drm/i915: Clear fence register on tiling stride change.
[safe/jmp/linux-2.6] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS    (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41                                              int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43                                                      uint64_t offset,
44                                                      uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48                                            unsigned alignment);
49 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
50 static int i915_gem_evict_something(struct drm_device *dev);
51 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
52                                 struct drm_i915_gem_pwrite *args,
53                                 struct drm_file *file_priv);
54
55 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
56                      unsigned long end)
57 {
58         drm_i915_private_t *dev_priv = dev->dev_private;
59
60         if (start >= end ||
61             (start & (PAGE_SIZE - 1)) != 0 ||
62             (end & (PAGE_SIZE - 1)) != 0) {
63                 return -EINVAL;
64         }
65
66         drm_mm_init(&dev_priv->mm.gtt_space, start,
67                     end - start);
68
69         dev->gtt_total = (uint32_t) (end - start);
70
71         return 0;
72 }
73
74 int
75 i915_gem_init_ioctl(struct drm_device *dev, void *data,
76                     struct drm_file *file_priv)
77 {
78         struct drm_i915_gem_init *args = data;
79         int ret;
80
81         mutex_lock(&dev->struct_mutex);
82         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
83         mutex_unlock(&dev->struct_mutex);
84
85         return ret;
86 }
87
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90                             struct drm_file *file_priv)
91 {
92         struct drm_i915_gem_get_aperture *args = data;
93
94         if (!(dev->driver->driver_features & DRIVER_GEM))
95                 return -ENODEV;
96
97         args->aper_size = dev->gtt_total;
98         args->aper_available_size = (args->aper_size -
99                                      atomic_read(&dev->pin_memory));
100
101         return 0;
102 }
103
104
105 /**
106  * Creates a new mm object and returns a handle to it.
107  */
108 int
109 i915_gem_create_ioctl(struct drm_device *dev, void *data,
110                       struct drm_file *file_priv)
111 {
112         struct drm_i915_gem_create *args = data;
113         struct drm_gem_object *obj;
114         int handle, ret;
115
116         args->size = roundup(args->size, PAGE_SIZE);
117
118         /* Allocate the new object */
119         obj = drm_gem_object_alloc(dev, args->size);
120         if (obj == NULL)
121                 return -ENOMEM;
122
123         ret = drm_gem_handle_create(file_priv, obj, &handle);
124         mutex_lock(&dev->struct_mutex);
125         drm_gem_object_handle_unreference(obj);
126         mutex_unlock(&dev->struct_mutex);
127
128         if (ret)
129                 return ret;
130
131         args->handle = handle;
132
133         return 0;
134 }
135
136 static inline int
137 fast_shmem_read(struct page **pages,
138                 loff_t page_base, int page_offset,
139                 char __user *data,
140                 int length)
141 {
142         char __iomem *vaddr;
143         int unwritten;
144
145         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
146         if (vaddr == NULL)
147                 return -ENOMEM;
148         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
149         kunmap_atomic(vaddr, KM_USER0);
150
151         if (unwritten)
152                 return -EFAULT;
153
154         return 0;
155 }
156
157 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
158 {
159         drm_i915_private_t *dev_priv = obj->dev->dev_private;
160         struct drm_i915_gem_object *obj_priv = obj->driver_private;
161
162         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
163                 obj_priv->tiling_mode != I915_TILING_NONE;
164 }
165
166 static inline int
167 slow_shmem_copy(struct page *dst_page,
168                 int dst_offset,
169                 struct page *src_page,
170                 int src_offset,
171                 int length)
172 {
173         char *dst_vaddr, *src_vaddr;
174
175         dst_vaddr = kmap_atomic(dst_page, KM_USER0);
176         if (dst_vaddr == NULL)
177                 return -ENOMEM;
178
179         src_vaddr = kmap_atomic(src_page, KM_USER1);
180         if (src_vaddr == NULL) {
181                 kunmap_atomic(dst_vaddr, KM_USER0);
182                 return -ENOMEM;
183         }
184
185         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
186
187         kunmap_atomic(src_vaddr, KM_USER1);
188         kunmap_atomic(dst_vaddr, KM_USER0);
189
190         return 0;
191 }
192
193 static inline int
194 slow_shmem_bit17_copy(struct page *gpu_page,
195                       int gpu_offset,
196                       struct page *cpu_page,
197                       int cpu_offset,
198                       int length,
199                       int is_read)
200 {
201         char *gpu_vaddr, *cpu_vaddr;
202
203         /* Use the unswizzled path if this page isn't affected. */
204         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
205                 if (is_read)
206                         return slow_shmem_copy(cpu_page, cpu_offset,
207                                                gpu_page, gpu_offset, length);
208                 else
209                         return slow_shmem_copy(gpu_page, gpu_offset,
210                                                cpu_page, cpu_offset, length);
211         }
212
213         gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
214         if (gpu_vaddr == NULL)
215                 return -ENOMEM;
216
217         cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
218         if (cpu_vaddr == NULL) {
219                 kunmap_atomic(gpu_vaddr, KM_USER0);
220                 return -ENOMEM;
221         }
222
223         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224          * XORing with the other bits (A9 for Y, A9 and A10 for X)
225          */
226         while (length > 0) {
227                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228                 int this_length = min(cacheline_end - gpu_offset, length);
229                 int swizzled_gpu_offset = gpu_offset ^ 64;
230
231                 if (is_read) {
232                         memcpy(cpu_vaddr + cpu_offset,
233                                gpu_vaddr + swizzled_gpu_offset,
234                                this_length);
235                 } else {
236                         memcpy(gpu_vaddr + swizzled_gpu_offset,
237                                cpu_vaddr + cpu_offset,
238                                this_length);
239                 }
240                 cpu_offset += this_length;
241                 gpu_offset += this_length;
242                 length -= this_length;
243         }
244
245         kunmap_atomic(cpu_vaddr, KM_USER1);
246         kunmap_atomic(gpu_vaddr, KM_USER0);
247
248         return 0;
249 }
250
251 /**
252  * This is the fast shmem pread path, which attempts to copy_from_user directly
253  * from the backing pages of the object to the user's address space.  On a
254  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255  */
256 static int
257 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258                           struct drm_i915_gem_pread *args,
259                           struct drm_file *file_priv)
260 {
261         struct drm_i915_gem_object *obj_priv = obj->driver_private;
262         ssize_t remain;
263         loff_t offset, page_base;
264         char __user *user_data;
265         int page_offset, page_length;
266         int ret;
267
268         user_data = (char __user *) (uintptr_t) args->data_ptr;
269         remain = args->size;
270
271         mutex_lock(&dev->struct_mutex);
272
273         ret = i915_gem_object_get_pages(obj);
274         if (ret != 0)
275                 goto fail_unlock;
276
277         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278                                                         args->size);
279         if (ret != 0)
280                 goto fail_put_pages;
281
282         obj_priv = obj->driver_private;
283         offset = args->offset;
284
285         while (remain > 0) {
286                 /* Operation in this page
287                  *
288                  * page_base = page offset within aperture
289                  * page_offset = offset within page
290                  * page_length = bytes to copy for this page
291                  */
292                 page_base = (offset & ~(PAGE_SIZE-1));
293                 page_offset = offset & (PAGE_SIZE-1);
294                 page_length = remain;
295                 if ((page_offset + remain) > PAGE_SIZE)
296                         page_length = PAGE_SIZE - page_offset;
297
298                 ret = fast_shmem_read(obj_priv->pages,
299                                       page_base, page_offset,
300                                       user_data, page_length);
301                 if (ret)
302                         goto fail_put_pages;
303
304                 remain -= page_length;
305                 user_data += page_length;
306                 offset += page_length;
307         }
308
309 fail_put_pages:
310         i915_gem_object_put_pages(obj);
311 fail_unlock:
312         mutex_unlock(&dev->struct_mutex);
313
314         return ret;
315 }
316
317 /**
318  * This is the fallback shmem pread path, which allocates temporary storage
319  * in kernel space to copy_to_user into outside of the struct_mutex, so we
320  * can copy out of the object's backing pages while holding the struct mutex
321  * and not take page faults.
322  */
323 static int
324 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
325                           struct drm_i915_gem_pread *args,
326                           struct drm_file *file_priv)
327 {
328         struct drm_i915_gem_object *obj_priv = obj->driver_private;
329         struct mm_struct *mm = current->mm;
330         struct page **user_pages;
331         ssize_t remain;
332         loff_t offset, pinned_pages, i;
333         loff_t first_data_page, last_data_page, num_pages;
334         int shmem_page_index, shmem_page_offset;
335         int data_page_index,  data_page_offset;
336         int page_length;
337         int ret;
338         uint64_t data_ptr = args->data_ptr;
339         int do_bit17_swizzling;
340
341         remain = args->size;
342
343         /* Pin the user pages containing the data.  We can't fault while
344          * holding the struct mutex, yet we want to hold it while
345          * dereferencing the user data.
346          */
347         first_data_page = data_ptr / PAGE_SIZE;
348         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
349         num_pages = last_data_page - first_data_page + 1;
350
351         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
352         if (user_pages == NULL)
353                 return -ENOMEM;
354
355         down_read(&mm->mmap_sem);
356         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
357                                       num_pages, 1, 0, user_pages, NULL);
358         up_read(&mm->mmap_sem);
359         if (pinned_pages < num_pages) {
360                 ret = -EFAULT;
361                 goto fail_put_user_pages;
362         }
363
364         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
365
366         mutex_lock(&dev->struct_mutex);
367
368         ret = i915_gem_object_get_pages(obj);
369         if (ret != 0)
370                 goto fail_unlock;
371
372         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
373                                                         args->size);
374         if (ret != 0)
375                 goto fail_put_pages;
376
377         obj_priv = obj->driver_private;
378         offset = args->offset;
379
380         while (remain > 0) {
381                 /* Operation in this page
382                  *
383                  * shmem_page_index = page number within shmem file
384                  * shmem_page_offset = offset within page in shmem file
385                  * data_page_index = page number in get_user_pages return
386                  * data_page_offset = offset with data_page_index page.
387                  * page_length = bytes to copy for this page
388                  */
389                 shmem_page_index = offset / PAGE_SIZE;
390                 shmem_page_offset = offset & ~PAGE_MASK;
391                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
392                 data_page_offset = data_ptr & ~PAGE_MASK;
393
394                 page_length = remain;
395                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
396                         page_length = PAGE_SIZE - shmem_page_offset;
397                 if ((data_page_offset + page_length) > PAGE_SIZE)
398                         page_length = PAGE_SIZE - data_page_offset;
399
400                 if (do_bit17_swizzling) {
401                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
402                                                     shmem_page_offset,
403                                                     user_pages[data_page_index],
404                                                     data_page_offset,
405                                                     page_length,
406                                                     1);
407                 } else {
408                         ret = slow_shmem_copy(user_pages[data_page_index],
409                                               data_page_offset,
410                                               obj_priv->pages[shmem_page_index],
411                                               shmem_page_offset,
412                                               page_length);
413                 }
414                 if (ret)
415                         goto fail_put_pages;
416
417                 remain -= page_length;
418                 data_ptr += page_length;
419                 offset += page_length;
420         }
421
422 fail_put_pages:
423         i915_gem_object_put_pages(obj);
424 fail_unlock:
425         mutex_unlock(&dev->struct_mutex);
426 fail_put_user_pages:
427         for (i = 0; i < pinned_pages; i++) {
428                 SetPageDirty(user_pages[i]);
429                 page_cache_release(user_pages[i]);
430         }
431         drm_free_large(user_pages);
432
433         return ret;
434 }
435
436 /**
437  * Reads data from the object referenced by handle.
438  *
439  * On error, the contents of *data are undefined.
440  */
441 int
442 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443                      struct drm_file *file_priv)
444 {
445         struct drm_i915_gem_pread *args = data;
446         struct drm_gem_object *obj;
447         struct drm_i915_gem_object *obj_priv;
448         int ret;
449
450         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
451         if (obj == NULL)
452                 return -EBADF;
453         obj_priv = obj->driver_private;
454
455         /* Bounds check source.
456          *
457          * XXX: This could use review for overflow issues...
458          */
459         if (args->offset > obj->size || args->size > obj->size ||
460             args->offset + args->size > obj->size) {
461                 drm_gem_object_unreference(obj);
462                 return -EINVAL;
463         }
464
465         if (i915_gem_object_needs_bit17_swizzle(obj)) {
466                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
467         } else {
468                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
469                 if (ret != 0)
470                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
471                                                         file_priv);
472         }
473
474         drm_gem_object_unreference(obj);
475
476         return ret;
477 }
478
479 /* This is the fast write path which cannot handle
480  * page faults in the source data
481  */
482
483 static inline int
484 fast_user_write(struct io_mapping *mapping,
485                 loff_t page_base, int page_offset,
486                 char __user *user_data,
487                 int length)
488 {
489         char *vaddr_atomic;
490         unsigned long unwritten;
491
492         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
493         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
494                                                       user_data, length);
495         io_mapping_unmap_atomic(vaddr_atomic);
496         if (unwritten)
497                 return -EFAULT;
498         return 0;
499 }
500
501 /* Here's the write path which can sleep for
502  * page faults
503  */
504
505 static inline int
506 slow_kernel_write(struct io_mapping *mapping,
507                   loff_t gtt_base, int gtt_offset,
508                   struct page *user_page, int user_offset,
509                   int length)
510 {
511         char *src_vaddr, *dst_vaddr;
512         unsigned long unwritten;
513
514         dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
515         src_vaddr = kmap_atomic(user_page, KM_USER1);
516         unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
517                                                       src_vaddr + user_offset,
518                                                       length);
519         kunmap_atomic(src_vaddr, KM_USER1);
520         io_mapping_unmap_atomic(dst_vaddr);
521         if (unwritten)
522                 return -EFAULT;
523         return 0;
524 }
525
526 static inline int
527 fast_shmem_write(struct page **pages,
528                  loff_t page_base, int page_offset,
529                  char __user *data,
530                  int length)
531 {
532         char __iomem *vaddr;
533         unsigned long unwritten;
534
535         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
536         if (vaddr == NULL)
537                 return -ENOMEM;
538         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
539         kunmap_atomic(vaddr, KM_USER0);
540
541         if (unwritten)
542                 return -EFAULT;
543         return 0;
544 }
545
546 /**
547  * This is the fast pwrite path, where we copy the data directly from the
548  * user into the GTT, uncached.
549  */
550 static int
551 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
552                          struct drm_i915_gem_pwrite *args,
553                          struct drm_file *file_priv)
554 {
555         struct drm_i915_gem_object *obj_priv = obj->driver_private;
556         drm_i915_private_t *dev_priv = dev->dev_private;
557         ssize_t remain;
558         loff_t offset, page_base;
559         char __user *user_data;
560         int page_offset, page_length;
561         int ret;
562
563         user_data = (char __user *) (uintptr_t) args->data_ptr;
564         remain = args->size;
565         if (!access_ok(VERIFY_READ, user_data, remain))
566                 return -EFAULT;
567
568
569         mutex_lock(&dev->struct_mutex);
570         ret = i915_gem_object_pin(obj, 0);
571         if (ret) {
572                 mutex_unlock(&dev->struct_mutex);
573                 return ret;
574         }
575         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
576         if (ret)
577                 goto fail;
578
579         obj_priv = obj->driver_private;
580         offset = obj_priv->gtt_offset + args->offset;
581
582         while (remain > 0) {
583                 /* Operation in this page
584                  *
585                  * page_base = page offset within aperture
586                  * page_offset = offset within page
587                  * page_length = bytes to copy for this page
588                  */
589                 page_base = (offset & ~(PAGE_SIZE-1));
590                 page_offset = offset & (PAGE_SIZE-1);
591                 page_length = remain;
592                 if ((page_offset + remain) > PAGE_SIZE)
593                         page_length = PAGE_SIZE - page_offset;
594
595                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
596                                        page_offset, user_data, page_length);
597
598                 /* If we get a fault while copying data, then (presumably) our
599                  * source page isn't available.  Return the error and we'll
600                  * retry in the slow path.
601                  */
602                 if (ret)
603                         goto fail;
604
605                 remain -= page_length;
606                 user_data += page_length;
607                 offset += page_length;
608         }
609
610 fail:
611         i915_gem_object_unpin(obj);
612         mutex_unlock(&dev->struct_mutex);
613
614         return ret;
615 }
616
617 /**
618  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
619  * the memory and maps it using kmap_atomic for copying.
620  *
621  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
622  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
623  */
624 static int
625 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
626                          struct drm_i915_gem_pwrite *args,
627                          struct drm_file *file_priv)
628 {
629         struct drm_i915_gem_object *obj_priv = obj->driver_private;
630         drm_i915_private_t *dev_priv = dev->dev_private;
631         ssize_t remain;
632         loff_t gtt_page_base, offset;
633         loff_t first_data_page, last_data_page, num_pages;
634         loff_t pinned_pages, i;
635         struct page **user_pages;
636         struct mm_struct *mm = current->mm;
637         int gtt_page_offset, data_page_offset, data_page_index, page_length;
638         int ret;
639         uint64_t data_ptr = args->data_ptr;
640
641         remain = args->size;
642
643         /* Pin the user pages containing the data.  We can't fault while
644          * holding the struct mutex, and all of the pwrite implementations
645          * want to hold it while dereferencing the user data.
646          */
647         first_data_page = data_ptr / PAGE_SIZE;
648         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
649         num_pages = last_data_page - first_data_page + 1;
650
651         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
652         if (user_pages == NULL)
653                 return -ENOMEM;
654
655         down_read(&mm->mmap_sem);
656         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657                                       num_pages, 0, 0, user_pages, NULL);
658         up_read(&mm->mmap_sem);
659         if (pinned_pages < num_pages) {
660                 ret = -EFAULT;
661                 goto out_unpin_pages;
662         }
663
664         mutex_lock(&dev->struct_mutex);
665         ret = i915_gem_object_pin(obj, 0);
666         if (ret)
667                 goto out_unlock;
668
669         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
670         if (ret)
671                 goto out_unpin_object;
672
673         obj_priv = obj->driver_private;
674         offset = obj_priv->gtt_offset + args->offset;
675
676         while (remain > 0) {
677                 /* Operation in this page
678                  *
679                  * gtt_page_base = page offset within aperture
680                  * gtt_page_offset = offset within page in aperture
681                  * data_page_index = page number in get_user_pages return
682                  * data_page_offset = offset with data_page_index page.
683                  * page_length = bytes to copy for this page
684                  */
685                 gtt_page_base = offset & PAGE_MASK;
686                 gtt_page_offset = offset & ~PAGE_MASK;
687                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
688                 data_page_offset = data_ptr & ~PAGE_MASK;
689
690                 page_length = remain;
691                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
692                         page_length = PAGE_SIZE - gtt_page_offset;
693                 if ((data_page_offset + page_length) > PAGE_SIZE)
694                         page_length = PAGE_SIZE - data_page_offset;
695
696                 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
697                                         gtt_page_base, gtt_page_offset,
698                                         user_pages[data_page_index],
699                                         data_page_offset,
700                                         page_length);
701
702                 /* If we get a fault while copying data, then (presumably) our
703                  * source page isn't available.  Return the error and we'll
704                  * retry in the slow path.
705                  */
706                 if (ret)
707                         goto out_unpin_object;
708
709                 remain -= page_length;
710                 offset += page_length;
711                 data_ptr += page_length;
712         }
713
714 out_unpin_object:
715         i915_gem_object_unpin(obj);
716 out_unlock:
717         mutex_unlock(&dev->struct_mutex);
718 out_unpin_pages:
719         for (i = 0; i < pinned_pages; i++)
720                 page_cache_release(user_pages[i]);
721         drm_free_large(user_pages);
722
723         return ret;
724 }
725
726 /**
727  * This is the fast shmem pwrite path, which attempts to directly
728  * copy_from_user into the kmapped pages backing the object.
729  */
730 static int
731 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
732                            struct drm_i915_gem_pwrite *args,
733                            struct drm_file *file_priv)
734 {
735         struct drm_i915_gem_object *obj_priv = obj->driver_private;
736         ssize_t remain;
737         loff_t offset, page_base;
738         char __user *user_data;
739         int page_offset, page_length;
740         int ret;
741
742         user_data = (char __user *) (uintptr_t) args->data_ptr;
743         remain = args->size;
744
745         mutex_lock(&dev->struct_mutex);
746
747         ret = i915_gem_object_get_pages(obj);
748         if (ret != 0)
749                 goto fail_unlock;
750
751         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
752         if (ret != 0)
753                 goto fail_put_pages;
754
755         obj_priv = obj->driver_private;
756         offset = args->offset;
757         obj_priv->dirty = 1;
758
759         while (remain > 0) {
760                 /* Operation in this page
761                  *
762                  * page_base = page offset within aperture
763                  * page_offset = offset within page
764                  * page_length = bytes to copy for this page
765                  */
766                 page_base = (offset & ~(PAGE_SIZE-1));
767                 page_offset = offset & (PAGE_SIZE-1);
768                 page_length = remain;
769                 if ((page_offset + remain) > PAGE_SIZE)
770                         page_length = PAGE_SIZE - page_offset;
771
772                 ret = fast_shmem_write(obj_priv->pages,
773                                        page_base, page_offset,
774                                        user_data, page_length);
775                 if (ret)
776                         goto fail_put_pages;
777
778                 remain -= page_length;
779                 user_data += page_length;
780                 offset += page_length;
781         }
782
783 fail_put_pages:
784         i915_gem_object_put_pages(obj);
785 fail_unlock:
786         mutex_unlock(&dev->struct_mutex);
787
788         return ret;
789 }
790
791 /**
792  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
793  * the memory and maps it using kmap_atomic for copying.
794  *
795  * This avoids taking mmap_sem for faulting on the user's address while the
796  * struct_mutex is held.
797  */
798 static int
799 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
800                            struct drm_i915_gem_pwrite *args,
801                            struct drm_file *file_priv)
802 {
803         struct drm_i915_gem_object *obj_priv = obj->driver_private;
804         struct mm_struct *mm = current->mm;
805         struct page **user_pages;
806         ssize_t remain;
807         loff_t offset, pinned_pages, i;
808         loff_t first_data_page, last_data_page, num_pages;
809         int shmem_page_index, shmem_page_offset;
810         int data_page_index,  data_page_offset;
811         int page_length;
812         int ret;
813         uint64_t data_ptr = args->data_ptr;
814         int do_bit17_swizzling;
815
816         remain = args->size;
817
818         /* Pin the user pages containing the data.  We can't fault while
819          * holding the struct mutex, and all of the pwrite implementations
820          * want to hold it while dereferencing the user data.
821          */
822         first_data_page = data_ptr / PAGE_SIZE;
823         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
824         num_pages = last_data_page - first_data_page + 1;
825
826         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
827         if (user_pages == NULL)
828                 return -ENOMEM;
829
830         down_read(&mm->mmap_sem);
831         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
832                                       num_pages, 0, 0, user_pages, NULL);
833         up_read(&mm->mmap_sem);
834         if (pinned_pages < num_pages) {
835                 ret = -EFAULT;
836                 goto fail_put_user_pages;
837         }
838
839         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840
841         mutex_lock(&dev->struct_mutex);
842
843         ret = i915_gem_object_get_pages(obj);
844         if (ret != 0)
845                 goto fail_unlock;
846
847         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
848         if (ret != 0)
849                 goto fail_put_pages;
850
851         obj_priv = obj->driver_private;
852         offset = args->offset;
853         obj_priv->dirty = 1;
854
855         while (remain > 0) {
856                 /* Operation in this page
857                  *
858                  * shmem_page_index = page number within shmem file
859                  * shmem_page_offset = offset within page in shmem file
860                  * data_page_index = page number in get_user_pages return
861                  * data_page_offset = offset with data_page_index page.
862                  * page_length = bytes to copy for this page
863                  */
864                 shmem_page_index = offset / PAGE_SIZE;
865                 shmem_page_offset = offset & ~PAGE_MASK;
866                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
867                 data_page_offset = data_ptr & ~PAGE_MASK;
868
869                 page_length = remain;
870                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
871                         page_length = PAGE_SIZE - shmem_page_offset;
872                 if ((data_page_offset + page_length) > PAGE_SIZE)
873                         page_length = PAGE_SIZE - data_page_offset;
874
875                 if (do_bit17_swizzling) {
876                         ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
877                                                     shmem_page_offset,
878                                                     user_pages[data_page_index],
879                                                     data_page_offset,
880                                                     page_length,
881                                                     0);
882                 } else {
883                         ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
884                                               shmem_page_offset,
885                                               user_pages[data_page_index],
886                                               data_page_offset,
887                                               page_length);
888                 }
889                 if (ret)
890                         goto fail_put_pages;
891
892                 remain -= page_length;
893                 data_ptr += page_length;
894                 offset += page_length;
895         }
896
897 fail_put_pages:
898         i915_gem_object_put_pages(obj);
899 fail_unlock:
900         mutex_unlock(&dev->struct_mutex);
901 fail_put_user_pages:
902         for (i = 0; i < pinned_pages; i++)
903                 page_cache_release(user_pages[i]);
904         drm_free_large(user_pages);
905
906         return ret;
907 }
908
909 /**
910  * Writes data to the object referenced by handle.
911  *
912  * On error, the contents of the buffer that were to be modified are undefined.
913  */
914 int
915 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
916                       struct drm_file *file_priv)
917 {
918         struct drm_i915_gem_pwrite *args = data;
919         struct drm_gem_object *obj;
920         struct drm_i915_gem_object *obj_priv;
921         int ret = 0;
922
923         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
924         if (obj == NULL)
925                 return -EBADF;
926         obj_priv = obj->driver_private;
927
928         /* Bounds check destination.
929          *
930          * XXX: This could use review for overflow issues...
931          */
932         if (args->offset > obj->size || args->size > obj->size ||
933             args->offset + args->size > obj->size) {
934                 drm_gem_object_unreference(obj);
935                 return -EINVAL;
936         }
937
938         /* We can only do the GTT pwrite on untiled buffers, as otherwise
939          * it would end up going through the fenced access, and we'll get
940          * different detiling behavior between reading and writing.
941          * pread/pwrite currently are reading and writing from the CPU
942          * perspective, requiring manual detiling by the client.
943          */
944         if (obj_priv->phys_obj)
945                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
946         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
947                  dev->gtt_total != 0) {
948                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
949                 if (ret == -EFAULT) {
950                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
951                                                        file_priv);
952                 }
953         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
954                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
955         } else {
956                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
957                 if (ret == -EFAULT) {
958                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
959                                                          file_priv);
960                 }
961         }
962
963 #if WATCH_PWRITE
964         if (ret)
965                 DRM_INFO("pwrite failed %d\n", ret);
966 #endif
967
968         drm_gem_object_unreference(obj);
969
970         return ret;
971 }
972
973 /**
974  * Called when user space prepares to use an object with the CPU, either
975  * through the mmap ioctl's mapping or a GTT mapping.
976  */
977 int
978 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
979                           struct drm_file *file_priv)
980 {
981         struct drm_i915_gem_set_domain *args = data;
982         struct drm_gem_object *obj;
983         uint32_t read_domains = args->read_domains;
984         uint32_t write_domain = args->write_domain;
985         int ret;
986
987         if (!(dev->driver->driver_features & DRIVER_GEM))
988                 return -ENODEV;
989
990         /* Only handle setting domains to types used by the CPU. */
991         if (write_domain & I915_GEM_GPU_DOMAINS)
992                 return -EINVAL;
993
994         if (read_domains & I915_GEM_GPU_DOMAINS)
995                 return -EINVAL;
996
997         /* Having something in the write domain implies it's in the read
998          * domain, and only that read domain.  Enforce that in the request.
999          */
1000         if (write_domain != 0 && read_domains != write_domain)
1001                 return -EINVAL;
1002
1003         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1004         if (obj == NULL)
1005                 return -EBADF;
1006
1007         mutex_lock(&dev->struct_mutex);
1008 #if WATCH_BUF
1009         DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
1010                  obj, obj->size, read_domains, write_domain);
1011 #endif
1012         if (read_domains & I915_GEM_DOMAIN_GTT) {
1013                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1014
1015                 /* Silently promote "you're not bound, there was nothing to do"
1016                  * to success, since the client was just asking us to
1017                  * make sure everything was done.
1018                  */
1019                 if (ret == -EINVAL)
1020                         ret = 0;
1021         } else {
1022                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1023         }
1024
1025         drm_gem_object_unreference(obj);
1026         mutex_unlock(&dev->struct_mutex);
1027         return ret;
1028 }
1029
1030 /**
1031  * Called when user space has done writes to this buffer
1032  */
1033 int
1034 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1035                       struct drm_file *file_priv)
1036 {
1037         struct drm_i915_gem_sw_finish *args = data;
1038         struct drm_gem_object *obj;
1039         struct drm_i915_gem_object *obj_priv;
1040         int ret = 0;
1041
1042         if (!(dev->driver->driver_features & DRIVER_GEM))
1043                 return -ENODEV;
1044
1045         mutex_lock(&dev->struct_mutex);
1046         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1047         if (obj == NULL) {
1048                 mutex_unlock(&dev->struct_mutex);
1049                 return -EBADF;
1050         }
1051
1052 #if WATCH_BUF
1053         DRM_INFO("%s: sw_finish %d (%p %d)\n",
1054                  __func__, args->handle, obj, obj->size);
1055 #endif
1056         obj_priv = obj->driver_private;
1057
1058         /* Pinned buffers may be scanout, so flush the cache */
1059         if (obj_priv->pin_count)
1060                 i915_gem_object_flush_cpu_write_domain(obj);
1061
1062         drm_gem_object_unreference(obj);
1063         mutex_unlock(&dev->struct_mutex);
1064         return ret;
1065 }
1066
1067 /**
1068  * Maps the contents of an object, returning the address it is mapped
1069  * into.
1070  *
1071  * While the mapping holds a reference on the contents of the object, it doesn't
1072  * imply a ref on the object itself.
1073  */
1074 int
1075 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1076                    struct drm_file *file_priv)
1077 {
1078         struct drm_i915_gem_mmap *args = data;
1079         struct drm_gem_object *obj;
1080         loff_t offset;
1081         unsigned long addr;
1082
1083         if (!(dev->driver->driver_features & DRIVER_GEM))
1084                 return -ENODEV;
1085
1086         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1087         if (obj == NULL)
1088                 return -EBADF;
1089
1090         offset = args->offset;
1091
1092         down_write(&current->mm->mmap_sem);
1093         addr = do_mmap(obj->filp, 0, args->size,
1094                        PROT_READ | PROT_WRITE, MAP_SHARED,
1095                        args->offset);
1096         up_write(&current->mm->mmap_sem);
1097         mutex_lock(&dev->struct_mutex);
1098         drm_gem_object_unreference(obj);
1099         mutex_unlock(&dev->struct_mutex);
1100         if (IS_ERR((void *)addr))
1101                 return addr;
1102
1103         args->addr_ptr = (uint64_t) addr;
1104
1105         return 0;
1106 }
1107
1108 /**
1109  * i915_gem_fault - fault a page into the GTT
1110  * vma: VMA in question
1111  * vmf: fault info
1112  *
1113  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1114  * from userspace.  The fault handler takes care of binding the object to
1115  * the GTT (if needed), allocating and programming a fence register (again,
1116  * only if needed based on whether the old reg is still valid or the object
1117  * is tiled) and inserting a new PTE into the faulting process.
1118  *
1119  * Note that the faulting process may involve evicting existing objects
1120  * from the GTT and/or fence registers to make room.  So performance may
1121  * suffer if the GTT working set is large or there are few fence registers
1122  * left.
1123  */
1124 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1125 {
1126         struct drm_gem_object *obj = vma->vm_private_data;
1127         struct drm_device *dev = obj->dev;
1128         struct drm_i915_private *dev_priv = dev->dev_private;
1129         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1130         pgoff_t page_offset;
1131         unsigned long pfn;
1132         int ret = 0;
1133         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1134
1135         /* We don't use vmf->pgoff since that has the fake offset */
1136         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1137                 PAGE_SHIFT;
1138
1139         /* Now bind it into the GTT if needed */
1140         mutex_lock(&dev->struct_mutex);
1141         if (!obj_priv->gtt_space) {
1142                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1143                 if (ret) {
1144                         mutex_unlock(&dev->struct_mutex);
1145                         return VM_FAULT_SIGBUS;
1146                 }
1147
1148                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1149                 if (ret) {
1150                         mutex_unlock(&dev->struct_mutex);
1151                         return VM_FAULT_SIGBUS;
1152                 }
1153
1154                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1155         }
1156
1157         /* Need a new fence register? */
1158         if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1159             obj_priv->tiling_mode != I915_TILING_NONE) {
1160                 ret = i915_gem_object_get_fence_reg(obj);
1161                 if (ret) {
1162                         mutex_unlock(&dev->struct_mutex);
1163                         return VM_FAULT_SIGBUS;
1164                 }
1165         }
1166
1167         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1168                 page_offset;
1169
1170         /* Finally, remap it using the new GTT offset */
1171         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1172
1173         mutex_unlock(&dev->struct_mutex);
1174
1175         switch (ret) {
1176         case -ENOMEM:
1177         case -EAGAIN:
1178                 return VM_FAULT_OOM;
1179         case -EFAULT:
1180         case -EINVAL:
1181                 return VM_FAULT_SIGBUS;
1182         default:
1183                 return VM_FAULT_NOPAGE;
1184         }
1185 }
1186
1187 /**
1188  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1189  * @obj: obj in question
1190  *
1191  * GEM memory mapping works by handing back to userspace a fake mmap offset
1192  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1193  * up the object based on the offset and sets up the various memory mapping
1194  * structures.
1195  *
1196  * This routine allocates and attaches a fake offset for @obj.
1197  */
1198 static int
1199 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1200 {
1201         struct drm_device *dev = obj->dev;
1202         struct drm_gem_mm *mm = dev->mm_private;
1203         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1204         struct drm_map_list *list;
1205         struct drm_local_map *map;
1206         int ret = 0;
1207
1208         /* Set the object up for mmap'ing */
1209         list = &obj->map_list;
1210         list->map = drm_calloc(1, sizeof(struct drm_map_list),
1211                                DRM_MEM_DRIVER);
1212         if (!list->map)
1213                 return -ENOMEM;
1214
1215         map = list->map;
1216         map->type = _DRM_GEM;
1217         map->size = obj->size;
1218         map->handle = obj;
1219
1220         /* Get a DRM GEM mmap offset allocated... */
1221         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1222                                                     obj->size / PAGE_SIZE, 0, 0);
1223         if (!list->file_offset_node) {
1224                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1225                 ret = -ENOMEM;
1226                 goto out_free_list;
1227         }
1228
1229         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1230                                                   obj->size / PAGE_SIZE, 0);
1231         if (!list->file_offset_node) {
1232                 ret = -ENOMEM;
1233                 goto out_free_list;
1234         }
1235
1236         list->hash.key = list->file_offset_node->start;
1237         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1238                 DRM_ERROR("failed to add to map hash\n");
1239                 goto out_free_mm;
1240         }
1241
1242         /* By now we should be all set, any drm_mmap request on the offset
1243          * below will get to our mmap & fault handler */
1244         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1245
1246         return 0;
1247
1248 out_free_mm:
1249         drm_mm_put_block(list->file_offset_node);
1250 out_free_list:
1251         drm_free(list->map, sizeof(struct drm_map_list), DRM_MEM_DRIVER);
1252
1253         return ret;
1254 }
1255
1256 static void
1257 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1258 {
1259         struct drm_device *dev = obj->dev;
1260         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1261         struct drm_gem_mm *mm = dev->mm_private;
1262         struct drm_map_list *list;
1263
1264         list = &obj->map_list;
1265         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1266
1267         if (list->file_offset_node) {
1268                 drm_mm_put_block(list->file_offset_node);
1269                 list->file_offset_node = NULL;
1270         }
1271
1272         if (list->map) {
1273                 drm_free(list->map, sizeof(struct drm_map), DRM_MEM_DRIVER);
1274                 list->map = NULL;
1275         }
1276
1277         obj_priv->mmap_offset = 0;
1278 }
1279
1280 /**
1281  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1282  * @obj: object to check
1283  *
1284  * Return the required GTT alignment for an object, taking into account
1285  * potential fence register mapping if needed.
1286  */
1287 static uint32_t
1288 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1289 {
1290         struct drm_device *dev = obj->dev;
1291         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1292         int start, i;
1293
1294         /*
1295          * Minimum alignment is 4k (GTT page size), but might be greater
1296          * if a fence register is needed for the object.
1297          */
1298         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1299                 return 4096;
1300
1301         /*
1302          * Previous chips need to be aligned to the size of the smallest
1303          * fence register that can contain the object.
1304          */
1305         if (IS_I9XX(dev))
1306                 start = 1024*1024;
1307         else
1308                 start = 512*1024;
1309
1310         for (i = start; i < obj->size; i <<= 1)
1311                 ;
1312
1313         return i;
1314 }
1315
1316 /**
1317  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1318  * @dev: DRM device
1319  * @data: GTT mapping ioctl data
1320  * @file_priv: GEM object info
1321  *
1322  * Simply returns the fake offset to userspace so it can mmap it.
1323  * The mmap call will end up in drm_gem_mmap(), which will set things
1324  * up so we can get faults in the handler above.
1325  *
1326  * The fault handler will take care of binding the object into the GTT
1327  * (since it may have been evicted to make room for something), allocating
1328  * a fence register, and mapping the appropriate aperture address into
1329  * userspace.
1330  */
1331 int
1332 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1333                         struct drm_file *file_priv)
1334 {
1335         struct drm_i915_gem_mmap_gtt *args = data;
1336         struct drm_i915_private *dev_priv = dev->dev_private;
1337         struct drm_gem_object *obj;
1338         struct drm_i915_gem_object *obj_priv;
1339         int ret;
1340
1341         if (!(dev->driver->driver_features & DRIVER_GEM))
1342                 return -ENODEV;
1343
1344         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1345         if (obj == NULL)
1346                 return -EBADF;
1347
1348         mutex_lock(&dev->struct_mutex);
1349
1350         obj_priv = obj->driver_private;
1351
1352         if (!obj_priv->mmap_offset) {
1353                 ret = i915_gem_create_mmap_offset(obj);
1354                 if (ret) {
1355                         drm_gem_object_unreference(obj);
1356                         mutex_unlock(&dev->struct_mutex);
1357                         return ret;
1358                 }
1359         }
1360
1361         args->offset = obj_priv->mmap_offset;
1362
1363         obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1364
1365         /* Make sure the alignment is correct for fence regs etc */
1366         if (obj_priv->agp_mem &&
1367             (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1368                 drm_gem_object_unreference(obj);
1369                 mutex_unlock(&dev->struct_mutex);
1370                 return -EINVAL;
1371         }
1372
1373         /*
1374          * Pull it into the GTT so that we have a page list (makes the
1375          * initial fault faster and any subsequent flushing possible).
1376          */
1377         if (!obj_priv->agp_mem) {
1378                 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1379                 if (ret) {
1380                         drm_gem_object_unreference(obj);
1381                         mutex_unlock(&dev->struct_mutex);
1382                         return ret;
1383                 }
1384                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1385         }
1386
1387         drm_gem_object_unreference(obj);
1388         mutex_unlock(&dev->struct_mutex);
1389
1390         return 0;
1391 }
1392
1393 void
1394 i915_gem_object_put_pages(struct drm_gem_object *obj)
1395 {
1396         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1397         int page_count = obj->size / PAGE_SIZE;
1398         int i;
1399
1400         BUG_ON(obj_priv->pages_refcount == 0);
1401
1402         if (--obj_priv->pages_refcount != 0)
1403                 return;
1404
1405         if (obj_priv->tiling_mode != I915_TILING_NONE)
1406                 i915_gem_object_save_bit_17_swizzle(obj);
1407
1408         for (i = 0; i < page_count; i++)
1409                 if (obj_priv->pages[i] != NULL) {
1410                         if (obj_priv->dirty)
1411                                 set_page_dirty(obj_priv->pages[i]);
1412                         mark_page_accessed(obj_priv->pages[i]);
1413                         page_cache_release(obj_priv->pages[i]);
1414                 }
1415         obj_priv->dirty = 0;
1416
1417         drm_free_large(obj_priv->pages);
1418         obj_priv->pages = NULL;
1419 }
1420
1421 static void
1422 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1423 {
1424         struct drm_device *dev = obj->dev;
1425         drm_i915_private_t *dev_priv = dev->dev_private;
1426         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1427
1428         /* Add a reference if we're newly entering the active list. */
1429         if (!obj_priv->active) {
1430                 drm_gem_object_reference(obj);
1431                 obj_priv->active = 1;
1432         }
1433         /* Move from whatever list we were on to the tail of execution. */
1434         spin_lock(&dev_priv->mm.active_list_lock);
1435         list_move_tail(&obj_priv->list,
1436                        &dev_priv->mm.active_list);
1437         spin_unlock(&dev_priv->mm.active_list_lock);
1438         obj_priv->last_rendering_seqno = seqno;
1439 }
1440
1441 static void
1442 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1443 {
1444         struct drm_device *dev = obj->dev;
1445         drm_i915_private_t *dev_priv = dev->dev_private;
1446         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1447
1448         BUG_ON(!obj_priv->active);
1449         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1450         obj_priv->last_rendering_seqno = 0;
1451 }
1452
1453 static void
1454 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1455 {
1456         struct drm_device *dev = obj->dev;
1457         drm_i915_private_t *dev_priv = dev->dev_private;
1458         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1459
1460         i915_verify_inactive(dev, __FILE__, __LINE__);
1461         if (obj_priv->pin_count != 0)
1462                 list_del_init(&obj_priv->list);
1463         else
1464                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1465
1466         obj_priv->last_rendering_seqno = 0;
1467         if (obj_priv->active) {
1468                 obj_priv->active = 0;
1469                 drm_gem_object_unreference(obj);
1470         }
1471         i915_verify_inactive(dev, __FILE__, __LINE__);
1472 }
1473
1474 /**
1475  * Creates a new sequence number, emitting a write of it to the status page
1476  * plus an interrupt, which will trigger i915_user_interrupt_handler.
1477  *
1478  * Must be called with struct_lock held.
1479  *
1480  * Returned sequence numbers are nonzero on success.
1481  */
1482 static uint32_t
1483 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1484                  uint32_t flush_domains)
1485 {
1486         drm_i915_private_t *dev_priv = dev->dev_private;
1487         struct drm_i915_file_private *i915_file_priv = NULL;
1488         struct drm_i915_gem_request *request;
1489         uint32_t seqno;
1490         int was_empty;
1491         RING_LOCALS;
1492
1493         if (file_priv != NULL)
1494                 i915_file_priv = file_priv->driver_priv;
1495
1496         request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
1497         if (request == NULL)
1498                 return 0;
1499
1500         /* Grab the seqno we're going to make this request be, and bump the
1501          * next (skipping 0 so it can be the reserved no-seqno value).
1502          */
1503         seqno = dev_priv->mm.next_gem_seqno;
1504         dev_priv->mm.next_gem_seqno++;
1505         if (dev_priv->mm.next_gem_seqno == 0)
1506                 dev_priv->mm.next_gem_seqno++;
1507
1508         BEGIN_LP_RING(4);
1509         OUT_RING(MI_STORE_DWORD_INDEX);
1510         OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1511         OUT_RING(seqno);
1512
1513         OUT_RING(MI_USER_INTERRUPT);
1514         ADVANCE_LP_RING();
1515
1516         DRM_DEBUG("%d\n", seqno);
1517
1518         request->seqno = seqno;
1519         request->emitted_jiffies = jiffies;
1520         was_empty = list_empty(&dev_priv->mm.request_list);
1521         list_add_tail(&request->list, &dev_priv->mm.request_list);
1522         if (i915_file_priv) {
1523                 list_add_tail(&request->client_list,
1524                               &i915_file_priv->mm.request_list);
1525         } else {
1526                 INIT_LIST_HEAD(&request->client_list);
1527         }
1528
1529         /* Associate any objects on the flushing list matching the write
1530          * domain we're flushing with our flush.
1531          */
1532         if (flush_domains != 0) {
1533                 struct drm_i915_gem_object *obj_priv, *next;
1534
1535                 list_for_each_entry_safe(obj_priv, next,
1536                                          &dev_priv->mm.flushing_list, list) {
1537                         struct drm_gem_object *obj = obj_priv->obj;
1538
1539                         if ((obj->write_domain & flush_domains) ==
1540                             obj->write_domain) {
1541                                 obj->write_domain = 0;
1542                                 i915_gem_object_move_to_active(obj, seqno);
1543                         }
1544                 }
1545
1546         }
1547
1548         if (was_empty && !dev_priv->mm.suspended)
1549                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1550         return seqno;
1551 }
1552
1553 /**
1554  * Command execution barrier
1555  *
1556  * Ensures that all commands in the ring are finished
1557  * before signalling the CPU
1558  */
1559 static uint32_t
1560 i915_retire_commands(struct drm_device *dev)
1561 {
1562         drm_i915_private_t *dev_priv = dev->dev_private;
1563         uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1564         uint32_t flush_domains = 0;
1565         RING_LOCALS;
1566
1567         /* The sampler always gets flushed on i965 (sigh) */
1568         if (IS_I965G(dev))
1569                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1570         BEGIN_LP_RING(2);
1571         OUT_RING(cmd);
1572         OUT_RING(0); /* noop */
1573         ADVANCE_LP_RING();
1574         return flush_domains;
1575 }
1576
1577 /**
1578  * Moves buffers associated only with the given active seqno from the active
1579  * to inactive list, potentially freeing them.
1580  */
1581 static void
1582 i915_gem_retire_request(struct drm_device *dev,
1583                         struct drm_i915_gem_request *request)
1584 {
1585         drm_i915_private_t *dev_priv = dev->dev_private;
1586
1587         /* Move any buffers on the active list that are no longer referenced
1588          * by the ringbuffer to the flushing/inactive lists as appropriate.
1589          */
1590         spin_lock(&dev_priv->mm.active_list_lock);
1591         while (!list_empty(&dev_priv->mm.active_list)) {
1592                 struct drm_gem_object *obj;
1593                 struct drm_i915_gem_object *obj_priv;
1594
1595                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1596                                             struct drm_i915_gem_object,
1597                                             list);
1598                 obj = obj_priv->obj;
1599
1600                 /* If the seqno being retired doesn't match the oldest in the
1601                  * list, then the oldest in the list must still be newer than
1602                  * this seqno.
1603                  */
1604                 if (obj_priv->last_rendering_seqno != request->seqno)
1605                         goto out;
1606
1607 #if WATCH_LRU
1608                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1609                          __func__, request->seqno, obj);
1610 #endif
1611
1612                 if (obj->write_domain != 0)
1613                         i915_gem_object_move_to_flushing(obj);
1614                 else {
1615                         /* Take a reference on the object so it won't be
1616                          * freed while the spinlock is held.  The list
1617                          * protection for this spinlock is safe when breaking
1618                          * the lock like this since the next thing we do
1619                          * is just get the head of the list again.
1620                          */
1621                         drm_gem_object_reference(obj);
1622                         i915_gem_object_move_to_inactive(obj);
1623                         spin_unlock(&dev_priv->mm.active_list_lock);
1624                         drm_gem_object_unreference(obj);
1625                         spin_lock(&dev_priv->mm.active_list_lock);
1626                 }
1627         }
1628 out:
1629         spin_unlock(&dev_priv->mm.active_list_lock);
1630 }
1631
1632 /**
1633  * Returns true if seq1 is later than seq2.
1634  */
1635 static int
1636 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1637 {
1638         return (int32_t)(seq1 - seq2) >= 0;
1639 }
1640
1641 uint32_t
1642 i915_get_gem_seqno(struct drm_device *dev)
1643 {
1644         drm_i915_private_t *dev_priv = dev->dev_private;
1645
1646         return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1647 }
1648
1649 /**
1650  * This function clears the request list as sequence numbers are passed.
1651  */
1652 void
1653 i915_gem_retire_requests(struct drm_device *dev)
1654 {
1655         drm_i915_private_t *dev_priv = dev->dev_private;
1656         uint32_t seqno;
1657
1658         if (!dev_priv->hw_status_page)
1659                 return;
1660
1661         seqno = i915_get_gem_seqno(dev);
1662
1663         while (!list_empty(&dev_priv->mm.request_list)) {
1664                 struct drm_i915_gem_request *request;
1665                 uint32_t retiring_seqno;
1666
1667                 request = list_first_entry(&dev_priv->mm.request_list,
1668                                            struct drm_i915_gem_request,
1669                                            list);
1670                 retiring_seqno = request->seqno;
1671
1672                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1673                     dev_priv->mm.wedged) {
1674                         i915_gem_retire_request(dev, request);
1675
1676                         list_del(&request->list);
1677                         list_del(&request->client_list);
1678                         drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
1679                 } else
1680                         break;
1681         }
1682 }
1683
1684 void
1685 i915_gem_retire_work_handler(struct work_struct *work)
1686 {
1687         drm_i915_private_t *dev_priv;
1688         struct drm_device *dev;
1689
1690         dev_priv = container_of(work, drm_i915_private_t,
1691                                 mm.retire_work.work);
1692         dev = dev_priv->dev;
1693
1694         mutex_lock(&dev->struct_mutex);
1695         i915_gem_retire_requests(dev);
1696         if (!dev_priv->mm.suspended &&
1697             !list_empty(&dev_priv->mm.request_list))
1698                 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
1699         mutex_unlock(&dev->struct_mutex);
1700 }
1701
1702 /**
1703  * Waits for a sequence number to be signaled, and cleans up the
1704  * request and object lists appropriately for that event.
1705  */
1706 static int
1707 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1708 {
1709         drm_i915_private_t *dev_priv = dev->dev_private;
1710         u32 ier;
1711         int ret = 0;
1712
1713         BUG_ON(seqno == 0);
1714
1715         if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1716                 if (IS_IGDNG(dev))
1717                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1718                 else
1719                         ier = I915_READ(IER);
1720                 if (!ier) {
1721                         DRM_ERROR("something (likely vbetool) disabled "
1722                                   "interrupts, re-enabling\n");
1723                         i915_driver_irq_preinstall(dev);
1724                         i915_driver_irq_postinstall(dev);
1725                 }
1726
1727                 dev_priv->mm.waiting_gem_seqno = seqno;
1728                 i915_user_irq_get(dev);
1729                 ret = wait_event_interruptible(dev_priv->irq_queue,
1730                                                i915_seqno_passed(i915_get_gem_seqno(dev),
1731                                                                  seqno) ||
1732                                                dev_priv->mm.wedged);
1733                 i915_user_irq_put(dev);
1734                 dev_priv->mm.waiting_gem_seqno = 0;
1735         }
1736         if (dev_priv->mm.wedged)
1737                 ret = -EIO;
1738
1739         if (ret && ret != -ERESTARTSYS)
1740                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1741                           __func__, ret, seqno, i915_get_gem_seqno(dev));
1742
1743         /* Directly dispatch request retiring.  While we have the work queue
1744          * to handle this, the waiter on a request often wants an associated
1745          * buffer to have made it to the inactive list, and we would need
1746          * a separate wait queue to handle that.
1747          */
1748         if (ret == 0)
1749                 i915_gem_retire_requests(dev);
1750
1751         return ret;
1752 }
1753
1754 static void
1755 i915_gem_flush(struct drm_device *dev,
1756                uint32_t invalidate_domains,
1757                uint32_t flush_domains)
1758 {
1759         drm_i915_private_t *dev_priv = dev->dev_private;
1760         uint32_t cmd;
1761         RING_LOCALS;
1762
1763 #if WATCH_EXEC
1764         DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1765                   invalidate_domains, flush_domains);
1766 #endif
1767
1768         if (flush_domains & I915_GEM_DOMAIN_CPU)
1769                 drm_agp_chipset_flush(dev);
1770
1771         if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1772                 /*
1773                  * read/write caches:
1774                  *
1775                  * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1776                  * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
1777                  * also flushed at 2d versus 3d pipeline switches.
1778                  *
1779                  * read-only caches:
1780                  *
1781                  * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1782                  * MI_READ_FLUSH is set, and is always flushed on 965.
1783                  *
1784                  * I915_GEM_DOMAIN_COMMAND may not exist?
1785                  *
1786                  * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1787                  * invalidated when MI_EXE_FLUSH is set.
1788                  *
1789                  * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1790                  * invalidated with every MI_FLUSH.
1791                  *
1792                  * TLBs:
1793                  *
1794                  * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1795                  * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1796                  * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1797                  * are flushed at any MI_FLUSH.
1798                  */
1799
1800                 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1801                 if ((invalidate_domains|flush_domains) &
1802                     I915_GEM_DOMAIN_RENDER)
1803                         cmd &= ~MI_NO_WRITE_FLUSH;
1804                 if (!IS_I965G(dev)) {
1805                         /*
1806                          * On the 965, the sampler cache always gets flushed
1807                          * and this bit is reserved.
1808                          */
1809                         if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1810                                 cmd |= MI_READ_FLUSH;
1811                 }
1812                 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1813                         cmd |= MI_EXE_FLUSH;
1814
1815 #if WATCH_EXEC
1816                 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1817 #endif
1818                 BEGIN_LP_RING(2);
1819                 OUT_RING(cmd);
1820                 OUT_RING(0); /* noop */
1821                 ADVANCE_LP_RING();
1822         }
1823 }
1824
1825 /**
1826  * Ensures that all rendering to the object has completed and the object is
1827  * safe to unbind from the GTT or access from the CPU.
1828  */
1829 static int
1830 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1831 {
1832         struct drm_device *dev = obj->dev;
1833         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1834         int ret;
1835
1836         /* This function only exists to support waiting for existing rendering,
1837          * not for emitting required flushes.
1838          */
1839         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1840
1841         /* If there is rendering queued on the buffer being evicted, wait for
1842          * it.
1843          */
1844         if (obj_priv->active) {
1845 #if WATCH_BUF
1846                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1847                           __func__, obj, obj_priv->last_rendering_seqno);
1848 #endif
1849                 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1850                 if (ret != 0)
1851                         return ret;
1852         }
1853
1854         return 0;
1855 }
1856
1857 /**
1858  * Unbinds an object from the GTT aperture.
1859  */
1860 int
1861 i915_gem_object_unbind(struct drm_gem_object *obj)
1862 {
1863         struct drm_device *dev = obj->dev;
1864         struct drm_i915_gem_object *obj_priv = obj->driver_private;
1865         loff_t offset;
1866         int ret = 0;
1867
1868 #if WATCH_BUF
1869         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1870         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1871 #endif
1872         if (obj_priv->gtt_space == NULL)
1873                 return 0;
1874
1875         if (obj_priv->pin_count != 0) {
1876                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1877                 return -EINVAL;
1878         }
1879
1880         /* Move the object to the CPU domain to ensure that
1881          * any possible CPU writes while it's not in the GTT
1882          * are flushed when we go to remap it. This will
1883          * also ensure that all pending GPU writes are finished
1884          * before we unbind.
1885          */
1886         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1887         if (ret) {
1888                 if (ret != -ERESTARTSYS)
1889                         DRM_ERROR("set_domain failed: %d\n", ret);
1890                 return ret;
1891         }
1892
1893         if (obj_priv->agp_mem != NULL) {
1894                 drm_unbind_agp(obj_priv->agp_mem);
1895                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1896                 obj_priv->agp_mem = NULL;
1897         }
1898
1899         BUG_ON(obj_priv->active);
1900
1901         /* blow away mappings if mapped through GTT */
1902         offset = ((loff_t) obj->map_list.hash.key) << PAGE_SHIFT;
1903         if (dev->dev_mapping)
1904                 unmap_mapping_range(dev->dev_mapping, offset, obj->size, 1);
1905
1906         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1907                 i915_gem_clear_fence_reg(obj);
1908
1909         i915_gem_object_put_pages(obj);
1910
1911         if (obj_priv->gtt_space) {
1912                 atomic_dec(&dev->gtt_count);
1913                 atomic_sub(obj->size, &dev->gtt_memory);
1914
1915                 drm_mm_put_block(obj_priv->gtt_space);
1916                 obj_priv->gtt_space = NULL;
1917         }
1918
1919         /* Remove ourselves from the LRU list if present. */
1920         if (!list_empty(&obj_priv->list))
1921                 list_del_init(&obj_priv->list);
1922
1923         return 0;
1924 }
1925
1926 static int
1927 i915_gem_evict_something(struct drm_device *dev)
1928 {
1929         drm_i915_private_t *dev_priv = dev->dev_private;
1930         struct drm_gem_object *obj;
1931         struct drm_i915_gem_object *obj_priv;
1932         int ret = 0;
1933
1934         for (;;) {
1935                 /* If there's an inactive buffer available now, grab it
1936                  * and be done.
1937                  */
1938                 if (!list_empty(&dev_priv->mm.inactive_list)) {
1939                         obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1940                                                     struct drm_i915_gem_object,
1941                                                     list);
1942                         obj = obj_priv->obj;
1943                         BUG_ON(obj_priv->pin_count != 0);
1944 #if WATCH_LRU
1945                         DRM_INFO("%s: evicting %p\n", __func__, obj);
1946 #endif
1947                         BUG_ON(obj_priv->active);
1948
1949                         /* Wait on the rendering and unbind the buffer. */
1950                         ret = i915_gem_object_unbind(obj);
1951                         break;
1952                 }
1953
1954                 /* If we didn't get anything, but the ring is still processing
1955                  * things, wait for one of those things to finish and hopefully
1956                  * leave us a buffer to evict.
1957                  */
1958                 if (!list_empty(&dev_priv->mm.request_list)) {
1959                         struct drm_i915_gem_request *request;
1960
1961                         request = list_first_entry(&dev_priv->mm.request_list,
1962                                                    struct drm_i915_gem_request,
1963                                                    list);
1964
1965                         ret = i915_wait_request(dev, request->seqno);
1966                         if (ret)
1967                                 break;
1968
1969                         /* if waiting caused an object to become inactive,
1970                          * then loop around and wait for it. Otherwise, we
1971                          * assume that waiting freed and unbound something,
1972                          * so there should now be some space in the GTT
1973                          */
1974                         if (!list_empty(&dev_priv->mm.inactive_list))
1975                                 continue;
1976                         break;
1977                 }
1978
1979                 /* If we didn't have anything on the request list but there
1980                  * are buffers awaiting a flush, emit one and try again.
1981                  * When we wait on it, those buffers waiting for that flush
1982                  * will get moved to inactive.
1983                  */
1984                 if (!list_empty(&dev_priv->mm.flushing_list)) {
1985                         obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1986                                                     struct drm_i915_gem_object,
1987                                                     list);
1988                         obj = obj_priv->obj;
1989
1990                         i915_gem_flush(dev,
1991                                        obj->write_domain,
1992                                        obj->write_domain);
1993                         i915_add_request(dev, NULL, obj->write_domain);
1994
1995                         obj = NULL;
1996                         continue;
1997                 }
1998
1999                 DRM_ERROR("inactive empty %d request empty %d "
2000                           "flushing empty %d\n",
2001                           list_empty(&dev_priv->mm.inactive_list),
2002                           list_empty(&dev_priv->mm.request_list),
2003                           list_empty(&dev_priv->mm.flushing_list));
2004                 /* If we didn't do any of the above, there's nothing to be done
2005                  * and we just can't fit it in.
2006                  */
2007                 return -ENOSPC;
2008         }
2009         return ret;
2010 }
2011
2012 static int
2013 i915_gem_evict_everything(struct drm_device *dev)
2014 {
2015         int ret;
2016
2017         for (;;) {
2018                 ret = i915_gem_evict_something(dev);
2019                 if (ret != 0)
2020                         break;
2021         }
2022         if (ret == -ENOSPC)
2023                 return 0;
2024         return ret;
2025 }
2026
2027 int
2028 i915_gem_object_get_pages(struct drm_gem_object *obj)
2029 {
2030         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2031         int page_count, i;
2032         struct address_space *mapping;
2033         struct inode *inode;
2034         struct page *page;
2035         int ret;
2036
2037         if (obj_priv->pages_refcount++ != 0)
2038                 return 0;
2039
2040         /* Get the list of pages out of our struct file.  They'll be pinned
2041          * at this point until we release them.
2042          */
2043         page_count = obj->size / PAGE_SIZE;
2044         BUG_ON(obj_priv->pages != NULL);
2045         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2046         if (obj_priv->pages == NULL) {
2047                 DRM_ERROR("Faled to allocate page list\n");
2048                 obj_priv->pages_refcount--;
2049                 return -ENOMEM;
2050         }
2051
2052         inode = obj->filp->f_path.dentry->d_inode;
2053         mapping = inode->i_mapping;
2054         for (i = 0; i < page_count; i++) {
2055                 page = read_mapping_page(mapping, i, NULL);
2056                 if (IS_ERR(page)) {
2057                         ret = PTR_ERR(page);
2058                         DRM_ERROR("read_mapping_page failed: %d\n", ret);
2059                         i915_gem_object_put_pages(obj);
2060                         return ret;
2061                 }
2062                 obj_priv->pages[i] = page;
2063         }
2064
2065         if (obj_priv->tiling_mode != I915_TILING_NONE)
2066                 i915_gem_object_do_bit_17_swizzle(obj);
2067
2068         return 0;
2069 }
2070
2071 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2072 {
2073         struct drm_gem_object *obj = reg->obj;
2074         struct drm_device *dev = obj->dev;
2075         drm_i915_private_t *dev_priv = dev->dev_private;
2076         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2077         int regnum = obj_priv->fence_reg;
2078         uint64_t val;
2079
2080         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2081                     0xfffff000) << 32;
2082         val |= obj_priv->gtt_offset & 0xfffff000;
2083         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2084         if (obj_priv->tiling_mode == I915_TILING_Y)
2085                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2086         val |= I965_FENCE_REG_VALID;
2087
2088         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2089 }
2090
2091 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2092 {
2093         struct drm_gem_object *obj = reg->obj;
2094         struct drm_device *dev = obj->dev;
2095         drm_i915_private_t *dev_priv = dev->dev_private;
2096         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2097         int regnum = obj_priv->fence_reg;
2098         int tile_width;
2099         uint32_t fence_reg, val;
2100         uint32_t pitch_val;
2101
2102         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2103             (obj_priv->gtt_offset & (obj->size - 1))) {
2104                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2105                      __func__, obj_priv->gtt_offset, obj->size);
2106                 return;
2107         }
2108
2109         if (obj_priv->tiling_mode == I915_TILING_Y &&
2110             HAS_128_BYTE_Y_TILING(dev))
2111                 tile_width = 128;
2112         else
2113                 tile_width = 512;
2114
2115         /* Note: pitch better be a power of two tile widths */
2116         pitch_val = obj_priv->stride / tile_width;
2117         pitch_val = ffs(pitch_val) - 1;
2118
2119         val = obj_priv->gtt_offset;
2120         if (obj_priv->tiling_mode == I915_TILING_Y)
2121                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2122         val |= I915_FENCE_SIZE_BITS(obj->size);
2123         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2124         val |= I830_FENCE_REG_VALID;
2125
2126         if (regnum < 8)
2127                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2128         else
2129                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2130         I915_WRITE(fence_reg, val);
2131 }
2132
2133 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2134 {
2135         struct drm_gem_object *obj = reg->obj;
2136         struct drm_device *dev = obj->dev;
2137         drm_i915_private_t *dev_priv = dev->dev_private;
2138         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2139         int regnum = obj_priv->fence_reg;
2140         uint32_t val;
2141         uint32_t pitch_val;
2142         uint32_t fence_size_bits;
2143
2144         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2145             (obj_priv->gtt_offset & (obj->size - 1))) {
2146                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2147                      __func__, obj_priv->gtt_offset);
2148                 return;
2149         }
2150
2151         pitch_val = obj_priv->stride / 128;
2152         pitch_val = ffs(pitch_val) - 1;
2153         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2154
2155         val = obj_priv->gtt_offset;
2156         if (obj_priv->tiling_mode == I915_TILING_Y)
2157                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2158         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2159         WARN_ON(fence_size_bits & ~0x00000f00);
2160         val |= fence_size_bits;
2161         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2162         val |= I830_FENCE_REG_VALID;
2163
2164         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2165 }
2166
2167 /**
2168  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2169  * @obj: object to map through a fence reg
2170  *
2171  * When mapping objects through the GTT, userspace wants to be able to write
2172  * to them without having to worry about swizzling if the object is tiled.
2173  *
2174  * This function walks the fence regs looking for a free one for @obj,
2175  * stealing one if it can't find any.
2176  *
2177  * It then sets up the reg based on the object's properties: address, pitch
2178  * and tiling format.
2179  */
2180 int
2181 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2182 {
2183         struct drm_device *dev = obj->dev;
2184         struct drm_i915_private *dev_priv = dev->dev_private;
2185         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2186         struct drm_i915_fence_reg *reg = NULL;
2187         struct drm_i915_gem_object *old_obj_priv = NULL;
2188         int i, ret, avail;
2189
2190         switch (obj_priv->tiling_mode) {
2191         case I915_TILING_NONE:
2192                 WARN(1, "allocating a fence for non-tiled object?\n");
2193                 break;
2194         case I915_TILING_X:
2195                 if (!obj_priv->stride)
2196                         return -EINVAL;
2197                 WARN((obj_priv->stride & (512 - 1)),
2198                      "object 0x%08x is X tiled but has non-512B pitch\n",
2199                      obj_priv->gtt_offset);
2200                 break;
2201         case I915_TILING_Y:
2202                 if (!obj_priv->stride)
2203                         return -EINVAL;
2204                 WARN((obj_priv->stride & (128 - 1)),
2205                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2206                      obj_priv->gtt_offset);
2207                 break;
2208         }
2209
2210         /* First try to find a free reg */
2211 try_again:
2212         avail = 0;
2213         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2214                 reg = &dev_priv->fence_regs[i];
2215                 if (!reg->obj)
2216                         break;
2217
2218                 old_obj_priv = reg->obj->driver_private;
2219                 if (!old_obj_priv->pin_count)
2220                     avail++;
2221         }
2222
2223         /* None available, try to steal one or wait for a user to finish */
2224         if (i == dev_priv->num_fence_regs) {
2225                 uint32_t seqno = dev_priv->mm.next_gem_seqno;
2226                 loff_t offset;
2227
2228                 if (avail == 0)
2229                         return -ENOSPC;
2230
2231                 for (i = dev_priv->fence_reg_start;
2232                      i < dev_priv->num_fence_regs; i++) {
2233                         uint32_t this_seqno;
2234
2235                         reg = &dev_priv->fence_regs[i];
2236                         old_obj_priv = reg->obj->driver_private;
2237
2238                         if (old_obj_priv->pin_count)
2239                                 continue;
2240
2241                         /* i915 uses fences for GPU access to tiled buffers */
2242                         if (IS_I965G(dev) || !old_obj_priv->active)
2243                                 break;
2244
2245                         /* find the seqno of the first available fence */
2246                         this_seqno = old_obj_priv->last_rendering_seqno;
2247                         if (this_seqno != 0 &&
2248                             reg->obj->write_domain == 0 &&
2249                             i915_seqno_passed(seqno, this_seqno))
2250                                 seqno = this_seqno;
2251                 }
2252
2253                 /*
2254                  * Now things get ugly... we have to wait for one of the
2255                  * objects to finish before trying again.
2256                  */
2257                 if (i == dev_priv->num_fence_regs) {
2258                         if (seqno == dev_priv->mm.next_gem_seqno) {
2259                                 i915_gem_flush(dev,
2260                                                I915_GEM_GPU_DOMAINS,
2261                                                I915_GEM_GPU_DOMAINS);
2262                                 seqno = i915_add_request(dev, NULL,
2263                                                          I915_GEM_GPU_DOMAINS);
2264                                 if (seqno == 0)
2265                                         return -ENOMEM;
2266                         }
2267
2268                         ret = i915_wait_request(dev, seqno);
2269                         if (ret)
2270                                 return ret;
2271                         goto try_again;
2272                 }
2273
2274                 /*
2275                  * Zap this virtual mapping so we can set up a fence again
2276                  * for this object next time we need it.
2277                  */
2278                 offset = ((loff_t) reg->obj->map_list.hash.key) << PAGE_SHIFT;
2279                 if (dev->dev_mapping)
2280                         unmap_mapping_range(dev->dev_mapping, offset,
2281                                             reg->obj->size, 1);
2282                 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2283         }
2284
2285         obj_priv->fence_reg = i;
2286         reg->obj = obj;
2287
2288         if (IS_I965G(dev))
2289                 i965_write_fence_reg(reg);
2290         else if (IS_I9XX(dev))
2291                 i915_write_fence_reg(reg);
2292         else
2293                 i830_write_fence_reg(reg);
2294
2295         return 0;
2296 }
2297
2298 /**
2299  * i915_gem_clear_fence_reg - clear out fence register info
2300  * @obj: object to clear
2301  *
2302  * Zeroes out the fence register itself and clears out the associated
2303  * data structures in dev_priv and obj_priv.
2304  */
2305 static void
2306 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2307 {
2308         struct drm_device *dev = obj->dev;
2309         drm_i915_private_t *dev_priv = dev->dev_private;
2310         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2311
2312         if (IS_I965G(dev))
2313                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2314         else {
2315                 uint32_t fence_reg;
2316
2317                 if (obj_priv->fence_reg < 8)
2318                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2319                 else
2320                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2321                                                        8) * 4;
2322
2323                 I915_WRITE(fence_reg, 0);
2324         }
2325
2326         dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2327         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2328 }
2329
2330 /**
2331  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2332  * to the buffer to finish, and then resets the fence register.
2333  * @obj: tiled object holding a fence register.
2334  *
2335  * Zeroes out the fence register itself and clears out the associated
2336  * data structures in dev_priv and obj_priv.
2337  */
2338 int
2339 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2340 {
2341         struct drm_device *dev = obj->dev;
2342         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2343
2344         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2345                 return 0;
2346
2347         /* On the i915, GPU access to tiled buffers is via a fence,
2348          * therefore we must wait for any outstanding access to complete
2349          * before clearing the fence.
2350          */
2351         if (!IS_I965G(dev)) {
2352                 int ret;
2353
2354                 i915_gem_object_flush_gpu_write_domain(obj);
2355                 i915_gem_object_flush_gtt_write_domain(obj);
2356                 ret = i915_gem_object_wait_rendering(obj);
2357                 if (ret != 0)
2358                         return ret;
2359         }
2360
2361         i915_gem_clear_fence_reg (obj);
2362
2363         return 0;
2364 }
2365
2366 /**
2367  * Finds free space in the GTT aperture and binds the object there.
2368  */
2369 static int
2370 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2371 {
2372         struct drm_device *dev = obj->dev;
2373         drm_i915_private_t *dev_priv = dev->dev_private;
2374         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2375         struct drm_mm_node *free_space;
2376         int page_count, ret;
2377
2378         if (dev_priv->mm.suspended)
2379                 return -EBUSY;
2380         if (alignment == 0)
2381                 alignment = i915_gem_get_gtt_alignment(obj);
2382         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2383                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2384                 return -EINVAL;
2385         }
2386
2387  search_free:
2388         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2389                                         obj->size, alignment, 0);
2390         if (free_space != NULL) {
2391                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2392                                                        alignment);
2393                 if (obj_priv->gtt_space != NULL) {
2394                         obj_priv->gtt_space->private = obj;
2395                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2396                 }
2397         }
2398         if (obj_priv->gtt_space == NULL) {
2399                 bool lists_empty;
2400
2401                 /* If the gtt is empty and we're still having trouble
2402                  * fitting our object in, we're out of memory.
2403                  */
2404 #if WATCH_LRU
2405                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2406 #endif
2407                 spin_lock(&dev_priv->mm.active_list_lock);
2408                 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2409                                list_empty(&dev_priv->mm.flushing_list) &&
2410                                list_empty(&dev_priv->mm.active_list));
2411                 spin_unlock(&dev_priv->mm.active_list_lock);
2412                 if (lists_empty) {
2413                         DRM_ERROR("GTT full, but LRU list empty\n");
2414                         return -ENOSPC;
2415                 }
2416
2417                 ret = i915_gem_evict_something(dev);
2418                 if (ret != 0) {
2419                         if (ret != -ERESTARTSYS)
2420                                 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2421                         return ret;
2422                 }
2423                 goto search_free;
2424         }
2425
2426 #if WATCH_BUF
2427         DRM_INFO("Binding object of size %d at 0x%08x\n",
2428                  obj->size, obj_priv->gtt_offset);
2429 #endif
2430         ret = i915_gem_object_get_pages(obj);
2431         if (ret) {
2432                 drm_mm_put_block(obj_priv->gtt_space);
2433                 obj_priv->gtt_space = NULL;
2434                 return ret;
2435         }
2436
2437         page_count = obj->size / PAGE_SIZE;
2438         /* Create an AGP memory structure pointing at our pages, and bind it
2439          * into the GTT.
2440          */
2441         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2442                                                obj_priv->pages,
2443                                                page_count,
2444                                                obj_priv->gtt_offset,
2445                                                obj_priv->agp_type);
2446         if (obj_priv->agp_mem == NULL) {
2447                 i915_gem_object_put_pages(obj);
2448                 drm_mm_put_block(obj_priv->gtt_space);
2449                 obj_priv->gtt_space = NULL;
2450                 return -ENOMEM;
2451         }
2452         atomic_inc(&dev->gtt_count);
2453         atomic_add(obj->size, &dev->gtt_memory);
2454
2455         /* Assert that the object is not currently in any GPU domain. As it
2456          * wasn't in the GTT, there shouldn't be any way it could have been in
2457          * a GPU cache
2458          */
2459         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2460         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2461
2462         return 0;
2463 }
2464
2465 void
2466 i915_gem_clflush_object(struct drm_gem_object *obj)
2467 {
2468         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2469
2470         /* If we don't have a page list set up, then we're not pinned
2471          * to GPU, and we can ignore the cache flush because it'll happen
2472          * again at bind time.
2473          */
2474         if (obj_priv->pages == NULL)
2475                 return;
2476
2477         /* XXX: The 865 in particular appears to be weird in how it handles
2478          * cache flushing.  We haven't figured it out, but the
2479          * clflush+agp_chipset_flush doesn't appear to successfully get the
2480          * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2481          */
2482         if (IS_I865G(obj->dev)) {
2483                 wbinvd();
2484                 return;
2485         }
2486
2487         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2488 }
2489
2490 /** Flushes any GPU write domain for the object if it's dirty. */
2491 static void
2492 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2493 {
2494         struct drm_device *dev = obj->dev;
2495         uint32_t seqno;
2496
2497         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2498                 return;
2499
2500         /* Queue the GPU write cache flushing we need. */
2501         i915_gem_flush(dev, 0, obj->write_domain);
2502         seqno = i915_add_request(dev, NULL, obj->write_domain);
2503         obj->write_domain = 0;
2504         i915_gem_object_move_to_active(obj, seqno);
2505 }
2506
2507 /** Flushes the GTT write domain for the object if it's dirty. */
2508 static void
2509 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2510 {
2511         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2512                 return;
2513
2514         /* No actual flushing is required for the GTT write domain.   Writes
2515          * to it immediately go to main memory as far as we know, so there's
2516          * no chipset flush.  It also doesn't land in render cache.
2517          */
2518         obj->write_domain = 0;
2519 }
2520
2521 /** Flushes the CPU write domain for the object if it's dirty. */
2522 static void
2523 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2524 {
2525         struct drm_device *dev = obj->dev;
2526
2527         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2528                 return;
2529
2530         i915_gem_clflush_object(obj);
2531         drm_agp_chipset_flush(dev);
2532         obj->write_domain = 0;
2533 }
2534
2535 /**
2536  * Moves a single object to the GTT read, and possibly write domain.
2537  *
2538  * This function returns when the move is complete, including waiting on
2539  * flushes to occur.
2540  */
2541 int
2542 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2543 {
2544         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2545         int ret;
2546
2547         /* Not valid to be called on unbound objects. */
2548         if (obj_priv->gtt_space == NULL)
2549                 return -EINVAL;
2550
2551         i915_gem_object_flush_gpu_write_domain(obj);
2552         /* Wait on any GPU rendering and flushing to occur. */
2553         ret = i915_gem_object_wait_rendering(obj);
2554         if (ret != 0)
2555                 return ret;
2556
2557         /* If we're writing through the GTT domain, then CPU and GPU caches
2558          * will need to be invalidated at next use.
2559          */
2560         if (write)
2561                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2562
2563         i915_gem_object_flush_cpu_write_domain(obj);
2564
2565         /* It should now be out of any other write domains, and we can update
2566          * the domain values for our changes.
2567          */
2568         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2569         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2570         if (write) {
2571                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2572                 obj_priv->dirty = 1;
2573         }
2574
2575         return 0;
2576 }
2577
2578 /**
2579  * Moves a single object to the CPU read, and possibly write domain.
2580  *
2581  * This function returns when the move is complete, including waiting on
2582  * flushes to occur.
2583  */
2584 static int
2585 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2586 {
2587         int ret;
2588
2589         i915_gem_object_flush_gpu_write_domain(obj);
2590         /* Wait on any GPU rendering and flushing to occur. */
2591         ret = i915_gem_object_wait_rendering(obj);
2592         if (ret != 0)
2593                 return ret;
2594
2595         i915_gem_object_flush_gtt_write_domain(obj);
2596
2597         /* If we have a partially-valid cache of the object in the CPU,
2598          * finish invalidating it and free the per-page flags.
2599          */
2600         i915_gem_object_set_to_full_cpu_read_domain(obj);
2601
2602         /* Flush the CPU cache if it's still invalid. */
2603         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2604                 i915_gem_clflush_object(obj);
2605
2606                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2607         }
2608
2609         /* It should now be out of any other write domains, and we can update
2610          * the domain values for our changes.
2611          */
2612         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2613
2614         /* If we're writing through the CPU, then the GPU read domains will
2615          * need to be invalidated at next use.
2616          */
2617         if (write) {
2618                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2619                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2620         }
2621
2622         return 0;
2623 }
2624
2625 /*
2626  * Set the next domain for the specified object. This
2627  * may not actually perform the necessary flushing/invaliding though,
2628  * as that may want to be batched with other set_domain operations
2629  *
2630  * This is (we hope) the only really tricky part of gem. The goal
2631  * is fairly simple -- track which caches hold bits of the object
2632  * and make sure they remain coherent. A few concrete examples may
2633  * help to explain how it works. For shorthand, we use the notation
2634  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2635  * a pair of read and write domain masks.
2636  *
2637  * Case 1: the batch buffer
2638  *
2639  *      1. Allocated
2640  *      2. Written by CPU
2641  *      3. Mapped to GTT
2642  *      4. Read by GPU
2643  *      5. Unmapped from GTT
2644  *      6. Freed
2645  *
2646  *      Let's take these a step at a time
2647  *
2648  *      1. Allocated
2649  *              Pages allocated from the kernel may still have
2650  *              cache contents, so we set them to (CPU, CPU) always.
2651  *      2. Written by CPU (using pwrite)
2652  *              The pwrite function calls set_domain (CPU, CPU) and
2653  *              this function does nothing (as nothing changes)
2654  *      3. Mapped by GTT
2655  *              This function asserts that the object is not
2656  *              currently in any GPU-based read or write domains
2657  *      4. Read by GPU
2658  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
2659  *              As write_domain is zero, this function adds in the
2660  *              current read domains (CPU+COMMAND, 0).
2661  *              flush_domains is set to CPU.
2662  *              invalidate_domains is set to COMMAND
2663  *              clflush is run to get data out of the CPU caches
2664  *              then i915_dev_set_domain calls i915_gem_flush to
2665  *              emit an MI_FLUSH and drm_agp_chipset_flush
2666  *      5. Unmapped from GTT
2667  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
2668  *              flush_domains and invalidate_domains end up both zero
2669  *              so no flushing/invalidating happens
2670  *      6. Freed
2671  *              yay, done
2672  *
2673  * Case 2: The shared render buffer
2674  *
2675  *      1. Allocated
2676  *      2. Mapped to GTT
2677  *      3. Read/written by GPU
2678  *      4. set_domain to (CPU,CPU)
2679  *      5. Read/written by CPU
2680  *      6. Read/written by GPU
2681  *
2682  *      1. Allocated
2683  *              Same as last example, (CPU, CPU)
2684  *      2. Mapped to GTT
2685  *              Nothing changes (assertions find that it is not in the GPU)
2686  *      3. Read/written by GPU
2687  *              execbuffer calls set_domain (RENDER, RENDER)
2688  *              flush_domains gets CPU
2689  *              invalidate_domains gets GPU
2690  *              clflush (obj)
2691  *              MI_FLUSH and drm_agp_chipset_flush
2692  *      4. set_domain (CPU, CPU)
2693  *              flush_domains gets GPU
2694  *              invalidate_domains gets CPU
2695  *              wait_rendering (obj) to make sure all drawing is complete.
2696  *              This will include an MI_FLUSH to get the data from GPU
2697  *              to memory
2698  *              clflush (obj) to invalidate the CPU cache
2699  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2700  *      5. Read/written by CPU
2701  *              cache lines are loaded and dirtied
2702  *      6. Read written by GPU
2703  *              Same as last GPU access
2704  *
2705  * Case 3: The constant buffer
2706  *
2707  *      1. Allocated
2708  *      2. Written by CPU
2709  *      3. Read by GPU
2710  *      4. Updated (written) by CPU again
2711  *      5. Read by GPU
2712  *
2713  *      1. Allocated
2714  *              (CPU, CPU)
2715  *      2. Written by CPU
2716  *              (CPU, CPU)
2717  *      3. Read by GPU
2718  *              (CPU+RENDER, 0)
2719  *              flush_domains = CPU
2720  *              invalidate_domains = RENDER
2721  *              clflush (obj)
2722  *              MI_FLUSH
2723  *              drm_agp_chipset_flush
2724  *      4. Updated (written) by CPU again
2725  *              (CPU, CPU)
2726  *              flush_domains = 0 (no previous write domain)
2727  *              invalidate_domains = 0 (no new read domains)
2728  *      5. Read by GPU
2729  *              (CPU+RENDER, 0)
2730  *              flush_domains = CPU
2731  *              invalidate_domains = RENDER
2732  *              clflush (obj)
2733  *              MI_FLUSH
2734  *              drm_agp_chipset_flush
2735  */
2736 static void
2737 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2738 {
2739         struct drm_device               *dev = obj->dev;
2740         struct drm_i915_gem_object      *obj_priv = obj->driver_private;
2741         uint32_t                        invalidate_domains = 0;
2742         uint32_t                        flush_domains = 0;
2743
2744         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2745         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2746
2747 #if WATCH_BUF
2748         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2749                  __func__, obj,
2750                  obj->read_domains, obj->pending_read_domains,
2751                  obj->write_domain, obj->pending_write_domain);
2752 #endif
2753         /*
2754          * If the object isn't moving to a new write domain,
2755          * let the object stay in multiple read domains
2756          */
2757         if (obj->pending_write_domain == 0)
2758                 obj->pending_read_domains |= obj->read_domains;
2759         else
2760                 obj_priv->dirty = 1;
2761
2762         /*
2763          * Flush the current write domain if
2764          * the new read domains don't match. Invalidate
2765          * any read domains which differ from the old
2766          * write domain
2767          */
2768         if (obj->write_domain &&
2769             obj->write_domain != obj->pending_read_domains) {
2770                 flush_domains |= obj->write_domain;
2771                 invalidate_domains |=
2772                         obj->pending_read_domains & ~obj->write_domain;
2773         }
2774         /*
2775          * Invalidate any read caches which may have
2776          * stale data. That is, any new read domains.
2777          */
2778         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2779         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2780 #if WATCH_BUF
2781                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2782                          __func__, flush_domains, invalidate_domains);
2783 #endif
2784                 i915_gem_clflush_object(obj);
2785         }
2786
2787         /* The actual obj->write_domain will be updated with
2788          * pending_write_domain after we emit the accumulated flush for all
2789          * of our domain changes in execbuffers (which clears objects'
2790          * write_domains).  So if we have a current write domain that we
2791          * aren't changing, set pending_write_domain to that.
2792          */
2793         if (flush_domains == 0 && obj->pending_write_domain == 0)
2794                 obj->pending_write_domain = obj->write_domain;
2795         obj->read_domains = obj->pending_read_domains;
2796
2797         dev->invalidate_domains |= invalidate_domains;
2798         dev->flush_domains |= flush_domains;
2799 #if WATCH_BUF
2800         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2801                  __func__,
2802                  obj->read_domains, obj->write_domain,
2803                  dev->invalidate_domains, dev->flush_domains);
2804 #endif
2805 }
2806
2807 /**
2808  * Moves the object from a partially CPU read to a full one.
2809  *
2810  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2811  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2812  */
2813 static void
2814 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2815 {
2816         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2817
2818         if (!obj_priv->page_cpu_valid)
2819                 return;
2820
2821         /* If we're partially in the CPU read domain, finish moving it in.
2822          */
2823         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2824                 int i;
2825
2826                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2827                         if (obj_priv->page_cpu_valid[i])
2828                                 continue;
2829                         drm_clflush_pages(obj_priv->pages + i, 1);
2830                 }
2831         }
2832
2833         /* Free the page_cpu_valid mappings which are now stale, whether
2834          * or not we've got I915_GEM_DOMAIN_CPU.
2835          */
2836         drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
2837                  DRM_MEM_DRIVER);
2838         obj_priv->page_cpu_valid = NULL;
2839 }
2840
2841 /**
2842  * Set the CPU read domain on a range of the object.
2843  *
2844  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2845  * not entirely valid.  The page_cpu_valid member of the object flags which
2846  * pages have been flushed, and will be respected by
2847  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2848  * of the whole object.
2849  *
2850  * This function returns when the move is complete, including waiting on
2851  * flushes to occur.
2852  */
2853 static int
2854 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2855                                           uint64_t offset, uint64_t size)
2856 {
2857         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2858         int i, ret;
2859
2860         if (offset == 0 && size == obj->size)
2861                 return i915_gem_object_set_to_cpu_domain(obj, 0);
2862
2863         i915_gem_object_flush_gpu_write_domain(obj);
2864         /* Wait on any GPU rendering and flushing to occur. */
2865         ret = i915_gem_object_wait_rendering(obj);
2866         if (ret != 0)
2867                 return ret;
2868         i915_gem_object_flush_gtt_write_domain(obj);
2869
2870         /* If we're already fully in the CPU read domain, we're done. */
2871         if (obj_priv->page_cpu_valid == NULL &&
2872             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2873                 return 0;
2874
2875         /* Otherwise, create/clear the per-page CPU read domain flag if we're
2876          * newly adding I915_GEM_DOMAIN_CPU
2877          */
2878         if (obj_priv->page_cpu_valid == NULL) {
2879                 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
2880                                                       DRM_MEM_DRIVER);
2881                 if (obj_priv->page_cpu_valid == NULL)
2882                         return -ENOMEM;
2883         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2884                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2885
2886         /* Flush the cache on any pages that are still invalid from the CPU's
2887          * perspective.
2888          */
2889         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2890              i++) {
2891                 if (obj_priv->page_cpu_valid[i])
2892                         continue;
2893
2894                 drm_clflush_pages(obj_priv->pages + i, 1);
2895
2896                 obj_priv->page_cpu_valid[i] = 1;
2897         }
2898
2899         /* It should now be out of any other write domains, and we can update
2900          * the domain values for our changes.
2901          */
2902         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2903
2904         obj->read_domains |= I915_GEM_DOMAIN_CPU;
2905
2906         return 0;
2907 }
2908
2909 /**
2910  * Pin an object to the GTT and evaluate the relocations landing in it.
2911  */
2912 static int
2913 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2914                                  struct drm_file *file_priv,
2915                                  struct drm_i915_gem_exec_object *entry,
2916                                  struct drm_i915_gem_relocation_entry *relocs)
2917 {
2918         struct drm_device *dev = obj->dev;
2919         drm_i915_private_t *dev_priv = dev->dev_private;
2920         struct drm_i915_gem_object *obj_priv = obj->driver_private;
2921         int i, ret;
2922         void __iomem *reloc_page;
2923
2924         /* Choose the GTT offset for our buffer and put it there. */
2925         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2926         if (ret)
2927                 return ret;
2928
2929         entry->offset = obj_priv->gtt_offset;
2930
2931         /* Apply the relocations, using the GTT aperture to avoid cache
2932          * flushing requirements.
2933          */
2934         for (i = 0; i < entry->relocation_count; i++) {
2935                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2936                 struct drm_gem_object *target_obj;
2937                 struct drm_i915_gem_object *target_obj_priv;
2938                 uint32_t reloc_val, reloc_offset;
2939                 uint32_t __iomem *reloc_entry;
2940
2941                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2942                                                    reloc->target_handle);
2943                 if (target_obj == NULL) {
2944                         i915_gem_object_unpin(obj);
2945                         return -EBADF;
2946                 }
2947                 target_obj_priv = target_obj->driver_private;
2948
2949                 /* The target buffer should have appeared before us in the
2950                  * exec_object list, so it should have a GTT space bound by now.
2951                  */
2952                 if (target_obj_priv->gtt_space == NULL) {
2953                         DRM_ERROR("No GTT space found for object %d\n",
2954                                   reloc->target_handle);
2955                         drm_gem_object_unreference(target_obj);
2956                         i915_gem_object_unpin(obj);
2957                         return -EINVAL;
2958                 }
2959
2960                 if (reloc->offset > obj->size - 4) {
2961                         DRM_ERROR("Relocation beyond object bounds: "
2962                                   "obj %p target %d offset %d size %d.\n",
2963                                   obj, reloc->target_handle,
2964                                   (int) reloc->offset, (int) obj->size);
2965                         drm_gem_object_unreference(target_obj);
2966                         i915_gem_object_unpin(obj);
2967                         return -EINVAL;
2968                 }
2969                 if (reloc->offset & 3) {
2970                         DRM_ERROR("Relocation not 4-byte aligned: "
2971                                   "obj %p target %d offset %d.\n",
2972                                   obj, reloc->target_handle,
2973                                   (int) reloc->offset);
2974                         drm_gem_object_unreference(target_obj);
2975                         i915_gem_object_unpin(obj);
2976                         return -EINVAL;
2977                 }
2978
2979                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
2980                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
2981                         DRM_ERROR("reloc with read/write CPU domains: "
2982                                   "obj %p target %d offset %d "
2983                                   "read %08x write %08x",
2984                                   obj, reloc->target_handle,
2985                                   (int) reloc->offset,
2986                                   reloc->read_domains,
2987                                   reloc->write_domain);
2988                         drm_gem_object_unreference(target_obj);
2989                         i915_gem_object_unpin(obj);
2990                         return -EINVAL;
2991                 }
2992
2993                 if (reloc->write_domain && target_obj->pending_write_domain &&
2994                     reloc->write_domain != target_obj->pending_write_domain) {
2995                         DRM_ERROR("Write domain conflict: "
2996                                   "obj %p target %d offset %d "
2997                                   "new %08x old %08x\n",
2998                                   obj, reloc->target_handle,
2999                                   (int) reloc->offset,
3000                                   reloc->write_domain,
3001                                   target_obj->pending_write_domain);
3002                         drm_gem_object_unreference(target_obj);
3003                         i915_gem_object_unpin(obj);
3004                         return -EINVAL;
3005                 }
3006
3007 #if WATCH_RELOC
3008                 DRM_INFO("%s: obj %p offset %08x target %d "
3009                          "read %08x write %08x gtt %08x "
3010                          "presumed %08x delta %08x\n",
3011                          __func__,
3012                          obj,
3013                          (int) reloc->offset,
3014                          (int) reloc->target_handle,
3015                          (int) reloc->read_domains,
3016                          (int) reloc->write_domain,
3017                          (int) target_obj_priv->gtt_offset,
3018                          (int) reloc->presumed_offset,
3019                          reloc->delta);
3020 #endif
3021
3022                 target_obj->pending_read_domains |= reloc->read_domains;
3023                 target_obj->pending_write_domain |= reloc->write_domain;
3024
3025                 /* If the relocation already has the right value in it, no
3026                  * more work needs to be done.
3027                  */
3028                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3029                         drm_gem_object_unreference(target_obj);
3030                         continue;
3031                 }
3032
3033                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3034                 if (ret != 0) {
3035                         drm_gem_object_unreference(target_obj);
3036                         i915_gem_object_unpin(obj);
3037                         return -EINVAL;
3038                 }
3039
3040                 /* Map the page containing the relocation we're going to
3041                  * perform.
3042                  */
3043                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3044                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3045                                                       (reloc_offset &
3046                                                        ~(PAGE_SIZE - 1)));
3047                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3048                                                    (reloc_offset & (PAGE_SIZE - 1)));
3049                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3050
3051 #if WATCH_BUF
3052                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3053                           obj, (unsigned int) reloc->offset,
3054                           readl(reloc_entry), reloc_val);
3055 #endif
3056                 writel(reloc_val, reloc_entry);
3057                 io_mapping_unmap_atomic(reloc_page);
3058
3059                 /* The updated presumed offset for this entry will be
3060                  * copied back out to the user.
3061                  */
3062                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3063
3064                 drm_gem_object_unreference(target_obj);
3065         }
3066
3067 #if WATCH_BUF
3068         if (0)
3069                 i915_gem_dump_object(obj, 128, __func__, ~0);
3070 #endif
3071         return 0;
3072 }
3073
3074 /** Dispatch a batchbuffer to the ring
3075  */
3076 static int
3077 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3078                               struct drm_i915_gem_execbuffer *exec,
3079                               struct drm_clip_rect *cliprects,
3080                               uint64_t exec_offset)
3081 {
3082         drm_i915_private_t *dev_priv = dev->dev_private;
3083         int nbox = exec->num_cliprects;
3084         int i = 0, count;
3085         uint32_t exec_start, exec_len;
3086         RING_LOCALS;
3087
3088         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3089         exec_len = (uint32_t) exec->batch_len;
3090
3091         count = nbox ? nbox : 1;
3092
3093         for (i = 0; i < count; i++) {
3094                 if (i < nbox) {
3095                         int ret = i915_emit_box(dev, cliprects, i,
3096                                                 exec->DR1, exec->DR4);
3097                         if (ret)
3098                                 return ret;
3099                 }
3100
3101                 if (IS_I830(dev) || IS_845G(dev)) {
3102                         BEGIN_LP_RING(4);
3103                         OUT_RING(MI_BATCH_BUFFER);
3104                         OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3105                         OUT_RING(exec_start + exec_len - 4);
3106                         OUT_RING(0);
3107                         ADVANCE_LP_RING();
3108                 } else {
3109                         BEGIN_LP_RING(2);
3110                         if (IS_I965G(dev)) {
3111                                 OUT_RING(MI_BATCH_BUFFER_START |
3112                                          (2 << 6) |
3113                                          MI_BATCH_NON_SECURE_I965);
3114                                 OUT_RING(exec_start);
3115                         } else {
3116                                 OUT_RING(MI_BATCH_BUFFER_START |
3117                                          (2 << 6));
3118                                 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3119                         }
3120                         ADVANCE_LP_RING();
3121                 }
3122         }
3123
3124         /* XXX breadcrumb */
3125         return 0;
3126 }
3127
3128 /* Throttle our rendering by waiting until the ring has completed our requests
3129  * emitted over 20 msec ago.
3130  *
3131  * Note that if we were to use the current jiffies each time around the loop,
3132  * we wouldn't escape the function with any frames outstanding if the time to
3133  * render a frame was over 20ms.
3134  *
3135  * This should get us reasonable parallelism between CPU and GPU but also
3136  * relatively low latency when blocking on a particular request to finish.
3137  */
3138 static int
3139 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3140 {
3141         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3142         int ret = 0;
3143         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3144
3145         mutex_lock(&dev->struct_mutex);
3146         while (!list_empty(&i915_file_priv->mm.request_list)) {
3147                 struct drm_i915_gem_request *request;
3148
3149                 request = list_first_entry(&i915_file_priv->mm.request_list,
3150                                            struct drm_i915_gem_request,
3151                                            client_list);
3152
3153                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3154                         break;
3155
3156                 ret = i915_wait_request(dev, request->seqno);
3157                 if (ret != 0)
3158                         break;
3159         }
3160         mutex_unlock(&dev->struct_mutex);
3161
3162         return ret;
3163 }
3164
3165 static int
3166 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3167                               uint32_t buffer_count,
3168                               struct drm_i915_gem_relocation_entry **relocs)
3169 {
3170         uint32_t reloc_count = 0, reloc_index = 0, i;
3171         int ret;
3172
3173         *relocs = NULL;
3174         for (i = 0; i < buffer_count; i++) {
3175                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3176                         return -EINVAL;
3177                 reloc_count += exec_list[i].relocation_count;
3178         }
3179
3180         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3181         if (*relocs == NULL)
3182                 return -ENOMEM;
3183
3184         for (i = 0; i < buffer_count; i++) {
3185                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3186
3187                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3188
3189                 ret = copy_from_user(&(*relocs)[reloc_index],
3190                                      user_relocs,
3191                                      exec_list[i].relocation_count *
3192                                      sizeof(**relocs));
3193                 if (ret != 0) {
3194                         drm_free_large(*relocs);
3195                         *relocs = NULL;
3196                         return -EFAULT;
3197                 }
3198
3199                 reloc_index += exec_list[i].relocation_count;
3200         }
3201
3202         return 0;
3203 }
3204
3205 static int
3206 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3207                             uint32_t buffer_count,
3208                             struct drm_i915_gem_relocation_entry *relocs)
3209 {
3210         uint32_t reloc_count = 0, i;
3211         int ret = 0;
3212
3213         for (i = 0; i < buffer_count; i++) {
3214                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3215                 int unwritten;
3216
3217                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3218
3219                 unwritten = copy_to_user(user_relocs,
3220                                          &relocs[reloc_count],
3221                                          exec_list[i].relocation_count *
3222                                          sizeof(*relocs));
3223
3224                 if (unwritten) {
3225                         ret = -EFAULT;
3226                         goto err;
3227                 }
3228
3229                 reloc_count += exec_list[i].relocation_count;
3230         }
3231
3232 err:
3233         drm_free_large(relocs);
3234
3235         return ret;
3236 }
3237
3238 static int
3239 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3240                            uint64_t exec_offset)
3241 {
3242         uint32_t exec_start, exec_len;
3243
3244         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3245         exec_len = (uint32_t) exec->batch_len;
3246
3247         if ((exec_start | exec_len) & 0x7)
3248                 return -EINVAL;
3249
3250         if (!exec_start)
3251                 return -EINVAL;
3252
3253         return 0;
3254 }
3255
3256 int
3257 i915_gem_execbuffer(struct drm_device *dev, void *data,
3258                     struct drm_file *file_priv)
3259 {
3260         drm_i915_private_t *dev_priv = dev->dev_private;
3261         struct drm_i915_gem_execbuffer *args = data;
3262         struct drm_i915_gem_exec_object *exec_list = NULL;
3263         struct drm_gem_object **object_list = NULL;
3264         struct drm_gem_object *batch_obj;
3265         struct drm_i915_gem_object *obj_priv;
3266         struct drm_clip_rect *cliprects = NULL;
3267         struct drm_i915_gem_relocation_entry *relocs;
3268         int ret, ret2, i, pinned = 0;
3269         uint64_t exec_offset;
3270         uint32_t seqno, flush_domains, reloc_index;
3271         int pin_tries;
3272
3273 #if WATCH_EXEC
3274         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3275                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3276 #endif
3277
3278         if (args->buffer_count < 1) {
3279                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3280                 return -EINVAL;
3281         }
3282         /* Copy in the exec list from userland */
3283         exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3284         object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3285         if (exec_list == NULL || object_list == NULL) {
3286                 DRM_ERROR("Failed to allocate exec or object list "
3287                           "for %d buffers\n",
3288                           args->buffer_count);
3289                 ret = -ENOMEM;
3290                 goto pre_mutex_err;
3291         }
3292         ret = copy_from_user(exec_list,
3293                              (struct drm_i915_relocation_entry __user *)
3294                              (uintptr_t) args->buffers_ptr,
3295                              sizeof(*exec_list) * args->buffer_count);
3296         if (ret != 0) {
3297                 DRM_ERROR("copy %d exec entries failed %d\n",
3298                           args->buffer_count, ret);
3299                 goto pre_mutex_err;
3300         }
3301
3302         if (args->num_cliprects != 0) {
3303                 cliprects = drm_calloc(args->num_cliprects, sizeof(*cliprects),
3304                                        DRM_MEM_DRIVER);
3305                 if (cliprects == NULL)
3306                         goto pre_mutex_err;
3307
3308                 ret = copy_from_user(cliprects,
3309                                      (struct drm_clip_rect __user *)
3310                                      (uintptr_t) args->cliprects_ptr,
3311                                      sizeof(*cliprects) * args->num_cliprects);
3312                 if (ret != 0) {
3313                         DRM_ERROR("copy %d cliprects failed: %d\n",
3314                                   args->num_cliprects, ret);
3315                         goto pre_mutex_err;
3316                 }
3317         }
3318
3319         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3320                                             &relocs);
3321         if (ret != 0)
3322                 goto pre_mutex_err;
3323
3324         mutex_lock(&dev->struct_mutex);
3325
3326         i915_verify_inactive(dev, __FILE__, __LINE__);
3327
3328         if (dev_priv->mm.wedged) {
3329                 DRM_ERROR("Execbuf while wedged\n");
3330                 mutex_unlock(&dev->struct_mutex);
3331                 ret = -EIO;
3332                 goto pre_mutex_err;
3333         }
3334
3335         if (dev_priv->mm.suspended) {
3336                 DRM_ERROR("Execbuf while VT-switched.\n");
3337                 mutex_unlock(&dev->struct_mutex);
3338                 ret = -EBUSY;
3339                 goto pre_mutex_err;
3340         }
3341
3342         /* Look up object handles */
3343         for (i = 0; i < args->buffer_count; i++) {
3344                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3345                                                        exec_list[i].handle);
3346                 if (object_list[i] == NULL) {
3347                         DRM_ERROR("Invalid object handle %d at index %d\n",
3348                                    exec_list[i].handle, i);
3349                         ret = -EBADF;
3350                         goto err;
3351                 }
3352
3353                 obj_priv = object_list[i]->driver_private;
3354                 if (obj_priv->in_execbuffer) {
3355                         DRM_ERROR("Object %p appears more than once in object list\n",
3356                                    object_list[i]);
3357                         ret = -EBADF;
3358                         goto err;
3359                 }
3360                 obj_priv->in_execbuffer = true;
3361         }
3362
3363         /* Pin and relocate */
3364         for (pin_tries = 0; ; pin_tries++) {
3365                 ret = 0;
3366                 reloc_index = 0;
3367
3368                 for (i = 0; i < args->buffer_count; i++) {
3369                         object_list[i]->pending_read_domains = 0;
3370                         object_list[i]->pending_write_domain = 0;
3371                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3372                                                                file_priv,
3373                                                                &exec_list[i],
3374                                                                &relocs[reloc_index]);
3375                         if (ret)
3376                                 break;
3377                         pinned = i + 1;
3378                         reloc_index += exec_list[i].relocation_count;
3379                 }
3380                 /* success */
3381                 if (ret == 0)
3382                         break;
3383
3384                 /* error other than GTT full, or we've already tried again */
3385                 if (ret != -ENOSPC || pin_tries >= 1) {
3386                         if (ret != -ERESTARTSYS)
3387                                 DRM_ERROR("Failed to pin buffers %d\n", ret);
3388                         goto err;
3389                 }
3390
3391                 /* unpin all of our buffers */
3392                 for (i = 0; i < pinned; i++)
3393                         i915_gem_object_unpin(object_list[i]);
3394                 pinned = 0;
3395
3396                 /* evict everyone we can from the aperture */
3397                 ret = i915_gem_evict_everything(dev);
3398                 if (ret)
3399                         goto err;
3400         }
3401
3402         /* Set the pending read domains for the batch buffer to COMMAND */
3403         batch_obj = object_list[args->buffer_count-1];
3404         if (batch_obj->pending_write_domain) {
3405                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3406                 ret = -EINVAL;
3407                 goto err;
3408         }
3409         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3410
3411         /* Sanity check the batch buffer, prior to moving objects */
3412         exec_offset = exec_list[args->buffer_count - 1].offset;
3413         ret = i915_gem_check_execbuffer (args, exec_offset);
3414         if (ret != 0) {
3415                 DRM_ERROR("execbuf with invalid offset/length\n");
3416                 goto err;
3417         }
3418
3419         i915_verify_inactive(dev, __FILE__, __LINE__);
3420
3421         /* Zero the global flush/invalidate flags. These
3422          * will be modified as new domains are computed
3423          * for each object
3424          */
3425         dev->invalidate_domains = 0;
3426         dev->flush_domains = 0;
3427
3428         for (i = 0; i < args->buffer_count; i++) {
3429                 struct drm_gem_object *obj = object_list[i];
3430
3431                 /* Compute new gpu domains and update invalidate/flush */
3432                 i915_gem_object_set_to_gpu_domain(obj);
3433         }
3434
3435         i915_verify_inactive(dev, __FILE__, __LINE__);
3436
3437         if (dev->invalidate_domains | dev->flush_domains) {
3438 #if WATCH_EXEC
3439                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3440                           __func__,
3441                          dev->invalidate_domains,
3442                          dev->flush_domains);
3443 #endif
3444                 i915_gem_flush(dev,
3445                                dev->invalidate_domains,
3446                                dev->flush_domains);
3447                 if (dev->flush_domains)
3448                         (void)i915_add_request(dev, file_priv,
3449                                                dev->flush_domains);
3450         }
3451
3452         for (i = 0; i < args->buffer_count; i++) {
3453                 struct drm_gem_object *obj = object_list[i];
3454
3455                 obj->write_domain = obj->pending_write_domain;
3456         }
3457
3458         i915_verify_inactive(dev, __FILE__, __LINE__);
3459
3460 #if WATCH_COHERENCY
3461         for (i = 0; i < args->buffer_count; i++) {
3462                 i915_gem_object_check_coherency(object_list[i],
3463                                                 exec_list[i].handle);
3464         }
3465 #endif
3466
3467 #if WATCH_EXEC
3468         i915_gem_dump_object(batch_obj,
3469                               args->batch_len,
3470                               __func__,
3471                               ~0);
3472 #endif
3473
3474         /* Exec the batchbuffer */
3475         ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3476         if (ret) {
3477                 DRM_ERROR("dispatch failed %d\n", ret);
3478                 goto err;
3479         }
3480
3481         /*
3482          * Ensure that the commands in the batch buffer are
3483          * finished before the interrupt fires
3484          */
3485         flush_domains = i915_retire_commands(dev);
3486
3487         i915_verify_inactive(dev, __FILE__, __LINE__);
3488
3489         /*
3490          * Get a seqno representing the execution of the current buffer,
3491          * which we can wait on.  We would like to mitigate these interrupts,
3492          * likely by only creating seqnos occasionally (so that we have
3493          * *some* interrupts representing completion of buffers that we can
3494          * wait on when trying to clear up gtt space).
3495          */
3496         seqno = i915_add_request(dev, file_priv, flush_domains);
3497         BUG_ON(seqno == 0);
3498         for (i = 0; i < args->buffer_count; i++) {
3499                 struct drm_gem_object *obj = object_list[i];
3500
3501                 i915_gem_object_move_to_active(obj, seqno);
3502 #if WATCH_LRU
3503                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3504 #endif
3505         }
3506 #if WATCH_LRU
3507         i915_dump_lru(dev, __func__);
3508 #endif
3509
3510         i915_verify_inactive(dev, __FILE__, __LINE__);
3511
3512 err:
3513         for (i = 0; i < pinned; i++)
3514                 i915_gem_object_unpin(object_list[i]);
3515
3516         for (i = 0; i < args->buffer_count; i++) {
3517                 if (object_list[i]) {
3518                         obj_priv = object_list[i]->driver_private;
3519                         obj_priv->in_execbuffer = false;
3520                 }
3521                 drm_gem_object_unreference(object_list[i]);
3522         }
3523
3524         mutex_unlock(&dev->struct_mutex);
3525
3526         if (!ret) {
3527                 /* Copy the new buffer offsets back to the user's exec list. */
3528                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3529                                    (uintptr_t) args->buffers_ptr,
3530                                    exec_list,
3531                                    sizeof(*exec_list) * args->buffer_count);
3532                 if (ret) {
3533                         ret = -EFAULT;
3534                         DRM_ERROR("failed to copy %d exec entries "
3535                                   "back to user (%d)\n",
3536                                   args->buffer_count, ret);
3537                 }
3538         }
3539
3540         /* Copy the updated relocations out regardless of current error
3541          * state.  Failure to update the relocs would mean that the next
3542          * time userland calls execbuf, it would do so with presumed offset
3543          * state that didn't match the actual object state.
3544          */
3545         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3546                                            relocs);
3547         if (ret2 != 0) {
3548                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3549
3550                 if (ret == 0)
3551                         ret = ret2;
3552         }
3553
3554 pre_mutex_err:
3555         drm_free_large(object_list);
3556         drm_free_large(exec_list);
3557         drm_free(cliprects, sizeof(*cliprects) * args->num_cliprects,
3558                  DRM_MEM_DRIVER);
3559
3560         return ret;
3561 }
3562
3563 int
3564 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3565 {
3566         struct drm_device *dev = obj->dev;
3567         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3568         int ret;
3569
3570         i915_verify_inactive(dev, __FILE__, __LINE__);
3571         if (obj_priv->gtt_space == NULL) {
3572                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3573                 if (ret != 0) {
3574                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3575                                 DRM_ERROR("Failure to bind: %d\n", ret);
3576                         return ret;
3577                 }
3578         }
3579         /*
3580          * Pre-965 chips need a fence register set up in order to
3581          * properly handle tiled surfaces.
3582          */
3583         if (!IS_I965G(dev) &&
3584             obj_priv->fence_reg == I915_FENCE_REG_NONE &&
3585             obj_priv->tiling_mode != I915_TILING_NONE) {
3586                 ret = i915_gem_object_get_fence_reg(obj);
3587                 if (ret != 0) {
3588                         if (ret != -EBUSY && ret != -ERESTARTSYS)
3589                                 DRM_ERROR("Failure to install fence: %d\n",
3590                                           ret);
3591                         return ret;
3592                 }
3593         }
3594         obj_priv->pin_count++;
3595
3596         /* If the object is not active and not pending a flush,
3597          * remove it from the inactive list
3598          */
3599         if (obj_priv->pin_count == 1) {
3600                 atomic_inc(&dev->pin_count);
3601                 atomic_add(obj->size, &dev->pin_memory);
3602                 if (!obj_priv->active &&
3603                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3604                     !list_empty(&obj_priv->list))
3605                         list_del_init(&obj_priv->list);
3606         }
3607         i915_verify_inactive(dev, __FILE__, __LINE__);
3608
3609         return 0;
3610 }
3611
3612 void
3613 i915_gem_object_unpin(struct drm_gem_object *obj)
3614 {
3615         struct drm_device *dev = obj->dev;
3616         drm_i915_private_t *dev_priv = dev->dev_private;
3617         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3618
3619         i915_verify_inactive(dev, __FILE__, __LINE__);
3620         obj_priv->pin_count--;
3621         BUG_ON(obj_priv->pin_count < 0);
3622         BUG_ON(obj_priv->gtt_space == NULL);
3623
3624         /* If the object is no longer pinned, and is
3625          * neither active nor being flushed, then stick it on
3626          * the inactive list
3627          */
3628         if (obj_priv->pin_count == 0) {
3629                 if (!obj_priv->active &&
3630                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3631                         list_move_tail(&obj_priv->list,
3632                                        &dev_priv->mm.inactive_list);
3633                 atomic_dec(&dev->pin_count);
3634                 atomic_sub(obj->size, &dev->pin_memory);
3635         }
3636         i915_verify_inactive(dev, __FILE__, __LINE__);
3637 }
3638
3639 int
3640 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3641                    struct drm_file *file_priv)
3642 {
3643         struct drm_i915_gem_pin *args = data;
3644         struct drm_gem_object *obj;
3645         struct drm_i915_gem_object *obj_priv;
3646         int ret;
3647
3648         mutex_lock(&dev->struct_mutex);
3649
3650         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3651         if (obj == NULL) {
3652                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3653                           args->handle);
3654                 mutex_unlock(&dev->struct_mutex);
3655                 return -EBADF;
3656         }
3657         obj_priv = obj->driver_private;
3658
3659         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3660                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3661                           args->handle);
3662                 drm_gem_object_unreference(obj);
3663                 mutex_unlock(&dev->struct_mutex);
3664                 return -EINVAL;
3665         }
3666
3667         obj_priv->user_pin_count++;
3668         obj_priv->pin_filp = file_priv;
3669         if (obj_priv->user_pin_count == 1) {
3670                 ret = i915_gem_object_pin(obj, args->alignment);
3671                 if (ret != 0) {
3672                         drm_gem_object_unreference(obj);
3673                         mutex_unlock(&dev->struct_mutex);
3674                         return ret;
3675                 }
3676         }
3677
3678         /* XXX - flush the CPU caches for pinned objects
3679          * as the X server doesn't manage domains yet
3680          */
3681         i915_gem_object_flush_cpu_write_domain(obj);
3682         args->offset = obj_priv->gtt_offset;
3683         drm_gem_object_unreference(obj);
3684         mutex_unlock(&dev->struct_mutex);
3685
3686         return 0;
3687 }
3688
3689 int
3690 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3691                      struct drm_file *file_priv)
3692 {
3693         struct drm_i915_gem_pin *args = data;
3694         struct drm_gem_object *obj;
3695         struct drm_i915_gem_object *obj_priv;
3696
3697         mutex_lock(&dev->struct_mutex);
3698
3699         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3700         if (obj == NULL) {
3701                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3702                           args->handle);
3703                 mutex_unlock(&dev->struct_mutex);
3704                 return -EBADF;
3705         }
3706
3707         obj_priv = obj->driver_private;
3708         if (obj_priv->pin_filp != file_priv) {
3709                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3710                           args->handle);
3711                 drm_gem_object_unreference(obj);
3712                 mutex_unlock(&dev->struct_mutex);
3713                 return -EINVAL;
3714         }
3715         obj_priv->user_pin_count--;
3716         if (obj_priv->user_pin_count == 0) {
3717                 obj_priv->pin_filp = NULL;
3718                 i915_gem_object_unpin(obj);
3719         }
3720
3721         drm_gem_object_unreference(obj);
3722         mutex_unlock(&dev->struct_mutex);
3723         return 0;
3724 }
3725
3726 int
3727 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3728                     struct drm_file *file_priv)
3729 {
3730         struct drm_i915_gem_busy *args = data;
3731         struct drm_gem_object *obj;
3732         struct drm_i915_gem_object *obj_priv;
3733
3734         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3735         if (obj == NULL) {
3736                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3737                           args->handle);
3738                 return -EBADF;
3739         }
3740
3741         mutex_lock(&dev->struct_mutex);
3742         /* Update the active list for the hardware's current position.
3743          * Otherwise this only updates on a delayed timer or when irqs are
3744          * actually unmasked, and our working set ends up being larger than
3745          * required.
3746          */
3747         i915_gem_retire_requests(dev);
3748
3749         obj_priv = obj->driver_private;
3750         /* Don't count being on the flushing list against the object being
3751          * done.  Otherwise, a buffer left on the flushing list but not getting
3752          * flushed (because nobody's flushing that domain) won't ever return
3753          * unbusy and get reused by libdrm's bo cache.  The other expected
3754          * consumer of this interface, OpenGL's occlusion queries, also specs
3755          * that the objects get unbusy "eventually" without any interference.
3756          */
3757         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3758
3759         drm_gem_object_unreference(obj);
3760         mutex_unlock(&dev->struct_mutex);
3761         return 0;
3762 }
3763
3764 int
3765 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3766                         struct drm_file *file_priv)
3767 {
3768     return i915_gem_ring_throttle(dev, file_priv);
3769 }
3770
3771 int i915_gem_init_object(struct drm_gem_object *obj)
3772 {
3773         struct drm_i915_gem_object *obj_priv;
3774
3775         obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
3776         if (obj_priv == NULL)
3777                 return -ENOMEM;
3778
3779         /*
3780          * We've just allocated pages from the kernel,
3781          * so they've just been written by the CPU with
3782          * zeros. They'll need to be clflushed before we
3783          * use them with the GPU.
3784          */
3785         obj->write_domain = I915_GEM_DOMAIN_CPU;
3786         obj->read_domains = I915_GEM_DOMAIN_CPU;
3787
3788         obj_priv->agp_type = AGP_USER_MEMORY;
3789
3790         obj->driver_private = obj_priv;
3791         obj_priv->obj = obj;
3792         obj_priv->fence_reg = I915_FENCE_REG_NONE;
3793         INIT_LIST_HEAD(&obj_priv->list);
3794
3795         return 0;
3796 }
3797
3798 void i915_gem_free_object(struct drm_gem_object *obj)
3799 {
3800         struct drm_device *dev = obj->dev;
3801         struct drm_i915_gem_object *obj_priv = obj->driver_private;
3802
3803         while (obj_priv->pin_count > 0)
3804                 i915_gem_object_unpin(obj);
3805
3806         if (obj_priv->phys_obj)
3807                 i915_gem_detach_phys_object(dev, obj);
3808
3809         i915_gem_object_unbind(obj);
3810
3811         i915_gem_free_mmap_offset(obj);
3812
3813         drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
3814         kfree(obj_priv->bit_17);
3815         drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
3816 }
3817
3818 /** Unbinds all objects that are on the given buffer list. */
3819 static int
3820 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3821 {
3822         struct drm_gem_object *obj;
3823         struct drm_i915_gem_object *obj_priv;
3824         int ret;
3825
3826         while (!list_empty(head)) {
3827                 obj_priv = list_first_entry(head,
3828                                             struct drm_i915_gem_object,
3829                                             list);
3830                 obj = obj_priv->obj;
3831
3832                 if (obj_priv->pin_count != 0) {
3833                         DRM_ERROR("Pinned object in unbind list\n");
3834                         mutex_unlock(&dev->struct_mutex);
3835                         return -EINVAL;
3836                 }
3837
3838                 ret = i915_gem_object_unbind(obj);
3839                 if (ret != 0) {
3840                         DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3841                                   ret);
3842                         mutex_unlock(&dev->struct_mutex);
3843                         return ret;
3844                 }
3845         }
3846
3847
3848         return 0;
3849 }
3850
3851 int
3852 i915_gem_idle(struct drm_device *dev)
3853 {
3854         drm_i915_private_t *dev_priv = dev->dev_private;
3855         uint32_t seqno, cur_seqno, last_seqno;
3856         int stuck, ret;
3857
3858         mutex_lock(&dev->struct_mutex);
3859
3860         if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3861                 mutex_unlock(&dev->struct_mutex);
3862                 return 0;
3863         }
3864
3865         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
3866          * We need to replace this with a semaphore, or something.
3867          */
3868         dev_priv->mm.suspended = 1;
3869
3870         /* Cancel the retire work handler, wait for it to finish if running
3871          */
3872         mutex_unlock(&dev->struct_mutex);
3873         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3874         mutex_lock(&dev->struct_mutex);
3875
3876         i915_kernel_lost_context(dev);
3877
3878         /* Flush the GPU along with all non-CPU write domains
3879          */
3880         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3881         seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3882
3883         if (seqno == 0) {
3884                 mutex_unlock(&dev->struct_mutex);
3885                 return -ENOMEM;
3886         }
3887
3888         dev_priv->mm.waiting_gem_seqno = seqno;
3889         last_seqno = 0;
3890         stuck = 0;
3891         for (;;) {
3892                 cur_seqno = i915_get_gem_seqno(dev);
3893                 if (i915_seqno_passed(cur_seqno, seqno))
3894                         break;
3895                 if (last_seqno == cur_seqno) {
3896                         if (stuck++ > 100) {
3897                                 DRM_ERROR("hardware wedged\n");
3898                                 dev_priv->mm.wedged = 1;
3899                                 DRM_WAKEUP(&dev_priv->irq_queue);
3900                                 break;
3901                         }
3902                 }
3903                 msleep(10);
3904                 last_seqno = cur_seqno;
3905         }
3906         dev_priv->mm.waiting_gem_seqno = 0;
3907
3908         i915_gem_retire_requests(dev);
3909
3910         spin_lock(&dev_priv->mm.active_list_lock);
3911         if (!dev_priv->mm.wedged) {
3912                 /* Active and flushing should now be empty as we've
3913                  * waited for a sequence higher than any pending execbuffer
3914                  */
3915                 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3916                 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3917                 /* Request should now be empty as we've also waited
3918                  * for the last request in the list
3919                  */
3920                 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3921         }
3922
3923         /* Empty the active and flushing lists to inactive.  If there's
3924          * anything left at this point, it means that we're wedged and
3925          * nothing good's going to happen by leaving them there.  So strip
3926          * the GPU domains and just stuff them onto inactive.
3927          */
3928         while (!list_empty(&dev_priv->mm.active_list)) {
3929                 struct drm_i915_gem_object *obj_priv;
3930
3931                 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3932                                             struct drm_i915_gem_object,
3933                                             list);
3934                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3935                 i915_gem_object_move_to_inactive(obj_priv->obj);
3936         }
3937         spin_unlock(&dev_priv->mm.active_list_lock);
3938
3939         while (!list_empty(&dev_priv->mm.flushing_list)) {
3940                 struct drm_i915_gem_object *obj_priv;
3941
3942                 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3943                                             struct drm_i915_gem_object,
3944                                             list);
3945                 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3946                 i915_gem_object_move_to_inactive(obj_priv->obj);
3947         }
3948
3949
3950         /* Move all inactive buffers out of the GTT. */
3951         ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3952         WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3953         if (ret) {
3954                 mutex_unlock(&dev->struct_mutex);
3955                 return ret;
3956         }
3957
3958         i915_gem_cleanup_ringbuffer(dev);
3959         mutex_unlock(&dev->struct_mutex);
3960
3961         return 0;
3962 }
3963
3964 static int
3965 i915_gem_init_hws(struct drm_device *dev)
3966 {
3967         drm_i915_private_t *dev_priv = dev->dev_private;
3968         struct drm_gem_object *obj;
3969         struct drm_i915_gem_object *obj_priv;
3970         int ret;
3971
3972         /* If we need a physical address for the status page, it's already
3973          * initialized at driver load time.
3974          */
3975         if (!I915_NEED_GFX_HWS(dev))
3976                 return 0;
3977
3978         obj = drm_gem_object_alloc(dev, 4096);
3979         if (obj == NULL) {
3980                 DRM_ERROR("Failed to allocate status page\n");
3981                 return -ENOMEM;
3982         }
3983         obj_priv = obj->driver_private;
3984         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
3985
3986         ret = i915_gem_object_pin(obj, 4096);
3987         if (ret != 0) {
3988                 drm_gem_object_unreference(obj);
3989                 return ret;
3990         }
3991
3992         dev_priv->status_gfx_addr = obj_priv->gtt_offset;
3993
3994         dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
3995         if (dev_priv->hw_status_page == NULL) {
3996                 DRM_ERROR("Failed to map status page.\n");
3997                 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
3998                 i915_gem_object_unpin(obj);
3999                 drm_gem_object_unreference(obj);
4000                 return -EINVAL;
4001         }
4002         dev_priv->hws_obj = obj;
4003         memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4004         I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4005         I915_READ(HWS_PGA); /* posting read */
4006         DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4007
4008         return 0;
4009 }
4010
4011 static void
4012 i915_gem_cleanup_hws(struct drm_device *dev)
4013 {
4014         drm_i915_private_t *dev_priv = dev->dev_private;
4015         struct drm_gem_object *obj;
4016         struct drm_i915_gem_object *obj_priv;
4017
4018         if (dev_priv->hws_obj == NULL)
4019                 return;
4020
4021         obj = dev_priv->hws_obj;
4022         obj_priv = obj->driver_private;
4023
4024         kunmap(obj_priv->pages[0]);
4025         i915_gem_object_unpin(obj);
4026         drm_gem_object_unreference(obj);
4027         dev_priv->hws_obj = NULL;
4028
4029         memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4030         dev_priv->hw_status_page = NULL;
4031
4032         /* Write high address into HWS_PGA when disabling. */
4033         I915_WRITE(HWS_PGA, 0x1ffff000);
4034 }
4035
4036 int
4037 i915_gem_init_ringbuffer(struct drm_device *dev)
4038 {
4039         drm_i915_private_t *dev_priv = dev->dev_private;
4040         struct drm_gem_object *obj;
4041         struct drm_i915_gem_object *obj_priv;
4042         drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4043         int ret;
4044         u32 head;
4045
4046         ret = i915_gem_init_hws(dev);
4047         if (ret != 0)
4048                 return ret;
4049
4050         obj = drm_gem_object_alloc(dev, 128 * 1024);
4051         if (obj == NULL) {
4052                 DRM_ERROR("Failed to allocate ringbuffer\n");
4053                 i915_gem_cleanup_hws(dev);
4054                 return -ENOMEM;
4055         }
4056         obj_priv = obj->driver_private;
4057
4058         ret = i915_gem_object_pin(obj, 4096);
4059         if (ret != 0) {
4060                 drm_gem_object_unreference(obj);
4061                 i915_gem_cleanup_hws(dev);
4062                 return ret;
4063         }
4064
4065         /* Set up the kernel mapping for the ring. */
4066         ring->Size = obj->size;
4067         ring->tail_mask = obj->size - 1;
4068
4069         ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4070         ring->map.size = obj->size;
4071         ring->map.type = 0;
4072         ring->map.flags = 0;
4073         ring->map.mtrr = 0;
4074
4075         drm_core_ioremap_wc(&ring->map, dev);
4076         if (ring->map.handle == NULL) {
4077                 DRM_ERROR("Failed to map ringbuffer.\n");
4078                 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4079                 i915_gem_object_unpin(obj);
4080                 drm_gem_object_unreference(obj);
4081                 i915_gem_cleanup_hws(dev);
4082                 return -EINVAL;
4083         }
4084         ring->ring_obj = obj;
4085         ring->virtual_start = ring->map.handle;
4086
4087         /* Stop the ring if it's running. */
4088         I915_WRITE(PRB0_CTL, 0);
4089         I915_WRITE(PRB0_TAIL, 0);
4090         I915_WRITE(PRB0_HEAD, 0);
4091
4092         /* Initialize the ring. */
4093         I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4094         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4095
4096         /* G45 ring initialization fails to reset head to zero */
4097         if (head != 0) {
4098                 DRM_ERROR("Ring head not reset to zero "
4099                           "ctl %08x head %08x tail %08x start %08x\n",
4100                           I915_READ(PRB0_CTL),
4101                           I915_READ(PRB0_HEAD),
4102                           I915_READ(PRB0_TAIL),
4103                           I915_READ(PRB0_START));
4104                 I915_WRITE(PRB0_HEAD, 0);
4105
4106                 DRM_ERROR("Ring head forced to zero "
4107                           "ctl %08x head %08x tail %08x start %08x\n",
4108                           I915_READ(PRB0_CTL),
4109                           I915_READ(PRB0_HEAD),
4110                           I915_READ(PRB0_TAIL),
4111                           I915_READ(PRB0_START));
4112         }
4113
4114         I915_WRITE(PRB0_CTL,
4115                    ((obj->size - 4096) & RING_NR_PAGES) |
4116                    RING_NO_REPORT |
4117                    RING_VALID);
4118
4119         head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4120
4121         /* If the head is still not zero, the ring is dead */
4122         if (head != 0) {
4123                 DRM_ERROR("Ring initialization failed "
4124                           "ctl %08x head %08x tail %08x start %08x\n",
4125                           I915_READ(PRB0_CTL),
4126                           I915_READ(PRB0_HEAD),
4127                           I915_READ(PRB0_TAIL),
4128                           I915_READ(PRB0_START));
4129                 return -EIO;
4130         }
4131
4132         /* Update our cache of the ring state */
4133         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4134                 i915_kernel_lost_context(dev);
4135         else {
4136                 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4137                 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4138                 ring->space = ring->head - (ring->tail + 8);
4139                 if (ring->space < 0)
4140                         ring->space += ring->Size;
4141         }
4142
4143         return 0;
4144 }
4145
4146 void
4147 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4148 {
4149         drm_i915_private_t *dev_priv = dev->dev_private;
4150
4151         if (dev_priv->ring.ring_obj == NULL)
4152                 return;
4153
4154         drm_core_ioremapfree(&dev_priv->ring.map, dev);
4155
4156         i915_gem_object_unpin(dev_priv->ring.ring_obj);
4157         drm_gem_object_unreference(dev_priv->ring.ring_obj);
4158         dev_priv->ring.ring_obj = NULL;
4159         memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4160
4161         i915_gem_cleanup_hws(dev);
4162 }
4163
4164 int
4165 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4166                        struct drm_file *file_priv)
4167 {
4168         drm_i915_private_t *dev_priv = dev->dev_private;
4169         int ret;
4170
4171         if (drm_core_check_feature(dev, DRIVER_MODESET))
4172                 return 0;
4173
4174         if (dev_priv->mm.wedged) {
4175                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4176                 dev_priv->mm.wedged = 0;
4177         }
4178
4179         mutex_lock(&dev->struct_mutex);
4180         dev_priv->mm.suspended = 0;
4181
4182         ret = i915_gem_init_ringbuffer(dev);
4183         if (ret != 0) {
4184                 mutex_unlock(&dev->struct_mutex);
4185                 return ret;
4186         }
4187
4188         spin_lock(&dev_priv->mm.active_list_lock);
4189         BUG_ON(!list_empty(&dev_priv->mm.active_list));
4190         spin_unlock(&dev_priv->mm.active_list_lock);
4191
4192         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4193         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4194         BUG_ON(!list_empty(&dev_priv->mm.request_list));
4195         mutex_unlock(&dev->struct_mutex);
4196
4197         drm_irq_install(dev);
4198
4199         return 0;
4200 }
4201
4202 int
4203 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4204                        struct drm_file *file_priv)
4205 {
4206         int ret;
4207
4208         if (drm_core_check_feature(dev, DRIVER_MODESET))
4209                 return 0;
4210
4211         ret = i915_gem_idle(dev);
4212         drm_irq_uninstall(dev);
4213
4214         return ret;
4215 }
4216
4217 void
4218 i915_gem_lastclose(struct drm_device *dev)
4219 {
4220         int ret;
4221
4222         if (drm_core_check_feature(dev, DRIVER_MODESET))
4223                 return;
4224
4225         ret = i915_gem_idle(dev);
4226         if (ret)
4227                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4228 }
4229
4230 void
4231 i915_gem_load(struct drm_device *dev)
4232 {
4233         drm_i915_private_t *dev_priv = dev->dev_private;
4234
4235         spin_lock_init(&dev_priv->mm.active_list_lock);
4236         INIT_LIST_HEAD(&dev_priv->mm.active_list);
4237         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4238         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4239         INIT_LIST_HEAD(&dev_priv->mm.request_list);
4240         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4241                           i915_gem_retire_work_handler);
4242         dev_priv->mm.next_gem_seqno = 1;
4243
4244         /* Old X drivers will take 0-2 for front, back, depth buffers */
4245         dev_priv->fence_reg_start = 3;
4246
4247         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4248                 dev_priv->num_fence_regs = 16;
4249         else
4250                 dev_priv->num_fence_regs = 8;
4251
4252         i915_gem_detect_bit_6_swizzle(dev);
4253 }
4254
4255 /*
4256  * Create a physically contiguous memory object for this object
4257  * e.g. for cursor + overlay regs
4258  */
4259 int i915_gem_init_phys_object(struct drm_device *dev,
4260                               int id, int size)
4261 {
4262         drm_i915_private_t *dev_priv = dev->dev_private;
4263         struct drm_i915_gem_phys_object *phys_obj;
4264         int ret;
4265
4266         if (dev_priv->mm.phys_objs[id - 1] || !size)
4267                 return 0;
4268
4269         phys_obj = drm_calloc(1, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4270         if (!phys_obj)
4271                 return -ENOMEM;
4272
4273         phys_obj->id = id;
4274
4275         phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4276         if (!phys_obj->handle) {
4277                 ret = -ENOMEM;
4278                 goto kfree_obj;
4279         }
4280 #ifdef CONFIG_X86
4281         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4282 #endif
4283
4284         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4285
4286         return 0;
4287 kfree_obj:
4288         drm_free(phys_obj, sizeof(struct drm_i915_gem_phys_object), DRM_MEM_DRIVER);
4289         return ret;
4290 }
4291
4292 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4293 {
4294         drm_i915_private_t *dev_priv = dev->dev_private;
4295         struct drm_i915_gem_phys_object *phys_obj;
4296
4297         if (!dev_priv->mm.phys_objs[id - 1])
4298                 return;
4299
4300         phys_obj = dev_priv->mm.phys_objs[id - 1];
4301         if (phys_obj->cur_obj) {
4302                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4303         }
4304
4305 #ifdef CONFIG_X86
4306         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4307 #endif
4308         drm_pci_free(dev, phys_obj->handle);
4309         kfree(phys_obj);
4310         dev_priv->mm.phys_objs[id - 1] = NULL;
4311 }
4312
4313 void i915_gem_free_all_phys_object(struct drm_device *dev)
4314 {
4315         int i;
4316
4317         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4318                 i915_gem_free_phys_object(dev, i);
4319 }
4320
4321 void i915_gem_detach_phys_object(struct drm_device *dev,
4322                                  struct drm_gem_object *obj)
4323 {
4324         struct drm_i915_gem_object *obj_priv;
4325         int i;
4326         int ret;
4327         int page_count;
4328
4329         obj_priv = obj->driver_private;
4330         if (!obj_priv->phys_obj)
4331                 return;
4332
4333         ret = i915_gem_object_get_pages(obj);
4334         if (ret)
4335                 goto out;
4336
4337         page_count = obj->size / PAGE_SIZE;
4338
4339         for (i = 0; i < page_count; i++) {
4340                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4341                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4342
4343                 memcpy(dst, src, PAGE_SIZE);
4344                 kunmap_atomic(dst, KM_USER0);
4345         }
4346         drm_clflush_pages(obj_priv->pages, page_count);
4347         drm_agp_chipset_flush(dev);
4348
4349         i915_gem_object_put_pages(obj);
4350 out:
4351         obj_priv->phys_obj->cur_obj = NULL;
4352         obj_priv->phys_obj = NULL;
4353 }
4354
4355 int
4356 i915_gem_attach_phys_object(struct drm_device *dev,
4357                             struct drm_gem_object *obj, int id)
4358 {
4359         drm_i915_private_t *dev_priv = dev->dev_private;
4360         struct drm_i915_gem_object *obj_priv;
4361         int ret = 0;
4362         int page_count;
4363         int i;
4364
4365         if (id > I915_MAX_PHYS_OBJECT)
4366                 return -EINVAL;
4367
4368         obj_priv = obj->driver_private;
4369
4370         if (obj_priv->phys_obj) {
4371                 if (obj_priv->phys_obj->id == id)
4372                         return 0;
4373                 i915_gem_detach_phys_object(dev, obj);
4374         }
4375
4376
4377         /* create a new object */
4378         if (!dev_priv->mm.phys_objs[id - 1]) {
4379                 ret = i915_gem_init_phys_object(dev, id,
4380                                                 obj->size);
4381                 if (ret) {
4382                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4383                         goto out;
4384                 }
4385         }
4386
4387         /* bind to the object */
4388         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4389         obj_priv->phys_obj->cur_obj = obj;
4390
4391         ret = i915_gem_object_get_pages(obj);
4392         if (ret) {
4393                 DRM_ERROR("failed to get page list\n");
4394                 goto out;
4395         }
4396
4397         page_count = obj->size / PAGE_SIZE;
4398
4399         for (i = 0; i < page_count; i++) {
4400                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4401                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4402
4403                 memcpy(dst, src, PAGE_SIZE);
4404                 kunmap_atomic(src, KM_USER0);
4405         }
4406
4407         i915_gem_object_put_pages(obj);
4408
4409         return 0;
4410 out:
4411         return ret;
4412 }
4413
4414 static int
4415 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4416                      struct drm_i915_gem_pwrite *args,
4417                      struct drm_file *file_priv)
4418 {
4419         struct drm_i915_gem_object *obj_priv = obj->driver_private;
4420         void *obj_addr;
4421         int ret;
4422         char __user *user_data;
4423
4424         user_data = (char __user *) (uintptr_t) args->data_ptr;
4425         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4426
4427         DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4428         ret = copy_from_user(obj_addr, user_data, args->size);
4429         if (ret)
4430                 return -EFAULT;
4431
4432         drm_agp_chipset_flush(dev);
4433         return 0;
4434 }
4435
4436 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4437 {
4438         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4439
4440         /* Clean up our request list when the client is going away, so that
4441          * later retire_requests won't dereference our soon-to-be-gone
4442          * file_priv.
4443          */
4444         mutex_lock(&dev->struct_mutex);
4445         while (!list_empty(&i915_file_priv->mm.request_list))
4446                 list_del_init(i915_file_priv->mm.request_list.next);
4447         mutex_unlock(&dev->struct_mutex);
4448 }