firewire: fw-ohci: add option for remote debugging
[safe/jmp/linux-2.6] / drivers / firewire / fw-sbp2.c
1 /*
2  * SBP2 driver (SCSI over IEEE1394)
3  *
4  * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 /*
22  * The basic structure of this driver is based on the old storage driver,
23  * drivers/ieee1394/sbp2.c, originally written by
24  *     James Goodwin <jamesg@filanet.com>
25  * with later contributions and ongoing maintenance from
26  *     Ben Collins <bcollins@debian.org>,
27  *     Stefan Richter <stefanr@s5r6.in-berlin.de>
28  * and many others.
29  */
30
31 #include <linux/blkdev.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/kernel.h>
36 #include <linux/mod_devicetable.h>
37 #include <linux/module.h>
38 #include <linux/moduleparam.h>
39 #include <linux/scatterlist.h>
40 #include <linux/string.h>
41 #include <linux/stringify.h>
42 #include <linux/timer.h>
43 #include <linux/workqueue.h>
44 #include <asm/system.h>
45
46 #include <scsi/scsi.h>
47 #include <scsi/scsi_cmnd.h>
48 #include <scsi/scsi_device.h>
49 #include <scsi/scsi_host.h>
50
51 #include "fw-device.h"
52 #include "fw-topology.h"
53 #include "fw-transaction.h"
54
55 /*
56  * So far only bridges from Oxford Semiconductor are known to support
57  * concurrent logins. Depending on firmware, four or two concurrent logins
58  * are possible on OXFW911 and newer Oxsemi bridges.
59  *
60  * Concurrent logins are useful together with cluster filesystems.
61  */
62 static int sbp2_param_exclusive_login = 1;
63 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
64 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
65                  "(default = Y, use N for concurrent initiators)");
66
67 /*
68  * Flags for firmware oddities
69  *
70  * - 128kB max transfer
71  *   Limit transfer size. Necessary for some old bridges.
72  *
73  * - 36 byte inquiry
74  *   When scsi_mod probes the device, let the inquiry command look like that
75  *   from MS Windows.
76  *
77  * - skip mode page 8
78  *   Suppress sending of mode_sense for mode page 8 if the device pretends to
79  *   support the SCSI Primary Block commands instead of Reduced Block Commands.
80  *
81  * - fix capacity
82  *   Tell sd_mod to correct the last sector number reported by read_capacity.
83  *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
84  *   Don't use this with devices which don't have this bug.
85  *
86  * - delay inquiry
87  *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
88  *
89  * - override internal blacklist
90  *   Instead of adding to the built-in blacklist, use only the workarounds
91  *   specified in the module load parameter.
92  *   Useful if a blacklist entry interfered with a non-broken device.
93  */
94 #define SBP2_WORKAROUND_128K_MAX_TRANS  0x1
95 #define SBP2_WORKAROUND_INQUIRY_36      0x2
96 #define SBP2_WORKAROUND_MODE_SENSE_8    0x4
97 #define SBP2_WORKAROUND_FIX_CAPACITY    0x8
98 #define SBP2_WORKAROUND_DELAY_INQUIRY   0x10
99 #define SBP2_INQUIRY_DELAY              12
100 #define SBP2_WORKAROUND_OVERRIDE        0x100
101
102 static int sbp2_param_workarounds;
103 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
104 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
105         ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
106         ", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
107         ", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
108         ", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109         ", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110         ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
111         ", or a combination)");
112
113 /* I don't know why the SCSI stack doesn't define something like this... */
114 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115
116 static const char sbp2_driver_name[] = "sbp2";
117
118 /*
119  * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
120  * and one struct scsi_device per sbp2_logical_unit.
121  */
122 struct sbp2_logical_unit {
123         struct sbp2_target *tgt;
124         struct list_head link;
125         struct fw_address_handler address_handler;
126         struct list_head orb_list;
127
128         u64 command_block_agent_address;
129         u16 lun;
130         int login_id;
131
132         /*
133          * The generation is updated once we've logged in or reconnected
134          * to the logical unit.  Thus, I/O to the device will automatically
135          * fail and get retried if it happens in a window where the device
136          * is not ready, e.g. after a bus reset but before we reconnect.
137          */
138         int generation;
139         int retries;
140         struct delayed_work work;
141         bool has_sdev;
142         bool blocked;
143 };
144
145 /*
146  * We create one struct sbp2_target per IEEE 1212 Unit Directory
147  * and one struct Scsi_Host per sbp2_target.
148  */
149 struct sbp2_target {
150         struct kref kref;
151         struct fw_unit *unit;
152         const char *bus_id;
153         struct list_head lu_list;
154
155         u64 management_agent_address;
156         int directory_id;
157         int node_id;
158         int address_high;
159         unsigned int workarounds;
160         unsigned int mgt_orb_timeout;
161
162         int dont_block; /* counter for each logical unit */
163         int blocked;    /* ditto */
164 };
165
166 /*
167  * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168  * provided in the config rom. Most devices do provide a value, which
169  * we'll use for login management orbs, but with some sane limits.
170  */
171 #define SBP2_MIN_LOGIN_ORB_TIMEOUT      5000U   /* Timeout in ms */
172 #define SBP2_MAX_LOGIN_ORB_TIMEOUT      40000U  /* Timeout in ms */
173 #define SBP2_ORB_TIMEOUT                2000U   /* Timeout in ms */
174 #define SBP2_ORB_NULL                   0x80000000
175 #define SBP2_MAX_SG_ELEMENT_LENGTH      0xf000
176 #define SBP2_RETRY_LIMIT                0xf             /* 15 retries */
177 #define SBP2_CYCLE_LIMIT                (0xc8 << 12)    /* 200 125us cycles */
178
179 /* Unit directory keys */
180 #define SBP2_CSR_UNIT_CHARACTERISTICS   0x3a
181 #define SBP2_CSR_FIRMWARE_REVISION      0x3c
182 #define SBP2_CSR_LOGICAL_UNIT_NUMBER    0x14
183 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
184
185 /* Management orb opcodes */
186 #define SBP2_LOGIN_REQUEST              0x0
187 #define SBP2_QUERY_LOGINS_REQUEST       0x1
188 #define SBP2_RECONNECT_REQUEST          0x3
189 #define SBP2_SET_PASSWORD_REQUEST       0x4
190 #define SBP2_LOGOUT_REQUEST             0x7
191 #define SBP2_ABORT_TASK_REQUEST         0xb
192 #define SBP2_ABORT_TASK_SET             0xc
193 #define SBP2_LOGICAL_UNIT_RESET         0xe
194 #define SBP2_TARGET_RESET_REQUEST       0xf
195
196 /* Offsets for command block agent registers */
197 #define SBP2_AGENT_STATE                0x00
198 #define SBP2_AGENT_RESET                0x04
199 #define SBP2_ORB_POINTER                0x08
200 #define SBP2_DOORBELL                   0x10
201 #define SBP2_UNSOLICITED_STATUS_ENABLE  0x14
202
203 /* Status write response codes */
204 #define SBP2_STATUS_REQUEST_COMPLETE    0x0
205 #define SBP2_STATUS_TRANSPORT_FAILURE   0x1
206 #define SBP2_STATUS_ILLEGAL_REQUEST     0x2
207 #define SBP2_STATUS_VENDOR_DEPENDENT    0x3
208
209 #define STATUS_GET_ORB_HIGH(v)          ((v).status & 0xffff)
210 #define STATUS_GET_SBP_STATUS(v)        (((v).status >> 16) & 0xff)
211 #define STATUS_GET_LEN(v)               (((v).status >> 24) & 0x07)
212 #define STATUS_GET_DEAD(v)              (((v).status >> 27) & 0x01)
213 #define STATUS_GET_RESPONSE(v)          (((v).status >> 28) & 0x03)
214 #define STATUS_GET_SOURCE(v)            (((v).status >> 30) & 0x03)
215 #define STATUS_GET_ORB_LOW(v)           ((v).orb_low)
216 #define STATUS_GET_DATA(v)              ((v).data)
217
218 struct sbp2_status {
219         u32 status;
220         u32 orb_low;
221         u8 data[24];
222 };
223
224 struct sbp2_pointer {
225         __be32 high;
226         __be32 low;
227 };
228
229 struct sbp2_orb {
230         struct fw_transaction t;
231         struct kref kref;
232         dma_addr_t request_bus;
233         int rcode;
234         struct sbp2_pointer pointer;
235         void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
236         struct list_head link;
237 };
238
239 #define MANAGEMENT_ORB_LUN(v)                   ((v))
240 #define MANAGEMENT_ORB_FUNCTION(v)              ((v) << 16)
241 #define MANAGEMENT_ORB_RECONNECT(v)             ((v) << 20)
242 #define MANAGEMENT_ORB_EXCLUSIVE(v)             ((v) ? 1 << 28 : 0)
243 #define MANAGEMENT_ORB_REQUEST_FORMAT(v)        ((v) << 29)
244 #define MANAGEMENT_ORB_NOTIFY                   ((1) << 31)
245
246 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v)       ((v))
247 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v)       ((v) << 16)
248
249 struct sbp2_management_orb {
250         struct sbp2_orb base;
251         struct {
252                 struct sbp2_pointer password;
253                 struct sbp2_pointer response;
254                 __be32 misc;
255                 __be32 length;
256                 struct sbp2_pointer status_fifo;
257         } request;
258         __be32 response[4];
259         dma_addr_t response_bus;
260         struct completion done;
261         struct sbp2_status status;
262 };
263
264 struct sbp2_login_response {
265         __be32 misc;
266         struct sbp2_pointer command_block_agent;
267         __be32 reconnect_hold;
268 };
269 #define COMMAND_ORB_DATA_SIZE(v)        ((v))
270 #define COMMAND_ORB_PAGE_SIZE(v)        ((v) << 16)
271 #define COMMAND_ORB_PAGE_TABLE_PRESENT  ((1) << 19)
272 #define COMMAND_ORB_MAX_PAYLOAD(v)      ((v) << 20)
273 #define COMMAND_ORB_SPEED(v)            ((v) << 24)
274 #define COMMAND_ORB_DIRECTION           ((1) << 27)
275 #define COMMAND_ORB_REQUEST_FORMAT(v)   ((v) << 29)
276 #define COMMAND_ORB_NOTIFY              ((1) << 31)
277
278 struct sbp2_command_orb {
279         struct sbp2_orb base;
280         struct {
281                 struct sbp2_pointer next;
282                 struct sbp2_pointer data_descriptor;
283                 __be32 misc;
284                 u8 command_block[12];
285         } request;
286         struct scsi_cmnd *cmd;
287         scsi_done_fn_t done;
288         struct sbp2_logical_unit *lu;
289
290         struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
291         dma_addr_t page_table_bus;
292 };
293
294 /*
295  * List of devices with known bugs.
296  *
297  * The firmware_revision field, masked with 0xffff00, is the best
298  * indicator for the type of bridge chip of a device.  It yields a few
299  * false positives but this did not break correctly behaving devices
300  * so far.  We use ~0 as a wildcard, since the 24 bit values we get
301  * from the config rom can never match that.
302  */
303 static const struct {
304         u32 firmware_revision;
305         u32 model;
306         unsigned int workarounds;
307 } sbp2_workarounds_table[] = {
308         /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
309                 .firmware_revision      = 0x002800,
310                 .model                  = 0x001010,
311                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36 |
312                                           SBP2_WORKAROUND_MODE_SENSE_8,
313         },
314         /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
315                 .firmware_revision      = 0x002800,
316                 .model                  = 0x000000,
317                 .workarounds            = SBP2_WORKAROUND_DELAY_INQUIRY,
318         },
319         /* Initio bridges, actually only needed for some older ones */ {
320                 .firmware_revision      = 0x000200,
321                 .model                  = ~0,
322                 .workarounds            = SBP2_WORKAROUND_INQUIRY_36,
323         },
324         /* Symbios bridge */ {
325                 .firmware_revision      = 0xa0b800,
326                 .model                  = ~0,
327                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
328         },
329         /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
330                 .firmware_revision      = 0x002600,
331                 .model                  = ~0,
332                 .workarounds            = SBP2_WORKAROUND_128K_MAX_TRANS,
333         },
334
335         /*
336          * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
337          * these iPods do not feature the read_capacity bug according
338          * to one report.  Read_capacity behaviour as well as model_id
339          * could change due to Apple-supplied firmware updates though.
340          */
341
342         /* iPod 4th generation. */ {
343                 .firmware_revision      = 0x0a2700,
344                 .model                  = 0x000021,
345                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
346         },
347         /* iPod mini */ {
348                 .firmware_revision      = 0x0a2700,
349                 .model                  = 0x000023,
350                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
351         },
352         /* iPod Photo */ {
353                 .firmware_revision      = 0x0a2700,
354                 .model                  = 0x00007e,
355                 .workarounds            = SBP2_WORKAROUND_FIX_CAPACITY,
356         }
357 };
358
359 static void
360 free_orb(struct kref *kref)
361 {
362         struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
363
364         kfree(orb);
365 }
366
367 static void
368 sbp2_status_write(struct fw_card *card, struct fw_request *request,
369                   int tcode, int destination, int source,
370                   int generation, int speed,
371                   unsigned long long offset,
372                   void *payload, size_t length, void *callback_data)
373 {
374         struct sbp2_logical_unit *lu = callback_data;
375         struct sbp2_orb *orb;
376         struct sbp2_status status;
377         size_t header_size;
378         unsigned long flags;
379
380         if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
381             length == 0 || length > sizeof(status)) {
382                 fw_send_response(card, request, RCODE_TYPE_ERROR);
383                 return;
384         }
385
386         header_size = min(length, 2 * sizeof(u32));
387         fw_memcpy_from_be32(&status, payload, header_size);
388         if (length > header_size)
389                 memcpy(status.data, payload + 8, length - header_size);
390         if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
391                 fw_notify("non-orb related status write, not handled\n");
392                 fw_send_response(card, request, RCODE_COMPLETE);
393                 return;
394         }
395
396         /* Lookup the orb corresponding to this status write. */
397         spin_lock_irqsave(&card->lock, flags);
398         list_for_each_entry(orb, &lu->orb_list, link) {
399                 if (STATUS_GET_ORB_HIGH(status) == 0 &&
400                     STATUS_GET_ORB_LOW(status) == orb->request_bus) {
401                         orb->rcode = RCODE_COMPLETE;
402                         list_del(&orb->link);
403                         break;
404                 }
405         }
406         spin_unlock_irqrestore(&card->lock, flags);
407
408         if (&orb->link != &lu->orb_list)
409                 orb->callback(orb, &status);
410         else
411                 fw_error("status write for unknown orb\n");
412
413         kref_put(&orb->kref, free_orb);
414
415         fw_send_response(card, request, RCODE_COMPLETE);
416 }
417
418 static void
419 complete_transaction(struct fw_card *card, int rcode,
420                      void *payload, size_t length, void *data)
421 {
422         struct sbp2_orb *orb = data;
423         unsigned long flags;
424
425         /*
426          * This is a little tricky.  We can get the status write for
427          * the orb before we get this callback.  The status write
428          * handler above will assume the orb pointer transaction was
429          * successful and set the rcode to RCODE_COMPLETE for the orb.
430          * So this callback only sets the rcode if it hasn't already
431          * been set and only does the cleanup if the transaction
432          * failed and we didn't already get a status write.
433          */
434         spin_lock_irqsave(&card->lock, flags);
435
436         if (orb->rcode == -1)
437                 orb->rcode = rcode;
438         if (orb->rcode != RCODE_COMPLETE) {
439                 list_del(&orb->link);
440                 spin_unlock_irqrestore(&card->lock, flags);
441                 orb->callback(orb, NULL);
442         } else {
443                 spin_unlock_irqrestore(&card->lock, flags);
444         }
445
446         kref_put(&orb->kref, free_orb);
447 }
448
449 static void
450 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
451               int node_id, int generation, u64 offset)
452 {
453         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
454         unsigned long flags;
455
456         orb->pointer.high = 0;
457         orb->pointer.low = cpu_to_be32(orb->request_bus);
458
459         spin_lock_irqsave(&device->card->lock, flags);
460         list_add_tail(&orb->link, &lu->orb_list);
461         spin_unlock_irqrestore(&device->card->lock, flags);
462
463         /* Take a ref for the orb list and for the transaction callback. */
464         kref_get(&orb->kref);
465         kref_get(&orb->kref);
466
467         fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
468                         node_id, generation, device->max_speed, offset,
469                         &orb->pointer, sizeof(orb->pointer),
470                         complete_transaction, orb);
471 }
472
473 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
474 {
475         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
476         struct sbp2_orb *orb, *next;
477         struct list_head list;
478         unsigned long flags;
479         int retval = -ENOENT;
480
481         INIT_LIST_HEAD(&list);
482         spin_lock_irqsave(&device->card->lock, flags);
483         list_splice_init(&lu->orb_list, &list);
484         spin_unlock_irqrestore(&device->card->lock, flags);
485
486         list_for_each_entry_safe(orb, next, &list, link) {
487                 retval = 0;
488                 if (fw_cancel_transaction(device->card, &orb->t) == 0)
489                         continue;
490
491                 orb->rcode = RCODE_CANCELLED;
492                 orb->callback(orb, NULL);
493         }
494
495         return retval;
496 }
497
498 static void
499 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
500 {
501         struct sbp2_management_orb *orb =
502                 container_of(base_orb, struct sbp2_management_orb, base);
503
504         if (status)
505                 memcpy(&orb->status, status, sizeof(*status));
506         complete(&orb->done);
507 }
508
509 static int
510 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
511                          int generation, int function, int lun_or_login_id,
512                          void *response)
513 {
514         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
515         struct sbp2_management_orb *orb;
516         unsigned int timeout;
517         int retval = -ENOMEM;
518
519         if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
520                 return 0;
521
522         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
523         if (orb == NULL)
524                 return -ENOMEM;
525
526         kref_init(&orb->base.kref);
527         orb->response_bus =
528                 dma_map_single(device->card->device, &orb->response,
529                                sizeof(orb->response), DMA_FROM_DEVICE);
530         if (dma_mapping_error(orb->response_bus))
531                 goto fail_mapping_response;
532
533         orb->request.response.high = 0;
534         orb->request.response.low  = cpu_to_be32(orb->response_bus);
535
536         orb->request.misc = cpu_to_be32(
537                 MANAGEMENT_ORB_NOTIFY |
538                 MANAGEMENT_ORB_FUNCTION(function) |
539                 MANAGEMENT_ORB_LUN(lun_or_login_id));
540         orb->request.length = cpu_to_be32(
541                 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
542
543         orb->request.status_fifo.high =
544                 cpu_to_be32(lu->address_handler.offset >> 32);
545         orb->request.status_fifo.low  =
546                 cpu_to_be32(lu->address_handler.offset);
547
548         if (function == SBP2_LOGIN_REQUEST) {
549                 /* Ask for 2^2 == 4 seconds reconnect grace period */
550                 orb->request.misc |= cpu_to_be32(
551                         MANAGEMENT_ORB_RECONNECT(2) |
552                         MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
553                 timeout = lu->tgt->mgt_orb_timeout;
554         } else {
555                 timeout = SBP2_ORB_TIMEOUT;
556         }
557
558         init_completion(&orb->done);
559         orb->base.callback = complete_management_orb;
560
561         orb->base.request_bus =
562                 dma_map_single(device->card->device, &orb->request,
563                                sizeof(orb->request), DMA_TO_DEVICE);
564         if (dma_mapping_error(orb->base.request_bus))
565                 goto fail_mapping_request;
566
567         sbp2_send_orb(&orb->base, lu, node_id, generation,
568                       lu->tgt->management_agent_address);
569
570         wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
571
572         retval = -EIO;
573         if (sbp2_cancel_orbs(lu) == 0) {
574                 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
575                          lu->tgt->bus_id, orb->base.rcode);
576                 goto out;
577         }
578
579         if (orb->base.rcode != RCODE_COMPLETE) {
580                 fw_error("%s: management write failed, rcode 0x%02x\n",
581                          lu->tgt->bus_id, orb->base.rcode);
582                 goto out;
583         }
584
585         if (STATUS_GET_RESPONSE(orb->status) != 0 ||
586             STATUS_GET_SBP_STATUS(orb->status) != 0) {
587                 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
588                          STATUS_GET_RESPONSE(orb->status),
589                          STATUS_GET_SBP_STATUS(orb->status));
590                 goto out;
591         }
592
593         retval = 0;
594  out:
595         dma_unmap_single(device->card->device, orb->base.request_bus,
596                          sizeof(orb->request), DMA_TO_DEVICE);
597  fail_mapping_request:
598         dma_unmap_single(device->card->device, orb->response_bus,
599                          sizeof(orb->response), DMA_FROM_DEVICE);
600  fail_mapping_response:
601         if (response)
602                 memcpy(response, orb->response, sizeof(orb->response));
603         kref_put(&orb->base.kref, free_orb);
604
605         return retval;
606 }
607
608 static void
609 complete_agent_reset_write(struct fw_card *card, int rcode,
610                            void *payload, size_t length, void *done)
611 {
612         complete(done);
613 }
614
615 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
616 {
617         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
618         DECLARE_COMPLETION_ONSTACK(done);
619         struct fw_transaction t;
620         static u32 z;
621
622         fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
623                         lu->tgt->node_id, lu->generation, device->max_speed,
624                         lu->command_block_agent_address + SBP2_AGENT_RESET,
625                         &z, sizeof(z), complete_agent_reset_write, &done);
626         wait_for_completion(&done);
627 }
628
629 static void
630 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
631                                    void *payload, size_t length, void *data)
632 {
633         kfree(data);
634 }
635
636 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
637 {
638         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
639         struct fw_transaction *t;
640         static u32 z;
641
642         t = kmalloc(sizeof(*t), GFP_ATOMIC);
643         if (t == NULL)
644                 return;
645
646         fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
647                         lu->tgt->node_id, lu->generation, device->max_speed,
648                         lu->command_block_agent_address + SBP2_AGENT_RESET,
649                         &z, sizeof(z), complete_agent_reset_write_no_wait, t);
650 }
651
652 static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
653 {
654         struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
655         unsigned long flags;
656
657         /* serialize with comparisons of lu->generation and card->generation */
658         spin_lock_irqsave(&card->lock, flags);
659         lu->generation = generation;
660         spin_unlock_irqrestore(&card->lock, flags);
661 }
662
663 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
664 {
665         /*
666          * We may access dont_block without taking card->lock here:
667          * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
668          * are currently serialized against each other.
669          * And a wrong result in sbp2_conditionally_block()'s access of
670          * dont_block is rather harmless, it simply misses its first chance.
671          */
672         --lu->tgt->dont_block;
673 }
674
675 /*
676  * Blocks lu->tgt if all of the following conditions are met:
677  *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
678  *     logical units have been finished (indicated by dont_block == 0).
679  *   - lu->generation is stale.
680  *
681  * Note, scsi_block_requests() must be called while holding card->lock,
682  * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
683  * unblock the target.
684  */
685 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
686 {
687         struct sbp2_target *tgt = lu->tgt;
688         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
689         struct Scsi_Host *shost =
690                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
691         unsigned long flags;
692
693         spin_lock_irqsave(&card->lock, flags);
694         if (!tgt->dont_block && !lu->blocked &&
695             lu->generation != card->generation) {
696                 lu->blocked = true;
697                 if (++tgt->blocked == 1)
698                         scsi_block_requests(shost);
699         }
700         spin_unlock_irqrestore(&card->lock, flags);
701 }
702
703 /*
704  * Unblocks lu->tgt as soon as all its logical units can be unblocked.
705  * Note, it is harmless to run scsi_unblock_requests() outside the
706  * card->lock protected section.  On the other hand, running it inside
707  * the section might clash with shost->host_lock.
708  */
709 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
710 {
711         struct sbp2_target *tgt = lu->tgt;
712         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
713         struct Scsi_Host *shost =
714                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
715         unsigned long flags;
716         bool unblock = false;
717
718         spin_lock_irqsave(&card->lock, flags);
719         if (lu->blocked && lu->generation == card->generation) {
720                 lu->blocked = false;
721                 unblock = --tgt->blocked == 0;
722         }
723         spin_unlock_irqrestore(&card->lock, flags);
724
725         if (unblock)
726                 scsi_unblock_requests(shost);
727 }
728
729 /*
730  * Prevents future blocking of tgt and unblocks it.
731  * Note, it is harmless to run scsi_unblock_requests() outside the
732  * card->lock protected section.  On the other hand, running it inside
733  * the section might clash with shost->host_lock.
734  */
735 static void sbp2_unblock(struct sbp2_target *tgt)
736 {
737         struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
738         struct Scsi_Host *shost =
739                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
740         unsigned long flags;
741
742         spin_lock_irqsave(&card->lock, flags);
743         ++tgt->dont_block;
744         spin_unlock_irqrestore(&card->lock, flags);
745
746         scsi_unblock_requests(shost);
747 }
748
749 static int sbp2_lun2int(u16 lun)
750 {
751         struct scsi_lun eight_bytes_lun;
752
753         memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
754         eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
755         eight_bytes_lun.scsi_lun[1] = lun & 0xff;
756
757         return scsilun_to_int(&eight_bytes_lun);
758 }
759
760 static void sbp2_release_target(struct kref *kref)
761 {
762         struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
763         struct sbp2_logical_unit *lu, *next;
764         struct Scsi_Host *shost =
765                 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
766         struct scsi_device *sdev;
767         struct fw_device *device = fw_device(tgt->unit->device.parent);
768
769         /* prevent deadlocks */
770         sbp2_unblock(tgt);
771
772         list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
773                 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
774                 if (sdev) {
775                         scsi_remove_device(sdev);
776                         scsi_device_put(sdev);
777                 }
778                 sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
779                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
780
781                 fw_core_remove_address_handler(&lu->address_handler);
782                 list_del(&lu->link);
783                 kfree(lu);
784         }
785         scsi_remove_host(shost);
786         fw_notify("released %s\n", tgt->bus_id);
787
788         fw_unit_put(tgt->unit);
789         scsi_host_put(shost);
790         fw_device_put(device);
791 }
792
793 static struct workqueue_struct *sbp2_wq;
794
795 /*
796  * Always get the target's kref when scheduling work on one its units.
797  * Each workqueue job is responsible to call sbp2_target_put() upon return.
798  */
799 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
800 {
801         if (queue_delayed_work(sbp2_wq, &lu->work, delay))
802                 kref_get(&lu->tgt->kref);
803 }
804
805 static void sbp2_target_put(struct sbp2_target *tgt)
806 {
807         kref_put(&tgt->kref, sbp2_release_target);
808 }
809
810 static void
811 complete_set_busy_timeout(struct fw_card *card, int rcode,
812                           void *payload, size_t length, void *done)
813 {
814         complete(done);
815 }
816
817 /*
818  * Write retransmit retry values into the BUSY_TIMEOUT register.
819  * - The single-phase retry protocol is supported by all SBP-2 devices, but the
820  *   default retry_limit value is 0 (i.e. never retry transmission). We write a
821  *   saner value after logging into the device.
822  * - The dual-phase retry protocol is optional to implement, and if not
823  *   supported, writes to the dual-phase portion of the register will be
824  *   ignored. We try to write the original 1394-1995 default here.
825  * - In the case of devices that are also SBP-3-compliant, all writes are
826  *   ignored, as the register is read-only, but contains single-phase retry of
827  *   15, which is what we're trying to set for all SBP-2 device anyway, so this
828  *   write attempt is safe and yields more consistent behavior for all devices.
829  *
830  * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
831  * and section 6.4 of the SBP-3 spec for further details.
832  */
833 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
834 {
835         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
836         DECLARE_COMPLETION_ONSTACK(done);
837         struct fw_transaction t;
838         static __be32 busy_timeout;
839
840         busy_timeout = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
841
842         fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
843                         lu->tgt->node_id, lu->generation, device->max_speed,
844                         CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &busy_timeout,
845                         sizeof(busy_timeout), complete_set_busy_timeout, &done);
846         wait_for_completion(&done);
847 }
848
849 static void sbp2_reconnect(struct work_struct *work);
850
851 static void sbp2_login(struct work_struct *work)
852 {
853         struct sbp2_logical_unit *lu =
854                 container_of(work, struct sbp2_logical_unit, work.work);
855         struct sbp2_target *tgt = lu->tgt;
856         struct fw_device *device = fw_device(tgt->unit->device.parent);
857         struct Scsi_Host *shost;
858         struct scsi_device *sdev;
859         struct sbp2_login_response response;
860         int generation, node_id, local_node_id;
861
862         if (fw_device_is_shutdown(device))
863                 goto out;
864
865         generation    = device->generation;
866         smp_rmb();    /* node_id must not be older than generation */
867         node_id       = device->node_id;
868         local_node_id = device->card->node_id;
869
870         /* If this is a re-login attempt, log out, or we might be rejected. */
871         if (lu->has_sdev)
872                 sbp2_send_management_orb(lu, device->node_id, generation,
873                                 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
874
875         if (sbp2_send_management_orb(lu, node_id, generation,
876                                 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
877                 if (lu->retries++ < 5) {
878                         sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
879                 } else {
880                         fw_error("%s: failed to login to LUN %04x\n",
881                                  tgt->bus_id, lu->lun);
882                         /* Let any waiting I/O fail from now on. */
883                         sbp2_unblock(lu->tgt);
884                 }
885                 goto out;
886         }
887
888         tgt->node_id      = node_id;
889         tgt->address_high = local_node_id << 16;
890         sbp2_set_generation(lu, generation);
891
892         lu->command_block_agent_address =
893                 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
894                       << 32) | be32_to_cpu(response.command_block_agent.low);
895         lu->login_id = be32_to_cpu(response.misc) & 0xffff;
896
897         fw_notify("%s: logged in to LUN %04x (%d retries)\n",
898                   tgt->bus_id, lu->lun, lu->retries);
899
900         /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
901         sbp2_set_busy_timeout(lu);
902
903         PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
904         sbp2_agent_reset(lu);
905
906         /* This was a re-login. */
907         if (lu->has_sdev) {
908                 sbp2_cancel_orbs(lu);
909                 sbp2_conditionally_unblock(lu);
910                 goto out;
911         }
912
913         if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
914                 ssleep(SBP2_INQUIRY_DELAY);
915
916         shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
917         sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
918         /*
919          * FIXME:  We are unable to perform reconnects while in sbp2_login().
920          * Therefore __scsi_add_device() will get into trouble if a bus reset
921          * happens in parallel.  It will either fail or leave us with an
922          * unusable sdev.  As a workaround we check for this and retry the
923          * whole login and SCSI probing.
924          */
925
926         /* Reported error during __scsi_add_device() */
927         if (IS_ERR(sdev))
928                 goto out_logout_login;
929
930         /* Unreported error during __scsi_add_device() */
931         smp_rmb(); /* get current card generation */
932         if (generation != device->card->generation) {
933                 scsi_remove_device(sdev);
934                 scsi_device_put(sdev);
935                 goto out_logout_login;
936         }
937
938         /* No error during __scsi_add_device() */
939         lu->has_sdev = true;
940         scsi_device_put(sdev);
941         sbp2_allow_block(lu);
942         goto out;
943
944  out_logout_login:
945         smp_rmb(); /* generation may have changed */
946         generation = device->generation;
947         smp_rmb(); /* node_id must not be older than generation */
948
949         sbp2_send_management_orb(lu, device->node_id, generation,
950                                  SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
951         /*
952          * If a bus reset happened, sbp2_update will have requeued
953          * lu->work already.  Reset the work from reconnect to login.
954          */
955         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
956  out:
957         sbp2_target_put(tgt);
958 }
959
960 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
961 {
962         struct sbp2_logical_unit *lu;
963
964         lu = kmalloc(sizeof(*lu), GFP_KERNEL);
965         if (!lu)
966                 return -ENOMEM;
967
968         lu->address_handler.length           = 0x100;
969         lu->address_handler.address_callback = sbp2_status_write;
970         lu->address_handler.callback_data    = lu;
971
972         if (fw_core_add_address_handler(&lu->address_handler,
973                                         &fw_high_memory_region) < 0) {
974                 kfree(lu);
975                 return -ENOMEM;
976         }
977
978         lu->tgt      = tgt;
979         lu->lun      = lun_entry & 0xffff;
980         lu->retries  = 0;
981         lu->has_sdev = false;
982         lu->blocked  = false;
983         ++tgt->dont_block;
984         INIT_LIST_HEAD(&lu->orb_list);
985         INIT_DELAYED_WORK(&lu->work, sbp2_login);
986
987         list_add_tail(&lu->link, &tgt->lu_list);
988         return 0;
989 }
990
991 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
992 {
993         struct fw_csr_iterator ci;
994         int key, value;
995
996         fw_csr_iterator_init(&ci, directory);
997         while (fw_csr_iterator_next(&ci, &key, &value))
998                 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
999                     sbp2_add_logical_unit(tgt, value) < 0)
1000                         return -ENOMEM;
1001         return 0;
1002 }
1003
1004 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1005                               u32 *model, u32 *firmware_revision)
1006 {
1007         struct fw_csr_iterator ci;
1008         int key, value;
1009         unsigned int timeout;
1010
1011         fw_csr_iterator_init(&ci, directory);
1012         while (fw_csr_iterator_next(&ci, &key, &value)) {
1013                 switch (key) {
1014
1015                 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1016                         tgt->management_agent_address =
1017                                         CSR_REGISTER_BASE + 4 * value;
1018                         break;
1019
1020                 case CSR_DIRECTORY_ID:
1021                         tgt->directory_id = value;
1022                         break;
1023
1024                 case CSR_MODEL:
1025                         *model = value;
1026                         break;
1027
1028                 case SBP2_CSR_FIRMWARE_REVISION:
1029                         *firmware_revision = value;
1030                         break;
1031
1032                 case SBP2_CSR_UNIT_CHARACTERISTICS:
1033                         /* the timeout value is stored in 500ms units */
1034                         timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1035                         timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1036                         tgt->mgt_orb_timeout =
1037                                   min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1038
1039                         if (timeout > tgt->mgt_orb_timeout)
1040                                 fw_notify("%s: config rom contains %ds "
1041                                           "management ORB timeout, limiting "
1042                                           "to %ds\n", tgt->bus_id,
1043                                           timeout / 1000,
1044                                           tgt->mgt_orb_timeout / 1000);
1045                         break;
1046
1047                 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1048                         if (sbp2_add_logical_unit(tgt, value) < 0)
1049                                 return -ENOMEM;
1050                         break;
1051
1052                 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1053                         if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
1054                                 return -ENOMEM;
1055                         break;
1056                 }
1057         }
1058         return 0;
1059 }
1060
1061 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1062                                   u32 firmware_revision)
1063 {
1064         int i;
1065         unsigned int w = sbp2_param_workarounds;
1066
1067         if (w)
1068                 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1069                           "if you need the workarounds parameter for %s\n",
1070                           tgt->bus_id);
1071
1072         if (w & SBP2_WORKAROUND_OVERRIDE)
1073                 goto out;
1074
1075         for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1076
1077                 if (sbp2_workarounds_table[i].firmware_revision !=
1078                     (firmware_revision & 0xffffff00))
1079                         continue;
1080
1081                 if (sbp2_workarounds_table[i].model != model &&
1082                     sbp2_workarounds_table[i].model != ~0)
1083                         continue;
1084
1085                 w |= sbp2_workarounds_table[i].workarounds;
1086                 break;
1087         }
1088  out:
1089         if (w)
1090                 fw_notify("Workarounds for %s: 0x%x "
1091                           "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1092                           tgt->bus_id, w, firmware_revision, model);
1093         tgt->workarounds = w;
1094 }
1095
1096 static struct scsi_host_template scsi_driver_template;
1097
1098 static int sbp2_probe(struct device *dev)
1099 {
1100         struct fw_unit *unit = fw_unit(dev);
1101         struct fw_device *device = fw_device(unit->device.parent);
1102         struct sbp2_target *tgt;
1103         struct sbp2_logical_unit *lu;
1104         struct Scsi_Host *shost;
1105         u32 model, firmware_revision;
1106
1107         shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1108         if (shost == NULL)
1109                 return -ENOMEM;
1110
1111         tgt = (struct sbp2_target *)shost->hostdata;
1112         unit->device.driver_data = tgt;
1113         tgt->unit = unit;
1114         kref_init(&tgt->kref);
1115         INIT_LIST_HEAD(&tgt->lu_list);
1116         tgt->bus_id = unit->device.bus_id;
1117
1118         if (fw_device_enable_phys_dma(device) < 0)
1119                 goto fail_shost_put;
1120
1121         if (scsi_add_host(shost, &unit->device) < 0)
1122                 goto fail_shost_put;
1123
1124         fw_device_get(device);
1125         fw_unit_get(unit);
1126
1127         /* Initialize to values that won't match anything in our table. */
1128         firmware_revision = 0xff000000;
1129         model = 0xff000000;
1130
1131         /* implicit directory ID */
1132         tgt->directory_id = ((unit->directory - device->config_rom) * 4
1133                              + CSR_CONFIG_ROM) & 0xffffff;
1134
1135         if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1136                                &firmware_revision) < 0)
1137                 goto fail_tgt_put;
1138
1139         sbp2_init_workarounds(tgt, model, firmware_revision);
1140
1141         /* Do the login in a workqueue so we can easily reschedule retries. */
1142         list_for_each_entry(lu, &tgt->lu_list, link)
1143                 sbp2_queue_work(lu, 0);
1144         return 0;
1145
1146  fail_tgt_put:
1147         sbp2_target_put(tgt);
1148         return -ENOMEM;
1149
1150  fail_shost_put:
1151         scsi_host_put(shost);
1152         return -ENOMEM;
1153 }
1154
1155 static int sbp2_remove(struct device *dev)
1156 {
1157         struct fw_unit *unit = fw_unit(dev);
1158         struct sbp2_target *tgt = unit->device.driver_data;
1159
1160         sbp2_target_put(tgt);
1161         return 0;
1162 }
1163
1164 static void sbp2_reconnect(struct work_struct *work)
1165 {
1166         struct sbp2_logical_unit *lu =
1167                 container_of(work, struct sbp2_logical_unit, work.work);
1168         struct sbp2_target *tgt = lu->tgt;
1169         struct fw_device *device = fw_device(tgt->unit->device.parent);
1170         int generation, node_id, local_node_id;
1171
1172         if (fw_device_is_shutdown(device))
1173                 goto out;
1174
1175         generation    = device->generation;
1176         smp_rmb();    /* node_id must not be older than generation */
1177         node_id       = device->node_id;
1178         local_node_id = device->card->node_id;
1179
1180         if (sbp2_send_management_orb(lu, node_id, generation,
1181                                      SBP2_RECONNECT_REQUEST,
1182                                      lu->login_id, NULL) < 0) {
1183                 /*
1184                  * If reconnect was impossible even though we are in the
1185                  * current generation, fall back and try to log in again.
1186                  *
1187                  * We could check for "Function rejected" status, but
1188                  * looking at the bus generation as simpler and more general.
1189                  */
1190                 smp_rmb(); /* get current card generation */
1191                 if (generation == device->card->generation ||
1192                     lu->retries++ >= 5) {
1193                         fw_error("%s: failed to reconnect\n", tgt->bus_id);
1194                         lu->retries = 0;
1195                         PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1196                 }
1197                 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1198                 goto out;
1199         }
1200
1201         tgt->node_id      = node_id;
1202         tgt->address_high = local_node_id << 16;
1203         sbp2_set_generation(lu, generation);
1204
1205         fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1206                   tgt->bus_id, lu->lun, lu->retries);
1207
1208         sbp2_agent_reset(lu);
1209         sbp2_cancel_orbs(lu);
1210         sbp2_conditionally_unblock(lu);
1211  out:
1212         sbp2_target_put(tgt);
1213 }
1214
1215 static void sbp2_update(struct fw_unit *unit)
1216 {
1217         struct sbp2_target *tgt = unit->device.driver_data;
1218         struct sbp2_logical_unit *lu;
1219
1220         fw_device_enable_phys_dma(fw_device(unit->device.parent));
1221
1222         /*
1223          * Fw-core serializes sbp2_update() against sbp2_remove().
1224          * Iteration over tgt->lu_list is therefore safe here.
1225          */
1226         list_for_each_entry(lu, &tgt->lu_list, link) {
1227                 sbp2_conditionally_block(lu);
1228                 lu->retries = 0;
1229                 sbp2_queue_work(lu, 0);
1230         }
1231 }
1232
1233 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1234 #define SBP2_SW_VERSION_ENTRY   0x00010483
1235
1236 static const struct fw_device_id sbp2_id_table[] = {
1237         {
1238                 .match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1239                 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1240                 .version      = SBP2_SW_VERSION_ENTRY,
1241         },
1242         { }
1243 };
1244
1245 static struct fw_driver sbp2_driver = {
1246         .driver   = {
1247                 .owner  = THIS_MODULE,
1248                 .name   = sbp2_driver_name,
1249                 .bus    = &fw_bus_type,
1250                 .probe  = sbp2_probe,
1251                 .remove = sbp2_remove,
1252         },
1253         .update   = sbp2_update,
1254         .id_table = sbp2_id_table,
1255 };
1256
1257 static unsigned int
1258 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1259 {
1260         int sam_status;
1261
1262         sense_data[0] = 0x70;
1263         sense_data[1] = 0x0;
1264         sense_data[2] = sbp2_status[1];
1265         sense_data[3] = sbp2_status[4];
1266         sense_data[4] = sbp2_status[5];
1267         sense_data[5] = sbp2_status[6];
1268         sense_data[6] = sbp2_status[7];
1269         sense_data[7] = 10;
1270         sense_data[8] = sbp2_status[8];
1271         sense_data[9] = sbp2_status[9];
1272         sense_data[10] = sbp2_status[10];
1273         sense_data[11] = sbp2_status[11];
1274         sense_data[12] = sbp2_status[2];
1275         sense_data[13] = sbp2_status[3];
1276         sense_data[14] = sbp2_status[12];
1277         sense_data[15] = sbp2_status[13];
1278
1279         sam_status = sbp2_status[0] & 0x3f;
1280
1281         switch (sam_status) {
1282         case SAM_STAT_GOOD:
1283         case SAM_STAT_CHECK_CONDITION:
1284         case SAM_STAT_CONDITION_MET:
1285         case SAM_STAT_BUSY:
1286         case SAM_STAT_RESERVATION_CONFLICT:
1287         case SAM_STAT_COMMAND_TERMINATED:
1288                 return DID_OK << 16 | sam_status;
1289
1290         default:
1291                 return DID_ERROR << 16;
1292         }
1293 }
1294
1295 static void
1296 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1297 {
1298         struct sbp2_command_orb *orb =
1299                 container_of(base_orb, struct sbp2_command_orb, base);
1300         struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1301         int result;
1302
1303         if (status != NULL) {
1304                 if (STATUS_GET_DEAD(*status))
1305                         sbp2_agent_reset_no_wait(orb->lu);
1306
1307                 switch (STATUS_GET_RESPONSE(*status)) {
1308                 case SBP2_STATUS_REQUEST_COMPLETE:
1309                         result = DID_OK << 16;
1310                         break;
1311                 case SBP2_STATUS_TRANSPORT_FAILURE:
1312                         result = DID_BUS_BUSY << 16;
1313                         break;
1314                 case SBP2_STATUS_ILLEGAL_REQUEST:
1315                 case SBP2_STATUS_VENDOR_DEPENDENT:
1316                 default:
1317                         result = DID_ERROR << 16;
1318                         break;
1319                 }
1320
1321                 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1322                         result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1323                                                            orb->cmd->sense_buffer);
1324         } else {
1325                 /*
1326                  * If the orb completes with status == NULL, something
1327                  * went wrong, typically a bus reset happened mid-orb
1328                  * or when sending the write (less likely).
1329                  */
1330                 result = DID_BUS_BUSY << 16;
1331                 sbp2_conditionally_block(orb->lu);
1332         }
1333
1334         dma_unmap_single(device->card->device, orb->base.request_bus,
1335                          sizeof(orb->request), DMA_TO_DEVICE);
1336
1337         if (scsi_sg_count(orb->cmd) > 0)
1338                 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1339                              scsi_sg_count(orb->cmd),
1340                              orb->cmd->sc_data_direction);
1341
1342         if (orb->page_table_bus != 0)
1343                 dma_unmap_single(device->card->device, orb->page_table_bus,
1344                                  sizeof(orb->page_table), DMA_TO_DEVICE);
1345
1346         orb->cmd->result = result;
1347         orb->done(orb->cmd);
1348 }
1349
1350 static int
1351 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1352                      struct sbp2_logical_unit *lu)
1353 {
1354         struct scatterlist *sg;
1355         int sg_len, l, i, j, count;
1356         dma_addr_t sg_addr;
1357
1358         sg = scsi_sglist(orb->cmd);
1359         count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1360                            orb->cmd->sc_data_direction);
1361         if (count == 0)
1362                 goto fail;
1363
1364         /*
1365          * Handle the special case where there is only one element in
1366          * the scatter list by converting it to an immediate block
1367          * request. This is also a workaround for broken devices such
1368          * as the second generation iPod which doesn't support page
1369          * tables.
1370          */
1371         if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1372                 orb->request.data_descriptor.high =
1373                         cpu_to_be32(lu->tgt->address_high);
1374                 orb->request.data_descriptor.low  =
1375                         cpu_to_be32(sg_dma_address(sg));
1376                 orb->request.misc |=
1377                         cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1378                 return 0;
1379         }
1380
1381         /*
1382          * Convert the scatterlist to an sbp2 page table.  If any
1383          * scatterlist entries are too big for sbp2, we split them as we
1384          * go.  Even if we ask the block I/O layer to not give us sg
1385          * elements larger than 65535 bytes, some IOMMUs may merge sg elements
1386          * during DMA mapping, and Linux currently doesn't prevent this.
1387          */
1388         for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
1389                 sg_len = sg_dma_len(sg);
1390                 sg_addr = sg_dma_address(sg);
1391                 while (sg_len) {
1392                         /* FIXME: This won't get us out of the pinch. */
1393                         if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
1394                                 fw_error("page table overflow\n");
1395                                 goto fail_page_table;
1396                         }
1397                         l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
1398                         orb->page_table[j].low = cpu_to_be32(sg_addr);
1399                         orb->page_table[j].high = cpu_to_be32(l << 16);
1400                         sg_addr += l;
1401                         sg_len -= l;
1402                         j++;
1403                 }
1404         }
1405
1406         orb->page_table_bus =
1407                 dma_map_single(device->card->device, orb->page_table,
1408                                sizeof(orb->page_table), DMA_TO_DEVICE);
1409         if (dma_mapping_error(orb->page_table_bus))
1410                 goto fail_page_table;
1411
1412         /*
1413          * The data_descriptor pointer is the one case where we need
1414          * to fill in the node ID part of the address.  All other
1415          * pointers assume that the data referenced reside on the
1416          * initiator (i.e. us), but data_descriptor can refer to data
1417          * on other nodes so we need to put our ID in descriptor.high.
1418          */
1419         orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1420         orb->request.data_descriptor.low  = cpu_to_be32(orb->page_table_bus);
1421         orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1422                                          COMMAND_ORB_DATA_SIZE(j));
1423
1424         return 0;
1425
1426  fail_page_table:
1427         dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1428                      orb->cmd->sc_data_direction);
1429  fail:
1430         return -ENOMEM;
1431 }
1432
1433 /* SCSI stack integration */
1434
1435 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1436 {
1437         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1438         struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1439         struct sbp2_command_orb *orb;
1440         unsigned int max_payload;
1441         int retval = SCSI_MLQUEUE_HOST_BUSY;
1442
1443         /*
1444          * Bidirectional commands are not yet implemented, and unknown
1445          * transfer direction not handled.
1446          */
1447         if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1448                 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1449                 cmd->result = DID_ERROR << 16;
1450                 done(cmd);
1451                 return 0;
1452         }
1453
1454         orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1455         if (orb == NULL) {
1456                 fw_notify("failed to alloc orb\n");
1457                 return SCSI_MLQUEUE_HOST_BUSY;
1458         }
1459
1460         /* Initialize rcode to something not RCODE_COMPLETE. */
1461         orb->base.rcode = -1;
1462         kref_init(&orb->base.kref);
1463
1464         orb->lu   = lu;
1465         orb->done = done;
1466         orb->cmd  = cmd;
1467
1468         orb->request.next.high   = cpu_to_be32(SBP2_ORB_NULL);
1469         /*
1470          * At speed 100 we can do 512 bytes per packet, at speed 200,
1471          * 1024 bytes per packet etc.  The SBP-2 max_payload field
1472          * specifies the max payload size as 2 ^ (max_payload + 2), so
1473          * if we set this to max_speed + 7, we get the right value.
1474          */
1475         max_payload = min(device->max_speed + 7,
1476                           device->card->max_receive - 1);
1477         orb->request.misc = cpu_to_be32(
1478                 COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1479                 COMMAND_ORB_SPEED(device->max_speed) |
1480                 COMMAND_ORB_NOTIFY);
1481
1482         if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1483                 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1484
1485         if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1486                 goto out;
1487
1488         memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
1489
1490         orb->base.callback = complete_command_orb;
1491         orb->base.request_bus =
1492                 dma_map_single(device->card->device, &orb->request,
1493                                sizeof(orb->request), DMA_TO_DEVICE);
1494         if (dma_mapping_error(orb->base.request_bus))
1495                 goto out;
1496
1497         sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
1498                       lu->command_block_agent_address + SBP2_ORB_POINTER);
1499         retval = 0;
1500  out:
1501         kref_put(&orb->base.kref, free_orb);
1502         return retval;
1503 }
1504
1505 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1506 {
1507         struct sbp2_logical_unit *lu = sdev->hostdata;
1508
1509         /* (Re-)Adding logical units via the SCSI stack is not supported. */
1510         if (!lu)
1511                 return -ENOSYS;
1512
1513         sdev->allow_restart = 1;
1514
1515         /* SBP-2 requires quadlet alignment of the data buffers. */
1516         blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1517
1518         if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1519                 sdev->inquiry_len = 36;
1520
1521         return 0;
1522 }
1523
1524 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1525 {
1526         struct sbp2_logical_unit *lu = sdev->hostdata;
1527
1528         sdev->use_10_for_rw = 1;
1529
1530         if (sdev->type == TYPE_ROM)
1531                 sdev->use_10_for_ms = 1;
1532
1533         if (sdev->type == TYPE_DISK &&
1534             lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1535                 sdev->skip_ms_page_8 = 1;
1536
1537         if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1538                 sdev->fix_capacity = 1;
1539
1540         if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1541                 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1542
1543         return 0;
1544 }
1545
1546 /*
1547  * Called by scsi stack when something has really gone wrong.  Usually
1548  * called when a command has timed-out for some reason.
1549  */
1550 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1551 {
1552         struct sbp2_logical_unit *lu = cmd->device->hostdata;
1553
1554         fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1555         sbp2_agent_reset(lu);
1556         sbp2_cancel_orbs(lu);
1557
1558         return SUCCESS;
1559 }
1560
1561 /*
1562  * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1563  * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
1564  *
1565  * This is the concatenation of target port identifier and logical unit
1566  * identifier as per SAM-2...SAM-4 annex A.
1567  */
1568 static ssize_t
1569 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1570                             char *buf)
1571 {
1572         struct scsi_device *sdev = to_scsi_device(dev);
1573         struct sbp2_logical_unit *lu;
1574         struct fw_device *device;
1575
1576         if (!sdev)
1577                 return 0;
1578
1579         lu = sdev->hostdata;
1580         device = fw_device(lu->tgt->unit->device.parent);
1581
1582         return sprintf(buf, "%08x%08x:%06x:%04x\n",
1583                         device->config_rom[3], device->config_rom[4],
1584                         lu->tgt->directory_id, lu->lun);
1585 }
1586
1587 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1588
1589 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1590         &dev_attr_ieee1394_id,
1591         NULL
1592 };
1593
1594 static struct scsi_host_template scsi_driver_template = {
1595         .module                 = THIS_MODULE,
1596         .name                   = "SBP-2 IEEE-1394",
1597         .proc_name              = sbp2_driver_name,
1598         .queuecommand           = sbp2_scsi_queuecommand,
1599         .slave_alloc            = sbp2_scsi_slave_alloc,
1600         .slave_configure        = sbp2_scsi_slave_configure,
1601         .eh_abort_handler       = sbp2_scsi_abort,
1602         .this_id                = -1,
1603         .sg_tablesize           = SG_ALL,
1604         .use_clustering         = ENABLE_CLUSTERING,
1605         .cmd_per_lun            = 1,
1606         .can_queue              = 1,
1607         .sdev_attrs             = sbp2_scsi_sysfs_attrs,
1608 };
1609
1610 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1611 MODULE_DESCRIPTION("SCSI over IEEE1394");
1612 MODULE_LICENSE("GPL");
1613 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1614
1615 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1616 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1617 MODULE_ALIAS("sbp2");
1618 #endif
1619
1620 static int __init sbp2_init(void)
1621 {
1622         sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1623         if (!sbp2_wq)
1624                 return -ENOMEM;
1625
1626         return driver_register(&sbp2_driver.driver);
1627 }
1628
1629 static void __exit sbp2_cleanup(void)
1630 {
1631         driver_unregister(&sbp2_driver.driver);
1632         destroy_workqueue(sbp2_wq);
1633 }
1634
1635 module_init(sbp2_init);
1636 module_exit(sbp2_cleanup);