7c294a40002e26f1ac7f73741c2e3d836f7ae4a5
[safe/jmp/linux-2.6] / drivers / block / pktcdvd.c
1 /*
2  * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3  * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4  * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5  *
6  * May be copied or modified under the terms of the GNU General Public
7  * License.  See linux/COPYING for more information.
8  *
9  * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10  * DVD-RAM devices.
11  *
12  * Theory of operation:
13  *
14  * At the lowest level, there is the standard driver for the CD/DVD device,
15  * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16  * but it doesn't know anything about the special restrictions that apply to
17  * packet writing. One restriction is that write requests must be aligned to
18  * packet boundaries on the physical media, and the size of a write request
19  * must be equal to the packet size. Another restriction is that a
20  * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21  * command, if the previous command was a write.
22  *
23  * The purpose of the packet writing driver is to hide these restrictions from
24  * higher layers, such as file systems, and present a block device that can be
25  * randomly read and written using 2kB-sized blocks.
26  *
27  * The lowest layer in the packet writing driver is the packet I/O scheduler.
28  * Its data is defined by the struct packet_iosched and includes two bio
29  * queues with pending read and write requests. These queues are processed
30  * by the pkt_iosched_process_queue() function. The write requests in this
31  * queue are already properly aligned and sized. This layer is responsible for
32  * issuing the flush cache commands and scheduling the I/O in a good order.
33  *
34  * The next layer transforms unaligned write requests to aligned writes. This
35  * transformation requires reading missing pieces of data from the underlying
36  * block device, assembling the pieces to full packets and queuing them to the
37  * packet I/O scheduler.
38  *
39  * At the top layer there is a custom make_request_fn function that forwards
40  * read requests directly to the iosched queue and puts write requests in the
41  * unaligned write queue. A kernel thread performs the necessary read
42  * gathering to convert the unaligned writes to aligned writes and then feeds
43  * them to the packet I/O scheduler.
44  *
45  *************************************************************************/
46
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/kthread.h>
52 #include <linux/errno.h>
53 #include <linux/spinlock.h>
54 #include <linux/file.h>
55 #include <linux/proc_fs.h>
56 #include <linux/seq_file.h>
57 #include <linux/miscdevice.h>
58 #include <linux/freezer.h>
59 #include <linux/mutex.h>
60 #include <scsi/scsi_cmnd.h>
61 #include <scsi/scsi_ioctl.h>
62 #include <scsi/scsi.h>
63 #include <linux/debugfs.h>
64 #include <linux/device.h>
65
66 #include <asm/uaccess.h>
67
68 #define DRIVER_NAME     "pktcdvd"
69
70 #if PACKET_DEBUG
71 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
72 #else
73 #define DPRINTK(fmt, args...)
74 #endif
75
76 #if PACKET_DEBUG > 1
77 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
78 #else
79 #define VPRINTK(fmt, args...)
80 #endif
81
82 #define MAX_SPEED 0xffff
83
84 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
85
86 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
87 static struct proc_dir_entry *pkt_proc;
88 static int pktdev_major;
89 static int write_congestion_on  = PKT_WRITE_CONGESTION_ON;
90 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
91 static struct mutex ctl_mutex;  /* Serialize open/close/setup/teardown */
92 static mempool_t *psd_pool;
93
94 static struct class     *class_pktcdvd = NULL;    /* /sys/class/pktcdvd */
95 static struct dentry    *pkt_debugfs_root = NULL; /* /debug/pktcdvd */
96
97 /* forward declaration */
98 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
99 static int pkt_remove_dev(dev_t pkt_dev);
100 static int pkt_seq_show(struct seq_file *m, void *p);
101
102
103
104 /*
105  * create and register a pktcdvd kernel object.
106  */
107 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
108                                         const char* name,
109                                         struct kobject* parent,
110                                         struct kobj_type* ktype)
111 {
112         struct pktcdvd_kobj *p;
113         p = kzalloc(sizeof(*p), GFP_KERNEL);
114         if (!p)
115                 return NULL;
116         kobject_set_name(&p->kobj, "%s", name);
117         p->kobj.parent = parent;
118         p->kobj.ktype = ktype;
119         p->pd = pd;
120         if (kobject_register(&p->kobj) != 0)
121                 return NULL;
122         return p;
123 }
124 /*
125  * remove a pktcdvd kernel object.
126  */
127 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
128 {
129         if (p)
130                 kobject_unregister(&p->kobj);
131 }
132 /*
133  * default release function for pktcdvd kernel objects.
134  */
135 static void pkt_kobj_release(struct kobject *kobj)
136 {
137         kfree(to_pktcdvdkobj(kobj));
138 }
139
140
141 /**********************************************************
142  *
143  * sysfs interface for pktcdvd
144  * by (C) 2006  Thomas Maier <balagi@justmail.de>
145  *
146  **********************************************************/
147
148 #define DEF_ATTR(_obj,_name,_mode) \
149         static struct attribute _obj = { .name = _name, .mode = _mode }
150
151 /**********************************************************
152   /sys/class/pktcdvd/pktcdvd[0-7]/
153                      stat/reset
154                      stat/packets_started
155                      stat/packets_finished
156                      stat/kb_written
157                      stat/kb_read
158                      stat/kb_read_gather
159                      write_queue/size
160                      write_queue/congestion_off
161                      write_queue/congestion_on
162  **********************************************************/
163
164 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
165 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
166 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
167 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
168 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
169 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
170
171 static struct attribute *kobj_pkt_attrs_stat[] = {
172         &kobj_pkt_attr_st1,
173         &kobj_pkt_attr_st2,
174         &kobj_pkt_attr_st3,
175         &kobj_pkt_attr_st4,
176         &kobj_pkt_attr_st5,
177         &kobj_pkt_attr_st6,
178         NULL
179 };
180
181 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
182 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
183 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on",  0644);
184
185 static struct attribute *kobj_pkt_attrs_wqueue[] = {
186         &kobj_pkt_attr_wq1,
187         &kobj_pkt_attr_wq2,
188         &kobj_pkt_attr_wq3,
189         NULL
190 };
191
192 static ssize_t kobj_pkt_show(struct kobject *kobj,
193                         struct attribute *attr, char *data)
194 {
195         struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
196         int n = 0;
197         int v;
198         if (strcmp(attr->name, "packets_started") == 0) {
199                 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
200
201         } else if (strcmp(attr->name, "packets_finished") == 0) {
202                 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
203
204         } else if (strcmp(attr->name, "kb_written") == 0) {
205                 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
206
207         } else if (strcmp(attr->name, "kb_read") == 0) {
208                 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
209
210         } else if (strcmp(attr->name, "kb_read_gather") == 0) {
211                 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
212
213         } else if (strcmp(attr->name, "size") == 0) {
214                 spin_lock(&pd->lock);
215                 v = pd->bio_queue_size;
216                 spin_unlock(&pd->lock);
217                 n = sprintf(data, "%d\n", v);
218
219         } else if (strcmp(attr->name, "congestion_off") == 0) {
220                 spin_lock(&pd->lock);
221                 v = pd->write_congestion_off;
222                 spin_unlock(&pd->lock);
223                 n = sprintf(data, "%d\n", v);
224
225         } else if (strcmp(attr->name, "congestion_on") == 0) {
226                 spin_lock(&pd->lock);
227                 v = pd->write_congestion_on;
228                 spin_unlock(&pd->lock);
229                 n = sprintf(data, "%d\n", v);
230         }
231         return n;
232 }
233
234 static void init_write_congestion_marks(int* lo, int* hi)
235 {
236         if (*hi > 0) {
237                 *hi = max(*hi, 500);
238                 *hi = min(*hi, 1000000);
239                 if (*lo <= 0)
240                         *lo = *hi - 100;
241                 else {
242                         *lo = min(*lo, *hi - 100);
243                         *lo = max(*lo, 100);
244                 }
245         } else {
246                 *hi = -1;
247                 *lo = -1;
248         }
249 }
250
251 static ssize_t kobj_pkt_store(struct kobject *kobj,
252                         struct attribute *attr,
253                         const char *data, size_t len)
254 {
255         struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
256         int val;
257
258         if (strcmp(attr->name, "reset") == 0 && len > 0) {
259                 pd->stats.pkt_started = 0;
260                 pd->stats.pkt_ended = 0;
261                 pd->stats.secs_w = 0;
262                 pd->stats.secs_rg = 0;
263                 pd->stats.secs_r = 0;
264
265         } else if (strcmp(attr->name, "congestion_off") == 0
266                    && sscanf(data, "%d", &val) == 1) {
267                 spin_lock(&pd->lock);
268                 pd->write_congestion_off = val;
269                 init_write_congestion_marks(&pd->write_congestion_off,
270                                         &pd->write_congestion_on);
271                 spin_unlock(&pd->lock);
272
273         } else if (strcmp(attr->name, "congestion_on") == 0
274                    && sscanf(data, "%d", &val) == 1) {
275                 spin_lock(&pd->lock);
276                 pd->write_congestion_on = val;
277                 init_write_congestion_marks(&pd->write_congestion_off,
278                                         &pd->write_congestion_on);
279                 spin_unlock(&pd->lock);
280         }
281         return len;
282 }
283
284 static struct sysfs_ops kobj_pkt_ops = {
285         .show = kobj_pkt_show,
286         .store = kobj_pkt_store
287 };
288 static struct kobj_type kobj_pkt_type_stat = {
289         .release = pkt_kobj_release,
290         .sysfs_ops = &kobj_pkt_ops,
291         .default_attrs = kobj_pkt_attrs_stat
292 };
293 static struct kobj_type kobj_pkt_type_wqueue = {
294         .release = pkt_kobj_release,
295         .sysfs_ops = &kobj_pkt_ops,
296         .default_attrs = kobj_pkt_attrs_wqueue
297 };
298
299 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
300 {
301         if (class_pktcdvd) {
302                 pd->clsdev = class_device_create(class_pktcdvd,
303                                         NULL, pd->pkt_dev,
304                                         NULL, "%s", pd->name);
305                 if (IS_ERR(pd->clsdev))
306                         pd->clsdev = NULL;
307         }
308         if (pd->clsdev) {
309                 pd->kobj_stat = pkt_kobj_create(pd, "stat",
310                                         &pd->clsdev->kobj,
311                                         &kobj_pkt_type_stat);
312                 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
313                                         &pd->clsdev->kobj,
314                                         &kobj_pkt_type_wqueue);
315         }
316 }
317
318 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
319 {
320         pkt_kobj_remove(pd->kobj_stat);
321         pkt_kobj_remove(pd->kobj_wqueue);
322         if (class_pktcdvd)
323                 class_device_destroy(class_pktcdvd, pd->pkt_dev);
324 }
325
326
327 /********************************************************************
328   /sys/class/pktcdvd/
329                      add            map block device
330                      remove         unmap packet dev
331                      device_map     show mappings
332  *******************************************************************/
333
334 static void class_pktcdvd_release(struct class *cls)
335 {
336         kfree(cls);
337 }
338 static ssize_t class_pktcdvd_show_map(struct class *c, char *data)
339 {
340         int n = 0;
341         int idx;
342         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
343         for (idx = 0; idx < MAX_WRITERS; idx++) {
344                 struct pktcdvd_device *pd = pkt_devs[idx];
345                 if (!pd)
346                         continue;
347                 n += sprintf(data+n, "%s %u:%u %u:%u\n",
348                         pd->name,
349                         MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
350                         MAJOR(pd->bdev->bd_dev),
351                         MINOR(pd->bdev->bd_dev));
352         }
353         mutex_unlock(&ctl_mutex);
354         return n;
355 }
356
357 static ssize_t class_pktcdvd_store_add(struct class *c, const char *buf,
358                                         size_t count)
359 {
360         unsigned int major, minor;
361         if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
362                 pkt_setup_dev(MKDEV(major, minor), NULL);
363                 return count;
364         }
365         return -EINVAL;
366 }
367
368 static ssize_t class_pktcdvd_store_remove(struct class *c, const char *buf,
369                                         size_t count)
370 {
371         unsigned int major, minor;
372         if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
373                 pkt_remove_dev(MKDEV(major, minor));
374                 return count;
375         }
376         return -EINVAL;
377 }
378
379 static struct class_attribute class_pktcdvd_attrs[] = {
380  __ATTR(add,            0200, NULL, class_pktcdvd_store_add),
381  __ATTR(remove,         0200, NULL, class_pktcdvd_store_remove),
382  __ATTR(device_map,     0444, class_pktcdvd_show_map, NULL),
383  __ATTR_NULL
384 };
385
386
387 static int pkt_sysfs_init(void)
388 {
389         int ret = 0;
390
391         /*
392          * create control files in sysfs
393          * /sys/class/pktcdvd/...
394          */
395         class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
396         if (!class_pktcdvd)
397                 return -ENOMEM;
398         class_pktcdvd->name = DRIVER_NAME;
399         class_pktcdvd->owner = THIS_MODULE;
400         class_pktcdvd->class_release = class_pktcdvd_release;
401         class_pktcdvd->class_attrs = class_pktcdvd_attrs;
402         ret = class_register(class_pktcdvd);
403         if (ret) {
404                 kfree(class_pktcdvd);
405                 class_pktcdvd = NULL;
406                 printk(DRIVER_NAME": failed to create class pktcdvd\n");
407                 return ret;
408         }
409         return 0;
410 }
411
412 static void pkt_sysfs_cleanup(void)
413 {
414         if (class_pktcdvd)
415                 class_destroy(class_pktcdvd);
416         class_pktcdvd = NULL;
417 }
418
419 /********************************************************************
420   entries in debugfs
421
422   /debugfs/pktcdvd[0-7]/
423                         info
424
425  *******************************************************************/
426
427 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
428 {
429         return pkt_seq_show(m, p);
430 }
431
432 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
433 {
434         return single_open(file, pkt_debugfs_seq_show, inode->i_private);
435 }
436
437 static const struct file_operations debug_fops = {
438         .open           = pkt_debugfs_fops_open,
439         .read           = seq_read,
440         .llseek         = seq_lseek,
441         .release        = single_release,
442         .owner          = THIS_MODULE,
443 };
444
445 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
446 {
447         if (!pkt_debugfs_root)
448                 return;
449         pd->dfs_f_info = NULL;
450         pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
451         if (IS_ERR(pd->dfs_d_root)) {
452                 pd->dfs_d_root = NULL;
453                 return;
454         }
455         pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
456                                 pd->dfs_d_root, pd, &debug_fops);
457         if (IS_ERR(pd->dfs_f_info)) {
458                 pd->dfs_f_info = NULL;
459                 return;
460         }
461 }
462
463 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
464 {
465         if (!pkt_debugfs_root)
466                 return;
467         if (pd->dfs_f_info)
468                 debugfs_remove(pd->dfs_f_info);
469         pd->dfs_f_info = NULL;
470         if (pd->dfs_d_root)
471                 debugfs_remove(pd->dfs_d_root);
472         pd->dfs_d_root = NULL;
473 }
474
475 static void pkt_debugfs_init(void)
476 {
477         pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
478         if (IS_ERR(pkt_debugfs_root)) {
479                 pkt_debugfs_root = NULL;
480                 return;
481         }
482 }
483
484 static void pkt_debugfs_cleanup(void)
485 {
486         if (!pkt_debugfs_root)
487                 return;
488         debugfs_remove(pkt_debugfs_root);
489         pkt_debugfs_root = NULL;
490 }
491
492 /* ----------------------------------------------------------*/
493
494
495 static void pkt_bio_finished(struct pktcdvd_device *pd)
496 {
497         BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
498         if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
499                 VPRINTK(DRIVER_NAME": queue empty\n");
500                 atomic_set(&pd->iosched.attention, 1);
501                 wake_up(&pd->wqueue);
502         }
503 }
504
505 static void pkt_bio_destructor(struct bio *bio)
506 {
507         kfree(bio->bi_io_vec);
508         kfree(bio);
509 }
510
511 static struct bio *pkt_bio_alloc(int nr_iovecs)
512 {
513         struct bio_vec *bvl = NULL;
514         struct bio *bio;
515
516         bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
517         if (!bio)
518                 goto no_bio;
519         bio_init(bio);
520
521         bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
522         if (!bvl)
523                 goto no_bvl;
524
525         bio->bi_max_vecs = nr_iovecs;
526         bio->bi_io_vec = bvl;
527         bio->bi_destructor = pkt_bio_destructor;
528
529         return bio;
530
531  no_bvl:
532         kfree(bio);
533  no_bio:
534         return NULL;
535 }
536
537 /*
538  * Allocate a packet_data struct
539  */
540 static struct packet_data *pkt_alloc_packet_data(int frames)
541 {
542         int i;
543         struct packet_data *pkt;
544
545         pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
546         if (!pkt)
547                 goto no_pkt;
548
549         pkt->frames = frames;
550         pkt->w_bio = pkt_bio_alloc(frames);
551         if (!pkt->w_bio)
552                 goto no_bio;
553
554         for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
555                 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
556                 if (!pkt->pages[i])
557                         goto no_page;
558         }
559
560         spin_lock_init(&pkt->lock);
561
562         for (i = 0; i < frames; i++) {
563                 struct bio *bio = pkt_bio_alloc(1);
564                 if (!bio)
565                         goto no_rd_bio;
566                 pkt->r_bios[i] = bio;
567         }
568
569         return pkt;
570
571 no_rd_bio:
572         for (i = 0; i < frames; i++) {
573                 struct bio *bio = pkt->r_bios[i];
574                 if (bio)
575                         bio_put(bio);
576         }
577
578 no_page:
579         for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
580                 if (pkt->pages[i])
581                         __free_page(pkt->pages[i]);
582         bio_put(pkt->w_bio);
583 no_bio:
584         kfree(pkt);
585 no_pkt:
586         return NULL;
587 }
588
589 /*
590  * Free a packet_data struct
591  */
592 static void pkt_free_packet_data(struct packet_data *pkt)
593 {
594         int i;
595
596         for (i = 0; i < pkt->frames; i++) {
597                 struct bio *bio = pkt->r_bios[i];
598                 if (bio)
599                         bio_put(bio);
600         }
601         for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
602                 __free_page(pkt->pages[i]);
603         bio_put(pkt->w_bio);
604         kfree(pkt);
605 }
606
607 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
608 {
609         struct packet_data *pkt, *next;
610
611         BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
612
613         list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
614                 pkt_free_packet_data(pkt);
615         }
616         INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
617 }
618
619 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
620 {
621         struct packet_data *pkt;
622
623         BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
624
625         while (nr_packets > 0) {
626                 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
627                 if (!pkt) {
628                         pkt_shrink_pktlist(pd);
629                         return 0;
630                 }
631                 pkt->id = nr_packets;
632                 pkt->pd = pd;
633                 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
634                 nr_packets--;
635         }
636         return 1;
637 }
638
639 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
640 {
641         struct rb_node *n = rb_next(&node->rb_node);
642         if (!n)
643                 return NULL;
644         return rb_entry(n, struct pkt_rb_node, rb_node);
645 }
646
647 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
648 {
649         rb_erase(&node->rb_node, &pd->bio_queue);
650         mempool_free(node, pd->rb_pool);
651         pd->bio_queue_size--;
652         BUG_ON(pd->bio_queue_size < 0);
653 }
654
655 /*
656  * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
657  */
658 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
659 {
660         struct rb_node *n = pd->bio_queue.rb_node;
661         struct rb_node *next;
662         struct pkt_rb_node *tmp;
663
664         if (!n) {
665                 BUG_ON(pd->bio_queue_size > 0);
666                 return NULL;
667         }
668
669         for (;;) {
670                 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
671                 if (s <= tmp->bio->bi_sector)
672                         next = n->rb_left;
673                 else
674                         next = n->rb_right;
675                 if (!next)
676                         break;
677                 n = next;
678         }
679
680         if (s > tmp->bio->bi_sector) {
681                 tmp = pkt_rbtree_next(tmp);
682                 if (!tmp)
683                         return NULL;
684         }
685         BUG_ON(s > tmp->bio->bi_sector);
686         return tmp;
687 }
688
689 /*
690  * Insert a node into the pd->bio_queue rb tree.
691  */
692 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
693 {
694         struct rb_node **p = &pd->bio_queue.rb_node;
695         struct rb_node *parent = NULL;
696         sector_t s = node->bio->bi_sector;
697         struct pkt_rb_node *tmp;
698
699         while (*p) {
700                 parent = *p;
701                 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
702                 if (s < tmp->bio->bi_sector)
703                         p = &(*p)->rb_left;
704                 else
705                         p = &(*p)->rb_right;
706         }
707         rb_link_node(&node->rb_node, parent, p);
708         rb_insert_color(&node->rb_node, &pd->bio_queue);
709         pd->bio_queue_size++;
710 }
711
712 /*
713  * Add a bio to a single linked list defined by its head and tail pointers.
714  */
715 static void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
716 {
717         bio->bi_next = NULL;
718         if (*list_tail) {
719                 BUG_ON((*list_head) == NULL);
720                 (*list_tail)->bi_next = bio;
721                 (*list_tail) = bio;
722         } else {
723                 BUG_ON((*list_head) != NULL);
724                 (*list_head) = bio;
725                 (*list_tail) = bio;
726         }
727 }
728
729 /*
730  * Remove and return the first bio from a single linked list defined by its
731  * head and tail pointers.
732  */
733 static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
734 {
735         struct bio *bio;
736
737         if (*list_head == NULL)
738                 return NULL;
739
740         bio = *list_head;
741         *list_head = bio->bi_next;
742         if (*list_head == NULL)
743                 *list_tail = NULL;
744
745         bio->bi_next = NULL;
746         return bio;
747 }
748
749 /*
750  * Send a packet_command to the underlying block device and
751  * wait for completion.
752  */
753 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
754 {
755         request_queue_t *q = bdev_get_queue(pd->bdev);
756         struct request *rq;
757         int ret = 0;
758
759         rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
760                              WRITE : READ, __GFP_WAIT);
761
762         if (cgc->buflen) {
763                 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
764                         goto out;
765         }
766
767         rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
768         memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
769         if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
770                 memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
771
772         rq->timeout = 60*HZ;
773         rq->cmd_type = REQ_TYPE_BLOCK_PC;
774         rq->cmd_flags |= REQ_HARDBARRIER;
775         if (cgc->quiet)
776                 rq->cmd_flags |= REQ_QUIET;
777
778         blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
779         if (rq->errors)
780                 ret = -EIO;
781 out:
782         blk_put_request(rq);
783         return ret;
784 }
785
786 /*
787  * A generic sense dump / resolve mechanism should be implemented across
788  * all ATAPI + SCSI devices.
789  */
790 static void pkt_dump_sense(struct packet_command *cgc)
791 {
792         static char *info[9] = { "No sense", "Recovered error", "Not ready",
793                                  "Medium error", "Hardware error", "Illegal request",
794                                  "Unit attention", "Data protect", "Blank check" };
795         int i;
796         struct request_sense *sense = cgc->sense;
797
798         printk(DRIVER_NAME":");
799         for (i = 0; i < CDROM_PACKET_SIZE; i++)
800                 printk(" %02x", cgc->cmd[i]);
801         printk(" - ");
802
803         if (sense == NULL) {
804                 printk("no sense\n");
805                 return;
806         }
807
808         printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
809
810         if (sense->sense_key > 8) {
811                 printk(" (INVALID)\n");
812                 return;
813         }
814
815         printk(" (%s)\n", info[sense->sense_key]);
816 }
817
818 /*
819  * flush the drive cache to media
820  */
821 static int pkt_flush_cache(struct pktcdvd_device *pd)
822 {
823         struct packet_command cgc;
824
825         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
826         cgc.cmd[0] = GPCMD_FLUSH_CACHE;
827         cgc.quiet = 1;
828
829         /*
830          * the IMMED bit -- we default to not setting it, although that
831          * would allow a much faster close, this is safer
832          */
833 #if 0
834         cgc.cmd[1] = 1 << 1;
835 #endif
836         return pkt_generic_packet(pd, &cgc);
837 }
838
839 /*
840  * speed is given as the normal factor, e.g. 4 for 4x
841  */
842 static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
843 {
844         struct packet_command cgc;
845         struct request_sense sense;
846         int ret;
847
848         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
849         cgc.sense = &sense;
850         cgc.cmd[0] = GPCMD_SET_SPEED;
851         cgc.cmd[2] = (read_speed >> 8) & 0xff;
852         cgc.cmd[3] = read_speed & 0xff;
853         cgc.cmd[4] = (write_speed >> 8) & 0xff;
854         cgc.cmd[5] = write_speed & 0xff;
855
856         if ((ret = pkt_generic_packet(pd, &cgc)))
857                 pkt_dump_sense(&cgc);
858
859         return ret;
860 }
861
862 /*
863  * Queue a bio for processing by the low-level CD device. Must be called
864  * from process context.
865  */
866 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
867 {
868         spin_lock(&pd->iosched.lock);
869         if (bio_data_dir(bio) == READ) {
870                 pkt_add_list_last(bio, &pd->iosched.read_queue,
871                                   &pd->iosched.read_queue_tail);
872         } else {
873                 pkt_add_list_last(bio, &pd->iosched.write_queue,
874                                   &pd->iosched.write_queue_tail);
875         }
876         spin_unlock(&pd->iosched.lock);
877
878         atomic_set(&pd->iosched.attention, 1);
879         wake_up(&pd->wqueue);
880 }
881
882 /*
883  * Process the queued read/write requests. This function handles special
884  * requirements for CDRW drives:
885  * - A cache flush command must be inserted before a read request if the
886  *   previous request was a write.
887  * - Switching between reading and writing is slow, so don't do it more often
888  *   than necessary.
889  * - Optimize for throughput at the expense of latency. This means that streaming
890  *   writes will never be interrupted by a read, but if the drive has to seek
891  *   before the next write, switch to reading instead if there are any pending
892  *   read requests.
893  * - Set the read speed according to current usage pattern. When only reading
894  *   from the device, it's best to use the highest possible read speed, but
895  *   when switching often between reading and writing, it's better to have the
896  *   same read and write speeds.
897  */
898 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
899 {
900
901         if (atomic_read(&pd->iosched.attention) == 0)
902                 return;
903         atomic_set(&pd->iosched.attention, 0);
904
905         for (;;) {
906                 struct bio *bio;
907                 int reads_queued, writes_queued;
908
909                 spin_lock(&pd->iosched.lock);
910                 reads_queued = (pd->iosched.read_queue != NULL);
911                 writes_queued = (pd->iosched.write_queue != NULL);
912                 spin_unlock(&pd->iosched.lock);
913
914                 if (!reads_queued && !writes_queued)
915                         break;
916
917                 if (pd->iosched.writing) {
918                         int need_write_seek = 1;
919                         spin_lock(&pd->iosched.lock);
920                         bio = pd->iosched.write_queue;
921                         spin_unlock(&pd->iosched.lock);
922                         if (bio && (bio->bi_sector == pd->iosched.last_write))
923                                 need_write_seek = 0;
924                         if (need_write_seek && reads_queued) {
925                                 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
926                                         VPRINTK(DRIVER_NAME": write, waiting\n");
927                                         break;
928                                 }
929                                 pkt_flush_cache(pd);
930                                 pd->iosched.writing = 0;
931                         }
932                 } else {
933                         if (!reads_queued && writes_queued) {
934                                 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
935                                         VPRINTK(DRIVER_NAME": read, waiting\n");
936                                         break;
937                                 }
938                                 pd->iosched.writing = 1;
939                         }
940                 }
941
942                 spin_lock(&pd->iosched.lock);
943                 if (pd->iosched.writing) {
944                         bio = pkt_get_list_first(&pd->iosched.write_queue,
945                                                  &pd->iosched.write_queue_tail);
946                 } else {
947                         bio = pkt_get_list_first(&pd->iosched.read_queue,
948                                                  &pd->iosched.read_queue_tail);
949                 }
950                 spin_unlock(&pd->iosched.lock);
951
952                 if (!bio)
953                         continue;
954
955                 if (bio_data_dir(bio) == READ)
956                         pd->iosched.successive_reads += bio->bi_size >> 10;
957                 else {
958                         pd->iosched.successive_reads = 0;
959                         pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
960                 }
961                 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
962                         if (pd->read_speed == pd->write_speed) {
963                                 pd->read_speed = MAX_SPEED;
964                                 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
965                         }
966                 } else {
967                         if (pd->read_speed != pd->write_speed) {
968                                 pd->read_speed = pd->write_speed;
969                                 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
970                         }
971                 }
972
973                 atomic_inc(&pd->cdrw.pending_bios);
974                 generic_make_request(bio);
975         }
976 }
977
978 /*
979  * Special care is needed if the underlying block device has a small
980  * max_phys_segments value.
981  */
982 static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
983 {
984         if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
985                 /*
986                  * The cdrom device can handle one segment/frame
987                  */
988                 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
989                 return 0;
990         } else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
991                 /*
992                  * We can handle this case at the expense of some extra memory
993                  * copies during write operations
994                  */
995                 set_bit(PACKET_MERGE_SEGS, &pd->flags);
996                 return 0;
997         } else {
998                 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
999                 return -EIO;
1000         }
1001 }
1002
1003 /*
1004  * Copy CD_FRAMESIZE bytes from src_bio into a destination page
1005  */
1006 static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
1007 {
1008         unsigned int copy_size = CD_FRAMESIZE;
1009
1010         while (copy_size > 0) {
1011                 struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
1012                 void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
1013                         src_bvl->bv_offset + offs;
1014                 void *vto = page_address(dst_page) + dst_offs;
1015                 int len = min_t(int, copy_size, src_bvl->bv_len - offs);
1016
1017                 BUG_ON(len < 0);
1018                 memcpy(vto, vfrom, len);
1019                 kunmap_atomic(vfrom, KM_USER0);
1020
1021                 seg++;
1022                 offs = 0;
1023                 dst_offs += len;
1024                 copy_size -= len;
1025         }
1026 }
1027
1028 /*
1029  * Copy all data for this packet to pkt->pages[], so that
1030  * a) The number of required segments for the write bio is minimized, which
1031  *    is necessary for some scsi controllers.
1032  * b) The data can be used as cache to avoid read requests if we receive a
1033  *    new write request for the same zone.
1034  */
1035 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
1036 {
1037         int f, p, offs;
1038
1039         /* Copy all data to pkt->pages[] */
1040         p = 0;
1041         offs = 0;
1042         for (f = 0; f < pkt->frames; f++) {
1043                 if (bvec[f].bv_page != pkt->pages[p]) {
1044                         void *vfrom = kmap_atomic(bvec[f].bv_page, KM_USER0) + bvec[f].bv_offset;
1045                         void *vto = page_address(pkt->pages[p]) + offs;
1046                         memcpy(vto, vfrom, CD_FRAMESIZE);
1047                         kunmap_atomic(vfrom, KM_USER0);
1048                         bvec[f].bv_page = pkt->pages[p];
1049                         bvec[f].bv_offset = offs;
1050                 } else {
1051                         BUG_ON(bvec[f].bv_offset != offs);
1052                 }
1053                 offs += CD_FRAMESIZE;
1054                 if (offs >= PAGE_SIZE) {
1055                         offs = 0;
1056                         p++;
1057                 }
1058         }
1059 }
1060
1061 static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
1062 {
1063         struct packet_data *pkt = bio->bi_private;
1064         struct pktcdvd_device *pd = pkt->pd;
1065         BUG_ON(!pd);
1066
1067         if (bio->bi_size)
1068                 return 1;
1069
1070         VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
1071                 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
1072
1073         if (err)
1074                 atomic_inc(&pkt->io_errors);
1075         if (atomic_dec_and_test(&pkt->io_wait)) {
1076                 atomic_inc(&pkt->run_sm);
1077                 wake_up(&pd->wqueue);
1078         }
1079         pkt_bio_finished(pd);
1080
1081         return 0;
1082 }
1083
1084 static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
1085 {
1086         struct packet_data *pkt = bio->bi_private;
1087         struct pktcdvd_device *pd = pkt->pd;
1088         BUG_ON(!pd);
1089
1090         if (bio->bi_size)
1091                 return 1;
1092
1093         VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1094
1095         pd->stats.pkt_ended++;
1096
1097         pkt_bio_finished(pd);
1098         atomic_dec(&pkt->io_wait);
1099         atomic_inc(&pkt->run_sm);
1100         wake_up(&pd->wqueue);
1101         return 0;
1102 }
1103
1104 /*
1105  * Schedule reads for the holes in a packet
1106  */
1107 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1108 {
1109         int frames_read = 0;
1110         struct bio *bio;
1111         int f;
1112         char written[PACKET_MAX_SIZE];
1113
1114         BUG_ON(!pkt->orig_bios);
1115
1116         atomic_set(&pkt->io_wait, 0);
1117         atomic_set(&pkt->io_errors, 0);
1118
1119         /*
1120          * Figure out which frames we need to read before we can write.
1121          */
1122         memset(written, 0, sizeof(written));
1123         spin_lock(&pkt->lock);
1124         for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1125                 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1126                 int num_frames = bio->bi_size / CD_FRAMESIZE;
1127                 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1128                 BUG_ON(first_frame < 0);
1129                 BUG_ON(first_frame + num_frames > pkt->frames);
1130                 for (f = first_frame; f < first_frame + num_frames; f++)
1131                         written[f] = 1;
1132         }
1133         spin_unlock(&pkt->lock);
1134
1135         if (pkt->cache_valid) {
1136                 VPRINTK("pkt_gather_data: zone %llx cached\n",
1137                         (unsigned long long)pkt->sector);
1138                 goto out_account;
1139         }
1140
1141         /*
1142          * Schedule reads for missing parts of the packet.
1143          */
1144         for (f = 0; f < pkt->frames; f++) {
1145                 int p, offset;
1146                 if (written[f])
1147                         continue;
1148                 bio = pkt->r_bios[f];
1149                 bio_init(bio);
1150                 bio->bi_max_vecs = 1;
1151                 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1152                 bio->bi_bdev = pd->bdev;
1153                 bio->bi_end_io = pkt_end_io_read;
1154                 bio->bi_private = pkt;
1155
1156                 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1157                 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1158                 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1159                         f, pkt->pages[p], offset);
1160                 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1161                         BUG();
1162
1163                 atomic_inc(&pkt->io_wait);
1164                 bio->bi_rw = READ;
1165                 pkt_queue_bio(pd, bio);
1166                 frames_read++;
1167         }
1168
1169 out_account:
1170         VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1171                 frames_read, (unsigned long long)pkt->sector);
1172         pd->stats.pkt_started++;
1173         pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1174 }
1175
1176 /*
1177  * Find a packet matching zone, or the least recently used packet if
1178  * there is no match.
1179  */
1180 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1181 {
1182         struct packet_data *pkt;
1183
1184         list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1185                 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1186                         list_del_init(&pkt->list);
1187                         if (pkt->sector != zone)
1188                                 pkt->cache_valid = 0;
1189                         return pkt;
1190                 }
1191         }
1192         BUG();
1193         return NULL;
1194 }
1195
1196 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1197 {
1198         if (pkt->cache_valid) {
1199                 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1200         } else {
1201                 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1202         }
1203 }
1204
1205 /*
1206  * recover a failed write, query for relocation if possible
1207  *
1208  * returns 1 if recovery is possible, or 0 if not
1209  *
1210  */
1211 static int pkt_start_recovery(struct packet_data *pkt)
1212 {
1213         /*
1214          * FIXME. We need help from the file system to implement
1215          * recovery handling.
1216          */
1217         return 0;
1218 #if 0
1219         struct request *rq = pkt->rq;
1220         struct pktcdvd_device *pd = rq->rq_disk->private_data;
1221         struct block_device *pkt_bdev;
1222         struct super_block *sb = NULL;
1223         unsigned long old_block, new_block;
1224         sector_t new_sector;
1225
1226         pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1227         if (pkt_bdev) {
1228                 sb = get_super(pkt_bdev);
1229                 bdput(pkt_bdev);
1230         }
1231
1232         if (!sb)
1233                 return 0;
1234
1235         if (!sb->s_op || !sb->s_op->relocate_blocks)
1236                 goto out;
1237
1238         old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1239         if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1240                 goto out;
1241
1242         new_sector = new_block * (CD_FRAMESIZE >> 9);
1243         pkt->sector = new_sector;
1244
1245         pkt->bio->bi_sector = new_sector;
1246         pkt->bio->bi_next = NULL;
1247         pkt->bio->bi_flags = 1 << BIO_UPTODATE;
1248         pkt->bio->bi_idx = 0;
1249
1250         BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
1251         BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
1252         BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
1253         BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
1254         BUG_ON(pkt->bio->bi_private != pkt);
1255
1256         drop_super(sb);
1257         return 1;
1258
1259 out:
1260         drop_super(sb);
1261         return 0;
1262 #endif
1263 }
1264
1265 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1266 {
1267 #if PACKET_DEBUG > 1
1268         static const char *state_name[] = {
1269                 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1270         };
1271         enum packet_data_state old_state = pkt->state;
1272         VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1273                 state_name[old_state], state_name[state]);
1274 #endif
1275         pkt->state = state;
1276 }
1277
1278 /*
1279  * Scan the work queue to see if we can start a new packet.
1280  * returns non-zero if any work was done.
1281  */
1282 static int pkt_handle_queue(struct pktcdvd_device *pd)
1283 {
1284         struct packet_data *pkt, *p;
1285         struct bio *bio = NULL;
1286         sector_t zone = 0; /* Suppress gcc warning */
1287         struct pkt_rb_node *node, *first_node;
1288         struct rb_node *n;
1289         int wakeup;
1290
1291         VPRINTK("handle_queue\n");
1292
1293         atomic_set(&pd->scan_queue, 0);
1294
1295         if (list_empty(&pd->cdrw.pkt_free_list)) {
1296                 VPRINTK("handle_queue: no pkt\n");
1297                 return 0;
1298         }
1299
1300         /*
1301          * Try to find a zone we are not already working on.
1302          */
1303         spin_lock(&pd->lock);
1304         first_node = pkt_rbtree_find(pd, pd->current_sector);
1305         if (!first_node) {
1306                 n = rb_first(&pd->bio_queue);
1307                 if (n)
1308                         first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1309         }
1310         node = first_node;
1311         while (node) {
1312                 bio = node->bio;
1313                 zone = ZONE(bio->bi_sector, pd);
1314                 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1315                         if (p->sector == zone) {
1316                                 bio = NULL;
1317                                 goto try_next_bio;
1318                         }
1319                 }
1320                 break;
1321 try_next_bio:
1322                 node = pkt_rbtree_next(node);
1323                 if (!node) {
1324                         n = rb_first(&pd->bio_queue);
1325                         if (n)
1326                                 node = rb_entry(n, struct pkt_rb_node, rb_node);
1327                 }
1328                 if (node == first_node)
1329                         node = NULL;
1330         }
1331         spin_unlock(&pd->lock);
1332         if (!bio) {
1333                 VPRINTK("handle_queue: no bio\n");
1334                 return 0;
1335         }
1336
1337         pkt = pkt_get_packet_data(pd, zone);
1338
1339         pd->current_sector = zone + pd->settings.size;
1340         pkt->sector = zone;
1341         BUG_ON(pkt->frames != pd->settings.size >> 2);
1342         pkt->write_size = 0;
1343
1344         /*
1345          * Scan work queue for bios in the same zone and link them
1346          * to this packet.
1347          */
1348         spin_lock(&pd->lock);
1349         VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1350         while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1351                 bio = node->bio;
1352                 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1353                         (unsigned long long)ZONE(bio->bi_sector, pd));
1354                 if (ZONE(bio->bi_sector, pd) != zone)
1355                         break;
1356                 pkt_rbtree_erase(pd, node);
1357                 spin_lock(&pkt->lock);
1358                 pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
1359                 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1360                 spin_unlock(&pkt->lock);
1361         }
1362         /* check write congestion marks, and if bio_queue_size is
1363            below, wake up any waiters */
1364         wakeup = (pd->write_congestion_on > 0
1365                         && pd->bio_queue_size <= pd->write_congestion_off);
1366         spin_unlock(&pd->lock);
1367         if (wakeup)
1368                 clear_bdi_congested(&pd->disk->queue->backing_dev_info, WRITE);
1369
1370         pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1371         pkt_set_state(pkt, PACKET_WAITING_STATE);
1372         atomic_set(&pkt->run_sm, 1);
1373
1374         spin_lock(&pd->cdrw.active_list_lock);
1375         list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1376         spin_unlock(&pd->cdrw.active_list_lock);
1377
1378         return 1;
1379 }
1380
1381 /*
1382  * Assemble a bio to write one packet and queue the bio for processing
1383  * by the underlying block device.
1384  */
1385 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1386 {
1387         struct bio *bio;
1388         int f;
1389         int frames_write;
1390         struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1391
1392         for (f = 0; f < pkt->frames; f++) {
1393                 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1394                 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1395         }
1396
1397         /*
1398          * Fill-in bvec with data from orig_bios.
1399          */
1400         frames_write = 0;
1401         spin_lock(&pkt->lock);
1402         for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
1403                 int segment = bio->bi_idx;
1404                 int src_offs = 0;
1405                 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1406                 int num_frames = bio->bi_size / CD_FRAMESIZE;
1407                 BUG_ON(first_frame < 0);
1408                 BUG_ON(first_frame + num_frames > pkt->frames);
1409                 for (f = first_frame; f < first_frame + num_frames; f++) {
1410                         struct bio_vec *src_bvl = bio_iovec_idx(bio, segment);
1411
1412                         while (src_offs >= src_bvl->bv_len) {
1413                                 src_offs -= src_bvl->bv_len;
1414                                 segment++;
1415                                 BUG_ON(segment >= bio->bi_vcnt);
1416                                 src_bvl = bio_iovec_idx(bio, segment);
1417                         }
1418
1419                         if (src_bvl->bv_len - src_offs >= CD_FRAMESIZE) {
1420                                 bvec[f].bv_page = src_bvl->bv_page;
1421                                 bvec[f].bv_offset = src_bvl->bv_offset + src_offs;
1422                         } else {
1423                                 pkt_copy_bio_data(bio, segment, src_offs,
1424                                                   bvec[f].bv_page, bvec[f].bv_offset);
1425                         }
1426                         src_offs += CD_FRAMESIZE;
1427                         frames_write++;
1428                 }
1429         }
1430         pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1431         spin_unlock(&pkt->lock);
1432
1433         VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1434                 frames_write, (unsigned long long)pkt->sector);
1435         BUG_ON(frames_write != pkt->write_size);
1436
1437         if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1438                 pkt_make_local_copy(pkt, bvec);
1439                 pkt->cache_valid = 1;
1440         } else {
1441                 pkt->cache_valid = 0;
1442         }
1443
1444         /* Start the write request */
1445         bio_init(pkt->w_bio);
1446         pkt->w_bio->bi_max_vecs = PACKET_MAX_SIZE;
1447         pkt->w_bio->bi_sector = pkt->sector;
1448         pkt->w_bio->bi_bdev = pd->bdev;
1449         pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1450         pkt->w_bio->bi_private = pkt;
1451         for (f = 0; f < pkt->frames; f++)
1452                 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1453                         BUG();
1454         VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1455
1456         atomic_set(&pkt->io_wait, 1);
1457         pkt->w_bio->bi_rw = WRITE;
1458         pkt_queue_bio(pd, pkt->w_bio);
1459 }
1460
1461 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1462 {
1463         struct bio *bio, *next;
1464
1465         if (!uptodate)
1466                 pkt->cache_valid = 0;
1467
1468         /* Finish all bios corresponding to this packet */
1469         bio = pkt->orig_bios;
1470         while (bio) {
1471                 next = bio->bi_next;
1472                 bio->bi_next = NULL;
1473                 bio_endio(bio, bio->bi_size, uptodate ? 0 : -EIO);
1474                 bio = next;
1475         }
1476         pkt->orig_bios = pkt->orig_bios_tail = NULL;
1477 }
1478
1479 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1480 {
1481         int uptodate;
1482
1483         VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1484
1485         for (;;) {
1486                 switch (pkt->state) {
1487                 case PACKET_WAITING_STATE:
1488                         if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1489                                 return;
1490
1491                         pkt->sleep_time = 0;
1492                         pkt_gather_data(pd, pkt);
1493                         pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1494                         break;
1495
1496                 case PACKET_READ_WAIT_STATE:
1497                         if (atomic_read(&pkt->io_wait) > 0)
1498                                 return;
1499
1500                         if (atomic_read(&pkt->io_errors) > 0) {
1501                                 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1502                         } else {
1503                                 pkt_start_write(pd, pkt);
1504                         }
1505                         break;
1506
1507                 case PACKET_WRITE_WAIT_STATE:
1508                         if (atomic_read(&pkt->io_wait) > 0)
1509                                 return;
1510
1511                         if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1512                                 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1513                         } else {
1514                                 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1515                         }
1516                         break;
1517
1518                 case PACKET_RECOVERY_STATE:
1519                         if (pkt_start_recovery(pkt)) {
1520                                 pkt_start_write(pd, pkt);
1521                         } else {
1522                                 VPRINTK("No recovery possible\n");
1523                                 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1524                         }
1525                         break;
1526
1527                 case PACKET_FINISHED_STATE:
1528                         uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1529                         pkt_finish_packet(pkt, uptodate);
1530                         return;
1531
1532                 default:
1533                         BUG();
1534                         break;
1535                 }
1536         }
1537 }
1538
1539 static void pkt_handle_packets(struct pktcdvd_device *pd)
1540 {
1541         struct packet_data *pkt, *next;
1542
1543         VPRINTK("pkt_handle_packets\n");
1544
1545         /*
1546          * Run state machine for active packets
1547          */
1548         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1549                 if (atomic_read(&pkt->run_sm) > 0) {
1550                         atomic_set(&pkt->run_sm, 0);
1551                         pkt_run_state_machine(pd, pkt);
1552                 }
1553         }
1554
1555         /*
1556          * Move no longer active packets to the free list
1557          */
1558         spin_lock(&pd->cdrw.active_list_lock);
1559         list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1560                 if (pkt->state == PACKET_FINISHED_STATE) {
1561                         list_del(&pkt->list);
1562                         pkt_put_packet_data(pd, pkt);
1563                         pkt_set_state(pkt, PACKET_IDLE_STATE);
1564                         atomic_set(&pd->scan_queue, 1);
1565                 }
1566         }
1567         spin_unlock(&pd->cdrw.active_list_lock);
1568 }
1569
1570 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1571 {
1572         struct packet_data *pkt;
1573         int i;
1574
1575         for (i = 0; i < PACKET_NUM_STATES; i++)
1576                 states[i] = 0;
1577
1578         spin_lock(&pd->cdrw.active_list_lock);
1579         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1580                 states[pkt->state]++;
1581         }
1582         spin_unlock(&pd->cdrw.active_list_lock);
1583 }
1584
1585 /*
1586  * kcdrwd is woken up when writes have been queued for one of our
1587  * registered devices
1588  */
1589 static int kcdrwd(void *foobar)
1590 {
1591         struct pktcdvd_device *pd = foobar;
1592         struct packet_data *pkt;
1593         long min_sleep_time, residue;
1594
1595         set_user_nice(current, -20);
1596
1597         for (;;) {
1598                 DECLARE_WAITQUEUE(wait, current);
1599
1600                 /*
1601                  * Wait until there is something to do
1602                  */
1603                 add_wait_queue(&pd->wqueue, &wait);
1604                 for (;;) {
1605                         set_current_state(TASK_INTERRUPTIBLE);
1606
1607                         /* Check if we need to run pkt_handle_queue */
1608                         if (atomic_read(&pd->scan_queue) > 0)
1609                                 goto work_to_do;
1610
1611                         /* Check if we need to run the state machine for some packet */
1612                         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1613                                 if (atomic_read(&pkt->run_sm) > 0)
1614                                         goto work_to_do;
1615                         }
1616
1617                         /* Check if we need to process the iosched queues */
1618                         if (atomic_read(&pd->iosched.attention) != 0)
1619                                 goto work_to_do;
1620
1621                         /* Otherwise, go to sleep */
1622                         if (PACKET_DEBUG > 1) {
1623                                 int states[PACKET_NUM_STATES];
1624                                 pkt_count_states(pd, states);
1625                                 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1626                                         states[0], states[1], states[2], states[3],
1627                                         states[4], states[5]);
1628                         }
1629
1630                         min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1631                         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1632                                 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1633                                         min_sleep_time = pkt->sleep_time;
1634                         }
1635
1636                         generic_unplug_device(bdev_get_queue(pd->bdev));
1637
1638                         VPRINTK("kcdrwd: sleeping\n");
1639                         residue = schedule_timeout(min_sleep_time);
1640                         VPRINTK("kcdrwd: wake up\n");
1641
1642                         /* make swsusp happy with our thread */
1643                         try_to_freeze();
1644
1645                         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1646                                 if (!pkt->sleep_time)
1647                                         continue;
1648                                 pkt->sleep_time -= min_sleep_time - residue;
1649                                 if (pkt->sleep_time <= 0) {
1650                                         pkt->sleep_time = 0;
1651                                         atomic_inc(&pkt->run_sm);
1652                                 }
1653                         }
1654
1655                         if (kthread_should_stop())
1656                                 break;
1657                 }
1658 work_to_do:
1659                 set_current_state(TASK_RUNNING);
1660                 remove_wait_queue(&pd->wqueue, &wait);
1661
1662                 if (kthread_should_stop())
1663                         break;
1664
1665                 /*
1666                  * if pkt_handle_queue returns true, we can queue
1667                  * another request.
1668                  */
1669                 while (pkt_handle_queue(pd))
1670                         ;
1671
1672                 /*
1673                  * Handle packet state machine
1674                  */
1675                 pkt_handle_packets(pd);
1676
1677                 /*
1678                  * Handle iosched queues
1679                  */
1680                 pkt_iosched_process_queue(pd);
1681         }
1682
1683         return 0;
1684 }
1685
1686 static void pkt_print_settings(struct pktcdvd_device *pd)
1687 {
1688         printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1689         printk("%u blocks, ", pd->settings.size >> 2);
1690         printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1691 }
1692
1693 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1694 {
1695         memset(cgc->cmd, 0, sizeof(cgc->cmd));
1696
1697         cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1698         cgc->cmd[2] = page_code | (page_control << 6);
1699         cgc->cmd[7] = cgc->buflen >> 8;
1700         cgc->cmd[8] = cgc->buflen & 0xff;
1701         cgc->data_direction = CGC_DATA_READ;
1702         return pkt_generic_packet(pd, cgc);
1703 }
1704
1705 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1706 {
1707         memset(cgc->cmd, 0, sizeof(cgc->cmd));
1708         memset(cgc->buffer, 0, 2);
1709         cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1710         cgc->cmd[1] = 0x10;             /* PF */
1711         cgc->cmd[7] = cgc->buflen >> 8;
1712         cgc->cmd[8] = cgc->buflen & 0xff;
1713         cgc->data_direction = CGC_DATA_WRITE;
1714         return pkt_generic_packet(pd, cgc);
1715 }
1716
1717 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1718 {
1719         struct packet_command cgc;
1720         int ret;
1721
1722         /* set up command and get the disc info */
1723         init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1724         cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1725         cgc.cmd[8] = cgc.buflen = 2;
1726         cgc.quiet = 1;
1727
1728         if ((ret = pkt_generic_packet(pd, &cgc)))
1729                 return ret;
1730
1731         /* not all drives have the same disc_info length, so requeue
1732          * packet with the length the drive tells us it can supply
1733          */
1734         cgc.buflen = be16_to_cpu(di->disc_information_length) +
1735                      sizeof(di->disc_information_length);
1736
1737         if (cgc.buflen > sizeof(disc_information))
1738                 cgc.buflen = sizeof(disc_information);
1739
1740         cgc.cmd[8] = cgc.buflen;
1741         return pkt_generic_packet(pd, &cgc);
1742 }
1743
1744 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1745 {
1746         struct packet_command cgc;
1747         int ret;
1748
1749         init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1750         cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1751         cgc.cmd[1] = type & 3;
1752         cgc.cmd[4] = (track & 0xff00) >> 8;
1753         cgc.cmd[5] = track & 0xff;
1754         cgc.cmd[8] = 8;
1755         cgc.quiet = 1;
1756
1757         if ((ret = pkt_generic_packet(pd, &cgc)))
1758                 return ret;
1759
1760         cgc.buflen = be16_to_cpu(ti->track_information_length) +
1761                      sizeof(ti->track_information_length);
1762
1763         if (cgc.buflen > sizeof(track_information))
1764                 cgc.buflen = sizeof(track_information);
1765
1766         cgc.cmd[8] = cgc.buflen;
1767         return pkt_generic_packet(pd, &cgc);
1768 }
1769
1770 static int pkt_get_last_written(struct pktcdvd_device *pd, long *last_written)
1771 {
1772         disc_information di;
1773         track_information ti;
1774         __u32 last_track;
1775         int ret = -1;
1776
1777         if ((ret = pkt_get_disc_info(pd, &di)))
1778                 return ret;
1779
1780         last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1781         if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1782                 return ret;
1783
1784         /* if this track is blank, try the previous. */
1785         if (ti.blank) {
1786                 last_track--;
1787                 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1788                         return ret;
1789         }
1790
1791         /* if last recorded field is valid, return it. */
1792         if (ti.lra_v) {
1793                 *last_written = be32_to_cpu(ti.last_rec_address);
1794         } else {
1795                 /* make it up instead */
1796                 *last_written = be32_to_cpu(ti.track_start) +
1797                                 be32_to_cpu(ti.track_size);
1798                 if (ti.free_blocks)
1799                         *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1800         }
1801         return 0;
1802 }
1803
1804 /*
1805  * write mode select package based on pd->settings
1806  */
1807 static int pkt_set_write_settings(struct pktcdvd_device *pd)
1808 {
1809         struct packet_command cgc;
1810         struct request_sense sense;
1811         write_param_page *wp;
1812         char buffer[128];
1813         int ret, size;
1814
1815         /* doesn't apply to DVD+RW or DVD-RAM */
1816         if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1817                 return 0;
1818
1819         memset(buffer, 0, sizeof(buffer));
1820         init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1821         cgc.sense = &sense;
1822         if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1823                 pkt_dump_sense(&cgc);
1824                 return ret;
1825         }
1826
1827         size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1828         pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1829         if (size > sizeof(buffer))
1830                 size = sizeof(buffer);
1831
1832         /*
1833          * now get it all
1834          */
1835         init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1836         cgc.sense = &sense;
1837         if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1838                 pkt_dump_sense(&cgc);
1839                 return ret;
1840         }
1841
1842         /*
1843          * write page is offset header + block descriptor length
1844          */
1845         wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1846
1847         wp->fp = pd->settings.fp;
1848         wp->track_mode = pd->settings.track_mode;
1849         wp->write_type = pd->settings.write_type;
1850         wp->data_block_type = pd->settings.block_mode;
1851
1852         wp->multi_session = 0;
1853
1854 #ifdef PACKET_USE_LS
1855         wp->link_size = 7;
1856         wp->ls_v = 1;
1857 #endif
1858
1859         if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1860                 wp->session_format = 0;
1861                 wp->subhdr2 = 0x20;
1862         } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1863                 wp->session_format = 0x20;
1864                 wp->subhdr2 = 8;
1865 #if 0
1866                 wp->mcn[0] = 0x80;
1867                 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1868 #endif
1869         } else {
1870                 /*
1871                  * paranoia
1872                  */
1873                 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1874                 return 1;
1875         }
1876         wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1877
1878         cgc.buflen = cgc.cmd[8] = size;
1879         if ((ret = pkt_mode_select(pd, &cgc))) {
1880                 pkt_dump_sense(&cgc);
1881                 return ret;
1882         }
1883
1884         pkt_print_settings(pd);
1885         return 0;
1886 }
1887
1888 /*
1889  * 1 -- we can write to this track, 0 -- we can't
1890  */
1891 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1892 {
1893         switch (pd->mmc3_profile) {
1894                 case 0x1a: /* DVD+RW */
1895                 case 0x12: /* DVD-RAM */
1896                         /* The track is always writable on DVD+RW/DVD-RAM */
1897                         return 1;
1898                 default:
1899                         break;
1900         }
1901
1902         if (!ti->packet || !ti->fp)
1903                 return 0;
1904
1905         /*
1906          * "good" settings as per Mt Fuji.
1907          */
1908         if (ti->rt == 0 && ti->blank == 0)
1909                 return 1;
1910
1911         if (ti->rt == 0 && ti->blank == 1)
1912                 return 1;
1913
1914         if (ti->rt == 1 && ti->blank == 0)
1915                 return 1;
1916
1917         printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1918         return 0;
1919 }
1920
1921 /*
1922  * 1 -- we can write to this disc, 0 -- we can't
1923  */
1924 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1925 {
1926         switch (pd->mmc3_profile) {
1927                 case 0x0a: /* CD-RW */
1928                 case 0xffff: /* MMC3 not supported */
1929                         break;
1930                 case 0x1a: /* DVD+RW */
1931                 case 0x13: /* DVD-RW */
1932                 case 0x12: /* DVD-RAM */
1933                         return 1;
1934                 default:
1935                         VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1936                         return 0;
1937         }
1938
1939         /*
1940          * for disc type 0xff we should probably reserve a new track.
1941          * but i'm not sure, should we leave this to user apps? probably.
1942          */
1943         if (di->disc_type == 0xff) {
1944                 printk(DRIVER_NAME": Unknown disc. No track?\n");
1945                 return 0;
1946         }
1947
1948         if (di->disc_type != 0x20 && di->disc_type != 0) {
1949                 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1950                 return 0;
1951         }
1952
1953         if (di->erasable == 0) {
1954                 printk(DRIVER_NAME": Disc not erasable\n");
1955                 return 0;
1956         }
1957
1958         if (di->border_status == PACKET_SESSION_RESERVED) {
1959                 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1960                 return 0;
1961         }
1962
1963         return 1;
1964 }
1965
1966 static int pkt_probe_settings(struct pktcdvd_device *pd)
1967 {
1968         struct packet_command cgc;
1969         unsigned char buf[12];
1970         disc_information di;
1971         track_information ti;
1972         int ret, track;
1973
1974         init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1975         cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1976         cgc.cmd[8] = 8;
1977         ret = pkt_generic_packet(pd, &cgc);
1978         pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1979
1980         memset(&di, 0, sizeof(disc_information));
1981         memset(&ti, 0, sizeof(track_information));
1982
1983         if ((ret = pkt_get_disc_info(pd, &di))) {
1984                 printk("failed get_disc\n");
1985                 return ret;
1986         }
1987
1988         if (!pkt_writable_disc(pd, &di))
1989                 return -EROFS;
1990
1991         pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1992
1993         track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1994         if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1995                 printk(DRIVER_NAME": failed get_track\n");
1996                 return ret;
1997         }
1998
1999         if (!pkt_writable_track(pd, &ti)) {
2000                 printk(DRIVER_NAME": can't write to this track\n");
2001                 return -EROFS;
2002         }
2003
2004         /*
2005          * we keep packet size in 512 byte units, makes it easier to
2006          * deal with request calculations.
2007          */
2008         pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
2009         if (pd->settings.size == 0) {
2010                 printk(DRIVER_NAME": detected zero packet size!\n");
2011                 return -ENXIO;
2012         }
2013         if (pd->settings.size > PACKET_MAX_SECTORS) {
2014                 printk(DRIVER_NAME": packet size is too big\n");
2015                 return -EROFS;
2016         }
2017         pd->settings.fp = ti.fp;
2018         pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
2019
2020         if (ti.nwa_v) {
2021                 pd->nwa = be32_to_cpu(ti.next_writable);
2022                 set_bit(PACKET_NWA_VALID, &pd->flags);
2023         }
2024
2025         /*
2026          * in theory we could use lra on -RW media as well and just zero
2027          * blocks that haven't been written yet, but in practice that
2028          * is just a no-go. we'll use that for -R, naturally.
2029          */
2030         if (ti.lra_v) {
2031                 pd->lra = be32_to_cpu(ti.last_rec_address);
2032                 set_bit(PACKET_LRA_VALID, &pd->flags);
2033         } else {
2034                 pd->lra = 0xffffffff;
2035                 set_bit(PACKET_LRA_VALID, &pd->flags);
2036         }
2037
2038         /*
2039          * fine for now
2040          */
2041         pd->settings.link_loss = 7;
2042         pd->settings.write_type = 0;    /* packet */
2043         pd->settings.track_mode = ti.track_mode;
2044
2045         /*
2046          * mode1 or mode2 disc
2047          */
2048         switch (ti.data_mode) {
2049                 case PACKET_MODE1:
2050                         pd->settings.block_mode = PACKET_BLOCK_MODE1;
2051                         break;
2052                 case PACKET_MODE2:
2053                         pd->settings.block_mode = PACKET_BLOCK_MODE2;
2054                         break;
2055                 default:
2056                         printk(DRIVER_NAME": unknown data mode\n");
2057                         return -EROFS;
2058         }
2059         return 0;
2060 }
2061
2062 /*
2063  * enable/disable write caching on drive
2064  */
2065 static int pkt_write_caching(struct pktcdvd_device *pd, int set)
2066 {
2067         struct packet_command cgc;
2068         struct request_sense sense;
2069         unsigned char buf[64];
2070         int ret;
2071
2072         memset(buf, 0, sizeof(buf));
2073         init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
2074         cgc.sense = &sense;
2075         cgc.buflen = pd->mode_offset + 12;
2076
2077         /*
2078          * caching mode page might not be there, so quiet this command
2079          */
2080         cgc.quiet = 1;
2081
2082         if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
2083                 return ret;
2084
2085         buf[pd->mode_offset + 10] |= (!!set << 2);
2086
2087         cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
2088         ret = pkt_mode_select(pd, &cgc);
2089         if (ret) {
2090                 printk(DRIVER_NAME": write caching control failed\n");
2091                 pkt_dump_sense(&cgc);
2092         } else if (!ret && set)
2093                 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
2094         return ret;
2095 }
2096
2097 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
2098 {
2099         struct packet_command cgc;
2100
2101         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2102         cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
2103         cgc.cmd[4] = lockflag ? 1 : 0;
2104         return pkt_generic_packet(pd, &cgc);
2105 }
2106
2107 /*
2108  * Returns drive maximum write speed
2109  */
2110 static int pkt_get_max_speed(struct pktcdvd_device *pd, unsigned *write_speed)
2111 {
2112         struct packet_command cgc;
2113         struct request_sense sense;
2114         unsigned char buf[256+18];
2115         unsigned char *cap_buf;
2116         int ret, offset;
2117
2118         memset(buf, 0, sizeof(buf));
2119         cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
2120         init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
2121         cgc.sense = &sense;
2122
2123         ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2124         if (ret) {
2125                 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2126                              sizeof(struct mode_page_header);
2127                 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2128                 if (ret) {
2129                         pkt_dump_sense(&cgc);
2130                         return ret;
2131                 }
2132         }
2133
2134         offset = 20;                        /* Obsoleted field, used by older drives */
2135         if (cap_buf[1] >= 28)
2136                 offset = 28;                /* Current write speed selected */
2137         if (cap_buf[1] >= 30) {
2138                 /* If the drive reports at least one "Logical Unit Write
2139                  * Speed Performance Descriptor Block", use the information
2140                  * in the first block. (contains the highest speed)
2141                  */
2142                 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2143                 if (num_spdb > 0)
2144                         offset = 34;
2145         }
2146
2147         *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2148         return 0;
2149 }
2150
2151 /* These tables from cdrecord - I don't have orange book */
2152 /* standard speed CD-RW (1-4x) */
2153 static char clv_to_speed[16] = {
2154         /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2155            0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2156 };
2157 /* high speed CD-RW (-10x) */
2158 static char hs_clv_to_speed[16] = {
2159         /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2160            0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2161 };
2162 /* ultra high speed CD-RW */
2163 static char us_clv_to_speed[16] = {
2164         /* 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 */
2165            0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2166 };
2167
2168 /*
2169  * reads the maximum media speed from ATIP
2170  */
2171 static int pkt_media_speed(struct pktcdvd_device *pd, unsigned *speed)
2172 {
2173         struct packet_command cgc;
2174         struct request_sense sense;
2175         unsigned char buf[64];
2176         unsigned int size, st, sp;
2177         int ret;
2178
2179         init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2180         cgc.sense = &sense;
2181         cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2182         cgc.cmd[1] = 2;
2183         cgc.cmd[2] = 4; /* READ ATIP */
2184         cgc.cmd[8] = 2;
2185         ret = pkt_generic_packet(pd, &cgc);
2186         if (ret) {
2187                 pkt_dump_sense(&cgc);
2188                 return ret;
2189         }
2190         size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2191         if (size > sizeof(buf))
2192                 size = sizeof(buf);
2193
2194         init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2195         cgc.sense = &sense;
2196         cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2197         cgc.cmd[1] = 2;
2198         cgc.cmd[2] = 4;
2199         cgc.cmd[8] = size;
2200         ret = pkt_generic_packet(pd, &cgc);
2201         if (ret) {
2202                 pkt_dump_sense(&cgc);
2203                 return ret;
2204         }
2205
2206         if (!buf[6] & 0x40) {
2207                 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2208                 return 1;
2209         }
2210         if (!buf[6] & 0x4) {
2211                 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2212                 return 1;
2213         }
2214
2215         st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2216
2217         sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2218
2219         /* Info from cdrecord */
2220         switch (st) {
2221                 case 0: /* standard speed */
2222                         *speed = clv_to_speed[sp];
2223                         break;
2224                 case 1: /* high speed */
2225                         *speed = hs_clv_to_speed[sp];
2226                         break;
2227                 case 2: /* ultra high speed */
2228                         *speed = us_clv_to_speed[sp];
2229                         break;
2230                 default:
2231                         printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2232                         return 1;
2233         }
2234         if (*speed) {
2235                 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2236                 return 0;
2237         } else {
2238                 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2239                 return 1;
2240         }
2241 }
2242
2243 static int pkt_perform_opc(struct pktcdvd_device *pd)
2244 {
2245         struct packet_command cgc;
2246         struct request_sense sense;
2247         int ret;
2248
2249         VPRINTK(DRIVER_NAME": Performing OPC\n");
2250
2251         init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2252         cgc.sense = &sense;
2253         cgc.timeout = 60*HZ;
2254         cgc.cmd[0] = GPCMD_SEND_OPC;
2255         cgc.cmd[1] = 1;
2256         if ((ret = pkt_generic_packet(pd, &cgc)))
2257                 pkt_dump_sense(&cgc);
2258         return ret;
2259 }
2260
2261 static int pkt_open_write(struct pktcdvd_device *pd)
2262 {
2263         int ret;
2264         unsigned int write_speed, media_write_speed, read_speed;
2265
2266         if ((ret = pkt_probe_settings(pd))) {
2267                 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2268                 return ret;
2269         }
2270
2271         if ((ret = pkt_set_write_settings(pd))) {
2272                 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2273                 return -EIO;
2274         }
2275
2276         pkt_write_caching(pd, USE_WCACHING);
2277
2278         if ((ret = pkt_get_max_speed(pd, &write_speed)))
2279                 write_speed = 16 * 177;
2280         switch (pd->mmc3_profile) {
2281                 case 0x13: /* DVD-RW */
2282                 case 0x1a: /* DVD+RW */
2283                 case 0x12: /* DVD-RAM */
2284                         DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2285                         break;
2286                 default:
2287                         if ((ret = pkt_media_speed(pd, &media_write_speed)))
2288                                 media_write_speed = 16;
2289                         write_speed = min(write_speed, media_write_speed * 177);
2290                         DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2291                         break;
2292         }
2293         read_speed = write_speed;
2294
2295         if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2296                 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2297                 return -EIO;
2298         }
2299         pd->write_speed = write_speed;
2300         pd->read_speed = read_speed;
2301
2302         if ((ret = pkt_perform_opc(pd))) {
2303                 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2304         }
2305
2306         return 0;
2307 }
2308
2309 /*
2310  * called at open time.
2311  */
2312 static int pkt_open_dev(struct pktcdvd_device *pd, int write)
2313 {
2314         int ret;
2315         long lba;
2316         request_queue_t *q;
2317
2318         /*
2319          * We need to re-open the cdrom device without O_NONBLOCK to be able
2320          * to read/write from/to it. It is already opened in O_NONBLOCK mode
2321          * so bdget() can't fail.
2322          */
2323         bdget(pd->bdev->bd_dev);
2324         if ((ret = blkdev_get(pd->bdev, FMODE_READ, O_RDONLY)))
2325                 goto out;
2326
2327         if ((ret = bd_claim(pd->bdev, pd)))
2328                 goto out_putdev;
2329
2330         if ((ret = pkt_get_last_written(pd, &lba))) {
2331                 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2332                 goto out_unclaim;
2333         }
2334
2335         set_capacity(pd->disk, lba << 2);
2336         set_capacity(pd->bdev->bd_disk, lba << 2);
2337         bd_set_size(pd->bdev, (loff_t)lba << 11);
2338
2339         q = bdev_get_queue(pd->bdev);
2340         if (write) {
2341                 if ((ret = pkt_open_write(pd)))
2342                         goto out_unclaim;
2343                 /*
2344                  * Some CDRW drives can not handle writes larger than one packet,
2345                  * even if the size is a multiple of the packet size.
2346                  */
2347                 spin_lock_irq(q->queue_lock);
2348                 blk_queue_max_sectors(q, pd->settings.size);
2349                 spin_unlock_irq(q->queue_lock);
2350                 set_bit(PACKET_WRITABLE, &pd->flags);
2351         } else {
2352                 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2353                 clear_bit(PACKET_WRITABLE, &pd->flags);
2354         }
2355
2356         if ((ret = pkt_set_segment_merging(pd, q)))
2357                 goto out_unclaim;
2358
2359         if (write) {
2360                 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2361                         printk(DRIVER_NAME": not enough memory for buffers\n");
2362                         ret = -ENOMEM;
2363                         goto out_unclaim;
2364                 }
2365                 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2366         }
2367
2368         return 0;
2369
2370 out_unclaim:
2371         bd_release(pd->bdev);
2372 out_putdev:
2373         blkdev_put(pd->bdev);
2374 out:
2375         return ret;
2376 }
2377
2378 /*
2379  * called when the device is closed. makes sure that the device flushes
2380  * the internal cache before we close.
2381  */
2382 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2383 {
2384         if (flush && pkt_flush_cache(pd))
2385                 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2386
2387         pkt_lock_door(pd, 0);
2388
2389         pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2390         bd_release(pd->bdev);
2391         blkdev_put(pd->bdev);
2392
2393         pkt_shrink_pktlist(pd);
2394 }
2395
2396 static struct pktcdvd_device *pkt_find_dev_from_minor(int dev_minor)
2397 {
2398         if (dev_minor >= MAX_WRITERS)
2399                 return NULL;
2400         return pkt_devs[dev_minor];
2401 }
2402
2403 static int pkt_open(struct inode *inode, struct file *file)
2404 {
2405         struct pktcdvd_device *pd = NULL;
2406         int ret;
2407
2408         VPRINTK(DRIVER_NAME": entering open\n");
2409
2410         mutex_lock(&ctl_mutex);
2411         pd = pkt_find_dev_from_minor(iminor(inode));
2412         if (!pd) {
2413                 ret = -ENODEV;
2414                 goto out;
2415         }
2416         BUG_ON(pd->refcnt < 0);
2417
2418         pd->refcnt++;
2419         if (pd->refcnt > 1) {
2420                 if ((file->f_mode & FMODE_WRITE) &&
2421                     !test_bit(PACKET_WRITABLE, &pd->flags)) {
2422                         ret = -EBUSY;
2423                         goto out_dec;
2424                 }
2425         } else {
2426                 ret = pkt_open_dev(pd, file->f_mode & FMODE_WRITE);
2427                 if (ret)
2428                         goto out_dec;
2429                 /*
2430                  * needed here as well, since ext2 (among others) may change
2431                  * the blocksize at mount time
2432                  */
2433                 set_blocksize(inode->i_bdev, CD_FRAMESIZE);
2434         }
2435
2436         mutex_unlock(&ctl_mutex);
2437         return 0;
2438
2439 out_dec:
2440         pd->refcnt--;
2441 out:
2442         VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2443         mutex_unlock(&ctl_mutex);
2444         return ret;
2445 }
2446
2447 static int pkt_close(struct inode *inode, struct file *file)
2448 {
2449         struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2450         int ret = 0;
2451
2452         mutex_lock(&ctl_mutex);
2453         pd->refcnt--;
2454         BUG_ON(pd->refcnt < 0);
2455         if (pd->refcnt == 0) {
2456                 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2457                 pkt_release_dev(pd, flush);
2458         }
2459         mutex_unlock(&ctl_mutex);
2460         return ret;
2461 }
2462
2463
2464 static int pkt_end_io_read_cloned(struct bio *bio, unsigned int bytes_done, int err)
2465 {
2466         struct packet_stacked_data *psd = bio->bi_private;
2467         struct pktcdvd_device *pd = psd->pd;
2468
2469         if (bio->bi_size)
2470                 return 1;
2471
2472         bio_put(bio);
2473         bio_endio(psd->bio, psd->bio->bi_size, err);
2474         mempool_free(psd, psd_pool);
2475         pkt_bio_finished(pd);
2476         return 0;
2477 }
2478
2479 static int pkt_make_request(request_queue_t *q, struct bio *bio)
2480 {
2481         struct pktcdvd_device *pd;
2482         char b[BDEVNAME_SIZE];
2483         sector_t zone;
2484         struct packet_data *pkt;
2485         int was_empty, blocked_bio;
2486         struct pkt_rb_node *node;
2487
2488         pd = q->queuedata;
2489         if (!pd) {
2490                 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2491                 goto end_io;
2492         }
2493
2494         /*
2495          * Clone READ bios so we can have our own bi_end_io callback.
2496          */
2497         if (bio_data_dir(bio) == READ) {
2498                 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2499                 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2500
2501                 psd->pd = pd;
2502                 psd->bio = bio;
2503                 cloned_bio->bi_bdev = pd->bdev;
2504                 cloned_bio->bi_private = psd;
2505                 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2506                 pd->stats.secs_r += bio->bi_size >> 9;
2507                 pkt_queue_bio(pd, cloned_bio);
2508                 return 0;
2509         }
2510
2511         if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2512                 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2513                         pd->name, (unsigned long long)bio->bi_sector);
2514                 goto end_io;
2515         }
2516
2517         if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2518                 printk(DRIVER_NAME": wrong bio size\n");
2519                 goto end_io;
2520         }
2521
2522         blk_queue_bounce(q, &bio);
2523
2524         zone = ZONE(bio->bi_sector, pd);
2525         VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2526                 (unsigned long long)bio->bi_sector,
2527                 (unsigned long long)(bio->bi_sector + bio_sectors(bio)));
2528
2529         /* Check if we have to split the bio */
2530         {
2531                 struct bio_pair *bp;
2532                 sector_t last_zone;
2533                 int first_sectors;
2534
2535                 last_zone = ZONE(bio->bi_sector + bio_sectors(bio) - 1, pd);
2536                 if (last_zone != zone) {
2537                         BUG_ON(last_zone != zone + pd->settings.size);
2538                         first_sectors = last_zone - bio->bi_sector;
2539                         bp = bio_split(bio, bio_split_pool, first_sectors);
2540                         BUG_ON(!bp);
2541                         pkt_make_request(q, &bp->bio1);
2542                         pkt_make_request(q, &bp->bio2);
2543                         bio_pair_release(bp);
2544                         return 0;
2545                 }
2546         }
2547
2548         /*
2549          * If we find a matching packet in state WAITING or READ_WAIT, we can
2550          * just append this bio to that packet.
2551          */
2552         spin_lock(&pd->cdrw.active_list_lock);
2553         blocked_bio = 0;
2554         list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2555                 if (pkt->sector == zone) {
2556                         spin_lock(&pkt->lock);
2557                         if ((pkt->state == PACKET_WAITING_STATE) ||
2558                             (pkt->state == PACKET_READ_WAIT_STATE)) {
2559                                 pkt_add_list_last(bio, &pkt->orig_bios,
2560                                                   &pkt->orig_bios_tail);
2561                                 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2562                                 if ((pkt->write_size >= pkt->frames) &&
2563                                     (pkt->state == PACKET_WAITING_STATE)) {
2564                                         atomic_inc(&pkt->run_sm);
2565                                         wake_up(&pd->wqueue);
2566                                 }
2567                                 spin_unlock(&pkt->lock);
2568                                 spin_unlock(&pd->cdrw.active_list_lock);
2569                                 return 0;
2570                         } else {
2571                                 blocked_bio = 1;
2572                         }
2573                         spin_unlock(&pkt->lock);
2574                 }
2575         }
2576         spin_unlock(&pd->cdrw.active_list_lock);
2577
2578         /*
2579          * Test if there is enough room left in the bio work queue
2580          * (queue size >= congestion on mark).
2581          * If not, wait till the work queue size is below the congestion off mark.
2582          */
2583         spin_lock(&pd->lock);
2584         if (pd->write_congestion_on > 0
2585             && pd->bio_queue_size >= pd->write_congestion_on) {
2586                 set_bdi_congested(&q->backing_dev_info, WRITE);
2587                 do {
2588                         spin_unlock(&pd->lock);
2589                         congestion_wait(WRITE, HZ);
2590                         spin_lock(&pd->lock);
2591                 } while(pd->bio_queue_size > pd->write_congestion_off);
2592         }
2593         spin_unlock(&pd->lock);
2594
2595         /*
2596          * No matching packet found. Store the bio in the work queue.
2597          */
2598         node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2599         node->bio = bio;
2600         spin_lock(&pd->lock);
2601         BUG_ON(pd->bio_queue_size < 0);
2602         was_empty = (pd->bio_queue_size == 0);
2603         pkt_rbtree_insert(pd, node);
2604         spin_unlock(&pd->lock);
2605
2606         /*
2607          * Wake up the worker thread.
2608          */
2609         atomic_set(&pd->scan_queue, 1);
2610         if (was_empty) {
2611                 /* This wake_up is required for correct operation */
2612                 wake_up(&pd->wqueue);
2613         } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2614                 /*
2615                  * This wake up is not required for correct operation,
2616                  * but improves performance in some cases.
2617                  */
2618                 wake_up(&pd->wqueue);
2619         }
2620         return 0;
2621 end_io:
2622         bio_io_error(bio, bio->bi_size);
2623         return 0;
2624 }
2625
2626
2627
2628 static int pkt_merge_bvec(request_queue_t *q, struct bio *bio, struct bio_vec *bvec)
2629 {
2630         struct pktcdvd_device *pd = q->queuedata;
2631         sector_t zone = ZONE(bio->bi_sector, pd);
2632         int used = ((bio->bi_sector - zone) << 9) + bio->bi_size;
2633         int remaining = (pd->settings.size << 9) - used;
2634         int remaining2;
2635
2636         /*
2637          * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2638          * boundary, pkt_make_request() will split the bio.
2639          */
2640         remaining2 = PAGE_SIZE - bio->bi_size;
2641         remaining = max(remaining, remaining2);
2642
2643         BUG_ON(remaining < 0);
2644         return remaining;
2645 }
2646
2647 static void pkt_init_queue(struct pktcdvd_device *pd)
2648 {
2649         request_queue_t *q = pd->disk->queue;
2650
2651         blk_queue_make_request(q, pkt_make_request);
2652         blk_queue_hardsect_size(q, CD_FRAMESIZE);
2653         blk_queue_max_sectors(q, PACKET_MAX_SECTORS);
2654         blk_queue_merge_bvec(q, pkt_merge_bvec);
2655         q->queuedata = pd;
2656 }
2657
2658 static int pkt_seq_show(struct seq_file *m, void *p)
2659 {
2660         struct pktcdvd_device *pd = m->private;
2661         char *msg;
2662         char bdev_buf[BDEVNAME_SIZE];
2663         int states[PACKET_NUM_STATES];
2664
2665         seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2666                    bdevname(pd->bdev, bdev_buf));
2667
2668         seq_printf(m, "\nSettings:\n");
2669         seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2670
2671         if (pd->settings.write_type == 0)
2672                 msg = "Packet";
2673         else
2674                 msg = "Unknown";
2675         seq_printf(m, "\twrite type:\t\t%s\n", msg);
2676
2677         seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2678         seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2679
2680         seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2681
2682         if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2683                 msg = "Mode 1";
2684         else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2685                 msg = "Mode 2";
2686         else
2687                 msg = "Unknown";
2688         seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2689
2690         seq_printf(m, "\nStatistics:\n");
2691         seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2692         seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2693         seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2694         seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2695         seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2696
2697         seq_printf(m, "\nMisc:\n");
2698         seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2699         seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2700         seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2701         seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2702         seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2703         seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2704
2705         seq_printf(m, "\nQueue state:\n");
2706         seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2707         seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2708         seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2709
2710         pkt_count_states(pd, states);
2711         seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2712                    states[0], states[1], states[2], states[3], states[4], states[5]);
2713
2714         seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2715                         pd->write_congestion_off,
2716                         pd->write_congestion_on);
2717         return 0;
2718 }
2719
2720 static int pkt_seq_open(struct inode *inode, struct file *file)
2721 {
2722         return single_open(file, pkt_seq_show, PDE(inode)->data);
2723 }
2724
2725 static const struct file_operations pkt_proc_fops = {
2726         .open   = pkt_seq_open,
2727         .read   = seq_read,
2728         .llseek = seq_lseek,
2729         .release = single_release
2730 };
2731
2732 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2733 {
2734         int i;
2735         int ret = 0;
2736         char b[BDEVNAME_SIZE];
2737         struct proc_dir_entry *proc;
2738         struct block_device *bdev;
2739
2740         if (pd->pkt_dev == dev) {
2741                 printk(DRIVER_NAME": Recursive setup not allowed\n");
2742                 return -EBUSY;
2743         }
2744         for (i = 0; i < MAX_WRITERS; i++) {
2745                 struct pktcdvd_device *pd2 = pkt_devs[i];
2746                 if (!pd2)
2747                         continue;
2748                 if (pd2->bdev->bd_dev == dev) {
2749                         printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2750                         return -EBUSY;
2751                 }
2752                 if (pd2->pkt_dev == dev) {
2753                         printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2754                         return -EBUSY;
2755                 }
2756         }
2757
2758         bdev = bdget(dev);
2759         if (!bdev)
2760                 return -ENOMEM;
2761         ret = blkdev_get(bdev, FMODE_READ, O_RDONLY | O_NONBLOCK);
2762         if (ret)
2763                 return ret;
2764
2765         /* This is safe, since we have a reference from open(). */
2766         __module_get(THIS_MODULE);
2767
2768         pd->bdev = bdev;
2769         set_blocksize(bdev, CD_FRAMESIZE);
2770
2771         pkt_init_queue(pd);
2772
2773         atomic_set(&pd->cdrw.pending_bios, 0);
2774         pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2775         if (IS_ERR(pd->cdrw.thread)) {
2776                 printk(DRIVER_NAME": can't start kernel thread\n");
2777                 ret = -ENOMEM;
2778                 goto out_mem;
2779         }
2780
2781         proc = create_proc_entry(pd->name, 0, pkt_proc);
2782         if (proc) {
2783                 proc->data = pd;
2784                 proc->proc_fops = &pkt_proc_fops;
2785         }
2786         DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2787         return 0;
2788
2789 out_mem:
2790         blkdev_put(bdev);
2791         /* This is safe: open() is still holding a reference. */
2792         module_put(THIS_MODULE);
2793         return ret;
2794 }
2795
2796 static int pkt_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
2797 {
2798         struct pktcdvd_device *pd = inode->i_bdev->bd_disk->private_data;
2799
2800         VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd, imajor(inode), iminor(inode));
2801
2802         switch (cmd) {
2803         /*
2804          * forward selected CDROM ioctls to CD-ROM, for UDF
2805          */
2806         case CDROMMULTISESSION:
2807         case CDROMREADTOCENTRY:
2808         case CDROM_LAST_WRITTEN:
2809         case CDROM_SEND_PACKET:
2810         case SCSI_IOCTL_SEND_COMMAND:
2811                 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2812
2813         case CDROMEJECT:
2814                 /*
2815                  * The door gets locked when the device is opened, so we
2816                  * have to unlock it or else the eject command fails.
2817                  */
2818                 if (pd->refcnt == 1)
2819                         pkt_lock_door(pd, 0);
2820                 return blkdev_ioctl(pd->bdev->bd_inode, file, cmd, arg);
2821
2822         default:
2823                 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2824                 return -ENOTTY;
2825         }
2826
2827         return 0;
2828 }
2829
2830 static int pkt_media_changed(struct gendisk *disk)
2831 {
2832         struct pktcdvd_device *pd = disk->private_data;
2833         struct gendisk *attached_disk;
2834
2835         if (!pd)
2836                 return 0;
2837         if (!pd->bdev)
2838                 return 0;
2839         attached_disk = pd->bdev->bd_disk;
2840         if (!attached_disk)
2841                 return 0;
2842         return attached_disk->fops->media_changed(attached_disk);
2843 }
2844
2845 static struct block_device_operations pktcdvd_ops = {
2846         .owner =                THIS_MODULE,
2847         .open =                 pkt_open,
2848         .release =              pkt_close,
2849         .ioctl =                pkt_ioctl,
2850         .media_changed =        pkt_media_changed,
2851 };
2852
2853 /*
2854  * Set up mapping from pktcdvd device to CD-ROM device.
2855  */
2856 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2857 {
2858         int idx;
2859         int ret = -ENOMEM;
2860         struct pktcdvd_device *pd;
2861         struct gendisk *disk;
2862
2863         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2864
2865         for (idx = 0; idx < MAX_WRITERS; idx++)
2866                 if (!pkt_devs[idx])
2867                         break;
2868         if (idx == MAX_WRITERS) {
2869                 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2870                 ret = -EBUSY;
2871                 goto out_mutex;
2872         }
2873
2874         pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2875         if (!pd)
2876                 goto out_mutex;
2877
2878         pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2879                                                   sizeof(struct pkt_rb_node));
2880         if (!pd->rb_pool)
2881                 goto out_mem;
2882
2883         INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2884         INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2885         spin_lock_init(&pd->cdrw.active_list_lock);
2886
2887         spin_lock_init(&pd->lock);
2888         spin_lock_init(&pd->iosched.lock);
2889         sprintf(pd->name, DRIVER_NAME"%d", idx);
2890         init_waitqueue_head(&pd->wqueue);
2891         pd->bio_queue = RB_ROOT;
2892
2893         pd->write_congestion_on  = write_congestion_on;
2894         pd->write_congestion_off = write_congestion_off;
2895
2896         disk = alloc_disk(1);
2897         if (!disk)
2898                 goto out_mem;
2899         pd->disk = disk;
2900         disk->major = pktdev_major;
2901         disk->first_minor = idx;
2902         disk->fops = &pktcdvd_ops;
2903         disk->flags = GENHD_FL_REMOVABLE;
2904         strcpy(disk->disk_name, pd->name);
2905         disk->private_data = pd;
2906         disk->queue = blk_alloc_queue(GFP_KERNEL);
2907         if (!disk->queue)
2908                 goto out_mem2;
2909
2910         pd->pkt_dev = MKDEV(disk->major, disk->first_minor);
2911         ret = pkt_new_dev(pd, dev);
2912         if (ret)
2913                 goto out_new_dev;
2914
2915         add_disk(disk);
2916
2917         pkt_sysfs_dev_new(pd);
2918         pkt_debugfs_dev_new(pd);
2919
2920         pkt_devs[idx] = pd;
2921         if (pkt_dev)
2922                 *pkt_dev = pd->pkt_dev;
2923
2924         mutex_unlock(&ctl_mutex);
2925         return 0;
2926
2927 out_new_dev:
2928         blk_cleanup_queue(disk->queue);
2929 out_mem2:
2930         put_disk(disk);
2931 out_mem:
2932         if (pd->rb_pool)
2933                 mempool_destroy(pd->rb_pool);
2934         kfree(pd);
2935 out_mutex:
2936         mutex_unlock(&ctl_mutex);
2937         printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2938         return ret;
2939 }
2940
2941 /*
2942  * Tear down mapping from pktcdvd device to CD-ROM device.
2943  */
2944 static int pkt_remove_dev(dev_t pkt_dev)
2945 {
2946         struct pktcdvd_device *pd;
2947         int idx;
2948         int ret = 0;
2949
2950         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2951
2952         for (idx = 0; idx < MAX_WRITERS; idx++) {
2953                 pd = pkt_devs[idx];
2954                 if (pd && (pd->pkt_dev == pkt_dev))
2955                         break;
2956         }
2957         if (idx == MAX_WRITERS) {
2958                 DPRINTK(DRIVER_NAME": dev not setup\n");
2959                 ret = -ENXIO;
2960                 goto out;
2961         }
2962
2963         if (pd->refcnt > 0) {
2964                 ret = -EBUSY;
2965                 goto out;
2966         }
2967         if (!IS_ERR(pd->cdrw.thread))
2968                 kthread_stop(pd->cdrw.thread);
2969
2970         pkt_devs[idx] = NULL;
2971
2972         pkt_debugfs_dev_remove(pd);
2973         pkt_sysfs_dev_remove(pd);
2974
2975         blkdev_put(pd->bdev);
2976
2977         remove_proc_entry(pd->name, pkt_proc);
2978         DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2979
2980         del_gendisk(pd->disk);
2981         blk_cleanup_queue(pd->disk->queue);
2982         put_disk(pd->disk);
2983
2984         mempool_destroy(pd->rb_pool);
2985         kfree(pd);
2986
2987         /* This is safe: open() is still holding a reference. */
2988         module_put(THIS_MODULE);
2989
2990 out:
2991         mutex_unlock(&ctl_mutex);
2992         return ret;
2993 }
2994
2995 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2996 {
2997         struct pktcdvd_device *pd;
2998
2999         mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3000
3001         pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
3002         if (pd) {
3003                 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
3004                 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
3005         } else {
3006                 ctrl_cmd->dev = 0;
3007                 ctrl_cmd->pkt_dev = 0;
3008         }
3009         ctrl_cmd->num_devices = MAX_WRITERS;
3010
3011         mutex_unlock(&ctl_mutex);
3012 }
3013
3014 static int pkt_ctl_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
3015 {
3016         void __user *argp = (void __user *)arg;
3017         struct pkt_ctrl_command ctrl_cmd;
3018         int ret = 0;
3019         dev_t pkt_dev = 0;
3020
3021         if (cmd != PACKET_CTRL_CMD)
3022                 return -ENOTTY;
3023
3024         if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
3025                 return -EFAULT;
3026
3027         switch (ctrl_cmd.command) {
3028         case PKT_CTRL_CMD_SETUP:
3029                 if (!capable(CAP_SYS_ADMIN))
3030                         return -EPERM;
3031                 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
3032                 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
3033                 break;
3034         case PKT_CTRL_CMD_TEARDOWN:
3035                 if (!capable(CAP_SYS_ADMIN))
3036                         return -EPERM;
3037                 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
3038                 break;
3039         case PKT_CTRL_CMD_STATUS:
3040                 pkt_get_status(&ctrl_cmd);
3041                 break;
3042         default:
3043                 return -ENOTTY;
3044         }
3045
3046         if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
3047                 return -EFAULT;
3048         return ret;
3049 }
3050
3051
3052 static const struct file_operations pkt_ctl_fops = {
3053         .ioctl   = pkt_ctl_ioctl,
3054         .owner   = THIS_MODULE,
3055 };
3056
3057 static struct miscdevice pkt_misc = {
3058         .minor          = MISC_DYNAMIC_MINOR,
3059         .name           = DRIVER_NAME,
3060         .fops           = &pkt_ctl_fops
3061 };
3062
3063 static int __init pkt_init(void)
3064 {
3065         int ret;
3066
3067         mutex_init(&ctl_mutex);
3068
3069         psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
3070                                         sizeof(struct packet_stacked_data));
3071         if (!psd_pool)
3072                 return -ENOMEM;
3073
3074         ret = register_blkdev(pktdev_major, DRIVER_NAME);
3075         if (ret < 0) {
3076                 printk(DRIVER_NAME": Unable to register block device\n");
3077                 goto out2;
3078         }
3079         if (!pktdev_major)
3080                 pktdev_major = ret;
3081
3082         ret = pkt_sysfs_init();
3083         if (ret)
3084                 goto out;
3085
3086         pkt_debugfs_init();
3087
3088         ret = misc_register(&pkt_misc);
3089         if (ret) {
3090                 printk(DRIVER_NAME": Unable to register misc device\n");
3091                 goto out_misc;
3092         }
3093
3094         pkt_proc = proc_mkdir(DRIVER_NAME, proc_root_driver);
3095
3096         return 0;
3097
3098 out_misc:
3099         pkt_debugfs_cleanup();
3100         pkt_sysfs_cleanup();
3101 out:
3102         unregister_blkdev(pktdev_major, DRIVER_NAME);
3103 out2:
3104         mempool_destroy(psd_pool);
3105         return ret;
3106 }
3107
3108 static void __exit pkt_exit(void)
3109 {
3110         remove_proc_entry(DRIVER_NAME, proc_root_driver);
3111         misc_deregister(&pkt_misc);
3112
3113         pkt_debugfs_cleanup();
3114         pkt_sysfs_cleanup();
3115
3116         unregister_blkdev(pktdev_major, DRIVER_NAME);
3117         mempool_destroy(psd_pool);
3118 }
3119
3120 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3121 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3122 MODULE_LICENSE("GPL");
3123
3124 module_init(pkt_init);
3125 module_exit(pkt_exit);