block: reorganize request fetching functions
[safe/jmp/linux-2.6] / block / elevator.c
1 /*
2  *  Block device elevator/IO-scheduler.
3  *
4  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5  *
6  * 30042000 Jens Axboe <axboe@kernel.dk> :
7  *
8  * Split the elevator a bit so that it is possible to choose a different
9  * one or even write a new "plug in". There are three pieces:
10  * - elevator_fn, inserts a new request in the queue list
11  * - elevator_merge_fn, decides whether a new buffer can be merged with
12  *   an existing request
13  * - elevator_dequeue_fn, called when a request is taken off the active list
14  *
15  * 20082000 Dave Jones <davej@suse.de> :
16  * Removed tests for max-bomb-segments, which was breaking elvtune
17  *  when run without -bN
18  *
19  * Jens:
20  * - Rework again to work with bio instead of buffer_heads
21  * - loose bi_dev comparisons, partition handling is right now
22  * - completely modularize elevator setup and teardown
23  *
24  */
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <trace/block.h>
37 #include <linux/hash.h>
38 #include <linux/uaccess.h>
39
40 #include "blk.h"
41
42 static DEFINE_SPINLOCK(elv_list_lock);
43 static LIST_HEAD(elv_list);
44
45 DEFINE_TRACE(block_rq_abort);
46
47 /*
48  * Merge hash stuff.
49  */
50 static const int elv_hash_shift = 6;
51 #define ELV_HASH_BLOCK(sec)     ((sec) >> 3)
52 #define ELV_HASH_FN(sec)        \
53                 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
54 #define ELV_HASH_ENTRIES        (1 << elv_hash_shift)
55 #define rq_hash_key(rq)         ((rq)->sector + (rq)->nr_sectors)
56
57 DEFINE_TRACE(block_rq_insert);
58 DEFINE_TRACE(block_rq_issue);
59
60 /*
61  * Query io scheduler to see if the current process issuing bio may be
62  * merged with rq.
63  */
64 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
65 {
66         struct request_queue *q = rq->q;
67         struct elevator_queue *e = q->elevator;
68
69         if (e->ops->elevator_allow_merge_fn)
70                 return e->ops->elevator_allow_merge_fn(q, rq, bio);
71
72         return 1;
73 }
74
75 /*
76  * can we safely merge with this request?
77  */
78 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
79 {
80         if (!rq_mergeable(rq))
81                 return 0;
82
83         /*
84          * Don't merge file system requests and discard requests
85          */
86         if (bio_discard(bio) != bio_discard(rq->bio))
87                 return 0;
88
89         /*
90          * different data direction or already started, don't merge
91          */
92         if (bio_data_dir(bio) != rq_data_dir(rq))
93                 return 0;
94
95         /*
96          * must be same device and not a special request
97          */
98         if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
99                 return 0;
100
101         /*
102          * only merge integrity protected bio into ditto rq
103          */
104         if (bio_integrity(bio) != blk_integrity_rq(rq))
105                 return 0;
106
107         if (!elv_iosched_allow_merge(rq, bio))
108                 return 0;
109
110         return 1;
111 }
112 EXPORT_SYMBOL(elv_rq_merge_ok);
113
114 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
115 {
116         int ret = ELEVATOR_NO_MERGE;
117
118         /*
119          * we can merge and sequence is ok, check if it's possible
120          */
121         if (elv_rq_merge_ok(__rq, bio)) {
122                 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
123                         ret = ELEVATOR_BACK_MERGE;
124                 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
125                         ret = ELEVATOR_FRONT_MERGE;
126         }
127
128         return ret;
129 }
130
131 static struct elevator_type *elevator_find(const char *name)
132 {
133         struct elevator_type *e;
134
135         list_for_each_entry(e, &elv_list, list) {
136                 if (!strcmp(e->elevator_name, name))
137                         return e;
138         }
139
140         return NULL;
141 }
142
143 static void elevator_put(struct elevator_type *e)
144 {
145         module_put(e->elevator_owner);
146 }
147
148 static struct elevator_type *elevator_get(const char *name)
149 {
150         struct elevator_type *e;
151
152         spin_lock(&elv_list_lock);
153
154         e = elevator_find(name);
155         if (!e) {
156                 char elv[ELV_NAME_MAX + strlen("-iosched")];
157
158                 spin_unlock(&elv_list_lock);
159
160                 if (!strcmp(name, "anticipatory"))
161                         sprintf(elv, "as-iosched");
162                 else
163                         sprintf(elv, "%s-iosched", name);
164
165                 request_module("%s", elv);
166                 spin_lock(&elv_list_lock);
167                 e = elevator_find(name);
168         }
169
170         if (e && !try_module_get(e->elevator_owner))
171                 e = NULL;
172
173         spin_unlock(&elv_list_lock);
174
175         return e;
176 }
177
178 static void *elevator_init_queue(struct request_queue *q,
179                                  struct elevator_queue *eq)
180 {
181         return eq->ops->elevator_init_fn(q);
182 }
183
184 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
185                            void *data)
186 {
187         q->elevator = eq;
188         eq->elevator_data = data;
189 }
190
191 static char chosen_elevator[16];
192
193 static int __init elevator_setup(char *str)
194 {
195         /*
196          * Be backwards-compatible with previous kernels, so users
197          * won't get the wrong elevator.
198          */
199         if (!strcmp(str, "as"))
200                 strcpy(chosen_elevator, "anticipatory");
201         else
202                 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
203         return 1;
204 }
205
206 __setup("elevator=", elevator_setup);
207
208 static struct kobj_type elv_ktype;
209
210 static struct elevator_queue *elevator_alloc(struct request_queue *q,
211                                   struct elevator_type *e)
212 {
213         struct elevator_queue *eq;
214         int i;
215
216         eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
217         if (unlikely(!eq))
218                 goto err;
219
220         eq->ops = &e->ops;
221         eq->elevator_type = e;
222         kobject_init(&eq->kobj, &elv_ktype);
223         mutex_init(&eq->sysfs_lock);
224
225         eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
226                                         GFP_KERNEL, q->node);
227         if (!eq->hash)
228                 goto err;
229
230         for (i = 0; i < ELV_HASH_ENTRIES; i++)
231                 INIT_HLIST_HEAD(&eq->hash[i]);
232
233         return eq;
234 err:
235         kfree(eq);
236         elevator_put(e);
237         return NULL;
238 }
239
240 static void elevator_release(struct kobject *kobj)
241 {
242         struct elevator_queue *e;
243
244         e = container_of(kobj, struct elevator_queue, kobj);
245         elevator_put(e->elevator_type);
246         kfree(e->hash);
247         kfree(e);
248 }
249
250 int elevator_init(struct request_queue *q, char *name)
251 {
252         struct elevator_type *e = NULL;
253         struct elevator_queue *eq;
254         int ret = 0;
255         void *data;
256
257         INIT_LIST_HEAD(&q->queue_head);
258         q->last_merge = NULL;
259         q->end_sector = 0;
260         q->boundary_rq = NULL;
261
262         if (name) {
263                 e = elevator_get(name);
264                 if (!e)
265                         return -EINVAL;
266         }
267
268         if (!e && *chosen_elevator) {
269                 e = elevator_get(chosen_elevator);
270                 if (!e)
271                         printk(KERN_ERR "I/O scheduler %s not found\n",
272                                                         chosen_elevator);
273         }
274
275         if (!e) {
276                 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
277                 if (!e) {
278                         printk(KERN_ERR
279                                 "Default I/O scheduler not found. " \
280                                 "Using noop.\n");
281                         e = elevator_get("noop");
282                 }
283         }
284
285         eq = elevator_alloc(q, e);
286         if (!eq)
287                 return -ENOMEM;
288
289         data = elevator_init_queue(q, eq);
290         if (!data) {
291                 kobject_put(&eq->kobj);
292                 return -ENOMEM;
293         }
294
295         elevator_attach(q, eq, data);
296         return ret;
297 }
298 EXPORT_SYMBOL(elevator_init);
299
300 void elevator_exit(struct elevator_queue *e)
301 {
302         mutex_lock(&e->sysfs_lock);
303         if (e->ops->elevator_exit_fn)
304                 e->ops->elevator_exit_fn(e);
305         e->ops = NULL;
306         mutex_unlock(&e->sysfs_lock);
307
308         kobject_put(&e->kobj);
309 }
310 EXPORT_SYMBOL(elevator_exit);
311
312 static inline void __elv_rqhash_del(struct request *rq)
313 {
314         hlist_del_init(&rq->hash);
315 }
316
317 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
318 {
319         if (ELV_ON_HASH(rq))
320                 __elv_rqhash_del(rq);
321 }
322
323 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
324 {
325         struct elevator_queue *e = q->elevator;
326
327         BUG_ON(ELV_ON_HASH(rq));
328         hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
329 }
330
331 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
332 {
333         __elv_rqhash_del(rq);
334         elv_rqhash_add(q, rq);
335 }
336
337 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
338 {
339         struct elevator_queue *e = q->elevator;
340         struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
341         struct hlist_node *entry, *next;
342         struct request *rq;
343
344         hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
345                 BUG_ON(!ELV_ON_HASH(rq));
346
347                 if (unlikely(!rq_mergeable(rq))) {
348                         __elv_rqhash_del(rq);
349                         continue;
350                 }
351
352                 if (rq_hash_key(rq) == offset)
353                         return rq;
354         }
355
356         return NULL;
357 }
358
359 /*
360  * RB-tree support functions for inserting/lookup/removal of requests
361  * in a sorted RB tree.
362  */
363 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
364 {
365         struct rb_node **p = &root->rb_node;
366         struct rb_node *parent = NULL;
367         struct request *__rq;
368
369         while (*p) {
370                 parent = *p;
371                 __rq = rb_entry(parent, struct request, rb_node);
372
373                 if (rq->sector < __rq->sector)
374                         p = &(*p)->rb_left;
375                 else if (rq->sector > __rq->sector)
376                         p = &(*p)->rb_right;
377                 else
378                         return __rq;
379         }
380
381         rb_link_node(&rq->rb_node, parent, p);
382         rb_insert_color(&rq->rb_node, root);
383         return NULL;
384 }
385 EXPORT_SYMBOL(elv_rb_add);
386
387 void elv_rb_del(struct rb_root *root, struct request *rq)
388 {
389         BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
390         rb_erase(&rq->rb_node, root);
391         RB_CLEAR_NODE(&rq->rb_node);
392 }
393 EXPORT_SYMBOL(elv_rb_del);
394
395 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
396 {
397         struct rb_node *n = root->rb_node;
398         struct request *rq;
399
400         while (n) {
401                 rq = rb_entry(n, struct request, rb_node);
402
403                 if (sector < rq->sector)
404                         n = n->rb_left;
405                 else if (sector > rq->sector)
406                         n = n->rb_right;
407                 else
408                         return rq;
409         }
410
411         return NULL;
412 }
413 EXPORT_SYMBOL(elv_rb_find);
414
415 /*
416  * Insert rq into dispatch queue of q.  Queue lock must be held on
417  * entry.  rq is sort instead into the dispatch queue. To be used by
418  * specific elevators.
419  */
420 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
421 {
422         sector_t boundary;
423         struct list_head *entry;
424         int stop_flags;
425
426         if (q->last_merge == rq)
427                 q->last_merge = NULL;
428
429         elv_rqhash_del(q, rq);
430
431         q->nr_sorted--;
432
433         boundary = q->end_sector;
434         stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
435         list_for_each_prev(entry, &q->queue_head) {
436                 struct request *pos = list_entry_rq(entry);
437
438                 if (blk_discard_rq(rq) != blk_discard_rq(pos))
439                         break;
440                 if (rq_data_dir(rq) != rq_data_dir(pos))
441                         break;
442                 if (pos->cmd_flags & stop_flags)
443                         break;
444                 if (rq->sector >= boundary) {
445                         if (pos->sector < boundary)
446                                 continue;
447                 } else {
448                         if (pos->sector >= boundary)
449                                 break;
450                 }
451                 if (rq->sector >= pos->sector)
452                         break;
453         }
454
455         list_add(&rq->queuelist, entry);
456 }
457 EXPORT_SYMBOL(elv_dispatch_sort);
458
459 /*
460  * Insert rq into dispatch queue of q.  Queue lock must be held on
461  * entry.  rq is added to the back of the dispatch queue. To be used by
462  * specific elevators.
463  */
464 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
465 {
466         if (q->last_merge == rq)
467                 q->last_merge = NULL;
468
469         elv_rqhash_del(q, rq);
470
471         q->nr_sorted--;
472
473         q->end_sector = rq_end_sector(rq);
474         q->boundary_rq = rq;
475         list_add_tail(&rq->queuelist, &q->queue_head);
476 }
477 EXPORT_SYMBOL(elv_dispatch_add_tail);
478
479 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
480 {
481         struct elevator_queue *e = q->elevator;
482         struct request *__rq;
483         int ret;
484
485         /*
486          * First try one-hit cache.
487          */
488         if (q->last_merge) {
489                 ret = elv_try_merge(q->last_merge, bio);
490                 if (ret != ELEVATOR_NO_MERGE) {
491                         *req = q->last_merge;
492                         return ret;
493                 }
494         }
495
496         if (blk_queue_nomerges(q))
497                 return ELEVATOR_NO_MERGE;
498
499         /*
500          * See if our hash lookup can find a potential backmerge.
501          */
502         __rq = elv_rqhash_find(q, bio->bi_sector);
503         if (__rq && elv_rq_merge_ok(__rq, bio)) {
504                 *req = __rq;
505                 return ELEVATOR_BACK_MERGE;
506         }
507
508         if (e->ops->elevator_merge_fn)
509                 return e->ops->elevator_merge_fn(q, req, bio);
510
511         return ELEVATOR_NO_MERGE;
512 }
513
514 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
515 {
516         struct elevator_queue *e = q->elevator;
517
518         if (e->ops->elevator_merged_fn)
519                 e->ops->elevator_merged_fn(q, rq, type);
520
521         if (type == ELEVATOR_BACK_MERGE)
522                 elv_rqhash_reposition(q, rq);
523
524         q->last_merge = rq;
525 }
526
527 void elv_merge_requests(struct request_queue *q, struct request *rq,
528                              struct request *next)
529 {
530         struct elevator_queue *e = q->elevator;
531
532         if (e->ops->elevator_merge_req_fn)
533                 e->ops->elevator_merge_req_fn(q, rq, next);
534
535         elv_rqhash_reposition(q, rq);
536         elv_rqhash_del(q, next);
537
538         q->nr_sorted--;
539         q->last_merge = rq;
540 }
541
542 void elv_requeue_request(struct request_queue *q, struct request *rq)
543 {
544         /*
545          * it already went through dequeue, we need to decrement the
546          * in_flight count again
547          */
548         if (blk_account_rq(rq)) {
549                 q->in_flight--;
550                 if (blk_sorted_rq(rq))
551                         elv_deactivate_rq(q, rq);
552         }
553
554         rq->cmd_flags &= ~REQ_STARTED;
555
556         elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
557 }
558
559 void elv_drain_elevator(struct request_queue *q)
560 {
561         static int printed;
562         while (q->elevator->ops->elevator_dispatch_fn(q, 1))
563                 ;
564         if (q->nr_sorted == 0)
565                 return;
566         if (printed++ < 10) {
567                 printk(KERN_ERR "%s: forced dispatching is broken "
568                        "(nr_sorted=%u), please report this\n",
569                        q->elevator->elevator_type->elevator_name, q->nr_sorted);
570         }
571 }
572
573 /*
574  * Call with queue lock held, interrupts disabled
575  */
576 void elv_quiesce_start(struct request_queue *q)
577 {
578         queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
579
580         /*
581          * make sure we don't have any requests in flight
582          */
583         elv_drain_elevator(q);
584         while (q->rq.elvpriv) {
585                 __blk_run_queue(q);
586                 spin_unlock_irq(q->queue_lock);
587                 msleep(10);
588                 spin_lock_irq(q->queue_lock);
589                 elv_drain_elevator(q);
590         }
591 }
592
593 void elv_quiesce_end(struct request_queue *q)
594 {
595         queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
596 }
597
598 void elv_insert(struct request_queue *q, struct request *rq, int where)
599 {
600         struct list_head *pos;
601         unsigned ordseq;
602         int unplug_it = 1;
603
604         trace_block_rq_insert(q, rq);
605
606         rq->q = q;
607
608         switch (where) {
609         case ELEVATOR_INSERT_FRONT:
610                 rq->cmd_flags |= REQ_SOFTBARRIER;
611
612                 list_add(&rq->queuelist, &q->queue_head);
613                 break;
614
615         case ELEVATOR_INSERT_BACK:
616                 rq->cmd_flags |= REQ_SOFTBARRIER;
617                 elv_drain_elevator(q);
618                 list_add_tail(&rq->queuelist, &q->queue_head);
619                 /*
620                  * We kick the queue here for the following reasons.
621                  * - The elevator might have returned NULL previously
622                  *   to delay requests and returned them now.  As the
623                  *   queue wasn't empty before this request, ll_rw_blk
624                  *   won't run the queue on return, resulting in hang.
625                  * - Usually, back inserted requests won't be merged
626                  *   with anything.  There's no point in delaying queue
627                  *   processing.
628                  */
629                 __blk_run_queue(q);
630                 break;
631
632         case ELEVATOR_INSERT_SORT:
633                 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
634                 rq->cmd_flags |= REQ_SORTED;
635                 q->nr_sorted++;
636                 if (rq_mergeable(rq)) {
637                         elv_rqhash_add(q, rq);
638                         if (!q->last_merge)
639                                 q->last_merge = rq;
640                 }
641
642                 /*
643                  * Some ioscheds (cfq) run q->request_fn directly, so
644                  * rq cannot be accessed after calling
645                  * elevator_add_req_fn.
646                  */
647                 q->elevator->ops->elevator_add_req_fn(q, rq);
648                 break;
649
650         case ELEVATOR_INSERT_REQUEUE:
651                 /*
652                  * If ordered flush isn't in progress, we do front
653                  * insertion; otherwise, requests should be requeued
654                  * in ordseq order.
655                  */
656                 rq->cmd_flags |= REQ_SOFTBARRIER;
657
658                 /*
659                  * Most requeues happen because of a busy condition,
660                  * don't force unplug of the queue for that case.
661                  */
662                 unplug_it = 0;
663
664                 if (q->ordseq == 0) {
665                         list_add(&rq->queuelist, &q->queue_head);
666                         break;
667                 }
668
669                 ordseq = blk_ordered_req_seq(rq);
670
671                 list_for_each(pos, &q->queue_head) {
672                         struct request *pos_rq = list_entry_rq(pos);
673                         if (ordseq <= blk_ordered_req_seq(pos_rq))
674                                 break;
675                 }
676
677                 list_add_tail(&rq->queuelist, pos);
678                 break;
679
680         default:
681                 printk(KERN_ERR "%s: bad insertion point %d\n",
682                        __func__, where);
683                 BUG();
684         }
685
686         if (unplug_it && blk_queue_plugged(q)) {
687                 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
688                         - q->in_flight;
689
690                 if (nrq >= q->unplug_thresh)
691                         __generic_unplug_device(q);
692         }
693 }
694
695 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
696                        int plug)
697 {
698         if (q->ordcolor)
699                 rq->cmd_flags |= REQ_ORDERED_COLOR;
700
701         if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
702                 /*
703                  * toggle ordered color
704                  */
705                 if (blk_barrier_rq(rq))
706                         q->ordcolor ^= 1;
707
708                 /*
709                  * barriers implicitly indicate back insertion
710                  */
711                 if (where == ELEVATOR_INSERT_SORT)
712                         where = ELEVATOR_INSERT_BACK;
713
714                 /*
715                  * this request is scheduling boundary, update
716                  * end_sector
717                  */
718                 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
719                         q->end_sector = rq_end_sector(rq);
720                         q->boundary_rq = rq;
721                 }
722         } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
723                     where == ELEVATOR_INSERT_SORT)
724                 where = ELEVATOR_INSERT_BACK;
725
726         if (plug)
727                 blk_plug_device(q);
728
729         elv_insert(q, rq, where);
730 }
731 EXPORT_SYMBOL(__elv_add_request);
732
733 void elv_add_request(struct request_queue *q, struct request *rq, int where,
734                      int plug)
735 {
736         unsigned long flags;
737
738         spin_lock_irqsave(q->queue_lock, flags);
739         __elv_add_request(q, rq, where, plug);
740         spin_unlock_irqrestore(q->queue_lock, flags);
741 }
742 EXPORT_SYMBOL(elv_add_request);
743
744 int elv_queue_empty(struct request_queue *q)
745 {
746         struct elevator_queue *e = q->elevator;
747
748         if (!list_empty(&q->queue_head))
749                 return 0;
750
751         if (e->ops->elevator_queue_empty_fn)
752                 return e->ops->elevator_queue_empty_fn(q);
753
754         return 1;
755 }
756 EXPORT_SYMBOL(elv_queue_empty);
757
758 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
759 {
760         struct elevator_queue *e = q->elevator;
761
762         if (e->ops->elevator_latter_req_fn)
763                 return e->ops->elevator_latter_req_fn(q, rq);
764         return NULL;
765 }
766
767 struct request *elv_former_request(struct request_queue *q, struct request *rq)
768 {
769         struct elevator_queue *e = q->elevator;
770
771         if (e->ops->elevator_former_req_fn)
772                 return e->ops->elevator_former_req_fn(q, rq);
773         return NULL;
774 }
775
776 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
777 {
778         struct elevator_queue *e = q->elevator;
779
780         if (e->ops->elevator_set_req_fn)
781                 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
782
783         rq->elevator_private = NULL;
784         return 0;
785 }
786
787 void elv_put_request(struct request_queue *q, struct request *rq)
788 {
789         struct elevator_queue *e = q->elevator;
790
791         if (e->ops->elevator_put_req_fn)
792                 e->ops->elevator_put_req_fn(rq);
793 }
794
795 int elv_may_queue(struct request_queue *q, int rw)
796 {
797         struct elevator_queue *e = q->elevator;
798
799         if (e->ops->elevator_may_queue_fn)
800                 return e->ops->elevator_may_queue_fn(q, rw);
801
802         return ELV_MQUEUE_MAY;
803 }
804
805 void elv_abort_queue(struct request_queue *q)
806 {
807         struct request *rq;
808
809         while (!list_empty(&q->queue_head)) {
810                 rq = list_entry_rq(q->queue_head.next);
811                 rq->cmd_flags |= REQ_QUIET;
812                 trace_block_rq_abort(q, rq);
813                 __blk_end_request(rq, -EIO, blk_rq_bytes(rq));
814         }
815 }
816 EXPORT_SYMBOL(elv_abort_queue);
817
818 void elv_completed_request(struct request_queue *q, struct request *rq)
819 {
820         struct elevator_queue *e = q->elevator;
821
822         /*
823          * request is released from the driver, io must be done
824          */
825         if (blk_account_rq(rq)) {
826                 q->in_flight--;
827                 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
828                         e->ops->elevator_completed_req_fn(q, rq);
829         }
830
831         /*
832          * Check if the queue is waiting for fs requests to be
833          * drained for flush sequence.
834          */
835         if (unlikely(q->ordseq)) {
836                 struct request *next = NULL;
837
838                 if (!list_empty(&q->queue_head))
839                         next = list_entry_rq(q->queue_head.next);
840
841                 if (!q->in_flight &&
842                     blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
843                     (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
844                         blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
845                         __blk_run_queue(q);
846                 }
847         }
848 }
849
850 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
851
852 static ssize_t
853 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
854 {
855         struct elv_fs_entry *entry = to_elv(attr);
856         struct elevator_queue *e;
857         ssize_t error;
858
859         if (!entry->show)
860                 return -EIO;
861
862         e = container_of(kobj, struct elevator_queue, kobj);
863         mutex_lock(&e->sysfs_lock);
864         error = e->ops ? entry->show(e, page) : -ENOENT;
865         mutex_unlock(&e->sysfs_lock);
866         return error;
867 }
868
869 static ssize_t
870 elv_attr_store(struct kobject *kobj, struct attribute *attr,
871                const char *page, size_t length)
872 {
873         struct elv_fs_entry *entry = to_elv(attr);
874         struct elevator_queue *e;
875         ssize_t error;
876
877         if (!entry->store)
878                 return -EIO;
879
880         e = container_of(kobj, struct elevator_queue, kobj);
881         mutex_lock(&e->sysfs_lock);
882         error = e->ops ? entry->store(e, page, length) : -ENOENT;
883         mutex_unlock(&e->sysfs_lock);
884         return error;
885 }
886
887 static struct sysfs_ops elv_sysfs_ops = {
888         .show   = elv_attr_show,
889         .store  = elv_attr_store,
890 };
891
892 static struct kobj_type elv_ktype = {
893         .sysfs_ops      = &elv_sysfs_ops,
894         .release        = elevator_release,
895 };
896
897 int elv_register_queue(struct request_queue *q)
898 {
899         struct elevator_queue *e = q->elevator;
900         int error;
901
902         error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
903         if (!error) {
904                 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
905                 if (attr) {
906                         while (attr->attr.name) {
907                                 if (sysfs_create_file(&e->kobj, &attr->attr))
908                                         break;
909                                 attr++;
910                         }
911                 }
912                 kobject_uevent(&e->kobj, KOBJ_ADD);
913         }
914         return error;
915 }
916
917 static void __elv_unregister_queue(struct elevator_queue *e)
918 {
919         kobject_uevent(&e->kobj, KOBJ_REMOVE);
920         kobject_del(&e->kobj);
921 }
922
923 void elv_unregister_queue(struct request_queue *q)
924 {
925         if (q)
926                 __elv_unregister_queue(q->elevator);
927 }
928
929 void elv_register(struct elevator_type *e)
930 {
931         char *def = "";
932
933         spin_lock(&elv_list_lock);
934         BUG_ON(elevator_find(e->elevator_name));
935         list_add_tail(&e->list, &elv_list);
936         spin_unlock(&elv_list_lock);
937
938         if (!strcmp(e->elevator_name, chosen_elevator) ||
939                         (!*chosen_elevator &&
940                          !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
941                                 def = " (default)";
942
943         printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
944                                                                 def);
945 }
946 EXPORT_SYMBOL_GPL(elv_register);
947
948 void elv_unregister(struct elevator_type *e)
949 {
950         struct task_struct *g, *p;
951
952         /*
953          * Iterate every thread in the process to remove the io contexts.
954          */
955         if (e->ops.trim) {
956                 read_lock(&tasklist_lock);
957                 do_each_thread(g, p) {
958                         task_lock(p);
959                         if (p->io_context)
960                                 e->ops.trim(p->io_context);
961                         task_unlock(p);
962                 } while_each_thread(g, p);
963                 read_unlock(&tasklist_lock);
964         }
965
966         spin_lock(&elv_list_lock);
967         list_del_init(&e->list);
968         spin_unlock(&elv_list_lock);
969 }
970 EXPORT_SYMBOL_GPL(elv_unregister);
971
972 /*
973  * switch to new_e io scheduler. be careful not to introduce deadlocks -
974  * we don't free the old io scheduler, before we have allocated what we
975  * need for the new one. this way we have a chance of going back to the old
976  * one, if the new one fails init for some reason.
977  */
978 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
979 {
980         struct elevator_queue *old_elevator, *e;
981         void *data;
982
983         /*
984          * Allocate new elevator
985          */
986         e = elevator_alloc(q, new_e);
987         if (!e)
988                 return 0;
989
990         data = elevator_init_queue(q, e);
991         if (!data) {
992                 kobject_put(&e->kobj);
993                 return 0;
994         }
995
996         /*
997          * Turn on BYPASS and drain all requests w/ elevator private data
998          */
999         spin_lock_irq(q->queue_lock);
1000         elv_quiesce_start(q);
1001
1002         /*
1003          * Remember old elevator.
1004          */
1005         old_elevator = q->elevator;
1006
1007         /*
1008          * attach and start new elevator
1009          */
1010         elevator_attach(q, e, data);
1011
1012         spin_unlock_irq(q->queue_lock);
1013
1014         __elv_unregister_queue(old_elevator);
1015
1016         if (elv_register_queue(q))
1017                 goto fail_register;
1018
1019         /*
1020          * finally exit old elevator and turn off BYPASS.
1021          */
1022         elevator_exit(old_elevator);
1023         spin_lock_irq(q->queue_lock);
1024         elv_quiesce_end(q);
1025         spin_unlock_irq(q->queue_lock);
1026
1027         blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1028
1029         return 1;
1030
1031 fail_register:
1032         /*
1033          * switch failed, exit the new io scheduler and reattach the old
1034          * one again (along with re-adding the sysfs dir)
1035          */
1036         elevator_exit(e);
1037         q->elevator = old_elevator;
1038         elv_register_queue(q);
1039
1040         spin_lock_irq(q->queue_lock);
1041         queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1042         spin_unlock_irq(q->queue_lock);
1043
1044         return 0;
1045 }
1046
1047 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1048                           size_t count)
1049 {
1050         char elevator_name[ELV_NAME_MAX];
1051         struct elevator_type *e;
1052
1053         strlcpy(elevator_name, name, sizeof(elevator_name));
1054         strstrip(elevator_name);
1055
1056         e = elevator_get(elevator_name);
1057         if (!e) {
1058                 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1059                 return -EINVAL;
1060         }
1061
1062         if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1063                 elevator_put(e);
1064                 return count;
1065         }
1066
1067         if (!elevator_switch(q, e))
1068                 printk(KERN_ERR "elevator: switch to %s failed\n",
1069                                                         elevator_name);
1070         return count;
1071 }
1072
1073 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1074 {
1075         struct elevator_queue *e = q->elevator;
1076         struct elevator_type *elv = e->elevator_type;
1077         struct elevator_type *__e;
1078         int len = 0;
1079
1080         spin_lock(&elv_list_lock);
1081         list_for_each_entry(__e, &elv_list, list) {
1082                 if (!strcmp(elv->elevator_name, __e->elevator_name))
1083                         len += sprintf(name+len, "[%s] ", elv->elevator_name);
1084                 else
1085                         len += sprintf(name+len, "%s ", __e->elevator_name);
1086         }
1087         spin_unlock(&elv_list_lock);
1088
1089         len += sprintf(len+name, "\n");
1090         return len;
1091 }
1092
1093 struct request *elv_rb_former_request(struct request_queue *q,
1094                                       struct request *rq)
1095 {
1096         struct rb_node *rbprev = rb_prev(&rq->rb_node);
1097
1098         if (rbprev)
1099                 return rb_entry_rq(rbprev);
1100
1101         return NULL;
1102 }
1103 EXPORT_SYMBOL(elv_rb_former_request);
1104
1105 struct request *elv_rb_latter_request(struct request_queue *q,
1106                                       struct request *rq)
1107 {
1108         struct rb_node *rbnext = rb_next(&rq->rb_node);
1109
1110         if (rbnext)
1111                 return rb_entry_rq(rbnext);
1112
1113         return NULL;
1114 }
1115 EXPORT_SYMBOL(elv_rb_latter_request);