[PATCH] Remove ->waiting member from struct request
[safe/jmp/linux-2.6] / block / elevator.c
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@suse.de> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37
38 #include <asm/uaccess.h>
39
40 static DEFINE_SPINLOCK(elv_list_lock);
41 static LIST_HEAD(elv_list);
42
43 /*
44  * Merge hash stuff.
45  */
46 static const int elv_hash_shift = 6;
47 #define ELV_HASH_BLOCK(sec)     ((sec) >> 3)
48 #define ELV_HASH_FN(sec)        (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
49 #define ELV_HASH_ENTRIES        (1 << elv_hash_shift)
50 #define rq_hash_key(rq)         ((rq)->sector + (rq)->nr_sectors)
51 #define ELV_ON_HASH(rq)         (!hlist_unhashed(&(rq)->hash))
52
53 /*
54  * can we safely merge with this request?
55  */
56 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
57 {
58         if (!rq_mergeable(rq))
59                 return 0;
60
61         /*
62          * different data direction or already started, don't merge
63          */
64         if (bio_data_dir(bio) != rq_data_dir(rq))
65                 return 0;
66
67         /*
68          * same device and no special stuff set, merge is ok
69          */
70         if (rq->rq_disk == bio->bi_bdev->bd_disk && !rq->special)
71                 return 1;
72
73         return 0;
74 }
75 EXPORT_SYMBOL(elv_rq_merge_ok);
76
77 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
78 {
79         int ret = ELEVATOR_NO_MERGE;
80
81         /*
82          * we can merge and sequence is ok, check if it's possible
83          */
84         if (elv_rq_merge_ok(__rq, bio)) {
85                 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
86                         ret = ELEVATOR_BACK_MERGE;
87                 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
88                         ret = ELEVATOR_FRONT_MERGE;
89         }
90
91         return ret;
92 }
93
94 static struct elevator_type *elevator_find(const char *name)
95 {
96         struct elevator_type *e = NULL;
97         struct list_head *entry;
98
99         list_for_each(entry, &elv_list) {
100                 struct elevator_type *__e;
101
102                 __e = list_entry(entry, struct elevator_type, list);
103
104                 if (!strcmp(__e->elevator_name, name)) {
105                         e = __e;
106                         break;
107                 }
108         }
109
110         return e;
111 }
112
113 static void elevator_put(struct elevator_type *e)
114 {
115         module_put(e->elevator_owner);
116 }
117
118 static struct elevator_type *elevator_get(const char *name)
119 {
120         struct elevator_type *e;
121
122         spin_lock_irq(&elv_list_lock);
123
124         e = elevator_find(name);
125         if (e && !try_module_get(e->elevator_owner))
126                 e = NULL;
127
128         spin_unlock_irq(&elv_list_lock);
129
130         return e;
131 }
132
133 static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
134 {
135         return eq->ops->elevator_init_fn(q, eq);
136 }
137
138 static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
139                            void *data)
140 {
141         q->elevator = eq;
142         eq->elevator_data = data;
143 }
144
145 static char chosen_elevator[16];
146
147 static int __init elevator_setup(char *str)
148 {
149         /*
150          * Be backwards-compatible with previous kernels, so users
151          * won't get the wrong elevator.
152          */
153         if (!strcmp(str, "as"))
154                 strcpy(chosen_elevator, "anticipatory");
155         else
156                 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
157         return 1;
158 }
159
160 __setup("elevator=", elevator_setup);
161
162 static struct kobj_type elv_ktype;
163
164 static elevator_t *elevator_alloc(struct elevator_type *e)
165 {
166         elevator_t *eq;
167         int i;
168
169         eq = kmalloc(sizeof(elevator_t), GFP_KERNEL);
170         if (unlikely(!eq))
171                 goto err;
172
173         memset(eq, 0, sizeof(*eq));
174         eq->ops = &e->ops;
175         eq->elevator_type = e;
176         kobject_init(&eq->kobj);
177         snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
178         eq->kobj.ktype = &elv_ktype;
179         mutex_init(&eq->sysfs_lock);
180
181         eq->hash = kmalloc(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, GFP_KERNEL);
182         if (!eq->hash)
183                 goto err;
184
185         for (i = 0; i < ELV_HASH_ENTRIES; i++)
186                 INIT_HLIST_HEAD(&eq->hash[i]);
187
188         return eq;
189 err:
190         kfree(eq);
191         elevator_put(e);
192         return NULL;
193 }
194
195 static void elevator_release(struct kobject *kobj)
196 {
197         elevator_t *e = container_of(kobj, elevator_t, kobj);
198
199         elevator_put(e->elevator_type);
200         kfree(e->hash);
201         kfree(e);
202 }
203
204 int elevator_init(request_queue_t *q, char *name)
205 {
206         struct elevator_type *e = NULL;
207         struct elevator_queue *eq;
208         int ret = 0;
209         void *data;
210
211         INIT_LIST_HEAD(&q->queue_head);
212         q->last_merge = NULL;
213         q->end_sector = 0;
214         q->boundary_rq = NULL;
215
216         if (name && !(e = elevator_get(name)))
217                 return -EINVAL;
218
219         if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
220                 printk("I/O scheduler %s not found\n", chosen_elevator);
221
222         if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
223                 printk("Default I/O scheduler not found, using no-op\n");
224                 e = elevator_get("noop");
225         }
226
227         eq = elevator_alloc(e);
228         if (!eq)
229                 return -ENOMEM;
230
231         data = elevator_init_queue(q, eq);
232         if (!data) {
233                 kobject_put(&eq->kobj);
234                 return -ENOMEM;
235         }
236
237         elevator_attach(q, eq, data);
238         return ret;
239 }
240
241 EXPORT_SYMBOL(elevator_init);
242
243 void elevator_exit(elevator_t *e)
244 {
245         mutex_lock(&e->sysfs_lock);
246         if (e->ops->elevator_exit_fn)
247                 e->ops->elevator_exit_fn(e);
248         e->ops = NULL;
249         mutex_unlock(&e->sysfs_lock);
250
251         kobject_put(&e->kobj);
252 }
253
254 EXPORT_SYMBOL(elevator_exit);
255
256 static inline void __elv_rqhash_del(struct request *rq)
257 {
258         hlist_del_init(&rq->hash);
259 }
260
261 static void elv_rqhash_del(request_queue_t *q, struct request *rq)
262 {
263         if (ELV_ON_HASH(rq))
264                 __elv_rqhash_del(rq);
265 }
266
267 static void elv_rqhash_add(request_queue_t *q, struct request *rq)
268 {
269         elevator_t *e = q->elevator;
270
271         BUG_ON(ELV_ON_HASH(rq));
272         hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
273 }
274
275 static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
276 {
277         __elv_rqhash_del(rq);
278         elv_rqhash_add(q, rq);
279 }
280
281 static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
282 {
283         elevator_t *e = q->elevator;
284         struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
285         struct hlist_node *entry, *next;
286         struct request *rq;
287
288         hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
289                 BUG_ON(!ELV_ON_HASH(rq));
290
291                 if (unlikely(!rq_mergeable(rq))) {
292                         __elv_rqhash_del(rq);
293                         continue;
294                 }
295
296                 if (rq_hash_key(rq) == offset)
297                         return rq;
298         }
299
300         return NULL;
301 }
302
303 /*
304  * RB-tree support functions for inserting/lookup/removal of requests
305  * in a sorted RB tree.
306  */
307 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
308 {
309         struct rb_node **p = &root->rb_node;
310         struct rb_node *parent = NULL;
311         struct request *__rq;
312
313         while (*p) {
314                 parent = *p;
315                 __rq = rb_entry(parent, struct request, rb_node);
316
317                 if (rq->sector < __rq->sector)
318                         p = &(*p)->rb_left;
319                 else if (rq->sector > __rq->sector)
320                         p = &(*p)->rb_right;
321                 else
322                         return __rq;
323         }
324
325         rb_link_node(&rq->rb_node, parent, p);
326         rb_insert_color(&rq->rb_node, root);
327         return NULL;
328 }
329
330 EXPORT_SYMBOL(elv_rb_add);
331
332 void elv_rb_del(struct rb_root *root, struct request *rq)
333 {
334         BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
335         rb_erase(&rq->rb_node, root);
336         RB_CLEAR_NODE(&rq->rb_node);
337 }
338
339 EXPORT_SYMBOL(elv_rb_del);
340
341 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
342 {
343         struct rb_node *n = root->rb_node;
344         struct request *rq;
345
346         while (n) {
347                 rq = rb_entry(n, struct request, rb_node);
348
349                 if (sector < rq->sector)
350                         n = n->rb_left;
351                 else if (sector > rq->sector)
352                         n = n->rb_right;
353                 else
354                         return rq;
355         }
356
357         return NULL;
358 }
359
360 EXPORT_SYMBOL(elv_rb_find);
361
362 /*
363  * Insert rq into dispatch queue of q.  Queue lock must be held on
364  * entry.  rq is sort insted into the dispatch queue. To be used by
365  * specific elevators.
366  */
367 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
368 {
369         sector_t boundary;
370         struct list_head *entry;
371
372         if (q->last_merge == rq)
373                 q->last_merge = NULL;
374
375         elv_rqhash_del(q, rq);
376
377         q->nr_sorted--;
378
379         boundary = q->end_sector;
380
381         list_for_each_prev(entry, &q->queue_head) {
382                 struct request *pos = list_entry_rq(entry);
383
384                 if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
385                         break;
386                 if (rq->sector >= boundary) {
387                         if (pos->sector < boundary)
388                                 continue;
389                 } else {
390                         if (pos->sector >= boundary)
391                                 break;
392                 }
393                 if (rq->sector >= pos->sector)
394                         break;
395         }
396
397         list_add(&rq->queuelist, entry);
398 }
399
400 EXPORT_SYMBOL(elv_dispatch_sort);
401
402 /*
403  * Insert rq into dispatch queue of q.  Queue lock must be held on
404  * entry.  rq is added to the back of the dispatch queue. To be used by
405  * specific elevators.
406  */
407 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
408 {
409         if (q->last_merge == rq)
410                 q->last_merge = NULL;
411
412         elv_rqhash_del(q, rq);
413
414         q->nr_sorted--;
415
416         q->end_sector = rq_end_sector(rq);
417         q->boundary_rq = rq;
418         list_add_tail(&rq->queuelist, &q->queue_head);
419 }
420
421 EXPORT_SYMBOL(elv_dispatch_add_tail);
422
423 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
424 {
425         elevator_t *e = q->elevator;
426         struct request *__rq;
427         int ret;
428
429         /*
430          * First try one-hit cache.
431          */
432         if (q->last_merge) {
433                 ret = elv_try_merge(q->last_merge, bio);
434                 if (ret != ELEVATOR_NO_MERGE) {
435                         *req = q->last_merge;
436                         return ret;
437                 }
438         }
439
440         /*
441          * See if our hash lookup can find a potential backmerge.
442          */
443         __rq = elv_rqhash_find(q, bio->bi_sector);
444         if (__rq && elv_rq_merge_ok(__rq, bio)) {
445                 *req = __rq;
446                 return ELEVATOR_BACK_MERGE;
447         }
448
449         if (e->ops->elevator_merge_fn)
450                 return e->ops->elevator_merge_fn(q, req, bio);
451
452         return ELEVATOR_NO_MERGE;
453 }
454
455 void elv_merged_request(request_queue_t *q, struct request *rq, int type)
456 {
457         elevator_t *e = q->elevator;
458
459         if (e->ops->elevator_merged_fn)
460                 e->ops->elevator_merged_fn(q, rq, type);
461
462         if (type == ELEVATOR_BACK_MERGE)
463                 elv_rqhash_reposition(q, rq);
464
465         q->last_merge = rq;
466 }
467
468 void elv_merge_requests(request_queue_t *q, struct request *rq,
469                              struct request *next)
470 {
471         elevator_t *e = q->elevator;
472
473         if (e->ops->elevator_merge_req_fn)
474                 e->ops->elevator_merge_req_fn(q, rq, next);
475
476         elv_rqhash_reposition(q, rq);
477         elv_rqhash_del(q, next);
478
479         q->nr_sorted--;
480         q->last_merge = rq;
481 }
482
483 void elv_requeue_request(request_queue_t *q, struct request *rq)
484 {
485         elevator_t *e = q->elevator;
486
487         /*
488          * it already went through dequeue, we need to decrement the
489          * in_flight count again
490          */
491         if (blk_account_rq(rq)) {
492                 q->in_flight--;
493                 if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
494                         e->ops->elevator_deactivate_req_fn(q, rq);
495         }
496
497         rq->cmd_flags &= ~REQ_STARTED;
498
499         elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
500 }
501
502 static void elv_drain_elevator(request_queue_t *q)
503 {
504         static int printed;
505         while (q->elevator->ops->elevator_dispatch_fn(q, 1))
506                 ;
507         if (q->nr_sorted == 0)
508                 return;
509         if (printed++ < 10) {
510                 printk(KERN_ERR "%s: forced dispatching is broken "
511                        "(nr_sorted=%u), please report this\n",
512                        q->elevator->elevator_type->elevator_name, q->nr_sorted);
513         }
514 }
515
516 void elv_insert(request_queue_t *q, struct request *rq, int where)
517 {
518         struct list_head *pos;
519         unsigned ordseq;
520         int unplug_it = 1;
521
522         blk_add_trace_rq(q, rq, BLK_TA_INSERT);
523
524         rq->q = q;
525
526         switch (where) {
527         case ELEVATOR_INSERT_FRONT:
528                 rq->cmd_flags |= REQ_SOFTBARRIER;
529
530                 list_add(&rq->queuelist, &q->queue_head);
531                 break;
532
533         case ELEVATOR_INSERT_BACK:
534                 rq->cmd_flags |= REQ_SOFTBARRIER;
535                 elv_drain_elevator(q);
536                 list_add_tail(&rq->queuelist, &q->queue_head);
537                 /*
538                  * We kick the queue here for the following reasons.
539                  * - The elevator might have returned NULL previously
540                  *   to delay requests and returned them now.  As the
541                  *   queue wasn't empty before this request, ll_rw_blk
542                  *   won't run the queue on return, resulting in hang.
543                  * - Usually, back inserted requests won't be merged
544                  *   with anything.  There's no point in delaying queue
545                  *   processing.
546                  */
547                 blk_remove_plug(q);
548                 q->request_fn(q);
549                 break;
550
551         case ELEVATOR_INSERT_SORT:
552                 BUG_ON(!blk_fs_request(rq));
553                 rq->cmd_flags |= REQ_SORTED;
554                 q->nr_sorted++;
555                 if (rq_mergeable(rq)) {
556                         elv_rqhash_add(q, rq);
557                         if (!q->last_merge)
558                                 q->last_merge = rq;
559                 }
560
561                 /*
562                  * Some ioscheds (cfq) run q->request_fn directly, so
563                  * rq cannot be accessed after calling
564                  * elevator_add_req_fn.
565                  */
566                 q->elevator->ops->elevator_add_req_fn(q, rq);
567                 break;
568
569         case ELEVATOR_INSERT_REQUEUE:
570                 /*
571                  * If ordered flush isn't in progress, we do front
572                  * insertion; otherwise, requests should be requeued
573                  * in ordseq order.
574                  */
575                 rq->cmd_flags |= REQ_SOFTBARRIER;
576
577                 if (q->ordseq == 0) {
578                         list_add(&rq->queuelist, &q->queue_head);
579                         break;
580                 }
581
582                 ordseq = blk_ordered_req_seq(rq);
583
584                 list_for_each(pos, &q->queue_head) {
585                         struct request *pos_rq = list_entry_rq(pos);
586                         if (ordseq <= blk_ordered_req_seq(pos_rq))
587                                 break;
588                 }
589
590                 list_add_tail(&rq->queuelist, pos);
591                 /*
592                  * most requeues happen because of a busy condition, don't
593                  * force unplug of the queue for that case.
594                  */
595                 unplug_it = 0;
596                 break;
597
598         default:
599                 printk(KERN_ERR "%s: bad insertion point %d\n",
600                        __FUNCTION__, where);
601                 BUG();
602         }
603
604         if (unplug_it && blk_queue_plugged(q)) {
605                 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
606                         - q->in_flight;
607
608                 if (nrq >= q->unplug_thresh)
609                         __generic_unplug_device(q);
610         }
611 }
612
613 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
614                        int plug)
615 {
616         if (q->ordcolor)
617                 rq->cmd_flags |= REQ_ORDERED_COLOR;
618
619         if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
620                 /*
621                  * toggle ordered color
622                  */
623                 if (blk_barrier_rq(rq))
624                         q->ordcolor ^= 1;
625
626                 /*
627                  * barriers implicitly indicate back insertion
628                  */
629                 if (where == ELEVATOR_INSERT_SORT)
630                         where = ELEVATOR_INSERT_BACK;
631
632                 /*
633                  * this request is scheduling boundary, update
634                  * end_sector
635                  */
636                 if (blk_fs_request(rq)) {
637                         q->end_sector = rq_end_sector(rq);
638                         q->boundary_rq = rq;
639                 }
640         } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
641                 where = ELEVATOR_INSERT_BACK;
642
643         if (plug)
644                 blk_plug_device(q);
645
646         elv_insert(q, rq, where);
647 }
648
649 EXPORT_SYMBOL(__elv_add_request);
650
651 void elv_add_request(request_queue_t *q, struct request *rq, int where,
652                      int plug)
653 {
654         unsigned long flags;
655
656         spin_lock_irqsave(q->queue_lock, flags);
657         __elv_add_request(q, rq, where, plug);
658         spin_unlock_irqrestore(q->queue_lock, flags);
659 }
660
661 EXPORT_SYMBOL(elv_add_request);
662
663 static inline struct request *__elv_next_request(request_queue_t *q)
664 {
665         struct request *rq;
666
667         while (1) {
668                 while (!list_empty(&q->queue_head)) {
669                         rq = list_entry_rq(q->queue_head.next);
670                         if (blk_do_ordered(q, &rq))
671                                 return rq;
672                 }
673
674                 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
675                         return NULL;
676         }
677 }
678
679 struct request *elv_next_request(request_queue_t *q)
680 {
681         struct request *rq;
682         int ret;
683
684         while ((rq = __elv_next_request(q)) != NULL) {
685                 if (!(rq->cmd_flags & REQ_STARTED)) {
686                         elevator_t *e = q->elevator;
687
688                         /*
689                          * This is the first time the device driver
690                          * sees this request (possibly after
691                          * requeueing).  Notify IO scheduler.
692                          */
693                         if (blk_sorted_rq(rq) &&
694                             e->ops->elevator_activate_req_fn)
695                                 e->ops->elevator_activate_req_fn(q, rq);
696
697                         /*
698                          * just mark as started even if we don't start
699                          * it, a request that has been delayed should
700                          * not be passed by new incoming requests
701                          */
702                         rq->cmd_flags |= REQ_STARTED;
703                         blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
704                 }
705
706                 if (!q->boundary_rq || q->boundary_rq == rq) {
707                         q->end_sector = rq_end_sector(rq);
708                         q->boundary_rq = NULL;
709                 }
710
711                 if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
712                         break;
713
714                 ret = q->prep_rq_fn(q, rq);
715                 if (ret == BLKPREP_OK) {
716                         break;
717                 } else if (ret == BLKPREP_DEFER) {
718                         /*
719                          * the request may have been (partially) prepped.
720                          * we need to keep this request in the front to
721                          * avoid resource deadlock.  REQ_STARTED will
722                          * prevent other fs requests from passing this one.
723                          */
724                         rq = NULL;
725                         break;
726                 } else if (ret == BLKPREP_KILL) {
727                         int nr_bytes = rq->hard_nr_sectors << 9;
728
729                         if (!nr_bytes)
730                                 nr_bytes = rq->data_len;
731
732                         blkdev_dequeue_request(rq);
733                         rq->cmd_flags |= REQ_QUIET;
734                         end_that_request_chunk(rq, 0, nr_bytes);
735                         end_that_request_last(rq, 0);
736                 } else {
737                         printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
738                                                                 ret);
739                         break;
740                 }
741         }
742
743         return rq;
744 }
745
746 EXPORT_SYMBOL(elv_next_request);
747
748 void elv_dequeue_request(request_queue_t *q, struct request *rq)
749 {
750         BUG_ON(list_empty(&rq->queuelist));
751         BUG_ON(ELV_ON_HASH(rq));
752
753         list_del_init(&rq->queuelist);
754
755         /*
756          * the time frame between a request being removed from the lists
757          * and to it is freed is accounted as io that is in progress at
758          * the driver side.
759          */
760         if (blk_account_rq(rq))
761                 q->in_flight++;
762 }
763
764 EXPORT_SYMBOL(elv_dequeue_request);
765
766 int elv_queue_empty(request_queue_t *q)
767 {
768         elevator_t *e = q->elevator;
769
770         if (!list_empty(&q->queue_head))
771                 return 0;
772
773         if (e->ops->elevator_queue_empty_fn)
774                 return e->ops->elevator_queue_empty_fn(q);
775
776         return 1;
777 }
778
779 EXPORT_SYMBOL(elv_queue_empty);
780
781 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
782 {
783         elevator_t *e = q->elevator;
784
785         if (e->ops->elevator_latter_req_fn)
786                 return e->ops->elevator_latter_req_fn(q, rq);
787         return NULL;
788 }
789
790 struct request *elv_former_request(request_queue_t *q, struct request *rq)
791 {
792         elevator_t *e = q->elevator;
793
794         if (e->ops->elevator_former_req_fn)
795                 return e->ops->elevator_former_req_fn(q, rq);
796         return NULL;
797 }
798
799 int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
800                     gfp_t gfp_mask)
801 {
802         elevator_t *e = q->elevator;
803
804         if (e->ops->elevator_set_req_fn)
805                 return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
806
807         rq->elevator_private = NULL;
808         return 0;
809 }
810
811 void elv_put_request(request_queue_t *q, struct request *rq)
812 {
813         elevator_t *e = q->elevator;
814
815         if (e->ops->elevator_put_req_fn)
816                 e->ops->elevator_put_req_fn(q, rq);
817 }
818
819 int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
820 {
821         elevator_t *e = q->elevator;
822
823         if (e->ops->elevator_may_queue_fn)
824                 return e->ops->elevator_may_queue_fn(q, rw, bio);
825
826         return ELV_MQUEUE_MAY;
827 }
828
829 void elv_completed_request(request_queue_t *q, struct request *rq)
830 {
831         elevator_t *e = q->elevator;
832
833         /*
834          * request is released from the driver, io must be done
835          */
836         if (blk_account_rq(rq)) {
837                 q->in_flight--;
838                 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
839                         e->ops->elevator_completed_req_fn(q, rq);
840         }
841
842         /*
843          * Check if the queue is waiting for fs requests to be
844          * drained for flush sequence.
845          */
846         if (unlikely(q->ordseq)) {
847                 struct request *first_rq = list_entry_rq(q->queue_head.next);
848                 if (q->in_flight == 0 &&
849                     blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
850                     blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
851                         blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
852                         q->request_fn(q);
853                 }
854         }
855 }
856
857 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
858
859 static ssize_t
860 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
861 {
862         elevator_t *e = container_of(kobj, elevator_t, kobj);
863         struct elv_fs_entry *entry = to_elv(attr);
864         ssize_t error;
865
866         if (!entry->show)
867                 return -EIO;
868
869         mutex_lock(&e->sysfs_lock);
870         error = e->ops ? entry->show(e, page) : -ENOENT;
871         mutex_unlock(&e->sysfs_lock);
872         return error;
873 }
874
875 static ssize_t
876 elv_attr_store(struct kobject *kobj, struct attribute *attr,
877                const char *page, size_t length)
878 {
879         elevator_t *e = container_of(kobj, elevator_t, kobj);
880         struct elv_fs_entry *entry = to_elv(attr);
881         ssize_t error;
882
883         if (!entry->store)
884                 return -EIO;
885
886         mutex_lock(&e->sysfs_lock);
887         error = e->ops ? entry->store(e, page, length) : -ENOENT;
888         mutex_unlock(&e->sysfs_lock);
889         return error;
890 }
891
892 static struct sysfs_ops elv_sysfs_ops = {
893         .show   = elv_attr_show,
894         .store  = elv_attr_store,
895 };
896
897 static struct kobj_type elv_ktype = {
898         .sysfs_ops      = &elv_sysfs_ops,
899         .release        = elevator_release,
900 };
901
902 int elv_register_queue(struct request_queue *q)
903 {
904         elevator_t *e = q->elevator;
905         int error;
906
907         e->kobj.parent = &q->kobj;
908
909         error = kobject_add(&e->kobj);
910         if (!error) {
911                 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
912                 if (attr) {
913                         while (attr->attr.name) {
914                                 if (sysfs_create_file(&e->kobj, &attr->attr))
915                                         break;
916                                 attr++;
917                         }
918                 }
919                 kobject_uevent(&e->kobj, KOBJ_ADD);
920         }
921         return error;
922 }
923
924 static void __elv_unregister_queue(elevator_t *e)
925 {
926         kobject_uevent(&e->kobj, KOBJ_REMOVE);
927         kobject_del(&e->kobj);
928 }
929
930 void elv_unregister_queue(struct request_queue *q)
931 {
932         if (q)
933                 __elv_unregister_queue(q->elevator);
934 }
935
936 int elv_register(struct elevator_type *e)
937 {
938         spin_lock_irq(&elv_list_lock);
939         BUG_ON(elevator_find(e->elevator_name));
940         list_add_tail(&e->list, &elv_list);
941         spin_unlock_irq(&elv_list_lock);
942
943         printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
944         if (!strcmp(e->elevator_name, chosen_elevator) ||
945                         (!*chosen_elevator &&
946                          !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
947                                 printk(" (default)");
948         printk("\n");
949         return 0;
950 }
951 EXPORT_SYMBOL_GPL(elv_register);
952
953 void elv_unregister(struct elevator_type *e)
954 {
955         struct task_struct *g, *p;
956
957         /*
958          * Iterate every thread in the process to remove the io contexts.
959          */
960         if (e->ops.trim) {
961                 read_lock(&tasklist_lock);
962                 do_each_thread(g, p) {
963                         task_lock(p);
964                         if (p->io_context)
965                                 e->ops.trim(p->io_context);
966                         task_unlock(p);
967                 } while_each_thread(g, p);
968                 read_unlock(&tasklist_lock);
969         }
970
971         spin_lock_irq(&elv_list_lock);
972         list_del_init(&e->list);
973         spin_unlock_irq(&elv_list_lock);
974 }
975 EXPORT_SYMBOL_GPL(elv_unregister);
976
977 /*
978  * switch to new_e io scheduler. be careful not to introduce deadlocks -
979  * we don't free the old io scheduler, before we have allocated what we
980  * need for the new one. this way we have a chance of going back to the old
981  * one, if the new one fails init for some reason.
982  */
983 static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
984 {
985         elevator_t *old_elevator, *e;
986         void *data;
987
988         /*
989          * Allocate new elevator
990          */
991         e = elevator_alloc(new_e);
992         if (!e)
993                 return 0;
994
995         data = elevator_init_queue(q, e);
996         if (!data) {
997                 kobject_put(&e->kobj);
998                 return 0;
999         }
1000
1001         /*
1002          * Turn on BYPASS and drain all requests w/ elevator private data
1003          */
1004         spin_lock_irq(q->queue_lock);
1005
1006         set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1007
1008         elv_drain_elevator(q);
1009
1010         while (q->rq.elvpriv) {
1011                 blk_remove_plug(q);
1012                 q->request_fn(q);
1013                 spin_unlock_irq(q->queue_lock);
1014                 msleep(10);
1015                 spin_lock_irq(q->queue_lock);
1016                 elv_drain_elevator(q);
1017         }
1018
1019         /*
1020          * Remember old elevator.
1021          */
1022         old_elevator = q->elevator;
1023
1024         /*
1025          * attach and start new elevator
1026          */
1027         elevator_attach(q, e, data);
1028
1029         spin_unlock_irq(q->queue_lock);
1030
1031         __elv_unregister_queue(old_elevator);
1032
1033         if (elv_register_queue(q))
1034                 goto fail_register;
1035
1036         /*
1037          * finally exit old elevator and turn off BYPASS.
1038          */
1039         elevator_exit(old_elevator);
1040         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1041         return 1;
1042
1043 fail_register:
1044         /*
1045          * switch failed, exit the new io scheduler and reattach the old
1046          * one again (along with re-adding the sysfs dir)
1047          */
1048         elevator_exit(e);
1049         q->elevator = old_elevator;
1050         elv_register_queue(q);
1051         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
1052         return 0;
1053 }
1054
1055 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
1056 {
1057         char elevator_name[ELV_NAME_MAX];
1058         size_t len;
1059         struct elevator_type *e;
1060
1061         elevator_name[sizeof(elevator_name) - 1] = '\0';
1062         strncpy(elevator_name, name, sizeof(elevator_name) - 1);
1063         len = strlen(elevator_name);
1064
1065         if (len && elevator_name[len - 1] == '\n')
1066                 elevator_name[len - 1] = '\0';
1067
1068         e = elevator_get(elevator_name);
1069         if (!e) {
1070                 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1071                 return -EINVAL;
1072         }
1073
1074         if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1075                 elevator_put(e);
1076                 return count;
1077         }
1078
1079         if (!elevator_switch(q, e))
1080                 printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
1081         return count;
1082 }
1083
1084 ssize_t elv_iosched_show(request_queue_t *q, char *name)
1085 {
1086         elevator_t *e = q->elevator;
1087         struct elevator_type *elv = e->elevator_type;
1088         struct list_head *entry;
1089         int len = 0;
1090
1091         spin_lock_irq(q->queue_lock);
1092         list_for_each(entry, &elv_list) {
1093                 struct elevator_type *__e;
1094
1095                 __e = list_entry(entry, struct elevator_type, list);
1096                 if (!strcmp(elv->elevator_name, __e->elevator_name))
1097                         len += sprintf(name+len, "[%s] ", elv->elevator_name);
1098                 else
1099                         len += sprintf(name+len, "%s ", __e->elevator_name);
1100         }
1101         spin_unlock_irq(q->queue_lock);
1102
1103         len += sprintf(len+name, "\n");
1104         return len;
1105 }
1106
1107 struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
1108 {
1109         struct rb_node *rbprev = rb_prev(&rq->rb_node);
1110
1111         if (rbprev)
1112                 return rb_entry_rq(rbprev);
1113
1114         return NULL;
1115 }
1116
1117 EXPORT_SYMBOL(elv_rb_former_request);
1118
1119 struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
1120 {
1121         struct rb_node *rbnext = rb_next(&rq->rb_node);
1122
1123         if (rbnext)
1124                 return rb_entry_rq(rbnext);
1125
1126         return NULL;
1127 }
1128
1129 EXPORT_SYMBOL(elv_rb_latter_request);