ondemand: Solve a big performance issue by counting IOWAIT time as busy
[safe/jmp/linux-2.6] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
38
39 /*
40  * The polling frequency of this governor depends on the capability of
41  * the processor. Default polling frequency is 1000 times the transition
42  * latency of the processor. The governor will work on any processor with
43  * transition latency <= 10mS, using appropriate sampling
44  * rate.
45  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46  * this governor will not work.
47  * All times here are in uS.
48  */
49 #define MIN_SAMPLING_RATE_RATIO                 (2)
50
51 static unsigned int min_sampling_rate;
52
53 #define LATENCY_MULTIPLIER                      (1000)
54 #define MIN_LATENCY_MULTIPLIER                  (100)
55 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
56
57 static void do_dbs_timer(struct work_struct *work);
58 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
59                                 unsigned int event);
60
61 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
62 static
63 #endif
64 struct cpufreq_governor cpufreq_gov_ondemand = {
65        .name                   = "ondemand",
66        .governor               = cpufreq_governor_dbs,
67        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
68        .owner                  = THIS_MODULE,
69 };
70
71 /* Sampling types */
72 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
73
74 struct cpu_dbs_info_s {
75         cputime64_t prev_cpu_idle;
76         cputime64_t prev_cpu_iowait;
77         cputime64_t prev_cpu_wall;
78         cputime64_t prev_cpu_nice;
79         struct cpufreq_policy *cur_policy;
80         struct delayed_work work;
81         struct cpufreq_frequency_table *freq_table;
82         unsigned int freq_lo;
83         unsigned int freq_lo_jiffies;
84         unsigned int freq_hi_jiffies;
85         int cpu;
86         unsigned int sample_type:1;
87         /*
88          * percpu mutex that serializes governor limit change with
89          * do_dbs_timer invocation. We do not want do_dbs_timer to run
90          * when user is changing the governor or limits.
91          */
92         struct mutex timer_mutex;
93 };
94 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
95
96 static unsigned int dbs_enable; /* number of CPUs using this policy */
97
98 /*
99  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
100  * different CPUs. It protects dbs_enable in governor start/stop.
101  */
102 static DEFINE_MUTEX(dbs_mutex);
103
104 static struct workqueue_struct  *kondemand_wq;
105
106 static struct dbs_tuners {
107         unsigned int sampling_rate;
108         unsigned int up_threshold;
109         unsigned int down_differential;
110         unsigned int ignore_nice;
111         unsigned int powersave_bias;
112 } dbs_tuners_ins = {
113         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
114         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
115         .ignore_nice = 0,
116         .powersave_bias = 0,
117 };
118
119 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
120                                                         cputime64_t *wall)
121 {
122         cputime64_t idle_time;
123         cputime64_t cur_wall_time;
124         cputime64_t busy_time;
125
126         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
127         busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
128                         kstat_cpu(cpu).cpustat.system);
129
130         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
131         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
132         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
133         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
134
135         idle_time = cputime64_sub(cur_wall_time, busy_time);
136         if (wall)
137                 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
138
139         return (cputime64_t)jiffies_to_usecs(idle_time);
140 }
141
142 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
143 {
144         u64 idle_time = get_cpu_idle_time_us(cpu, wall);
145
146         if (idle_time == -1ULL)
147                 return get_cpu_idle_time_jiffy(cpu, wall);
148
149         return idle_time;
150 }
151
152 static inline cputime64_t get_cpu_iowait_time(unsigned int cpu, cputime64_t *wall)
153 {
154         u64 iowait_time = get_cpu_iowait_time_us(cpu, wall);
155
156         if (iowait_time == -1ULL)
157                 return 0;
158
159         return iowait_time;
160 }
161
162 /*
163  * Find right freq to be set now with powersave_bias on.
164  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
165  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
166  */
167 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
168                                           unsigned int freq_next,
169                                           unsigned int relation)
170 {
171         unsigned int freq_req, freq_reduc, freq_avg;
172         unsigned int freq_hi, freq_lo;
173         unsigned int index = 0;
174         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
175         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
176                                                    policy->cpu);
177
178         if (!dbs_info->freq_table) {
179                 dbs_info->freq_lo = 0;
180                 dbs_info->freq_lo_jiffies = 0;
181                 return freq_next;
182         }
183
184         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
185                         relation, &index);
186         freq_req = dbs_info->freq_table[index].frequency;
187         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
188         freq_avg = freq_req - freq_reduc;
189
190         /* Find freq bounds for freq_avg in freq_table */
191         index = 0;
192         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
193                         CPUFREQ_RELATION_H, &index);
194         freq_lo = dbs_info->freq_table[index].frequency;
195         index = 0;
196         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
197                         CPUFREQ_RELATION_L, &index);
198         freq_hi = dbs_info->freq_table[index].frequency;
199
200         /* Find out how long we have to be in hi and lo freqs */
201         if (freq_hi == freq_lo) {
202                 dbs_info->freq_lo = 0;
203                 dbs_info->freq_lo_jiffies = 0;
204                 return freq_lo;
205         }
206         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
207         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
208         jiffies_hi += ((freq_hi - freq_lo) / 2);
209         jiffies_hi /= (freq_hi - freq_lo);
210         jiffies_lo = jiffies_total - jiffies_hi;
211         dbs_info->freq_lo = freq_lo;
212         dbs_info->freq_lo_jiffies = jiffies_lo;
213         dbs_info->freq_hi_jiffies = jiffies_hi;
214         return freq_hi;
215 }
216
217 static void ondemand_powersave_bias_init_cpu(int cpu)
218 {
219         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
220         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
221         dbs_info->freq_lo = 0;
222 }
223
224 static void ondemand_powersave_bias_init(void)
225 {
226         int i;
227         for_each_online_cpu(i) {
228                 ondemand_powersave_bias_init_cpu(i);
229         }
230 }
231
232 /************************** sysfs interface ************************/
233
234 static ssize_t show_sampling_rate_max(struct kobject *kobj,
235                                       struct attribute *attr, char *buf)
236 {
237         printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
238                "sysfs file is deprecated - used by: %s\n", current->comm);
239         return sprintf(buf, "%u\n", -1U);
240 }
241
242 static ssize_t show_sampling_rate_min(struct kobject *kobj,
243                                       struct attribute *attr, char *buf)
244 {
245         return sprintf(buf, "%u\n", min_sampling_rate);
246 }
247
248 #define define_one_ro(_name)            \
249 static struct global_attr _name =       \
250 __ATTR(_name, 0444, show_##_name, NULL)
251
252 define_one_ro(sampling_rate_max);
253 define_one_ro(sampling_rate_min);
254
255 /* cpufreq_ondemand Governor Tunables */
256 #define show_one(file_name, object)                                     \
257 static ssize_t show_##file_name                                         \
258 (struct kobject *kobj, struct attribute *attr, char *buf)              \
259 {                                                                       \
260         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
261 }
262 show_one(sampling_rate, sampling_rate);
263 show_one(up_threshold, up_threshold);
264 show_one(ignore_nice_load, ignore_nice);
265 show_one(powersave_bias, powersave_bias);
266
267 /*** delete after deprecation time ***/
268
269 #define DEPRECATION_MSG(file_name)                                      \
270         printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "       \
271                     "interface is deprecated - " #file_name "\n");
272
273 #define show_one_old(file_name)                                         \
274 static ssize_t show_##file_name##_old                                   \
275 (struct cpufreq_policy *unused, char *buf)                              \
276 {                                                                       \
277         printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "       \
278                     "interface is deprecated - " #file_name "\n");      \
279         return show_##file_name(NULL, NULL, buf);                       \
280 }
281 show_one_old(sampling_rate);
282 show_one_old(up_threshold);
283 show_one_old(ignore_nice_load);
284 show_one_old(powersave_bias);
285 show_one_old(sampling_rate_min);
286 show_one_old(sampling_rate_max);
287
288 #define define_one_ro_old(object, _name)       \
289 static struct freq_attr object =               \
290 __ATTR(_name, 0444, show_##_name##_old, NULL)
291
292 define_one_ro_old(sampling_rate_min_old, sampling_rate_min);
293 define_one_ro_old(sampling_rate_max_old, sampling_rate_max);
294
295 /*** delete after deprecation time ***/
296
297 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
298                                    const char *buf, size_t count)
299 {
300         unsigned int input;
301         int ret;
302         ret = sscanf(buf, "%u", &input);
303         if (ret != 1)
304                 return -EINVAL;
305
306         mutex_lock(&dbs_mutex);
307         dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
308         mutex_unlock(&dbs_mutex);
309
310         return count;
311 }
312
313 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
314                                   const char *buf, size_t count)
315 {
316         unsigned int input;
317         int ret;
318         ret = sscanf(buf, "%u", &input);
319
320         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
321                         input < MIN_FREQUENCY_UP_THRESHOLD) {
322                 return -EINVAL;
323         }
324
325         mutex_lock(&dbs_mutex);
326         dbs_tuners_ins.up_threshold = input;
327         mutex_unlock(&dbs_mutex);
328
329         return count;
330 }
331
332 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
333                                       const char *buf, size_t count)
334 {
335         unsigned int input;
336         int ret;
337
338         unsigned int j;
339
340         ret = sscanf(buf, "%u", &input);
341         if (ret != 1)
342                 return -EINVAL;
343
344         if (input > 1)
345                 input = 1;
346
347         mutex_lock(&dbs_mutex);
348         if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
349                 mutex_unlock(&dbs_mutex);
350                 return count;
351         }
352         dbs_tuners_ins.ignore_nice = input;
353
354         /* we need to re-evaluate prev_cpu_idle */
355         for_each_online_cpu(j) {
356                 struct cpu_dbs_info_s *dbs_info;
357                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
358                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
359                                                 &dbs_info->prev_cpu_wall);
360                 if (dbs_tuners_ins.ignore_nice)
361                         dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
362
363         }
364         mutex_unlock(&dbs_mutex);
365
366         return count;
367 }
368
369 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
370                                     const char *buf, size_t count)
371 {
372         unsigned int input;
373         int ret;
374         ret = sscanf(buf, "%u", &input);
375
376         if (ret != 1)
377                 return -EINVAL;
378
379         if (input > 1000)
380                 input = 1000;
381
382         mutex_lock(&dbs_mutex);
383         dbs_tuners_ins.powersave_bias = input;
384         ondemand_powersave_bias_init();
385         mutex_unlock(&dbs_mutex);
386
387         return count;
388 }
389
390 #define define_one_rw(_name) \
391 static struct global_attr _name = \
392 __ATTR(_name, 0644, show_##_name, store_##_name)
393
394 define_one_rw(sampling_rate);
395 define_one_rw(up_threshold);
396 define_one_rw(ignore_nice_load);
397 define_one_rw(powersave_bias);
398
399 static struct attribute *dbs_attributes[] = {
400         &sampling_rate_max.attr,
401         &sampling_rate_min.attr,
402         &sampling_rate.attr,
403         &up_threshold.attr,
404         &ignore_nice_load.attr,
405         &powersave_bias.attr,
406         NULL
407 };
408
409 static struct attribute_group dbs_attr_group = {
410         .attrs = dbs_attributes,
411         .name = "ondemand",
412 };
413
414 /*** delete after deprecation time ***/
415
416 #define write_one_old(file_name)                                        \
417 static ssize_t store_##file_name##_old                                  \
418 (struct cpufreq_policy *unused, const char *buf, size_t count)          \
419 {                                                                       \
420        printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "        \
421                    "interface is deprecated - " #file_name "\n");       \
422        return store_##file_name(NULL, NULL, buf, count);                \
423 }
424 write_one_old(sampling_rate);
425 write_one_old(up_threshold);
426 write_one_old(ignore_nice_load);
427 write_one_old(powersave_bias);
428
429 #define define_one_rw_old(object, _name)       \
430 static struct freq_attr object =               \
431 __ATTR(_name, 0644, show_##_name##_old, store_##_name##_old)
432
433 define_one_rw_old(sampling_rate_old, sampling_rate);
434 define_one_rw_old(up_threshold_old, up_threshold);
435 define_one_rw_old(ignore_nice_load_old, ignore_nice_load);
436 define_one_rw_old(powersave_bias_old, powersave_bias);
437
438 static struct attribute *dbs_attributes_old[] = {
439        &sampling_rate_max_old.attr,
440        &sampling_rate_min_old.attr,
441        &sampling_rate_old.attr,
442        &up_threshold_old.attr,
443        &ignore_nice_load_old.attr,
444        &powersave_bias_old.attr,
445        NULL
446 };
447
448 static struct attribute_group dbs_attr_group_old = {
449        .attrs = dbs_attributes_old,
450        .name = "ondemand",
451 };
452
453 /*** delete after deprecation time ***/
454
455 /************************** sysfs end ************************/
456
457 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
458 {
459         unsigned int max_load_freq;
460
461         struct cpufreq_policy *policy;
462         unsigned int j;
463
464         this_dbs_info->freq_lo = 0;
465         policy = this_dbs_info->cur_policy;
466
467         /*
468          * Every sampling_rate, we check, if current idle time is less
469          * than 20% (default), then we try to increase frequency
470          * Every sampling_rate, we look for a the lowest
471          * frequency which can sustain the load while keeping idle time over
472          * 30%. If such a frequency exist, we try to decrease to this frequency.
473          *
474          * Any frequency increase takes it to the maximum frequency.
475          * Frequency reduction happens at minimum steps of
476          * 5% (default) of current frequency
477          */
478
479         /* Get Absolute Load - in terms of freq */
480         max_load_freq = 0;
481
482         for_each_cpu(j, policy->cpus) {
483                 struct cpu_dbs_info_s *j_dbs_info;
484                 cputime64_t cur_wall_time, cur_idle_time, cur_iowait_time;
485                 unsigned int idle_time, wall_time, iowait_time;
486                 unsigned int load, load_freq;
487                 int freq_avg;
488
489                 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
490
491                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
492                 cur_iowait_time = get_cpu_iowait_time(j, &cur_wall_time);
493
494                 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
495                                 j_dbs_info->prev_cpu_wall);
496                 j_dbs_info->prev_cpu_wall = cur_wall_time;
497
498                 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
499                                 j_dbs_info->prev_cpu_idle);
500                 j_dbs_info->prev_cpu_idle = cur_idle_time;
501
502                 iowait_time = (unsigned int) cputime64_sub(cur_iowait_time,
503                                 j_dbs_info->prev_cpu_iowait);
504                 j_dbs_info->prev_cpu_iowait = cur_iowait_time;
505
506                 if (dbs_tuners_ins.ignore_nice) {
507                         cputime64_t cur_nice;
508                         unsigned long cur_nice_jiffies;
509
510                         cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
511                                          j_dbs_info->prev_cpu_nice);
512                         /*
513                          * Assumption: nice time between sampling periods will
514                          * be less than 2^32 jiffies for 32 bit sys
515                          */
516                         cur_nice_jiffies = (unsigned long)
517                                         cputime64_to_jiffies64(cur_nice);
518
519                         j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
520                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
521                 }
522
523                 /*
524                  * For the purpose of ondemand, waiting for disk IO is an
525                  * indication that you're performance critical, and not that
526                  * the system is actually idle. So subtract the iowait time
527                  * from the cpu idle time.
528                  */
529
530                 if (idle_time >= iowait_time)
531                         idle_time -= iowait_time;
532
533                 if (unlikely(!wall_time || wall_time < idle_time))
534                         continue;
535
536                 load = 100 * (wall_time - idle_time) / wall_time;
537
538                 freq_avg = __cpufreq_driver_getavg(policy, j);
539                 if (freq_avg <= 0)
540                         freq_avg = policy->cur;
541
542                 load_freq = load * freq_avg;
543                 if (load_freq > max_load_freq)
544                         max_load_freq = load_freq;
545         }
546
547         /* Check for frequency increase */
548         if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
549                 /* if we are already at full speed then break out early */
550                 if (!dbs_tuners_ins.powersave_bias) {
551                         if (policy->cur == policy->max)
552                                 return;
553
554                         __cpufreq_driver_target(policy, policy->max,
555                                 CPUFREQ_RELATION_H);
556                 } else {
557                         int freq = powersave_bias_target(policy, policy->max,
558                                         CPUFREQ_RELATION_H);
559                         __cpufreq_driver_target(policy, freq,
560                                 CPUFREQ_RELATION_L);
561                 }
562                 return;
563         }
564
565         /* Check for frequency decrease */
566         /* if we cannot reduce the frequency anymore, break out early */
567         if (policy->cur == policy->min)
568                 return;
569
570         /*
571          * The optimal frequency is the frequency that is the lowest that
572          * can support the current CPU usage without triggering the up
573          * policy. To be safe, we focus 10 points under the threshold.
574          */
575         if (max_load_freq <
576             (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
577              policy->cur) {
578                 unsigned int freq_next;
579                 freq_next = max_load_freq /
580                                 (dbs_tuners_ins.up_threshold -
581                                  dbs_tuners_ins.down_differential);
582
583                 if (freq_next < policy->min)
584                         freq_next = policy->min;
585
586                 if (!dbs_tuners_ins.powersave_bias) {
587                         __cpufreq_driver_target(policy, freq_next,
588                                         CPUFREQ_RELATION_L);
589                 } else {
590                         int freq = powersave_bias_target(policy, freq_next,
591                                         CPUFREQ_RELATION_L);
592                         __cpufreq_driver_target(policy, freq,
593                                 CPUFREQ_RELATION_L);
594                 }
595         }
596 }
597
598 static void do_dbs_timer(struct work_struct *work)
599 {
600         struct cpu_dbs_info_s *dbs_info =
601                 container_of(work, struct cpu_dbs_info_s, work.work);
602         unsigned int cpu = dbs_info->cpu;
603         int sample_type = dbs_info->sample_type;
604
605         /* We want all CPUs to do sampling nearly on same jiffy */
606         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
607
608         delay -= jiffies % delay;
609         mutex_lock(&dbs_info->timer_mutex);
610
611         /* Common NORMAL_SAMPLE setup */
612         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
613         if (!dbs_tuners_ins.powersave_bias ||
614             sample_type == DBS_NORMAL_SAMPLE) {
615                 dbs_check_cpu(dbs_info);
616                 if (dbs_info->freq_lo) {
617                         /* Setup timer for SUB_SAMPLE */
618                         dbs_info->sample_type = DBS_SUB_SAMPLE;
619                         delay = dbs_info->freq_hi_jiffies;
620                 }
621         } else {
622                 __cpufreq_driver_target(dbs_info->cur_policy,
623                         dbs_info->freq_lo, CPUFREQ_RELATION_H);
624         }
625         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
626         mutex_unlock(&dbs_info->timer_mutex);
627 }
628
629 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
630 {
631         /* We want all CPUs to do sampling nearly on same jiffy */
632         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
633         delay -= jiffies % delay;
634
635         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
636         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
637         queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
638                 delay);
639 }
640
641 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
642 {
643         cancel_delayed_work_sync(&dbs_info->work);
644 }
645
646 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
647                                    unsigned int event)
648 {
649         unsigned int cpu = policy->cpu;
650         struct cpu_dbs_info_s *this_dbs_info;
651         unsigned int j;
652         int rc;
653
654         this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
655
656         switch (event) {
657         case CPUFREQ_GOV_START:
658                 if ((!cpu_online(cpu)) || (!policy->cur))
659                         return -EINVAL;
660
661                 mutex_lock(&dbs_mutex);
662
663                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
664                 if (rc) {
665                         mutex_unlock(&dbs_mutex);
666                         return rc;
667                 }
668
669                 dbs_enable++;
670                 for_each_cpu(j, policy->cpus) {
671                         struct cpu_dbs_info_s *j_dbs_info;
672                         j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
673                         j_dbs_info->cur_policy = policy;
674
675                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
676                                                 &j_dbs_info->prev_cpu_wall);
677                         if (dbs_tuners_ins.ignore_nice) {
678                                 j_dbs_info->prev_cpu_nice =
679                                                 kstat_cpu(j).cpustat.nice;
680                         }
681                 }
682                 this_dbs_info->cpu = cpu;
683                 ondemand_powersave_bias_init_cpu(cpu);
684                 /*
685                  * Start the timerschedule work, when this governor
686                  * is used for first time
687                  */
688                 if (dbs_enable == 1) {
689                         unsigned int latency;
690
691                         rc = sysfs_create_group(cpufreq_global_kobject,
692                                                 &dbs_attr_group);
693                         if (rc) {
694                                 mutex_unlock(&dbs_mutex);
695                                 return rc;
696                         }
697
698                         /* policy latency is in nS. Convert it to uS first */
699                         latency = policy->cpuinfo.transition_latency / 1000;
700                         if (latency == 0)
701                                 latency = 1;
702                         /* Bring kernel and HW constraints together */
703                         min_sampling_rate = max(min_sampling_rate,
704                                         MIN_LATENCY_MULTIPLIER * latency);
705                         dbs_tuners_ins.sampling_rate =
706                                 max(min_sampling_rate,
707                                     latency * LATENCY_MULTIPLIER);
708                 }
709                 mutex_unlock(&dbs_mutex);
710
711                 mutex_init(&this_dbs_info->timer_mutex);
712                 dbs_timer_init(this_dbs_info);
713                 break;
714
715         case CPUFREQ_GOV_STOP:
716                 dbs_timer_exit(this_dbs_info);
717
718                 mutex_lock(&dbs_mutex);
719                 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
720                 mutex_destroy(&this_dbs_info->timer_mutex);
721                 dbs_enable--;
722                 mutex_unlock(&dbs_mutex);
723                 if (!dbs_enable)
724                         sysfs_remove_group(cpufreq_global_kobject,
725                                            &dbs_attr_group);
726
727                 break;
728
729         case CPUFREQ_GOV_LIMITS:
730                 mutex_lock(&this_dbs_info->timer_mutex);
731                 if (policy->max < this_dbs_info->cur_policy->cur)
732                         __cpufreq_driver_target(this_dbs_info->cur_policy,
733                                 policy->max, CPUFREQ_RELATION_H);
734                 else if (policy->min > this_dbs_info->cur_policy->cur)
735                         __cpufreq_driver_target(this_dbs_info->cur_policy,
736                                 policy->min, CPUFREQ_RELATION_L);
737                 mutex_unlock(&this_dbs_info->timer_mutex);
738                 break;
739         }
740         return 0;
741 }
742
743 static int __init cpufreq_gov_dbs_init(void)
744 {
745         int err;
746         cputime64_t wall;
747         u64 idle_time;
748         int cpu = get_cpu();
749
750         idle_time = get_cpu_idle_time_us(cpu, &wall);
751         put_cpu();
752         if (idle_time != -1ULL) {
753                 /* Idle micro accounting is supported. Use finer thresholds */
754                 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
755                 dbs_tuners_ins.down_differential =
756                                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
757                 /*
758                  * In no_hz/micro accounting case we set the minimum frequency
759                  * not depending on HZ, but fixed (very low). The deferred
760                  * timer might skip some samples if idle/sleeping as needed.
761                 */
762                 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
763         } else {
764                 /* For correct statistics, we need 10 ticks for each measure */
765                 min_sampling_rate =
766                         MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
767         }
768
769         kondemand_wq = create_workqueue("kondemand");
770         if (!kondemand_wq) {
771                 printk(KERN_ERR "Creation of kondemand failed\n");
772                 return -EFAULT;
773         }
774         err = cpufreq_register_governor(&cpufreq_gov_ondemand);
775         if (err)
776                 destroy_workqueue(kondemand_wq);
777
778         return err;
779 }
780
781 static void __exit cpufreq_gov_dbs_exit(void)
782 {
783         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
784         destroy_workqueue(kondemand_wq);
785 }
786
787
788 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
789 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
790 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
791         "Low Latency Frequency Transition capable processors");
792 MODULE_LICENSE("GPL");
793
794 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
795 fs_initcall(cpufreq_gov_dbs_init);
796 #else
797 module_init(cpufreq_gov_dbs_init);
798 #endif
799 module_exit(cpufreq_gov_dbs_exit);