[PATCH] elevator_t lifetime rules and sysfs fixes
[safe/jmp/linux-2.6] / block / elevator.c
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@suse.de> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/config.h>
31 #include <linux/module.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/compiler.h>
35 #include <linux/delay.h>
36
37 #include <asm/uaccess.h>
38
39 static DEFINE_SPINLOCK(elv_list_lock);
40 static LIST_HEAD(elv_list);
41
42 /*
43  * can we safely merge with this request?
44  */
45 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
46 {
47         if (!rq_mergeable(rq))
48                 return 0;
49
50         /*
51          * different data direction or already started, don't merge
52          */
53         if (bio_data_dir(bio) != rq_data_dir(rq))
54                 return 0;
55
56         /*
57          * same device and no special stuff set, merge is ok
58          */
59         if (rq->rq_disk == bio->bi_bdev->bd_disk &&
60             !rq->waiting && !rq->special)
61                 return 1;
62
63         return 0;
64 }
65 EXPORT_SYMBOL(elv_rq_merge_ok);
66
67 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
68 {
69         int ret = ELEVATOR_NO_MERGE;
70
71         /*
72          * we can merge and sequence is ok, check if it's possible
73          */
74         if (elv_rq_merge_ok(__rq, bio)) {
75                 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
76                         ret = ELEVATOR_BACK_MERGE;
77                 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
78                         ret = ELEVATOR_FRONT_MERGE;
79         }
80
81         return ret;
82 }
83
84 static struct elevator_type *elevator_find(const char *name)
85 {
86         struct elevator_type *e = NULL;
87         struct list_head *entry;
88
89         list_for_each(entry, &elv_list) {
90                 struct elevator_type *__e;
91
92                 __e = list_entry(entry, struct elevator_type, list);
93
94                 if (!strcmp(__e->elevator_name, name)) {
95                         e = __e;
96                         break;
97                 }
98         }
99
100         return e;
101 }
102
103 static void elevator_put(struct elevator_type *e)
104 {
105         module_put(e->elevator_owner);
106 }
107
108 static struct elevator_type *elevator_get(const char *name)
109 {
110         struct elevator_type *e;
111
112         spin_lock_irq(&elv_list_lock);
113
114         e = elevator_find(name);
115         if (e && !try_module_get(e->elevator_owner))
116                 e = NULL;
117
118         spin_unlock_irq(&elv_list_lock);
119
120         return e;
121 }
122
123 static int elevator_attach(request_queue_t *q, struct elevator_queue *eq)
124 {
125         int ret = 0;
126
127         q->elevator = eq;
128
129         if (eq->ops->elevator_init_fn)
130                 ret = eq->ops->elevator_init_fn(q, eq);
131
132         return ret;
133 }
134
135 static char chosen_elevator[16];
136
137 static int __init elevator_setup(char *str)
138 {
139         /*
140          * Be backwards-compatible with previous kernels, so users
141          * won't get the wrong elevator.
142          */
143         if (!strcmp(str, "as"))
144                 strcpy(chosen_elevator, "anticipatory");
145         else
146                 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
147         return 0;
148 }
149
150 __setup("elevator=", elevator_setup);
151
152 static struct kobj_type elv_ktype;
153
154 static elevator_t *elevator_alloc(struct elevator_type *e)
155 {
156         elevator_t *eq = kmalloc(sizeof(elevator_t), GFP_KERNEL);
157         if (eq) {
158                 memset(eq, 0, sizeof(*eq));
159                 eq->ops = &e->ops;
160                 eq->elevator_type = e;
161                 kobject_init(&eq->kobj);
162                 snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
163                 eq->kobj.ktype = &elv_ktype;
164                 mutex_init(&eq->sysfs_lock);
165         } else {
166                 elevator_put(e);
167         }
168         return eq;
169 }
170
171 static void elevator_release(struct kobject *kobj)
172 {
173         elevator_t *e = container_of(kobj, elevator_t, kobj);
174         elevator_put(e->elevator_type);
175         kfree(e);
176 }
177
178 int elevator_init(request_queue_t *q, char *name)
179 {
180         struct elevator_type *e = NULL;
181         struct elevator_queue *eq;
182         int ret = 0;
183
184         INIT_LIST_HEAD(&q->queue_head);
185         q->last_merge = NULL;
186         q->end_sector = 0;
187         q->boundary_rq = NULL;
188
189         if (name && !(e = elevator_get(name)))
190                 return -EINVAL;
191
192         if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
193                 printk("I/O scheduler %s not found\n", chosen_elevator);
194
195         if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
196                 printk("Default I/O scheduler not found, using no-op\n");
197                 e = elevator_get("noop");
198         }
199
200         eq = elevator_alloc(e);
201         if (!eq)
202                 return -ENOMEM;
203
204         ret = elevator_attach(q, eq);
205         if (ret)
206                 kobject_put(&eq->kobj);
207
208         return ret;
209 }
210
211 void elevator_exit(elevator_t *e)
212 {
213         mutex_lock(&e->sysfs_lock);
214         if (e->ops->elevator_exit_fn)
215                 e->ops->elevator_exit_fn(e);
216         e->ops = NULL;
217         mutex_unlock(&e->sysfs_lock);
218
219         kobject_put(&e->kobj);
220 }
221
222 /*
223  * Insert rq into dispatch queue of q.  Queue lock must be held on
224  * entry.  If sort != 0, rq is sort-inserted; otherwise, rq will be
225  * appended to the dispatch queue.  To be used by specific elevators.
226  */
227 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
228 {
229         sector_t boundary;
230         struct list_head *entry;
231
232         if (q->last_merge == rq)
233                 q->last_merge = NULL;
234         q->nr_sorted--;
235
236         boundary = q->end_sector;
237
238         list_for_each_prev(entry, &q->queue_head) {
239                 struct request *pos = list_entry_rq(entry);
240
241                 if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
242                         break;
243                 if (rq->sector >= boundary) {
244                         if (pos->sector < boundary)
245                                 continue;
246                 } else {
247                         if (pos->sector >= boundary)
248                                 break;
249                 }
250                 if (rq->sector >= pos->sector)
251                         break;
252         }
253
254         list_add(&rq->queuelist, entry);
255 }
256
257 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
258 {
259         elevator_t *e = q->elevator;
260         int ret;
261
262         if (q->last_merge) {
263                 ret = elv_try_merge(q->last_merge, bio);
264                 if (ret != ELEVATOR_NO_MERGE) {
265                         *req = q->last_merge;
266                         return ret;
267                 }
268         }
269
270         if (e->ops->elevator_merge_fn)
271                 return e->ops->elevator_merge_fn(q, req, bio);
272
273         return ELEVATOR_NO_MERGE;
274 }
275
276 void elv_merged_request(request_queue_t *q, struct request *rq)
277 {
278         elevator_t *e = q->elevator;
279
280         if (e->ops->elevator_merged_fn)
281                 e->ops->elevator_merged_fn(q, rq);
282
283         q->last_merge = rq;
284 }
285
286 void elv_merge_requests(request_queue_t *q, struct request *rq,
287                              struct request *next)
288 {
289         elevator_t *e = q->elevator;
290
291         if (e->ops->elevator_merge_req_fn)
292                 e->ops->elevator_merge_req_fn(q, rq, next);
293         q->nr_sorted--;
294
295         q->last_merge = rq;
296 }
297
298 void elv_requeue_request(request_queue_t *q, struct request *rq)
299 {
300         elevator_t *e = q->elevator;
301
302         /*
303          * it already went through dequeue, we need to decrement the
304          * in_flight count again
305          */
306         if (blk_account_rq(rq)) {
307                 q->in_flight--;
308                 if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
309                         e->ops->elevator_deactivate_req_fn(q, rq);
310         }
311
312         rq->flags &= ~REQ_STARTED;
313
314         elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
315 }
316
317 static void elv_drain_elevator(request_queue_t *q)
318 {
319         static int printed;
320         while (q->elevator->ops->elevator_dispatch_fn(q, 1))
321                 ;
322         if (q->nr_sorted == 0)
323                 return;
324         if (printed++ < 10) {
325                 printk(KERN_ERR "%s: forced dispatching is broken "
326                        "(nr_sorted=%u), please report this\n",
327                        q->elevator->elevator_type->elevator_name, q->nr_sorted);
328         }
329 }
330
331 void elv_insert(request_queue_t *q, struct request *rq, int where)
332 {
333         struct list_head *pos;
334         unsigned ordseq;
335
336         rq->q = q;
337
338         switch (where) {
339         case ELEVATOR_INSERT_FRONT:
340                 rq->flags |= REQ_SOFTBARRIER;
341
342                 list_add(&rq->queuelist, &q->queue_head);
343                 break;
344
345         case ELEVATOR_INSERT_BACK:
346                 rq->flags |= REQ_SOFTBARRIER;
347                 elv_drain_elevator(q);
348                 list_add_tail(&rq->queuelist, &q->queue_head);
349                 /*
350                  * We kick the queue here for the following reasons.
351                  * - The elevator might have returned NULL previously
352                  *   to delay requests and returned them now.  As the
353                  *   queue wasn't empty before this request, ll_rw_blk
354                  *   won't run the queue on return, resulting in hang.
355                  * - Usually, back inserted requests won't be merged
356                  *   with anything.  There's no point in delaying queue
357                  *   processing.
358                  */
359                 blk_remove_plug(q);
360                 q->request_fn(q);
361                 break;
362
363         case ELEVATOR_INSERT_SORT:
364                 BUG_ON(!blk_fs_request(rq));
365                 rq->flags |= REQ_SORTED;
366                 q->nr_sorted++;
367                 if (q->last_merge == NULL && rq_mergeable(rq))
368                         q->last_merge = rq;
369                 /*
370                  * Some ioscheds (cfq) run q->request_fn directly, so
371                  * rq cannot be accessed after calling
372                  * elevator_add_req_fn.
373                  */
374                 q->elevator->ops->elevator_add_req_fn(q, rq);
375                 break;
376
377         case ELEVATOR_INSERT_REQUEUE:
378                 /*
379                  * If ordered flush isn't in progress, we do front
380                  * insertion; otherwise, requests should be requeued
381                  * in ordseq order.
382                  */
383                 rq->flags |= REQ_SOFTBARRIER;
384
385                 if (q->ordseq == 0) {
386                         list_add(&rq->queuelist, &q->queue_head);
387                         break;
388                 }
389
390                 ordseq = blk_ordered_req_seq(rq);
391
392                 list_for_each(pos, &q->queue_head) {
393                         struct request *pos_rq = list_entry_rq(pos);
394                         if (ordseq <= blk_ordered_req_seq(pos_rq))
395                                 break;
396                 }
397
398                 list_add_tail(&rq->queuelist, pos);
399                 break;
400
401         default:
402                 printk(KERN_ERR "%s: bad insertion point %d\n",
403                        __FUNCTION__, where);
404                 BUG();
405         }
406
407         if (blk_queue_plugged(q)) {
408                 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
409                         - q->in_flight;
410
411                 if (nrq >= q->unplug_thresh)
412                         __generic_unplug_device(q);
413         }
414 }
415
416 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
417                        int plug)
418 {
419         if (q->ordcolor)
420                 rq->flags |= REQ_ORDERED_COLOR;
421
422         if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
423                 /*
424                  * toggle ordered color
425                  */
426                 if (blk_barrier_rq(rq))
427                         q->ordcolor ^= 1;
428
429                 /*
430                  * barriers implicitly indicate back insertion
431                  */
432                 if (where == ELEVATOR_INSERT_SORT)
433                         where = ELEVATOR_INSERT_BACK;
434
435                 /*
436                  * this request is scheduling boundary, update
437                  * end_sector
438                  */
439                 if (blk_fs_request(rq)) {
440                         q->end_sector = rq_end_sector(rq);
441                         q->boundary_rq = rq;
442                 }
443         } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
444                 where = ELEVATOR_INSERT_BACK;
445
446         if (plug)
447                 blk_plug_device(q);
448
449         elv_insert(q, rq, where);
450 }
451
452 void elv_add_request(request_queue_t *q, struct request *rq, int where,
453                      int plug)
454 {
455         unsigned long flags;
456
457         spin_lock_irqsave(q->queue_lock, flags);
458         __elv_add_request(q, rq, where, plug);
459         spin_unlock_irqrestore(q->queue_lock, flags);
460 }
461
462 static inline struct request *__elv_next_request(request_queue_t *q)
463 {
464         struct request *rq;
465
466         while (1) {
467                 while (!list_empty(&q->queue_head)) {
468                         rq = list_entry_rq(q->queue_head.next);
469                         if (blk_do_ordered(q, &rq))
470                                 return rq;
471                 }
472
473                 if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
474                         return NULL;
475         }
476 }
477
478 struct request *elv_next_request(request_queue_t *q)
479 {
480         struct request *rq;
481         int ret;
482
483         while ((rq = __elv_next_request(q)) != NULL) {
484                 if (!(rq->flags & REQ_STARTED)) {
485                         elevator_t *e = q->elevator;
486
487                         /*
488                          * This is the first time the device driver
489                          * sees this request (possibly after
490                          * requeueing).  Notify IO scheduler.
491                          */
492                         if (blk_sorted_rq(rq) &&
493                             e->ops->elevator_activate_req_fn)
494                                 e->ops->elevator_activate_req_fn(q, rq);
495
496                         /*
497                          * just mark as started even if we don't start
498                          * it, a request that has been delayed should
499                          * not be passed by new incoming requests
500                          */
501                         rq->flags |= REQ_STARTED;
502                 }
503
504                 if (!q->boundary_rq || q->boundary_rq == rq) {
505                         q->end_sector = rq_end_sector(rq);
506                         q->boundary_rq = NULL;
507                 }
508
509                 if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
510                         break;
511
512                 ret = q->prep_rq_fn(q, rq);
513                 if (ret == BLKPREP_OK) {
514                         break;
515                 } else if (ret == BLKPREP_DEFER) {
516                         /*
517                          * the request may have been (partially) prepped.
518                          * we need to keep this request in the front to
519                          * avoid resource deadlock.  REQ_STARTED will
520                          * prevent other fs requests from passing this one.
521                          */
522                         rq = NULL;
523                         break;
524                 } else if (ret == BLKPREP_KILL) {
525                         int nr_bytes = rq->hard_nr_sectors << 9;
526
527                         if (!nr_bytes)
528                                 nr_bytes = rq->data_len;
529
530                         blkdev_dequeue_request(rq);
531                         rq->flags |= REQ_QUIET;
532                         end_that_request_chunk(rq, 0, nr_bytes);
533                         end_that_request_last(rq, 0);
534                 } else {
535                         printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
536                                                                 ret);
537                         break;
538                 }
539         }
540
541         return rq;
542 }
543
544 void elv_dequeue_request(request_queue_t *q, struct request *rq)
545 {
546         BUG_ON(list_empty(&rq->queuelist));
547
548         list_del_init(&rq->queuelist);
549
550         /*
551          * the time frame between a request being removed from the lists
552          * and to it is freed is accounted as io that is in progress at
553          * the driver side.
554          */
555         if (blk_account_rq(rq))
556                 q->in_flight++;
557 }
558
559 int elv_queue_empty(request_queue_t *q)
560 {
561         elevator_t *e = q->elevator;
562
563         if (!list_empty(&q->queue_head))
564                 return 0;
565
566         if (e->ops->elevator_queue_empty_fn)
567                 return e->ops->elevator_queue_empty_fn(q);
568
569         return 1;
570 }
571
572 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
573 {
574         elevator_t *e = q->elevator;
575
576         if (e->ops->elevator_latter_req_fn)
577                 return e->ops->elevator_latter_req_fn(q, rq);
578         return NULL;
579 }
580
581 struct request *elv_former_request(request_queue_t *q, struct request *rq)
582 {
583         elevator_t *e = q->elevator;
584
585         if (e->ops->elevator_former_req_fn)
586                 return e->ops->elevator_former_req_fn(q, rq);
587         return NULL;
588 }
589
590 int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
591                     gfp_t gfp_mask)
592 {
593         elevator_t *e = q->elevator;
594
595         if (e->ops->elevator_set_req_fn)
596                 return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
597
598         rq->elevator_private = NULL;
599         return 0;
600 }
601
602 void elv_put_request(request_queue_t *q, struct request *rq)
603 {
604         elevator_t *e = q->elevator;
605
606         if (e->ops->elevator_put_req_fn)
607                 e->ops->elevator_put_req_fn(q, rq);
608 }
609
610 int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
611 {
612         elevator_t *e = q->elevator;
613
614         if (e->ops->elevator_may_queue_fn)
615                 return e->ops->elevator_may_queue_fn(q, rw, bio);
616
617         return ELV_MQUEUE_MAY;
618 }
619
620 void elv_completed_request(request_queue_t *q, struct request *rq)
621 {
622         elevator_t *e = q->elevator;
623
624         /*
625          * request is released from the driver, io must be done
626          */
627         if (blk_account_rq(rq)) {
628                 q->in_flight--;
629                 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
630                         e->ops->elevator_completed_req_fn(q, rq);
631         }
632
633         /*
634          * Check if the queue is waiting for fs requests to be
635          * drained for flush sequence.
636          */
637         if (unlikely(q->ordseq)) {
638                 struct request *first_rq = list_entry_rq(q->queue_head.next);
639                 if (q->in_flight == 0 &&
640                     blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
641                     blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
642                         blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
643                         q->request_fn(q);
644                 }
645         }
646 }
647
648 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
649
650 static ssize_t
651 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
652 {
653         elevator_t *e = container_of(kobj, elevator_t, kobj);
654         struct elv_fs_entry *entry = to_elv(attr);
655         ssize_t error;
656
657         if (!entry->show)
658                 return -EIO;
659
660         mutex_lock(&e->sysfs_lock);
661         error = e->ops ? entry->show(e, page) : -ENOENT;
662         mutex_unlock(&e->sysfs_lock);
663         return error;
664 }
665
666 static ssize_t
667 elv_attr_store(struct kobject *kobj, struct attribute *attr,
668                const char *page, size_t length)
669 {
670         elevator_t *e = container_of(kobj, elevator_t, kobj);
671         struct elv_fs_entry *entry = to_elv(attr);
672         ssize_t error;
673
674         if (!entry->store)
675                 return -EIO;
676
677         mutex_lock(&e->sysfs_lock);
678         error = e->ops ? entry->store(e, page, length) : -ENOENT;
679         mutex_unlock(&e->sysfs_lock);
680         return error;
681 }
682
683 static struct sysfs_ops elv_sysfs_ops = {
684         .show   = elv_attr_show,
685         .store  = elv_attr_store,
686 };
687
688 static struct kobj_type elv_ktype = {
689         .sysfs_ops      = &elv_sysfs_ops,
690         .release        = elevator_release,
691 };
692
693 int elv_register_queue(struct request_queue *q)
694 {
695         elevator_t *e = q->elevator;
696         int error;
697
698         e->kobj.parent = &q->kobj;
699
700         error = kobject_add(&e->kobj);
701         if (!error) {
702                 struct attribute **attr = e->elevator_type->elevator_attrs;
703                 if (attr) {
704                         while (*attr) {
705                                 if (sysfs_create_file(&e->kobj,*attr++))
706                                         break;
707                         }
708                 }
709                 kobject_uevent(&e->kobj, KOBJ_ADD);
710         }
711         return error;
712 }
713
714 void elv_unregister_queue(struct request_queue *q)
715 {
716         if (q) {
717                 elevator_t *e = q->elevator;
718                 kobject_uevent(&e->kobj, KOBJ_REMOVE);
719                 kobject_del(&e->kobj);
720         }
721 }
722
723 int elv_register(struct elevator_type *e)
724 {
725         spin_lock_irq(&elv_list_lock);
726         if (elevator_find(e->elevator_name))
727                 BUG();
728         list_add_tail(&e->list, &elv_list);
729         spin_unlock_irq(&elv_list_lock);
730
731         printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
732         if (!strcmp(e->elevator_name, chosen_elevator) ||
733                         (!*chosen_elevator &&
734                          !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
735                                 printk(" (default)");
736         printk("\n");
737         return 0;
738 }
739 EXPORT_SYMBOL_GPL(elv_register);
740
741 void elv_unregister(struct elevator_type *e)
742 {
743         struct task_struct *g, *p;
744
745         /*
746          * Iterate every thread in the process to remove the io contexts.
747          */
748         if (e->ops.trim) {
749                 read_lock(&tasklist_lock);
750                 do_each_thread(g, p) {
751                         task_lock(p);
752                         e->ops.trim(p->io_context);
753                         task_unlock(p);
754                 } while_each_thread(g, p);
755                 read_unlock(&tasklist_lock);
756         }
757
758         spin_lock_irq(&elv_list_lock);
759         list_del_init(&e->list);
760         spin_unlock_irq(&elv_list_lock);
761 }
762 EXPORT_SYMBOL_GPL(elv_unregister);
763
764 /*
765  * switch to new_e io scheduler. be careful not to introduce deadlocks -
766  * we don't free the old io scheduler, before we have allocated what we
767  * need for the new one. this way we have a chance of going back to the old
768  * one, if the new one fails init for some reason.
769  */
770 static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
771 {
772         elevator_t *old_elevator, *e;
773
774         /*
775          * Allocate new elevator
776          */
777         e = elevator_alloc(new_e);
778         if (!e)
779                 return 0;
780
781         /*
782          * Turn on BYPASS and drain all requests w/ elevator private data
783          */
784         spin_lock_irq(q->queue_lock);
785
786         set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
787
788         elv_drain_elevator(q);
789
790         while (q->rq.elvpriv) {
791                 blk_remove_plug(q);
792                 q->request_fn(q);
793                 spin_unlock_irq(q->queue_lock);
794                 msleep(10);
795                 spin_lock_irq(q->queue_lock);
796                 elv_drain_elevator(q);
797         }
798
799         spin_unlock_irq(q->queue_lock);
800
801         /*
802          * unregister old elevator data
803          */
804         elv_unregister_queue(q);
805         old_elevator = q->elevator;
806
807         /*
808          * attach and start new elevator
809          */
810         if (elevator_attach(q, e))
811                 goto fail;
812
813         if (elv_register_queue(q))
814                 goto fail_register;
815
816         /*
817          * finally exit old elevator and turn off BYPASS.
818          */
819         elevator_exit(old_elevator);
820         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
821         return 1;
822
823 fail_register:
824         /*
825          * switch failed, exit the new io scheduler and reattach the old
826          * one again (along with re-adding the sysfs dir)
827          */
828         elevator_exit(e);
829         e = NULL;
830 fail:
831         q->elevator = old_elevator;
832         elv_register_queue(q);
833         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
834         if (e)
835                 kobject_put(&e->kobj);
836         return 0;
837 }
838
839 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
840 {
841         char elevator_name[ELV_NAME_MAX];
842         size_t len;
843         struct elevator_type *e;
844
845         elevator_name[sizeof(elevator_name) - 1] = '\0';
846         strncpy(elevator_name, name, sizeof(elevator_name) - 1);
847         len = strlen(elevator_name);
848
849         if (len && elevator_name[len - 1] == '\n')
850                 elevator_name[len - 1] = '\0';
851
852         e = elevator_get(elevator_name);
853         if (!e) {
854                 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
855                 return -EINVAL;
856         }
857
858         if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
859                 elevator_put(e);
860                 return count;
861         }
862
863         if (!elevator_switch(q, e))
864                 printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
865         return count;
866 }
867
868 ssize_t elv_iosched_show(request_queue_t *q, char *name)
869 {
870         elevator_t *e = q->elevator;
871         struct elevator_type *elv = e->elevator_type;
872         struct list_head *entry;
873         int len = 0;
874
875         spin_lock_irq(q->queue_lock);
876         list_for_each(entry, &elv_list) {
877                 struct elevator_type *__e;
878
879                 __e = list_entry(entry, struct elevator_type, list);
880                 if (!strcmp(elv->elevator_name, __e->elevator_name))
881                         len += sprintf(name+len, "[%s] ", elv->elevator_name);
882                 else
883                         len += sprintf(name+len, "%s ", __e->elevator_name);
884         }
885         spin_unlock_irq(q->queue_lock);
886
887         len += sprintf(len+name, "\n");
888         return len;
889 }
890
891 EXPORT_SYMBOL(elv_dispatch_sort);
892 EXPORT_SYMBOL(elv_add_request);
893 EXPORT_SYMBOL(__elv_add_request);
894 EXPORT_SYMBOL(elv_requeue_request);
895 EXPORT_SYMBOL(elv_next_request);
896 EXPORT_SYMBOL(elv_dequeue_request);
897 EXPORT_SYMBOL(elv_queue_empty);
898 EXPORT_SYMBOL(elv_completed_request);
899 EXPORT_SYMBOL(elevator_exit);
900 EXPORT_SYMBOL(elevator_init);