drm/i915: Register a shrinker to free inactive lists under memory pressure
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include <linux/swap.h>
34 #include <linux/pci.h>
35
36 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55
56 static LIST_HEAD(shrink_list);
57 static DEFINE_SPINLOCK(shrink_list_lock);
58
59 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
60                      unsigned long end)
61 {
62         drm_i915_private_t *dev_priv = dev->dev_private;
63
64         if (start >= end ||
65             (start & (PAGE_SIZE - 1)) != 0 ||
66             (end & (PAGE_SIZE - 1)) != 0) {
67                 return -EINVAL;
68         }
69
70         drm_mm_init(&dev_priv->mm.gtt_space, start,
71                     end - start);
72
73         dev->gtt_total = (uint32_t) (end - start);
74
75         return 0;
76 }
77
78 int
79 i915_gem_init_ioctl(struct drm_device *dev, void *data,
80                     struct drm_file *file_priv)
81 {
82         struct drm_i915_gem_init *args = data;
83         int ret;
84
85         mutex_lock(&dev->struct_mutex);
86         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
87         mutex_unlock(&dev->struct_mutex);
88
89         return ret;
90 }
91
92 int
93 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
94                             struct drm_file *file_priv)
95 {
96         struct drm_i915_gem_get_aperture *args = data;
97
98         if (!(dev->driver->driver_features & DRIVER_GEM))
99                 return -ENODEV;
100
101         args->aper_size = dev->gtt_total;
102         args->aper_available_size = (args->aper_size -
103                                      atomic_read(&dev->pin_memory));
104
105         return 0;
106 }
107
108
109 /**
110  * Creates a new mm object and returns a handle to it.
111  */
112 int
113 i915_gem_create_ioctl(struct drm_device *dev, void *data,
114                       struct drm_file *file_priv)
115 {
116         struct drm_i915_gem_create *args = data;
117         struct drm_gem_object *obj;
118         int ret;
119         u32 handle;
120
121         args->size = roundup(args->size, PAGE_SIZE);
122
123         /* Allocate the new object */
124         obj = drm_gem_object_alloc(dev, args->size);
125         if (obj == NULL)
126                 return -ENOMEM;
127
128         ret = drm_gem_handle_create(file_priv, obj, &handle);
129         mutex_lock(&dev->struct_mutex);
130         drm_gem_object_handle_unreference(obj);
131         mutex_unlock(&dev->struct_mutex);
132
133         if (ret)
134                 return ret;
135
136         args->handle = handle;
137
138         return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143                 loff_t page_base, int page_offset,
144                 char __user *data,
145                 int length)
146 {
147         char __iomem *vaddr;
148         int unwritten;
149
150         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151         if (vaddr == NULL)
152                 return -ENOMEM;
153         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154         kunmap_atomic(vaddr, KM_USER0);
155
156         if (unwritten)
157                 return -EFAULT;
158
159         return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164         drm_i915_private_t *dev_priv = obj->dev->dev_private;
165         struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168                 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline int
172 slow_shmem_copy(struct page *dst_page,
173                 int dst_offset,
174                 struct page *src_page,
175                 int src_offset,
176                 int length)
177 {
178         char *dst_vaddr, *src_vaddr;
179
180         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181         if (dst_vaddr == NULL)
182                 return -ENOMEM;
183
184         src_vaddr = kmap_atomic(src_page, KM_USER1);
185         if (src_vaddr == NULL) {
186                 kunmap_atomic(dst_vaddr, KM_USER0);
187                 return -ENOMEM;
188         }
189
190         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192         kunmap_atomic(src_vaddr, KM_USER1);
193         kunmap_atomic(dst_vaddr, KM_USER0);
194
195         return 0;
196 }
197
198 static inline int
199 slow_shmem_bit17_copy(struct page *gpu_page,
200                       int gpu_offset,
201                       struct page *cpu_page,
202                       int cpu_offset,
203                       int length,
204                       int is_read)
205 {
206         char *gpu_vaddr, *cpu_vaddr;
207
208         /* Use the unswizzled path if this page isn't affected. */
209         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210                 if (is_read)
211                         return slow_shmem_copy(cpu_page, cpu_offset,
212                                                gpu_page, gpu_offset, length);
213                 else
214                         return slow_shmem_copy(gpu_page, gpu_offset,
215                                                cpu_page, cpu_offset, length);
216         }
217
218         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219         if (gpu_vaddr == NULL)
220                 return -ENOMEM;
221
222         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223         if (cpu_vaddr == NULL) {
224                 kunmap_atomic(gpu_vaddr, KM_USER0);
225                 return -ENOMEM;
226         }
227
228         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229          * XORing with the other bits (A9 for Y, A9 and A10 for X)
230          */
231         while (length > 0) {
232                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233                 int this_length = min(cacheline_end - gpu_offset, length);
234                 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236                 if (is_read) {
237                         memcpy(cpu_vaddr + cpu_offset,
238                                gpu_vaddr + swizzled_gpu_offset,
239                                this_length);
240                 } else {
241                         memcpy(gpu_vaddr + swizzled_gpu_offset,
242                                cpu_vaddr + cpu_offset,
243                                this_length);
244                 }
245                 cpu_offset += this_length;
246                 gpu_offset += this_length;
247                 length -= this_length;
248         }
249
250         kunmap_atomic(cpu_vaddr, KM_USER1);
251         kunmap_atomic(gpu_vaddr, KM_USER0);
252
253         return 0;
254 }
255
256 /**
257  * This is the fast shmem pread path, which attempts to copy_from_user directly
258  * from the backing pages of the object to the user's address space.  On a
259  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260  */
261 static int
262 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263                           struct drm_i915_gem_pread *args,
264                           struct drm_file *file_priv)
265 {
266         struct drm_i915_gem_object *obj_priv = obj->driver_private;
267         ssize_t remain;
268         loff_t offset, page_base;
269         char __user *user_data;
270         int page_offset, page_length;
271         int ret;
272
273         user_data = (char __user *) (uintptr_t) args->data_ptr;
274         remain = args->size;
275
276         mutex_lock(&dev->struct_mutex);
277
278         ret = i915_gem_object_get_pages(obj);
279         if (ret != 0)
280                 goto fail_unlock;
281
282         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283                                                         args->size);
284         if (ret != 0)
285                 goto fail_put_pages;
286
287         obj_priv = obj->driver_private;
288         offset = args->offset;
289
290         while (remain > 0) {
291                 /* Operation in this page
292                  *
293                  * page_base = page offset within aperture
294                  * page_offset = offset within page
295                  * page_length = bytes to copy for this page
296                  */
297                 page_base = (offset & ~(PAGE_SIZE-1));
298                 page_offset = offset & (PAGE_SIZE-1);
299                 page_length = remain;
300                 if ((page_offset + remain) > PAGE_SIZE)
301                         page_length = PAGE_SIZE - page_offset;
302
303                 ret = fast_shmem_read(obj_priv->pages,
304                                       page_base, page_offset,
305                                       user_data, page_length);
306                 if (ret)
307                         goto fail_put_pages;
308
309                 remain -= page_length;
310                 user_data += page_length;
311                 offset += page_length;
312         }
313
314 fail_put_pages:
315         i915_gem_object_put_pages(obj);
316 fail_unlock:
317         mutex_unlock(&dev->struct_mutex);
318
319         return ret;
320 }
321
322 /**
323  * This is the fallback shmem pread path, which allocates temporary storage
324  * in kernel space to copy_to_user into outside of the struct_mutex, so we
325  * can copy out of the object's backing pages while holding the struct mutex
326  * and not take page faults.
327  */
328 static int
329 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
330                           struct drm_i915_gem_pread *args,
331                           struct drm_file *file_priv)
332 {
333         struct drm_i915_gem_object *obj_priv = obj->driver_private;
334         struct mm_struct *mm = current->mm;
335         struct page **user_pages;
336         ssize_t remain;
337         loff_t offset, pinned_pages, i;
338         loff_t first_data_page, last_data_page, num_pages;
339         int shmem_page_index, shmem_page_offset;
340         int data_page_index,  data_page_offset;
341         int page_length;
342         int ret;
343         uint64_t data_ptr = args->data_ptr;
344         int do_bit17_swizzling;
345
346         remain = args->size;
347
348         /* Pin the user pages containing the data.  We can't fault while
349          * holding the struct mutex, yet we want to hold it while
350          * dereferencing the user data.
351          */
352         first_data_page = data_ptr / PAGE_SIZE;
353         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
354         num_pages = last_data_page - first_data_page + 1;
355
356         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
357         if (user_pages == NULL)
358                 return -ENOMEM;
359
360         down_read(&mm->mmap_sem);
361         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
362                                       num_pages, 1, 0, user_pages, NULL);
363         up_read(&mm->mmap_sem);
364         if (pinned_pages < num_pages) {
365                 ret = -EFAULT;
366                 goto fail_put_user_pages;
367         }
368
369         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
370
371         mutex_lock(&dev->struct_mutex);
372
373         ret = i915_gem_object_get_pages(obj);
374         if (ret != 0)
375                 goto fail_unlock;
376
377         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
378                                                         args->size);
379         if (ret != 0)
380                 goto fail_put_pages;
381
382         obj_priv = obj->driver_private;
383         offset = args->offset;
384
385         while (remain > 0) {
386                 /* Operation in this page
387                  *
388                  * shmem_page_index = page number within shmem file
389                  * shmem_page_offset = offset within page in shmem file
390                  * data_page_index = page number in get_user_pages return
391                  * data_page_offset = offset with data_page_index page.
392                  * page_length = bytes to copy for this page
393                  */
394                 shmem_page_index = offset / PAGE_SIZE;
395                 shmem_page_offset = offset & ~PAGE_MASK;
396                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
397                 data_page_offset = data_ptr & ~PAGE_MASK;
398
399                 page_length = remain;
400                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
401                         page_length = PAGE_SIZE - shmem_page_offset;
402                 if ((data_page_offset + page_length) > PAGE_SIZE)
403                         page_length = PAGE_SIZE - data_page_offset;
404
405                 if (do_bit17_swizzling) {
406                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
407                                                     shmem_page_offset,
408                                                     user_pages[data_page_index],
409                                                     data_page_offset,
410                                                     page_length,
411                                                     1);
412                 } else {
413                         ret = slow_shmem_copy(user_pages[data_page_index],
414                                               data_page_offset,
415                                               obj_priv->pages[shmem_page_index],
416                                               shmem_page_offset,
417                                               page_length);
418                 }
419                 if (ret)
420                         goto fail_put_pages;
421
422                 remain -= page_length;
423                 data_ptr += page_length;
424                 offset += page_length;
425         }
426
427 fail_put_pages:
428         i915_gem_object_put_pages(obj);
429 fail_unlock:
430         mutex_unlock(&dev->struct_mutex);
431 fail_put_user_pages:
432         for (i = 0; i < pinned_pages; i++) {
433                 SetPageDirty(user_pages[i]);
434                 page_cache_release(user_pages[i]);
435         }
436         drm_free_large(user_pages);
437
438         return ret;
439 }
440
441 /**
442  * Reads data from the object referenced by handle.
443  *
444  * On error, the contents of *data are undefined.
445  */
446 int
447 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
448                      struct drm_file *file_priv)
449 {
450         struct drm_i915_gem_pread *args = data;
451         struct drm_gem_object *obj;
452         struct drm_i915_gem_object *obj_priv;
453         int ret;
454
455         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
456         if (obj == NULL)
457                 return -EBADF;
458         obj_priv = obj->driver_private;
459
460         /* Bounds check source.
461          *
462          * XXX: This could use review for overflow issues...
463          */
464         if (args->offset > obj->size || args->size > obj->size ||
465             args->offset + args->size > obj->size) {
466                 drm_gem_object_unreference(obj);
467                 return -EINVAL;
468         }
469
470         if (i915_gem_object_needs_bit17_swizzle(obj)) {
471                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
472         } else {
473                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
474                 if (ret != 0)
475                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
476                                                         file_priv);
477         }
478
479         drm_gem_object_unreference(obj);
480
481         return ret;
482 }
483
484 /* This is the fast write path which cannot handle
485  * page faults in the source data
486  */
487
488 static inline int
489 fast_user_write(struct io_mapping *mapping,
490                 loff_t page_base, int page_offset,
491                 char __user *user_data,
492                 int length)
493 {
494         char *vaddr_atomic;
495         unsigned long unwritten;
496
497         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
498         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
499                                                       user_data, length);
500         io_mapping_unmap_atomic(vaddr_atomic);
501         if (unwritten)
502                 return -EFAULT;
503         return 0;
504 }
505
506 /* Here's the write path which can sleep for
507  * page faults
508  */
509
510 static inline int
511 slow_kernel_write(struct io_mapping *mapping,
512                   loff_t gtt_base, int gtt_offset,
513                   struct page *user_page, int user_offset,
514                   int length)
515 {
516         char *src_vaddr, *dst_vaddr;
517         unsigned long unwritten;
518
519         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
520         src_vaddr = kmap_atomic(user_page, KM_USER1);
521         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
522                                                       src_vaddr + user_offset,
523                                                       length);
524         kunmap_atomic(src_vaddr, KM_USER1);
525         io_mapping_unmap_atomic(dst_vaddr);
526         if (unwritten)
527                 return -EFAULT;
528         return 0;
529 }
530
531 static inline int
532 fast_shmem_write(struct page **pages,
533                  loff_t page_base, int page_offset,
534                  char __user *data,
535                  int length)
536 {
537         char __iomem *vaddr;
538         unsigned long unwritten;
539
540         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
541         if (vaddr == NULL)
542                 return -ENOMEM;
543         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
544         kunmap_atomic(vaddr, KM_USER0);
545
546         if (unwritten)
547                 return -EFAULT;
548         return 0;
549 }
550
551 /**
552  * This is the fast pwrite path, where we copy the data directly from the
553  * user into the GTT, uncached.
554  */
555 static int
556 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
557                          struct drm_i915_gem_pwrite *args,
558                          struct drm_file *file_priv)
559 {
560         struct drm_i915_gem_object *obj_priv = obj->driver_private;
561         drm_i915_private_t *dev_priv = dev->dev_private;
562         ssize_t remain;
563         loff_t offset, page_base;
564         char __user *user_data;
565         int page_offset, page_length;
566         int ret;
567
568         user_data = (char __user *) (uintptr_t) args->data_ptr;
569         remain = args->size;
570         if (!access_ok(VERIFY_READ, user_data, remain))
571                 return -EFAULT;
572
573
574         mutex_lock(&dev->struct_mutex);
575         ret = i915_gem_object_pin(obj, 0);
576         if (ret) {
577                 mutex_unlock(&dev->struct_mutex);
578                 return ret;
579         }
580         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
581         if (ret)
582                 goto fail;
583
584         obj_priv = obj->driver_private;
585         offset = obj_priv->gtt_offset + args->offset;
586
587         while (remain > 0) {
588                 /* Operation in this page
589                  *
590                  * page_base = page offset within aperture
591                  * page_offset = offset within page
592                  * page_length = bytes to copy for this page
593                  */
594                 page_base = (offset & ~(PAGE_SIZE-1));
595                 page_offset = offset & (PAGE_SIZE-1);
596                 page_length = remain;
597                 if ((page_offset + remain) > PAGE_SIZE)
598                         page_length = PAGE_SIZE - page_offset;
599
600                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
601                                        page_offset, user_data, page_length);
602
603                 /* If we get a fault while copying data, then (presumably) our
604                  * source page isn't available.  Return the error and we'll
605                  * retry in the slow path.
606                  */
607                 if (ret)
608                         goto fail;
609
610                 remain -= page_length;
611                 user_data += page_length;
612                 offset += page_length;
613         }
614
615 fail:
616         i915_gem_object_unpin(obj);
617         mutex_unlock(&dev->struct_mutex);
618
619         return ret;
620 }
621
622 /**
623  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
624  * the memory and maps it using kmap_atomic for copying.
625  *
626  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
627  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
628  */
629 static int
630 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
631                          struct drm_i915_gem_pwrite *args,
632                          struct drm_file *file_priv)
633 {
634         struct drm_i915_gem_object *obj_priv = obj->driver_private;
635         drm_i915_private_t *dev_priv = dev->dev_private;
636         ssize_t remain;
637         loff_t gtt_page_base, offset;
638         loff_t first_data_page, last_data_page, num_pages;
639         loff_t pinned_pages, i;
640         struct page **user_pages;
641         struct mm_struct *mm = current->mm;
642         int gtt_page_offset, data_page_offset, data_page_index, page_length;
643         int ret;
644         uint64_t data_ptr = args->data_ptr;
645
646         remain = args->size;
647
648         /* Pin the user pages containing the data.  We can't fault while
649          * holding the struct mutex, and all of the pwrite implementations
650          * want to hold it while dereferencing the user data.
651          */
652         first_data_page = data_ptr / PAGE_SIZE;
653         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
654         num_pages = last_data_page - first_data_page + 1;
655
656         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
657         if (user_pages == NULL)
658                 return -ENOMEM;
659
660         down_read(&mm->mmap_sem);
661         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
662                                       num_pages, 0, 0, user_pages, NULL);
663         up_read(&mm->mmap_sem);
664         if (pinned_pages < num_pages) {
665                 ret = -EFAULT;
666                 goto out_unpin_pages;
667         }
668
669         mutex_lock(&dev->struct_mutex);
670         ret = i915_gem_object_pin(obj, 0);
671         if (ret)
672                 goto out_unlock;
673
674         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
675         if (ret)
676                 goto out_unpin_object;
677
678         obj_priv = obj->driver_private;
679         offset = obj_priv->gtt_offset + args->offset;
680
681         while (remain > 0) {
682                 /* Operation in this page
683                  *
684                  * gtt_page_base = page offset within aperture
685                  * gtt_page_offset = offset within page in aperture
686                  * data_page_index = page number in get_user_pages return
687                  * data_page_offset = offset with data_page_index page.
688                  * page_length = bytes to copy for this page
689                  */
690                 gtt_page_base = offset & PAGE_MASK;
691                 gtt_page_offset = offset & ~PAGE_MASK;
692                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
693                 data_page_offset = data_ptr & ~PAGE_MASK;
694
695                 page_length = remain;
696                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
697                         page_length = PAGE_SIZE - gtt_page_offset;
698                 if ((data_page_offset + page_length) > PAGE_SIZE)
699                         page_length = PAGE_SIZE - data_page_offset;
700
701                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
702                                         gtt_page_base, gtt_page_offset,
703                                         user_pages[data_page_index],
704                                         data_page_offset,
705                                         page_length);
706
707                 /* If we get a fault while copying data, then (presumably) our
708                  * source page isn't available.  Return the error and we'll
709                  * retry in the slow path.
710                  */
711                 if (ret)
712                         goto out_unpin_object;
713
714                 remain -= page_length;
715                 offset += page_length;
716                 data_ptr += page_length;
717         }
718
719 out_unpin_object:
720         i915_gem_object_unpin(obj);
721 out_unlock:
722         mutex_unlock(&dev->struct_mutex);
723 out_unpin_pages:
724         for (i = 0; i < pinned_pages; i++)
725                 page_cache_release(user_pages[i]);
726         drm_free_large(user_pages);
727
728         return ret;
729 }
730
731 /**
732  * This is the fast shmem pwrite path, which attempts to directly
733  * copy_from_user into the kmapped pages backing the object.
734  */
735 static int
736 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
737                            struct drm_i915_gem_pwrite *args,
738                            struct drm_file *file_priv)
739 {
740         struct drm_i915_gem_object *obj_priv = obj->driver_private;
741         ssize_t remain;
742         loff_t offset, page_base;
743         char __user *user_data;
744         int page_offset, page_length;
745         int ret;
746
747         user_data = (char __user *) (uintptr_t) args->data_ptr;
748         remain = args->size;
749
750         mutex_lock(&dev->struct_mutex);
751
752         ret = i915_gem_object_get_pages(obj);
753         if (ret != 0)
754                 goto fail_unlock;
755
756         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
757         if (ret != 0)
758                 goto fail_put_pages;
759
760         obj_priv = obj->driver_private;
761         offset = args->offset;
762         obj_priv->dirty = 1;
763
764         while (remain > 0) {
765                 /* Operation in this page
766                  *
767                  * page_base = page offset within aperture
768                  * page_offset = offset within page
769                  * page_length = bytes to copy for this page
770                  */
771                 page_base = (offset & ~(PAGE_SIZE-1));
772                 page_offset = offset & (PAGE_SIZE-1);
773                 page_length = remain;
774                 if ((page_offset + remain) > PAGE_SIZE)
775                         page_length = PAGE_SIZE - page_offset;
776
777                 ret = fast_shmem_write(obj_priv->pages,
778                                        page_base, page_offset,
779                                        user_data, page_length);
780                 if (ret)
781                         goto fail_put_pages;
782
783                 remain -= page_length;
784                 user_data += page_length;
785                 offset += page_length;
786         }
787
788 fail_put_pages:
789         i915_gem_object_put_pages(obj);
790 fail_unlock:
791         mutex_unlock(&dev->struct_mutex);
792
793         return ret;
794 }
795
796 /**
797  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
798  * the memory and maps it using kmap_atomic for copying.
799  *
800  * This avoids taking mmap_sem for faulting on the user's address while the
801  * struct_mutex is held.
802  */
803 static int
804 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
805                            struct drm_i915_gem_pwrite *args,
806                            struct drm_file *file_priv)
807 {
808         struct drm_i915_gem_object *obj_priv = obj->driver_private;
809         struct mm_struct *mm = current->mm;
810         struct page **user_pages;
811         ssize_t remain;
812         loff_t offset, pinned_pages, i;
813         loff_t first_data_page, last_data_page, num_pages;
814         int shmem_page_index, shmem_page_offset;
815         int data_page_index,  data_page_offset;
816         int page_length;
817         int ret;
818         uint64_t data_ptr = args->data_ptr;
819         int do_bit17_swizzling;
820
821         remain = args->size;
822
823         /* Pin the user pages containing the data.  We can't fault while
824          * holding the struct mutex, and all of the pwrite implementations
825          * want to hold it while dereferencing the user data.
826          */
827         first_data_page = data_ptr / PAGE_SIZE;
828         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
829         num_pages = last_data_page - first_data_page + 1;
830
831         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
832         if (user_pages == NULL)
833                 return -ENOMEM;
834
835         down_read(&mm->mmap_sem);
836         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
837                                       num_pages, 0, 0, user_pages, NULL);
838         up_read(&mm->mmap_sem);
839         if (pinned_pages < num_pages) {
840                 ret = -EFAULT;
841                 goto fail_put_user_pages;
842         }
843
844         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
845
846         mutex_lock(&dev->struct_mutex);
847
848         ret = i915_gem_object_get_pages(obj);
849         if (ret != 0)
850                 goto fail_unlock;
851
852         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
853         if (ret != 0)
854                 goto fail_put_pages;
855
856         obj_priv = obj->driver_private;
857         offset = args->offset;
858         obj_priv->dirty = 1;
859
860         while (remain > 0) {
861                 /* Operation in this page
862                  *
863                  * shmem_page_index = page number within shmem file
864                  * shmem_page_offset = offset within page in shmem file
865                  * data_page_index = page number in get_user_pages return
866                  * data_page_offset = offset with data_page_index page.
867                  * page_length = bytes to copy for this page
868                  */
869                 shmem_page_index = offset / PAGE_SIZE;
870                 shmem_page_offset = offset & ~PAGE_MASK;
871                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
872                 data_page_offset = data_ptr & ~PAGE_MASK;
873
874                 page_length = remain;
875                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
876                         page_length = PAGE_SIZE - shmem_page_offset;
877                 if ((data_page_offset + page_length) > PAGE_SIZE)
878                         page_length = PAGE_SIZE - data_page_offset;
879
880                 if (do_bit17_swizzling) {
881                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
882                                                     shmem_page_offset,
883                                                     user_pages[data_page_index],
884                                                     data_page_offset,
885                                                     page_length,
886                                                     0);
887                 } else {
888                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
889                                               shmem_page_offset,
890                                               user_pages[data_page_index],
891                                               data_page_offset,
892                                               page_length);
893                 }
894                 if (ret)
895                         goto fail_put_pages;
896
897                 remain -= page_length;
898                 data_ptr += page_length;
899                 offset += page_length;
900         }
901
902 fail_put_pages:
903         i915_gem_object_put_pages(obj);
904 fail_unlock:
905         mutex_unlock(&dev->struct_mutex);
906 fail_put_user_pages:
907         for (i = 0; i < pinned_pages; i++)
908                 page_cache_release(user_pages[i]);
909         drm_free_large(user_pages);
910
911         return ret;
912 }
913
914 /**
915  * Writes data to the object referenced by handle.
916  *
917  * On error, the contents of the buffer that were to be modified are undefined.
918  */
919 int
920 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
921                       struct drm_file *file_priv)
922 {
923         struct drm_i915_gem_pwrite *args = data;
924         struct drm_gem_object *obj;
925         struct drm_i915_gem_object *obj_priv;
926         int ret = 0;
927
928         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
929         if (obj == NULL)
930                 return -EBADF;
931         obj_priv = obj->driver_private;
932
933         /* Bounds check destination.
934          *
935          * XXX: This could use review for overflow issues...
936          */
937         if (args->offset > obj->size || args->size > obj->size ||
938             args->offset + args->size > obj->size) {
939                 drm_gem_object_unreference(obj);
940                 return -EINVAL;
941         }
942
943         /* We can only do the GTT pwrite on untiled buffers, as otherwise
944          * it would end up going through the fenced access, and we'll get
945          * different detiling behavior between reading and writing.
946          * pread/pwrite currently are reading and writing from the CPU
947          * perspective, requiring manual detiling by the client.
948          */
949         if (obj_priv->phys_obj)
950                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
951         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
952                  dev->gtt_total != 0) {
953                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
954                 if (ret == -EFAULT) {
955                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
956                                                        file_priv);
957                 }
958         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
959                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
960         } else {
961                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
962                 if (ret == -EFAULT) {
963                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
964                                                          file_priv);
965                 }
966         }
967
968 #if WATCH_PWRITE
969         if (ret)
970                 DRM_INFO("pwrite failed %d\n", ret);
971 #endif
972
973         drm_gem_object_unreference(obj);
974
975         return ret;
976 }
977
978 /**
979  * Called when user space prepares to use an object with the CPU, either
980  * through the mmap ioctl's mapping or a GTT mapping.
981  */
982 int
983 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
984                           struct drm_file *file_priv)
985 {
986         struct drm_i915_private *dev_priv = dev->dev_private;
987         struct drm_i915_gem_set_domain *args = data;
988         struct drm_gem_object *obj;
989         struct drm_i915_gem_object *obj_priv;
990         uint32_t read_domains = args->read_domains;
991         uint32_t write_domain = args->write_domain;
992         int ret;
993
994         if (!(dev->driver->driver_features & DRIVER_GEM))
995                 return -ENODEV;
996
997         /* Only handle setting domains to types used by the CPU. */
998         if (write_domain & I915_GEM_GPU_DOMAINS)
999                 return -EINVAL;
1000
1001         if (read_domains & I915_GEM_GPU_DOMAINS)
1002                 return -EINVAL;
1003
1004         /* Having something in the write domain implies it's in the read
1005          * domain, and only that read domain.  Enforce that in the request.
1006          */
1007         if (write_domain != 0 && read_domains != write_domain)
1008                 return -EINVAL;
1009
1010         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1011         if (obj == NULL)
1012                 return -EBADF;
1013         obj_priv = obj->driver_private;
1014
1015         mutex_lock(&dev->struct_mutex);
1016
1017         intel_mark_busy(dev, obj);
1018
1019 #if WATCH_BUF
1020         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1021                  obj, obj->size, read_domains, write_domain);
1022 #endif
1023         if (read_domains & I915_GEM_DOMAIN_GTT) {
1024                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1025
1026                 /* Update the LRU on the fence for the CPU access that's
1027                  * about to occur.
1028                  */
1029                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1030                         list_move_tail(&obj_priv->fence_list,
1031                                        &dev_priv->mm.fence_list);
1032                 }
1033
1034                 /* Silently promote "you're not bound, there was nothing to do"
1035                  * to success, since the client was just asking us to
1036                  * make sure everything was done.
1037                  */
1038                 if (ret == -EINVAL)
1039                         ret = 0;
1040         } else {
1041                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1042         }
1043
1044         drm_gem_object_unreference(obj);
1045         mutex_unlock(&dev->struct_mutex);
1046         return ret;
1047 }
1048
1049 /**
1050  * Called when user space has done writes to this buffer
1051  */
1052 int
1053 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1054                       struct drm_file *file_priv)
1055 {
1056         struct drm_i915_gem_sw_finish *args = data;
1057         struct drm_gem_object *obj;
1058         struct drm_i915_gem_object *obj_priv;
1059         int ret = 0;
1060
1061         if (!(dev->driver->driver_features & DRIVER_GEM))
1062                 return -ENODEV;
1063
1064         mutex_lock(&dev->struct_mutex);
1065         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1066         if (obj == NULL) {
1067                 mutex_unlock(&dev->struct_mutex);
1068                 return -EBADF;
1069         }
1070
1071 #if WATCH_BUF
1072         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1073                  __func__, args->handle, obj, obj->size);
1074 #endif
1075         obj_priv = obj->driver_private;
1076
1077         /* Pinned buffers may be scanout, so flush the cache */
1078         if (obj_priv->pin_count)
1079                 i915_gem_object_flush_cpu_write_domain(obj);
1080
1081         drm_gem_object_unreference(obj);
1082         mutex_unlock(&dev->struct_mutex);
1083         return ret;
1084 }
1085
1086 /**
1087  * Maps the contents of an object, returning the address it is mapped
1088  * into.
1089  *
1090  * While the mapping holds a reference on the contents of the object, it doesn't
1091  * imply a ref on the object itself.
1092  */
1093 int
1094 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1095                    struct drm_file *file_priv)
1096 {
1097         struct drm_i915_gem_mmap *args = data;
1098         struct drm_gem_object *obj;
1099         loff_t offset;
1100         unsigned long addr;
1101
1102         if (!(dev->driver->driver_features & DRIVER_GEM))
1103                 return -ENODEV;
1104
1105         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1106         if (obj == NULL)
1107                 return -EBADF;
1108
1109         offset = args->offset;
1110
1111         down_write(&current->mm->mmap_sem);
1112         addr = do_mmap(obj->filp, 0, args->size,
1113                        PROT_READ | PROT_WRITE, MAP_SHARED,
1114                        args->offset);
1115         up_write(&current->mm->mmap_sem);
1116         mutex_lock(&dev->struct_mutex);
1117         drm_gem_object_unreference(obj);
1118         mutex_unlock(&dev->struct_mutex);
1119         if (IS_ERR((void *)addr))
1120                 return addr;
1121
1122         args->addr_ptr = (uint64_t) addr;
1123
1124         return 0;
1125 }
1126
1127 /**
1128  * i915_gem_fault - fault a page into the GTT
1129  * vma: VMA in question
1130  * vmf: fault info
1131  *
1132  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1133  * from userspace.  The fault handler takes care of binding the object to
1134  * the GTT (if needed), allocating and programming a fence register (again,
1135  * only if needed based on whether the old reg is still valid or the object
1136  * is tiled) and inserting a new PTE into the faulting process.
1137  *
1138  * Note that the faulting process may involve evicting existing objects
1139  * from the GTT and/or fence registers to make room.  So performance may
1140  * suffer if the GTT working set is large or there are few fence registers
1141  * left.
1142  */
1143 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1144 {
1145         struct drm_gem_object *obj = vma->vm_private_data;
1146         struct drm_device *dev = obj->dev;
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1149         pgoff_t page_offset;
1150         unsigned long pfn;
1151         int ret = 0;
1152         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1153
1154         /* We don't use vmf->pgoff since that has the fake offset */
1155         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1156                 PAGE_SHIFT;
1157
1158         /* Now bind it into the GTT if needed */
1159         mutex_lock(&dev->struct_mutex);
1160         if (!obj_priv->gtt_space) {
1161                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1162                 if (ret) {
1163                         mutex_unlock(&dev->struct_mutex);
1164                         return VM_FAULT_SIGBUS;
1165                 }
1166                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1167
1168                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1169                 if (ret) {
1170                         mutex_unlock(&dev->struct_mutex);
1171                         return VM_FAULT_SIGBUS;
1172                 }
1173         }
1174
1175         /* Need a new fence register? */
1176         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1177                 ret = i915_gem_object_get_fence_reg(obj);
1178                 if (ret) {
1179                         mutex_unlock(&dev->struct_mutex);
1180                         return VM_FAULT_SIGBUS;
1181                 }
1182         }
1183
1184         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1185                 page_offset;
1186
1187         /* Finally, remap it using the new GTT offset */
1188         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1189
1190         mutex_unlock(&dev->struct_mutex);
1191
1192         switch (ret) {
1193         case -ENOMEM:
1194         case -EAGAIN:
1195                 return VM_FAULT_OOM;
1196         case -EFAULT:
1197         case -EINVAL:
1198                 return VM_FAULT_SIGBUS;
1199         default:
1200                 return VM_FAULT_NOPAGE;
1201         }
1202 }
1203
1204 /**
1205  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1206  * @obj: obj in question
1207  *
1208  * GEM memory mapping works by handing back to userspace a fake mmap offset
1209  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1210  * up the object based on the offset and sets up the various memory mapping
1211  * structures.
1212  *
1213  * This routine allocates and attaches a fake offset for @obj.
1214  */
1215 static int
1216 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1217 {
1218         struct drm_device *dev = obj->dev;
1219         struct drm_gem_mm *mm = dev->mm_private;
1220         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1221         struct drm_map_list *list;
1222         struct drm_local_map *map;
1223         int ret = 0;
1224
1225         /* Set the object up for mmap'ing */
1226         list = &obj->map_list;
1227         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1228         if (!list->map)
1229                 return -ENOMEM;
1230
1231         map = list->map;
1232         map->type = _DRM_GEM;
1233         map->size = obj->size;
1234         map->handle = obj;
1235
1236         /* Get a DRM GEM mmap offset allocated... */
1237         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1238                                                     obj->size / PAGE_SIZE, 0, 0);
1239         if (!list->file_offset_node) {
1240                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1241                 ret = -ENOMEM;
1242                 goto out_free_list;
1243         }
1244
1245         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1246                                                   obj->size / PAGE_SIZE, 0);
1247         if (!list->file_offset_node) {
1248                 ret = -ENOMEM;
1249                 goto out_free_list;
1250         }
1251
1252         list->hash.key = list->file_offset_node->start;
1253         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1254                 DRM_ERROR("failed to add to map hash\n");
1255                 goto out_free_mm;
1256         }
1257
1258         /* By now we should be all set, any drm_mmap request on the offset
1259          * below will get to our mmap & fault handler */
1260         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1261
1262         return 0;
1263
1264 out_free_mm:
1265         drm_mm_put_block(list->file_offset_node);
1266 out_free_list:
1267         kfree(list->map);
1268
1269         return ret;
1270 }
1271
1272 /**
1273  * i915_gem_release_mmap - remove physical page mappings
1274  * @obj: obj in question
1275  *
1276  * Preserve the reservation of the mmaping with the DRM core code, but
1277  * relinquish ownership of the pages back to the system.
1278  *
1279  * It is vital that we remove the page mapping if we have mapped a tiled
1280  * object through the GTT and then lose the fence register due to
1281  * resource pressure. Similarly if the object has been moved out of the
1282  * aperture, than pages mapped into userspace must be revoked. Removing the
1283  * mapping will then trigger a page fault on the next user access, allowing
1284  * fixup by i915_gem_fault().
1285  */
1286 void
1287 i915_gem_release_mmap(struct drm_gem_object *obj)
1288 {
1289         struct drm_device *dev = obj->dev;
1290         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1291
1292         if (dev->dev_mapping)
1293                 unmap_mapping_range(dev->dev_mapping,
1294                                     obj_priv->mmap_offset, obj->size, 1);
1295 }
1296
1297 static void
1298 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1299 {
1300         struct drm_device *dev = obj->dev;
1301         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1302         struct drm_gem_mm *mm = dev->mm_private;
1303         struct drm_map_list *list;
1304
1305         list = &obj->map_list;
1306         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1307
1308         if (list->file_offset_node) {
1309                 drm_mm_put_block(list->file_offset_node);
1310                 list->file_offset_node = NULL;
1311         }
1312
1313         if (list->map) {
1314                 kfree(list->map);
1315                 list->map = NULL;
1316         }
1317
1318         obj_priv->mmap_offset = 0;
1319 }
1320
1321 /**
1322  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1323  * @obj: object to check
1324  *
1325  * Return the required GTT alignment for an object, taking into account
1326  * potential fence register mapping if needed.
1327  */
1328 static uint32_t
1329 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1330 {
1331         struct drm_device *dev = obj->dev;
1332         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1333         int start, i;
1334
1335         /*
1336          * Minimum alignment is 4k (GTT page size), but might be greater
1337          * if a fence register is needed for the object.
1338          */
1339         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1340                 return 4096;
1341
1342         /*
1343          * Previous chips need to be aligned to the size of the smallest
1344          * fence register that can contain the object.
1345          */
1346         if (IS_I9XX(dev))
1347                 start = 1024*1024;
1348         else
1349                 start = 512*1024;
1350
1351         for (i = start; i < obj->size; i <<= 1)
1352                 ;
1353
1354         return i;
1355 }
1356
1357 /**
1358  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1359  * @dev: DRM device
1360  * @data: GTT mapping ioctl data
1361  * @file_priv: GEM object info
1362  *
1363  * Simply returns the fake offset to userspace so it can mmap it.
1364  * The mmap call will end up in drm_gem_mmap(), which will set things
1365  * up so we can get faults in the handler above.
1366  *
1367  * The fault handler will take care of binding the object into the GTT
1368  * (since it may have been evicted to make room for something), allocating
1369  * a fence register, and mapping the appropriate aperture address into
1370  * userspace.
1371  */
1372 int
1373 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1374                         struct drm_file *file_priv)
1375 {
1376         struct drm_i915_gem_mmap_gtt *args = data;
1377         struct drm_i915_private *dev_priv = dev->dev_private;
1378         struct drm_gem_object *obj;
1379         struct drm_i915_gem_object *obj_priv;
1380         int ret;
1381
1382         if (!(dev->driver->driver_features & DRIVER_GEM))
1383                 return -ENODEV;
1384
1385         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1386         if (obj == NULL)
1387                 return -EBADF;
1388
1389         mutex_lock(&dev->struct_mutex);
1390
1391         obj_priv = obj->driver_private;
1392
1393         if (!obj_priv->mmap_offset) {
1394                 ret = i915_gem_create_mmap_offset(obj);
1395                 if (ret) {
1396                         drm_gem_object_unreference(obj);
1397                         mutex_unlock(&dev->struct_mutex);
1398                         return ret;
1399                 }
1400         }
1401
1402         args->offset = obj_priv->mmap_offset;
1403
1404         /*
1405          * Pull it into the GTT so that we have a page list (makes the
1406          * initial fault faster and any subsequent flushing possible).
1407          */
1408         if (!obj_priv->agp_mem) {
1409                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1410                 if (ret) {
1411                         drm_gem_object_unreference(obj);
1412                         mutex_unlock(&dev->struct_mutex);
1413                         return ret;
1414                 }
1415                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1416         }
1417
1418         drm_gem_object_unreference(obj);
1419         mutex_unlock(&dev->struct_mutex);
1420
1421         return 0;
1422 }
1423
1424 void
1425 i915_gem_object_put_pages(struct drm_gem_object *obj)
1426 {
1427         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1428         int page_count = obj->size / PAGE_SIZE;
1429         int i;
1430
1431         BUG_ON(obj_priv->pages_refcount == 0);
1432
1433         if (--obj_priv->pages_refcount != 0)
1434                 return;
1435
1436         if (obj_priv->tiling_mode != I915_TILING_NONE)
1437                 i915_gem_object_save_bit_17_swizzle(obj);
1438
1439         for (i = 0; i < page_count; i++)
1440                 if (obj_priv->pages[i] != NULL) {
1441                         if (obj_priv->dirty)
1442                                 set_page_dirty(obj_priv->pages[i]);
1443                         mark_page_accessed(obj_priv->pages[i]);
1444                         page_cache_release(obj_priv->pages[i]);
1445                 }
1446         obj_priv->dirty = 0;
1447
1448         drm_free_large(obj_priv->pages);
1449         obj_priv->pages = NULL;
1450 }
1451
1452 static void
1453 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1454 {
1455         struct drm_device *dev = obj->dev;
1456         drm_i915_private_t *dev_priv = dev->dev_private;
1457         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1458
1459         /* Add a reference if we're newly entering the active list. */
1460         if (!obj_priv->active) {
1461                 drm_gem_object_reference(obj);
1462                 obj_priv->active = 1;
1463         }
1464         /* Move from whatever list we were on to the tail of execution. */
1465         spin_lock(&dev_priv->mm.active_list_lock);
1466         list_move_tail(&obj_priv->list,
1467                        &dev_priv->mm.active_list);
1468         spin_unlock(&dev_priv->mm.active_list_lock);
1469         obj_priv->last_rendering_seqno = seqno;
1470 }
1471
1472 static void
1473 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1474 {
1475         struct drm_device *dev = obj->dev;
1476         drm_i915_private_t *dev_priv = dev->dev_private;
1477         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1478
1479         BUG_ON(!obj_priv->active);
1480         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1481         obj_priv->last_rendering_seqno = 0;
1482 }
1483
1484 static void
1485 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1486 {
1487         struct drm_device *dev = obj->dev;
1488         drm_i915_private_t *dev_priv = dev->dev_private;
1489         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1490
1491         i915_verify_inactive(dev, __FILE__, __LINE__);
1492         if (obj_priv->pin_count != 0)
1493                 list_del_init(&obj_priv->list);
1494         else
1495                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1496
1497         obj_priv->last_rendering_seqno = 0;
1498         if (obj_priv->active) {
1499                 obj_priv->active = 0;
1500                 drm_gem_object_unreference(obj);
1501         }
1502         i915_verify_inactive(dev, __FILE__, __LINE__);
1503 }
1504
1505 /**
1506  * Creates a new sequence number, emitting a write of it to the status page
1507  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1508  *
1509  * Must be called with struct_lock held.
1510  *
1511  * Returned sequence numbers are nonzero on success.
1512  */
1513 static uint32_t
1514 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1515                  uint32_t flush_domains)
1516 {
1517         drm_i915_private_t *dev_priv = dev->dev_private;
1518         struct drm_i915_file_private *i915_file_priv = NULL;
1519         struct drm_i915_gem_request *request;
1520         uint32_t seqno;
1521         int was_empty;
1522         RING_LOCALS;
1523
1524         if (file_priv != NULL)
1525                 i915_file_priv = file_priv->driver_priv;
1526
1527         request = kzalloc(sizeof(*request), GFP_KERNEL);
1528         if (request == NULL)
1529                 return 0;
1530
1531         /* Grab the seqno we're going to make this request be, and bump the
1532          * next (skipping 0 so it can be the reserved no-seqno value).
1533          */
1534         seqno = dev_priv->mm.next_gem_seqno;
1535         dev_priv->mm.next_gem_seqno++;
1536         if (dev_priv->mm.next_gem_seqno == 0)
1537                 dev_priv->mm.next_gem_seqno++;
1538
1539         BEGIN_LP_RING(4);
1540         OUT_RING(MI_STORE_DWORD_INDEX);
1541         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1542         OUT_RING(seqno);
1543
1544         OUT_RING(MI_USER_INTERRUPT);
1545         ADVANCE_LP_RING();
1546
1547         DRM_DEBUG("%d\n", seqno);
1548
1549         request->seqno = seqno;
1550         request->emitted_jiffies = jiffies;
1551         was_empty = list_empty(&dev_priv->mm.request_list);
1552         list_add_tail(&request->list, &dev_priv->mm.request_list);
1553         if (i915_file_priv) {
1554                 list_add_tail(&request->client_list,
1555                               &i915_file_priv->mm.request_list);
1556         } else {
1557                 INIT_LIST_HEAD(&request->client_list);
1558         }
1559
1560         /* Associate any objects on the flushing list matching the write
1561          * domain we're flushing with our flush.
1562          */
1563         if (flush_domains != 0) {
1564                 struct drm_i915_gem_object *obj_priv, *next;
1565
1566                 list_for_each_entry_safe(obj_priv, next,
1567                                          &dev_priv->mm.flushing_list, list) {
1568                         struct drm_gem_object *obj = obj_priv->obj;
1569
1570                         if ((obj->write_domain & flush_domains) ==
1571                             obj->write_domain) {
1572                                 obj->write_domain = 0;
1573                                 i915_gem_object_move_to_active(obj, seqno);
1574                         }
1575                 }
1576
1577         }
1578
1579         if (!dev_priv->mm.suspended) {
1580                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1581                 if (was_empty)
1582                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1583         }
1584         return seqno;
1585 }
1586
1587 /**
1588  * Command execution barrier
1589  *
1590  * Ensures that all commands in the ring are finished
1591  * before signalling the CPU
1592  */
1593 static uint32_t
1594 i915_retire_commands(struct drm_device *dev)
1595 {
1596         drm_i915_private_t *dev_priv = dev->dev_private;
1597         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1598         uint32_t flush_domains = 0;
1599         RING_LOCALS;
1600
1601         /* The sampler always gets flushed on i965 (sigh) */
1602         if (IS_I965G(dev))
1603                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1604         BEGIN_LP_RING(2);
1605         OUT_RING(cmd);
1606         OUT_RING(0); /* noop */
1607         ADVANCE_LP_RING();
1608         return flush_domains;
1609 }
1610
1611 /**
1612  * Moves buffers associated only with the given active seqno from the active
1613  * to inactive list, potentially freeing them.
1614  */
1615 static void
1616 i915_gem_retire_request(struct drm_device *dev,
1617                         struct drm_i915_gem_request *request)
1618 {
1619         drm_i915_private_t *dev_priv = dev->dev_private;
1620
1621         /* Move any buffers on the active list that are no longer referenced
1622          * by the ringbuffer to the flushing/inactive lists as appropriate.
1623          */
1624         spin_lock(&dev_priv->mm.active_list_lock);
1625         while (!list_empty(&dev_priv->mm.active_list)) {
1626                 struct drm_gem_object *obj;
1627                 struct drm_i915_gem_object *obj_priv;
1628
1629                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1630                                             struct drm_i915_gem_object,
1631                                             list);
1632                 obj = obj_priv->obj;
1633
1634                 /* If the seqno being retired doesn't match the oldest in the
1635                  * list, then the oldest in the list must still be newer than
1636                  * this seqno.
1637                  */
1638                 if (obj_priv->last_rendering_seqno != request->seqno)
1639                         goto out;
1640
1641 #if WATCH_LRU
1642                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1643                          __func__, request->seqno, obj);
1644 #endif
1645
1646                 if (obj->write_domain != 0)
1647                         i915_gem_object_move_to_flushing(obj);
1648                 else {
1649                         /* Take a reference on the object so it won't be
1650                          * freed while the spinlock is held.  The list
1651                          * protection for this spinlock is safe when breaking
1652                          * the lock like this since the next thing we do
1653                          * is just get the head of the list again.
1654                          */
1655                         drm_gem_object_reference(obj);
1656                         i915_gem_object_move_to_inactive(obj);
1657                         spin_unlock(&dev_priv->mm.active_list_lock);
1658                         drm_gem_object_unreference(obj);
1659                         spin_lock(&dev_priv->mm.active_list_lock);
1660                 }
1661         }
1662 out:
1663         spin_unlock(&dev_priv->mm.active_list_lock);
1664 }
1665
1666 /**
1667  * Returns true if seq1 is later than seq2.
1668  */
1669 bool
1670 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1671 {
1672         return (int32_t)(seq1 - seq2) >= 0;
1673 }
1674
1675 uint32_t
1676 i915_get_gem_seqno(struct drm_device *dev)
1677 {
1678         drm_i915_private_t *dev_priv = dev->dev_private;
1679
1680         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1681 }
1682
1683 /**
1684  * This function clears the request list as sequence numbers are passed.
1685  */
1686 void
1687 i915_gem_retire_requests(struct drm_device *dev)
1688 {
1689         drm_i915_private_t *dev_priv = dev->dev_private;
1690         uint32_t seqno;
1691
1692         if (!dev_priv->hw_status_page)
1693                 return;
1694
1695         seqno = i915_get_gem_seqno(dev);
1696
1697         while (!list_empty(&dev_priv->mm.request_list)) {
1698                 struct drm_i915_gem_request *request;
1699                 uint32_t retiring_seqno;
1700
1701                 request = list_first_entry(&dev_priv->mm.request_list,
1702                                            struct drm_i915_gem_request,
1703                                            list);
1704                 retiring_seqno = request->seqno;
1705
1706                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1707                     atomic_read(&dev_priv->mm.wedged)) {
1708                         i915_gem_retire_request(dev, request);
1709
1710                         list_del(&request->list);
1711                         list_del(&request->client_list);
1712                         kfree(request);
1713                 } else
1714                         break;
1715         }
1716 }
1717
1718 void
1719 i915_gem_retire_work_handler(struct work_struct *work)
1720 {
1721         drm_i915_private_t *dev_priv;
1722         struct drm_device *dev;
1723
1724         dev_priv = container_of(work, drm_i915_private_t,
1725                                 mm.retire_work.work);
1726         dev = dev_priv->dev;
1727
1728         mutex_lock(&dev->struct_mutex);
1729         i915_gem_retire_requests(dev);
1730         if (!dev_priv->mm.suspended &&
1731             !list_empty(&dev_priv->mm.request_list))
1732                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1733         mutex_unlock(&dev->struct_mutex);
1734 }
1735
1736 /**
1737  * Waits for a sequence number to be signaled, and cleans up the
1738  * request and object lists appropriately for that event.
1739  */
1740 static int
1741 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1742 {
1743         drm_i915_private_t *dev_priv = dev->dev_private;
1744         u32 ier;
1745         int ret = 0;
1746
1747         BUG_ON(seqno == 0);
1748
1749         if (atomic_read(&dev_priv->mm.wedged))
1750                 return -EIO;
1751
1752         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1753                 if (IS_IGDNG(dev))
1754                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1755                 else
1756                         ier = I915_READ(IER);
1757                 if (!ier) {
1758                         DRM_ERROR("something (likely vbetool) disabled "
1759                                   "interrupts, re-enabling\n");
1760                         i915_driver_irq_preinstall(dev);
1761                         i915_driver_irq_postinstall(dev);
1762                 }
1763
1764                 dev_priv->mm.waiting_gem_seqno = seqno;
1765                 i915_user_irq_get(dev);
1766                 ret = wait_event_interruptible(dev_priv->irq_queue,
1767                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1768                                                                  seqno) ||
1769                                                atomic_read(&dev_priv->mm.wedged));
1770                 i915_user_irq_put(dev);
1771                 dev_priv->mm.waiting_gem_seqno = 0;
1772         }
1773         if (atomic_read(&dev_priv->mm.wedged))
1774                 ret = -EIO;
1775
1776         if (ret && ret != -ERESTARTSYS)
1777                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1778                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1779
1780         /* Directly dispatch request retiring.  While we have the work queue
1781          * to handle this, the waiter on a request often wants an associated
1782          * buffer to have made it to the inactive list, and we would need
1783          * a separate wait queue to handle that.
1784          */
1785         if (ret == 0)
1786                 i915_gem_retire_requests(dev);
1787
1788         return ret;
1789 }
1790
1791 static void
1792 i915_gem_flush(struct drm_device *dev,
1793                uint32_t invalidate_domains,
1794                uint32_t flush_domains)
1795 {
1796         drm_i915_private_t *dev_priv = dev->dev_private;
1797         uint32_t cmd;
1798         RING_LOCALS;
1799
1800 #if WATCH_EXEC
1801         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1802                   invalidate_domains, flush_domains);
1803 #endif
1804
1805         if (flush_domains & I915_GEM_DOMAIN_CPU)
1806                 drm_agp_chipset_flush(dev);
1807
1808         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1809                 /*
1810                  * read/write caches:
1811                  *
1812                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1813                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1814                  * also flushed at 2d versus 3d pipeline switches.
1815                  *
1816                  * read-only caches:
1817                  *
1818                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1819                  * MI_READ_FLUSH is set, and is always flushed on 965.
1820                  *
1821                  * I915_GEM_DOMAIN_COMMAND may not exist?
1822                  *
1823                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1824                  * invalidated when MI_EXE_FLUSH is set.
1825                  *
1826                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1827                  * invalidated with every MI_FLUSH.
1828                  *
1829                  * TLBs:
1830                  *
1831                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1832                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1833                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1834                  * are flushed at any MI_FLUSH.
1835                  */
1836
1837                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1838                 if ((invalidate_domains|flush_domains) &
1839                     I915_GEM_DOMAIN_RENDER)
1840                         cmd &= ~MI_NO_WRITE_FLUSH;
1841                 if (!IS_I965G(dev)) {
1842                         /*
1843                          * On the 965, the sampler cache always gets flushed
1844                          * and this bit is reserved.
1845                          */
1846                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1847                                 cmd |= MI_READ_FLUSH;
1848                 }
1849                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1850                         cmd |= MI_EXE_FLUSH;
1851
1852 #if WATCH_EXEC
1853                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1854 #endif
1855                 BEGIN_LP_RING(2);
1856                 OUT_RING(cmd);
1857                 OUT_RING(0); /* noop */
1858                 ADVANCE_LP_RING();
1859         }
1860 }
1861
1862 /**
1863  * Ensures that all rendering to the object has completed and the object is
1864  * safe to unbind from the GTT or access from the CPU.
1865  */
1866 static int
1867 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1868 {
1869         struct drm_device *dev = obj->dev;
1870         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1871         int ret;
1872
1873         /* This function only exists to support waiting for existing rendering,
1874          * not for emitting required flushes.
1875          */
1876         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1877
1878         /* If there is rendering queued on the buffer being evicted, wait for
1879          * it.
1880          */
1881         if (obj_priv->active) {
1882 #if WATCH_BUF
1883                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1884                           __func__, obj, obj_priv->last_rendering_seqno);
1885 #endif
1886                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1887                 if (ret != 0)
1888                         return ret;
1889         }
1890
1891         return 0;
1892 }
1893
1894 /**
1895  * Unbinds an object from the GTT aperture.
1896  */
1897 int
1898 i915_gem_object_unbind(struct drm_gem_object *obj)
1899 {
1900         struct drm_device *dev = obj->dev;
1901         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1902         int ret = 0;
1903
1904 #if WATCH_BUF
1905         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1906         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1907 #endif
1908         if (obj_priv->gtt_space == NULL)
1909                 return 0;
1910
1911         if (obj_priv->pin_count != 0) {
1912                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1913                 return -EINVAL;
1914         }
1915
1916         /* blow away mappings if mapped through GTT */
1917         i915_gem_release_mmap(obj);
1918
1919         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1920                 i915_gem_clear_fence_reg(obj);
1921
1922         /* Move the object to the CPU domain to ensure that
1923          * any possible CPU writes while it's not in the GTT
1924          * are flushed when we go to remap it. This will
1925          * also ensure that all pending GPU writes are finished
1926          * before we unbind.
1927          */
1928         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1929         if (ret) {
1930                 if (ret != -ERESTARTSYS)
1931                         DRM_ERROR("set_domain failed: %d\n", ret);
1932                 return ret;
1933         }
1934
1935         BUG_ON(obj_priv->active);
1936
1937         if (obj_priv->agp_mem != NULL) {
1938                 drm_unbind_agp(obj_priv->agp_mem);
1939                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1940                 obj_priv->agp_mem = NULL;
1941         }
1942
1943         i915_gem_object_put_pages(obj);
1944
1945         if (obj_priv->gtt_space) {
1946                 atomic_dec(&dev->gtt_count);
1947                 atomic_sub(obj->size, &dev->gtt_memory);
1948
1949                 drm_mm_put_block(obj_priv->gtt_space);
1950                 obj_priv->gtt_space = NULL;
1951         }
1952
1953         /* Remove ourselves from the LRU list if present. */
1954         if (!list_empty(&obj_priv->list))
1955                 list_del_init(&obj_priv->list);
1956
1957         return 0;
1958 }
1959
1960 static int
1961 i915_gem_evict_something(struct drm_device *dev)
1962 {
1963         drm_i915_private_t *dev_priv = dev->dev_private;
1964         struct drm_gem_object *obj;
1965         struct drm_i915_gem_object *obj_priv;
1966         int ret = 0;
1967
1968         for (;;) {
1969                 /* If there's an inactive buffer available now, grab it
1970                  * and be done.
1971                  */
1972                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1973                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1974                                                     struct drm_i915_gem_object,
1975                                                     list);
1976                         obj = obj_priv->obj;
1977                         BUG_ON(obj_priv->pin_count != 0);
1978 #if WATCH_LRU
1979                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1980 #endif
1981                         BUG_ON(obj_priv->active);
1982
1983                         /* Wait on the rendering and unbind the buffer. */
1984                         ret = i915_gem_object_unbind(obj);
1985                         break;
1986                 }
1987
1988                 /* If we didn't get anything, but the ring is still processing
1989                  * things, wait for one of those things to finish and hopefully
1990                  * leave us a buffer to evict.
1991                  */
1992                 if (!list_empty(&dev_priv->mm.request_list)) {
1993                         struct drm_i915_gem_request *request;
1994
1995                         request = list_first_entry(&dev_priv->mm.request_list,
1996                                                    struct drm_i915_gem_request,
1997                                                    list);
1998
1999                         ret = i915_wait_request(dev, request->seqno);
2000                         if (ret)
2001                                 break;
2002
2003                         /* if waiting caused an object to become inactive,
2004                          * then loop around and wait for it. Otherwise, we
2005                          * assume that waiting freed and unbound something,
2006                          * so there should now be some space in the GTT
2007                          */
2008                         if (!list_empty(&dev_priv->mm.inactive_list))
2009                                 continue;
2010                         break;
2011                 }
2012
2013                 /* If we didn't have anything on the request list but there
2014                  * are buffers awaiting a flush, emit one and try again.
2015                  * When we wait on it, those buffers waiting for that flush
2016                  * will get moved to inactive.
2017                  */
2018                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2019                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2020                                                     struct drm_i915_gem_object,
2021                                                     list);
2022                         obj = obj_priv->obj;
2023
2024                         i915_gem_flush(dev,
2025                                        obj->write_domain,
2026                                        obj->write_domain);
2027                         i915_add_request(dev, NULL, obj->write_domain);
2028
2029                         obj = NULL;
2030                         continue;
2031                 }
2032
2033                 DRM_ERROR("inactive empty %d request empty %d "
2034                           "flushing empty %d\n",
2035                           list_empty(&dev_priv->mm.inactive_list),
2036                           list_empty(&dev_priv->mm.request_list),
2037                           list_empty(&dev_priv->mm.flushing_list));
2038                 /* If we didn't do any of the above, there's nothing to be done
2039                  * and we just can't fit it in.
2040                  */
2041                 return -ENOSPC;
2042         }
2043         return ret;
2044 }
2045
2046 static int
2047 i915_gem_evict_everything(struct drm_device *dev)
2048 {
2049         int ret;
2050
2051         for (;;) {
2052                 ret = i915_gem_evict_something(dev);
2053                 if (ret != 0)
2054                         break;
2055         }
2056         if (ret == -ENOSPC)
2057                 return 0;
2058         return ret;
2059 }
2060
2061 int
2062 i915_gem_object_get_pages(struct drm_gem_object *obj)
2063 {
2064         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2065         int page_count, i;
2066         struct address_space *mapping;
2067         struct inode *inode;
2068         struct page *page;
2069         int ret;
2070
2071         if (obj_priv->pages_refcount++ != 0)
2072                 return 0;
2073
2074         /* Get the list of pages out of our struct file.  They'll be pinned
2075          * at this point until we release them.
2076          */
2077         page_count = obj->size / PAGE_SIZE;
2078         BUG_ON(obj_priv->pages != NULL);
2079         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2080         if (obj_priv->pages == NULL) {
2081                 DRM_ERROR("Faled to allocate page list\n");
2082                 obj_priv->pages_refcount--;
2083                 return -ENOMEM;
2084         }
2085
2086         inode = obj->filp->f_path.dentry->d_inode;
2087         mapping = inode->i_mapping;
2088         for (i = 0; i < page_count; i++) {
2089                 page = read_mapping_page(mapping, i, NULL);
2090                 if (IS_ERR(page)) {
2091                         ret = PTR_ERR(page);
2092                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2093                         i915_gem_object_put_pages(obj);
2094                         return ret;
2095                 }
2096                 obj_priv->pages[i] = page;
2097         }
2098
2099         if (obj_priv->tiling_mode != I915_TILING_NONE)
2100                 i915_gem_object_do_bit_17_swizzle(obj);
2101
2102         return 0;
2103 }
2104
2105 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2106 {
2107         struct drm_gem_object *obj = reg->obj;
2108         struct drm_device *dev = obj->dev;
2109         drm_i915_private_t *dev_priv = dev->dev_private;
2110         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2111         int regnum = obj_priv->fence_reg;
2112         uint64_t val;
2113
2114         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2115                     0xfffff000) << 32;
2116         val |= obj_priv->gtt_offset & 0xfffff000;
2117         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2118         if (obj_priv->tiling_mode == I915_TILING_Y)
2119                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2120         val |= I965_FENCE_REG_VALID;
2121
2122         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2123 }
2124
2125 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2126 {
2127         struct drm_gem_object *obj = reg->obj;
2128         struct drm_device *dev = obj->dev;
2129         drm_i915_private_t *dev_priv = dev->dev_private;
2130         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2131         int regnum = obj_priv->fence_reg;
2132         int tile_width;
2133         uint32_t fence_reg, val;
2134         uint32_t pitch_val;
2135
2136         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2137             (obj_priv->gtt_offset & (obj->size - 1))) {
2138                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2139                      __func__, obj_priv->gtt_offset, obj->size);
2140                 return;
2141         }
2142
2143         if (obj_priv->tiling_mode == I915_TILING_Y &&
2144             HAS_128_BYTE_Y_TILING(dev))
2145                 tile_width = 128;
2146         else
2147                 tile_width = 512;
2148
2149         /* Note: pitch better be a power of two tile widths */
2150         pitch_val = obj_priv->stride / tile_width;
2151         pitch_val = ffs(pitch_val) - 1;
2152
2153         val = obj_priv->gtt_offset;
2154         if (obj_priv->tiling_mode == I915_TILING_Y)
2155                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2156         val |= I915_FENCE_SIZE_BITS(obj->size);
2157         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2158         val |= I830_FENCE_REG_VALID;
2159
2160         if (regnum < 8)
2161                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2162         else
2163                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2164         I915_WRITE(fence_reg, val);
2165 }
2166
2167 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2168 {
2169         struct drm_gem_object *obj = reg->obj;
2170         struct drm_device *dev = obj->dev;
2171         drm_i915_private_t *dev_priv = dev->dev_private;
2172         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2173         int regnum = obj_priv->fence_reg;
2174         uint32_t val;
2175         uint32_t pitch_val;
2176         uint32_t fence_size_bits;
2177
2178         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2179             (obj_priv->gtt_offset & (obj->size - 1))) {
2180                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2181                      __func__, obj_priv->gtt_offset);
2182                 return;
2183         }
2184
2185         pitch_val = obj_priv->stride / 128;
2186         pitch_val = ffs(pitch_val) - 1;
2187         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2188
2189         val = obj_priv->gtt_offset;
2190         if (obj_priv->tiling_mode == I915_TILING_Y)
2191                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2192         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2193         WARN_ON(fence_size_bits & ~0x00000f00);
2194         val |= fence_size_bits;
2195         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2196         val |= I830_FENCE_REG_VALID;
2197
2198         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2199 }
2200
2201 /**
2202  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2203  * @obj: object to map through a fence reg
2204  *
2205  * When mapping objects through the GTT, userspace wants to be able to write
2206  * to them without having to worry about swizzling if the object is tiled.
2207  *
2208  * This function walks the fence regs looking for a free one for @obj,
2209  * stealing one if it can't find any.
2210  *
2211  * It then sets up the reg based on the object's properties: address, pitch
2212  * and tiling format.
2213  */
2214 int
2215 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2216 {
2217         struct drm_device *dev = obj->dev;
2218         struct drm_i915_private *dev_priv = dev->dev_private;
2219         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2220         struct drm_i915_fence_reg *reg = NULL;
2221         struct drm_i915_gem_object *old_obj_priv = NULL;
2222         int i, ret, avail;
2223
2224         /* Just update our place in the LRU if our fence is getting used. */
2225         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2226                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2227                 return 0;
2228         }
2229
2230         switch (obj_priv->tiling_mode) {
2231         case I915_TILING_NONE:
2232                 WARN(1, "allocating a fence for non-tiled object?\n");
2233                 break;
2234         case I915_TILING_X:
2235                 if (!obj_priv->stride)
2236                         return -EINVAL;
2237                 WARN((obj_priv->stride & (512 - 1)),
2238                      "object 0x%08x is X tiled but has non-512B pitch\n",
2239                      obj_priv->gtt_offset);
2240                 break;
2241         case I915_TILING_Y:
2242                 if (!obj_priv->stride)
2243                         return -EINVAL;
2244                 WARN((obj_priv->stride & (128 - 1)),
2245                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2246                      obj_priv->gtt_offset);
2247                 break;
2248         }
2249
2250         /* First try to find a free reg */
2251         avail = 0;
2252         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2253                 reg = &dev_priv->fence_regs[i];
2254                 if (!reg->obj)
2255                         break;
2256
2257                 old_obj_priv = reg->obj->driver_private;
2258                 if (!old_obj_priv->pin_count)
2259                     avail++;
2260         }
2261
2262         /* None available, try to steal one or wait for a user to finish */
2263         if (i == dev_priv->num_fence_regs) {
2264                 struct drm_gem_object *old_obj = NULL;
2265
2266                 if (avail == 0)
2267                         return -ENOSPC;
2268
2269                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2270                                     fence_list) {
2271                         old_obj = old_obj_priv->obj;
2272
2273                         if (old_obj_priv->pin_count)
2274                                 continue;
2275
2276                         /* Take a reference, as otherwise the wait_rendering
2277                          * below may cause the object to get freed out from
2278                          * under us.
2279                          */
2280                         drm_gem_object_reference(old_obj);
2281
2282                         /* i915 uses fences for GPU access to tiled buffers */
2283                         if (IS_I965G(dev) || !old_obj_priv->active)
2284                                 break;
2285
2286                         /* This brings the object to the head of the LRU if it
2287                          * had been written to.  The only way this should
2288                          * result in us waiting longer than the expected
2289                          * optimal amount of time is if there was a
2290                          * fence-using buffer later that was read-only.
2291                          */
2292                         i915_gem_object_flush_gpu_write_domain(old_obj);
2293                         ret = i915_gem_object_wait_rendering(old_obj);
2294                         if (ret != 0) {
2295                                 drm_gem_object_unreference(old_obj);
2296                                 return ret;
2297                         }
2298
2299                         break;
2300                 }
2301
2302                 /*
2303                  * Zap this virtual mapping so we can set up a fence again
2304                  * for this object next time we need it.
2305                  */
2306                 i915_gem_release_mmap(old_obj);
2307
2308                 i = old_obj_priv->fence_reg;
2309                 reg = &dev_priv->fence_regs[i];
2310
2311                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2312                 list_del_init(&old_obj_priv->fence_list);
2313
2314                 drm_gem_object_unreference(old_obj);
2315         }
2316
2317         obj_priv->fence_reg = i;
2318         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2319
2320         reg->obj = obj;
2321
2322         if (IS_I965G(dev))
2323                 i965_write_fence_reg(reg);
2324         else if (IS_I9XX(dev))
2325                 i915_write_fence_reg(reg);
2326         else
2327                 i830_write_fence_reg(reg);
2328
2329         return 0;
2330 }
2331
2332 /**
2333  * i915_gem_clear_fence_reg - clear out fence register info
2334  * @obj: object to clear
2335  *
2336  * Zeroes out the fence register itself and clears out the associated
2337  * data structures in dev_priv and obj_priv.
2338  */
2339 static void
2340 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2341 {
2342         struct drm_device *dev = obj->dev;
2343         drm_i915_private_t *dev_priv = dev->dev_private;
2344         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2345
2346         if (IS_I965G(dev))
2347                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2348         else {
2349                 uint32_t fence_reg;
2350
2351                 if (obj_priv->fence_reg < 8)
2352                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2353                 else
2354                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2355                                                        8) * 4;
2356
2357                 I915_WRITE(fence_reg, 0);
2358         }
2359
2360         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2361         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2362         list_del_init(&obj_priv->fence_list);
2363 }
2364
2365 /**
2366  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2367  * to the buffer to finish, and then resets the fence register.
2368  * @obj: tiled object holding a fence register.
2369  *
2370  * Zeroes out the fence register itself and clears out the associated
2371  * data structures in dev_priv and obj_priv.
2372  */
2373 int
2374 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2375 {
2376         struct drm_device *dev = obj->dev;
2377         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2378
2379         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2380                 return 0;
2381
2382         /* On the i915, GPU access to tiled buffers is via a fence,
2383          * therefore we must wait for any outstanding access to complete
2384          * before clearing the fence.
2385          */
2386         if (!IS_I965G(dev)) {
2387                 int ret;
2388
2389                 i915_gem_object_flush_gpu_write_domain(obj);
2390                 i915_gem_object_flush_gtt_write_domain(obj);
2391                 ret = i915_gem_object_wait_rendering(obj);
2392                 if (ret != 0)
2393                         return ret;
2394         }
2395
2396         i915_gem_clear_fence_reg (obj);
2397
2398         return 0;
2399 }
2400
2401 /**
2402  * Finds free space in the GTT aperture and binds the object there.
2403  */
2404 static int
2405 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2406 {
2407         struct drm_device *dev = obj->dev;
2408         drm_i915_private_t *dev_priv = dev->dev_private;
2409         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2410         struct drm_mm_node *free_space;
2411         int page_count, ret;
2412
2413         if (dev_priv->mm.suspended)
2414                 return -EBUSY;
2415         if (alignment == 0)
2416                 alignment = i915_gem_get_gtt_alignment(obj);
2417         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2418                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2419                 return -EINVAL;
2420         }
2421
2422  search_free:
2423         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2424                                         obj->size, alignment, 0);
2425         if (free_space != NULL) {
2426                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2427                                                        alignment);
2428                 if (obj_priv->gtt_space != NULL) {
2429                         obj_priv->gtt_space->private = obj;
2430                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2431                 }
2432         }
2433         if (obj_priv->gtt_space == NULL) {
2434                 bool lists_empty;
2435
2436                 /* If the gtt is empty and we're still having trouble
2437                  * fitting our object in, we're out of memory.
2438                  */
2439 #if WATCH_LRU
2440                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2441 #endif
2442                 spin_lock(&dev_priv->mm.active_list_lock);
2443                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2444                                list_empty(&dev_priv->mm.flushing_list) &&
2445                                list_empty(&dev_priv->mm.active_list));
2446                 spin_unlock(&dev_priv->mm.active_list_lock);
2447                 if (lists_empty) {
2448                         DRM_ERROR("GTT full, but LRU list empty\n");
2449                         return -ENOSPC;
2450                 }
2451
2452                 ret = i915_gem_evict_something(dev);
2453                 if (ret != 0) {
2454                         if (ret != -ERESTARTSYS)
2455                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2456                         return ret;
2457                 }
2458                 goto search_free;
2459         }
2460
2461 #if WATCH_BUF
2462         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2463                  obj->size, obj_priv->gtt_offset);
2464 #endif
2465         ret = i915_gem_object_get_pages(obj);
2466         if (ret) {
2467                 drm_mm_put_block(obj_priv->gtt_space);
2468                 obj_priv->gtt_space = NULL;
2469                 return ret;
2470         }
2471
2472         page_count = obj->size / PAGE_SIZE;
2473         /* Create an AGP memory structure pointing at our pages, and bind it
2474          * into the GTT.
2475          */
2476         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2477                                                obj_priv->pages,
2478                                                page_count,
2479                                                obj_priv->gtt_offset,
2480                                                obj_priv->agp_type);
2481         if (obj_priv->agp_mem == NULL) {
2482                 i915_gem_object_put_pages(obj);
2483                 drm_mm_put_block(obj_priv->gtt_space);
2484                 obj_priv->gtt_space = NULL;
2485                 return -ENOMEM;
2486         }
2487         atomic_inc(&dev->gtt_count);
2488         atomic_add(obj->size, &dev->gtt_memory);
2489
2490         /* Assert that the object is not currently in any GPU domain. As it
2491          * wasn't in the GTT, there shouldn't be any way it could have been in
2492          * a GPU cache
2493          */
2494         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2495         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2496
2497         return 0;
2498 }
2499
2500 void
2501 i915_gem_clflush_object(struct drm_gem_object *obj)
2502 {
2503         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2504
2505         /* If we don't have a page list set up, then we're not pinned
2506          * to GPU, and we can ignore the cache flush because it'll happen
2507          * again at bind time.
2508          */
2509         if (obj_priv->pages == NULL)
2510                 return;
2511
2512         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2513 }
2514
2515 /** Flushes any GPU write domain for the object if it's dirty. */
2516 static void
2517 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2518 {
2519         struct drm_device *dev = obj->dev;
2520         uint32_t seqno;
2521
2522         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2523                 return;
2524
2525         /* Queue the GPU write cache flushing we need. */
2526         i915_gem_flush(dev, 0, obj->write_domain);
2527         seqno = i915_add_request(dev, NULL, obj->write_domain);
2528         obj->write_domain = 0;
2529         i915_gem_object_move_to_active(obj, seqno);
2530 }
2531
2532 /** Flushes the GTT write domain for the object if it's dirty. */
2533 static void
2534 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2535 {
2536         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2537                 return;
2538
2539         /* No actual flushing is required for the GTT write domain.   Writes
2540          * to it immediately go to main memory as far as we know, so there's
2541          * no chipset flush.  It also doesn't land in render cache.
2542          */
2543         obj->write_domain = 0;
2544 }
2545
2546 /** Flushes the CPU write domain for the object if it's dirty. */
2547 static void
2548 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2549 {
2550         struct drm_device *dev = obj->dev;
2551
2552         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2553                 return;
2554
2555         i915_gem_clflush_object(obj);
2556         drm_agp_chipset_flush(dev);
2557         obj->write_domain = 0;
2558 }
2559
2560 /**
2561  * Moves a single object to the GTT read, and possibly write domain.
2562  *
2563  * This function returns when the move is complete, including waiting on
2564  * flushes to occur.
2565  */
2566 int
2567 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2568 {
2569         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2570         int ret;
2571
2572         /* Not valid to be called on unbound objects. */
2573         if (obj_priv->gtt_space == NULL)
2574                 return -EINVAL;
2575
2576         i915_gem_object_flush_gpu_write_domain(obj);
2577         /* Wait on any GPU rendering and flushing to occur. */
2578         ret = i915_gem_object_wait_rendering(obj);
2579         if (ret != 0)
2580                 return ret;
2581
2582         /* If we're writing through the GTT domain, then CPU and GPU caches
2583          * will need to be invalidated at next use.
2584          */
2585         if (write)
2586                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2587
2588         i915_gem_object_flush_cpu_write_domain(obj);
2589
2590         /* It should now be out of any other write domains, and we can update
2591          * the domain values for our changes.
2592          */
2593         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2594         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2595         if (write) {
2596                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2597                 obj_priv->dirty = 1;
2598         }
2599
2600         return 0;
2601 }
2602
2603 /**
2604  * Moves a single object to the CPU read, and possibly write domain.
2605  *
2606  * This function returns when the move is complete, including waiting on
2607  * flushes to occur.
2608  */
2609 static int
2610 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2611 {
2612         int ret;
2613
2614         i915_gem_object_flush_gpu_write_domain(obj);
2615         /* Wait on any GPU rendering and flushing to occur. */
2616         ret = i915_gem_object_wait_rendering(obj);
2617         if (ret != 0)
2618                 return ret;
2619
2620         i915_gem_object_flush_gtt_write_domain(obj);
2621
2622         /* If we have a partially-valid cache of the object in the CPU,
2623          * finish invalidating it and free the per-page flags.
2624          */
2625         i915_gem_object_set_to_full_cpu_read_domain(obj);
2626
2627         /* Flush the CPU cache if it's still invalid. */
2628         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2629                 i915_gem_clflush_object(obj);
2630
2631                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2632         }
2633
2634         /* It should now be out of any other write domains, and we can update
2635          * the domain values for our changes.
2636          */
2637         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2638
2639         /* If we're writing through the CPU, then the GPU read domains will
2640          * need to be invalidated at next use.
2641          */
2642         if (write) {
2643                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2644                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2645         }
2646
2647         return 0;
2648 }
2649
2650 /*
2651  * Set the next domain for the specified object. This
2652  * may not actually perform the necessary flushing/invaliding though,
2653  * as that may want to be batched with other set_domain operations
2654  *
2655  * This is (we hope) the only really tricky part of gem. The goal
2656  * is fairly simple -- track which caches hold bits of the object
2657  * and make sure they remain coherent. A few concrete examples may
2658  * help to explain how it works. For shorthand, we use the notation
2659  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2660  * a pair of read and write domain masks.
2661  *
2662  * Case 1: the batch buffer
2663  *
2664  *      1. Allocated
2665  *      2. Written by CPU
2666  *      3. Mapped to GTT
2667  *      4. Read by GPU
2668  *      5. Unmapped from GTT
2669  *      6. Freed
2670  *
2671  *      Let's take these a step at a time
2672  *
2673  *      1. Allocated
2674  *              Pages allocated from the kernel may still have
2675  *              cache contents, so we set them to (CPU, CPU) always.
2676  *      2. Written by CPU (using pwrite)
2677  *              The pwrite function calls set_domain (CPU, CPU) and
2678  *              this function does nothing (as nothing changes)
2679  *      3. Mapped by GTT
2680  *              This function asserts that the object is not
2681  *              currently in any GPU-based read or write domains
2682  *      4. Read by GPU
2683  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2684  *              As write_domain is zero, this function adds in the
2685  *              current read domains (CPU+COMMAND, 0).
2686  *              flush_domains is set to CPU.
2687  *              invalidate_domains is set to COMMAND
2688  *              clflush is run to get data out of the CPU caches
2689  *              then i915_dev_set_domain calls i915_gem_flush to
2690  *              emit an MI_FLUSH and drm_agp_chipset_flush
2691  *      5. Unmapped from GTT
2692  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2693  *              flush_domains and invalidate_domains end up both zero
2694  *              so no flushing/invalidating happens
2695  *      6. Freed
2696  *              yay, done
2697  *
2698  * Case 2: The shared render buffer
2699  *
2700  *      1. Allocated
2701  *      2. Mapped to GTT
2702  *      3. Read/written by GPU
2703  *      4. set_domain to (CPU,CPU)
2704  *      5. Read/written by CPU
2705  *      6. Read/written by GPU
2706  *
2707  *      1. Allocated
2708  *              Same as last example, (CPU, CPU)
2709  *      2. Mapped to GTT
2710  *              Nothing changes (assertions find that it is not in the GPU)
2711  *      3. Read/written by GPU
2712  *              execbuffer calls set_domain (RENDER, RENDER)
2713  *              flush_domains gets CPU
2714  *              invalidate_domains gets GPU
2715  *              clflush (obj)
2716  *              MI_FLUSH and drm_agp_chipset_flush
2717  *      4. set_domain (CPU, CPU)
2718  *              flush_domains gets GPU
2719  *              invalidate_domains gets CPU
2720  *              wait_rendering (obj) to make sure all drawing is complete.
2721  *              This will include an MI_FLUSH to get the data from GPU
2722  *              to memory
2723  *              clflush (obj) to invalidate the CPU cache
2724  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2725  *      5. Read/written by CPU
2726  *              cache lines are loaded and dirtied
2727  *      6. Read written by GPU
2728  *              Same as last GPU access
2729  *
2730  * Case 3: The constant buffer
2731  *
2732  *      1. Allocated
2733  *      2. Written by CPU
2734  *      3. Read by GPU
2735  *      4. Updated (written) by CPU again
2736  *      5. Read by GPU
2737  *
2738  *      1. Allocated
2739  *              (CPU, CPU)
2740  *      2. Written by CPU
2741  *              (CPU, CPU)
2742  *      3. Read by GPU
2743  *              (CPU+RENDER, 0)
2744  *              flush_domains = CPU
2745  *              invalidate_domains = RENDER
2746  *              clflush (obj)
2747  *              MI_FLUSH
2748  *              drm_agp_chipset_flush
2749  *      4. Updated (written) by CPU again
2750  *              (CPU, CPU)
2751  *              flush_domains = 0 (no previous write domain)
2752  *              invalidate_domains = 0 (no new read domains)
2753  *      5. Read by GPU
2754  *              (CPU+RENDER, 0)
2755  *              flush_domains = CPU
2756  *              invalidate_domains = RENDER
2757  *              clflush (obj)
2758  *              MI_FLUSH
2759  *              drm_agp_chipset_flush
2760  */
2761 static void
2762 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2763 {
2764         struct drm_device               *dev = obj->dev;
2765         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2766         uint32_t                        invalidate_domains = 0;
2767         uint32_t                        flush_domains = 0;
2768
2769         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2770         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2771
2772         intel_mark_busy(dev, obj);
2773
2774 #if WATCH_BUF
2775         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2776                  __func__, obj,
2777                  obj->read_domains, obj->pending_read_domains,
2778                  obj->write_domain, obj->pending_write_domain);
2779 #endif
2780         /*
2781          * If the object isn't moving to a new write domain,
2782          * let the object stay in multiple read domains
2783          */
2784         if (obj->pending_write_domain == 0)
2785                 obj->pending_read_domains |= obj->read_domains;
2786         else
2787                 obj_priv->dirty = 1;
2788
2789         /*
2790          * Flush the current write domain if
2791          * the new read domains don't match. Invalidate
2792          * any read domains which differ from the old
2793          * write domain
2794          */
2795         if (obj->write_domain &&
2796             obj->write_domain != obj->pending_read_domains) {
2797                 flush_domains |= obj->write_domain;
2798                 invalidate_domains |=
2799                         obj->pending_read_domains & ~obj->write_domain;
2800         }
2801         /*
2802          * Invalidate any read caches which may have
2803          * stale data. That is, any new read domains.
2804          */
2805         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2806         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2807 #if WATCH_BUF
2808                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2809                          __func__, flush_domains, invalidate_domains);
2810 #endif
2811                 i915_gem_clflush_object(obj);
2812         }
2813
2814         /* The actual obj->write_domain will be updated with
2815          * pending_write_domain after we emit the accumulated flush for all
2816          * of our domain changes in execbuffers (which clears objects'
2817          * write_domains).  So if we have a current write domain that we
2818          * aren't changing, set pending_write_domain to that.
2819          */
2820         if (flush_domains == 0 && obj->pending_write_domain == 0)
2821                 obj->pending_write_domain = obj->write_domain;
2822         obj->read_domains = obj->pending_read_domains;
2823
2824         dev->invalidate_domains |= invalidate_domains;
2825         dev->flush_domains |= flush_domains;
2826 #if WATCH_BUF
2827         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2828                  __func__,
2829                  obj->read_domains, obj->write_domain,
2830                  dev->invalidate_domains, dev->flush_domains);
2831 #endif
2832 }
2833
2834 /**
2835  * Moves the object from a partially CPU read to a full one.
2836  *
2837  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2838  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2839  */
2840 static void
2841 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2842 {
2843         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2844
2845         if (!obj_priv->page_cpu_valid)
2846                 return;
2847
2848         /* If we're partially in the CPU read domain, finish moving it in.
2849          */
2850         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2851                 int i;
2852
2853                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2854                         if (obj_priv->page_cpu_valid[i])
2855                                 continue;
2856                         drm_clflush_pages(obj_priv->pages + i, 1);
2857                 }
2858         }
2859
2860         /* Free the page_cpu_valid mappings which are now stale, whether
2861          * or not we've got I915_GEM_DOMAIN_CPU.
2862          */
2863         kfree(obj_priv->page_cpu_valid);
2864         obj_priv->page_cpu_valid = NULL;
2865 }
2866
2867 /**
2868  * Set the CPU read domain on a range of the object.
2869  *
2870  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2871  * not entirely valid.  The page_cpu_valid member of the object flags which
2872  * pages have been flushed, and will be respected by
2873  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2874  * of the whole object.
2875  *
2876  * This function returns when the move is complete, including waiting on
2877  * flushes to occur.
2878  */
2879 static int
2880 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2881                                           uint64_t offset, uint64_t size)
2882 {
2883         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2884         int i, ret;
2885
2886         if (offset == 0 && size == obj->size)
2887                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2888
2889         i915_gem_object_flush_gpu_write_domain(obj);
2890         /* Wait on any GPU rendering and flushing to occur. */
2891         ret = i915_gem_object_wait_rendering(obj);
2892         if (ret != 0)
2893                 return ret;
2894         i915_gem_object_flush_gtt_write_domain(obj);
2895
2896         /* If we're already fully in the CPU read domain, we're done. */
2897         if (obj_priv->page_cpu_valid == NULL &&
2898             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2899                 return 0;
2900
2901         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2902          * newly adding I915_GEM_DOMAIN_CPU
2903          */
2904         if (obj_priv->page_cpu_valid == NULL) {
2905                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2906                                                    GFP_KERNEL);
2907                 if (obj_priv->page_cpu_valid == NULL)
2908                         return -ENOMEM;
2909         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2910                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2911
2912         /* Flush the cache on any pages that are still invalid from the CPU's
2913          * perspective.
2914          */
2915         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2916              i++) {
2917                 if (obj_priv->page_cpu_valid[i])
2918                         continue;
2919
2920                 drm_clflush_pages(obj_priv->pages + i, 1);
2921
2922                 obj_priv->page_cpu_valid[i] = 1;
2923         }
2924
2925         /* It should now be out of any other write domains, and we can update
2926          * the domain values for our changes.
2927          */
2928         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2929
2930         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2931
2932         return 0;
2933 }
2934
2935 /**
2936  * Pin an object to the GTT and evaluate the relocations landing in it.
2937  */
2938 static int
2939 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2940                                  struct drm_file *file_priv,
2941                                  struct drm_i915_gem_exec_object *entry,
2942                                  struct drm_i915_gem_relocation_entry *relocs)
2943 {
2944         struct drm_device *dev = obj->dev;
2945         drm_i915_private_t *dev_priv = dev->dev_private;
2946         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2947         int i, ret;
2948         void __iomem *reloc_page;
2949
2950         /* Choose the GTT offset for our buffer and put it there. */
2951         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2952         if (ret)
2953                 return ret;
2954
2955         entry->offset = obj_priv->gtt_offset;
2956
2957         /* Apply the relocations, using the GTT aperture to avoid cache
2958          * flushing requirements.
2959          */
2960         for (i = 0; i < entry->relocation_count; i++) {
2961                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2962                 struct drm_gem_object *target_obj;
2963                 struct drm_i915_gem_object *target_obj_priv;
2964                 uint32_t reloc_val, reloc_offset;
2965                 uint32_t __iomem *reloc_entry;
2966
2967                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2968                                                    reloc->target_handle);
2969                 if (target_obj == NULL) {
2970                         i915_gem_object_unpin(obj);
2971                         return -EBADF;
2972                 }
2973                 target_obj_priv = target_obj->driver_private;
2974
2975                 /* The target buffer should have appeared before us in the
2976                  * exec_object list, so it should have a GTT space bound by now.
2977                  */
2978                 if (target_obj_priv->gtt_space == NULL) {
2979                         DRM_ERROR("No GTT space found for object %d\n",
2980                                   reloc->target_handle);
2981                         drm_gem_object_unreference(target_obj);
2982                         i915_gem_object_unpin(obj);
2983                         return -EINVAL;
2984                 }
2985
2986                 if (reloc->offset > obj->size - 4) {
2987                         DRM_ERROR("Relocation beyond object bounds: "
2988                                   "obj %p target %d offset %d size %d.\n",
2989                                   obj, reloc->target_handle,
2990                                   (int) reloc->offset, (int) obj->size);
2991                         drm_gem_object_unreference(target_obj);
2992                         i915_gem_object_unpin(obj);
2993                         return -EINVAL;
2994                 }
2995                 if (reloc->offset & 3) {
2996                         DRM_ERROR("Relocation not 4-byte aligned: "
2997                                   "obj %p target %d offset %d.\n",
2998                                   obj, reloc->target_handle,
2999                                   (int) reloc->offset);
3000                         drm_gem_object_unreference(target_obj);
3001                         i915_gem_object_unpin(obj);
3002                         return -EINVAL;
3003                 }
3004
3005                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3006                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3007                         DRM_ERROR("reloc with read/write CPU domains: "
3008                                   "obj %p target %d offset %d "
3009                                   "read %08x write %08x",
3010                                   obj, reloc->target_handle,
3011                                   (int) reloc->offset,
3012                                   reloc->read_domains,
3013                                   reloc->write_domain);
3014                         drm_gem_object_unreference(target_obj);
3015                         i915_gem_object_unpin(obj);
3016                         return -EINVAL;
3017                 }
3018
3019                 if (reloc->write_domain && target_obj->pending_write_domain &&
3020                     reloc->write_domain != target_obj->pending_write_domain) {
3021                         DRM_ERROR("Write domain conflict: "
3022                                   "obj %p target %d offset %d "
3023                                   "new %08x old %08x\n",
3024                                   obj, reloc->target_handle,
3025                                   (int) reloc->offset,
3026                                   reloc->write_domain,
3027                                   target_obj->pending_write_domain);
3028                         drm_gem_object_unreference(target_obj);
3029                         i915_gem_object_unpin(obj);
3030                         return -EINVAL;
3031                 }
3032
3033 #if WATCH_RELOC
3034                 DRM_INFO("%s: obj %p offset %08x target %d "
3035                          "read %08x write %08x gtt %08x "
3036                          "presumed %08x delta %08x\n",
3037                          __func__,
3038                          obj,
3039                          (int) reloc->offset,
3040                          (int) reloc->target_handle,
3041                          (int) reloc->read_domains,
3042                          (int) reloc->write_domain,
3043                          (int) target_obj_priv->gtt_offset,
3044                          (int) reloc->presumed_offset,
3045                          reloc->delta);
3046 #endif
3047
3048                 target_obj->pending_read_domains |= reloc->read_domains;
3049                 target_obj->pending_write_domain |= reloc->write_domain;
3050
3051                 /* If the relocation already has the right value in it, no
3052                  * more work needs to be done.
3053                  */
3054                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3055                         drm_gem_object_unreference(target_obj);
3056                         continue;
3057                 }
3058
3059                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3060                 if (ret != 0) {
3061                         drm_gem_object_unreference(target_obj);
3062                         i915_gem_object_unpin(obj);
3063                         return -EINVAL;
3064                 }
3065
3066                 /* Map the page containing the relocation we're going to
3067                  * perform.
3068                  */
3069                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3070                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3071                                                       (reloc_offset &
3072                                                        ~(PAGE_SIZE - 1)));
3073                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3074                                                    (reloc_offset & (PAGE_SIZE - 1)));
3075                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3076
3077 #if WATCH_BUF
3078                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3079                           obj, (unsigned int) reloc->offset,
3080                           readl(reloc_entry), reloc_val);
3081 #endif
3082                 writel(reloc_val, reloc_entry);
3083                 io_mapping_unmap_atomic(reloc_page);
3084
3085                 /* The updated presumed offset for this entry will be
3086                  * copied back out to the user.
3087                  */
3088                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3089
3090                 drm_gem_object_unreference(target_obj);
3091         }
3092
3093 #if WATCH_BUF
3094         if (0)
3095                 i915_gem_dump_object(obj, 128, __func__, ~0);
3096 #endif
3097         return 0;
3098 }
3099
3100 /** Dispatch a batchbuffer to the ring
3101  */
3102 static int
3103 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3104                               struct drm_i915_gem_execbuffer *exec,
3105                               struct drm_clip_rect *cliprects,
3106                               uint64_t exec_offset)
3107 {
3108         drm_i915_private_t *dev_priv = dev->dev_private;
3109         int nbox = exec->num_cliprects;
3110         int i = 0, count;
3111         uint32_t exec_start, exec_len;
3112         RING_LOCALS;
3113
3114         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3115         exec_len = (uint32_t) exec->batch_len;
3116
3117         count = nbox ? nbox : 1;
3118
3119         for (i = 0; i < count; i++) {
3120                 if (i < nbox) {
3121                         int ret = i915_emit_box(dev, cliprects, i,
3122                                                 exec->DR1, exec->DR4);
3123                         if (ret)
3124                                 return ret;
3125                 }
3126
3127                 if (IS_I830(dev) || IS_845G(dev)) {
3128                         BEGIN_LP_RING(4);
3129                         OUT_RING(MI_BATCH_BUFFER);
3130                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3131                         OUT_RING(exec_start + exec_len - 4);
3132                         OUT_RING(0);
3133                         ADVANCE_LP_RING();
3134                 } else {
3135                         BEGIN_LP_RING(2);
3136                         if (IS_I965G(dev)) {
3137                                 OUT_RING(MI_BATCH_BUFFER_START |
3138                                          (2 << 6) |
3139                                          MI_BATCH_NON_SECURE_I965);
3140                                 OUT_RING(exec_start);
3141                         } else {
3142                                 OUT_RING(MI_BATCH_BUFFER_START |
3143                                          (2 << 6));
3144                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3145                         }
3146                         ADVANCE_LP_RING();
3147                 }
3148         }
3149
3150         /* XXX breadcrumb */
3151         return 0;
3152 }
3153
3154 /* Throttle our rendering by waiting until the ring has completed our requests
3155  * emitted over 20 msec ago.
3156  *
3157  * Note that if we were to use the current jiffies each time around the loop,
3158  * we wouldn't escape the function with any frames outstanding if the time to
3159  * render a frame was over 20ms.
3160  *
3161  * This should get us reasonable parallelism between CPU and GPU but also
3162  * relatively low latency when blocking on a particular request to finish.
3163  */
3164 static int
3165 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3166 {
3167         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3168         int ret = 0;
3169         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3170
3171         mutex_lock(&dev->struct_mutex);
3172         while (!list_empty(&i915_file_priv->mm.request_list)) {
3173                 struct drm_i915_gem_request *request;
3174
3175                 request = list_first_entry(&i915_file_priv->mm.request_list,
3176                                            struct drm_i915_gem_request,
3177                                            client_list);
3178
3179                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3180                         break;
3181
3182                 ret = i915_wait_request(dev, request->seqno);
3183                 if (ret != 0)
3184                         break;
3185         }
3186         mutex_unlock(&dev->struct_mutex);
3187
3188         return ret;
3189 }
3190
3191 static int
3192 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3193                               uint32_t buffer_count,
3194                               struct drm_i915_gem_relocation_entry **relocs)
3195 {
3196         uint32_t reloc_count = 0, reloc_index = 0, i;
3197         int ret;
3198
3199         *relocs = NULL;
3200         for (i = 0; i < buffer_count; i++) {
3201                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3202                         return -EINVAL;
3203                 reloc_count += exec_list[i].relocation_count;
3204         }
3205
3206         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3207         if (*relocs == NULL)
3208                 return -ENOMEM;
3209
3210         for (i = 0; i < buffer_count; i++) {
3211                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3212
3213                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3214
3215                 ret = copy_from_user(&(*relocs)[reloc_index],
3216                                      user_relocs,
3217                                      exec_list[i].relocation_count *
3218                                      sizeof(**relocs));
3219                 if (ret != 0) {
3220                         drm_free_large(*relocs);
3221                         *relocs = NULL;
3222                         return -EFAULT;
3223                 }
3224
3225                 reloc_index += exec_list[i].relocation_count;
3226         }
3227
3228         return 0;
3229 }
3230
3231 static int
3232 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3233                             uint32_t buffer_count,
3234                             struct drm_i915_gem_relocation_entry *relocs)
3235 {
3236         uint32_t reloc_count = 0, i;
3237         int ret = 0;
3238
3239         for (i = 0; i < buffer_count; i++) {
3240                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3241                 int unwritten;
3242
3243                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3244
3245                 unwritten = copy_to_user(user_relocs,
3246                                          &relocs[reloc_count],
3247                                          exec_list[i].relocation_count *
3248                                          sizeof(*relocs));
3249
3250                 if (unwritten) {
3251                         ret = -EFAULT;
3252                         goto err;
3253                 }
3254
3255                 reloc_count += exec_list[i].relocation_count;
3256         }
3257
3258 err:
3259         drm_free_large(relocs);
3260
3261         return ret;
3262 }
3263
3264 static int
3265 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3266                            uint64_t exec_offset)
3267 {
3268         uint32_t exec_start, exec_len;
3269
3270         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3271         exec_len = (uint32_t) exec->batch_len;
3272
3273         if ((exec_start | exec_len) & 0x7)
3274                 return -EINVAL;
3275
3276         if (!exec_start)
3277                 return -EINVAL;
3278
3279         return 0;
3280 }
3281
3282 int
3283 i915_gem_execbuffer(struct drm_device *dev, void *data,
3284                     struct drm_file *file_priv)
3285 {
3286         drm_i915_private_t *dev_priv = dev->dev_private;
3287         struct drm_i915_gem_execbuffer *args = data;
3288         struct drm_i915_gem_exec_object *exec_list = NULL;
3289         struct drm_gem_object **object_list = NULL;
3290         struct drm_gem_object *batch_obj;
3291         struct drm_i915_gem_object *obj_priv;
3292         struct drm_clip_rect *cliprects = NULL;
3293         struct drm_i915_gem_relocation_entry *relocs;
3294         int ret, ret2, i, pinned = 0;
3295         uint64_t exec_offset;
3296         uint32_t seqno, flush_domains, reloc_index;
3297         int pin_tries;
3298
3299 #if WATCH_EXEC
3300         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3301                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3302 #endif
3303
3304         if (args->buffer_count < 1) {
3305                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3306                 return -EINVAL;
3307         }
3308         /* Copy in the exec list from userland */
3309         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3310         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3311         if (exec_list == NULL || object_list == NULL) {
3312                 DRM_ERROR("Failed to allocate exec or object list "
3313                           "for %d buffers\n",
3314                           args->buffer_count);
3315                 ret = -ENOMEM;
3316                 goto pre_mutex_err;
3317         }
3318         ret = copy_from_user(exec_list,
3319                              (struct drm_i915_relocation_entry __user *)
3320                              (uintptr_t) args->buffers_ptr,
3321                              sizeof(*exec_list) * args->buffer_count);
3322         if (ret != 0) {
3323                 DRM_ERROR("copy %d exec entries failed %d\n",
3324                           args->buffer_count, ret);
3325                 goto pre_mutex_err;
3326         }
3327
3328         if (args->num_cliprects != 0) {
3329                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3330                                     GFP_KERNEL);
3331                 if (cliprects == NULL)
3332                         goto pre_mutex_err;
3333
3334                 ret = copy_from_user(cliprects,
3335                                      (struct drm_clip_rect __user *)
3336                                      (uintptr_t) args->cliprects_ptr,
3337                                      sizeof(*cliprects) * args->num_cliprects);
3338                 if (ret != 0) {
3339                         DRM_ERROR("copy %d cliprects failed: %d\n",
3340                                   args->num_cliprects, ret);
3341                         goto pre_mutex_err;
3342                 }
3343         }
3344
3345         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3346                                             &relocs);
3347         if (ret != 0)
3348                 goto pre_mutex_err;
3349
3350         mutex_lock(&dev->struct_mutex);
3351
3352         i915_verify_inactive(dev, __FILE__, __LINE__);
3353
3354         if (atomic_read(&dev_priv->mm.wedged)) {
3355                 DRM_ERROR("Execbuf while wedged\n");
3356                 mutex_unlock(&dev->struct_mutex);
3357                 ret = -EIO;
3358                 goto pre_mutex_err;
3359         }
3360
3361         if (dev_priv->mm.suspended) {
3362                 DRM_ERROR("Execbuf while VT-switched.\n");
3363                 mutex_unlock(&dev->struct_mutex);
3364                 ret = -EBUSY;
3365                 goto pre_mutex_err;
3366         }
3367
3368         /* Look up object handles */
3369         for (i = 0; i < args->buffer_count; i++) {
3370                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3371                                                        exec_list[i].handle);
3372                 if (object_list[i] == NULL) {
3373                         DRM_ERROR("Invalid object handle %d at index %d\n",
3374                                    exec_list[i].handle, i);
3375                         ret = -EBADF;
3376                         goto err;
3377                 }
3378
3379                 obj_priv = object_list[i]->driver_private;
3380                 if (obj_priv->in_execbuffer) {
3381                         DRM_ERROR("Object %p appears more than once in object list\n",
3382                                    object_list[i]);
3383                         ret = -EBADF;
3384                         goto err;
3385                 }
3386                 obj_priv->in_execbuffer = true;
3387         }
3388
3389         /* Pin and relocate */
3390         for (pin_tries = 0; ; pin_tries++) {
3391                 ret = 0;
3392                 reloc_index = 0;
3393
3394                 for (i = 0; i < args->buffer_count; i++) {
3395                         object_list[i]->pending_read_domains = 0;
3396                         object_list[i]->pending_write_domain = 0;
3397                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3398                                                                file_priv,
3399                                                                &exec_list[i],
3400                                                                &relocs[reloc_index]);
3401                         if (ret)
3402                                 break;
3403                         pinned = i + 1;
3404                         reloc_index += exec_list[i].relocation_count;
3405                 }
3406                 /* success */
3407                 if (ret == 0)
3408                         break;
3409
3410                 /* error other than GTT full, or we've already tried again */
3411                 if (ret != -ENOSPC || pin_tries >= 1) {
3412                         if (ret != -ERESTARTSYS)
3413                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3414                         goto err;
3415                 }
3416
3417                 /* unpin all of our buffers */
3418                 for (i = 0; i < pinned; i++)
3419                         i915_gem_object_unpin(object_list[i]);
3420                 pinned = 0;
3421
3422                 /* evict everyone we can from the aperture */
3423                 ret = i915_gem_evict_everything(dev);
3424                 if (ret)
3425                         goto err;
3426         }
3427
3428         /* Set the pending read domains for the batch buffer to COMMAND */
3429         batch_obj = object_list[args->buffer_count-1];
3430         if (batch_obj->pending_write_domain) {
3431                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3432                 ret = -EINVAL;
3433                 goto err;
3434         }
3435         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3436
3437         /* Sanity check the batch buffer, prior to moving objects */
3438         exec_offset = exec_list[args->buffer_count - 1].offset;
3439         ret = i915_gem_check_execbuffer (args, exec_offset);
3440         if (ret != 0) {
3441                 DRM_ERROR("execbuf with invalid offset/length\n");
3442                 goto err;
3443         }
3444
3445         i915_verify_inactive(dev, __FILE__, __LINE__);
3446
3447         /* Zero the global flush/invalidate flags. These
3448          * will be modified as new domains are computed
3449          * for each object
3450          */
3451         dev->invalidate_domains = 0;
3452         dev->flush_domains = 0;
3453
3454         for (i = 0; i < args->buffer_count; i++) {
3455                 struct drm_gem_object *obj = object_list[i];
3456
3457                 /* Compute new gpu domains and update invalidate/flush */
3458                 i915_gem_object_set_to_gpu_domain(obj);
3459         }
3460
3461         i915_verify_inactive(dev, __FILE__, __LINE__);
3462
3463         if (dev->invalidate_domains | dev->flush_domains) {
3464 #if WATCH_EXEC
3465                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3466                           __func__,
3467                          dev->invalidate_domains,
3468                          dev->flush_domains);
3469 #endif
3470                 i915_gem_flush(dev,
3471                                dev->invalidate_domains,
3472                                dev->flush_domains);
3473                 if (dev->flush_domains)
3474                         (void)i915_add_request(dev, file_priv,
3475                                                dev->flush_domains);
3476         }
3477
3478         for (i = 0; i < args->buffer_count; i++) {
3479                 struct drm_gem_object *obj = object_list[i];
3480
3481                 obj->write_domain = obj->pending_write_domain;
3482         }
3483
3484         i915_verify_inactive(dev, __FILE__, __LINE__);
3485
3486 #if WATCH_COHERENCY
3487         for (i = 0; i < args->buffer_count; i++) {
3488                 i915_gem_object_check_coherency(object_list[i],
3489                                                 exec_list[i].handle);
3490         }
3491 #endif
3492
3493 #if WATCH_EXEC
3494         i915_gem_dump_object(batch_obj,
3495                               args->batch_len,
3496                               __func__,
3497                               ~0);
3498 #endif
3499
3500         /* Exec the batchbuffer */
3501         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3502         if (ret) {
3503                 DRM_ERROR("dispatch failed %d\n", ret);
3504                 goto err;
3505         }
3506
3507         /*
3508          * Ensure that the commands in the batch buffer are
3509          * finished before the interrupt fires
3510          */
3511         flush_domains = i915_retire_commands(dev);
3512
3513         i915_verify_inactive(dev, __FILE__, __LINE__);
3514
3515         /*
3516          * Get a seqno representing the execution of the current buffer,
3517          * which we can wait on.  We would like to mitigate these interrupts,
3518          * likely by only creating seqnos occasionally (so that we have
3519          * *some* interrupts representing completion of buffers that we can
3520          * wait on when trying to clear up gtt space).
3521          */
3522         seqno = i915_add_request(dev, file_priv, flush_domains);
3523         BUG_ON(seqno == 0);
3524         for (i = 0; i < args->buffer_count; i++) {
3525                 struct drm_gem_object *obj = object_list[i];
3526
3527                 i915_gem_object_move_to_active(obj, seqno);
3528 #if WATCH_LRU
3529                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3530 #endif
3531         }
3532 #if WATCH_LRU
3533         i915_dump_lru(dev, __func__);
3534 #endif
3535
3536         i915_verify_inactive(dev, __FILE__, __LINE__);
3537
3538 err:
3539         for (i = 0; i < pinned; i++)
3540                 i915_gem_object_unpin(object_list[i]);
3541
3542         for (i = 0; i < args->buffer_count; i++) {
3543                 if (object_list[i]) {
3544                         obj_priv = object_list[i]->driver_private;
3545                         obj_priv->in_execbuffer = false;
3546                 }
3547                 drm_gem_object_unreference(object_list[i]);
3548         }
3549
3550         mutex_unlock(&dev->struct_mutex);
3551
3552         if (!ret) {
3553                 /* Copy the new buffer offsets back to the user's exec list. */
3554                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3555                                    (uintptr_t) args->buffers_ptr,
3556                                    exec_list,
3557                                    sizeof(*exec_list) * args->buffer_count);
3558                 if (ret) {
3559                         ret = -EFAULT;
3560                         DRM_ERROR("failed to copy %d exec entries "
3561                                   "back to user (%d)\n",
3562                                   args->buffer_count, ret);
3563                 }
3564         }
3565
3566         /* Copy the updated relocations out regardless of current error
3567          * state.  Failure to update the relocs would mean that the next
3568          * time userland calls execbuf, it would do so with presumed offset
3569          * state that didn't match the actual object state.
3570          */
3571         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3572                                            relocs);
3573         if (ret2 != 0) {
3574                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3575
3576                 if (ret == 0)
3577                         ret = ret2;
3578         }
3579
3580 pre_mutex_err:
3581         drm_free_large(object_list);
3582         drm_free_large(exec_list);
3583         kfree(cliprects);
3584
3585         return ret;
3586 }
3587
3588 int
3589 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3590 {
3591         struct drm_device *dev = obj->dev;
3592         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3593         int ret;
3594
3595         i915_verify_inactive(dev, __FILE__, __LINE__);
3596         if (obj_priv->gtt_space == NULL) {
3597                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3598                 if (ret != 0) {
3599                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3600                                 DRM_ERROR("Failure to bind: %d\n", ret);
3601                         return ret;
3602                 }
3603         }
3604         /*
3605          * Pre-965 chips need a fence register set up in order to
3606          * properly handle tiled surfaces.
3607          */
3608         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3609                 ret = i915_gem_object_get_fence_reg(obj);
3610                 if (ret != 0) {
3611                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3612                                 DRM_ERROR("Failure to install fence: %d\n",
3613                                           ret);
3614                         return ret;
3615                 }
3616         }
3617         obj_priv->pin_count++;
3618
3619         /* If the object is not active and not pending a flush,
3620          * remove it from the inactive list
3621          */
3622         if (obj_priv->pin_count == 1) {
3623                 atomic_inc(&dev->pin_count);
3624                 atomic_add(obj->size, &dev->pin_memory);
3625                 if (!obj_priv->active &&
3626                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3627                     !list_empty(&obj_priv->list))
3628                         list_del_init(&obj_priv->list);
3629         }
3630         i915_verify_inactive(dev, __FILE__, __LINE__);
3631
3632         return 0;
3633 }
3634
3635 void
3636 i915_gem_object_unpin(struct drm_gem_object *obj)
3637 {
3638         struct drm_device *dev = obj->dev;
3639         drm_i915_private_t *dev_priv = dev->dev_private;
3640         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3641
3642         i915_verify_inactive(dev, __FILE__, __LINE__);
3643         obj_priv->pin_count--;
3644         BUG_ON(obj_priv->pin_count < 0);
3645         BUG_ON(obj_priv->gtt_space == NULL);
3646
3647         /* If the object is no longer pinned, and is
3648          * neither active nor being flushed, then stick it on
3649          * the inactive list
3650          */
3651         if (obj_priv->pin_count == 0) {
3652                 if (!obj_priv->active &&
3653                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3654                         list_move_tail(&obj_priv->list,
3655                                        &dev_priv->mm.inactive_list);
3656                 atomic_dec(&dev->pin_count);
3657                 atomic_sub(obj->size, &dev->pin_memory);
3658         }
3659         i915_verify_inactive(dev, __FILE__, __LINE__);
3660 }
3661
3662 int
3663 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3664                    struct drm_file *file_priv)
3665 {
3666         struct drm_i915_gem_pin *args = data;
3667         struct drm_gem_object *obj;
3668         struct drm_i915_gem_object *obj_priv;
3669         int ret;
3670
3671         mutex_lock(&dev->struct_mutex);
3672
3673         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3674         if (obj == NULL) {
3675                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3676                           args->handle);
3677                 mutex_unlock(&dev->struct_mutex);
3678                 return -EBADF;
3679         }
3680         obj_priv = obj->driver_private;
3681
3682         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3683                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3684                           args->handle);
3685                 drm_gem_object_unreference(obj);
3686                 mutex_unlock(&dev->struct_mutex);
3687                 return -EINVAL;
3688         }
3689
3690         obj_priv->user_pin_count++;
3691         obj_priv->pin_filp = file_priv;
3692         if (obj_priv->user_pin_count == 1) {
3693                 ret = i915_gem_object_pin(obj, args->alignment);
3694                 if (ret != 0) {
3695                         drm_gem_object_unreference(obj);
3696                         mutex_unlock(&dev->struct_mutex);
3697                         return ret;
3698                 }
3699         }
3700
3701         /* XXX - flush the CPU caches for pinned objects
3702          * as the X server doesn't manage domains yet
3703          */
3704         i915_gem_object_flush_cpu_write_domain(obj);
3705         args->offset = obj_priv->gtt_offset;
3706         drm_gem_object_unreference(obj);
3707         mutex_unlock(&dev->struct_mutex);
3708
3709         return 0;
3710 }
3711
3712 int
3713 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3714                      struct drm_file *file_priv)
3715 {
3716         struct drm_i915_gem_pin *args = data;
3717         struct drm_gem_object *obj;
3718         struct drm_i915_gem_object *obj_priv;
3719
3720         mutex_lock(&dev->struct_mutex);
3721
3722         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3723         if (obj == NULL) {
3724                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3725                           args->handle);
3726                 mutex_unlock(&dev->struct_mutex);
3727                 return -EBADF;
3728         }
3729
3730         obj_priv = obj->driver_private;
3731         if (obj_priv->pin_filp != file_priv) {
3732                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3733                           args->handle);
3734                 drm_gem_object_unreference(obj);
3735                 mutex_unlock(&dev->struct_mutex);
3736                 return -EINVAL;
3737         }
3738         obj_priv->user_pin_count--;
3739         if (obj_priv->user_pin_count == 0) {
3740                 obj_priv->pin_filp = NULL;
3741                 i915_gem_object_unpin(obj);
3742         }
3743
3744         drm_gem_object_unreference(obj);
3745         mutex_unlock(&dev->struct_mutex);
3746         return 0;
3747 }
3748
3749 int
3750 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3751                     struct drm_file *file_priv)
3752 {
3753         struct drm_i915_gem_busy *args = data;
3754         struct drm_gem_object *obj;
3755         struct drm_i915_gem_object *obj_priv;
3756
3757         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3758         if (obj == NULL) {
3759                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3760                           args->handle);
3761                 return -EBADF;
3762         }
3763
3764         mutex_lock(&dev->struct_mutex);
3765         /* Update the active list for the hardware's current position.
3766          * Otherwise this only updates on a delayed timer or when irqs are
3767          * actually unmasked, and our working set ends up being larger than
3768          * required.
3769          */
3770         i915_gem_retire_requests(dev);
3771
3772         obj_priv = obj->driver_private;
3773         /* Don't count being on the flushing list against the object being
3774          * done.  Otherwise, a buffer left on the flushing list but not getting
3775          * flushed (because nobody's flushing that domain) won't ever return
3776          * unbusy and get reused by libdrm's bo cache.  The other expected
3777          * consumer of this interface, OpenGL's occlusion queries, also specs
3778          * that the objects get unbusy "eventually" without any interference.
3779          */
3780         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3781
3782         drm_gem_object_unreference(obj);
3783         mutex_unlock(&dev->struct_mutex);
3784         return 0;
3785 }
3786
3787 int
3788 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3789                         struct drm_file *file_priv)
3790 {
3791     return i915_gem_ring_throttle(dev, file_priv);
3792 }
3793
3794 int i915_gem_init_object(struct drm_gem_object *obj)
3795 {
3796         struct drm_i915_gem_object *obj_priv;
3797
3798         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3799         if (obj_priv == NULL)
3800                 return -ENOMEM;
3801
3802         /*
3803          * We've just allocated pages from the kernel,
3804          * so they've just been written by the CPU with
3805          * zeros. They'll need to be clflushed before we
3806          * use them with the GPU.
3807          */
3808         obj->write_domain = I915_GEM_DOMAIN_CPU;
3809         obj->read_domains = I915_GEM_DOMAIN_CPU;
3810
3811         obj_priv->agp_type = AGP_USER_MEMORY;
3812
3813         obj->driver_private = obj_priv;
3814         obj_priv->obj = obj;
3815         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3816         INIT_LIST_HEAD(&obj_priv->list);
3817         INIT_LIST_HEAD(&obj_priv->fence_list);
3818
3819         return 0;
3820 }
3821
3822 void i915_gem_free_object(struct drm_gem_object *obj)
3823 {
3824         struct drm_device *dev = obj->dev;
3825         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3826
3827         while (obj_priv->pin_count > 0)
3828                 i915_gem_object_unpin(obj);
3829
3830         if (obj_priv->phys_obj)
3831                 i915_gem_detach_phys_object(dev, obj);
3832
3833         i915_gem_object_unbind(obj);
3834
3835         if (obj_priv->mmap_offset)
3836                 i915_gem_free_mmap_offset(obj);
3837
3838         kfree(obj_priv->page_cpu_valid);
3839         kfree(obj_priv->bit_17);
3840         kfree(obj->driver_private);
3841 }
3842
3843 /** Unbinds all objects that are on the given buffer list. */
3844 static int
3845 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3846 {
3847         struct drm_gem_object *obj;
3848         struct drm_i915_gem_object *obj_priv;
3849         int ret;
3850
3851         while (!list_empty(head)) {
3852                 obj_priv = list_first_entry(head,
3853                                             struct drm_i915_gem_object,
3854                                             list);
3855                 obj = obj_priv->obj;
3856
3857                 if (obj_priv->pin_count != 0) {
3858                         DRM_ERROR("Pinned object in unbind list\n");
3859                         mutex_unlock(&dev->struct_mutex);
3860                         return -EINVAL;
3861                 }
3862
3863                 ret = i915_gem_object_unbind(obj);
3864                 if (ret != 0) {
3865                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3866                                   ret);
3867                         mutex_unlock(&dev->struct_mutex);
3868                         return ret;
3869                 }
3870         }
3871
3872
3873         return 0;
3874 }
3875
3876 int
3877 i915_gem_idle(struct drm_device *dev)
3878 {
3879         drm_i915_private_t *dev_priv = dev->dev_private;
3880         uint32_t seqno, cur_seqno, last_seqno;
3881         int stuck, ret;
3882
3883         mutex_lock(&dev->struct_mutex);
3884
3885         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3886                 mutex_unlock(&dev->struct_mutex);
3887                 return 0;
3888         }
3889
3890         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3891          * We need to replace this with a semaphore, or something.
3892          */
3893         dev_priv->mm.suspended = 1;
3894         del_timer(&dev_priv->hangcheck_timer);
3895
3896         /* Cancel the retire work handler, wait for it to finish if running
3897          */
3898         mutex_unlock(&dev->struct_mutex);
3899         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3900         mutex_lock(&dev->struct_mutex);
3901
3902         i915_kernel_lost_context(dev);
3903
3904         /* Flush the GPU along with all non-CPU write domains
3905          */
3906         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3907         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3908
3909         if (seqno == 0) {
3910                 mutex_unlock(&dev->struct_mutex);
3911                 return -ENOMEM;
3912         }
3913
3914         dev_priv->mm.waiting_gem_seqno = seqno;
3915         last_seqno = 0;
3916         stuck = 0;
3917         for (;;) {
3918                 cur_seqno = i915_get_gem_seqno(dev);
3919                 if (i915_seqno_passed(cur_seqno, seqno))
3920                         break;
3921                 if (last_seqno == cur_seqno) {
3922                         if (stuck++ > 100) {
3923                                 DRM_ERROR("hardware wedged\n");
3924                                 atomic_set(&dev_priv->mm.wedged, 1);
3925                                 DRM_WAKEUP(&dev_priv->irq_queue);
3926                                 break;
3927                         }
3928                 }
3929                 msleep(10);
3930                 last_seqno = cur_seqno;
3931         }
3932         dev_priv->mm.waiting_gem_seqno = 0;
3933
3934         i915_gem_retire_requests(dev);
3935
3936         spin_lock(&dev_priv->mm.active_list_lock);
3937         if (!atomic_read(&dev_priv->mm.wedged)) {
3938                 /* Active and flushing should now be empty as we've
3939                  * waited for a sequence higher than any pending execbuffer
3940                  */
3941                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3942                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3943                 /* Request should now be empty as we've also waited
3944                  * for the last request in the list
3945                  */
3946                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3947         }
3948
3949         /* Empty the active and flushing lists to inactive.  If there's
3950          * anything left at this point, it means that we're wedged and
3951          * nothing good's going to happen by leaving them there.  So strip
3952          * the GPU domains and just stuff them onto inactive.
3953          */
3954         while (!list_empty(&dev_priv->mm.active_list)) {
3955                 struct drm_i915_gem_object *obj_priv;
3956
3957                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3958                                             struct drm_i915_gem_object,
3959                                             list);
3960                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3961                 i915_gem_object_move_to_inactive(obj_priv->obj);
3962         }
3963         spin_unlock(&dev_priv->mm.active_list_lock);
3964
3965         while (!list_empty(&dev_priv->mm.flushing_list)) {
3966                 struct drm_i915_gem_object *obj_priv;
3967
3968                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3969                                             struct drm_i915_gem_object,
3970                                             list);
3971                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3972                 i915_gem_object_move_to_inactive(obj_priv->obj);
3973         }
3974
3975
3976         /* Move all inactive buffers out of the GTT. */
3977         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3978         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3979         if (ret) {
3980                 mutex_unlock(&dev->struct_mutex);
3981                 return ret;
3982         }
3983
3984         i915_gem_cleanup_ringbuffer(dev);
3985         mutex_unlock(&dev->struct_mutex);
3986
3987         return 0;
3988 }
3989
3990 static int
3991 i915_gem_init_hws(struct drm_device *dev)
3992 {
3993         drm_i915_private_t *dev_priv = dev->dev_private;
3994         struct drm_gem_object *obj;
3995         struct drm_i915_gem_object *obj_priv;
3996         int ret;
3997
3998         /* If we need a physical address for the status page, it's already
3999          * initialized at driver load time.
4000          */
4001         if (!I915_NEED_GFX_HWS(dev))
4002                 return 0;
4003
4004         obj = drm_gem_object_alloc(dev, 4096);
4005         if (obj == NULL) {
4006                 DRM_ERROR("Failed to allocate status page\n");
4007                 return -ENOMEM;
4008         }
4009         obj_priv = obj->driver_private;
4010         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4011
4012         ret = i915_gem_object_pin(obj, 4096);
4013         if (ret != 0) {
4014                 drm_gem_object_unreference(obj);
4015                 return ret;
4016         }
4017
4018         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4019
4020         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4021         if (dev_priv->hw_status_page == NULL) {
4022                 DRM_ERROR("Failed to map status page.\n");
4023                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4024                 i915_gem_object_unpin(obj);
4025                 drm_gem_object_unreference(obj);
4026                 return -EINVAL;
4027         }
4028         dev_priv->hws_obj = obj;
4029         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4030         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4031         I915_READ(HWS_PGA); /* posting read */
4032         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4033
4034         return 0;
4035 }
4036
4037 static void
4038 i915_gem_cleanup_hws(struct drm_device *dev)
4039 {
4040         drm_i915_private_t *dev_priv = dev->dev_private;
4041         struct drm_gem_object *obj;
4042         struct drm_i915_gem_object *obj_priv;
4043
4044         if (dev_priv->hws_obj == NULL)
4045                 return;
4046
4047         obj = dev_priv->hws_obj;
4048         obj_priv = obj->driver_private;
4049
4050         kunmap(obj_priv->pages[0]);
4051         i915_gem_object_unpin(obj);
4052         drm_gem_object_unreference(obj);
4053         dev_priv->hws_obj = NULL;
4054
4055         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4056         dev_priv->hw_status_page = NULL;
4057
4058         /* Write high address into HWS_PGA when disabling. */
4059         I915_WRITE(HWS_PGA, 0x1ffff000);
4060 }
4061
4062 int
4063 i915_gem_init_ringbuffer(struct drm_device *dev)
4064 {
4065         drm_i915_private_t *dev_priv = dev->dev_private;
4066         struct drm_gem_object *obj;
4067         struct drm_i915_gem_object *obj_priv;
4068         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4069         int ret;
4070         u32 head;
4071
4072         ret = i915_gem_init_hws(dev);
4073         if (ret != 0)
4074                 return ret;
4075
4076         obj = drm_gem_object_alloc(dev, 128 * 1024);
4077         if (obj == NULL) {
4078                 DRM_ERROR("Failed to allocate ringbuffer\n");
4079                 i915_gem_cleanup_hws(dev);
4080                 return -ENOMEM;
4081         }
4082         obj_priv = obj->driver_private;
4083
4084         ret = i915_gem_object_pin(obj, 4096);
4085         if (ret != 0) {
4086                 drm_gem_object_unreference(obj);
4087                 i915_gem_cleanup_hws(dev);
4088                 return ret;
4089         }
4090
4091         /* Set up the kernel mapping for the ring. */
4092         ring->Size = obj->size;
4093
4094         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4095         ring->map.size = obj->size;
4096         ring->map.type = 0;
4097         ring->map.flags = 0;
4098         ring->map.mtrr = 0;
4099
4100         drm_core_ioremap_wc(&ring->map, dev);
4101         if (ring->map.handle == NULL) {
4102                 DRM_ERROR("Failed to map ringbuffer.\n");
4103                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4104                 i915_gem_object_unpin(obj);
4105                 drm_gem_object_unreference(obj);
4106                 i915_gem_cleanup_hws(dev);
4107                 return -EINVAL;
4108         }
4109         ring->ring_obj = obj;
4110         ring->virtual_start = ring->map.handle;
4111
4112         /* Stop the ring if it's running. */
4113         I915_WRITE(PRB0_CTL, 0);
4114         I915_WRITE(PRB0_TAIL, 0);
4115         I915_WRITE(PRB0_HEAD, 0);
4116
4117         /* Initialize the ring. */
4118         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4119         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4120
4121         /* G45 ring initialization fails to reset head to zero */
4122         if (head != 0) {
4123                 DRM_ERROR("Ring head not reset to zero "
4124                           "ctl %08x head %08x tail %08x start %08x\n",
4125                           I915_READ(PRB0_CTL),
4126                           I915_READ(PRB0_HEAD),
4127                           I915_READ(PRB0_TAIL),
4128                           I915_READ(PRB0_START));
4129                 I915_WRITE(PRB0_HEAD, 0);
4130
4131                 DRM_ERROR("Ring head forced to zero "
4132                           "ctl %08x head %08x tail %08x start %08x\n",
4133                           I915_READ(PRB0_CTL),
4134                           I915_READ(PRB0_HEAD),
4135                           I915_READ(PRB0_TAIL),
4136                           I915_READ(PRB0_START));
4137         }
4138
4139         I915_WRITE(PRB0_CTL,
4140                    ((obj->size - 4096) & RING_NR_PAGES) |
4141                    RING_NO_REPORT |
4142                    RING_VALID);
4143
4144         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4145
4146         /* If the head is still not zero, the ring is dead */
4147         if (head != 0) {
4148                 DRM_ERROR("Ring initialization failed "
4149                           "ctl %08x head %08x tail %08x start %08x\n",
4150                           I915_READ(PRB0_CTL),
4151                           I915_READ(PRB0_HEAD),
4152                           I915_READ(PRB0_TAIL),
4153                           I915_READ(PRB0_START));
4154                 return -EIO;
4155         }
4156
4157         /* Update our cache of the ring state */
4158         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4159                 i915_kernel_lost_context(dev);
4160         else {
4161                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4162                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4163                 ring->space = ring->head - (ring->tail + 8);
4164                 if (ring->space < 0)
4165                         ring->space += ring->Size;
4166         }
4167
4168         return 0;
4169 }
4170
4171 void
4172 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4173 {
4174         drm_i915_private_t *dev_priv = dev->dev_private;
4175
4176         if (dev_priv->ring.ring_obj == NULL)
4177                 return;
4178
4179         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4180
4181         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4182         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4183         dev_priv->ring.ring_obj = NULL;
4184         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4185
4186         i915_gem_cleanup_hws(dev);
4187 }
4188
4189 int
4190 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4191                        struct drm_file *file_priv)
4192 {
4193         drm_i915_private_t *dev_priv = dev->dev_private;
4194         int ret;
4195
4196         if (drm_core_check_feature(dev, DRIVER_MODESET))
4197                 return 0;
4198
4199         if (atomic_read(&dev_priv->mm.wedged)) {
4200                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4201                 atomic_set(&dev_priv->mm.wedged, 0);
4202         }
4203
4204         mutex_lock(&dev->struct_mutex);
4205         dev_priv->mm.suspended = 0;
4206
4207         ret = i915_gem_init_ringbuffer(dev);
4208         if (ret != 0) {
4209                 mutex_unlock(&dev->struct_mutex);
4210                 return ret;
4211         }
4212
4213         spin_lock(&dev_priv->mm.active_list_lock);
4214         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4215         spin_unlock(&dev_priv->mm.active_list_lock);
4216
4217         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4218         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4219         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4220         mutex_unlock(&dev->struct_mutex);
4221
4222         drm_irq_install(dev);
4223
4224         return 0;
4225 }
4226
4227 int
4228 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4229                        struct drm_file *file_priv)
4230 {
4231         int ret;
4232
4233         if (drm_core_check_feature(dev, DRIVER_MODESET))
4234                 return 0;
4235
4236         ret = i915_gem_idle(dev);
4237         drm_irq_uninstall(dev);
4238
4239         return ret;
4240 }
4241
4242 void
4243 i915_gem_lastclose(struct drm_device *dev)
4244 {
4245         int ret;
4246
4247         if (drm_core_check_feature(dev, DRIVER_MODESET))
4248                 return;
4249
4250         ret = i915_gem_idle(dev);
4251         if (ret)
4252                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4253 }
4254
4255 void
4256 i915_gem_load(struct drm_device *dev)
4257 {
4258         int i;
4259         drm_i915_private_t *dev_priv = dev->dev_private;
4260
4261         spin_lock_init(&dev_priv->mm.active_list_lock);
4262         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4263         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4264         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4265         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4266         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4267         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4268                           i915_gem_retire_work_handler);
4269         dev_priv->mm.next_gem_seqno = 1;
4270
4271         spin_lock(&shrink_list_lock);
4272         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4273         spin_unlock(&shrink_list_lock);
4274
4275         /* Old X drivers will take 0-2 for front, back, depth buffers */
4276         dev_priv->fence_reg_start = 3;
4277
4278         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4279                 dev_priv->num_fence_regs = 16;
4280         else
4281                 dev_priv->num_fence_regs = 8;
4282
4283         /* Initialize fence registers to zero */
4284         if (IS_I965G(dev)) {
4285                 for (i = 0; i < 16; i++)
4286                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4287         } else {
4288                 for (i = 0; i < 8; i++)
4289                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4290                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4291                         for (i = 0; i < 8; i++)
4292                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4293         }
4294
4295         i915_gem_detect_bit_6_swizzle(dev);
4296 }
4297
4298 /*
4299  * Create a physically contiguous memory object for this object
4300  * e.g. for cursor + overlay regs
4301  */
4302 int i915_gem_init_phys_object(struct drm_device *dev,
4303                               int id, int size)
4304 {
4305         drm_i915_private_t *dev_priv = dev->dev_private;
4306         struct drm_i915_gem_phys_object *phys_obj;
4307         int ret;
4308
4309         if (dev_priv->mm.phys_objs[id - 1] || !size)
4310                 return 0;
4311
4312         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4313         if (!phys_obj)
4314                 return -ENOMEM;
4315
4316         phys_obj->id = id;
4317
4318         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4319         if (!phys_obj->handle) {
4320                 ret = -ENOMEM;
4321                 goto kfree_obj;
4322         }
4323 #ifdef CONFIG_X86
4324         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4325 #endif
4326
4327         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4328
4329         return 0;
4330 kfree_obj:
4331         kfree(phys_obj);
4332         return ret;
4333 }
4334
4335 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4336 {
4337         drm_i915_private_t *dev_priv = dev->dev_private;
4338         struct drm_i915_gem_phys_object *phys_obj;
4339
4340         if (!dev_priv->mm.phys_objs[id - 1])
4341                 return;
4342
4343         phys_obj = dev_priv->mm.phys_objs[id - 1];
4344         if (phys_obj->cur_obj) {
4345                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4346         }
4347
4348 #ifdef CONFIG_X86
4349         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4350 #endif
4351         drm_pci_free(dev, phys_obj->handle);
4352         kfree(phys_obj);
4353         dev_priv->mm.phys_objs[id - 1] = NULL;
4354 }
4355
4356 void i915_gem_free_all_phys_object(struct drm_device *dev)
4357 {
4358         int i;
4359
4360         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4361                 i915_gem_free_phys_object(dev, i);
4362 }
4363
4364 void i915_gem_detach_phys_object(struct drm_device *dev,
4365                                  struct drm_gem_object *obj)
4366 {
4367         struct drm_i915_gem_object *obj_priv;
4368         int i;
4369         int ret;
4370         int page_count;
4371
4372         obj_priv = obj->driver_private;
4373         if (!obj_priv->phys_obj)
4374                 return;
4375
4376         ret = i915_gem_object_get_pages(obj);
4377         if (ret)
4378                 goto out;
4379
4380         page_count = obj->size / PAGE_SIZE;
4381
4382         for (i = 0; i < page_count; i++) {
4383                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4384                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4385
4386                 memcpy(dst, src, PAGE_SIZE);
4387                 kunmap_atomic(dst, KM_USER0);
4388         }
4389         drm_clflush_pages(obj_priv->pages, page_count);
4390         drm_agp_chipset_flush(dev);
4391
4392         i915_gem_object_put_pages(obj);
4393 out:
4394         obj_priv->phys_obj->cur_obj = NULL;
4395         obj_priv->phys_obj = NULL;
4396 }
4397
4398 int
4399 i915_gem_attach_phys_object(struct drm_device *dev,
4400                             struct drm_gem_object *obj, int id)
4401 {
4402         drm_i915_private_t *dev_priv = dev->dev_private;
4403         struct drm_i915_gem_object *obj_priv;
4404         int ret = 0;
4405         int page_count;
4406         int i;
4407
4408         if (id > I915_MAX_PHYS_OBJECT)
4409                 return -EINVAL;
4410
4411         obj_priv = obj->driver_private;
4412
4413         if (obj_priv->phys_obj) {
4414                 if (obj_priv->phys_obj->id == id)
4415                         return 0;
4416                 i915_gem_detach_phys_object(dev, obj);
4417         }
4418
4419
4420         /* create a new object */
4421         if (!dev_priv->mm.phys_objs[id - 1]) {
4422                 ret = i915_gem_init_phys_object(dev, id,
4423                                                 obj->size);
4424                 if (ret) {
4425                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4426                         goto out;
4427                 }
4428         }
4429
4430         /* bind to the object */
4431         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4432         obj_priv->phys_obj->cur_obj = obj;
4433
4434         ret = i915_gem_object_get_pages(obj);
4435         if (ret) {
4436                 DRM_ERROR("failed to get page list\n");
4437                 goto out;
4438         }
4439
4440         page_count = obj->size / PAGE_SIZE;
4441
4442         for (i = 0; i < page_count; i++) {
4443                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4444                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4445
4446                 memcpy(dst, src, PAGE_SIZE);
4447                 kunmap_atomic(src, KM_USER0);
4448         }
4449
4450         i915_gem_object_put_pages(obj);
4451
4452         return 0;
4453 out:
4454         return ret;
4455 }
4456
4457 static int
4458 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4459                      struct drm_i915_gem_pwrite *args,
4460                      struct drm_file *file_priv)
4461 {
4462         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4463         void *obj_addr;
4464         int ret;
4465         char __user *user_data;
4466
4467         user_data = (char __user *) (uintptr_t) args->data_ptr;
4468         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4469
4470         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4471         ret = copy_from_user(obj_addr, user_data, args->size);
4472         if (ret)
4473                 return -EFAULT;
4474
4475         drm_agp_chipset_flush(dev);
4476         return 0;
4477 }
4478
4479 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4480 {
4481         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4482
4483         /* Clean up our request list when the client is going away, so that
4484          * later retire_requests won't dereference our soon-to-be-gone
4485          * file_priv.
4486          */
4487         mutex_lock(&dev->struct_mutex);
4488         while (!list_empty(&i915_file_priv->mm.request_list))
4489                 list_del_init(i915_file_priv->mm.request_list.next);
4490         mutex_unlock(&dev->struct_mutex);
4491 }
4492
4493 /* Immediately discard the backing storage */
4494 static void
4495 i915_gem_object_truncate(struct drm_gem_object *obj)
4496 {
4497     struct inode *inode;
4498
4499     inode = obj->filp->f_path.dentry->d_inode;
4500
4501     mutex_lock(&inode->i_mutex);
4502     truncate_inode_pages(inode->i_mapping, 0);
4503     mutex_unlock(&inode->i_mutex);
4504 }
4505
4506 static inline int
4507 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
4508 {
4509         return !obj_priv->dirty;
4510 }
4511
4512 static int
4513 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4514 {
4515         drm_i915_private_t *dev_priv, *next_dev;
4516         struct drm_i915_gem_object *obj_priv, *next_obj;
4517         int cnt = 0;
4518         int would_deadlock = 1;
4519
4520         /* "fast-path" to count number of available objects */
4521         if (nr_to_scan == 0) {
4522                 spin_lock(&shrink_list_lock);
4523                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4524                         struct drm_device *dev = dev_priv->dev;
4525
4526                         if (mutex_trylock(&dev->struct_mutex)) {
4527                                 list_for_each_entry(obj_priv,
4528                                                     &dev_priv->mm.inactive_list,
4529                                                     list)
4530                                         cnt++;
4531                                 mutex_unlock(&dev->struct_mutex);
4532                         }
4533                 }
4534                 spin_unlock(&shrink_list_lock);
4535
4536                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4537         }
4538
4539         spin_lock(&shrink_list_lock);
4540
4541         /* first scan for clean buffers */
4542         list_for_each_entry_safe(dev_priv, next_dev,
4543                                  &shrink_list, mm.shrink_list) {
4544                 struct drm_device *dev = dev_priv->dev;
4545
4546                 if (! mutex_trylock(&dev->struct_mutex))
4547                         continue;
4548
4549                 spin_unlock(&shrink_list_lock);
4550
4551                 i915_gem_retire_requests(dev);
4552
4553                 list_for_each_entry_safe(obj_priv, next_obj,
4554                                          &dev_priv->mm.inactive_list,
4555                                          list) {
4556                         if (i915_gem_object_is_purgeable(obj_priv)) {
4557                                 struct drm_gem_object *obj = obj_priv->obj;
4558                                 i915_gem_object_unbind(obj);
4559                                 i915_gem_object_truncate(obj);
4560
4561                                 if (--nr_to_scan <= 0)
4562                                         break;
4563                         }
4564                 }
4565
4566                 spin_lock(&shrink_list_lock);
4567                 mutex_unlock(&dev->struct_mutex);
4568
4569                 if (nr_to_scan <= 0)
4570                         break;
4571         }
4572
4573         /* second pass, evict/count anything still on the inactive list */
4574         list_for_each_entry_safe(dev_priv, next_dev,
4575                                  &shrink_list, mm.shrink_list) {
4576                 struct drm_device *dev = dev_priv->dev;
4577
4578                 if (! mutex_trylock(&dev->struct_mutex))
4579                         continue;
4580
4581                 spin_unlock(&shrink_list_lock);
4582
4583                 list_for_each_entry_safe(obj_priv, next_obj,
4584                                          &dev_priv->mm.inactive_list,
4585                                          list) {
4586                         if (nr_to_scan > 0) {
4587                                 struct drm_gem_object *obj = obj_priv->obj;
4588                                 i915_gem_object_unbind(obj);
4589                                 if (i915_gem_object_is_purgeable(obj_priv))
4590                                         i915_gem_object_truncate(obj);
4591
4592                                 nr_to_scan--;
4593                         } else
4594                                 cnt++;
4595                 }
4596
4597                 spin_lock(&shrink_list_lock);
4598                 mutex_unlock(&dev->struct_mutex);
4599
4600                 would_deadlock = 0;
4601         }
4602
4603         spin_unlock(&shrink_list_lock);
4604
4605         if (would_deadlock)
4606                 return -1;
4607         else if (cnt > 0)
4608                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4609         else
4610                 return 0;
4611 }
4612
4613 static struct shrinker shrinker = {
4614         .shrink = i915_gem_shrink,
4615         .seeks = DEFAULT_SEEKS,
4616 };
4617
4618 __init void
4619 i915_gem_shrinker_init(void)
4620 {
4621     register_shrinker(&shrinker);
4622 }
4623
4624 __exit void
4625 i915_gem_shrinker_exit(void)
4626 {
4627     unregister_shrinker(&shrinker);
4628 }