75dc6988cffd5d174ae8eb5445b5ce8744e0f4b0
[safe/jmp/linux-2.6] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/gfp.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kernel.h>
32 #include <linux/list.h>
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/moduleparam.h>
36 #include <linux/pci.h>
37 #include <linux/pci_ids.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE          0
53 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
56 #define DESCRIPTOR_STATUS               (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
58 #define DESCRIPTOR_PING                 (1 << 7)
59 #define DESCRIPTOR_YY                   (1 << 6)
60 #define DESCRIPTOR_NO_IRQ               (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
64 #define DESCRIPTOR_WAIT                 (3 << 0)
65
66 struct descriptor {
67         __le16 req_count;
68         __le16 control;
69         __le32 data_address;
70         __le32 branch_address;
71         __le16 res_count;
72         __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs)       (regs)
76 #define CONTROL_CLEAR(regs)     ((regs) + 4)
77 #define COMMAND_PTR(regs)       ((regs) + 12)
78 #define CONTEXT_MATCH(regs)     ((regs) + 16)
79
80 struct ar_buffer {
81         struct descriptor descriptor;
82         struct ar_buffer *next;
83         __le32 data[0];
84 };
85
86 struct ar_context {
87         struct fw_ohci *ohci;
88         struct ar_buffer *current_buffer;
89         struct ar_buffer *last_buffer;
90         void *pointer;
91         u32 regs;
92         struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98                                      struct descriptor *d,
99                                      struct descriptor *last);
100
101 /*
102  * A buffer that contains a block of DMA-able coherent memory used for
103  * storing a portion of a DMA descriptor program.
104  */
105 struct descriptor_buffer {
106         struct list_head list;
107         dma_addr_t buffer_bus;
108         size_t buffer_size;
109         size_t used;
110         struct descriptor buffer[0];
111 };
112
113 struct context {
114         struct fw_ohci *ohci;
115         u32 regs;
116         int total_allocation;
117
118         /*
119          * List of page-sized buffers for storing DMA descriptors.
120          * Head of list contains buffers in use and tail of list contains
121          * free buffers.
122          */
123         struct list_head buffer_list;
124
125         /*
126          * Pointer to a buffer inside buffer_list that contains the tail
127          * end of the current DMA program.
128          */
129         struct descriptor_buffer *buffer_tail;
130
131         /*
132          * The descriptor containing the branch address of the first
133          * descriptor that has not yet been filled by the device.
134          */
135         struct descriptor *last;
136
137         /*
138          * The last descriptor in the DMA program.  It contains the branch
139          * address that must be updated upon appending a new descriptor.
140          */
141         struct descriptor *prev;
142
143         descriptor_callback_t callback;
144
145         struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v)          ((v) <<  0)
149 #define IT_HEADER_TCODE(v)       ((v) <<  4)
150 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
151 #define IT_HEADER_TAG(v)         ((v) << 14)
152 #define IT_HEADER_SPEED(v)       ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156         struct fw_iso_context base;
157         struct context context;
158         int excess_bytes;
159         void *header;
160         size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166         struct fw_card card;
167
168         __iomem char *registers;
169         int node_id;
170         int generation;
171         int request_generation; /* for timestamping incoming requests */
172         unsigned quirks;
173
174         /*
175          * Spinlock for accessing fw_ohci data.  Never call out of
176          * this driver with this lock held.
177          */
178         spinlock_t lock;
179
180         struct ar_context ar_request_ctx;
181         struct ar_context ar_response_ctx;
182         struct context at_request_ctx;
183         struct context at_response_ctx;
184
185         u32 it_context_mask;
186         struct iso_context *it_context_list;
187         u64 ir_context_channels;
188         u32 ir_context_mask;
189         struct iso_context *ir_context_list;
190
191         __be32    *config_rom;
192         dma_addr_t config_rom_bus;
193         __be32    *next_config_rom;
194         dma_addr_t next_config_rom_bus;
195         __be32     next_header;
196
197         __le32    *self_id_cpu;
198         dma_addr_t self_id_bus;
199         struct tasklet_struct bus_reset_tasklet;
200
201         u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206         return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
210 #define IR_CONTEXT_BUFFER_FILL          0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
215
216 #define CONTEXT_RUN     0x8000
217 #define CONTEXT_WAKE    0x1000
218 #define CONTEXT_DEAD    0x0800
219 #define CONTEXT_ACTIVE  0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
224
225 #define OHCI1394_REGISTER_SIZE          0x800
226 #define OHCI_LOOP_COUNT                 500
227 #define OHCI1394_PCI_HCI_Control        0x40
228 #define SELF_ID_BUF_SIZE                0x800
229 #define OHCI_TCODE_PHY_PACKET           0x0e
230 #define OHCI_VERSION_1_1                0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define QUIRK_CYCLE_TIMER               1
235 #define QUIRK_RESET_PACKET              2
236 #define QUIRK_BE_HEADERS                4
237
238 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
239 static const struct {
240         unsigned short vendor, device, flags;
241 } ohci_quirks[] = {
242         {PCI_VENDOR_ID_TI,      PCI_ANY_ID,     QUIRK_RESET_PACKET},
243         {PCI_VENDOR_ID_AL,      PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
244         {PCI_VENDOR_ID_NEC,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
245         {PCI_VENDOR_ID_VIA,     PCI_ANY_ID,     QUIRK_CYCLE_TIMER},
246         {PCI_VENDOR_ID_APPLE,   PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
247 };
248
249 /* This overrides anything that was found in ohci_quirks[]. */
250 static int param_quirks;
251 module_param_named(quirks, param_quirks, int, 0644);
252 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
253         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
254         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
255         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
256         ")");
257
258 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
259
260 #define OHCI_PARAM_DEBUG_AT_AR          1
261 #define OHCI_PARAM_DEBUG_SELFIDS        2
262 #define OHCI_PARAM_DEBUG_IRQS           4
263 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
264
265 static int param_debug;
266 module_param_named(debug, param_debug, int, 0644);
267 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
268         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
269         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
270         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
271         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
272         ", or a combination, or all = -1)");
273
274 static void log_irqs(u32 evt)
275 {
276         if (likely(!(param_debug &
277                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
278                 return;
279
280         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
281             !(evt & OHCI1394_busReset))
282                 return;
283
284         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
285             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
286             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
287             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
288             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
289             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
290             evt & OHCI1394_isochRx              ? " IR"                 : "",
291             evt & OHCI1394_isochTx              ? " IT"                 : "",
292             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
293             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
294             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
295             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
296             evt & OHCI1394_busReset             ? " busReset"           : "",
297             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
298                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
299                     OHCI1394_respTxComplete | OHCI1394_isochRx |
300                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
301                     OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
302                     OHCI1394_regAccessFail | OHCI1394_busReset)
303                                                 ? " ?"                  : "");
304 }
305
306 static const char *speed[] = {
307         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
308 };
309 static const char *power[] = {
310         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
311         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
312 };
313 static const char port[] = { '.', '-', 'p', 'c', };
314
315 static char _p(u32 *s, int shift)
316 {
317         return port[*s >> shift & 3];
318 }
319
320 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
321 {
322         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
323                 return;
324
325         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
326                   self_id_count, generation, node_id);
327
328         for (; self_id_count--; ++s)
329                 if ((*s & 1 << 23) == 0)
330                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
331                             "%s gc=%d %s %s%s%s\n",
332                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
333                             speed[*s >> 14 & 3], *s >> 16 & 63,
334                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
335                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
336                 else
337                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
338                             *s, *s >> 24 & 63,
339                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
340                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
341 }
342
343 static const char *evts[] = {
344         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
345         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
346         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
347         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
348         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
349         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
350         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
351         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
352         [0x10] = "-reserved-",          [0x11] = "ack_complete",
353         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
354         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
355         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
356         [0x18] = "-reserved-",          [0x19] = "-reserved-",
357         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
358         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
359         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
360         [0x20] = "pending/cancelled",
361 };
362 static const char *tcodes[] = {
363         [0x0] = "QW req",               [0x1] = "BW req",
364         [0x2] = "W resp",               [0x3] = "-reserved-",
365         [0x4] = "QR req",               [0x5] = "BR req",
366         [0x6] = "QR resp",              [0x7] = "BR resp",
367         [0x8] = "cycle start",          [0x9] = "Lk req",
368         [0xa] = "async stream packet",  [0xb] = "Lk resp",
369         [0xc] = "-reserved-",           [0xd] = "-reserved-",
370         [0xe] = "link internal",        [0xf] = "-reserved-",
371 };
372 static const char *phys[] = {
373         [0x0] = "phy config packet",    [0x1] = "link-on packet",
374         [0x2] = "self-id packet",       [0x3] = "-reserved-",
375 };
376
377 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
378 {
379         int tcode = header[0] >> 4 & 0xf;
380         char specific[12];
381
382         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
383                 return;
384
385         if (unlikely(evt >= ARRAY_SIZE(evts)))
386                         evt = 0x1f;
387
388         if (evt == OHCI1394_evt_bus_reset) {
389                 fw_notify("A%c evt_bus_reset, generation %d\n",
390                     dir, (header[2] >> 16) & 0xff);
391                 return;
392         }
393
394         if (header[0] == ~header[1]) {
395                 fw_notify("A%c %s, %s, %08x\n",
396                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
397                 return;
398         }
399
400         switch (tcode) {
401         case 0x0: case 0x6: case 0x8:
402                 snprintf(specific, sizeof(specific), " = %08x",
403                          be32_to_cpu((__force __be32)header[3]));
404                 break;
405         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
406                 snprintf(specific, sizeof(specific), " %x,%x",
407                          header[3] >> 16, header[3] & 0xffff);
408                 break;
409         default:
410                 specific[0] = '\0';
411         }
412
413         switch (tcode) {
414         case 0xe: case 0xa:
415                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
416                 break;
417         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
418                 fw_notify("A%c spd %x tl %02x, "
419                     "%04x -> %04x, %s, "
420                     "%s, %04x%08x%s\n",
421                     dir, speed, header[0] >> 10 & 0x3f,
422                     header[1] >> 16, header[0] >> 16, evts[evt],
423                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
424                 break;
425         default:
426                 fw_notify("A%c spd %x tl %02x, "
427                     "%04x -> %04x, %s, "
428                     "%s%s\n",
429                     dir, speed, header[0] >> 10 & 0x3f,
430                     header[1] >> 16, header[0] >> 16, evts[evt],
431                     tcodes[tcode], specific);
432         }
433 }
434
435 #else
436
437 #define log_irqs(evt)
438 #define log_selfids(node_id, generation, self_id_count, sid)
439 #define log_ar_at_event(dir, speed, header, evt)
440
441 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
442
443 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
444 {
445         writel(data, ohci->registers + offset);
446 }
447
448 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
449 {
450         return readl(ohci->registers + offset);
451 }
452
453 static inline void flush_writes(const struct fw_ohci *ohci)
454 {
455         /* Do a dummy read to flush writes. */
456         reg_read(ohci, OHCI1394_Version);
457 }
458
459 static int ohci_update_phy_reg(struct fw_card *card, int addr,
460                                int clear_bits, int set_bits)
461 {
462         struct fw_ohci *ohci = fw_ohci(card);
463         u32 val, old;
464
465         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
466         flush_writes(ohci);
467         msleep(2);
468         val = reg_read(ohci, OHCI1394_PhyControl);
469         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
470                 fw_error("failed to set phy reg bits.\n");
471                 return -EBUSY;
472         }
473
474         old = OHCI1394_PhyControl_ReadData(val);
475         old = (old & ~clear_bits) | set_bits;
476         reg_write(ohci, OHCI1394_PhyControl,
477                   OHCI1394_PhyControl_Write(addr, old));
478
479         return 0;
480 }
481
482 static int ar_context_add_page(struct ar_context *ctx)
483 {
484         struct device *dev = ctx->ohci->card.device;
485         struct ar_buffer *ab;
486         dma_addr_t uninitialized_var(ab_bus);
487         size_t offset;
488
489         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
490         if (ab == NULL)
491                 return -ENOMEM;
492
493         ab->next = NULL;
494         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
495         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
496                                                     DESCRIPTOR_STATUS |
497                                                     DESCRIPTOR_BRANCH_ALWAYS);
498         offset = offsetof(struct ar_buffer, data);
499         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
500         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
501         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
502         ab->descriptor.branch_address = 0;
503
504         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
505         ctx->last_buffer->next = ab;
506         ctx->last_buffer = ab;
507
508         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
509         flush_writes(ctx->ohci);
510
511         return 0;
512 }
513
514 static void ar_context_release(struct ar_context *ctx)
515 {
516         struct ar_buffer *ab, *ab_next;
517         size_t offset;
518         dma_addr_t ab_bus;
519
520         for (ab = ctx->current_buffer; ab; ab = ab_next) {
521                 ab_next = ab->next;
522                 offset = offsetof(struct ar_buffer, data);
523                 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
524                 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
525                                   ab, ab_bus);
526         }
527 }
528
529 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
530 #define cond_le32_to_cpu(v) \
531         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
532 #else
533 #define cond_le32_to_cpu(v) le32_to_cpu(v)
534 #endif
535
536 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
537 {
538         struct fw_ohci *ohci = ctx->ohci;
539         struct fw_packet p;
540         u32 status, length, tcode;
541         int evt;
542
543         p.header[0] = cond_le32_to_cpu(buffer[0]);
544         p.header[1] = cond_le32_to_cpu(buffer[1]);
545         p.header[2] = cond_le32_to_cpu(buffer[2]);
546
547         tcode = (p.header[0] >> 4) & 0x0f;
548         switch (tcode) {
549         case TCODE_WRITE_QUADLET_REQUEST:
550         case TCODE_READ_QUADLET_RESPONSE:
551                 p.header[3] = (__force __u32) buffer[3];
552                 p.header_length = 16;
553                 p.payload_length = 0;
554                 break;
555
556         case TCODE_READ_BLOCK_REQUEST :
557                 p.header[3] = cond_le32_to_cpu(buffer[3]);
558                 p.header_length = 16;
559                 p.payload_length = 0;
560                 break;
561
562         case TCODE_WRITE_BLOCK_REQUEST:
563         case TCODE_READ_BLOCK_RESPONSE:
564         case TCODE_LOCK_REQUEST:
565         case TCODE_LOCK_RESPONSE:
566                 p.header[3] = cond_le32_to_cpu(buffer[3]);
567                 p.header_length = 16;
568                 p.payload_length = p.header[3] >> 16;
569                 break;
570
571         case TCODE_WRITE_RESPONSE:
572         case TCODE_READ_QUADLET_REQUEST:
573         case OHCI_TCODE_PHY_PACKET:
574                 p.header_length = 12;
575                 p.payload_length = 0;
576                 break;
577
578         default:
579                 /* FIXME: Stop context, discard everything, and restart? */
580                 p.header_length = 0;
581                 p.payload_length = 0;
582         }
583
584         p.payload = (void *) buffer + p.header_length;
585
586         /* FIXME: What to do about evt_* errors? */
587         length = (p.header_length + p.payload_length + 3) / 4;
588         status = cond_le32_to_cpu(buffer[length]);
589         evt    = (status >> 16) & 0x1f;
590
591         p.ack        = evt - 16;
592         p.speed      = (status >> 21) & 0x7;
593         p.timestamp  = status & 0xffff;
594         p.generation = ohci->request_generation;
595
596         log_ar_at_event('R', p.speed, p.header, evt);
597
598         /*
599          * The OHCI bus reset handler synthesizes a phy packet with
600          * the new generation number when a bus reset happens (see
601          * section 8.4.2.3).  This helps us determine when a request
602          * was received and make sure we send the response in the same
603          * generation.  We only need this for requests; for responses
604          * we use the unique tlabel for finding the matching
605          * request.
606          *
607          * Alas some chips sometimes emit bus reset packets with a
608          * wrong generation.  We set the correct generation for these
609          * at a slightly incorrect time (in bus_reset_tasklet).
610          */
611         if (evt == OHCI1394_evt_bus_reset) {
612                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
613                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
614         } else if (ctx == &ohci->ar_request_ctx) {
615                 fw_core_handle_request(&ohci->card, &p);
616         } else {
617                 fw_core_handle_response(&ohci->card, &p);
618         }
619
620         return buffer + length + 1;
621 }
622
623 static void ar_context_tasklet(unsigned long data)
624 {
625         struct ar_context *ctx = (struct ar_context *)data;
626         struct fw_ohci *ohci = ctx->ohci;
627         struct ar_buffer *ab;
628         struct descriptor *d;
629         void *buffer, *end;
630
631         ab = ctx->current_buffer;
632         d = &ab->descriptor;
633
634         if (d->res_count == 0) {
635                 size_t size, rest, offset;
636                 dma_addr_t start_bus;
637                 void *start;
638
639                 /*
640                  * This descriptor is finished and we may have a
641                  * packet split across this and the next buffer. We
642                  * reuse the page for reassembling the split packet.
643                  */
644
645                 offset = offsetof(struct ar_buffer, data);
646                 start = buffer = ab;
647                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
648
649                 ab = ab->next;
650                 d = &ab->descriptor;
651                 size = buffer + PAGE_SIZE - ctx->pointer;
652                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
653                 memmove(buffer, ctx->pointer, size);
654                 memcpy(buffer + size, ab->data, rest);
655                 ctx->current_buffer = ab;
656                 ctx->pointer = (void *) ab->data + rest;
657                 end = buffer + size + rest;
658
659                 while (buffer < end)
660                         buffer = handle_ar_packet(ctx, buffer);
661
662                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
663                                   start, start_bus);
664                 ar_context_add_page(ctx);
665         } else {
666                 buffer = ctx->pointer;
667                 ctx->pointer = end =
668                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
669
670                 while (buffer < end)
671                         buffer = handle_ar_packet(ctx, buffer);
672         }
673 }
674
675 static int ar_context_init(struct ar_context *ctx,
676                            struct fw_ohci *ohci, u32 regs)
677 {
678         struct ar_buffer ab;
679
680         ctx->regs        = regs;
681         ctx->ohci        = ohci;
682         ctx->last_buffer = &ab;
683         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
684
685         ar_context_add_page(ctx);
686         ar_context_add_page(ctx);
687         ctx->current_buffer = ab.next;
688         ctx->pointer = ctx->current_buffer->data;
689
690         return 0;
691 }
692
693 static void ar_context_run(struct ar_context *ctx)
694 {
695         struct ar_buffer *ab = ctx->current_buffer;
696         dma_addr_t ab_bus;
697         size_t offset;
698
699         offset = offsetof(struct ar_buffer, data);
700         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
701
702         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
703         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
704         flush_writes(ctx->ohci);
705 }
706
707 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
708 {
709         int b, key;
710
711         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
712         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
713
714         /* figure out which descriptor the branch address goes in */
715         if (z == 2 && (b == 3 || key == 2))
716                 return d;
717         else
718                 return d + z - 1;
719 }
720
721 static void context_tasklet(unsigned long data)
722 {
723         struct context *ctx = (struct context *) data;
724         struct descriptor *d, *last;
725         u32 address;
726         int z;
727         struct descriptor_buffer *desc;
728
729         desc = list_entry(ctx->buffer_list.next,
730                         struct descriptor_buffer, list);
731         last = ctx->last;
732         while (last->branch_address != 0) {
733                 struct descriptor_buffer *old_desc = desc;
734                 address = le32_to_cpu(last->branch_address);
735                 z = address & 0xf;
736                 address &= ~0xf;
737
738                 /* If the branch address points to a buffer outside of the
739                  * current buffer, advance to the next buffer. */
740                 if (address < desc->buffer_bus ||
741                                 address >= desc->buffer_bus + desc->used)
742                         desc = list_entry(desc->list.next,
743                                         struct descriptor_buffer, list);
744                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
745                 last = find_branch_descriptor(d, z);
746
747                 if (!ctx->callback(ctx, d, last))
748                         break;
749
750                 if (old_desc != desc) {
751                         /* If we've advanced to the next buffer, move the
752                          * previous buffer to the free list. */
753                         unsigned long flags;
754                         old_desc->used = 0;
755                         spin_lock_irqsave(&ctx->ohci->lock, flags);
756                         list_move_tail(&old_desc->list, &ctx->buffer_list);
757                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
758                 }
759                 ctx->last = last;
760         }
761 }
762
763 /*
764  * Allocate a new buffer and add it to the list of free buffers for this
765  * context.  Must be called with ohci->lock held.
766  */
767 static int context_add_buffer(struct context *ctx)
768 {
769         struct descriptor_buffer *desc;
770         dma_addr_t uninitialized_var(bus_addr);
771         int offset;
772
773         /*
774          * 16MB of descriptors should be far more than enough for any DMA
775          * program.  This will catch run-away userspace or DoS attacks.
776          */
777         if (ctx->total_allocation >= 16*1024*1024)
778                 return -ENOMEM;
779
780         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
781                         &bus_addr, GFP_ATOMIC);
782         if (!desc)
783                 return -ENOMEM;
784
785         offset = (void *)&desc->buffer - (void *)desc;
786         desc->buffer_size = PAGE_SIZE - offset;
787         desc->buffer_bus = bus_addr + offset;
788         desc->used = 0;
789
790         list_add_tail(&desc->list, &ctx->buffer_list);
791         ctx->total_allocation += PAGE_SIZE;
792
793         return 0;
794 }
795
796 static int context_init(struct context *ctx, struct fw_ohci *ohci,
797                         u32 regs, descriptor_callback_t callback)
798 {
799         ctx->ohci = ohci;
800         ctx->regs = regs;
801         ctx->total_allocation = 0;
802
803         INIT_LIST_HEAD(&ctx->buffer_list);
804         if (context_add_buffer(ctx) < 0)
805                 return -ENOMEM;
806
807         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
808                         struct descriptor_buffer, list);
809
810         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
811         ctx->callback = callback;
812
813         /*
814          * We put a dummy descriptor in the buffer that has a NULL
815          * branch address and looks like it's been sent.  That way we
816          * have a descriptor to append DMA programs to.
817          */
818         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
819         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
820         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
821         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
822         ctx->last = ctx->buffer_tail->buffer;
823         ctx->prev = ctx->buffer_tail->buffer;
824
825         return 0;
826 }
827
828 static void context_release(struct context *ctx)
829 {
830         struct fw_card *card = &ctx->ohci->card;
831         struct descriptor_buffer *desc, *tmp;
832
833         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
834                 dma_free_coherent(card->device, PAGE_SIZE, desc,
835                         desc->buffer_bus -
836                         ((void *)&desc->buffer - (void *)desc));
837 }
838
839 /* Must be called with ohci->lock held */
840 static struct descriptor *context_get_descriptors(struct context *ctx,
841                                                   int z, dma_addr_t *d_bus)
842 {
843         struct descriptor *d = NULL;
844         struct descriptor_buffer *desc = ctx->buffer_tail;
845
846         if (z * sizeof(*d) > desc->buffer_size)
847                 return NULL;
848
849         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
850                 /* No room for the descriptor in this buffer, so advance to the
851                  * next one. */
852
853                 if (desc->list.next == &ctx->buffer_list) {
854                         /* If there is no free buffer next in the list,
855                          * allocate one. */
856                         if (context_add_buffer(ctx) < 0)
857                                 return NULL;
858                 }
859                 desc = list_entry(desc->list.next,
860                                 struct descriptor_buffer, list);
861                 ctx->buffer_tail = desc;
862         }
863
864         d = desc->buffer + desc->used / sizeof(*d);
865         memset(d, 0, z * sizeof(*d));
866         *d_bus = desc->buffer_bus + desc->used;
867
868         return d;
869 }
870
871 static void context_run(struct context *ctx, u32 extra)
872 {
873         struct fw_ohci *ohci = ctx->ohci;
874
875         reg_write(ohci, COMMAND_PTR(ctx->regs),
876                   le32_to_cpu(ctx->last->branch_address));
877         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
878         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
879         flush_writes(ohci);
880 }
881
882 static void context_append(struct context *ctx,
883                            struct descriptor *d, int z, int extra)
884 {
885         dma_addr_t d_bus;
886         struct descriptor_buffer *desc = ctx->buffer_tail;
887
888         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
889
890         desc->used += (z + extra) * sizeof(*d);
891         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
892         ctx->prev = find_branch_descriptor(d, z);
893
894         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
895         flush_writes(ctx->ohci);
896 }
897
898 static void context_stop(struct context *ctx)
899 {
900         u32 reg;
901         int i;
902
903         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
904         flush_writes(ctx->ohci);
905
906         for (i = 0; i < 10; i++) {
907                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
908                 if ((reg & CONTEXT_ACTIVE) == 0)
909                         return;
910
911                 mdelay(1);
912         }
913         fw_error("Error: DMA context still active (0x%08x)\n", reg);
914 }
915
916 struct driver_data {
917         struct fw_packet *packet;
918 };
919
920 /*
921  * This function apppends a packet to the DMA queue for transmission.
922  * Must always be called with the ochi->lock held to ensure proper
923  * generation handling and locking around packet queue manipulation.
924  */
925 static int at_context_queue_packet(struct context *ctx,
926                                    struct fw_packet *packet)
927 {
928         struct fw_ohci *ohci = ctx->ohci;
929         dma_addr_t d_bus, uninitialized_var(payload_bus);
930         struct driver_data *driver_data;
931         struct descriptor *d, *last;
932         __le32 *header;
933         int z, tcode;
934         u32 reg;
935
936         d = context_get_descriptors(ctx, 4, &d_bus);
937         if (d == NULL) {
938                 packet->ack = RCODE_SEND_ERROR;
939                 return -1;
940         }
941
942         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
943         d[0].res_count = cpu_to_le16(packet->timestamp);
944
945         /*
946          * The DMA format for asyncronous link packets is different
947          * from the IEEE1394 layout, so shift the fields around
948          * accordingly.  If header_length is 8, it's a PHY packet, to
949          * which we need to prepend an extra quadlet.
950          */
951
952         header = (__le32 *) &d[1];
953         switch (packet->header_length) {
954         case 16:
955         case 12:
956                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
957                                         (packet->speed << 16));
958                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
959                                         (packet->header[0] & 0xffff0000));
960                 header[2] = cpu_to_le32(packet->header[2]);
961
962                 tcode = (packet->header[0] >> 4) & 0x0f;
963                 if (TCODE_IS_BLOCK_PACKET(tcode))
964                         header[3] = cpu_to_le32(packet->header[3]);
965                 else
966                         header[3] = (__force __le32) packet->header[3];
967
968                 d[0].req_count = cpu_to_le16(packet->header_length);
969                 break;
970
971         case 8:
972                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
973                                         (packet->speed << 16));
974                 header[1] = cpu_to_le32(packet->header[0]);
975                 header[2] = cpu_to_le32(packet->header[1]);
976                 d[0].req_count = cpu_to_le16(12);
977                 break;
978
979         case 4:
980                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
981                                         (packet->speed << 16));
982                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
983                 d[0].req_count = cpu_to_le16(8);
984                 break;
985
986         default:
987                 /* BUG(); */
988                 packet->ack = RCODE_SEND_ERROR;
989                 return -1;
990         }
991
992         driver_data = (struct driver_data *) &d[3];
993         driver_data->packet = packet;
994         packet->driver_data = driver_data;
995
996         if (packet->payload_length > 0) {
997                 payload_bus =
998                         dma_map_single(ohci->card.device, packet->payload,
999                                        packet->payload_length, DMA_TO_DEVICE);
1000                 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1001                         packet->ack = RCODE_SEND_ERROR;
1002                         return -1;
1003                 }
1004                 packet->payload_bus     = payload_bus;
1005                 packet->payload_mapped  = true;
1006
1007                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1008                 d[2].data_address = cpu_to_le32(payload_bus);
1009                 last = &d[2];
1010                 z = 3;
1011         } else {
1012                 last = &d[0];
1013                 z = 2;
1014         }
1015
1016         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1017                                      DESCRIPTOR_IRQ_ALWAYS |
1018                                      DESCRIPTOR_BRANCH_ALWAYS);
1019
1020         /*
1021          * If the controller and packet generations don't match, we need to
1022          * bail out and try again.  If IntEvent.busReset is set, the AT context
1023          * is halted, so appending to the context and trying to run it is
1024          * futile.  Most controllers do the right thing and just flush the AT
1025          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1026          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1027          * up stalling out.  So we just bail out in software and try again
1028          * later, and everyone is happy.
1029          * FIXME: Document how the locking works.
1030          */
1031         if (ohci->generation != packet->generation ||
1032             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1033                 if (packet->payload_mapped)
1034                         dma_unmap_single(ohci->card.device, payload_bus,
1035                                          packet->payload_length, DMA_TO_DEVICE);
1036                 packet->ack = RCODE_GENERATION;
1037                 return -1;
1038         }
1039
1040         context_append(ctx, d, z, 4 - z);
1041
1042         /* If the context isn't already running, start it up. */
1043         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1044         if ((reg & CONTEXT_RUN) == 0)
1045                 context_run(ctx, 0);
1046
1047         return 0;
1048 }
1049
1050 static int handle_at_packet(struct context *context,
1051                             struct descriptor *d,
1052                             struct descriptor *last)
1053 {
1054         struct driver_data *driver_data;
1055         struct fw_packet *packet;
1056         struct fw_ohci *ohci = context->ohci;
1057         int evt;
1058
1059         if (last->transfer_status == 0)
1060                 /* This descriptor isn't done yet, stop iteration. */
1061                 return 0;
1062
1063         driver_data = (struct driver_data *) &d[3];
1064         packet = driver_data->packet;
1065         if (packet == NULL)
1066                 /* This packet was cancelled, just continue. */
1067                 return 1;
1068
1069         if (packet->payload_mapped)
1070                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1071                                  packet->payload_length, DMA_TO_DEVICE);
1072
1073         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1074         packet->timestamp = le16_to_cpu(last->res_count);
1075
1076         log_ar_at_event('T', packet->speed, packet->header, evt);
1077
1078         switch (evt) {
1079         case OHCI1394_evt_timeout:
1080                 /* Async response transmit timed out. */
1081                 packet->ack = RCODE_CANCELLED;
1082                 break;
1083
1084         case OHCI1394_evt_flushed:
1085                 /*
1086                  * The packet was flushed should give same error as
1087                  * when we try to use a stale generation count.
1088                  */
1089                 packet->ack = RCODE_GENERATION;
1090                 break;
1091
1092         case OHCI1394_evt_missing_ack:
1093                 /*
1094                  * Using a valid (current) generation count, but the
1095                  * node is not on the bus or not sending acks.
1096                  */
1097                 packet->ack = RCODE_NO_ACK;
1098                 break;
1099
1100         case ACK_COMPLETE + 0x10:
1101         case ACK_PENDING + 0x10:
1102         case ACK_BUSY_X + 0x10:
1103         case ACK_BUSY_A + 0x10:
1104         case ACK_BUSY_B + 0x10:
1105         case ACK_DATA_ERROR + 0x10:
1106         case ACK_TYPE_ERROR + 0x10:
1107                 packet->ack = evt - 0x10;
1108                 break;
1109
1110         default:
1111                 packet->ack = RCODE_SEND_ERROR;
1112                 break;
1113         }
1114
1115         packet->callback(packet, &ohci->card, packet->ack);
1116
1117         return 1;
1118 }
1119
1120 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1121 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1122 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1123 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1124 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1125
1126 static void handle_local_rom(struct fw_ohci *ohci,
1127                              struct fw_packet *packet, u32 csr)
1128 {
1129         struct fw_packet response;
1130         int tcode, length, i;
1131
1132         tcode = HEADER_GET_TCODE(packet->header[0]);
1133         if (TCODE_IS_BLOCK_PACKET(tcode))
1134                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1135         else
1136                 length = 4;
1137
1138         i = csr - CSR_CONFIG_ROM;
1139         if (i + length > CONFIG_ROM_SIZE) {
1140                 fw_fill_response(&response, packet->header,
1141                                  RCODE_ADDRESS_ERROR, NULL, 0);
1142         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1143                 fw_fill_response(&response, packet->header,
1144                                  RCODE_TYPE_ERROR, NULL, 0);
1145         } else {
1146                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1147                                  (void *) ohci->config_rom + i, length);
1148         }
1149
1150         fw_core_handle_response(&ohci->card, &response);
1151 }
1152
1153 static void handle_local_lock(struct fw_ohci *ohci,
1154                               struct fw_packet *packet, u32 csr)
1155 {
1156         struct fw_packet response;
1157         int tcode, length, ext_tcode, sel;
1158         __be32 *payload, lock_old;
1159         u32 lock_arg, lock_data;
1160
1161         tcode = HEADER_GET_TCODE(packet->header[0]);
1162         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1163         payload = packet->payload;
1164         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1165
1166         if (tcode == TCODE_LOCK_REQUEST &&
1167             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1168                 lock_arg = be32_to_cpu(payload[0]);
1169                 lock_data = be32_to_cpu(payload[1]);
1170         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1171                 lock_arg = 0;
1172                 lock_data = 0;
1173         } else {
1174                 fw_fill_response(&response, packet->header,
1175                                  RCODE_TYPE_ERROR, NULL, 0);
1176                 goto out;
1177         }
1178
1179         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1180         reg_write(ohci, OHCI1394_CSRData, lock_data);
1181         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1182         reg_write(ohci, OHCI1394_CSRControl, sel);
1183
1184         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1185                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1186         else
1187                 fw_notify("swap not done yet\n");
1188
1189         fw_fill_response(&response, packet->header,
1190                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1191  out:
1192         fw_core_handle_response(&ohci->card, &response);
1193 }
1194
1195 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1196 {
1197         u64 offset;
1198         u32 csr;
1199
1200         if (ctx == &ctx->ohci->at_request_ctx) {
1201                 packet->ack = ACK_PENDING;
1202                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1203         }
1204
1205         offset =
1206                 ((unsigned long long)
1207                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1208                 packet->header[2];
1209         csr = offset - CSR_REGISTER_BASE;
1210
1211         /* Handle config rom reads. */
1212         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1213                 handle_local_rom(ctx->ohci, packet, csr);
1214         else switch (csr) {
1215         case CSR_BUS_MANAGER_ID:
1216         case CSR_BANDWIDTH_AVAILABLE:
1217         case CSR_CHANNELS_AVAILABLE_HI:
1218         case CSR_CHANNELS_AVAILABLE_LO:
1219                 handle_local_lock(ctx->ohci, packet, csr);
1220                 break;
1221         default:
1222                 if (ctx == &ctx->ohci->at_request_ctx)
1223                         fw_core_handle_request(&ctx->ohci->card, packet);
1224                 else
1225                         fw_core_handle_response(&ctx->ohci->card, packet);
1226                 break;
1227         }
1228
1229         if (ctx == &ctx->ohci->at_response_ctx) {
1230                 packet->ack = ACK_COMPLETE;
1231                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1232         }
1233 }
1234
1235 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1236 {
1237         unsigned long flags;
1238         int ret;
1239
1240         spin_lock_irqsave(&ctx->ohci->lock, flags);
1241
1242         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1243             ctx->ohci->generation == packet->generation) {
1244                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1245                 handle_local_request(ctx, packet);
1246                 return;
1247         }
1248
1249         ret = at_context_queue_packet(ctx, packet);
1250         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1251
1252         if (ret < 0)
1253                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1254
1255 }
1256
1257 static void bus_reset_tasklet(unsigned long data)
1258 {
1259         struct fw_ohci *ohci = (struct fw_ohci *)data;
1260         int self_id_count, i, j, reg;
1261         int generation, new_generation;
1262         unsigned long flags;
1263         void *free_rom = NULL;
1264         dma_addr_t free_rom_bus = 0;
1265
1266         reg = reg_read(ohci, OHCI1394_NodeID);
1267         if (!(reg & OHCI1394_NodeID_idValid)) {
1268                 fw_notify("node ID not valid, new bus reset in progress\n");
1269                 return;
1270         }
1271         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1272                 fw_notify("malconfigured bus\n");
1273                 return;
1274         }
1275         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1276                                OHCI1394_NodeID_nodeNumber);
1277
1278         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1279         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1280                 fw_notify("inconsistent self IDs\n");
1281                 return;
1282         }
1283         /*
1284          * The count in the SelfIDCount register is the number of
1285          * bytes in the self ID receive buffer.  Since we also receive
1286          * the inverted quadlets and a header quadlet, we shift one
1287          * bit extra to get the actual number of self IDs.
1288          */
1289         self_id_count = (reg >> 3) & 0xff;
1290         if (self_id_count == 0 || self_id_count > 252) {
1291                 fw_notify("inconsistent self IDs\n");
1292                 return;
1293         }
1294         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1295         rmb();
1296
1297         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1298                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1299                         fw_notify("inconsistent self IDs\n");
1300                         return;
1301                 }
1302                 ohci->self_id_buffer[j] =
1303                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1304         }
1305         rmb();
1306
1307         /*
1308          * Check the consistency of the self IDs we just read.  The
1309          * problem we face is that a new bus reset can start while we
1310          * read out the self IDs from the DMA buffer. If this happens,
1311          * the DMA buffer will be overwritten with new self IDs and we
1312          * will read out inconsistent data.  The OHCI specification
1313          * (section 11.2) recommends a technique similar to
1314          * linux/seqlock.h, where we remember the generation of the
1315          * self IDs in the buffer before reading them out and compare
1316          * it to the current generation after reading them out.  If
1317          * the two generations match we know we have a consistent set
1318          * of self IDs.
1319          */
1320
1321         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1322         if (new_generation != generation) {
1323                 fw_notify("recursive bus reset detected, "
1324                           "discarding self ids\n");
1325                 return;
1326         }
1327
1328         /* FIXME: Document how the locking works. */
1329         spin_lock_irqsave(&ohci->lock, flags);
1330
1331         ohci->generation = generation;
1332         context_stop(&ohci->at_request_ctx);
1333         context_stop(&ohci->at_response_ctx);
1334         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1335
1336         if (ohci->quirks & QUIRK_RESET_PACKET)
1337                 ohci->request_generation = generation;
1338
1339         /*
1340          * This next bit is unrelated to the AT context stuff but we
1341          * have to do it under the spinlock also.  If a new config rom
1342          * was set up before this reset, the old one is now no longer
1343          * in use and we can free it. Update the config rom pointers
1344          * to point to the current config rom and clear the
1345          * next_config_rom pointer so a new udpate can take place.
1346          */
1347
1348         if (ohci->next_config_rom != NULL) {
1349                 if (ohci->next_config_rom != ohci->config_rom) {
1350                         free_rom      = ohci->config_rom;
1351                         free_rom_bus  = ohci->config_rom_bus;
1352                 }
1353                 ohci->config_rom      = ohci->next_config_rom;
1354                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1355                 ohci->next_config_rom = NULL;
1356
1357                 /*
1358                  * Restore config_rom image and manually update
1359                  * config_rom registers.  Writing the header quadlet
1360                  * will indicate that the config rom is ready, so we
1361                  * do that last.
1362                  */
1363                 reg_write(ohci, OHCI1394_BusOptions,
1364                           be32_to_cpu(ohci->config_rom[2]));
1365                 ohci->config_rom[0] = ohci->next_header;
1366                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1367                           be32_to_cpu(ohci->next_header));
1368         }
1369
1370 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1371         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1372         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1373 #endif
1374
1375         spin_unlock_irqrestore(&ohci->lock, flags);
1376
1377         if (free_rom)
1378                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1379                                   free_rom, free_rom_bus);
1380
1381         log_selfids(ohci->node_id, generation,
1382                     self_id_count, ohci->self_id_buffer);
1383
1384         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1385                                  self_id_count, ohci->self_id_buffer);
1386 }
1387
1388 static irqreturn_t irq_handler(int irq, void *data)
1389 {
1390         struct fw_ohci *ohci = data;
1391         u32 event, iso_event;
1392         int i;
1393
1394         event = reg_read(ohci, OHCI1394_IntEventClear);
1395
1396         if (!event || !~event)
1397                 return IRQ_NONE;
1398
1399         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1400         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1401         log_irqs(event);
1402
1403         if (event & OHCI1394_selfIDComplete)
1404                 tasklet_schedule(&ohci->bus_reset_tasklet);
1405
1406         if (event & OHCI1394_RQPkt)
1407                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1408
1409         if (event & OHCI1394_RSPkt)
1410                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1411
1412         if (event & OHCI1394_reqTxComplete)
1413                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1414
1415         if (event & OHCI1394_respTxComplete)
1416                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1417
1418         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1419         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1420
1421         while (iso_event) {
1422                 i = ffs(iso_event) - 1;
1423                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1424                 iso_event &= ~(1 << i);
1425         }
1426
1427         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1428         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1429
1430         while (iso_event) {
1431                 i = ffs(iso_event) - 1;
1432                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1433                 iso_event &= ~(1 << i);
1434         }
1435
1436         if (unlikely(event & OHCI1394_regAccessFail))
1437                 fw_error("Register access failure - "
1438                          "please notify linux1394-devel@lists.sf.net\n");
1439
1440         if (unlikely(event & OHCI1394_postedWriteErr))
1441                 fw_error("PCI posted write error\n");
1442
1443         if (unlikely(event & OHCI1394_cycleTooLong)) {
1444                 if (printk_ratelimit())
1445                         fw_notify("isochronous cycle too long\n");
1446                 reg_write(ohci, OHCI1394_LinkControlSet,
1447                           OHCI1394_LinkControl_cycleMaster);
1448         }
1449
1450         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1451                 /*
1452                  * We need to clear this event bit in order to make
1453                  * cycleMatch isochronous I/O work.  In theory we should
1454                  * stop active cycleMatch iso contexts now and restart
1455                  * them at least two cycles later.  (FIXME?)
1456                  */
1457                 if (printk_ratelimit())
1458                         fw_notify("isochronous cycle inconsistent\n");
1459         }
1460
1461         return IRQ_HANDLED;
1462 }
1463
1464 static int software_reset(struct fw_ohci *ohci)
1465 {
1466         int i;
1467
1468         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1469
1470         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1471                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1472                      OHCI1394_HCControl_softReset) == 0)
1473                         return 0;
1474                 msleep(1);
1475         }
1476
1477         return -EBUSY;
1478 }
1479
1480 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1481 {
1482         size_t size = length * 4;
1483
1484         memcpy(dest, src, size);
1485         if (size < CONFIG_ROM_SIZE)
1486                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1487 }
1488
1489 static int ohci_enable(struct fw_card *card,
1490                        const __be32 *config_rom, size_t length)
1491 {
1492         struct fw_ohci *ohci = fw_ohci(card);
1493         struct pci_dev *dev = to_pci_dev(card->device);
1494         u32 lps;
1495         int i;
1496
1497         if (software_reset(ohci)) {
1498                 fw_error("Failed to reset ohci card.\n");
1499                 return -EBUSY;
1500         }
1501
1502         /*
1503          * Now enable LPS, which we need in order to start accessing
1504          * most of the registers.  In fact, on some cards (ALI M5251),
1505          * accessing registers in the SClk domain without LPS enabled
1506          * will lock up the machine.  Wait 50msec to make sure we have
1507          * full link enabled.  However, with some cards (well, at least
1508          * a JMicron PCIe card), we have to try again sometimes.
1509          */
1510         reg_write(ohci, OHCI1394_HCControlSet,
1511                   OHCI1394_HCControl_LPS |
1512                   OHCI1394_HCControl_postedWriteEnable);
1513         flush_writes(ohci);
1514
1515         for (lps = 0, i = 0; !lps && i < 3; i++) {
1516                 msleep(50);
1517                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1518                       OHCI1394_HCControl_LPS;
1519         }
1520
1521         if (!lps) {
1522                 fw_error("Failed to set Link Power Status\n");
1523                 return -EIO;
1524         }
1525
1526         reg_write(ohci, OHCI1394_HCControlClear,
1527                   OHCI1394_HCControl_noByteSwapData);
1528
1529         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1530         reg_write(ohci, OHCI1394_LinkControlClear,
1531                   OHCI1394_LinkControl_rcvPhyPkt);
1532         reg_write(ohci, OHCI1394_LinkControlSet,
1533                   OHCI1394_LinkControl_rcvSelfID |
1534                   OHCI1394_LinkControl_cycleTimerEnable |
1535                   OHCI1394_LinkControl_cycleMaster);
1536
1537         reg_write(ohci, OHCI1394_ATRetries,
1538                   OHCI1394_MAX_AT_REQ_RETRIES |
1539                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1540                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1541
1542         ar_context_run(&ohci->ar_request_ctx);
1543         ar_context_run(&ohci->ar_response_ctx);
1544
1545         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1546         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1547         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1548         reg_write(ohci, OHCI1394_IntMaskSet,
1549                   OHCI1394_selfIDComplete |
1550                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1551                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1552                   OHCI1394_isochRx | OHCI1394_isochTx |
1553                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1554                   OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1555                   OHCI1394_masterIntEnable);
1556         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1557                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1558
1559         /* Activate link_on bit and contender bit in our self ID packets.*/
1560         if (ohci_update_phy_reg(card, 4, 0,
1561                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1562                 return -EIO;
1563
1564         /*
1565          * When the link is not yet enabled, the atomic config rom
1566          * update mechanism described below in ohci_set_config_rom()
1567          * is not active.  We have to update ConfigRomHeader and
1568          * BusOptions manually, and the write to ConfigROMmap takes
1569          * effect immediately.  We tie this to the enabling of the
1570          * link, so we have a valid config rom before enabling - the
1571          * OHCI requires that ConfigROMhdr and BusOptions have valid
1572          * values before enabling.
1573          *
1574          * However, when the ConfigROMmap is written, some controllers
1575          * always read back quadlets 0 and 2 from the config rom to
1576          * the ConfigRomHeader and BusOptions registers on bus reset.
1577          * They shouldn't do that in this initial case where the link
1578          * isn't enabled.  This means we have to use the same
1579          * workaround here, setting the bus header to 0 and then write
1580          * the right values in the bus reset tasklet.
1581          */
1582
1583         if (config_rom) {
1584                 ohci->next_config_rom =
1585                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1586                                            &ohci->next_config_rom_bus,
1587                                            GFP_KERNEL);
1588                 if (ohci->next_config_rom == NULL)
1589                         return -ENOMEM;
1590
1591                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1592         } else {
1593                 /*
1594                  * In the suspend case, config_rom is NULL, which
1595                  * means that we just reuse the old config rom.
1596                  */
1597                 ohci->next_config_rom = ohci->config_rom;
1598                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1599         }
1600
1601         ohci->next_header = ohci->next_config_rom[0];
1602         ohci->next_config_rom[0] = 0;
1603         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1604         reg_write(ohci, OHCI1394_BusOptions,
1605                   be32_to_cpu(ohci->next_config_rom[2]));
1606         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1607
1608         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1609
1610         if (request_irq(dev->irq, irq_handler,
1611                         IRQF_SHARED, ohci_driver_name, ohci)) {
1612                 fw_error("Failed to allocate shared interrupt %d.\n",
1613                          dev->irq);
1614                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1615                                   ohci->config_rom, ohci->config_rom_bus);
1616                 return -EIO;
1617         }
1618
1619         reg_write(ohci, OHCI1394_HCControlSet,
1620                   OHCI1394_HCControl_linkEnable |
1621                   OHCI1394_HCControl_BIBimageValid);
1622         flush_writes(ohci);
1623
1624         /*
1625          * We are ready to go, initiate bus reset to finish the
1626          * initialization.
1627          */
1628
1629         fw_core_initiate_bus_reset(&ohci->card, 1);
1630
1631         return 0;
1632 }
1633
1634 static int ohci_set_config_rom(struct fw_card *card,
1635                                const __be32 *config_rom, size_t length)
1636 {
1637         struct fw_ohci *ohci;
1638         unsigned long flags;
1639         int ret = -EBUSY;
1640         __be32 *next_config_rom;
1641         dma_addr_t uninitialized_var(next_config_rom_bus);
1642
1643         ohci = fw_ohci(card);
1644
1645         /*
1646          * When the OHCI controller is enabled, the config rom update
1647          * mechanism is a bit tricky, but easy enough to use.  See
1648          * section 5.5.6 in the OHCI specification.
1649          *
1650          * The OHCI controller caches the new config rom address in a
1651          * shadow register (ConfigROMmapNext) and needs a bus reset
1652          * for the changes to take place.  When the bus reset is
1653          * detected, the controller loads the new values for the
1654          * ConfigRomHeader and BusOptions registers from the specified
1655          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1656          * shadow register. All automatically and atomically.
1657          *
1658          * Now, there's a twist to this story.  The automatic load of
1659          * ConfigRomHeader and BusOptions doesn't honor the
1660          * noByteSwapData bit, so with a be32 config rom, the
1661          * controller will load be32 values in to these registers
1662          * during the atomic update, even on litte endian
1663          * architectures.  The workaround we use is to put a 0 in the
1664          * header quadlet; 0 is endian agnostic and means that the
1665          * config rom isn't ready yet.  In the bus reset tasklet we
1666          * then set up the real values for the two registers.
1667          *
1668          * We use ohci->lock to avoid racing with the code that sets
1669          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1670          */
1671
1672         next_config_rom =
1673                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1674                                    &next_config_rom_bus, GFP_KERNEL);
1675         if (next_config_rom == NULL)
1676                 return -ENOMEM;
1677
1678         spin_lock_irqsave(&ohci->lock, flags);
1679
1680         if (ohci->next_config_rom == NULL) {
1681                 ohci->next_config_rom = next_config_rom;
1682                 ohci->next_config_rom_bus = next_config_rom_bus;
1683
1684                 copy_config_rom(ohci->next_config_rom, config_rom, length);
1685
1686                 ohci->next_header = config_rom[0];
1687                 ohci->next_config_rom[0] = 0;
1688
1689                 reg_write(ohci, OHCI1394_ConfigROMmap,
1690                           ohci->next_config_rom_bus);
1691                 ret = 0;
1692         }
1693
1694         spin_unlock_irqrestore(&ohci->lock, flags);
1695
1696         /*
1697          * Now initiate a bus reset to have the changes take
1698          * effect. We clean up the old config rom memory and DMA
1699          * mappings in the bus reset tasklet, since the OHCI
1700          * controller could need to access it before the bus reset
1701          * takes effect.
1702          */
1703         if (ret == 0)
1704                 fw_core_initiate_bus_reset(&ohci->card, 1);
1705         else
1706                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1707                                   next_config_rom, next_config_rom_bus);
1708
1709         return ret;
1710 }
1711
1712 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1713 {
1714         struct fw_ohci *ohci = fw_ohci(card);
1715
1716         at_context_transmit(&ohci->at_request_ctx, packet);
1717 }
1718
1719 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1720 {
1721         struct fw_ohci *ohci = fw_ohci(card);
1722
1723         at_context_transmit(&ohci->at_response_ctx, packet);
1724 }
1725
1726 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1727 {
1728         struct fw_ohci *ohci = fw_ohci(card);
1729         struct context *ctx = &ohci->at_request_ctx;
1730         struct driver_data *driver_data = packet->driver_data;
1731         int ret = -ENOENT;
1732
1733         tasklet_disable(&ctx->tasklet);
1734
1735         if (packet->ack != 0)
1736                 goto out;
1737
1738         if (packet->payload_mapped)
1739                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1740                                  packet->payload_length, DMA_TO_DEVICE);
1741
1742         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1743         driver_data->packet = NULL;
1744         packet->ack = RCODE_CANCELLED;
1745         packet->callback(packet, &ohci->card, packet->ack);
1746         ret = 0;
1747  out:
1748         tasklet_enable(&ctx->tasklet);
1749
1750         return ret;
1751 }
1752
1753 static int ohci_enable_phys_dma(struct fw_card *card,
1754                                 int node_id, int generation)
1755 {
1756 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1757         return 0;
1758 #else
1759         struct fw_ohci *ohci = fw_ohci(card);
1760         unsigned long flags;
1761         int n, ret = 0;
1762
1763         /*
1764          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1765          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1766          */
1767
1768         spin_lock_irqsave(&ohci->lock, flags);
1769
1770         if (ohci->generation != generation) {
1771                 ret = -ESTALE;
1772                 goto out;
1773         }
1774
1775         /*
1776          * Note, if the node ID contains a non-local bus ID, physical DMA is
1777          * enabled for _all_ nodes on remote buses.
1778          */
1779
1780         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1781         if (n < 32)
1782                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1783         else
1784                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1785
1786         flush_writes(ohci);
1787  out:
1788         spin_unlock_irqrestore(&ohci->lock, flags);
1789
1790         return ret;
1791 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1792 }
1793
1794 static u32 cycle_timer_ticks(u32 cycle_timer)
1795 {
1796         u32 ticks;
1797
1798         ticks = cycle_timer & 0xfff;
1799         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1800         ticks += (3072 * 8000) * (cycle_timer >> 25);
1801
1802         return ticks;
1803 }
1804
1805 /*
1806  * Some controllers exhibit one or more of the following bugs when updating the
1807  * iso cycle timer register:
1808  *  - When the lowest six bits are wrapping around to zero, a read that happens
1809  *    at the same time will return garbage in the lowest ten bits.
1810  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1811  *    not incremented for about 60 ns.
1812  *  - Occasionally, the entire register reads zero.
1813  *
1814  * To catch these, we read the register three times and ensure that the
1815  * difference between each two consecutive reads is approximately the same, i.e.
1816  * less than twice the other.  Furthermore, any negative difference indicates an
1817  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1818  * execute, so we have enough precision to compute the ratio of the differences.)
1819  */
1820 static u32 ohci_get_cycle_time(struct fw_card *card)
1821 {
1822         struct fw_ohci *ohci = fw_ohci(card);
1823         u32 c0, c1, c2;
1824         u32 t0, t1, t2;
1825         s32 diff01, diff12;
1826         int i;
1827
1828         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1829
1830         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1831                 i = 0;
1832                 c1 = c2;
1833                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1834                 do {
1835                         c0 = c1;
1836                         c1 = c2;
1837                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1838                         t0 = cycle_timer_ticks(c0);
1839                         t1 = cycle_timer_ticks(c1);
1840                         t2 = cycle_timer_ticks(c2);
1841                         diff01 = t1 - t0;
1842                         diff12 = t2 - t1;
1843                 } while ((diff01 <= 0 || diff12 <= 0 ||
1844                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1845                          && i++ < 20);
1846         }
1847
1848         return c2;
1849 }
1850
1851 static void copy_iso_headers(struct iso_context *ctx, void *p)
1852 {
1853         int i = ctx->header_length;
1854
1855         if (i + ctx->base.header_size > PAGE_SIZE)
1856                 return;
1857
1858         /*
1859          * The iso header is byteswapped to little endian by
1860          * the controller, but the remaining header quadlets
1861          * are big endian.  We want to present all the headers
1862          * as big endian, so we have to swap the first quadlet.
1863          */
1864         if (ctx->base.header_size > 0)
1865                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1866         if (ctx->base.header_size > 4)
1867                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1868         if (ctx->base.header_size > 8)
1869                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1870         ctx->header_length += ctx->base.header_size;
1871 }
1872
1873 static int handle_ir_packet_per_buffer(struct context *context,
1874                                        struct descriptor *d,
1875                                        struct descriptor *last)
1876 {
1877         struct iso_context *ctx =
1878                 container_of(context, struct iso_context, context);
1879         struct descriptor *pd;
1880         __le32 *ir_header;
1881         void *p;
1882
1883         for (pd = d; pd <= last; pd++) {
1884                 if (pd->transfer_status)
1885                         break;
1886         }
1887         if (pd > last)
1888                 /* Descriptor(s) not done yet, stop iteration */
1889                 return 0;
1890
1891         p = last + 1;
1892         copy_iso_headers(ctx, p);
1893
1894         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1895                 ir_header = (__le32 *) p;
1896                 ctx->base.callback(&ctx->base,
1897                                    le32_to_cpu(ir_header[0]) & 0xffff,
1898                                    ctx->header_length, ctx->header,
1899                                    ctx->base.callback_data);
1900                 ctx->header_length = 0;
1901         }
1902
1903         return 1;
1904 }
1905
1906 static int handle_it_packet(struct context *context,
1907                             struct descriptor *d,
1908                             struct descriptor *last)
1909 {
1910         struct iso_context *ctx =
1911                 container_of(context, struct iso_context, context);
1912         int i;
1913         struct descriptor *pd;
1914
1915         for (pd = d; pd <= last; pd++)
1916                 if (pd->transfer_status)
1917                         break;
1918         if (pd > last)
1919                 /* Descriptor(s) not done yet, stop iteration */
1920                 return 0;
1921
1922         i = ctx->header_length;
1923         if (i + 4 < PAGE_SIZE) {
1924                 /* Present this value as big-endian to match the receive code */
1925                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1926                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1927                                 le16_to_cpu(pd->res_count));
1928                 ctx->header_length += 4;
1929         }
1930         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1931                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1932                                    ctx->header_length, ctx->header,
1933                                    ctx->base.callback_data);
1934                 ctx->header_length = 0;
1935         }
1936         return 1;
1937 }
1938
1939 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1940                                 int type, int channel, size_t header_size)
1941 {
1942         struct fw_ohci *ohci = fw_ohci(card);
1943         struct iso_context *ctx, *list;
1944         descriptor_callback_t callback;
1945         u64 *channels, dont_care = ~0ULL;
1946         u32 *mask, regs;
1947         unsigned long flags;
1948         int index, ret = -ENOMEM;
1949
1950         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1951                 channels = &dont_care;
1952                 mask = &ohci->it_context_mask;
1953                 list = ohci->it_context_list;
1954                 callback = handle_it_packet;
1955         } else {
1956                 channels = &ohci->ir_context_channels;
1957                 mask = &ohci->ir_context_mask;
1958                 list = ohci->ir_context_list;
1959                 callback = handle_ir_packet_per_buffer;
1960         }
1961
1962         spin_lock_irqsave(&ohci->lock, flags);
1963         index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1964         if (index >= 0) {
1965                 *channels &= ~(1ULL << channel);
1966                 *mask &= ~(1 << index);
1967         }
1968         spin_unlock_irqrestore(&ohci->lock, flags);
1969
1970         if (index < 0)
1971                 return ERR_PTR(-EBUSY);
1972
1973         if (type == FW_ISO_CONTEXT_TRANSMIT)
1974                 regs = OHCI1394_IsoXmitContextBase(index);
1975         else
1976                 regs = OHCI1394_IsoRcvContextBase(index);
1977
1978         ctx = &list[index];
1979         memset(ctx, 0, sizeof(*ctx));
1980         ctx->header_length = 0;
1981         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1982         if (ctx->header == NULL)
1983                 goto out;
1984
1985         ret = context_init(&ctx->context, ohci, regs, callback);
1986         if (ret < 0)
1987                 goto out_with_header;
1988
1989         return &ctx->base;
1990
1991  out_with_header:
1992         free_page((unsigned long)ctx->header);
1993  out:
1994         spin_lock_irqsave(&ohci->lock, flags);
1995         *mask |= 1 << index;
1996         spin_unlock_irqrestore(&ohci->lock, flags);
1997
1998         return ERR_PTR(ret);
1999 }
2000
2001 static int ohci_start_iso(struct fw_iso_context *base,
2002                           s32 cycle, u32 sync, u32 tags)
2003 {
2004         struct iso_context *ctx = container_of(base, struct iso_context, base);
2005         struct fw_ohci *ohci = ctx->context.ohci;
2006         u32 control, match;
2007         int index;
2008
2009         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2010                 index = ctx - ohci->it_context_list;
2011                 match = 0;
2012                 if (cycle >= 0)
2013                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2014                                 (cycle & 0x7fff) << 16;
2015
2016                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2017                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2018                 context_run(&ctx->context, match);
2019         } else {
2020                 index = ctx - ohci->ir_context_list;
2021                 control = IR_CONTEXT_ISOCH_HEADER;
2022                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2023                 if (cycle >= 0) {
2024                         match |= (cycle & 0x07fff) << 12;
2025                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2026                 }
2027
2028                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2029                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2030                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2031                 context_run(&ctx->context, control);
2032         }
2033
2034         return 0;
2035 }
2036
2037 static int ohci_stop_iso(struct fw_iso_context *base)
2038 {
2039         struct fw_ohci *ohci = fw_ohci(base->card);
2040         struct iso_context *ctx = container_of(base, struct iso_context, base);
2041         int index;
2042
2043         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2044                 index = ctx - ohci->it_context_list;
2045                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2046         } else {
2047                 index = ctx - ohci->ir_context_list;
2048                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2049         }
2050         flush_writes(ohci);
2051         context_stop(&ctx->context);
2052
2053         return 0;
2054 }
2055
2056 static void ohci_free_iso_context(struct fw_iso_context *base)
2057 {
2058         struct fw_ohci *ohci = fw_ohci(base->card);
2059         struct iso_context *ctx = container_of(base, struct iso_context, base);
2060         unsigned long flags;
2061         int index;
2062
2063         ohci_stop_iso(base);
2064         context_release(&ctx->context);
2065         free_page((unsigned long)ctx->header);
2066
2067         spin_lock_irqsave(&ohci->lock, flags);
2068
2069         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2070                 index = ctx - ohci->it_context_list;
2071                 ohci->it_context_mask |= 1 << index;
2072         } else {
2073                 index = ctx - ohci->ir_context_list;
2074                 ohci->ir_context_mask |= 1 << index;
2075                 ohci->ir_context_channels |= 1ULL << base->channel;
2076         }
2077
2078         spin_unlock_irqrestore(&ohci->lock, flags);
2079 }
2080
2081 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2082                                    struct fw_iso_packet *packet,
2083                                    struct fw_iso_buffer *buffer,
2084                                    unsigned long payload)
2085 {
2086         struct iso_context *ctx = container_of(base, struct iso_context, base);
2087         struct descriptor *d, *last, *pd;
2088         struct fw_iso_packet *p;
2089         __le32 *header;
2090         dma_addr_t d_bus, page_bus;
2091         u32 z, header_z, payload_z, irq;
2092         u32 payload_index, payload_end_index, next_page_index;
2093         int page, end_page, i, length, offset;
2094
2095         p = packet;
2096         payload_index = payload;
2097
2098         if (p->skip)
2099                 z = 1;
2100         else
2101                 z = 2;
2102         if (p->header_length > 0)
2103                 z++;
2104
2105         /* Determine the first page the payload isn't contained in. */
2106         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2107         if (p->payload_length > 0)
2108                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2109         else
2110                 payload_z = 0;
2111
2112         z += payload_z;
2113
2114         /* Get header size in number of descriptors. */
2115         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2116
2117         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2118         if (d == NULL)
2119                 return -ENOMEM;
2120
2121         if (!p->skip) {
2122                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2123                 d[0].req_count = cpu_to_le16(8);
2124                 /*
2125                  * Link the skip address to this descriptor itself.  This causes
2126                  * a context to skip a cycle whenever lost cycles or FIFO
2127                  * overruns occur, without dropping the data.  The application
2128                  * should then decide whether this is an error condition or not.
2129                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2130                  */
2131                 d[0].branch_address = cpu_to_le32(d_bus | z);
2132
2133                 header = (__le32 *) &d[1];
2134                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2135                                         IT_HEADER_TAG(p->tag) |
2136                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2137                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2138                                         IT_HEADER_SPEED(ctx->base.speed));
2139                 header[1] =
2140                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2141                                                           p->payload_length));
2142         }
2143
2144         if (p->header_length > 0) {
2145                 d[2].req_count    = cpu_to_le16(p->header_length);
2146                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2147                 memcpy(&d[z], p->header, p->header_length);
2148         }
2149
2150         pd = d + z - payload_z;
2151         payload_end_index = payload_index + p->payload_length;
2152         for (i = 0; i < payload_z; i++) {
2153                 page               = payload_index >> PAGE_SHIFT;
2154                 offset             = payload_index & ~PAGE_MASK;
2155                 next_page_index    = (page + 1) << PAGE_SHIFT;
2156                 length             =
2157                         min(next_page_index, payload_end_index) - payload_index;
2158                 pd[i].req_count    = cpu_to_le16(length);
2159
2160                 page_bus = page_private(buffer->pages[page]);
2161                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2162
2163                 payload_index += length;
2164         }
2165
2166         if (p->interrupt)
2167                 irq = DESCRIPTOR_IRQ_ALWAYS;
2168         else
2169                 irq = DESCRIPTOR_NO_IRQ;
2170
2171         last = z == 2 ? d : d + z - 1;
2172         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2173                                      DESCRIPTOR_STATUS |
2174                                      DESCRIPTOR_BRANCH_ALWAYS |
2175                                      irq);
2176
2177         context_append(&ctx->context, d, z, header_z);
2178
2179         return 0;
2180 }
2181
2182 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2183                                         struct fw_iso_packet *packet,
2184                                         struct fw_iso_buffer *buffer,
2185                                         unsigned long payload)
2186 {
2187         struct iso_context *ctx = container_of(base, struct iso_context, base);
2188         struct descriptor *d, *pd;
2189         struct fw_iso_packet *p = packet;
2190         dma_addr_t d_bus, page_bus;
2191         u32 z, header_z, rest;
2192         int i, j, length;
2193         int page, offset, packet_count, header_size, payload_per_buffer;
2194
2195         /*
2196          * The OHCI controller puts the isochronous header and trailer in the
2197          * buffer, so we need at least 8 bytes.
2198          */
2199         packet_count = p->header_length / ctx->base.header_size;
2200         header_size  = max(ctx->base.header_size, (size_t)8);
2201
2202         /* Get header size in number of descriptors. */
2203         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2204         page     = payload >> PAGE_SHIFT;
2205         offset   = payload & ~PAGE_MASK;
2206         payload_per_buffer = p->payload_length / packet_count;
2207
2208         for (i = 0; i < packet_count; i++) {
2209                 /* d points to the header descriptor */
2210                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2211                 d = context_get_descriptors(&ctx->context,
2212                                 z + header_z, &d_bus);
2213                 if (d == NULL)
2214                         return -ENOMEM;
2215
2216                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2217                                               DESCRIPTOR_INPUT_MORE);
2218                 if (p->skip && i == 0)
2219                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2220                 d->req_count    = cpu_to_le16(header_size);
2221                 d->res_count    = d->req_count;
2222                 d->transfer_status = 0;
2223                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2224
2225                 rest = payload_per_buffer;
2226                 pd = d;
2227                 for (j = 1; j < z; j++) {
2228                         pd++;
2229                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2230                                                   DESCRIPTOR_INPUT_MORE);
2231
2232                         if (offset + rest < PAGE_SIZE)
2233                                 length = rest;
2234                         else
2235                                 length = PAGE_SIZE - offset;
2236                         pd->req_count = cpu_to_le16(length);
2237                         pd->res_count = pd->req_count;
2238                         pd->transfer_status = 0;
2239
2240                         page_bus = page_private(buffer->pages[page]);
2241                         pd->data_address = cpu_to_le32(page_bus + offset);
2242
2243                         offset = (offset + length) & ~PAGE_MASK;
2244                         rest -= length;
2245                         if (offset == 0)
2246                                 page++;
2247                 }
2248                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2249                                           DESCRIPTOR_INPUT_LAST |
2250                                           DESCRIPTOR_BRANCH_ALWAYS);
2251                 if (p->interrupt && i == packet_count - 1)
2252                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2253
2254                 context_append(&ctx->context, d, z, header_z);
2255         }
2256
2257         return 0;
2258 }
2259
2260 static int ohci_queue_iso(struct fw_iso_context *base,
2261                           struct fw_iso_packet *packet,
2262                           struct fw_iso_buffer *buffer,
2263                           unsigned long payload)
2264 {
2265         struct iso_context *ctx = container_of(base, struct iso_context, base);
2266         unsigned long flags;
2267         int ret;
2268
2269         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2270         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2271                 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2272         else
2273                 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2274                                                         buffer, payload);
2275         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2276
2277         return ret;
2278 }
2279
2280 static const struct fw_card_driver ohci_driver = {
2281         .enable                 = ohci_enable,
2282         .update_phy_reg         = ohci_update_phy_reg,
2283         .set_config_rom         = ohci_set_config_rom,
2284         .send_request           = ohci_send_request,
2285         .send_response          = ohci_send_response,
2286         .cancel_packet          = ohci_cancel_packet,
2287         .enable_phys_dma        = ohci_enable_phys_dma,
2288         .get_cycle_time         = ohci_get_cycle_time,
2289
2290         .allocate_iso_context   = ohci_allocate_iso_context,
2291         .free_iso_context       = ohci_free_iso_context,
2292         .queue_iso              = ohci_queue_iso,
2293         .start_iso              = ohci_start_iso,
2294         .stop_iso               = ohci_stop_iso,
2295 };
2296
2297 #ifdef CONFIG_PPC_PMAC
2298 static void ohci_pmac_on(struct pci_dev *dev)
2299 {
2300         if (machine_is(powermac)) {
2301                 struct device_node *ofn = pci_device_to_OF_node(dev);
2302
2303                 if (ofn) {
2304                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2305                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2306                 }
2307         }
2308 }
2309
2310 static void ohci_pmac_off(struct pci_dev *dev)
2311 {
2312         if (machine_is(powermac)) {
2313                 struct device_node *ofn = pci_device_to_OF_node(dev);
2314
2315                 if (ofn) {
2316                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2317                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2318                 }
2319         }
2320 }
2321 #else
2322 #define ohci_pmac_on(dev)
2323 #define ohci_pmac_off(dev)
2324 #endif /* CONFIG_PPC_PMAC */
2325
2326 static int __devinit pci_probe(struct pci_dev *dev,
2327                                const struct pci_device_id *ent)
2328 {
2329         struct fw_ohci *ohci;
2330         u32 bus_options, max_receive, link_speed, version;
2331         u64 guid;
2332         int i, err, n_ir, n_it;
2333         size_t size;
2334
2335         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2336         if (ohci == NULL) {
2337                 err = -ENOMEM;
2338                 goto fail;
2339         }
2340
2341         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2342
2343         ohci_pmac_on(dev);
2344
2345         err = pci_enable_device(dev);
2346         if (err) {
2347                 fw_error("Failed to enable OHCI hardware\n");
2348                 goto fail_free;
2349         }
2350
2351         pci_set_master(dev);
2352         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2353         pci_set_drvdata(dev, ohci);
2354
2355         spin_lock_init(&ohci->lock);
2356
2357         tasklet_init(&ohci->bus_reset_tasklet,
2358                      bus_reset_tasklet, (unsigned long)ohci);
2359
2360         err = pci_request_region(dev, 0, ohci_driver_name);
2361         if (err) {
2362                 fw_error("MMIO resource unavailable\n");
2363                 goto fail_disable;
2364         }
2365
2366         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2367         if (ohci->registers == NULL) {
2368                 fw_error("Failed to remap registers\n");
2369                 err = -ENXIO;
2370                 goto fail_iomem;
2371         }
2372
2373         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2374                 if (ohci_quirks[i].vendor == dev->vendor &&
2375                     (ohci_quirks[i].device == dev->device ||
2376                      ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2377                         ohci->quirks = ohci_quirks[i].flags;
2378                         break;
2379                 }
2380         if (param_quirks)
2381                 ohci->quirks = param_quirks;
2382
2383         ar_context_init(&ohci->ar_request_ctx, ohci,
2384                         OHCI1394_AsReqRcvContextControlSet);
2385
2386         ar_context_init(&ohci->ar_response_ctx, ohci,
2387                         OHCI1394_AsRspRcvContextControlSet);
2388
2389         context_init(&ohci->at_request_ctx, ohci,
2390                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2391
2392         context_init(&ohci->at_response_ctx, ohci,
2393                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2394
2395         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2396         ohci->ir_context_channels = ~0ULL;
2397         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2398         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2399         n_ir = hweight32(ohci->ir_context_mask);
2400         size = sizeof(struct iso_context) * n_ir;
2401         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2402
2403         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2404         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2405         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2406         n_it = hweight32(ohci->it_context_mask);
2407         size = sizeof(struct iso_context) * n_it;
2408         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2409
2410         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2411                 err = -ENOMEM;
2412                 goto fail_contexts;
2413         }
2414
2415         /* self-id dma buffer allocation */
2416         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2417                                                SELF_ID_BUF_SIZE,
2418                                                &ohci->self_id_bus,
2419                                                GFP_KERNEL);
2420         if (ohci->self_id_cpu == NULL) {
2421                 err = -ENOMEM;
2422                 goto fail_contexts;
2423         }
2424
2425         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2426         max_receive = (bus_options >> 12) & 0xf;
2427         link_speed = bus_options & 0x7;
2428         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2429                 reg_read(ohci, OHCI1394_GUIDLo);
2430
2431         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2432         if (err)
2433                 goto fail_self_id;
2434
2435         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2436         fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2437                   "%d IR + %d IT contexts, quirks 0x%x\n",
2438                   dev_name(&dev->dev), version >> 16, version & 0xff,
2439                   n_ir, n_it, ohci->quirks);
2440
2441         return 0;
2442
2443  fail_self_id:
2444         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2445                           ohci->self_id_cpu, ohci->self_id_bus);
2446  fail_contexts:
2447         kfree(ohci->ir_context_list);
2448         kfree(ohci->it_context_list);
2449         context_release(&ohci->at_response_ctx);
2450         context_release(&ohci->at_request_ctx);
2451         ar_context_release(&ohci->ar_response_ctx);
2452         ar_context_release(&ohci->ar_request_ctx);
2453         pci_iounmap(dev, ohci->registers);
2454  fail_iomem:
2455         pci_release_region(dev, 0);
2456  fail_disable:
2457         pci_disable_device(dev);
2458  fail_free:
2459         kfree(&ohci->card);
2460         ohci_pmac_off(dev);
2461  fail:
2462         if (err == -ENOMEM)
2463                 fw_error("Out of memory\n");
2464
2465         return err;
2466 }
2467
2468 static void pci_remove(struct pci_dev *dev)
2469 {
2470         struct fw_ohci *ohci;
2471
2472         ohci = pci_get_drvdata(dev);
2473         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2474         flush_writes(ohci);
2475         fw_core_remove_card(&ohci->card);
2476
2477         /*
2478          * FIXME: Fail all pending packets here, now that the upper
2479          * layers can't queue any more.
2480          */
2481
2482         software_reset(ohci);
2483         free_irq(dev->irq, ohci);
2484
2485         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2486                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2487                                   ohci->next_config_rom, ohci->next_config_rom_bus);
2488         if (ohci->config_rom)
2489                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2490                                   ohci->config_rom, ohci->config_rom_bus);
2491         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2492                           ohci->self_id_cpu, ohci->self_id_bus);
2493         ar_context_release(&ohci->ar_request_ctx);
2494         ar_context_release(&ohci->ar_response_ctx);
2495         context_release(&ohci->at_request_ctx);
2496         context_release(&ohci->at_response_ctx);
2497         kfree(ohci->it_context_list);
2498         kfree(ohci->ir_context_list);
2499         pci_iounmap(dev, ohci->registers);
2500         pci_release_region(dev, 0);
2501         pci_disable_device(dev);
2502         kfree(&ohci->card);
2503         ohci_pmac_off(dev);
2504
2505         fw_notify("Removed fw-ohci device.\n");
2506 }
2507
2508 #ifdef CONFIG_PM
2509 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2510 {
2511         struct fw_ohci *ohci = pci_get_drvdata(dev);
2512         int err;
2513
2514         software_reset(ohci);
2515         free_irq(dev->irq, ohci);
2516         err = pci_save_state(dev);
2517         if (err) {
2518                 fw_error("pci_save_state failed\n");
2519                 return err;
2520         }
2521         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2522         if (err)
2523                 fw_error("pci_set_power_state failed with %d\n", err);
2524         ohci_pmac_off(dev);
2525
2526         return 0;
2527 }
2528
2529 static int pci_resume(struct pci_dev *dev)
2530 {
2531         struct fw_ohci *ohci = pci_get_drvdata(dev);
2532         int err;
2533
2534         ohci_pmac_on(dev);
2535         pci_set_power_state(dev, PCI_D0);
2536         pci_restore_state(dev);
2537         err = pci_enable_device(dev);
2538         if (err) {
2539                 fw_error("pci_enable_device failed\n");
2540                 return err;
2541         }
2542
2543         return ohci_enable(&ohci->card, NULL, 0);
2544 }
2545 #endif
2546
2547 static const struct pci_device_id pci_table[] = {
2548         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2549         { }
2550 };
2551
2552 MODULE_DEVICE_TABLE(pci, pci_table);
2553
2554 static struct pci_driver fw_ohci_pci_driver = {
2555         .name           = ohci_driver_name,
2556         .id_table       = pci_table,
2557         .probe          = pci_probe,
2558         .remove         = pci_remove,
2559 #ifdef CONFIG_PM
2560         .resume         = pci_resume,
2561         .suspend        = pci_suspend,
2562 #endif
2563 };
2564
2565 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2566 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2567 MODULE_LICENSE("GPL");
2568
2569 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2570 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2571 MODULE_ALIAS("ohci1394");
2572 #endif
2573
2574 static int __init fw_ohci_init(void)
2575 {
2576         return pci_register_driver(&fw_ohci_pci_driver);
2577 }
2578
2579 static void __exit fw_ohci_cleanup(void)
2580 {
2581         pci_unregister_driver(&fw_ohci_pci_driver);
2582 }
2583
2584 module_init(fw_ohci_init);
2585 module_exit(fw_ohci_cleanup);