806         struct drm_i915_gem_phys_object *phys_obj;
4807         int ret;
4808
4809         if (dev_priv->mm.phys_objs[id - 1] || !size)
4810                 return 0;
4811
4812         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4813         if (!phys_obj)
4814                 return -ENOMEM;
4815
4816         phys_obj->id = id;
4817
4818         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4819         if (!phys_obj->handle) {
4820                 ret = -ENOMEM;
4821                 goto kfree_obj;
4822         }
4823 #ifdef CONFIG_X86
4824         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4825 #endif
4826
4827         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4828
4829         return 0;
4830 kfree_obj:
4831         kfree(phys_obj);
4832         return ret;
4833 }
4834
4835 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4836 {
4837         drm_i915_private_t *dev_priv = dev->dev_private;
4838         struct drm_i915_gem_phys_object *phys_obj;
4839
4840         if (!dev_priv->mm.phys_objs[id - 1])
4841                 return;
4842
4843         phys_obj = dev_priv->mm.phys_objs[id - 1];
4844         if (phys_obj->cur_obj) {
4845                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4846         }
4847
4848 #ifdef CONFIG_X86
4849         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4850 #endif
4851         drm_pci_free(dev, phys_obj->handle);
4852         kfree(phys_obj);
4853         dev_priv->mm.phys_objs[id - 1] = NULL;
4854 }
4855
4856 void i915_gem_free_all_phys_object(struct drm_device *dev)
4857 {
4858         int i;
4859
4860         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4861                 i915_gem_free_phys_object(dev, i);
4862 }
4863
4864 void i915_gem_detach_phys_object(struct drm_device *dev,
4865                                  struct drm_gem_object *obj)
4866 {
4867         struct drm_i915_gem_object *obj_priv;
4868         int i;
4869         int ret;
4870         int page_count;
4871
4872         obj_priv = to_intel_bo(obj);
4873         if (!obj_priv->phys_obj)
4874                 return;
4875
4876         ret = i915_gem_object_get_pages(obj, 0);
4877         if (ret)
4878                 goto out;
4879
4880         page_count = obj->size / PAGE_SIZE;
4881
4882         for (i = 0; i < page_count; i++) {
4883                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4884                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4885
4886                 memcpy(dst, src, PAGE_SIZE);
4887                 kunmap_atomic(dst, KM_USER0);
4888         }
4889         drm_clflush_pages(obj_priv->pages, page_count);
4890         drm_agp_chipset_flush(dev);
4891
4892         i915_gem_object_put_pages(obj);
4893 out:
4894         obj_priv->phys_obj->cur_obj = NULL;
4895         obj_priv->phys_obj = NULL;
4896 }
4897
4898 int
4899 i915_gem_attach_phys_object(struct drm_device *dev,
4900                             struct drm_gem_object *obj, int id)
4901 {
4902         drm_i915_private_t *dev_priv = dev->dev_private;
4903         struct drm_i915_gem_object *obj_priv;
4904         int ret = 0;
4905         int page_count;
4906         int i;
4907
4908         if (id > I915_MAX_PHYS_OBJECT)
4909                 return -EINVAL;
4910
4911         obj_priv = to_intel_bo(obj);
4912
4913         if (obj_priv->phys_obj) {
4914                 if (obj_priv->phys_obj->id == id)
4915                         return 0;
4916                 i915_gem_detach_phys_object(dev, obj);
4917         }
4918
4919
4920         /* create a new object */
4921         if (!dev_priv->mm.phys_objs[id - 1]) {
4922                 ret = i915_gem_init_phys_object(dev, id,
4923                                                 obj->size);
4924                 if (ret) {
4925                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4926                         goto out;
4927                 }
4928         }
4929
4930         /* bind to the object */
4931         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4932         obj_priv->phys_obj->cur_obj = obj;
4933
4934         ret = i915_gem_object_get_pages(obj, 0);
4935         if (ret) {
4936                 DRM_ERROR("failed to get page list\n");
4937                 goto out;
4938         }
4939
4940         page_count = obj->size / PAGE_SIZE;
4941
4942         for (i = 0; i < page_count; i++) {
4943                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4944                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4945
4946                 memcpy(dst, src, PAGE_SIZE);
4947                 kunmap_atomic(src, KM_USER0);
4948         }
4949
4950         i915_gem_object_put_pages(obj);
4951
4952         return 0;
4953 out:
4954         return ret;
4955 }
4956
4957 static int
4958 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4959                      struct drm_i915_gem_pwrite *args,
4960                      struct drm_file *file_priv)
4961 {
4962         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4963         void *obj_addr;
4964         int ret;
4965         char __user *user_data;
4966
4967         user_data = (char __user *) (uintptr_t) args->data_ptr;
4968         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4969
4970         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4971         ret = copy_from_user(obj_addr, user_data, args->size);
4972         if (ret)
4973                 return -EFAULT;
4974
4975         drm_agp_chipset_flush(dev);
4976         return 0;
4977 }
4978
4979 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4980 {
4981         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4982
4983         /* Clean up our request list when the client is going away, so that
4984          * later retire_requests won't dereference our soon-to-be-gone
4985          * file_priv.
4986          */
4987         mutex_lock(&dev->struct_mutex);
4988         while (!list_empty(&i915_file_priv->mm.request_list))
4989                 list_del_init(i915_file_priv->mm.request_list.next);
4990         mutex_unlock(&dev->struct_mutex);
4991 }
4992
4993 static int
4994 i915_gpu_is_active(struct drm_device *dev)
4995 {
4996         drm_i915_private_t *dev_priv = dev->dev_private;
4997         int lists_empty;
4998
4999         spin_lock(&dev_priv->mm.active_list_lock);
5000         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5001                       list_empty(&dev_priv->render_ring.active_list);
5002         if (HAS_BSD(dev))
5003                 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
5004         spin_unlock(&dev_priv->mm.active_list_lock);
5005
5006         return !lists_empty;
5007 }
5008
5009 static int
5010 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
5011 {
5012         drm_i915_private_t *dev_priv, *next_dev;
5013         struct drm_i915_gem_object *obj_priv, *next_obj;
5014         int cnt = 0;
5015         int would_deadlock = 1;
5016
5017         /* "fast-path" to count number of available objects */
5018         if (nr_to_scan == 0) {
5019                 spin_lock(&shrink_list_lock);
5020                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5021                         struct drm_device *dev = dev_priv->dev;
5022
5023                         if (mutex_trylock(&dev->struct_mutex)) {
5024                                 list_for_each_entry(obj_priv,
5025                                                     &dev_priv->mm.inactive_list,
5026                                                     list)
5027                                         cnt++;
5028                                 mutex_unlock(&dev->struct_mutex);
5029                         }
5030                 }
5031                 spin_unlock(&shrink_list_lock);
5032
5033                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5034         }
5035
5036         spin_lock(&shrink_list_lock);
5037
5038 rescan:
5039         /* first scan for clean buffers */
5040         list_for_each_entry_safe(dev_priv, next_dev,
5041                                  &shrink_list, mm.shrink_list) {
5042                 struct drm_device *dev = dev_priv->dev;
5043
5044                 if (! mutex_trylock(&dev->struct_mutex))
5045                         continue;
5046
5047                 spin_unlock(&shrink_list_lock);
5048                 i915_gem_retire_requests(dev, &dev_priv->render_ring);
5049
5050                 if (HAS_BSD(dev))
5051                         i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
5052
5053                 list_for_each_entry_safe(obj_priv, next_obj,
5054                                          &dev_priv->mm.inactive_list,
5055                                          list) {
5056                         if (i915_gem_object_is_purgeable(obj_priv)) {
5057                                 i915_gem_object_unbind(&obj_priv->base);
5058                                 if (--nr_to_scan <= 0)
5059                                         break;
5060                         }
5061                 }
5062
5063                 spin_lock(&shrink_list_lock);
5064                 mutex_unlock(&dev->struct_mutex);
5065
5066                 would_deadlock = 0;
5067
5068                 if (nr_to_scan <= 0)
5069                         break;
5070         }
5071
5072         /* second pass, evict/count anything still on the inactive list */
5073         list_for_each_entry_safe(dev_priv, next_dev,
5074                                  &shrink_list, mm.shrink_list) {
5075                 struct drm_device *dev = dev_priv->dev;
5076
5077                 if (! mutex_trylock(&dev->struct_mutex))
5078                         continue;
5079
5080                 spin_unlock(&shrink_list_lock);
5081
5082                 list_for_each_entry_safe(obj_priv, next_obj,
5083                                          &dev_priv->mm.inactive_list,
5084                                          list) {
5085                         if (nr_to_scan > 0) {
5086                                 i915_gem_object_unbind(&obj_priv->base);
5087                                 nr_to_scan--;
5088                         } else
5089                                 cnt++;
5090                 }
5091
5092                 spin_lock(&shrink_list_lock);
5093                 mutex_unlock(&dev->struct_mutex);
5094
5095                 would_deadlock = 0;
5096         }
5097
5098         if (nr_to_scan) {
5099                 int active = 0;
5100
5101                 /*
5102                  * We are desperate for pages, so as a last resort, wait
5103                  * for the GPU to finish and discard whatever we can.
5104                  * This has a dramatic impact to reduce the number of
5105                  * OOM-killer events whilst running the GPU aggressively.
5106                  */
5107                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5108                         struct drm_device *dev = dev_priv->dev;
5109
5110                         if (!mutex_trylock(&dev->struct_mutex))
5111                                 continue;
5112
5113                         spin_unlock(&shrink_list_lock);
5114
5115                         if (i915_gpu_is_active(dev)) {
5116                                 i915_gpu_idle(dev);
5117                                 active++;
5118                         }
5119
5120                         spin_lock(&shrink_list_lock);
5121                         mutex_unlock(&dev->struct_mutex);
5122                 }
5123
5124                 if (active)
5125                         goto rescan;
5126         }
5127
5128         spin_unlock(&shrink_list_lock);
5129
5130         if (would_deadlock)
5131                 return -1;
5132         else if (cnt > 0)
5133                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5134         else
5135                 return 0;
5136 }
5137
5138 static struct shrinker shrinker = {
5139         .shrink = i915_gem_shrink,
5140         .seeks = DEFAULT_SEEKS,
5141 };
5142
5143 __init void
5144 i915_gem_shrinker_init(void)
5145 {
5146     register_shrinker(&shrinker);
5147 }
5148
5149 __exit void
5150 i915_gem_shrinker_exit(void)
5151 {
5152     unregister_shrinker(&shrinker);
5153 }