drm/i915: Add ioctl to set 'purgeability' of objects
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "intel_drv.h"
33 #include <linux/swap.h>
34 #include <linux/pci.h>
35
36 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev);
52 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
53                                 struct drm_i915_gem_pwrite *args,
54                                 struct drm_file *file_priv);
55
56 static LIST_HEAD(shrink_list);
57 static DEFINE_SPINLOCK(shrink_list_lock);
58
59 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
60                      unsigned long end)
61 {
62         drm_i915_private_t *dev_priv = dev->dev_private;
63
64         if (start >= end ||
65             (start & (PAGE_SIZE - 1)) != 0 ||
66             (end & (PAGE_SIZE - 1)) != 0) {
67                 return -EINVAL;
68         }
69
70         drm_mm_init(&dev_priv->mm.gtt_space, start,
71                     end - start);
72
73         dev->gtt_total = (uint32_t) (end - start);
74
75         return 0;
76 }
77
78 int
79 i915_gem_init_ioctl(struct drm_device *dev, void *data,
80                     struct drm_file *file_priv)
81 {
82         struct drm_i915_gem_init *args = data;
83         int ret;
84
85         mutex_lock(&dev->struct_mutex);
86         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
87         mutex_unlock(&dev->struct_mutex);
88
89         return ret;
90 }
91
92 int
93 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
94                             struct drm_file *file_priv)
95 {
96         struct drm_i915_gem_get_aperture *args = data;
97
98         if (!(dev->driver->driver_features & DRIVER_GEM))
99                 return -ENODEV;
100
101         args->aper_size = dev->gtt_total;
102         args->aper_available_size = (args->aper_size -
103                                      atomic_read(&dev->pin_memory));
104
105         return 0;
106 }
107
108
109 /**
110  * Creates a new mm object and returns a handle to it.
111  */
112 int
113 i915_gem_create_ioctl(struct drm_device *dev, void *data,
114                       struct drm_file *file_priv)
115 {
116         struct drm_i915_gem_create *args = data;
117         struct drm_gem_object *obj;
118         int ret;
119         u32 handle;
120
121         args->size = roundup(args->size, PAGE_SIZE);
122
123         /* Allocate the new object */
124         obj = drm_gem_object_alloc(dev, args->size);
125         if (obj == NULL)
126                 return -ENOMEM;
127
128         ret = drm_gem_handle_create(file_priv, obj, &handle);
129         mutex_lock(&dev->struct_mutex);
130         drm_gem_object_handle_unreference(obj);
131         mutex_unlock(&dev->struct_mutex);
132
133         if (ret)
134                 return ret;
135
136         args->handle = handle;
137
138         return 0;
139 }
140
141 static inline int
142 fast_shmem_read(struct page **pages,
143                 loff_t page_base, int page_offset,
144                 char __user *data,
145                 int length)
146 {
147         char __iomem *vaddr;
148         int unwritten;
149
150         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
151         if (vaddr == NULL)
152                 return -ENOMEM;
153         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
154         kunmap_atomic(vaddr, KM_USER0);
155
156         if (unwritten)
157                 return -EFAULT;
158
159         return 0;
160 }
161
162 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
163 {
164         drm_i915_private_t *dev_priv = obj->dev->dev_private;
165         struct drm_i915_gem_object *obj_priv = obj->driver_private;
166
167         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
168                 obj_priv->tiling_mode != I915_TILING_NONE;
169 }
170
171 static inline int
172 slow_shmem_copy(struct page *dst_page,
173                 int dst_offset,
174                 struct page *src_page,
175                 int src_offset,
176                 int length)
177 {
178         char *dst_vaddr, *src_vaddr;
179
180         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
181         if (dst_vaddr == NULL)
182                 return -ENOMEM;
183
184         src_vaddr = kmap_atomic(src_page, KM_USER1);
185         if (src_vaddr == NULL) {
186                 kunmap_atomic(dst_vaddr, KM_USER0);
187                 return -ENOMEM;
188         }
189
190         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
191
192         kunmap_atomic(src_vaddr, KM_USER1);
193         kunmap_atomic(dst_vaddr, KM_USER0);
194
195         return 0;
196 }
197
198 static inline int
199 slow_shmem_bit17_copy(struct page *gpu_page,
200                       int gpu_offset,
201                       struct page *cpu_page,
202                       int cpu_offset,
203                       int length,
204                       int is_read)
205 {
206         char *gpu_vaddr, *cpu_vaddr;
207
208         /* Use the unswizzled path if this page isn't affected. */
209         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
210                 if (is_read)
211                         return slow_shmem_copy(cpu_page, cpu_offset,
212                                                gpu_page, gpu_offset, length);
213                 else
214                         return slow_shmem_copy(gpu_page, gpu_offset,
215                                                cpu_page, cpu_offset, length);
216         }
217
218         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
219         if (gpu_vaddr == NULL)
220                 return -ENOMEM;
221
222         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
223         if (cpu_vaddr == NULL) {
224                 kunmap_atomic(gpu_vaddr, KM_USER0);
225                 return -ENOMEM;
226         }
227
228         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
229          * XORing with the other bits (A9 for Y, A9 and A10 for X)
230          */
231         while (length > 0) {
232                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
233                 int this_length = min(cacheline_end - gpu_offset, length);
234                 int swizzled_gpu_offset = gpu_offset ^ 64;
235
236                 if (is_read) {
237                         memcpy(cpu_vaddr + cpu_offset,
238                                gpu_vaddr + swizzled_gpu_offset,
239                                this_length);
240                 } else {
241                         memcpy(gpu_vaddr + swizzled_gpu_offset,
242                                cpu_vaddr + cpu_offset,
243                                this_length);
244                 }
245                 cpu_offset += this_length;
246                 gpu_offset += this_length;
247                 length -= this_length;
248         }
249
250         kunmap_atomic(cpu_vaddr, KM_USER1);
251         kunmap_atomic(gpu_vaddr, KM_USER0);
252
253         return 0;
254 }
255
256 /**
257  * This is the fast shmem pread path, which attempts to copy_from_user directly
258  * from the backing pages of the object to the user's address space.  On a
259  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
260  */
261 static int
262 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
263                           struct drm_i915_gem_pread *args,
264                           struct drm_file *file_priv)
265 {
266         struct drm_i915_gem_object *obj_priv = obj->driver_private;
267         ssize_t remain;
268         loff_t offset, page_base;
269         char __user *user_data;
270         int page_offset, page_length;
271         int ret;
272
273         user_data = (char __user *) (uintptr_t) args->data_ptr;
274         remain = args->size;
275
276         mutex_lock(&dev->struct_mutex);
277
278         ret = i915_gem_object_get_pages(obj);
279         if (ret != 0)
280                 goto fail_unlock;
281
282         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
283                                                         args->size);
284         if (ret != 0)
285                 goto fail_put_pages;
286
287         obj_priv = obj->driver_private;
288         offset = args->offset;
289
290         while (remain > 0) {
291                 /* Operation in this page
292                  *
293                  * page_base = page offset within aperture
294                  * page_offset = offset within page
295                  * page_length = bytes to copy for this page
296                  */
297                 page_base = (offset & ~(PAGE_SIZE-1));
298                 page_offset = offset & (PAGE_SIZE-1);
299                 page_length = remain;
300                 if ((page_offset + remain) > PAGE_SIZE)
301                         page_length = PAGE_SIZE - page_offset;
302
303                 ret = fast_shmem_read(obj_priv->pages,
304                                       page_base, page_offset,
305                                       user_data, page_length);
306                 if (ret)
307                         goto fail_put_pages;
308
309                 remain -= page_length;
310                 user_data += page_length;
311                 offset += page_length;
312         }
313
314 fail_put_pages:
315         i915_gem_object_put_pages(obj);
316 fail_unlock:
317         mutex_unlock(&dev->struct_mutex);
318
319         return ret;
320 }
321
322 /**
323  * This is the fallback shmem pread path, which allocates temporary storage
324  * in kernel space to copy_to_user into outside of the struct_mutex, so we
325  * can copy out of the object's backing pages while holding the struct mutex
326  * and not take page faults.
327  */
328 static int
329 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
330                           struct drm_i915_gem_pread *args,
331                           struct drm_file *file_priv)
332 {
333         struct drm_i915_gem_object *obj_priv = obj->driver_private;
334         struct mm_struct *mm = current->mm;
335         struct page **user_pages;
336         ssize_t remain;
337         loff_t offset, pinned_pages, i;
338         loff_t first_data_page, last_data_page, num_pages;
339         int shmem_page_index, shmem_page_offset;
340         int data_page_index,  data_page_offset;
341         int page_length;
342         int ret;
343         uint64_t data_ptr = args->data_ptr;
344         int do_bit17_swizzling;
345
346         remain = args->size;
347
348         /* Pin the user pages containing the data.  We can't fault while
349          * holding the struct mutex, yet we want to hold it while
350          * dereferencing the user data.
351          */
352         first_data_page = data_ptr / PAGE_SIZE;
353         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
354         num_pages = last_data_page - first_data_page + 1;
355
356         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
357         if (user_pages == NULL)
358                 return -ENOMEM;
359
360         down_read(&mm->mmap_sem);
361         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
362                                       num_pages, 1, 0, user_pages, NULL);
363         up_read(&mm->mmap_sem);
364         if (pinned_pages < num_pages) {
365                 ret = -EFAULT;
366                 goto fail_put_user_pages;
367         }
368
369         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
370
371         mutex_lock(&dev->struct_mutex);
372
373         ret = i915_gem_object_get_pages(obj);
374         if (ret != 0)
375                 goto fail_unlock;
376
377         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
378                                                         args->size);
379         if (ret != 0)
380                 goto fail_put_pages;
381
382         obj_priv = obj->driver_private;
383         offset = args->offset;
384
385         while (remain > 0) {
386                 /* Operation in this page
387                  *
388                  * shmem_page_index = page number within shmem file
389                  * shmem_page_offset = offset within page in shmem file
390                  * data_page_index = page number in get_user_pages return
391                  * data_page_offset = offset with data_page_index page.
392                  * page_length = bytes to copy for this page
393                  */
394                 shmem_page_index = offset / PAGE_SIZE;
395                 shmem_page_offset = offset & ~PAGE_MASK;
396                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
397                 data_page_offset = data_ptr & ~PAGE_MASK;
398
399                 page_length = remain;
400                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
401                         page_length = PAGE_SIZE - shmem_page_offset;
402                 if ((data_page_offset + page_length) > PAGE_SIZE)
403                         page_length = PAGE_SIZE - data_page_offset;
404
405                 if (do_bit17_swizzling) {
406                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
407                                                     shmem_page_offset,
408                                                     user_pages[data_page_index],
409                                                     data_page_offset,
410                                                     page_length,
411                                                     1);
412                 } else {
413                         ret = slow_shmem_copy(user_pages[data_page_index],
414                                               data_page_offset,
415                                               obj_priv->pages[shmem_page_index],
416                                               shmem_page_offset,
417                                               page_length);
418                 }
419                 if (ret)
420                         goto fail_put_pages;
421
422                 remain -= page_length;
423                 data_ptr += page_length;
424                 offset += page_length;
425         }
426
427 fail_put_pages:
428         i915_gem_object_put_pages(obj);
429 fail_unlock:
430         mutex_unlock(&dev->struct_mutex);
431 fail_put_user_pages:
432         for (i = 0; i < pinned_pages; i++) {
433                 SetPageDirty(user_pages[i]);
434                 page_cache_release(user_pages[i]);
435         }
436         drm_free_large(user_pages);
437
438         return ret;
439 }
440
441 /**
442  * Reads data from the object referenced by handle.
443  *
444  * On error, the contents of *data are undefined.
445  */
446 int
447 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
448                      struct drm_file *file_priv)
449 {
450         struct drm_i915_gem_pread *args = data;
451         struct drm_gem_object *obj;
452         struct drm_i915_gem_object *obj_priv;
453         int ret;
454
455         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
456         if (obj == NULL)
457                 return -EBADF;
458         obj_priv = obj->driver_private;
459
460         /* Bounds check source.
461          *
462          * XXX: This could use review for overflow issues...
463          */
464         if (args->offset > obj->size || args->size > obj->size ||
465             args->offset + args->size > obj->size) {
466                 drm_gem_object_unreference(obj);
467                 return -EINVAL;
468         }
469
470         if (i915_gem_object_needs_bit17_swizzle(obj)) {
471                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
472         } else {
473                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
474                 if (ret != 0)
475                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
476                                                         file_priv);
477         }
478
479         drm_gem_object_unreference(obj);
480
481         return ret;
482 }
483
484 /* This is the fast write path which cannot handle
485  * page faults in the source data
486  */
487
488 static inline int
489 fast_user_write(struct io_mapping *mapping,
490                 loff_t page_base, int page_offset,
491                 char __user *user_data,
492                 int length)
493 {
494         char *vaddr_atomic;
495         unsigned long unwritten;
496
497         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
498         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
499                                                       user_data, length);
500         io_mapping_unmap_atomic(vaddr_atomic);
501         if (unwritten)
502                 return -EFAULT;
503         return 0;
504 }
505
506 /* Here's the write path which can sleep for
507  * page faults
508  */
509
510 static inline int
511 slow_kernel_write(struct io_mapping *mapping,
512                   loff_t gtt_base, int gtt_offset,
513                   struct page *user_page, int user_offset,
514                   int length)
515 {
516         char *src_vaddr, *dst_vaddr;
517         unsigned long unwritten;
518
519         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
520         src_vaddr = kmap_atomic(user_page, KM_USER1);
521         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
522                                                       src_vaddr + user_offset,
523                                                       length);
524         kunmap_atomic(src_vaddr, KM_USER1);
525         io_mapping_unmap_atomic(dst_vaddr);
526         if (unwritten)
527                 return -EFAULT;
528         return 0;
529 }
530
531 static inline int
532 fast_shmem_write(struct page **pages,
533                  loff_t page_base, int page_offset,
534                  char __user *data,
535                  int length)
536 {
537         char __iomem *vaddr;
538         unsigned long unwritten;
539
540         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
541         if (vaddr == NULL)
542                 return -ENOMEM;
543         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
544         kunmap_atomic(vaddr, KM_USER0);
545
546         if (unwritten)
547                 return -EFAULT;
548         return 0;
549 }
550
551 /**
552  * This is the fast pwrite path, where we copy the data directly from the
553  * user into the GTT, uncached.
554  */
555 static int
556 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
557                          struct drm_i915_gem_pwrite *args,
558                          struct drm_file *file_priv)
559 {
560         struct drm_i915_gem_object *obj_priv = obj->driver_private;
561         drm_i915_private_t *dev_priv = dev->dev_private;
562         ssize_t remain;
563         loff_t offset, page_base;
564         char __user *user_data;
565         int page_offset, page_length;
566         int ret;
567
568         user_data = (char __user *) (uintptr_t) args->data_ptr;
569         remain = args->size;
570         if (!access_ok(VERIFY_READ, user_data, remain))
571                 return -EFAULT;
572
573
574         mutex_lock(&dev->struct_mutex);
575         ret = i915_gem_object_pin(obj, 0);
576         if (ret) {
577                 mutex_unlock(&dev->struct_mutex);
578                 return ret;
579         }
580         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
581         if (ret)
582                 goto fail;
583
584         obj_priv = obj->driver_private;
585         offset = obj_priv->gtt_offset + args->offset;
586
587         while (remain > 0) {
588                 /* Operation in this page
589                  *
590                  * page_base = page offset within aperture
591                  * page_offset = offset within page
592                  * page_length = bytes to copy for this page
593                  */
594                 page_base = (offset & ~(PAGE_SIZE-1));
595                 page_offset = offset & (PAGE_SIZE-1);
596                 page_length = remain;
597                 if ((page_offset + remain) > PAGE_SIZE)
598                         page_length = PAGE_SIZE - page_offset;
599
600                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
601                                        page_offset, user_data, page_length);
602
603                 /* If we get a fault while copying data, then (presumably) our
604                  * source page isn't available.  Return the error and we'll
605                  * retry in the slow path.
606                  */
607                 if (ret)
608                         goto fail;
609
610                 remain -= page_length;
611                 user_data += page_length;
612                 offset += page_length;
613         }
614
615 fail:
616         i915_gem_object_unpin(obj);
617         mutex_unlock(&dev->struct_mutex);
618
619         return ret;
620 }
621
622 /**
623  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
624  * the memory and maps it using kmap_atomic for copying.
625  *
626  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
627  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
628  */
629 static int
630 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
631                          struct drm_i915_gem_pwrite *args,
632                          struct drm_file *file_priv)
633 {
634         struct drm_i915_gem_object *obj_priv = obj->driver_private;
635         drm_i915_private_t *dev_priv = dev->dev_private;
636         ssize_t remain;
637         loff_t gtt_page_base, offset;
638         loff_t first_data_page, last_data_page, num_pages;
639         loff_t pinned_pages, i;
640         struct page **user_pages;
641         struct mm_struct *mm = current->mm;
642         int gtt_page_offset, data_page_offset, data_page_index, page_length;
643         int ret;
644         uint64_t data_ptr = args->data_ptr;
645
646         remain = args->size;
647
648         /* Pin the user pages containing the data.  We can't fault while
649          * holding the struct mutex, and all of the pwrite implementations
650          * want to hold it while dereferencing the user data.
651          */
652         first_data_page = data_ptr / PAGE_SIZE;
653         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
654         num_pages = last_data_page - first_data_page + 1;
655
656         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
657         if (user_pages == NULL)
658                 return -ENOMEM;
659
660         down_read(&mm->mmap_sem);
661         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
662                                       num_pages, 0, 0, user_pages, NULL);
663         up_read(&mm->mmap_sem);
664         if (pinned_pages < num_pages) {
665                 ret = -EFAULT;
666                 goto out_unpin_pages;
667         }
668
669         mutex_lock(&dev->struct_mutex);
670         ret = i915_gem_object_pin(obj, 0);
671         if (ret)
672                 goto out_unlock;
673
674         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
675         if (ret)
676                 goto out_unpin_object;
677
678         obj_priv = obj->driver_private;
679         offset = obj_priv->gtt_offset + args->offset;
680
681         while (remain > 0) {
682                 /* Operation in this page
683                  *
684                  * gtt_page_base = page offset within aperture
685                  * gtt_page_offset = offset within page in aperture
686                  * data_page_index = page number in get_user_pages return
687                  * data_page_offset = offset with data_page_index page.
688                  * page_length = bytes to copy for this page
689                  */
690                 gtt_page_base = offset & PAGE_MASK;
691                 gtt_page_offset = offset & ~PAGE_MASK;
692                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
693                 data_page_offset = data_ptr & ~PAGE_MASK;
694
695                 page_length = remain;
696                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
697                         page_length = PAGE_SIZE - gtt_page_offset;
698                 if ((data_page_offset + page_length) > PAGE_SIZE)
699                         page_length = PAGE_SIZE - data_page_offset;
700
701                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
702                                         gtt_page_base, gtt_page_offset,
703                                         user_pages[data_page_index],
704                                         data_page_offset,
705                                         page_length);
706
707                 /* If we get a fault while copying data, then (presumably) our
708                  * source page isn't available.  Return the error and we'll
709                  * retry in the slow path.
710                  */
711                 if (ret)
712                         goto out_unpin_object;
713
714                 remain -= page_length;
715                 offset += page_length;
716                 data_ptr += page_length;
717         }
718
719 out_unpin_object:
720         i915_gem_object_unpin(obj);
721 out_unlock:
722         mutex_unlock(&dev->struct_mutex);
723 out_unpin_pages:
724         for (i = 0; i < pinned_pages; i++)
725                 page_cache_release(user_pages[i]);
726         drm_free_large(user_pages);
727
728         return ret;
729 }
730
731 /**
732  * This is the fast shmem pwrite path, which attempts to directly
733  * copy_from_user into the kmapped pages backing the object.
734  */
735 static int
736 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
737                            struct drm_i915_gem_pwrite *args,
738                            struct drm_file *file_priv)
739 {
740         struct drm_i915_gem_object *obj_priv = obj->driver_private;
741         ssize_t remain;
742         loff_t offset, page_base;
743         char __user *user_data;
744         int page_offset, page_length;
745         int ret;
746
747         user_data = (char __user *) (uintptr_t) args->data_ptr;
748         remain = args->size;
749
750         mutex_lock(&dev->struct_mutex);
751
752         ret = i915_gem_object_get_pages(obj);
753         if (ret != 0)
754                 goto fail_unlock;
755
756         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
757         if (ret != 0)
758                 goto fail_put_pages;
759
760         obj_priv = obj->driver_private;
761         offset = args->offset;
762         obj_priv->dirty = 1;
763
764         while (remain > 0) {
765                 /* Operation in this page
766                  *
767                  * page_base = page offset within aperture
768                  * page_offset = offset within page
769                  * page_length = bytes to copy for this page
770                  */
771                 page_base = (offset & ~(PAGE_SIZE-1));
772                 page_offset = offset & (PAGE_SIZE-1);
773                 page_length = remain;
774                 if ((page_offset + remain) > PAGE_SIZE)
775                         page_length = PAGE_SIZE - page_offset;
776
777                 ret = fast_shmem_write(obj_priv->pages,
778                                        page_base, page_offset,
779                                        user_data, page_length);
780                 if (ret)
781                         goto fail_put_pages;
782
783                 remain -= page_length;
784                 user_data += page_length;
785                 offset += page_length;
786         }
787
788 fail_put_pages:
789         i915_gem_object_put_pages(obj);
790 fail_unlock:
791         mutex_unlock(&dev->struct_mutex);
792
793         return ret;
794 }
795
796 /**
797  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
798  * the memory and maps it using kmap_atomic for copying.
799  *
800  * This avoids taking mmap_sem for faulting on the user's address while the
801  * struct_mutex is held.
802  */
803 static int
804 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
805                            struct drm_i915_gem_pwrite *args,
806                            struct drm_file *file_priv)
807 {
808         struct drm_i915_gem_object *obj_priv = obj->driver_private;
809         struct mm_struct *mm = current->mm;
810         struct page **user_pages;
811         ssize_t remain;
812         loff_t offset, pinned_pages, i;
813         loff_t first_data_page, last_data_page, num_pages;
814         int shmem_page_index, shmem_page_offset;
815         int data_page_index,  data_page_offset;
816         int page_length;
817         int ret;
818         uint64_t data_ptr = args->data_ptr;
819         int do_bit17_swizzling;
820
821         remain = args->size;
822
823         /* Pin the user pages containing the data.  We can't fault while
824          * holding the struct mutex, and all of the pwrite implementations
825          * want to hold it while dereferencing the user data.
826          */
827         first_data_page = data_ptr / PAGE_SIZE;
828         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
829         num_pages = last_data_page - first_data_page + 1;
830
831         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
832         if (user_pages == NULL)
833                 return -ENOMEM;
834
835         down_read(&mm->mmap_sem);
836         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
837                                       num_pages, 0, 0, user_pages, NULL);
838         up_read(&mm->mmap_sem);
839         if (pinned_pages < num_pages) {
840                 ret = -EFAULT;
841                 goto fail_put_user_pages;
842         }
843
844         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
845
846         mutex_lock(&dev->struct_mutex);
847
848         ret = i915_gem_object_get_pages(obj);
849         if (ret != 0)
850                 goto fail_unlock;
851
852         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
853         if (ret != 0)
854                 goto fail_put_pages;
855
856         obj_priv = obj->driver_private;
857         offset = args->offset;
858         obj_priv->dirty = 1;
859
860         while (remain > 0) {
861                 /* Operation in this page
862                  *
863                  * shmem_page_index = page number within shmem file
864                  * shmem_page_offset = offset within page in shmem file
865                  * data_page_index = page number in get_user_pages return
866                  * data_page_offset = offset with data_page_index page.
867                  * page_length = bytes to copy for this page
868                  */
869                 shmem_page_index = offset / PAGE_SIZE;
870                 shmem_page_offset = offset & ~PAGE_MASK;
871                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
872                 data_page_offset = data_ptr & ~PAGE_MASK;
873
874                 page_length = remain;
875                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
876                         page_length = PAGE_SIZE - shmem_page_offset;
877                 if ((data_page_offset + page_length) > PAGE_SIZE)
878                         page_length = PAGE_SIZE - data_page_offset;
879
880                 if (do_bit17_swizzling) {
881                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
882                                                     shmem_page_offset,
883                                                     user_pages[data_page_index],
884                                                     data_page_offset,
885                                                     page_length,
886                                                     0);
887                 } else {
888                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
889                                               shmem_page_offset,
890                                               user_pages[data_page_index],
891                                               data_page_offset,
892                                               page_length);
893                 }
894                 if (ret)
895                         goto fail_put_pages;
896
897                 remain -= page_length;
898                 data_ptr += page_length;
899                 offset += page_length;
900         }
901
902 fail_put_pages:
903         i915_gem_object_put_pages(obj);
904 fail_unlock:
905         mutex_unlock(&dev->struct_mutex);
906 fail_put_user_pages:
907         for (i = 0; i < pinned_pages; i++)
908                 page_cache_release(user_pages[i]);
909         drm_free_large(user_pages);
910
911         return ret;
912 }
913
914 /**
915  * Writes data to the object referenced by handle.
916  *
917  * On error, the contents of the buffer that were to be modified are undefined.
918  */
919 int
920 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
921                       struct drm_file *file_priv)
922 {
923         struct drm_i915_gem_pwrite *args = data;
924         struct drm_gem_object *obj;
925         struct drm_i915_gem_object *obj_priv;
926         int ret = 0;
927
928         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
929         if (obj == NULL)
930                 return -EBADF;
931         obj_priv = obj->driver_private;
932
933         /* Bounds check destination.
934          *
935          * XXX: This could use review for overflow issues...
936          */
937         if (args->offset > obj->size || args->size > obj->size ||
938             args->offset + args->size > obj->size) {
939                 drm_gem_object_unreference(obj);
940                 return -EINVAL;
941         }
942
943         /* We can only do the GTT pwrite on untiled buffers, as otherwise
944          * it would end up going through the fenced access, and we'll get
945          * different detiling behavior between reading and writing.
946          * pread/pwrite currently are reading and writing from the CPU
947          * perspective, requiring manual detiling by the client.
948          */
949         if (obj_priv->phys_obj)
950                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
951         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
952                  dev->gtt_total != 0) {
953                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
954                 if (ret == -EFAULT) {
955                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
956                                                        file_priv);
957                 }
958         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
959                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
960         } else {
961                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
962                 if (ret == -EFAULT) {
963                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
964                                                          file_priv);
965                 }
966         }
967
968 #if WATCH_PWRITE
969         if (ret)
970                 DRM_INFO("pwrite failed %d\n", ret);
971 #endif
972
973         drm_gem_object_unreference(obj);
974
975         return ret;
976 }
977
978 /**
979  * Called when user space prepares to use an object with the CPU, either
980  * through the mmap ioctl's mapping or a GTT mapping.
981  */
982 int
983 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
984                           struct drm_file *file_priv)
985 {
986         struct drm_i915_private *dev_priv = dev->dev_private;
987         struct drm_i915_gem_set_domain *args = data;
988         struct drm_gem_object *obj;
989         struct drm_i915_gem_object *obj_priv;
990         uint32_t read_domains = args->read_domains;
991         uint32_t write_domain = args->write_domain;
992         int ret;
993
994         if (!(dev->driver->driver_features & DRIVER_GEM))
995                 return -ENODEV;
996
997         /* Only handle setting domains to types used by the CPU. */
998         if (write_domain & I915_GEM_GPU_DOMAINS)
999                 return -EINVAL;
1000
1001         if (read_domains & I915_GEM_GPU_DOMAINS)
1002                 return -EINVAL;
1003
1004         /* Having something in the write domain implies it's in the read
1005          * domain, and only that read domain.  Enforce that in the request.
1006          */
1007         if (write_domain != 0 && read_domains != write_domain)
1008                 return -EINVAL;
1009
1010         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1011         if (obj == NULL)
1012                 return -EBADF;
1013         obj_priv = obj->driver_private;
1014
1015         mutex_lock(&dev->struct_mutex);
1016
1017         intel_mark_busy(dev, obj);
1018
1019 #if WATCH_BUF
1020         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1021                  obj, obj->size, read_domains, write_domain);
1022 #endif
1023         if (read_domains & I915_GEM_DOMAIN_GTT) {
1024                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1025
1026                 /* Update the LRU on the fence for the CPU access that's
1027                  * about to occur.
1028                  */
1029                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1030                         list_move_tail(&obj_priv->fence_list,
1031                                        &dev_priv->mm.fence_list);
1032                 }
1033
1034                 /* Silently promote "you're not bound, there was nothing to do"
1035                  * to success, since the client was just asking us to
1036                  * make sure everything was done.
1037                  */
1038                 if (ret == -EINVAL)
1039                         ret = 0;
1040         } else {
1041                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1042         }
1043
1044         drm_gem_object_unreference(obj);
1045         mutex_unlock(&dev->struct_mutex);
1046         return ret;
1047 }
1048
1049 /**
1050  * Called when user space has done writes to this buffer
1051  */
1052 int
1053 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1054                       struct drm_file *file_priv)
1055 {
1056         struct drm_i915_gem_sw_finish *args = data;
1057         struct drm_gem_object *obj;
1058         struct drm_i915_gem_object *obj_priv;
1059         int ret = 0;
1060
1061         if (!(dev->driver->driver_features & DRIVER_GEM))
1062                 return -ENODEV;
1063
1064         mutex_lock(&dev->struct_mutex);
1065         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1066         if (obj == NULL) {
1067                 mutex_unlock(&dev->struct_mutex);
1068                 return -EBADF;
1069         }
1070
1071 #if WATCH_BUF
1072         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1073                  __func__, args->handle, obj, obj->size);
1074 #endif
1075         obj_priv = obj->driver_private;
1076
1077         /* Pinned buffers may be scanout, so flush the cache */
1078         if (obj_priv->pin_count)
1079                 i915_gem_object_flush_cpu_write_domain(obj);
1080
1081         drm_gem_object_unreference(obj);
1082         mutex_unlock(&dev->struct_mutex);
1083         return ret;
1084 }
1085
1086 /**
1087  * Maps the contents of an object, returning the address it is mapped
1088  * into.
1089  *
1090  * While the mapping holds a reference on the contents of the object, it doesn't
1091  * imply a ref on the object itself.
1092  */
1093 int
1094 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1095                    struct drm_file *file_priv)
1096 {
1097         struct drm_i915_gem_mmap *args = data;
1098         struct drm_gem_object *obj;
1099         loff_t offset;
1100         unsigned long addr;
1101
1102         if (!(dev->driver->driver_features & DRIVER_GEM))
1103                 return -ENODEV;
1104
1105         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1106         if (obj == NULL)
1107                 return -EBADF;
1108
1109         offset = args->offset;
1110
1111         down_write(&current->mm->mmap_sem);
1112         addr = do_mmap(obj->filp, 0, args->size,
1113                        PROT_READ | PROT_WRITE, MAP_SHARED,
1114                        args->offset);
1115         up_write(&current->mm->mmap_sem);
1116         mutex_lock(&dev->struct_mutex);
1117         drm_gem_object_unreference(obj);
1118         mutex_unlock(&dev->struct_mutex);
1119         if (IS_ERR((void *)addr))
1120                 return addr;
1121
1122         args->addr_ptr = (uint64_t) addr;
1123
1124         return 0;
1125 }
1126
1127 /**
1128  * i915_gem_fault - fault a page into the GTT
1129  * vma: VMA in question
1130  * vmf: fault info
1131  *
1132  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1133  * from userspace.  The fault handler takes care of binding the object to
1134  * the GTT (if needed), allocating and programming a fence register (again,
1135  * only if needed based on whether the old reg is still valid or the object
1136  * is tiled) and inserting a new PTE into the faulting process.
1137  *
1138  * Note that the faulting process may involve evicting existing objects
1139  * from the GTT and/or fence registers to make room.  So performance may
1140  * suffer if the GTT working set is large or there are few fence registers
1141  * left.
1142  */
1143 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1144 {
1145         struct drm_gem_object *obj = vma->vm_private_data;
1146         struct drm_device *dev = obj->dev;
1147         struct drm_i915_private *dev_priv = dev->dev_private;
1148         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1149         pgoff_t page_offset;
1150         unsigned long pfn;
1151         int ret = 0;
1152         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1153
1154         /* We don't use vmf->pgoff since that has the fake offset */
1155         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1156                 PAGE_SHIFT;
1157
1158         /* Now bind it into the GTT if needed */
1159         mutex_lock(&dev->struct_mutex);
1160         if (!obj_priv->gtt_space) {
1161                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1162                 if (ret) {
1163                         mutex_unlock(&dev->struct_mutex);
1164                         return VM_FAULT_SIGBUS;
1165                 }
1166                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1167
1168                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1169                 if (ret) {
1170                         mutex_unlock(&dev->struct_mutex);
1171                         return VM_FAULT_SIGBUS;
1172                 }
1173         }
1174
1175         /* Need a new fence register? */
1176         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1177                 ret = i915_gem_object_get_fence_reg(obj);
1178                 if (ret) {
1179                         mutex_unlock(&dev->struct_mutex);
1180                         return VM_FAULT_SIGBUS;
1181                 }
1182         }
1183
1184         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1185                 page_offset;
1186
1187         /* Finally, remap it using the new GTT offset */
1188         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1189
1190         mutex_unlock(&dev->struct_mutex);
1191
1192         switch (ret) {
1193         case -ENOMEM:
1194         case -EAGAIN:
1195                 return VM_FAULT_OOM;
1196         case -EFAULT:
1197         case -EINVAL:
1198                 return VM_FAULT_SIGBUS;
1199         default:
1200                 return VM_FAULT_NOPAGE;
1201         }
1202 }
1203
1204 /**
1205  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1206  * @obj: obj in question
1207  *
1208  * GEM memory mapping works by handing back to userspace a fake mmap offset
1209  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1210  * up the object based on the offset and sets up the various memory mapping
1211  * structures.
1212  *
1213  * This routine allocates and attaches a fake offset for @obj.
1214  */
1215 static int
1216 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1217 {
1218         struct drm_device *dev = obj->dev;
1219         struct drm_gem_mm *mm = dev->mm_private;
1220         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1221         struct drm_map_list *list;
1222         struct drm_local_map *map;
1223         int ret = 0;
1224
1225         /* Set the object up for mmap'ing */
1226         list = &obj->map_list;
1227         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1228         if (!list->map)
1229                 return -ENOMEM;
1230
1231         map = list->map;
1232         map->type = _DRM_GEM;
1233         map->size = obj->size;
1234         map->handle = obj;
1235
1236         /* Get a DRM GEM mmap offset allocated... */
1237         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1238                                                     obj->size / PAGE_SIZE, 0, 0);
1239         if (!list->file_offset_node) {
1240                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1241                 ret = -ENOMEM;
1242                 goto out_free_list;
1243         }
1244
1245         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1246                                                   obj->size / PAGE_SIZE, 0);
1247         if (!list->file_offset_node) {
1248                 ret = -ENOMEM;
1249                 goto out_free_list;
1250         }
1251
1252         list->hash.key = list->file_offset_node->start;
1253         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1254                 DRM_ERROR("failed to add to map hash\n");
1255                 goto out_free_mm;
1256         }
1257
1258         /* By now we should be all set, any drm_mmap request on the offset
1259          * below will get to our mmap & fault handler */
1260         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1261
1262         return 0;
1263
1264 out_free_mm:
1265         drm_mm_put_block(list->file_offset_node);
1266 out_free_list:
1267         kfree(list->map);
1268
1269         return ret;
1270 }
1271
1272 /**
1273  * i915_gem_release_mmap - remove physical page mappings
1274  * @obj: obj in question
1275  *
1276  * Preserve the reservation of the mmaping with the DRM core code, but
1277  * relinquish ownership of the pages back to the system.
1278  *
1279  * It is vital that we remove the page mapping if we have mapped a tiled
1280  * object through the GTT and then lose the fence register due to
1281  * resource pressure. Similarly if the object has been moved out of the
1282  * aperture, than pages mapped into userspace must be revoked. Removing the
1283  * mapping will then trigger a page fault on the next user access, allowing
1284  * fixup by i915_gem_fault().
1285  */
1286 void
1287 i915_gem_release_mmap(struct drm_gem_object *obj)
1288 {
1289         struct drm_device *dev = obj->dev;
1290         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1291
1292         if (dev->dev_mapping)
1293                 unmap_mapping_range(dev->dev_mapping,
1294                                     obj_priv->mmap_offset, obj->size, 1);
1295 }
1296
1297 static void
1298 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1299 {
1300         struct drm_device *dev = obj->dev;
1301         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1302         struct drm_gem_mm *mm = dev->mm_private;
1303         struct drm_map_list *list;
1304
1305         list = &obj->map_list;
1306         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1307
1308         if (list->file_offset_node) {
1309                 drm_mm_put_block(list->file_offset_node);
1310                 list->file_offset_node = NULL;
1311         }
1312
1313         if (list->map) {
1314                 kfree(list->map);
1315                 list->map = NULL;
1316         }
1317
1318         obj_priv->mmap_offset = 0;
1319 }
1320
1321 /**
1322  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1323  * @obj: object to check
1324  *
1325  * Return the required GTT alignment for an object, taking into account
1326  * potential fence register mapping if needed.
1327  */
1328 static uint32_t
1329 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1330 {
1331         struct drm_device *dev = obj->dev;
1332         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1333         int start, i;
1334
1335         /*
1336          * Minimum alignment is 4k (GTT page size), but might be greater
1337          * if a fence register is needed for the object.
1338          */
1339         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1340                 return 4096;
1341
1342         /*
1343          * Previous chips need to be aligned to the size of the smallest
1344          * fence register that can contain the object.
1345          */
1346         if (IS_I9XX(dev))
1347                 start = 1024*1024;
1348         else
1349                 start = 512*1024;
1350
1351         for (i = start; i < obj->size; i <<= 1)
1352                 ;
1353
1354         return i;
1355 }
1356
1357 /**
1358  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1359  * @dev: DRM device
1360  * @data: GTT mapping ioctl data
1361  * @file_priv: GEM object info
1362  *
1363  * Simply returns the fake offset to userspace so it can mmap it.
1364  * The mmap call will end up in drm_gem_mmap(), which will set things
1365  * up so we can get faults in the handler above.
1366  *
1367  * The fault handler will take care of binding the object into the GTT
1368  * (since it may have been evicted to make room for something), allocating
1369  * a fence register, and mapping the appropriate aperture address into
1370  * userspace.
1371  */
1372 int
1373 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1374                         struct drm_file *file_priv)
1375 {
1376         struct drm_i915_gem_mmap_gtt *args = data;
1377         struct drm_i915_private *dev_priv = dev->dev_private;
1378         struct drm_gem_object *obj;
1379         struct drm_i915_gem_object *obj_priv;
1380         int ret;
1381
1382         if (!(dev->driver->driver_features & DRIVER_GEM))
1383                 return -ENODEV;
1384
1385         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1386         if (obj == NULL)
1387                 return -EBADF;
1388
1389         mutex_lock(&dev->struct_mutex);
1390
1391         obj_priv = obj->driver_private;
1392
1393         if (!obj_priv->mmap_offset) {
1394                 ret = i915_gem_create_mmap_offset(obj);
1395                 if (ret) {
1396                         drm_gem_object_unreference(obj);
1397                         mutex_unlock(&dev->struct_mutex);
1398                         return ret;
1399                 }
1400         }
1401
1402         args->offset = obj_priv->mmap_offset;
1403
1404         /*
1405          * Pull it into the GTT so that we have a page list (makes the
1406          * initial fault faster and any subsequent flushing possible).
1407          */
1408         if (!obj_priv->agp_mem) {
1409                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1410                 if (ret) {
1411                         drm_gem_object_unreference(obj);
1412                         mutex_unlock(&dev->struct_mutex);
1413                         return ret;
1414                 }
1415                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1416         }
1417
1418         drm_gem_object_unreference(obj);
1419         mutex_unlock(&dev->struct_mutex);
1420
1421         return 0;
1422 }
1423
1424 void
1425 i915_gem_object_put_pages(struct drm_gem_object *obj)
1426 {
1427         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1428         int page_count = obj->size / PAGE_SIZE;
1429         int i;
1430
1431         BUG_ON(obj_priv->pages_refcount == 0);
1432
1433         if (--obj_priv->pages_refcount != 0)
1434                 return;
1435
1436         if (obj_priv->tiling_mode != I915_TILING_NONE)
1437                 i915_gem_object_save_bit_17_swizzle(obj);
1438
1439         if (obj_priv->madv == I915_MADV_DONTNEED)
1440             obj_priv->dirty = 0;
1441
1442         for (i = 0; i < page_count; i++) {
1443                 if (obj_priv->pages[i] == NULL)
1444                         break;
1445
1446                 if (obj_priv->dirty)
1447                         set_page_dirty(obj_priv->pages[i]);
1448
1449                 if (obj_priv->madv == I915_MADV_WILLNEED)
1450                     mark_page_accessed(obj_priv->pages[i]);
1451
1452                 page_cache_release(obj_priv->pages[i]);
1453         }
1454         obj_priv->dirty = 0;
1455
1456         drm_free_large(obj_priv->pages);
1457         obj_priv->pages = NULL;
1458 }
1459
1460 static void
1461 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1462 {
1463         struct drm_device *dev = obj->dev;
1464         drm_i915_private_t *dev_priv = dev->dev_private;
1465         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1466
1467         /* Add a reference if we're newly entering the active list. */
1468         if (!obj_priv->active) {
1469                 drm_gem_object_reference(obj);
1470                 obj_priv->active = 1;
1471         }
1472         /* Move from whatever list we were on to the tail of execution. */
1473         spin_lock(&dev_priv->mm.active_list_lock);
1474         list_move_tail(&obj_priv->list,
1475                        &dev_priv->mm.active_list);
1476         spin_unlock(&dev_priv->mm.active_list_lock);
1477         obj_priv->last_rendering_seqno = seqno;
1478 }
1479
1480 static void
1481 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1482 {
1483         struct drm_device *dev = obj->dev;
1484         drm_i915_private_t *dev_priv = dev->dev_private;
1485         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1486
1487         BUG_ON(!obj_priv->active);
1488         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1489         obj_priv->last_rendering_seqno = 0;
1490 }
1491
1492 static void
1493 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1494 {
1495         struct drm_device *dev = obj->dev;
1496         drm_i915_private_t *dev_priv = dev->dev_private;
1497         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1498
1499         i915_verify_inactive(dev, __FILE__, __LINE__);
1500         if (obj_priv->pin_count != 0)
1501                 list_del_init(&obj_priv->list);
1502         else
1503                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1504
1505         obj_priv->last_rendering_seqno = 0;
1506         if (obj_priv->active) {
1507                 obj_priv->active = 0;
1508                 drm_gem_object_unreference(obj);
1509         }
1510         i915_verify_inactive(dev, __FILE__, __LINE__);
1511 }
1512
1513 /**
1514  * Creates a new sequence number, emitting a write of it to the status page
1515  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1516  *
1517  * Must be called with struct_lock held.
1518  *
1519  * Returned sequence numbers are nonzero on success.
1520  */
1521 static uint32_t
1522 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1523                  uint32_t flush_domains)
1524 {
1525         drm_i915_private_t *dev_priv = dev->dev_private;
1526         struct drm_i915_file_private *i915_file_priv = NULL;
1527         struct drm_i915_gem_request *request;
1528         uint32_t seqno;
1529         int was_empty;
1530         RING_LOCALS;
1531
1532         if (file_priv != NULL)
1533                 i915_file_priv = file_priv->driver_priv;
1534
1535         request = kzalloc(sizeof(*request), GFP_KERNEL);
1536         if (request == NULL)
1537                 return 0;
1538
1539         /* Grab the seqno we're going to make this request be, and bump the
1540          * next (skipping 0 so it can be the reserved no-seqno value).
1541          */
1542         seqno = dev_priv->mm.next_gem_seqno;
1543         dev_priv->mm.next_gem_seqno++;
1544         if (dev_priv->mm.next_gem_seqno == 0)
1545                 dev_priv->mm.next_gem_seqno++;
1546
1547         BEGIN_LP_RING(4);
1548         OUT_RING(MI_STORE_DWORD_INDEX);
1549         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1550         OUT_RING(seqno);
1551
1552         OUT_RING(MI_USER_INTERRUPT);
1553         ADVANCE_LP_RING();
1554
1555         DRM_DEBUG("%d\n", seqno);
1556
1557         request->seqno = seqno;
1558         request->emitted_jiffies = jiffies;
1559         was_empty = list_empty(&dev_priv->mm.request_list);
1560         list_add_tail(&request->list, &dev_priv->mm.request_list);
1561         if (i915_file_priv) {
1562                 list_add_tail(&request->client_list,
1563                               &i915_file_priv->mm.request_list);
1564         } else {
1565                 INIT_LIST_HEAD(&request->client_list);
1566         }
1567
1568         /* Associate any objects on the flushing list matching the write
1569          * domain we're flushing with our flush.
1570          */
1571         if (flush_domains != 0) {
1572                 struct drm_i915_gem_object *obj_priv, *next;
1573
1574                 list_for_each_entry_safe(obj_priv, next,
1575                                          &dev_priv->mm.flushing_list, list) {
1576                         struct drm_gem_object *obj = obj_priv->obj;
1577
1578                         if ((obj->write_domain & flush_domains) ==
1579                             obj->write_domain) {
1580                                 obj->write_domain = 0;
1581                                 i915_gem_object_move_to_active(obj, seqno);
1582                         }
1583                 }
1584
1585         }
1586
1587         if (!dev_priv->mm.suspended) {
1588                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1589                 if (was_empty)
1590                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1591         }
1592         return seqno;
1593 }
1594
1595 /**
1596  * Command execution barrier
1597  *
1598  * Ensures that all commands in the ring are finished
1599  * before signalling the CPU
1600  */
1601 static uint32_t
1602 i915_retire_commands(struct drm_device *dev)
1603 {
1604         drm_i915_private_t *dev_priv = dev->dev_private;
1605         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1606         uint32_t flush_domains = 0;
1607         RING_LOCALS;
1608
1609         /* The sampler always gets flushed on i965 (sigh) */
1610         if (IS_I965G(dev))
1611                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1612         BEGIN_LP_RING(2);
1613         OUT_RING(cmd);
1614         OUT_RING(0); /* noop */
1615         ADVANCE_LP_RING();
1616         return flush_domains;
1617 }
1618
1619 /**
1620  * Moves buffers associated only with the given active seqno from the active
1621  * to inactive list, potentially freeing them.
1622  */
1623 static void
1624 i915_gem_retire_request(struct drm_device *dev,
1625                         struct drm_i915_gem_request *request)
1626 {
1627         drm_i915_private_t *dev_priv = dev->dev_private;
1628
1629         /* Move any buffers on the active list that are no longer referenced
1630          * by the ringbuffer to the flushing/inactive lists as appropriate.
1631          */
1632         spin_lock(&dev_priv->mm.active_list_lock);
1633         while (!list_empty(&dev_priv->mm.active_list)) {
1634                 struct drm_gem_object *obj;
1635                 struct drm_i915_gem_object *obj_priv;
1636
1637                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1638                                             struct drm_i915_gem_object,
1639                                             list);
1640                 obj = obj_priv->obj;
1641
1642                 /* If the seqno being retired doesn't match the oldest in the
1643                  * list, then the oldest in the list must still be newer than
1644                  * this seqno.
1645                  */
1646                 if (obj_priv->last_rendering_seqno != request->seqno)
1647                         goto out;
1648
1649 #if WATCH_LRU
1650                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1651                          __func__, request->seqno, obj);
1652 #endif
1653
1654                 if (obj->write_domain != 0)
1655                         i915_gem_object_move_to_flushing(obj);
1656                 else {
1657                         /* Take a reference on the object so it won't be
1658                          * freed while the spinlock is held.  The list
1659                          * protection for this spinlock is safe when breaking
1660                          * the lock like this since the next thing we do
1661                          * is just get the head of the list again.
1662                          */
1663                         drm_gem_object_reference(obj);
1664                         i915_gem_object_move_to_inactive(obj);
1665                         spin_unlock(&dev_priv->mm.active_list_lock);
1666                         drm_gem_object_unreference(obj);
1667                         spin_lock(&dev_priv->mm.active_list_lock);
1668                 }
1669         }
1670 out:
1671         spin_unlock(&dev_priv->mm.active_list_lock);
1672 }
1673
1674 /**
1675  * Returns true if seq1 is later than seq2.
1676  */
1677 bool
1678 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1679 {
1680         return (int32_t)(seq1 - seq2) >= 0;
1681 }
1682
1683 uint32_t
1684 i915_get_gem_seqno(struct drm_device *dev)
1685 {
1686         drm_i915_private_t *dev_priv = dev->dev_private;
1687
1688         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1689 }
1690
1691 /**
1692  * This function clears the request list as sequence numbers are passed.
1693  */
1694 void
1695 i915_gem_retire_requests(struct drm_device *dev)
1696 {
1697         drm_i915_private_t *dev_priv = dev->dev_private;
1698         uint32_t seqno;
1699
1700         if (!dev_priv->hw_status_page)
1701                 return;
1702
1703         seqno = i915_get_gem_seqno(dev);
1704
1705         while (!list_empty(&dev_priv->mm.request_list)) {
1706                 struct drm_i915_gem_request *request;
1707                 uint32_t retiring_seqno;
1708
1709                 request = list_first_entry(&dev_priv->mm.request_list,
1710                                            struct drm_i915_gem_request,
1711                                            list);
1712                 retiring_seqno = request->seqno;
1713
1714                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1715                     atomic_read(&dev_priv->mm.wedged)) {
1716                         i915_gem_retire_request(dev, request);
1717
1718                         list_del(&request->list);
1719                         list_del(&request->client_list);
1720                         kfree(request);
1721                 } else
1722                         break;
1723         }
1724 }
1725
1726 void
1727 i915_gem_retire_work_handler(struct work_struct *work)
1728 {
1729         drm_i915_private_t *dev_priv;
1730         struct drm_device *dev;
1731
1732         dev_priv = container_of(work, drm_i915_private_t,
1733                                 mm.retire_work.work);
1734         dev = dev_priv->dev;
1735
1736         mutex_lock(&dev->struct_mutex);
1737         i915_gem_retire_requests(dev);
1738         if (!dev_priv->mm.suspended &&
1739             !list_empty(&dev_priv->mm.request_list))
1740                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1741         mutex_unlock(&dev->struct_mutex);
1742 }
1743
1744 /**
1745  * Waits for a sequence number to be signaled, and cleans up the
1746  * request and object lists appropriately for that event.
1747  */
1748 static int
1749 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1750 {
1751         drm_i915_private_t *dev_priv = dev->dev_private;
1752         u32 ier;
1753         int ret = 0;
1754
1755         BUG_ON(seqno == 0);
1756
1757         if (atomic_read(&dev_priv->mm.wedged))
1758                 return -EIO;
1759
1760         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1761                 if (IS_IGDNG(dev))
1762                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1763                 else
1764                         ier = I915_READ(IER);
1765                 if (!ier) {
1766                         DRM_ERROR("something (likely vbetool) disabled "
1767                                   "interrupts, re-enabling\n");
1768                         i915_driver_irq_preinstall(dev);
1769                         i915_driver_irq_postinstall(dev);
1770                 }
1771
1772                 dev_priv->mm.waiting_gem_seqno = seqno;
1773                 i915_user_irq_get(dev);
1774                 ret = wait_event_interruptible(dev_priv->irq_queue,
1775                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1776                                                                  seqno) ||
1777                                                atomic_read(&dev_priv->mm.wedged));
1778                 i915_user_irq_put(dev);
1779                 dev_priv->mm.waiting_gem_seqno = 0;
1780         }
1781         if (atomic_read(&dev_priv->mm.wedged))
1782                 ret = -EIO;
1783
1784         if (ret && ret != -ERESTARTSYS)
1785                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1786                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1787
1788         /* Directly dispatch request retiring.  While we have the work queue
1789          * to handle this, the waiter on a request often wants an associated
1790          * buffer to have made it to the inactive list, and we would need
1791          * a separate wait queue to handle that.
1792          */
1793         if (ret == 0)
1794                 i915_gem_retire_requests(dev);
1795
1796         return ret;
1797 }
1798
1799 static void
1800 i915_gem_flush(struct drm_device *dev,
1801                uint32_t invalidate_domains,
1802                uint32_t flush_domains)
1803 {
1804         drm_i915_private_t *dev_priv = dev->dev_private;
1805         uint32_t cmd;
1806         RING_LOCALS;
1807
1808 #if WATCH_EXEC
1809         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1810                   invalidate_domains, flush_domains);
1811 #endif
1812
1813         if (flush_domains & I915_GEM_DOMAIN_CPU)
1814                 drm_agp_chipset_flush(dev);
1815
1816         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1817                 /*
1818                  * read/write caches:
1819                  *
1820                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1821                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1822                  * also flushed at 2d versus 3d pipeline switches.
1823                  *
1824                  * read-only caches:
1825                  *
1826                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1827                  * MI_READ_FLUSH is set, and is always flushed on 965.
1828                  *
1829                  * I915_GEM_DOMAIN_COMMAND may not exist?
1830                  *
1831                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1832                  * invalidated when MI_EXE_FLUSH is set.
1833                  *
1834                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1835                  * invalidated with every MI_FLUSH.
1836                  *
1837                  * TLBs:
1838                  *
1839                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1840                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1841                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1842                  * are flushed at any MI_FLUSH.
1843                  */
1844
1845                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1846                 if ((invalidate_domains|flush_domains) &
1847                     I915_GEM_DOMAIN_RENDER)
1848                         cmd &= ~MI_NO_WRITE_FLUSH;
1849                 if (!IS_I965G(dev)) {
1850                         /*
1851                          * On the 965, the sampler cache always gets flushed
1852                          * and this bit is reserved.
1853                          */
1854                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1855                                 cmd |= MI_READ_FLUSH;
1856                 }
1857                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1858                         cmd |= MI_EXE_FLUSH;
1859
1860 #if WATCH_EXEC
1861                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1862 #endif
1863                 BEGIN_LP_RING(2);
1864                 OUT_RING(cmd);
1865                 OUT_RING(0); /* noop */
1866                 ADVANCE_LP_RING();
1867         }
1868 }
1869
1870 /**
1871  * Ensures that all rendering to the object has completed and the object is
1872  * safe to unbind from the GTT or access from the CPU.
1873  */
1874 static int
1875 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1876 {
1877         struct drm_device *dev = obj->dev;
1878         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1879         int ret;
1880
1881         /* This function only exists to support waiting for existing rendering,
1882          * not for emitting required flushes.
1883          */
1884         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1885
1886         /* If there is rendering queued on the buffer being evicted, wait for
1887          * it.
1888          */
1889         if (obj_priv->active) {
1890 #if WATCH_BUF
1891                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1892                           __func__, obj, obj_priv->last_rendering_seqno);
1893 #endif
1894                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1895                 if (ret != 0)
1896                         return ret;
1897         }
1898
1899         return 0;
1900 }
1901
1902 /**
1903  * Unbinds an object from the GTT aperture.
1904  */
1905 int
1906 i915_gem_object_unbind(struct drm_gem_object *obj)
1907 {
1908         struct drm_device *dev = obj->dev;
1909         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1910         int ret = 0;
1911
1912 #if WATCH_BUF
1913         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1914         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1915 #endif
1916         if (obj_priv->gtt_space == NULL)
1917                 return 0;
1918
1919         if (obj_priv->pin_count != 0) {
1920                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1921                 return -EINVAL;
1922         }
1923
1924         /* blow away mappings if mapped through GTT */
1925         i915_gem_release_mmap(obj);
1926
1927         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1928                 i915_gem_clear_fence_reg(obj);
1929
1930         /* Move the object to the CPU domain to ensure that
1931          * any possible CPU writes while it's not in the GTT
1932          * are flushed when we go to remap it. This will
1933          * also ensure that all pending GPU writes are finished
1934          * before we unbind.
1935          */
1936         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1937         if (ret) {
1938                 if (ret != -ERESTARTSYS)
1939                         DRM_ERROR("set_domain failed: %d\n", ret);
1940                 return ret;
1941         }
1942
1943         BUG_ON(obj_priv->active);
1944
1945         if (obj_priv->agp_mem != NULL) {
1946                 drm_unbind_agp(obj_priv->agp_mem);
1947                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1948                 obj_priv->agp_mem = NULL;
1949         }
1950
1951         i915_gem_object_put_pages(obj);
1952
1953         if (obj_priv->gtt_space) {
1954                 atomic_dec(&dev->gtt_count);
1955                 atomic_sub(obj->size, &dev->gtt_memory);
1956
1957                 drm_mm_put_block(obj_priv->gtt_space);
1958                 obj_priv->gtt_space = NULL;
1959         }
1960
1961         /* Remove ourselves from the LRU list if present. */
1962         if (!list_empty(&obj_priv->list))
1963                 list_del_init(&obj_priv->list);
1964
1965         return 0;
1966 }
1967
1968 static int
1969 i915_gem_evict_something(struct drm_device *dev)
1970 {
1971         drm_i915_private_t *dev_priv = dev->dev_private;
1972         struct drm_gem_object *obj;
1973         struct drm_i915_gem_object *obj_priv;
1974         int ret = 0;
1975
1976         for (;;) {
1977                 /* If there's an inactive buffer available now, grab it
1978                  * and be done.
1979                  */
1980                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1981                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1982                                                     struct drm_i915_gem_object,
1983                                                     list);
1984                         obj = obj_priv->obj;
1985                         BUG_ON(obj_priv->pin_count != 0);
1986 #if WATCH_LRU
1987                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1988 #endif
1989                         BUG_ON(obj_priv->active);
1990
1991                         /* Wait on the rendering and unbind the buffer. */
1992                         ret = i915_gem_object_unbind(obj);
1993                         break;
1994                 }
1995
1996                 /* If we didn't get anything, but the ring is still processing
1997                  * things, wait for one of those things to finish and hopefully
1998                  * leave us a buffer to evict.
1999                  */
2000                 if (!list_empty(&dev_priv->mm.request_list)) {
2001                         struct drm_i915_gem_request *request;
2002
2003                         request = list_first_entry(&dev_priv->mm.request_list,
2004                                                    struct drm_i915_gem_request,
2005                                                    list);
2006
2007                         ret = i915_wait_request(dev, request->seqno);
2008                         if (ret)
2009                                 break;
2010
2011                         /* if waiting caused an object to become inactive,
2012                          * then loop around and wait for it. Otherwise, we
2013                          * assume that waiting freed and unbound something,
2014                          * so there should now be some space in the GTT
2015                          */
2016                         if (!list_empty(&dev_priv->mm.inactive_list))
2017                                 continue;
2018                         break;
2019                 }
2020
2021                 /* If we didn't have anything on the request list but there
2022                  * are buffers awaiting a flush, emit one and try again.
2023                  * When we wait on it, those buffers waiting for that flush
2024                  * will get moved to inactive.
2025                  */
2026                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2027                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2028                                                     struct drm_i915_gem_object,
2029                                                     list);
2030                         obj = obj_priv->obj;
2031
2032                         i915_gem_flush(dev,
2033                                        obj->write_domain,
2034                                        obj->write_domain);
2035                         i915_add_request(dev, NULL, obj->write_domain);
2036
2037                         obj = NULL;
2038                         continue;
2039                 }
2040
2041                 DRM_ERROR("inactive empty %d request empty %d "
2042                           "flushing empty %d\n",
2043                           list_empty(&dev_priv->mm.inactive_list),
2044                           list_empty(&dev_priv->mm.request_list),
2045                           list_empty(&dev_priv->mm.flushing_list));
2046                 /* If we didn't do any of the above, there's nothing to be done
2047                  * and we just can't fit it in.
2048                  */
2049                 return -ENOSPC;
2050         }
2051         return ret;
2052 }
2053
2054 static int
2055 i915_gem_evict_everything(struct drm_device *dev)
2056 {
2057         int ret;
2058
2059         for (;;) {
2060                 ret = i915_gem_evict_something(dev);
2061                 if (ret != 0)
2062                         break;
2063         }
2064         if (ret == -ENOSPC)
2065                 return 0;
2066         return ret;
2067 }
2068
2069 int
2070 i915_gem_object_get_pages(struct drm_gem_object *obj)
2071 {
2072         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2073         int page_count, i;
2074         struct address_space *mapping;
2075         struct inode *inode;
2076         struct page *page;
2077         int ret;
2078
2079         if (obj_priv->pages_refcount++ != 0)
2080                 return 0;
2081
2082         /* Get the list of pages out of our struct file.  They'll be pinned
2083          * at this point until we release them.
2084          */
2085         page_count = obj->size / PAGE_SIZE;
2086         BUG_ON(obj_priv->pages != NULL);
2087         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2088         if (obj_priv->pages == NULL) {
2089                 DRM_ERROR("Faled to allocate page list\n");
2090                 obj_priv->pages_refcount--;
2091                 return -ENOMEM;
2092         }
2093
2094         inode = obj->filp->f_path.dentry->d_inode;
2095         mapping = inode->i_mapping;
2096         for (i = 0; i < page_count; i++) {
2097                 page = read_mapping_page(mapping, i, NULL);
2098                 if (IS_ERR(page)) {
2099                         ret = PTR_ERR(page);
2100                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2101                         i915_gem_object_put_pages(obj);
2102                         return ret;
2103                 }
2104                 obj_priv->pages[i] = page;
2105         }
2106
2107         if (obj_priv->tiling_mode != I915_TILING_NONE)
2108                 i915_gem_object_do_bit_17_swizzle(obj);
2109
2110         return 0;
2111 }
2112
2113 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2114 {
2115         struct drm_gem_object *obj = reg->obj;
2116         struct drm_device *dev = obj->dev;
2117         drm_i915_private_t *dev_priv = dev->dev_private;
2118         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2119         int regnum = obj_priv->fence_reg;
2120         uint64_t val;
2121
2122         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2123                     0xfffff000) << 32;
2124         val |= obj_priv->gtt_offset & 0xfffff000;
2125         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2126         if (obj_priv->tiling_mode == I915_TILING_Y)
2127                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2128         val |= I965_FENCE_REG_VALID;
2129
2130         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2131 }
2132
2133 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2134 {
2135         struct drm_gem_object *obj = reg->obj;
2136         struct drm_device *dev = obj->dev;
2137         drm_i915_private_t *dev_priv = dev->dev_private;
2138         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2139         int regnum = obj_priv->fence_reg;
2140         int tile_width;
2141         uint32_t fence_reg, val;
2142         uint32_t pitch_val;
2143
2144         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2145             (obj_priv->gtt_offset & (obj->size - 1))) {
2146                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2147                      __func__, obj_priv->gtt_offset, obj->size);
2148                 return;
2149         }
2150
2151         if (obj_priv->tiling_mode == I915_TILING_Y &&
2152             HAS_128_BYTE_Y_TILING(dev))
2153                 tile_width = 128;
2154         else
2155                 tile_width = 512;
2156
2157         /* Note: pitch better be a power of two tile widths */
2158         pitch_val = obj_priv->stride / tile_width;
2159         pitch_val = ffs(pitch_val) - 1;
2160
2161         val = obj_priv->gtt_offset;
2162         if (obj_priv->tiling_mode == I915_TILING_Y)
2163                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2164         val |= I915_FENCE_SIZE_BITS(obj->size);
2165         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2166         val |= I830_FENCE_REG_VALID;
2167
2168         if (regnum < 8)
2169                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2170         else
2171                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2172         I915_WRITE(fence_reg, val);
2173 }
2174
2175 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2176 {
2177         struct drm_gem_object *obj = reg->obj;
2178         struct drm_device *dev = obj->dev;
2179         drm_i915_private_t *dev_priv = dev->dev_private;
2180         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2181         int regnum = obj_priv->fence_reg;
2182         uint32_t val;
2183         uint32_t pitch_val;
2184         uint32_t fence_size_bits;
2185
2186         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2187             (obj_priv->gtt_offset & (obj->size - 1))) {
2188                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2189                      __func__, obj_priv->gtt_offset);
2190                 return;
2191         }
2192
2193         pitch_val = obj_priv->stride / 128;
2194         pitch_val = ffs(pitch_val) - 1;
2195         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2196
2197         val = obj_priv->gtt_offset;
2198         if (obj_priv->tiling_mode == I915_TILING_Y)
2199                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2200         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2201         WARN_ON(fence_size_bits & ~0x00000f00);
2202         val |= fence_size_bits;
2203         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2204         val |= I830_FENCE_REG_VALID;
2205
2206         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2207 }
2208
2209 /**
2210  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2211  * @obj: object to map through a fence reg
2212  *
2213  * When mapping objects through the GTT, userspace wants to be able to write
2214  * to them without having to worry about swizzling if the object is tiled.
2215  *
2216  * This function walks the fence regs looking for a free one for @obj,
2217  * stealing one if it can't find any.
2218  *
2219  * It then sets up the reg based on the object's properties: address, pitch
2220  * and tiling format.
2221  */
2222 int
2223 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2224 {
2225         struct drm_device *dev = obj->dev;
2226         struct drm_i915_private *dev_priv = dev->dev_private;
2227         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2228         struct drm_i915_fence_reg *reg = NULL;
2229         struct drm_i915_gem_object *old_obj_priv = NULL;
2230         int i, ret, avail;
2231
2232         /* Just update our place in the LRU if our fence is getting used. */
2233         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2234                 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2235                 return 0;
2236         }
2237
2238         switch (obj_priv->tiling_mode) {
2239         case I915_TILING_NONE:
2240                 WARN(1, "allocating a fence for non-tiled object?\n");
2241                 break;
2242         case I915_TILING_X:
2243                 if (!obj_priv->stride)
2244                         return -EINVAL;
2245                 WARN((obj_priv->stride & (512 - 1)),
2246                      "object 0x%08x is X tiled but has non-512B pitch\n",
2247                      obj_priv->gtt_offset);
2248                 break;
2249         case I915_TILING_Y:
2250                 if (!obj_priv->stride)
2251                         return -EINVAL;
2252                 WARN((obj_priv->stride & (128 - 1)),
2253                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2254                      obj_priv->gtt_offset);
2255                 break;
2256         }
2257
2258         /* First try to find a free reg */
2259         avail = 0;
2260         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2261                 reg = &dev_priv->fence_regs[i];
2262                 if (!reg->obj)
2263                         break;
2264
2265                 old_obj_priv = reg->obj->driver_private;
2266                 if (!old_obj_priv->pin_count)
2267                     avail++;
2268         }
2269
2270         /* None available, try to steal one or wait for a user to finish */
2271         if (i == dev_priv->num_fence_regs) {
2272                 struct drm_gem_object *old_obj = NULL;
2273
2274                 if (avail == 0)
2275                         return -ENOSPC;
2276
2277                 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2278                                     fence_list) {
2279                         old_obj = old_obj_priv->obj;
2280
2281                         if (old_obj_priv->pin_count)
2282                                 continue;
2283
2284                         /* Take a reference, as otherwise the wait_rendering
2285                          * below may cause the object to get freed out from
2286                          * under us.
2287                          */
2288                         drm_gem_object_reference(old_obj);
2289
2290                         /* i915 uses fences for GPU access to tiled buffers */
2291                         if (IS_I965G(dev) || !old_obj_priv->active)
2292                                 break;
2293
2294                         /* This brings the object to the head of the LRU if it
2295                          * had been written to.  The only way this should
2296                          * result in us waiting longer than the expected
2297                          * optimal amount of time is if there was a
2298                          * fence-using buffer later that was read-only.
2299                          */
2300                         i915_gem_object_flush_gpu_write_domain(old_obj);
2301                         ret = i915_gem_object_wait_rendering(old_obj);
2302                         if (ret != 0) {
2303                                 drm_gem_object_unreference(old_obj);
2304                                 return ret;
2305                         }
2306
2307                         break;
2308                 }
2309
2310                 /*
2311                  * Zap this virtual mapping so we can set up a fence again
2312                  * for this object next time we need it.
2313                  */
2314                 i915_gem_release_mmap(old_obj);
2315
2316                 i = old_obj_priv->fence_reg;
2317                 reg = &dev_priv->fence_regs[i];
2318
2319                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2320                 list_del_init(&old_obj_priv->fence_list);
2321
2322                 drm_gem_object_unreference(old_obj);
2323         }
2324
2325         obj_priv->fence_reg = i;
2326         list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2327
2328         reg->obj = obj;
2329
2330         if (IS_I965G(dev))
2331                 i965_write_fence_reg(reg);
2332         else if (IS_I9XX(dev))
2333                 i915_write_fence_reg(reg);
2334         else
2335                 i830_write_fence_reg(reg);
2336
2337         return 0;
2338 }
2339
2340 /**
2341  * i915_gem_clear_fence_reg - clear out fence register info
2342  * @obj: object to clear
2343  *
2344  * Zeroes out the fence register itself and clears out the associated
2345  * data structures in dev_priv and obj_priv.
2346  */
2347 static void
2348 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2349 {
2350         struct drm_device *dev = obj->dev;
2351         drm_i915_private_t *dev_priv = dev->dev_private;
2352         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2353
2354         if (IS_I965G(dev))
2355                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2356         else {
2357                 uint32_t fence_reg;
2358
2359                 if (obj_priv->fence_reg < 8)
2360                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2361                 else
2362                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2363                                                        8) * 4;
2364
2365                 I915_WRITE(fence_reg, 0);
2366         }
2367
2368         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2369         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2370         list_del_init(&obj_priv->fence_list);
2371 }
2372
2373 /**
2374  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2375  * to the buffer to finish, and then resets the fence register.
2376  * @obj: tiled object holding a fence register.
2377  *
2378  * Zeroes out the fence register itself and clears out the associated
2379  * data structures in dev_priv and obj_priv.
2380  */
2381 int
2382 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2383 {
2384         struct drm_device *dev = obj->dev;
2385         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2386
2387         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2388                 return 0;
2389
2390         /* On the i915, GPU access to tiled buffers is via a fence,
2391          * therefore we must wait for any outstanding access to complete
2392          * before clearing the fence.
2393          */
2394         if (!IS_I965G(dev)) {
2395                 int ret;
2396
2397                 i915_gem_object_flush_gpu_write_domain(obj);
2398                 i915_gem_object_flush_gtt_write_domain(obj);
2399                 ret = i915_gem_object_wait_rendering(obj);
2400                 if (ret != 0)
2401                         return ret;
2402         }
2403
2404         i915_gem_clear_fence_reg (obj);
2405
2406         return 0;
2407 }
2408
2409 /**
2410  * Finds free space in the GTT aperture and binds the object there.
2411  */
2412 static int
2413 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2414 {
2415         struct drm_device *dev = obj->dev;
2416         drm_i915_private_t *dev_priv = dev->dev_private;
2417         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2418         struct drm_mm_node *free_space;
2419         int page_count, ret;
2420
2421         if (dev_priv->mm.suspended)
2422                 return -EBUSY;
2423
2424         if (obj_priv->madv == I915_MADV_DONTNEED) {
2425                 DRM_ERROR("Attempting to bind a purgeable object\n");
2426                 return -EINVAL;
2427         }
2428
2429         if (alignment == 0)
2430                 alignment = i915_gem_get_gtt_alignment(obj);
2431         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2432                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2433                 return -EINVAL;
2434         }
2435
2436  search_free:
2437         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2438                                         obj->size, alignment, 0);
2439         if (free_space != NULL) {
2440                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2441                                                        alignment);
2442                 if (obj_priv->gtt_space != NULL) {
2443                         obj_priv->gtt_space->private = obj;
2444                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2445                 }
2446         }
2447         if (obj_priv->gtt_space == NULL) {
2448                 bool lists_empty;
2449
2450                 /* If the gtt is empty and we're still having trouble
2451                  * fitting our object in, we're out of memory.
2452                  */
2453 #if WATCH_LRU
2454                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2455 #endif
2456                 spin_lock(&dev_priv->mm.active_list_lock);
2457                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2458                                list_empty(&dev_priv->mm.flushing_list) &&
2459                                list_empty(&dev_priv->mm.active_list));
2460                 spin_unlock(&dev_priv->mm.active_list_lock);
2461                 if (lists_empty) {
2462                         DRM_ERROR("GTT full, but LRU list empty\n");
2463                         return -ENOSPC;
2464                 }
2465
2466                 ret = i915_gem_evict_something(dev);
2467                 if (ret != 0) {
2468                         if (ret != -ERESTARTSYS)
2469                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2470                         return ret;
2471                 }
2472                 goto search_free;
2473         }
2474
2475 #if WATCH_BUF
2476         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2477                  obj->size, obj_priv->gtt_offset);
2478 #endif
2479         ret = i915_gem_object_get_pages(obj);
2480         if (ret) {
2481                 drm_mm_put_block(obj_priv->gtt_space);
2482                 obj_priv->gtt_space = NULL;
2483                 return ret;
2484         }
2485
2486         page_count = obj->size / PAGE_SIZE;
2487         /* Create an AGP memory structure pointing at our pages, and bind it
2488          * into the GTT.
2489          */
2490         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2491                                                obj_priv->pages,
2492                                                page_count,
2493                                                obj_priv->gtt_offset,
2494                                                obj_priv->agp_type);
2495         if (obj_priv->agp_mem == NULL) {
2496                 i915_gem_object_put_pages(obj);
2497                 drm_mm_put_block(obj_priv->gtt_space);
2498                 obj_priv->gtt_space = NULL;
2499                 return -ENOMEM;
2500         }
2501         atomic_inc(&dev->gtt_count);
2502         atomic_add(obj->size, &dev->gtt_memory);
2503
2504         /* Assert that the object is not currently in any GPU domain. As it
2505          * wasn't in the GTT, there shouldn't be any way it could have been in
2506          * a GPU cache
2507          */
2508         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2509         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2510
2511         return 0;
2512 }
2513
2514 void
2515 i915_gem_clflush_object(struct drm_gem_object *obj)
2516 {
2517         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2518
2519         /* If we don't have a page list set up, then we're not pinned
2520          * to GPU, and we can ignore the cache flush because it'll happen
2521          * again at bind time.
2522          */
2523         if (obj_priv->pages == NULL)
2524                 return;
2525
2526         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2527 }
2528
2529 /** Flushes any GPU write domain for the object if it's dirty. */
2530 static void
2531 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2532 {
2533         struct drm_device *dev = obj->dev;
2534         uint32_t seqno;
2535
2536         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2537                 return;
2538
2539         /* Queue the GPU write cache flushing we need. */
2540         i915_gem_flush(dev, 0, obj->write_domain);
2541         seqno = i915_add_request(dev, NULL, obj->write_domain);
2542         obj->write_domain = 0;
2543         i915_gem_object_move_to_active(obj, seqno);
2544 }
2545
2546 /** Flushes the GTT write domain for the object if it's dirty. */
2547 static void
2548 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2549 {
2550         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2551                 return;
2552
2553         /* No actual flushing is required for the GTT write domain.   Writes
2554          * to it immediately go to main memory as far as we know, so there's
2555          * no chipset flush.  It also doesn't land in render cache.
2556          */
2557         obj->write_domain = 0;
2558 }
2559
2560 /** Flushes the CPU write domain for the object if it's dirty. */
2561 static void
2562 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2563 {
2564         struct drm_device *dev = obj->dev;
2565
2566         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2567                 return;
2568
2569         i915_gem_clflush_object(obj);
2570         drm_agp_chipset_flush(dev);
2571         obj->write_domain = 0;
2572 }
2573
2574 /**
2575  * Moves a single object to the GTT read, and possibly write domain.
2576  *
2577  * This function returns when the move is complete, including waiting on
2578  * flushes to occur.
2579  */
2580 int
2581 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2582 {
2583         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2584         int ret;
2585
2586         /* Not valid to be called on unbound objects. */
2587         if (obj_priv->gtt_space == NULL)
2588                 return -EINVAL;
2589
2590         i915_gem_object_flush_gpu_write_domain(obj);
2591         /* Wait on any GPU rendering and flushing to occur. */
2592         ret = i915_gem_object_wait_rendering(obj);
2593         if (ret != 0)
2594                 return ret;
2595
2596         /* If we're writing through the GTT domain, then CPU and GPU caches
2597          * will need to be invalidated at next use.
2598          */
2599         if (write)
2600                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2601
2602         i915_gem_object_flush_cpu_write_domain(obj);
2603
2604         /* It should now be out of any other write domains, and we can update
2605          * the domain values for our changes.
2606          */
2607         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2608         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2609         if (write) {
2610                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2611                 obj_priv->dirty = 1;
2612         }
2613
2614         return 0;
2615 }
2616
2617 /**
2618  * Moves a single object to the CPU read, and possibly write domain.
2619  *
2620  * This function returns when the move is complete, including waiting on
2621  * flushes to occur.
2622  */
2623 static int
2624 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2625 {
2626         int ret;
2627
2628         i915_gem_object_flush_gpu_write_domain(obj);
2629         /* Wait on any GPU rendering and flushing to occur. */
2630         ret = i915_gem_object_wait_rendering(obj);
2631         if (ret != 0)
2632                 return ret;
2633
2634         i915_gem_object_flush_gtt_write_domain(obj);
2635
2636         /* If we have a partially-valid cache of the object in the CPU,
2637          * finish invalidating it and free the per-page flags.
2638          */
2639         i915_gem_object_set_to_full_cpu_read_domain(obj);
2640
2641         /* Flush the CPU cache if it's still invalid. */
2642         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2643                 i915_gem_clflush_object(obj);
2644
2645                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2646         }
2647
2648         /* It should now be out of any other write domains, and we can update
2649          * the domain values for our changes.
2650          */
2651         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2652
2653         /* If we're writing through the CPU, then the GPU read domains will
2654          * need to be invalidated at next use.
2655          */
2656         if (write) {
2657                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2658                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2659         }
2660
2661         return 0;
2662 }
2663
2664 /*
2665  * Set the next domain for the specified object. This
2666  * may not actually perform the necessary flushing/invaliding though,
2667  * as that may want to be batched with other set_domain operations
2668  *
2669  * This is (we hope) the only really tricky part of gem. The goal
2670  * is fairly simple -- track which caches hold bits of the object
2671  * and make sure they remain coherent. A few concrete examples may
2672  * help to explain how it works. For shorthand, we use the notation
2673  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2674  * a pair of read and write domain masks.
2675  *
2676  * Case 1: the batch buffer
2677  *
2678  *      1. Allocated
2679  *      2. Written by CPU
2680  *      3. Mapped to GTT
2681  *      4. Read by GPU
2682  *      5. Unmapped from GTT
2683  *      6. Freed
2684  *
2685  *      Let's take these a step at a time
2686  *
2687  *      1. Allocated
2688  *              Pages allocated from the kernel may still have
2689  *              cache contents, so we set them to (CPU, CPU) always.
2690  *      2. Written by CPU (using pwrite)
2691  *              The pwrite function calls set_domain (CPU, CPU) and
2692  *              this function does nothing (as nothing changes)
2693  *      3. Mapped by GTT
2694  *              This function asserts that the object is not
2695  *              currently in any GPU-based read or write domains
2696  *      4. Read by GPU
2697  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2698  *              As write_domain is zero, this function adds in the
2699  *              current read domains (CPU+COMMAND, 0).
2700  *              flush_domains is set to CPU.
2701  *              invalidate_domains is set to COMMAND
2702  *              clflush is run to get data out of the CPU caches
2703  *              then i915_dev_set_domain calls i915_gem_flush to
2704  *              emit an MI_FLUSH and drm_agp_chipset_flush
2705  *      5. Unmapped from GTT
2706  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2707  *              flush_domains and invalidate_domains end up both zero
2708  *              so no flushing/invalidating happens
2709  *      6. Freed
2710  *              yay, done
2711  *
2712  * Case 2: The shared render buffer
2713  *
2714  *      1. Allocated
2715  *      2. Mapped to GTT
2716  *      3. Read/written by GPU
2717  *      4. set_domain to (CPU,CPU)
2718  *      5. Read/written by CPU
2719  *      6. Read/written by GPU
2720  *
2721  *      1. Allocated
2722  *              Same as last example, (CPU, CPU)
2723  *      2. Mapped to GTT
2724  *              Nothing changes (assertions find that it is not in the GPU)
2725  *      3. Read/written by GPU
2726  *              execbuffer calls set_domain (RENDER, RENDER)
2727  *              flush_domains gets CPU
2728  *              invalidate_domains gets GPU
2729  *              clflush (obj)
2730  *              MI_FLUSH and drm_agp_chipset_flush
2731  *      4. set_domain (CPU, CPU)
2732  *              flush_domains gets GPU
2733  *              invalidate_domains gets CPU
2734  *              wait_rendering (obj) to make sure all drawing is complete.
2735  *              This will include an MI_FLUSH to get the data from GPU
2736  *              to memory
2737  *              clflush (obj) to invalidate the CPU cache
2738  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2739  *      5. Read/written by CPU
2740  *              cache lines are loaded and dirtied
2741  *      6. Read written by GPU
2742  *              Same as last GPU access
2743  *
2744  * Case 3: The constant buffer
2745  *
2746  *      1. Allocated
2747  *      2. Written by CPU
2748  *      3. Read by GPU
2749  *      4. Updated (written) by CPU again
2750  *      5. Read by GPU
2751  *
2752  *      1. Allocated
2753  *              (CPU, CPU)
2754  *      2. Written by CPU
2755  *              (CPU, CPU)
2756  *      3. Read by GPU
2757  *              (CPU+RENDER, 0)
2758  *              flush_domains = CPU
2759  *              invalidate_domains = RENDER
2760  *              clflush (obj)
2761  *              MI_FLUSH
2762  *              drm_agp_chipset_flush
2763  *      4. Updated (written) by CPU again
2764  *              (CPU, CPU)
2765  *              flush_domains = 0 (no previous write domain)
2766  *              invalidate_domains = 0 (no new read domains)
2767  *      5. Read by GPU
2768  *              (CPU+RENDER, 0)
2769  *              flush_domains = CPU
2770  *              invalidate_domains = RENDER
2771  *              clflush (obj)
2772  *              MI_FLUSH
2773  *              drm_agp_chipset_flush
2774  */
2775 static void
2776 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2777 {
2778         struct drm_device               *dev = obj->dev;
2779         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2780         uint32_t                        invalidate_domains = 0;
2781         uint32_t                        flush_domains = 0;
2782
2783         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2784         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2785
2786         intel_mark_busy(dev, obj);
2787
2788 #if WATCH_BUF
2789         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2790                  __func__, obj,
2791                  obj->read_domains, obj->pending_read_domains,
2792                  obj->write_domain, obj->pending_write_domain);
2793 #endif
2794         /*
2795          * If the object isn't moving to a new write domain,
2796          * let the object stay in multiple read domains
2797          */
2798         if (obj->pending_write_domain == 0)
2799                 obj->pending_read_domains |= obj->read_domains;
2800         else
2801                 obj_priv->dirty = 1;
2802
2803         /*
2804          * Flush the current write domain if
2805          * the new read domains don't match. Invalidate
2806          * any read domains which differ from the old
2807          * write domain
2808          */
2809         if (obj->write_domain &&
2810             obj->write_domain != obj->pending_read_domains) {
2811                 flush_domains |= obj->write_domain;
2812                 invalidate_domains |=
2813                         obj->pending_read_domains & ~obj->write_domain;
2814         }
2815         /*
2816          * Invalidate any read caches which may have
2817          * stale data. That is, any new read domains.
2818          */
2819         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2820         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2821 #if WATCH_BUF
2822                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2823                          __func__, flush_domains, invalidate_domains);
2824 #endif
2825                 i915_gem_clflush_object(obj);
2826         }
2827
2828         /* The actual obj->write_domain will be updated with
2829          * pending_write_domain after we emit the accumulated flush for all
2830          * of our domain changes in execbuffers (which clears objects'
2831          * write_domains).  So if we have a current write domain that we
2832          * aren't changing, set pending_write_domain to that.
2833          */
2834         if (flush_domains == 0 && obj->pending_write_domain == 0)
2835                 obj->pending_write_domain = obj->write_domain;
2836         obj->read_domains = obj->pending_read_domains;
2837
2838         dev->invalidate_domains |= invalidate_domains;
2839         dev->flush_domains |= flush_domains;
2840 #if WATCH_BUF
2841         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2842                  __func__,
2843                  obj->read_domains, obj->write_domain,
2844                  dev->invalidate_domains, dev->flush_domains);
2845 #endif
2846 }
2847
2848 /**
2849  * Moves the object from a partially CPU read to a full one.
2850  *
2851  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2852  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2853  */
2854 static void
2855 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2856 {
2857         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2858
2859         if (!obj_priv->page_cpu_valid)
2860                 return;
2861
2862         /* If we're partially in the CPU read domain, finish moving it in.
2863          */
2864         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2865                 int i;
2866
2867                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2868                         if (obj_priv->page_cpu_valid[i])
2869                                 continue;
2870                         drm_clflush_pages(obj_priv->pages + i, 1);
2871                 }
2872         }
2873
2874         /* Free the page_cpu_valid mappings which are now stale, whether
2875          * or not we've got I915_GEM_DOMAIN_CPU.
2876          */
2877         kfree(obj_priv->page_cpu_valid);
2878         obj_priv->page_cpu_valid = NULL;
2879 }
2880
2881 /**
2882  * Set the CPU read domain on a range of the object.
2883  *
2884  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2885  * not entirely valid.  The page_cpu_valid member of the object flags which
2886  * pages have been flushed, and will be respected by
2887  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2888  * of the whole object.
2889  *
2890  * This function returns when the move is complete, including waiting on
2891  * flushes to occur.
2892  */
2893 static int
2894 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2895                                           uint64_t offset, uint64_t size)
2896 {
2897         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2898         int i, ret;
2899
2900         if (offset == 0 && size == obj->size)
2901                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2902
2903         i915_gem_object_flush_gpu_write_domain(obj);
2904         /* Wait on any GPU rendering and flushing to occur. */
2905         ret = i915_gem_object_wait_rendering(obj);
2906         if (ret != 0)
2907                 return ret;
2908         i915_gem_object_flush_gtt_write_domain(obj);
2909
2910         /* If we're already fully in the CPU read domain, we're done. */
2911         if (obj_priv->page_cpu_valid == NULL &&
2912             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2913                 return 0;
2914
2915         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2916          * newly adding I915_GEM_DOMAIN_CPU
2917          */
2918         if (obj_priv->page_cpu_valid == NULL) {
2919                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2920                                                    GFP_KERNEL);
2921                 if (obj_priv->page_cpu_valid == NULL)
2922                         return -ENOMEM;
2923         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2924                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2925
2926         /* Flush the cache on any pages that are still invalid from the CPU's
2927          * perspective.
2928          */
2929         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2930              i++) {
2931                 if (obj_priv->page_cpu_valid[i])
2932                         continue;
2933
2934                 drm_clflush_pages(obj_priv->pages + i, 1);
2935
2936                 obj_priv->page_cpu_valid[i] = 1;
2937         }
2938
2939         /* It should now be out of any other write domains, and we can update
2940          * the domain values for our changes.
2941          */
2942         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2943
2944         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2945
2946         return 0;
2947 }
2948
2949 /**
2950  * Pin an object to the GTT and evaluate the relocations landing in it.
2951  */
2952 static int
2953 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2954                                  struct drm_file *file_priv,
2955                                  struct drm_i915_gem_exec_object *entry,
2956                                  struct drm_i915_gem_relocation_entry *relocs)
2957 {
2958         struct drm_device *dev = obj->dev;
2959         drm_i915_private_t *dev_priv = dev->dev_private;
2960         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2961         int i, ret;
2962         void __iomem *reloc_page;
2963
2964         /* Choose the GTT offset for our buffer and put it there. */
2965         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2966         if (ret)
2967                 return ret;
2968
2969         entry->offset = obj_priv->gtt_offset;
2970
2971         /* Apply the relocations, using the GTT aperture to avoid cache
2972          * flushing requirements.
2973          */
2974         for (i = 0; i < entry->relocation_count; i++) {
2975                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2976                 struct drm_gem_object *target_obj;
2977                 struct drm_i915_gem_object *target_obj_priv;
2978                 uint32_t reloc_val, reloc_offset;
2979                 uint32_t __iomem *reloc_entry;
2980
2981                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2982                                                    reloc->target_handle);
2983                 if (target_obj == NULL) {
2984                         i915_gem_object_unpin(obj);
2985                         return -EBADF;
2986                 }
2987                 target_obj_priv = target_obj->driver_private;
2988
2989                 /* The target buffer should have appeared before us in the
2990                  * exec_object list, so it should have a GTT space bound by now.
2991                  */
2992                 if (target_obj_priv->gtt_space == NULL) {
2993                         DRM_ERROR("No GTT space found for object %d\n",
2994                                   reloc->target_handle);
2995                         drm_gem_object_unreference(target_obj);
2996                         i915_gem_object_unpin(obj);
2997                         return -EINVAL;
2998                 }
2999
3000                 if (reloc->offset > obj->size - 4) {
3001                         DRM_ERROR("Relocation beyond object bounds: "
3002                                   "obj %p target %d offset %d size %d.\n",
3003                                   obj, reloc->target_handle,
3004                                   (int) reloc->offset, (int) obj->size);
3005                         drm_gem_object_unreference(target_obj);
3006                         i915_gem_object_unpin(obj);
3007                         return -EINVAL;
3008                 }
3009                 if (reloc->offset & 3) {
3010                         DRM_ERROR("Relocation not 4-byte aligned: "
3011                                   "obj %p target %d offset %d.\n",
3012                                   obj, reloc->target_handle,
3013                                   (int) reloc->offset);
3014                         drm_gem_object_unreference(target_obj);
3015                         i915_gem_object_unpin(obj);
3016                         return -EINVAL;
3017                 }
3018
3019                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3020                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3021                         DRM_ERROR("reloc with read/write CPU domains: "
3022                                   "obj %p target %d offset %d "
3023                                   "read %08x write %08x",
3024                                   obj, reloc->target_handle,
3025                                   (int) reloc->offset,
3026                                   reloc->read_domains,
3027                                   reloc->write_domain);
3028                         drm_gem_object_unreference(target_obj);
3029                         i915_gem_object_unpin(obj);
3030                         return -EINVAL;
3031                 }
3032
3033                 if (reloc->write_domain && target_obj->pending_write_domain &&
3034                     reloc->write_domain != target_obj->pending_write_domain) {
3035                         DRM_ERROR("Write domain conflict: "
3036                                   "obj %p target %d offset %d "
3037                                   "new %08x old %08x\n",
3038                                   obj, reloc->target_handle,
3039                                   (int) reloc->offset,
3040                                   reloc->write_domain,
3041                                   target_obj->pending_write_domain);
3042                         drm_gem_object_unreference(target_obj);
3043                         i915_gem_object_unpin(obj);
3044                         return -EINVAL;
3045                 }
3046
3047 #if WATCH_RELOC
3048                 DRM_INFO("%s: obj %p offset %08x target %d "
3049                          "read %08x write %08x gtt %08x "
3050                          "presumed %08x delta %08x\n",
3051                          __func__,
3052                          obj,
3053                          (int) reloc->offset,
3054                          (int) reloc->target_handle,
3055                          (int) reloc->read_domains,
3056                          (int) reloc->write_domain,
3057                          (int) target_obj_priv->gtt_offset,
3058                          (int) reloc->presumed_offset,
3059                          reloc->delta);
3060 #endif
3061
3062                 target_obj->pending_read_domains |= reloc->read_domains;
3063                 target_obj->pending_write_domain |= reloc->write_domain;
3064
3065                 /* If the relocation already has the right value in it, no
3066                  * more work needs to be done.
3067                  */
3068                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3069                         drm_gem_object_unreference(target_obj);
3070                         continue;
3071                 }
3072
3073                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3074                 if (ret != 0) {
3075                         drm_gem_object_unreference(target_obj);
3076                         i915_gem_object_unpin(obj);
3077                         return -EINVAL;
3078                 }
3079
3080                 /* Map the page containing the relocation we're going to
3081                  * perform.
3082                  */
3083                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3084                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3085                                                       (reloc_offset &
3086                                                        ~(PAGE_SIZE - 1)));
3087                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3088                                                    (reloc_offset & (PAGE_SIZE - 1)));
3089                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3090
3091 #if WATCH_BUF
3092                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3093                           obj, (unsigned int) reloc->offset,
3094                           readl(reloc_entry), reloc_val);
3095 #endif
3096                 writel(reloc_val, reloc_entry);
3097                 io_mapping_unmap_atomic(reloc_page);
3098
3099                 /* The updated presumed offset for this entry will be
3100                  * copied back out to the user.
3101                  */
3102                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3103
3104                 drm_gem_object_unreference(target_obj);
3105         }
3106
3107 #if WATCH_BUF
3108         if (0)
3109                 i915_gem_dump_object(obj, 128, __func__, ~0);
3110 #endif
3111         return 0;
3112 }
3113
3114 /** Dispatch a batchbuffer to the ring
3115  */
3116 static int
3117 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3118                               struct drm_i915_gem_execbuffer *exec,
3119                               struct drm_clip_rect *cliprects,
3120                               uint64_t exec_offset)
3121 {
3122         drm_i915_private_t *dev_priv = dev->dev_private;
3123         int nbox = exec->num_cliprects;
3124         int i = 0, count;
3125         uint32_t exec_start, exec_len;
3126         RING_LOCALS;
3127
3128         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3129         exec_len = (uint32_t) exec->batch_len;
3130
3131         count = nbox ? nbox : 1;
3132
3133         for (i = 0; i < count; i++) {
3134                 if (i < nbox) {
3135                         int ret = i915_emit_box(dev, cliprects, i,
3136                                                 exec->DR1, exec->DR4);
3137                         if (ret)
3138                                 return ret;
3139                 }
3140
3141                 if (IS_I830(dev) || IS_845G(dev)) {
3142                         BEGIN_LP_RING(4);
3143                         OUT_RING(MI_BATCH_BUFFER);
3144                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3145                         OUT_RING(exec_start + exec_len - 4);
3146                         OUT_RING(0);
3147                         ADVANCE_LP_RING();
3148                 } else {
3149                         BEGIN_LP_RING(2);
3150                         if (IS_I965G(dev)) {
3151                                 OUT_RING(MI_BATCH_BUFFER_START |
3152                                          (2 << 6) |
3153                                          MI_BATCH_NON_SECURE_I965);
3154                                 OUT_RING(exec_start);
3155                         } else {
3156                                 OUT_RING(MI_BATCH_BUFFER_START |
3157                                          (2 << 6));
3158                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3159                         }
3160                         ADVANCE_LP_RING();
3161                 }
3162         }
3163
3164         /* XXX breadcrumb */
3165         return 0;
3166 }
3167
3168 /* Throttle our rendering by waiting until the ring has completed our requests
3169  * emitted over 20 msec ago.
3170  *
3171  * Note that if we were to use the current jiffies each time around the loop,
3172  * we wouldn't escape the function with any frames outstanding if the time to
3173  * render a frame was over 20ms.
3174  *
3175  * This should get us reasonable parallelism between CPU and GPU but also
3176  * relatively low latency when blocking on a particular request to finish.
3177  */
3178 static int
3179 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3180 {
3181         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3182         int ret = 0;
3183         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3184
3185         mutex_lock(&dev->struct_mutex);
3186         while (!list_empty(&i915_file_priv->mm.request_list)) {
3187                 struct drm_i915_gem_request *request;
3188
3189                 request = list_first_entry(&i915_file_priv->mm.request_list,
3190                                            struct drm_i915_gem_request,
3191                                            client_list);
3192
3193                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3194                         break;
3195
3196                 ret = i915_wait_request(dev, request->seqno);
3197                 if (ret != 0)
3198                         break;
3199         }
3200         mutex_unlock(&dev->struct_mutex);
3201
3202         return ret;
3203 }
3204
3205 static int
3206 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3207                               uint32_t buffer_count,
3208                               struct drm_i915_gem_relocation_entry **relocs)
3209 {
3210         uint32_t reloc_count = 0, reloc_index = 0, i;
3211         int ret;
3212
3213         *relocs = NULL;
3214         for (i = 0; i < buffer_count; i++) {
3215                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3216                         return -EINVAL;
3217                 reloc_count += exec_list[i].relocation_count;
3218         }
3219
3220         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3221         if (*relocs == NULL)
3222                 return -ENOMEM;
3223
3224         for (i = 0; i < buffer_count; i++) {
3225                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3226
3227                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3228
3229                 ret = copy_from_user(&(*relocs)[reloc_index],
3230                                      user_relocs,
3231                                      exec_list[i].relocation_count *
3232                                      sizeof(**relocs));
3233                 if (ret != 0) {
3234                         drm_free_large(*relocs);
3235                         *relocs = NULL;
3236                         return -EFAULT;
3237                 }
3238
3239                 reloc_index += exec_list[i].relocation_count;
3240         }
3241
3242         return 0;
3243 }
3244
3245 static int
3246 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3247                             uint32_t buffer_count,
3248                             struct drm_i915_gem_relocation_entry *relocs)
3249 {
3250         uint32_t reloc_count = 0, i;
3251         int ret = 0;
3252
3253         for (i = 0; i < buffer_count; i++) {
3254                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3255                 int unwritten;
3256
3257                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3258
3259                 unwritten = copy_to_user(user_relocs,
3260                                          &relocs[reloc_count],
3261                                          exec_list[i].relocation_count *
3262                                          sizeof(*relocs));
3263
3264                 if (unwritten) {
3265                         ret = -EFAULT;
3266                         goto err;
3267                 }
3268
3269                 reloc_count += exec_list[i].relocation_count;
3270         }
3271
3272 err:
3273         drm_free_large(relocs);
3274
3275         return ret;
3276 }
3277
3278 static int
3279 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3280                            uint64_t exec_offset)
3281 {
3282         uint32_t exec_start, exec_len;
3283
3284         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3285         exec_len = (uint32_t) exec->batch_len;
3286
3287         if ((exec_start | exec_len) & 0x7)
3288                 return -EINVAL;
3289
3290         if (!exec_start)
3291                 return -EINVAL;
3292
3293         return 0;
3294 }
3295
3296 int
3297 i915_gem_execbuffer(struct drm_device *dev, void *data,
3298                     struct drm_file *file_priv)
3299 {
3300         drm_i915_private_t *dev_priv = dev->dev_private;
3301         struct drm_i915_gem_execbuffer *args = data;
3302         struct drm_i915_gem_exec_object *exec_list = NULL;
3303         struct drm_gem_object **object_list = NULL;
3304         struct drm_gem_object *batch_obj;
3305         struct drm_i915_gem_object *obj_priv;
3306         struct drm_clip_rect *cliprects = NULL;
3307         struct drm_i915_gem_relocation_entry *relocs;
3308         int ret, ret2, i, pinned = 0;
3309         uint64_t exec_offset;
3310         uint32_t seqno, flush_domains, reloc_index;
3311         int pin_tries;
3312
3313 #if WATCH_EXEC
3314         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3315                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3316 #endif
3317
3318         if (args->buffer_count < 1) {
3319                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3320                 return -EINVAL;
3321         }
3322         /* Copy in the exec list from userland */
3323         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3324         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3325         if (exec_list == NULL || object_list == NULL) {
3326                 DRM_ERROR("Failed to allocate exec or object list "
3327                           "for %d buffers\n",
3328                           args->buffer_count);
3329                 ret = -ENOMEM;
3330                 goto pre_mutex_err;
3331         }
3332         ret = copy_from_user(exec_list,
3333                              (struct drm_i915_relocation_entry __user *)
3334                              (uintptr_t) args->buffers_ptr,
3335                              sizeof(*exec_list) * args->buffer_count);
3336         if (ret != 0) {
3337                 DRM_ERROR("copy %d exec entries failed %d\n",
3338                           args->buffer_count, ret);
3339                 goto pre_mutex_err;
3340         }
3341
3342         if (args->num_cliprects != 0) {
3343                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3344                                     GFP_KERNEL);
3345                 if (cliprects == NULL)
3346                         goto pre_mutex_err;
3347
3348                 ret = copy_from_user(cliprects,
3349                                      (struct drm_clip_rect __user *)
3350                                      (uintptr_t) args->cliprects_ptr,
3351                                      sizeof(*cliprects) * args->num_cliprects);
3352                 if (ret != 0) {
3353                         DRM_ERROR("copy %d cliprects failed: %d\n",
3354                                   args->num_cliprects, ret);
3355                         goto pre_mutex_err;
3356                 }
3357         }
3358
3359         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3360                                             &relocs);
3361         if (ret != 0)
3362                 goto pre_mutex_err;
3363
3364         mutex_lock(&dev->struct_mutex);
3365
3366         i915_verify_inactive(dev, __FILE__, __LINE__);
3367
3368         if (atomic_read(&dev_priv->mm.wedged)) {
3369                 DRM_ERROR("Execbuf while wedged\n");
3370                 mutex_unlock(&dev->struct_mutex);
3371                 ret = -EIO;
3372                 goto pre_mutex_err;
3373         }
3374
3375         if (dev_priv->mm.suspended) {
3376                 DRM_ERROR("Execbuf while VT-switched.\n");
3377                 mutex_unlock(&dev->struct_mutex);
3378                 ret = -EBUSY;
3379                 goto pre_mutex_err;
3380         }
3381
3382         /* Look up object handles */
3383         for (i = 0; i < args->buffer_count; i++) {
3384                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3385                                                        exec_list[i].handle);
3386                 if (object_list[i] == NULL) {
3387                         DRM_ERROR("Invalid object handle %d at index %d\n",
3388                                    exec_list[i].handle, i);
3389                         ret = -EBADF;
3390                         goto err;
3391                 }
3392
3393                 obj_priv = object_list[i]->driver_private;
3394                 if (obj_priv->in_execbuffer) {
3395                         DRM_ERROR("Object %p appears more than once in object list\n",
3396                                    object_list[i]);
3397                         ret = -EBADF;
3398                         goto err;
3399                 }
3400                 obj_priv->in_execbuffer = true;
3401         }
3402
3403         /* Pin and relocate */
3404         for (pin_tries = 0; ; pin_tries++) {
3405                 ret = 0;
3406                 reloc_index = 0;
3407
3408                 for (i = 0; i < args->buffer_count; i++) {
3409                         object_list[i]->pending_read_domains = 0;
3410                         object_list[i]->pending_write_domain = 0;
3411                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3412                                                                file_priv,
3413                                                                &exec_list[i],
3414                                                                &relocs[reloc_index]);
3415                         if (ret)
3416                                 break;
3417                         pinned = i + 1;
3418                         reloc_index += exec_list[i].relocation_count;
3419                 }
3420                 /* success */
3421                 if (ret == 0)
3422                         break;
3423
3424                 /* error other than GTT full, or we've already tried again */
3425                 if (ret != -ENOSPC || pin_tries >= 1) {
3426                         if (ret != -ERESTARTSYS)
3427                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3428                         goto err;
3429                 }
3430
3431                 /* unpin all of our buffers */
3432                 for (i = 0; i < pinned; i++)
3433                         i915_gem_object_unpin(object_list[i]);
3434                 pinned = 0;
3435
3436                 /* evict everyone we can from the aperture */
3437                 ret = i915_gem_evict_everything(dev);
3438                 if (ret)
3439                         goto err;
3440         }
3441
3442         /* Set the pending read domains for the batch buffer to COMMAND */
3443         batch_obj = object_list[args->buffer_count-1];
3444         if (batch_obj->pending_write_domain) {
3445                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3446                 ret = -EINVAL;
3447                 goto err;
3448         }
3449         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3450
3451         /* Sanity check the batch buffer, prior to moving objects */
3452         exec_offset = exec_list[args->buffer_count - 1].offset;
3453         ret = i915_gem_check_execbuffer (args, exec_offset);
3454         if (ret != 0) {
3455                 DRM_ERROR("execbuf with invalid offset/length\n");
3456                 goto err;
3457         }
3458
3459         i915_verify_inactive(dev, __FILE__, __LINE__);
3460
3461         /* Zero the global flush/invalidate flags. These
3462          * will be modified as new domains are computed
3463          * for each object
3464          */
3465         dev->invalidate_domains = 0;
3466         dev->flush_domains = 0;
3467
3468         for (i = 0; i < args->buffer_count; i++) {
3469                 struct drm_gem_object *obj = object_list[i];
3470
3471                 /* Compute new gpu domains and update invalidate/flush */
3472                 i915_gem_object_set_to_gpu_domain(obj);
3473         }
3474
3475         i915_verify_inactive(dev, __FILE__, __LINE__);
3476
3477         if (dev->invalidate_domains | dev->flush_domains) {
3478 #if WATCH_EXEC
3479                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3480                           __func__,
3481                          dev->invalidate_domains,
3482                          dev->flush_domains);
3483 #endif
3484                 i915_gem_flush(dev,
3485                                dev->invalidate_domains,
3486                                dev->flush_domains);
3487                 if (dev->flush_domains)
3488                         (void)i915_add_request(dev, file_priv,
3489                                                dev->flush_domains);
3490         }
3491
3492         for (i = 0; i < args->buffer_count; i++) {
3493                 struct drm_gem_object *obj = object_list[i];
3494
3495                 obj->write_domain = obj->pending_write_domain;
3496         }
3497
3498         i915_verify_inactive(dev, __FILE__, __LINE__);
3499
3500 #if WATCH_COHERENCY
3501         for (i = 0; i < args->buffer_count; i++) {
3502                 i915_gem_object_check_coherency(object_list[i],
3503                                                 exec_list[i].handle);
3504         }
3505 #endif
3506
3507 #if WATCH_EXEC
3508         i915_gem_dump_object(batch_obj,
3509                               args->batch_len,
3510                               __func__,
3511                               ~0);
3512 #endif
3513
3514         /* Exec the batchbuffer */
3515         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3516         if (ret) {
3517                 DRM_ERROR("dispatch failed %d\n", ret);
3518                 goto err;
3519         }
3520
3521         /*
3522          * Ensure that the commands in the batch buffer are
3523          * finished before the interrupt fires
3524          */
3525         flush_domains = i915_retire_commands(dev);
3526
3527         i915_verify_inactive(dev, __FILE__, __LINE__);
3528
3529         /*
3530          * Get a seqno representing the execution of the current buffer,
3531          * which we can wait on.  We would like to mitigate these interrupts,
3532          * likely by only creating seqnos occasionally (so that we have
3533          * *some* interrupts representing completion of buffers that we can
3534          * wait on when trying to clear up gtt space).
3535          */
3536         seqno = i915_add_request(dev, file_priv, flush_domains);
3537         BUG_ON(seqno == 0);
3538         for (i = 0; i < args->buffer_count; i++) {
3539                 struct drm_gem_object *obj = object_list[i];
3540
3541                 i915_gem_object_move_to_active(obj, seqno);
3542 #if WATCH_LRU
3543                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3544 #endif
3545         }
3546 #if WATCH_LRU
3547         i915_dump_lru(dev, __func__);
3548 #endif
3549
3550         i915_verify_inactive(dev, __FILE__, __LINE__);
3551
3552 err:
3553         for (i = 0; i < pinned; i++)
3554                 i915_gem_object_unpin(object_list[i]);
3555
3556         for (i = 0; i < args->buffer_count; i++) {
3557                 if (object_list[i]) {
3558                         obj_priv = object_list[i]->driver_private;
3559                         obj_priv->in_execbuffer = false;
3560                 }
3561                 drm_gem_object_unreference(object_list[i]);
3562         }
3563
3564         mutex_unlock(&dev->struct_mutex);
3565
3566         if (!ret) {
3567                 /* Copy the new buffer offsets back to the user's exec list. */
3568                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3569                                    (uintptr_t) args->buffers_ptr,
3570                                    exec_list,
3571                                    sizeof(*exec_list) * args->buffer_count);
3572                 if (ret) {
3573                         ret = -EFAULT;
3574                         DRM_ERROR("failed to copy %d exec entries "
3575                                   "back to user (%d)\n",
3576                                   args->buffer_count, ret);
3577                 }
3578         }
3579
3580         /* Copy the updated relocations out regardless of current error
3581          * state.  Failure to update the relocs would mean that the next
3582          * time userland calls execbuf, it would do so with presumed offset
3583          * state that didn't match the actual object state.
3584          */
3585         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3586                                            relocs);
3587         if (ret2 != 0) {
3588                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3589
3590                 if (ret == 0)
3591                         ret = ret2;
3592         }
3593
3594 pre_mutex_err:
3595         drm_free_large(object_list);
3596         drm_free_large(exec_list);
3597         kfree(cliprects);
3598
3599         return ret;
3600 }
3601
3602 int
3603 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3604 {
3605         struct drm_device *dev = obj->dev;
3606         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3607         int ret;
3608
3609         i915_verify_inactive(dev, __FILE__, __LINE__);
3610         if (obj_priv->gtt_space == NULL) {
3611                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3612                 if (ret != 0) {
3613                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3614                                 DRM_ERROR("Failure to bind: %d\n", ret);
3615                         return ret;
3616                 }
3617         }
3618         /*
3619          * Pre-965 chips need a fence register set up in order to
3620          * properly handle tiled surfaces.
3621          */
3622         if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3623                 ret = i915_gem_object_get_fence_reg(obj);
3624                 if (ret != 0) {
3625                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3626                                 DRM_ERROR("Failure to install fence: %d\n",
3627                                           ret);
3628                         return ret;
3629                 }
3630         }
3631         obj_priv->pin_count++;
3632
3633         /* If the object is not active and not pending a flush,
3634          * remove it from the inactive list
3635          */
3636         if (obj_priv->pin_count == 1) {
3637                 atomic_inc(&dev->pin_count);
3638                 atomic_add(obj->size, &dev->pin_memory);
3639                 if (!obj_priv->active &&
3640                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3641                     !list_empty(&obj_priv->list))
3642                         list_del_init(&obj_priv->list);
3643         }
3644         i915_verify_inactive(dev, __FILE__, __LINE__);
3645
3646         return 0;
3647 }
3648
3649 void
3650 i915_gem_object_unpin(struct drm_gem_object *obj)
3651 {
3652         struct drm_device *dev = obj->dev;
3653         drm_i915_private_t *dev_priv = dev->dev_private;
3654         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3655
3656         i915_verify_inactive(dev, __FILE__, __LINE__);
3657         obj_priv->pin_count--;
3658         BUG_ON(obj_priv->pin_count < 0);
3659         BUG_ON(obj_priv->gtt_space == NULL);
3660
3661         /* If the object is no longer pinned, and is
3662          * neither active nor being flushed, then stick it on
3663          * the inactive list
3664          */
3665         if (obj_priv->pin_count == 0) {
3666                 if (!obj_priv->active &&
3667                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3668                         list_move_tail(&obj_priv->list,
3669                                        &dev_priv->mm.inactive_list);
3670                 atomic_dec(&dev->pin_count);
3671                 atomic_sub(obj->size, &dev->pin_memory);
3672         }
3673         i915_verify_inactive(dev, __FILE__, __LINE__);
3674 }
3675
3676 int
3677 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3678                    struct drm_file *file_priv)
3679 {
3680         struct drm_i915_gem_pin *args = data;
3681         struct drm_gem_object *obj;
3682         struct drm_i915_gem_object *obj_priv;
3683         int ret;
3684
3685         mutex_lock(&dev->struct_mutex);
3686
3687         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3688         if (obj == NULL) {
3689                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3690                           args->handle);
3691                 mutex_unlock(&dev->struct_mutex);
3692                 return -EBADF;
3693         }
3694         obj_priv = obj->driver_private;
3695
3696         if (obj_priv->madv == I915_MADV_DONTNEED) {
3697                 DRM_ERROR("Attempting to pin a I915_MADV_DONTNEED buffer\n");
3698                 drm_gem_object_unreference(obj);
3699                 mutex_unlock(&dev->struct_mutex);
3700                 return -EINVAL;
3701         }
3702
3703         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3704                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3705                           args->handle);
3706                 drm_gem_object_unreference(obj);
3707                 mutex_unlock(&dev->struct_mutex);
3708                 return -EINVAL;
3709         }
3710
3711         obj_priv->user_pin_count++;
3712         obj_priv->pin_filp = file_priv;
3713         if (obj_priv->user_pin_count == 1) {
3714                 ret = i915_gem_object_pin(obj, args->alignment);
3715                 if (ret != 0) {
3716                         drm_gem_object_unreference(obj);
3717                         mutex_unlock(&dev->struct_mutex);
3718                         return ret;
3719                 }
3720         }
3721
3722         /* XXX - flush the CPU caches for pinned objects
3723          * as the X server doesn't manage domains yet
3724          */
3725         i915_gem_object_flush_cpu_write_domain(obj);
3726         args->offset = obj_priv->gtt_offset;
3727         drm_gem_object_unreference(obj);
3728         mutex_unlock(&dev->struct_mutex);
3729
3730         return 0;
3731 }
3732
3733 int
3734 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3735                      struct drm_file *file_priv)
3736 {
3737         struct drm_i915_gem_pin *args = data;
3738         struct drm_gem_object *obj;
3739         struct drm_i915_gem_object *obj_priv;
3740
3741         mutex_lock(&dev->struct_mutex);
3742
3743         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3744         if (obj == NULL) {
3745                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3746                           args->handle);
3747                 mutex_unlock(&dev->struct_mutex);
3748                 return -EBADF;
3749         }
3750
3751         obj_priv = obj->driver_private;
3752         if (obj_priv->pin_filp != file_priv) {
3753                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3754                           args->handle);
3755                 drm_gem_object_unreference(obj);
3756                 mutex_unlock(&dev->struct_mutex);
3757                 return -EINVAL;
3758         }
3759         obj_priv->user_pin_count--;
3760         if (obj_priv->user_pin_count == 0) {
3761                 obj_priv->pin_filp = NULL;
3762                 i915_gem_object_unpin(obj);
3763         }
3764
3765         drm_gem_object_unreference(obj);
3766         mutex_unlock(&dev->struct_mutex);
3767         return 0;
3768 }
3769
3770 int
3771 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3772                     struct drm_file *file_priv)
3773 {
3774         struct drm_i915_gem_busy *args = data;
3775         struct drm_gem_object *obj;
3776         struct drm_i915_gem_object *obj_priv;
3777
3778         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3779         if (obj == NULL) {
3780                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3781                           args->handle);
3782                 return -EBADF;
3783         }
3784
3785         mutex_lock(&dev->struct_mutex);
3786         /* Update the active list for the hardware's current position.
3787          * Otherwise this only updates on a delayed timer or when irqs are
3788          * actually unmasked, and our working set ends up being larger than
3789          * required.
3790          */
3791         i915_gem_retire_requests(dev);
3792
3793         obj_priv = obj->driver_private;
3794         /* Don't count being on the flushing list against the object being
3795          * done.  Otherwise, a buffer left on the flushing list but not getting
3796          * flushed (because nobody's flushing that domain) won't ever return
3797          * unbusy and get reused by libdrm's bo cache.  The other expected
3798          * consumer of this interface, OpenGL's occlusion queries, also specs
3799          * that the objects get unbusy "eventually" without any interference.
3800          */
3801         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3802
3803         drm_gem_object_unreference(obj);
3804         mutex_unlock(&dev->struct_mutex);
3805         return 0;
3806 }
3807
3808 int
3809 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3810                         struct drm_file *file_priv)
3811 {
3812     return i915_gem_ring_throttle(dev, file_priv);
3813 }
3814
3815 int
3816 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3817                        struct drm_file *file_priv)
3818 {
3819         struct drm_i915_gem_madvise *args = data;
3820         struct drm_gem_object *obj;
3821         struct drm_i915_gem_object *obj_priv;
3822
3823         switch (args->madv) {
3824         case I915_MADV_DONTNEED:
3825         case I915_MADV_WILLNEED:
3826             break;
3827         default:
3828             return -EINVAL;
3829         }
3830
3831         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3832         if (obj == NULL) {
3833                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
3834                           args->handle);
3835                 return -EBADF;
3836         }
3837
3838         mutex_lock(&dev->struct_mutex);
3839         obj_priv = obj->driver_private;
3840
3841         if (obj_priv->pin_count) {
3842                 drm_gem_object_unreference(obj);
3843                 mutex_unlock(&dev->struct_mutex);
3844
3845                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
3846                 return -EINVAL;
3847         }
3848
3849         obj_priv->madv = args->madv;
3850         args->retained = obj_priv->gtt_space != NULL;
3851
3852         drm_gem_object_unreference(obj);
3853         mutex_unlock(&dev->struct_mutex);
3854
3855         return 0;
3856 }
3857
3858 int i915_gem_init_object(struct drm_gem_object *obj)
3859 {
3860         struct drm_i915_gem_object *obj_priv;
3861
3862         obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3863         if (obj_priv == NULL)
3864                 return -ENOMEM;
3865
3866         /*
3867          * We've just allocated pages from the kernel,
3868          * so they've just been written by the CPU with
3869          * zeros. They'll need to be clflushed before we
3870          * use them with the GPU.
3871          */
3872         obj->write_domain = I915_GEM_DOMAIN_CPU;
3873         obj->read_domains = I915_GEM_DOMAIN_CPU;
3874
3875         obj_priv->agp_type = AGP_USER_MEMORY;
3876
3877         obj->driver_private = obj_priv;
3878         obj_priv->obj = obj;
3879         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3880         INIT_LIST_HEAD(&obj_priv->list);
3881         INIT_LIST_HEAD(&obj_priv->fence_list);
3882         obj_priv->madv = I915_MADV_WILLNEED;
3883
3884         return 0;
3885 }
3886
3887 void i915_gem_free_object(struct drm_gem_object *obj)
3888 {
3889         struct drm_device *dev = obj->dev;
3890         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3891
3892         while (obj_priv->pin_count > 0)
3893                 i915_gem_object_unpin(obj);
3894
3895         if (obj_priv->phys_obj)
3896                 i915_gem_detach_phys_object(dev, obj);
3897
3898         i915_gem_object_unbind(obj);
3899
3900         if (obj_priv->mmap_offset)
3901                 i915_gem_free_mmap_offset(obj);
3902
3903         kfree(obj_priv->page_cpu_valid);
3904         kfree(obj_priv->bit_17);
3905         kfree(obj->driver_private);
3906 }
3907
3908 /** Unbinds all objects that are on the given buffer list. */
3909 static int
3910 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3911 {
3912         struct drm_gem_object *obj;
3913         struct drm_i915_gem_object *obj_priv;
3914         int ret;
3915
3916         while (!list_empty(head)) {
3917                 obj_priv = list_first_entry(head,
3918                                             struct drm_i915_gem_object,
3919                                             list);
3920                 obj = obj_priv->obj;
3921
3922                 if (obj_priv->pin_count != 0) {
3923                         DRM_ERROR("Pinned object in unbind list\n");
3924                         mutex_unlock(&dev->struct_mutex);
3925                         return -EINVAL;
3926                 }
3927
3928                 ret = i915_gem_object_unbind(obj);
3929                 if (ret != 0) {
3930                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3931                                   ret);
3932                         mutex_unlock(&dev->struct_mutex);
3933                         return ret;
3934                 }
3935         }
3936
3937
3938         return 0;
3939 }
3940
3941 int
3942 i915_gem_idle(struct drm_device *dev)
3943 {
3944         drm_i915_private_t *dev_priv = dev->dev_private;
3945         uint32_t seqno, cur_seqno, last_seqno;
3946         int stuck, ret;
3947
3948         mutex_lock(&dev->struct_mutex);
3949
3950         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3951                 mutex_unlock(&dev->struct_mutex);
3952                 return 0;
3953         }
3954
3955         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3956          * We need to replace this with a semaphore, or something.
3957          */
3958         dev_priv->mm.suspended = 1;
3959         del_timer(&dev_priv->hangcheck_timer);
3960
3961         /* Cancel the retire work handler, wait for it to finish if running
3962          */
3963         mutex_unlock(&dev->struct_mutex);
3964         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3965         mutex_lock(&dev->struct_mutex);
3966
3967         i915_kernel_lost_context(dev);
3968
3969         /* Flush the GPU along with all non-CPU write domains
3970          */
3971         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3972         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3973
3974         if (seqno == 0) {
3975                 mutex_unlock(&dev->struct_mutex);
3976                 return -ENOMEM;
3977         }
3978
3979         dev_priv->mm.waiting_gem_seqno = seqno;
3980         last_seqno = 0;
3981         stuck = 0;
3982         for (;;) {
3983                 cur_seqno = i915_get_gem_seqno(dev);
3984                 if (i915_seqno_passed(cur_seqno, seqno))
3985                         break;
3986                 if (last_seqno == cur_seqno) {
3987                         if (stuck++ > 100) {
3988                                 DRM_ERROR("hardware wedged\n");
3989                                 atomic_set(&dev_priv->mm.wedged, 1);
3990                                 DRM_WAKEUP(&dev_priv->irq_queue);
3991                                 break;
3992                         }
3993                 }
3994                 msleep(10);
3995                 last_seqno = cur_seqno;
3996         }
3997         dev_priv->mm.waiting_gem_seqno = 0;
3998
3999         i915_gem_retire_requests(dev);
4000
4001         spin_lock(&dev_priv->mm.active_list_lock);
4002         if (!atomic_read(&dev_priv->mm.wedged)) {
4003                 /* Active and flushing should now be empty as we've
4004                  * waited for a sequence higher than any pending execbuffer
4005                  */
4006                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
4007                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
4008                 /* Request should now be empty as we've also waited
4009                  * for the last request in the list
4010                  */
4011                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
4012         }
4013
4014         /* Empty the active and flushing lists to inactive.  If there's
4015          * anything left at this point, it means that we're wedged and
4016          * nothing good's going to happen by leaving them there.  So strip
4017          * the GPU domains and just stuff them onto inactive.
4018          */
4019         while (!list_empty(&dev_priv->mm.active_list)) {
4020                 struct drm_i915_gem_object *obj_priv;
4021
4022                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
4023                                             struct drm_i915_gem_object,
4024                                             list);
4025                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4026                 i915_gem_object_move_to_inactive(obj_priv->obj);
4027         }
4028         spin_unlock(&dev_priv->mm.active_list_lock);
4029
4030         while (!list_empty(&dev_priv->mm.flushing_list)) {
4031                 struct drm_i915_gem_object *obj_priv;
4032
4033                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
4034                                             struct drm_i915_gem_object,
4035                                             list);
4036                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
4037                 i915_gem_object_move_to_inactive(obj_priv->obj);
4038         }
4039
4040
4041         /* Move all inactive buffers out of the GTT. */
4042         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
4043         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
4044         if (ret) {
4045                 mutex_unlock(&dev->struct_mutex);
4046                 return ret;
4047         }
4048
4049         i915_gem_cleanup_ringbuffer(dev);
4050         mutex_unlock(&dev->struct_mutex);
4051
4052         return 0;
4053 }
4054
4055 static int
4056 i915_gem_init_hws(struct drm_device *dev)
4057 {
4058         drm_i915_private_t *dev_priv = dev->dev_private;
4059         struct drm_gem_object *obj;
4060         struct drm_i915_gem_object *obj_priv;
4061         int ret;
4062
4063         /* If we need a physical address for the status page, it's already
4064          * initialized at driver load time.
4065          */
4066         if (!I915_NEED_GFX_HWS(dev))
4067                 return 0;
4068
4069         obj = drm_gem_object_alloc(dev, 4096);
4070         if (obj == NULL) {
4071                 DRM_ERROR("Failed to allocate status page\n");
4072                 return -ENOMEM;
4073         }
4074         obj_priv = obj->driver_private;
4075         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4076
4077         ret = i915_gem_object_pin(obj, 4096);
4078         if (ret != 0) {
4079                 drm_gem_object_unreference(obj);
4080                 return ret;
4081         }
4082
4083         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4084
4085         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4086         if (dev_priv->hw_status_page == NULL) {
4087                 DRM_ERROR("Failed to map status page.\n");
4088                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4089                 i915_gem_object_unpin(obj);
4090                 drm_gem_object_unreference(obj);
4091                 return -EINVAL;
4092         }
4093         dev_priv->hws_obj = obj;
4094         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4095         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4096         I915_READ(HWS_PGA); /* posting read */
4097         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4098
4099         return 0;
4100 }
4101
4102 static void
4103 i915_gem_cleanup_hws(struct drm_device *dev)
4104 {
4105         drm_i915_private_t *dev_priv = dev->dev_private;
4106         struct drm_gem_object *obj;
4107         struct drm_i915_gem_object *obj_priv;
4108
4109         if (dev_priv->hws_obj == NULL)
4110                 return;
4111
4112         obj = dev_priv->hws_obj;
4113         obj_priv = obj->driver_private;
4114
4115         kunmap(obj_priv->pages[0]);
4116         i915_gem_object_unpin(obj);
4117         drm_gem_object_unreference(obj);
4118         dev_priv->hws_obj = NULL;
4119
4120         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4121         dev_priv->hw_status_page = NULL;
4122
4123         /* Write high address into HWS_PGA when disabling. */
4124         I915_WRITE(HWS_PGA, 0x1ffff000);
4125 }
4126
4127 int
4128 i915_gem_init_ringbuffer(struct drm_device *dev)
4129 {
4130         drm_i915_private_t *dev_priv = dev->dev_private;
4131         struct drm_gem_object *obj;
4132         struct drm_i915_gem_object *obj_priv;
4133         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4134         int ret;
4135         u32 head;
4136
4137         ret = i915_gem_init_hws(dev);
4138         if (ret != 0)
4139                 return ret;
4140
4141         obj = drm_gem_object_alloc(dev, 128 * 1024);
4142         if (obj == NULL) {
4143                 DRM_ERROR("Failed to allocate ringbuffer\n");
4144                 i915_gem_cleanup_hws(dev);
4145                 return -ENOMEM;
4146         }
4147         obj_priv = obj->driver_private;
4148
4149         ret = i915_gem_object_pin(obj, 4096);
4150         if (ret != 0) {
4151                 drm_gem_object_unreference(obj);
4152                 i915_gem_cleanup_hws(dev);
4153                 return ret;
4154         }
4155
4156         /* Set up the kernel mapping for the ring. */
4157         ring->Size = obj->size;
4158
4159         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4160         ring->map.size = obj->size;
4161         ring->map.type = 0;
4162         ring->map.flags = 0;
4163         ring->map.mtrr = 0;
4164
4165         drm_core_ioremap_wc(&ring->map, dev);
4166         if (ring->map.handle == NULL) {
4167                 DRM_ERROR("Failed to map ringbuffer.\n");
4168                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4169                 i915_gem_object_unpin(obj);
4170                 drm_gem_object_unreference(obj);
4171                 i915_gem_cleanup_hws(dev);
4172                 return -EINVAL;
4173         }
4174         ring->ring_obj = obj;
4175         ring->virtual_start = ring->map.handle;
4176
4177         /* Stop the ring if it's running. */
4178         I915_WRITE(PRB0_CTL, 0);
4179         I915_WRITE(PRB0_TAIL, 0);
4180         I915_WRITE(PRB0_HEAD, 0);
4181
4182         /* Initialize the ring. */
4183         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4184         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4185
4186         /* G45 ring initialization fails to reset head to zero */
4187         if (head != 0) {
4188                 DRM_ERROR("Ring head not reset to zero "
4189                           "ctl %08x head %08x tail %08x start %08x\n",
4190                           I915_READ(PRB0_CTL),
4191                           I915_READ(PRB0_HEAD),
4192                           I915_READ(PRB0_TAIL),
4193                           I915_READ(PRB0_START));
4194                 I915_WRITE(PRB0_HEAD, 0);
4195
4196                 DRM_ERROR("Ring head forced to zero "
4197                           "ctl %08x head %08x tail %08x start %08x\n",
4198                           I915_READ(PRB0_CTL),
4199                           I915_READ(PRB0_HEAD),
4200                           I915_READ(PRB0_TAIL),
4201                           I915_READ(PRB0_START));
4202         }
4203
4204         I915_WRITE(PRB0_CTL,
4205                    ((obj->size - 4096) & RING_NR_PAGES) |
4206                    RING_NO_REPORT |
4207                    RING_VALID);
4208
4209         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4210
4211         /* If the head is still not zero, the ring is dead */
4212         if (head != 0) {
4213                 DRM_ERROR("Ring initialization failed "
4214                           "ctl %08x head %08x tail %08x start %08x\n",
4215                           I915_READ(PRB0_CTL),
4216                           I915_READ(PRB0_HEAD),
4217                           I915_READ(PRB0_TAIL),
4218                           I915_READ(PRB0_START));
4219                 return -EIO;
4220         }
4221
4222         /* Update our cache of the ring state */
4223         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4224                 i915_kernel_lost_context(dev);
4225         else {
4226                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4227                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4228                 ring->space = ring->head - (ring->tail + 8);
4229                 if (ring->space < 0)
4230                         ring->space += ring->Size;
4231         }
4232
4233         return 0;
4234 }
4235
4236 void
4237 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4238 {
4239         drm_i915_private_t *dev_priv = dev->dev_private;
4240
4241         if (dev_priv->ring.ring_obj == NULL)
4242                 return;
4243
4244         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4245
4246         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4247         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4248         dev_priv->ring.ring_obj = NULL;
4249         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4250
4251         i915_gem_cleanup_hws(dev);
4252 }
4253
4254 int
4255 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4256                        struct drm_file *file_priv)
4257 {
4258         drm_i915_private_t *dev_priv = dev->dev_private;
4259         int ret;
4260
4261         if (drm_core_check_feature(dev, DRIVER_MODESET))
4262                 return 0;
4263
4264         if (atomic_read(&dev_priv->mm.wedged)) {
4265                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4266                 atomic_set(&dev_priv->mm.wedged, 0);
4267         }
4268
4269         mutex_lock(&dev->struct_mutex);
4270         dev_priv->mm.suspended = 0;
4271
4272         ret = i915_gem_init_ringbuffer(dev);
4273         if (ret != 0) {
4274                 mutex_unlock(&dev->struct_mutex);
4275                 return ret;
4276         }
4277
4278         spin_lock(&dev_priv->mm.active_list_lock);
4279         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4280         spin_unlock(&dev_priv->mm.active_list_lock);
4281
4282         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4283         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4284         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4285         mutex_unlock(&dev->struct_mutex);
4286
4287         drm_irq_install(dev);
4288
4289         return 0;
4290 }
4291
4292 int
4293 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4294                        struct drm_file *file_priv)
4295 {
4296         int ret;
4297
4298         if (drm_core_check_feature(dev, DRIVER_MODESET))
4299                 return 0;
4300
4301         ret = i915_gem_idle(dev);
4302         drm_irq_uninstall(dev);
4303
4304         return ret;
4305 }
4306
4307 void
4308 i915_gem_lastclose(struct drm_device *dev)
4309 {
4310         int ret;
4311
4312         if (drm_core_check_feature(dev, DRIVER_MODESET))
4313                 return;
4314
4315         ret = i915_gem_idle(dev);
4316         if (ret)
4317                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4318 }
4319
4320 void
4321 i915_gem_load(struct drm_device *dev)
4322 {
4323         int i;
4324         drm_i915_private_t *dev_priv = dev->dev_private;
4325
4326         spin_lock_init(&dev_priv->mm.active_list_lock);
4327         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4328         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4329         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4330         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4331         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4332         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4333                           i915_gem_retire_work_handler);
4334         dev_priv->mm.next_gem_seqno = 1;
4335
4336         spin_lock(&shrink_list_lock);
4337         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4338         spin_unlock(&shrink_list_lock);
4339
4340         /* Old X drivers will take 0-2 for front, back, depth buffers */
4341         dev_priv->fence_reg_start = 3;
4342
4343         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4344                 dev_priv->num_fence_regs = 16;
4345         else
4346                 dev_priv->num_fence_regs = 8;
4347
4348         /* Initialize fence registers to zero */
4349         if (IS_I965G(dev)) {
4350                 for (i = 0; i < 16; i++)
4351                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4352         } else {
4353                 for (i = 0; i < 8; i++)
4354                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4355                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4356                         for (i = 0; i < 8; i++)
4357                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4358         }
4359
4360         i915_gem_detect_bit_6_swizzle(dev);
4361 }
4362
4363 /*
4364  * Create a physically contiguous memory object for this object
4365  * e.g. for cursor + overlay regs
4366  */
4367 int i915_gem_init_phys_object(struct drm_device *dev,
4368                               int id, int size)
4369 {
4370         drm_i915_private_t *dev_priv = dev->dev_private;
4371         struct drm_i915_gem_phys_object *phys_obj;
4372         int ret;
4373
4374         if (dev_priv->mm.phys_objs[id - 1] || !size)
4375                 return 0;
4376
4377         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4378         if (!phys_obj)
4379                 return -ENOMEM;
4380
4381         phys_obj->id = id;
4382
4383         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4384         if (!phys_obj->handle) {
4385                 ret = -ENOMEM;
4386                 goto kfree_obj;
4387         }
4388 #ifdef CONFIG_X86
4389         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4390 #endif
4391
4392         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4393
4394         return 0;
4395 kfree_obj:
4396         kfree(phys_obj);
4397         return ret;
4398 }
4399
4400 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4401 {
4402         drm_i915_private_t *dev_priv = dev->dev_private;
4403         struct drm_i915_gem_phys_object *phys_obj;
4404
4405         if (!dev_priv->mm.phys_objs[id - 1])
4406                 return;
4407
4408         phys_obj = dev_priv->mm.phys_objs[id - 1];
4409         if (phys_obj->cur_obj) {
4410                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4411         }
4412
4413 #ifdef CONFIG_X86
4414         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4415 #endif
4416         drm_pci_free(dev, phys_obj->handle);
4417         kfree(phys_obj);
4418         dev_priv->mm.phys_objs[id - 1] = NULL;
4419 }
4420
4421 void i915_gem_free_all_phys_object(struct drm_device *dev)
4422 {
4423         int i;
4424
4425         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4426                 i915_gem_free_phys_object(dev, i);
4427 }
4428
4429 void i915_gem_detach_phys_object(struct drm_device *dev,
4430                                  struct drm_gem_object *obj)
4431 {
4432         struct drm_i915_gem_object *obj_priv;
4433         int i;
4434         int ret;
4435         int page_count;
4436
4437         obj_priv = obj->driver_private;
4438         if (!obj_priv->phys_obj)
4439                 return;
4440
4441         ret = i915_gem_object_get_pages(obj);
4442         if (ret)
4443                 goto out;
4444
4445         page_count = obj->size / PAGE_SIZE;
4446
4447         for (i = 0; i < page_count; i++) {
4448                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4449                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4450
4451                 memcpy(dst, src, PAGE_SIZE);
4452                 kunmap_atomic(dst, KM_USER0);
4453         }
4454         drm_clflush_pages(obj_priv->pages, page_count);
4455         drm_agp_chipset_flush(dev);
4456
4457         i915_gem_object_put_pages(obj);
4458 out:
4459         obj_priv->phys_obj->cur_obj = NULL;
4460         obj_priv->phys_obj = NULL;
4461 }
4462
4463 int
4464 i915_gem_attach_phys_object(struct drm_device *dev,
4465                             struct drm_gem_object *obj, int id)
4466 {
4467         drm_i915_private_t *dev_priv = dev->dev_private;
4468         struct drm_i915_gem_object *obj_priv;
4469         int ret = 0;
4470         int page_count;
4471         int i;
4472
4473         if (id > I915_MAX_PHYS_OBJECT)
4474                 return -EINVAL;
4475
4476         obj_priv = obj->driver_private;
4477
4478         if (obj_priv->phys_obj) {
4479                 if (obj_priv->phys_obj->id == id)
4480                         return 0;
4481                 i915_gem_detach_phys_object(dev, obj);
4482         }
4483
4484
4485         /* create a new object */
4486         if (!dev_priv->mm.phys_objs[id - 1]) {
4487                 ret = i915_gem_init_phys_object(dev, id,
4488                                                 obj->size);
4489                 if (ret) {
4490                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4491                         goto out;
4492                 }
4493         }
4494
4495         /* bind to the object */
4496         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4497         obj_priv->phys_obj->cur_obj = obj;
4498
4499         ret = i915_gem_object_get_pages(obj);
4500         if (ret) {
4501                 DRM_ERROR("failed to get page list\n");
4502                 goto out;
4503         }
4504
4505         page_count = obj->size / PAGE_SIZE;
4506
4507         for (i = 0; i < page_count; i++) {
4508                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4509                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4510
4511                 memcpy(dst, src, PAGE_SIZE);
4512                 kunmap_atomic(src, KM_USER0);
4513         }
4514
4515         i915_gem_object_put_pages(obj);
4516
4517         return 0;
4518 out:
4519         return ret;
4520 }
4521
4522 static int
4523 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4524                      struct drm_i915_gem_pwrite *args,
4525                      struct drm_file *file_priv)
4526 {
4527         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4528         void *obj_addr;
4529         int ret;
4530         char __user *user_data;
4531
4532         user_data = (char __user *) (uintptr_t) args->data_ptr;
4533         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4534
4535         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4536         ret = copy_from_user(obj_addr, user_data, args->size);
4537         if (ret)
4538                 return -EFAULT;
4539
4540         drm_agp_chipset_flush(dev);
4541         return 0;
4542 }
4543
4544 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4545 {
4546         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4547
4548         /* Clean up our request list when the client is going away, so that
4549          * later retire_requests won't dereference our soon-to-be-gone
4550          * file_priv.
4551          */
4552         mutex_lock(&dev->struct_mutex);
4553         while (!list_empty(&i915_file_priv->mm.request_list))
4554                 list_del_init(i915_file_priv->mm.request_list.next);
4555         mutex_unlock(&dev->struct_mutex);
4556 }
4557
4558 /* Immediately discard the backing storage */
4559 static void
4560 i915_gem_object_truncate(struct drm_gem_object *obj)
4561 {
4562     struct inode *inode;
4563
4564     inode = obj->filp->f_path.dentry->d_inode;
4565
4566     mutex_lock(&inode->i_mutex);
4567     truncate_inode_pages(inode->i_mapping, 0);
4568     mutex_unlock(&inode->i_mutex);
4569 }
4570
4571 static inline int
4572 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
4573 {
4574         return !obj_priv->dirty || obj_priv->madv == I915_MADV_DONTNEED;
4575 }
4576
4577 static int
4578 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4579 {
4580         drm_i915_private_t *dev_priv, *next_dev;
4581         struct drm_i915_gem_object *obj_priv, *next_obj;
4582         int cnt = 0;
4583         int would_deadlock = 1;
4584
4585         /* "fast-path" to count number of available objects */
4586         if (nr_to_scan == 0) {
4587                 spin_lock(&shrink_list_lock);
4588                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4589                         struct drm_device *dev = dev_priv->dev;
4590
4591                         if (mutex_trylock(&dev->struct_mutex)) {
4592                                 list_for_each_entry(obj_priv,
4593                                                     &dev_priv->mm.inactive_list,
4594                                                     list)
4595                                         cnt++;
4596                                 mutex_unlock(&dev->struct_mutex);
4597                         }
4598                 }
4599                 spin_unlock(&shrink_list_lock);
4600
4601                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4602         }
4603
4604         spin_lock(&shrink_list_lock);
4605
4606         /* first scan for clean buffers */
4607         list_for_each_entry_safe(dev_priv, next_dev,
4608                                  &shrink_list, mm.shrink_list) {
4609                 struct drm_device *dev = dev_priv->dev;
4610
4611                 if (! mutex_trylock(&dev->struct_mutex))
4612                         continue;
4613
4614                 spin_unlock(&shrink_list_lock);
4615
4616                 i915_gem_retire_requests(dev);
4617
4618                 list_for_each_entry_safe(obj_priv, next_obj,
4619                                          &dev_priv->mm.inactive_list,
4620                                          list) {
4621                         if (i915_gem_object_is_purgeable(obj_priv)) {
4622                                 struct drm_gem_object *obj = obj_priv->obj;
4623                                 i915_gem_object_unbind(obj);
4624                                 i915_gem_object_truncate(obj);
4625
4626                                 if (--nr_to_scan <= 0)
4627                                         break;
4628                         }
4629                 }
4630
4631                 spin_lock(&shrink_list_lock);
4632                 mutex_unlock(&dev->struct_mutex);
4633
4634                 if (nr_to_scan <= 0)
4635                         break;
4636         }
4637
4638         /* second pass, evict/count anything still on the inactive list */
4639         list_for_each_entry_safe(dev_priv, next_dev,
4640                                  &shrink_list, mm.shrink_list) {
4641                 struct drm_device *dev = dev_priv->dev;
4642
4643                 if (! mutex_trylock(&dev->struct_mutex))
4644                         continue;
4645
4646                 spin_unlock(&shrink_list_lock);
4647
4648                 list_for_each_entry_safe(obj_priv, next_obj,
4649                                          &dev_priv->mm.inactive_list,
4650                                          list) {
4651                         if (nr_to_scan > 0) {
4652                                 struct drm_gem_object *obj = obj_priv->obj;
4653                                 i915_gem_object_unbind(obj);
4654                                 if (i915_gem_object_is_purgeable(obj_priv))
4655                                         i915_gem_object_truncate(obj);
4656
4657                                 nr_to_scan--;
4658                         } else
4659                                 cnt++;
4660                 }
4661
4662                 spin_lock(&shrink_list_lock);
4663                 mutex_unlock(&dev->struct_mutex);
4664
4665                 would_deadlock = 0;
4666         }
4667
4668         spin_unlock(&shrink_list_lock);
4669
4670         if (would_deadlock)
4671                 return -1;
4672         else if (cnt > 0)
4673                 return (cnt / 100) * sysctl_vfs_cache_pressure;
4674         else
4675                 return 0;
4676 }
4677
4678 static struct shrinker shrinker = {
4679         .shrink = i915_gem_shrink,
4680         .seeks = DEFAULT_SEEKS,
4681 };
4682
4683 __init void
4684 i915_gem_shrinker_init(void)
4685 {
4686     register_shrinker(&shrinker);
4687 }
4688
4689 __exit void
4690 i915_gem_shrinker_exit(void)
4691 {
4692     unregister_shrinker(&shrinker);
4693 }