string: factorize skip_spaces and export it to be generally available
[safe/jmp/linux-2.6] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2  *  drivers/cpufreq/cpufreq_ondemand.c
3  *
4  *  Copyright (C)  2001 Russell King
5  *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6  *                      Jun Nakajima <jun.nakajima@intel.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
25
26 /*
27  * dbs is used in this file as a shortform for demandbased switching
28  * It helps to keep variable names smaller, simpler
29  */
30
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL         (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD              (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL       (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD            (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE         (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD              (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD              (100)
38
39 /*
40  * The polling frequency of this governor depends on the capability of
41  * the processor. Default polling frequency is 1000 times the transition
42  * latency of the processor. The governor will work on any processor with
43  * transition latency <= 10mS, using appropriate sampling
44  * rate.
45  * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46  * this governor will not work.
47  * All times here are in uS.
48  */
49 #define MIN_SAMPLING_RATE_RATIO                 (2)
50
51 static unsigned int min_sampling_rate;
52
53 #define LATENCY_MULTIPLIER                      (1000)
54 #define MIN_LATENCY_MULTIPLIER                  (100)
55 #define TRANSITION_LATENCY_LIMIT                (10 * 1000 * 1000)
56
57 static void do_dbs_timer(struct work_struct *work);
58 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
59                                 unsigned int event);
60
61 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
62 static
63 #endif
64 struct cpufreq_governor cpufreq_gov_ondemand = {
65        .name                   = "ondemand",
66        .governor               = cpufreq_governor_dbs,
67        .max_transition_latency = TRANSITION_LATENCY_LIMIT,
68        .owner                  = THIS_MODULE,
69 };
70
71 /* Sampling types */
72 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
73
74 struct cpu_dbs_info_s {
75         cputime64_t prev_cpu_idle;
76         cputime64_t prev_cpu_wall;
77         cputime64_t prev_cpu_nice;
78         struct cpufreq_policy *cur_policy;
79         struct delayed_work work;
80         struct cpufreq_frequency_table *freq_table;
81         unsigned int freq_lo;
82         unsigned int freq_lo_jiffies;
83         unsigned int freq_hi_jiffies;
84         int cpu;
85         unsigned int sample_type:1;
86         /*
87          * percpu mutex that serializes governor limit change with
88          * do_dbs_timer invocation. We do not want do_dbs_timer to run
89          * when user is changing the governor or limits.
90          */
91         struct mutex timer_mutex;
92 };
93 static DEFINE_PER_CPU(struct cpu_dbs_info_s, od_cpu_dbs_info);
94
95 static unsigned int dbs_enable; /* number of CPUs using this policy */
96
97 /*
98  * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
99  * different CPUs. It protects dbs_enable in governor start/stop.
100  */
101 static DEFINE_MUTEX(dbs_mutex);
102
103 static struct workqueue_struct  *kondemand_wq;
104
105 static struct dbs_tuners {
106         unsigned int sampling_rate;
107         unsigned int up_threshold;
108         unsigned int down_differential;
109         unsigned int ignore_nice;
110         unsigned int powersave_bias;
111 } dbs_tuners_ins = {
112         .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
113         .down_differential = DEF_FREQUENCY_DOWN_DIFFERENTIAL,
114         .ignore_nice = 0,
115         .powersave_bias = 0,
116 };
117
118 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
119                                                         cputime64_t *wall)
120 {
121         cputime64_t idle_time;
122         cputime64_t cur_wall_time;
123         cputime64_t busy_time;
124
125         cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
126         busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
127                         kstat_cpu(cpu).cpustat.system);
128
129         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
130         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
131         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
132         busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
133
134         idle_time = cputime64_sub(cur_wall_time, busy_time);
135         if (wall)
136                 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
137
138         return (cputime64_t)jiffies_to_usecs(idle_time);
139 }
140
141 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
142 {
143         u64 idle_time = get_cpu_idle_time_us(cpu, wall);
144
145         if (idle_time == -1ULL)
146                 return get_cpu_idle_time_jiffy(cpu, wall);
147
148         return idle_time;
149 }
150
151 /*
152  * Find right freq to be set now with powersave_bias on.
153  * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
154  * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
155  */
156 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
157                                           unsigned int freq_next,
158                                           unsigned int relation)
159 {
160         unsigned int freq_req, freq_reduc, freq_avg;
161         unsigned int freq_hi, freq_lo;
162         unsigned int index = 0;
163         unsigned int jiffies_total, jiffies_hi, jiffies_lo;
164         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
165                                                    policy->cpu);
166
167         if (!dbs_info->freq_table) {
168                 dbs_info->freq_lo = 0;
169                 dbs_info->freq_lo_jiffies = 0;
170                 return freq_next;
171         }
172
173         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
174                         relation, &index);
175         freq_req = dbs_info->freq_table[index].frequency;
176         freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
177         freq_avg = freq_req - freq_reduc;
178
179         /* Find freq bounds for freq_avg in freq_table */
180         index = 0;
181         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
182                         CPUFREQ_RELATION_H, &index);
183         freq_lo = dbs_info->freq_table[index].frequency;
184         index = 0;
185         cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
186                         CPUFREQ_RELATION_L, &index);
187         freq_hi = dbs_info->freq_table[index].frequency;
188
189         /* Find out how long we have to be in hi and lo freqs */
190         if (freq_hi == freq_lo) {
191                 dbs_info->freq_lo = 0;
192                 dbs_info->freq_lo_jiffies = 0;
193                 return freq_lo;
194         }
195         jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
196         jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
197         jiffies_hi += ((freq_hi - freq_lo) / 2);
198         jiffies_hi /= (freq_hi - freq_lo);
199         jiffies_lo = jiffies_total - jiffies_hi;
200         dbs_info->freq_lo = freq_lo;
201         dbs_info->freq_lo_jiffies = jiffies_lo;
202         dbs_info->freq_hi_jiffies = jiffies_hi;
203         return freq_hi;
204 }
205
206 static void ondemand_powersave_bias_init_cpu(int cpu)
207 {
208         struct cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
209         dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
210         dbs_info->freq_lo = 0;
211 }
212
213 static void ondemand_powersave_bias_init(void)
214 {
215         int i;
216         for_each_online_cpu(i) {
217                 ondemand_powersave_bias_init_cpu(i);
218         }
219 }
220
221 /************************** sysfs interface ************************/
222
223 static ssize_t show_sampling_rate_max(struct kobject *kobj,
224                                       struct attribute *attr, char *buf)
225 {
226         printk_once(KERN_INFO "CPUFREQ: ondemand sampling_rate_max "
227                "sysfs file is deprecated - used by: %s\n", current->comm);
228         return sprintf(buf, "%u\n", -1U);
229 }
230
231 static ssize_t show_sampling_rate_min(struct kobject *kobj,
232                                       struct attribute *attr, char *buf)
233 {
234         return sprintf(buf, "%u\n", min_sampling_rate);
235 }
236
237 #define define_one_ro(_name)            \
238 static struct global_attr _name =       \
239 __ATTR(_name, 0444, show_##_name, NULL)
240
241 define_one_ro(sampling_rate_max);
242 define_one_ro(sampling_rate_min);
243
244 /* cpufreq_ondemand Governor Tunables */
245 #define show_one(file_name, object)                                     \
246 static ssize_t show_##file_name                                         \
247 (struct kobject *kobj, struct attribute *attr, char *buf)              \
248 {                                                                       \
249         return sprintf(buf, "%u\n", dbs_tuners_ins.object);             \
250 }
251 show_one(sampling_rate, sampling_rate);
252 show_one(up_threshold, up_threshold);
253 show_one(ignore_nice_load, ignore_nice);
254 show_one(powersave_bias, powersave_bias);
255
256 /*** delete after deprecation time ***/
257
258 #define DEPRECATION_MSG(file_name)                                      \
259         printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "       \
260                     "interface is deprecated - " #file_name "\n");
261
262 #define show_one_old(file_name)                                         \
263 static ssize_t show_##file_name##_old                                   \
264 (struct cpufreq_policy *unused, char *buf)                              \
265 {                                                                       \
266         printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "       \
267                     "interface is deprecated - " #file_name "\n");      \
268         return show_##file_name(NULL, NULL, buf);                       \
269 }
270 show_one_old(sampling_rate);
271 show_one_old(up_threshold);
272 show_one_old(ignore_nice_load);
273 show_one_old(powersave_bias);
274 show_one_old(sampling_rate_min);
275 show_one_old(sampling_rate_max);
276
277 #define define_one_ro_old(object, _name)       \
278 static struct freq_attr object =               \
279 __ATTR(_name, 0444, show_##_name##_old, NULL)
280
281 define_one_ro_old(sampling_rate_min_old, sampling_rate_min);
282 define_one_ro_old(sampling_rate_max_old, sampling_rate_max);
283
284 /*** delete after deprecation time ***/
285
286 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
287                                    const char *buf, size_t count)
288 {
289         unsigned int input;
290         int ret;
291         ret = sscanf(buf, "%u", &input);
292         if (ret != 1)
293                 return -EINVAL;
294
295         mutex_lock(&dbs_mutex);
296         dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
297         mutex_unlock(&dbs_mutex);
298
299         return count;
300 }
301
302 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
303                                   const char *buf, size_t count)
304 {
305         unsigned int input;
306         int ret;
307         ret = sscanf(buf, "%u", &input);
308
309         if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
310                         input < MIN_FREQUENCY_UP_THRESHOLD) {
311                 return -EINVAL;
312         }
313
314         mutex_lock(&dbs_mutex);
315         dbs_tuners_ins.up_threshold = input;
316         mutex_unlock(&dbs_mutex);
317
318         return count;
319 }
320
321 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
322                                       const char *buf, size_t count)
323 {
324         unsigned int input;
325         int ret;
326
327         unsigned int j;
328
329         ret = sscanf(buf, "%u", &input);
330         if (ret != 1)
331                 return -EINVAL;
332
333         if (input > 1)
334                 input = 1;
335
336         mutex_lock(&dbs_mutex);
337         if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
338                 mutex_unlock(&dbs_mutex);
339                 return count;
340         }
341         dbs_tuners_ins.ignore_nice = input;
342
343         /* we need to re-evaluate prev_cpu_idle */
344         for_each_online_cpu(j) {
345                 struct cpu_dbs_info_s *dbs_info;
346                 dbs_info = &per_cpu(od_cpu_dbs_info, j);
347                 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
348                                                 &dbs_info->prev_cpu_wall);
349                 if (dbs_tuners_ins.ignore_nice)
350                         dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
351
352         }
353         mutex_unlock(&dbs_mutex);
354
355         return count;
356 }
357
358 static ssize_t store_powersave_bias(struct kobject *a, struct attribute *b,
359                                     const char *buf, size_t count)
360 {
361         unsigned int input;
362         int ret;
363         ret = sscanf(buf, "%u", &input);
364
365         if (ret != 1)
366                 return -EINVAL;
367
368         if (input > 1000)
369                 input = 1000;
370
371         mutex_lock(&dbs_mutex);
372         dbs_tuners_ins.powersave_bias = input;
373         ondemand_powersave_bias_init();
374         mutex_unlock(&dbs_mutex);
375
376         return count;
377 }
378
379 #define define_one_rw(_name) \
380 static struct global_attr _name = \
381 __ATTR(_name, 0644, show_##_name, store_##_name)
382
383 define_one_rw(sampling_rate);
384 define_one_rw(up_threshold);
385 define_one_rw(ignore_nice_load);
386 define_one_rw(powersave_bias);
387
388 static struct attribute *dbs_attributes[] = {
389         &sampling_rate_max.attr,
390         &sampling_rate_min.attr,
391         &sampling_rate.attr,
392         &up_threshold.attr,
393         &ignore_nice_load.attr,
394         &powersave_bias.attr,
395         NULL
396 };
397
398 static struct attribute_group dbs_attr_group = {
399         .attrs = dbs_attributes,
400         .name = "ondemand",
401 };
402
403 /*** delete after deprecation time ***/
404
405 #define write_one_old(file_name)                                        \
406 static ssize_t store_##file_name##_old                                  \
407 (struct cpufreq_policy *unused, const char *buf, size_t count)          \
408 {                                                                       \
409        printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs "        \
410                    "interface is deprecated - " #file_name "\n");       \
411        return store_##file_name(NULL, NULL, buf, count);                \
412 }
413 write_one_old(sampling_rate);
414 write_one_old(up_threshold);
415 write_one_old(ignore_nice_load);
416 write_one_old(powersave_bias);
417
418 #define define_one_rw_old(object, _name)       \
419 static struct freq_attr object =               \
420 __ATTR(_name, 0644, show_##_name##_old, store_##_name##_old)
421
422 define_one_rw_old(sampling_rate_old, sampling_rate);
423 define_one_rw_old(up_threshold_old, up_threshold);
424 define_one_rw_old(ignore_nice_load_old, ignore_nice_load);
425 define_one_rw_old(powersave_bias_old, powersave_bias);
426
427 static struct attribute *dbs_attributes_old[] = {
428        &sampling_rate_max_old.attr,
429        &sampling_rate_min_old.attr,
430        &sampling_rate_old.attr,
431        &up_threshold_old.attr,
432        &ignore_nice_load_old.attr,
433        &powersave_bias_old.attr,
434        NULL
435 };
436
437 static struct attribute_group dbs_attr_group_old = {
438        .attrs = dbs_attributes_old,
439        .name = "ondemand",
440 };
441
442 /*** delete after deprecation time ***/
443
444 /************************** sysfs end ************************/
445
446 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
447 {
448         unsigned int max_load_freq;
449
450         struct cpufreq_policy *policy;
451         unsigned int j;
452
453         this_dbs_info->freq_lo = 0;
454         policy = this_dbs_info->cur_policy;
455
456         /*
457          * Every sampling_rate, we check, if current idle time is less
458          * than 20% (default), then we try to increase frequency
459          * Every sampling_rate, we look for a the lowest
460          * frequency which can sustain the load while keeping idle time over
461          * 30%. If such a frequency exist, we try to decrease to this frequency.
462          *
463          * Any frequency increase takes it to the maximum frequency.
464          * Frequency reduction happens at minimum steps of
465          * 5% (default) of current frequency
466          */
467
468         /* Get Absolute Load - in terms of freq */
469         max_load_freq = 0;
470
471         for_each_cpu(j, policy->cpus) {
472                 struct cpu_dbs_info_s *j_dbs_info;
473                 cputime64_t cur_wall_time, cur_idle_time;
474                 unsigned int idle_time, wall_time;
475                 unsigned int load, load_freq;
476                 int freq_avg;
477
478                 j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
479
480                 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
481
482                 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
483                                 j_dbs_info->prev_cpu_wall);
484                 j_dbs_info->prev_cpu_wall = cur_wall_time;
485
486                 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
487                                 j_dbs_info->prev_cpu_idle);
488                 j_dbs_info->prev_cpu_idle = cur_idle_time;
489
490                 if (dbs_tuners_ins.ignore_nice) {
491                         cputime64_t cur_nice;
492                         unsigned long cur_nice_jiffies;
493
494                         cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
495                                          j_dbs_info->prev_cpu_nice);
496                         /*
497                          * Assumption: nice time between sampling periods will
498                          * be less than 2^32 jiffies for 32 bit sys
499                          */
500                         cur_nice_jiffies = (unsigned long)
501                                         cputime64_to_jiffies64(cur_nice);
502
503                         j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
504                         idle_time += jiffies_to_usecs(cur_nice_jiffies);
505                 }
506
507                 if (unlikely(!wall_time || wall_time < idle_time))
508                         continue;
509
510                 load = 100 * (wall_time - idle_time) / wall_time;
511
512                 freq_avg = __cpufreq_driver_getavg(policy, j);
513                 if (freq_avg <= 0)
514                         freq_avg = policy->cur;
515
516                 load_freq = load * freq_avg;
517                 if (load_freq > max_load_freq)
518                         max_load_freq = load_freq;
519         }
520
521         /* Check for frequency increase */
522         if (max_load_freq > dbs_tuners_ins.up_threshold * policy->cur) {
523                 /* if we are already at full speed then break out early */
524                 if (!dbs_tuners_ins.powersave_bias) {
525                         if (policy->cur == policy->max)
526                                 return;
527
528                         __cpufreq_driver_target(policy, policy->max,
529                                 CPUFREQ_RELATION_H);
530                 } else {
531                         int freq = powersave_bias_target(policy, policy->max,
532                                         CPUFREQ_RELATION_H);
533                         __cpufreq_driver_target(policy, freq,
534                                 CPUFREQ_RELATION_L);
535                 }
536                 return;
537         }
538
539         /* Check for frequency decrease */
540         /* if we cannot reduce the frequency anymore, break out early */
541         if (policy->cur == policy->min)
542                 return;
543
544         /*
545          * The optimal frequency is the frequency that is the lowest that
546          * can support the current CPU usage without triggering the up
547          * policy. To be safe, we focus 10 points under the threshold.
548          */
549         if (max_load_freq <
550             (dbs_tuners_ins.up_threshold - dbs_tuners_ins.down_differential) *
551              policy->cur) {
552                 unsigned int freq_next;
553                 freq_next = max_load_freq /
554                                 (dbs_tuners_ins.up_threshold -
555                                  dbs_tuners_ins.down_differential);
556
557                 if (!dbs_tuners_ins.powersave_bias) {
558                         __cpufreq_driver_target(policy, freq_next,
559                                         CPUFREQ_RELATION_L);
560                 } else {
561                         int freq = powersave_bias_target(policy, freq_next,
562                                         CPUFREQ_RELATION_L);
563                         __cpufreq_driver_target(policy, freq,
564                                 CPUFREQ_RELATION_L);
565                 }
566         }
567 }
568
569 static void do_dbs_timer(struct work_struct *work)
570 {
571         struct cpu_dbs_info_s *dbs_info =
572                 container_of(work, struct cpu_dbs_info_s, work.work);
573         unsigned int cpu = dbs_info->cpu;
574         int sample_type = dbs_info->sample_type;
575
576         /* We want all CPUs to do sampling nearly on same jiffy */
577         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
578
579         delay -= jiffies % delay;
580         mutex_lock(&dbs_info->timer_mutex);
581
582         /* Common NORMAL_SAMPLE setup */
583         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
584         if (!dbs_tuners_ins.powersave_bias ||
585             sample_type == DBS_NORMAL_SAMPLE) {
586                 dbs_check_cpu(dbs_info);
587                 if (dbs_info->freq_lo) {
588                         /* Setup timer for SUB_SAMPLE */
589                         dbs_info->sample_type = DBS_SUB_SAMPLE;
590                         delay = dbs_info->freq_hi_jiffies;
591                 }
592         } else {
593                 __cpufreq_driver_target(dbs_info->cur_policy,
594                         dbs_info->freq_lo, CPUFREQ_RELATION_H);
595         }
596         queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
597         mutex_unlock(&dbs_info->timer_mutex);
598 }
599
600 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
601 {
602         /* We want all CPUs to do sampling nearly on same jiffy */
603         int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
604         delay -= jiffies % delay;
605
606         dbs_info->sample_type = DBS_NORMAL_SAMPLE;
607         INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
608         queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
609                 delay);
610 }
611
612 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
613 {
614         cancel_delayed_work_sync(&dbs_info->work);
615 }
616
617 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
618                                    unsigned int event)
619 {
620         unsigned int cpu = policy->cpu;
621         struct cpu_dbs_info_s *this_dbs_info;
622         unsigned int j;
623         int rc;
624
625         this_dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
626
627         switch (event) {
628         case CPUFREQ_GOV_START:
629                 if ((!cpu_online(cpu)) || (!policy->cur))
630                         return -EINVAL;
631
632                 mutex_lock(&dbs_mutex);
633
634                 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group_old);
635                 if (rc) {
636                         mutex_unlock(&dbs_mutex);
637                         return rc;
638                 }
639
640                 dbs_enable++;
641                 for_each_cpu(j, policy->cpus) {
642                         struct cpu_dbs_info_s *j_dbs_info;
643                         j_dbs_info = &per_cpu(od_cpu_dbs_info, j);
644                         j_dbs_info->cur_policy = policy;
645
646                         j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
647                                                 &j_dbs_info->prev_cpu_wall);
648                         if (dbs_tuners_ins.ignore_nice) {
649                                 j_dbs_info->prev_cpu_nice =
650                                                 kstat_cpu(j).cpustat.nice;
651                         }
652                 }
653                 this_dbs_info->cpu = cpu;
654                 ondemand_powersave_bias_init_cpu(cpu);
655                 /*
656                  * Start the timerschedule work, when this governor
657                  * is used for first time
658                  */
659                 if (dbs_enable == 1) {
660                         unsigned int latency;
661
662                         rc = sysfs_create_group(cpufreq_global_kobject,
663                                                 &dbs_attr_group);
664                         if (rc) {
665                                 mutex_unlock(&dbs_mutex);
666                                 return rc;
667                         }
668
669                         /* policy latency is in nS. Convert it to uS first */
670                         latency = policy->cpuinfo.transition_latency / 1000;
671                         if (latency == 0)
672                                 latency = 1;
673                         /* Bring kernel and HW constraints together */
674                         min_sampling_rate = max(min_sampling_rate,
675                                         MIN_LATENCY_MULTIPLIER * latency);
676                         dbs_tuners_ins.sampling_rate =
677                                 max(min_sampling_rate,
678                                     latency * LATENCY_MULTIPLIER);
679                 }
680                 mutex_unlock(&dbs_mutex);
681
682                 mutex_init(&this_dbs_info->timer_mutex);
683                 dbs_timer_init(this_dbs_info);
684                 break;
685
686         case CPUFREQ_GOV_STOP:
687                 dbs_timer_exit(this_dbs_info);
688
689                 mutex_lock(&dbs_mutex);
690                 sysfs_remove_group(&policy->kobj, &dbs_attr_group_old);
691                 mutex_destroy(&this_dbs_info->timer_mutex);
692                 dbs_enable--;
693                 mutex_unlock(&dbs_mutex);
694                 if (!dbs_enable)
695                         sysfs_remove_group(cpufreq_global_kobject,
696                                            &dbs_attr_group);
697
698                 break;
699
700         case CPUFREQ_GOV_LIMITS:
701                 mutex_lock(&this_dbs_info->timer_mutex);
702                 if (policy->max < this_dbs_info->cur_policy->cur)
703                         __cpufreq_driver_target(this_dbs_info->cur_policy,
704                                 policy->max, CPUFREQ_RELATION_H);
705                 else if (policy->min > this_dbs_info->cur_policy->cur)
706                         __cpufreq_driver_target(this_dbs_info->cur_policy,
707                                 policy->min, CPUFREQ_RELATION_L);
708                 mutex_unlock(&this_dbs_info->timer_mutex);
709                 break;
710         }
711         return 0;
712 }
713
714 static int __init cpufreq_gov_dbs_init(void)
715 {
716         int err;
717         cputime64_t wall;
718         u64 idle_time;
719         int cpu = get_cpu();
720
721         idle_time = get_cpu_idle_time_us(cpu, &wall);
722         put_cpu();
723         if (idle_time != -1ULL) {
724                 /* Idle micro accounting is supported. Use finer thresholds */
725                 dbs_tuners_ins.up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
726                 dbs_tuners_ins.down_differential =
727                                         MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
728                 /*
729                  * In no_hz/micro accounting case we set the minimum frequency
730                  * not depending on HZ, but fixed (very low). The deferred
731                  * timer might skip some samples if idle/sleeping as needed.
732                 */
733                 min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
734         } else {
735                 /* For correct statistics, we need 10 ticks for each measure */
736                 min_sampling_rate =
737                         MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
738         }
739
740         kondemand_wq = create_workqueue("kondemand");
741         if (!kondemand_wq) {
742                 printk(KERN_ERR "Creation of kondemand failed\n");
743                 return -EFAULT;
744         }
745         err = cpufreq_register_governor(&cpufreq_gov_ondemand);
746         if (err)
747                 destroy_workqueue(kondemand_wq);
748
749         return err;
750 }
751
752 static void __exit cpufreq_gov_dbs_exit(void)
753 {
754         cpufreq_unregister_governor(&cpufreq_gov_ondemand);
755         destroy_workqueue(kondemand_wq);
756 }
757
758
759 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
760 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
761 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
762         "Low Latency Frequency Transition capable processors");
763 MODULE_LICENSE("GPL");
764
765 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
766 fs_initcall(cpufreq_gov_dbs_init);
767 #else
768 module_init(cpufreq_gov_dbs_init);
769 #endif
770 module_exit(cpufreq_gov_dbs_exit);