[BLOCK] Implement elv_drain_elevator for improved switch error detection
[safe/jmp/linux-2.6] / block / elevator.c
1 /*
2  *  linux/drivers/block/elevator.c
3  *
4  *  Block device elevator/IO-scheduler.
5  *
6  *  Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
7  *
8  * 30042000 Jens Axboe <axboe@suse.de> :
9  *
10  * Split the elevator a bit so that it is possible to choose a different
11  * one or even write a new "plug in". There are three pieces:
12  * - elevator_fn, inserts a new request in the queue list
13  * - elevator_merge_fn, decides whether a new buffer can be merged with
14  *   an existing request
15  * - elevator_dequeue_fn, called when a request is taken off the active list
16  *
17  * 20082000 Dave Jones <davej@suse.de> :
18  * Removed tests for max-bomb-segments, which was breaking elvtune
19  *  when run without -bN
20  *
21  * Jens:
22  * - Rework again to work with bio instead of buffer_heads
23  * - loose bi_dev comparisons, partition handling is right now
24  * - completely modularize elevator setup and teardown
25  *
26  */
27 #include <linux/kernel.h>
28 #include <linux/fs.h>
29 #include <linux/blkdev.h>
30 #include <linux/elevator.h>
31 #include <linux/bio.h>
32 #include <linux/config.h>
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/init.h>
36 #include <linux/compiler.h>
37 #include <linux/delay.h>
38
39 #include <asm/uaccess.h>
40
41 static DEFINE_SPINLOCK(elv_list_lock);
42 static LIST_HEAD(elv_list);
43
44 /*
45  * can we safely merge with this request?
46  */
47 inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
48 {
49         if (!rq_mergeable(rq))
50                 return 0;
51
52         /*
53          * different data direction or already started, don't merge
54          */
55         if (bio_data_dir(bio) != rq_data_dir(rq))
56                 return 0;
57
58         /*
59          * same device and no special stuff set, merge is ok
60          */
61         if (rq->rq_disk == bio->bi_bdev->bd_disk &&
62             !rq->waiting && !rq->special)
63                 return 1;
64
65         return 0;
66 }
67 EXPORT_SYMBOL(elv_rq_merge_ok);
68
69 inline int elv_try_merge(struct request *__rq, struct bio *bio)
70 {
71         int ret = ELEVATOR_NO_MERGE;
72
73         /*
74          * we can merge and sequence is ok, check if it's possible
75          */
76         if (elv_rq_merge_ok(__rq, bio)) {
77                 if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
78                         ret = ELEVATOR_BACK_MERGE;
79                 else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
80                         ret = ELEVATOR_FRONT_MERGE;
81         }
82
83         return ret;
84 }
85 EXPORT_SYMBOL(elv_try_merge);
86
87 static struct elevator_type *elevator_find(const char *name)
88 {
89         struct elevator_type *e = NULL;
90         struct list_head *entry;
91
92         list_for_each(entry, &elv_list) {
93                 struct elevator_type *__e;
94
95                 __e = list_entry(entry, struct elevator_type, list);
96
97                 if (!strcmp(__e->elevator_name, name)) {
98                         e = __e;
99                         break;
100                 }
101         }
102
103         return e;
104 }
105
106 static void elevator_put(struct elevator_type *e)
107 {
108         module_put(e->elevator_owner);
109 }
110
111 static struct elevator_type *elevator_get(const char *name)
112 {
113         struct elevator_type *e;
114
115         spin_lock_irq(&elv_list_lock);
116
117         e = elevator_find(name);
118         if (e && !try_module_get(e->elevator_owner))
119                 e = NULL;
120
121         spin_unlock_irq(&elv_list_lock);
122
123         return e;
124 }
125
126 static int elevator_attach(request_queue_t *q, struct elevator_type *e,
127                            struct elevator_queue *eq)
128 {
129         int ret = 0;
130
131         memset(eq, 0, sizeof(*eq));
132         eq->ops = &e->ops;
133         eq->elevator_type = e;
134
135         q->elevator = eq;
136
137         if (eq->ops->elevator_init_fn)
138                 ret = eq->ops->elevator_init_fn(q, eq);
139
140         return ret;
141 }
142
143 static char chosen_elevator[16];
144
145 static void elevator_setup_default(void)
146 {
147         struct elevator_type *e;
148
149         /*
150          * If default has not been set, use the compiled-in selection.
151          */
152         if (!chosen_elevator[0])
153                 strcpy(chosen_elevator, CONFIG_DEFAULT_IOSCHED);
154
155         /*
156          * If the given scheduler is not available, fall back to no-op.
157          */
158         if ((e = elevator_find(chosen_elevator)))
159                 elevator_put(e);
160         else
161                 strcpy(chosen_elevator, "noop");
162 }
163
164 static int __init elevator_setup(char *str)
165 {
166         strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
167         return 0;
168 }
169
170 __setup("elevator=", elevator_setup);
171
172 int elevator_init(request_queue_t *q, char *name)
173 {
174         struct elevator_type *e = NULL;
175         struct elevator_queue *eq;
176         int ret = 0;
177
178         INIT_LIST_HEAD(&q->queue_head);
179         q->last_merge = NULL;
180         q->end_sector = 0;
181         q->boundary_rq = NULL;
182
183         elevator_setup_default();
184
185         if (!name)
186                 name = chosen_elevator;
187
188         e = elevator_get(name);
189         if (!e)
190                 return -EINVAL;
191
192         eq = kmalloc(sizeof(struct elevator_queue), GFP_KERNEL);
193         if (!eq) {
194                 elevator_put(e);
195                 return -ENOMEM;
196         }
197
198         ret = elevator_attach(q, e, eq);
199         if (ret) {
200                 kfree(eq);
201                 elevator_put(e);
202         }
203
204         return ret;
205 }
206
207 void elevator_exit(elevator_t *e)
208 {
209         if (e->ops->elevator_exit_fn)
210                 e->ops->elevator_exit_fn(e);
211
212         elevator_put(e->elevator_type);
213         e->elevator_type = NULL;
214         kfree(e);
215 }
216
217 /*
218  * Insert rq into dispatch queue of q.  Queue lock must be held on
219  * entry.  If sort != 0, rq is sort-inserted; otherwise, rq will be
220  * appended to the dispatch queue.  To be used by specific elevators.
221  */
222 void elv_dispatch_sort(request_queue_t *q, struct request *rq)
223 {
224         sector_t boundary;
225         struct list_head *entry;
226
227         if (q->last_merge == rq)
228                 q->last_merge = NULL;
229         q->nr_sorted--;
230
231         boundary = q->end_sector;
232
233         list_for_each_prev(entry, &q->queue_head) {
234                 struct request *pos = list_entry_rq(entry);
235
236                 if (pos->flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
237                         break;
238                 if (rq->sector >= boundary) {
239                         if (pos->sector < boundary)
240                                 continue;
241                 } else {
242                         if (pos->sector >= boundary)
243                                 break;
244                 }
245                 if (rq->sector >= pos->sector)
246                         break;
247         }
248
249         list_add(&rq->queuelist, entry);
250 }
251
252 int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
253 {
254         elevator_t *e = q->elevator;
255         int ret;
256
257         if (q->last_merge) {
258                 ret = elv_try_merge(q->last_merge, bio);
259                 if (ret != ELEVATOR_NO_MERGE) {
260                         *req = q->last_merge;
261                         return ret;
262                 }
263         }
264
265         if (e->ops->elevator_merge_fn)
266                 return e->ops->elevator_merge_fn(q, req, bio);
267
268         return ELEVATOR_NO_MERGE;
269 }
270
271 void elv_merged_request(request_queue_t *q, struct request *rq)
272 {
273         elevator_t *e = q->elevator;
274
275         if (e->ops->elevator_merged_fn)
276                 e->ops->elevator_merged_fn(q, rq);
277
278         q->last_merge = rq;
279 }
280
281 void elv_merge_requests(request_queue_t *q, struct request *rq,
282                              struct request *next)
283 {
284         elevator_t *e = q->elevator;
285
286         if (e->ops->elevator_merge_req_fn)
287                 e->ops->elevator_merge_req_fn(q, rq, next);
288         q->nr_sorted--;
289
290         q->last_merge = rq;
291 }
292
293 void elv_requeue_request(request_queue_t *q, struct request *rq)
294 {
295         elevator_t *e = q->elevator;
296
297         /*
298          * it already went through dequeue, we need to decrement the
299          * in_flight count again
300          */
301         if (blk_account_rq(rq)) {
302                 q->in_flight--;
303                 if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
304                         e->ops->elevator_deactivate_req_fn(q, rq);
305         }
306
307         rq->flags &= ~REQ_STARTED;
308
309         /*
310          * if this is the flush, requeue the original instead and drop the flush
311          */
312         if (rq->flags & REQ_BAR_FLUSH) {
313                 clear_bit(QUEUE_FLAG_FLUSH, &q->queue_flags);
314                 rq = rq->end_io_data;
315         }
316
317         __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
318 }
319
320 static void elv_drain_elevator(request_queue_t *q)
321 {
322         static int printed;
323         while (q->elevator->ops->elevator_dispatch_fn(q, 1))
324                 ;
325         if (q->nr_sorted == 0)
326                 return;
327         if (printed++ < 10) {
328                 printk(KERN_ERR "%s: forced dispatching is broken "
329                        "(nr_sorted=%u), please report this\n",
330                        q->elevator->elevator_type->elevator_name, q->nr_sorted);
331         }
332 }
333
334 void __elv_add_request(request_queue_t *q, struct request *rq, int where,
335                        int plug)
336 {
337         if (rq->flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
338                 /*
339                  * barriers implicitly indicate back insertion
340                  */
341                 if (where == ELEVATOR_INSERT_SORT)
342                         where = ELEVATOR_INSERT_BACK;
343
344                 /*
345                  * this request is scheduling boundary, update end_sector
346                  */
347                 if (blk_fs_request(rq)) {
348                         q->end_sector = rq_end_sector(rq);
349                         q->boundary_rq = rq;
350                 }
351         } else if (!(rq->flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
352                 where = ELEVATOR_INSERT_BACK;
353
354         if (plug)
355                 blk_plug_device(q);
356
357         rq->q = q;
358
359         switch (where) {
360         case ELEVATOR_INSERT_FRONT:
361                 rq->flags |= REQ_SOFTBARRIER;
362
363                 list_add(&rq->queuelist, &q->queue_head);
364                 break;
365
366         case ELEVATOR_INSERT_BACK:
367                 rq->flags |= REQ_SOFTBARRIER;
368                 elv_drain_elevator(q);
369                 list_add_tail(&rq->queuelist, &q->queue_head);
370                 /*
371                  * We kick the queue here for the following reasons.
372                  * - The elevator might have returned NULL previously
373                  *   to delay requests and returned them now.  As the
374                  *   queue wasn't empty before this request, ll_rw_blk
375                  *   won't run the queue on return, resulting in hang.
376                  * - Usually, back inserted requests won't be merged
377                  *   with anything.  There's no point in delaying queue
378                  *   processing.
379                  */
380                 blk_remove_plug(q);
381                 q->request_fn(q);
382                 break;
383
384         case ELEVATOR_INSERT_SORT:
385                 BUG_ON(!blk_fs_request(rq));
386                 rq->flags |= REQ_SORTED;
387                 q->nr_sorted++;
388                 if (q->last_merge == NULL && rq_mergeable(rq))
389                         q->last_merge = rq;
390                 /*
391                  * Some ioscheds (cfq) run q->request_fn directly, so
392                  * rq cannot be accessed after calling
393                  * elevator_add_req_fn.
394                  */
395                 q->elevator->ops->elevator_add_req_fn(q, rq);
396                 break;
397
398         default:
399                 printk(KERN_ERR "%s: bad insertion point %d\n",
400                        __FUNCTION__, where);
401                 BUG();
402         }
403
404         if (blk_queue_plugged(q)) {
405                 int nrq = q->rq.count[READ] + q->rq.count[WRITE]
406                         - q->in_flight;
407
408                 if (nrq >= q->unplug_thresh)
409                         __generic_unplug_device(q);
410         }
411 }
412
413 void elv_add_request(request_queue_t *q, struct request *rq, int where,
414                      int plug)
415 {
416         unsigned long flags;
417
418         spin_lock_irqsave(q->queue_lock, flags);
419         __elv_add_request(q, rq, where, plug);
420         spin_unlock_irqrestore(q->queue_lock, flags);
421 }
422
423 static inline struct request *__elv_next_request(request_queue_t *q)
424 {
425         struct request *rq;
426
427         if (unlikely(list_empty(&q->queue_head) &&
428                      !q->elevator->ops->elevator_dispatch_fn(q, 0)))
429                 return NULL;
430
431         rq = list_entry_rq(q->queue_head.next);
432
433         /*
434          * if this is a barrier write and the device has to issue a
435          * flush sequence to support it, check how far we are
436          */
437         if (blk_fs_request(rq) && blk_barrier_rq(rq)) {
438                 BUG_ON(q->ordered == QUEUE_ORDERED_NONE);
439
440                 if (q->ordered == QUEUE_ORDERED_FLUSH &&
441                     !blk_barrier_preflush(rq))
442                         rq = blk_start_pre_flush(q, rq);
443         }
444
445         return rq;
446 }
447
448 struct request *elv_next_request(request_queue_t *q)
449 {
450         struct request *rq;
451         int ret;
452
453         while ((rq = __elv_next_request(q)) != NULL) {
454                 if (!(rq->flags & REQ_STARTED)) {
455                         elevator_t *e = q->elevator;
456
457                         /*
458                          * This is the first time the device driver
459                          * sees this request (possibly after
460                          * requeueing).  Notify IO scheduler.
461                          */
462                         if (blk_sorted_rq(rq) &&
463                             e->ops->elevator_activate_req_fn)
464                                 e->ops->elevator_activate_req_fn(q, rq);
465
466                         /*
467                          * just mark as started even if we don't start
468                          * it, a request that has been delayed should
469                          * not be passed by new incoming requests
470                          */
471                         rq->flags |= REQ_STARTED;
472                 }
473
474                 if (!q->boundary_rq || q->boundary_rq == rq) {
475                         q->end_sector = rq_end_sector(rq);
476                         q->boundary_rq = NULL;
477                 }
478
479                 if ((rq->flags & REQ_DONTPREP) || !q->prep_rq_fn)
480                         break;
481
482                 ret = q->prep_rq_fn(q, rq);
483                 if (ret == BLKPREP_OK) {
484                         break;
485                 } else if (ret == BLKPREP_DEFER) {
486                         /*
487                          * the request may have been (partially) prepped.
488                          * we need to keep this request in the front to
489                          * avoid resource deadlock.  REQ_STARTED will
490                          * prevent other fs requests from passing this one.
491                          */
492                         rq = NULL;
493                         break;
494                 } else if (ret == BLKPREP_KILL) {
495                         int nr_bytes = rq->hard_nr_sectors << 9;
496
497                         if (!nr_bytes)
498                                 nr_bytes = rq->data_len;
499
500                         blkdev_dequeue_request(rq);
501                         rq->flags |= REQ_QUIET;
502                         end_that_request_chunk(rq, 0, nr_bytes);
503                         end_that_request_last(rq);
504                 } else {
505                         printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
506                                                                 ret);
507                         break;
508                 }
509         }
510
511         return rq;
512 }
513
514 void elv_dequeue_request(request_queue_t *q, struct request *rq)
515 {
516         BUG_ON(list_empty(&rq->queuelist));
517
518         list_del_init(&rq->queuelist);
519
520         /*
521          * the time frame between a request being removed from the lists
522          * and to it is freed is accounted as io that is in progress at
523          * the driver side.
524          */
525         if (blk_account_rq(rq))
526                 q->in_flight++;
527 }
528
529 int elv_queue_empty(request_queue_t *q)
530 {
531         elevator_t *e = q->elevator;
532
533         if (!list_empty(&q->queue_head))
534                 return 0;
535
536         if (e->ops->elevator_queue_empty_fn)
537                 return e->ops->elevator_queue_empty_fn(q);
538
539         return 1;
540 }
541
542 struct request *elv_latter_request(request_queue_t *q, struct request *rq)
543 {
544         struct list_head *next;
545
546         elevator_t *e = q->elevator;
547
548         if (e->ops->elevator_latter_req_fn)
549                 return e->ops->elevator_latter_req_fn(q, rq);
550
551         next = rq->queuelist.next;
552         if (next != &q->queue_head && next != &rq->queuelist)
553                 return list_entry_rq(next);
554
555         return NULL;
556 }
557
558 struct request *elv_former_request(request_queue_t *q, struct request *rq)
559 {
560         struct list_head *prev;
561
562         elevator_t *e = q->elevator;
563
564         if (e->ops->elevator_former_req_fn)
565                 return e->ops->elevator_former_req_fn(q, rq);
566
567         prev = rq->queuelist.prev;
568         if (prev != &q->queue_head && prev != &rq->queuelist)
569                 return list_entry_rq(prev);
570
571         return NULL;
572 }
573
574 int elv_set_request(request_queue_t *q, struct request *rq, struct bio *bio,
575                     gfp_t gfp_mask)
576 {
577         elevator_t *e = q->elevator;
578
579         if (e->ops->elevator_set_req_fn)
580                 return e->ops->elevator_set_req_fn(q, rq, bio, gfp_mask);
581
582         rq->elevator_private = NULL;
583         return 0;
584 }
585
586 void elv_put_request(request_queue_t *q, struct request *rq)
587 {
588         elevator_t *e = q->elevator;
589
590         if (e->ops->elevator_put_req_fn)
591                 e->ops->elevator_put_req_fn(q, rq);
592 }
593
594 int elv_may_queue(request_queue_t *q, int rw, struct bio *bio)
595 {
596         elevator_t *e = q->elevator;
597
598         if (e->ops->elevator_may_queue_fn)
599                 return e->ops->elevator_may_queue_fn(q, rw, bio);
600
601         return ELV_MQUEUE_MAY;
602 }
603
604 void elv_completed_request(request_queue_t *q, struct request *rq)
605 {
606         elevator_t *e = q->elevator;
607
608         /*
609          * request is released from the driver, io must be done
610          */
611         if (blk_account_rq(rq)) {
612                 q->in_flight--;
613                 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
614                         e->ops->elevator_completed_req_fn(q, rq);
615         }
616 }
617
618 int elv_register_queue(struct request_queue *q)
619 {
620         elevator_t *e = q->elevator;
621
622         e->kobj.parent = kobject_get(&q->kobj);
623         if (!e->kobj.parent)
624                 return -EBUSY;
625
626         snprintf(e->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
627         e->kobj.ktype = e->elevator_type->elevator_ktype;
628
629         return kobject_register(&e->kobj);
630 }
631
632 void elv_unregister_queue(struct request_queue *q)
633 {
634         if (q) {
635                 elevator_t *e = q->elevator;
636                 kobject_unregister(&e->kobj);
637                 kobject_put(&q->kobj);
638         }
639 }
640
641 int elv_register(struct elevator_type *e)
642 {
643         spin_lock_irq(&elv_list_lock);
644         if (elevator_find(e->elevator_name))
645                 BUG();
646         list_add_tail(&e->list, &elv_list);
647         spin_unlock_irq(&elv_list_lock);
648
649         printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
650         if (!strcmp(e->elevator_name, chosen_elevator))
651                 printk(" (default)");
652         printk("\n");
653         return 0;
654 }
655 EXPORT_SYMBOL_GPL(elv_register);
656
657 void elv_unregister(struct elevator_type *e)
658 {
659         struct task_struct *g, *p;
660
661         /*
662          * Iterate every thread in the process to remove the io contexts.
663          */
664         read_lock(&tasklist_lock);
665         do_each_thread(g, p) {
666                 struct io_context *ioc = p->io_context;
667                 if (ioc && ioc->cic) {
668                         ioc->cic->exit(ioc->cic);
669                         ioc->cic->dtor(ioc->cic);
670                         ioc->cic = NULL;
671                 }
672                 if (ioc && ioc->aic) {
673                         ioc->aic->exit(ioc->aic);
674                         ioc->aic->dtor(ioc->aic);
675                         ioc->aic = NULL;
676                 }
677         } while_each_thread(g, p);
678         read_unlock(&tasklist_lock);
679
680         spin_lock_irq(&elv_list_lock);
681         list_del_init(&e->list);
682         spin_unlock_irq(&elv_list_lock);
683 }
684 EXPORT_SYMBOL_GPL(elv_unregister);
685
686 /*
687  * switch to new_e io scheduler. be careful not to introduce deadlocks -
688  * we don't free the old io scheduler, before we have allocated what we
689  * need for the new one. this way we have a chance of going back to the old
690  * one, if the new one fails init for some reason.
691  */
692 static void elevator_switch(request_queue_t *q, struct elevator_type *new_e)
693 {
694         elevator_t *old_elevator, *e;
695
696         /*
697          * Allocate new elevator
698          */
699         e = kmalloc(sizeof(elevator_t), GFP_KERNEL);
700         if (!e)
701                 goto error;
702
703         /*
704          * Turn on BYPASS and drain all requests w/ elevator private data
705          */
706         spin_lock_irq(q->queue_lock);
707
708         set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
709
710         elv_drain_elevator(q);
711
712         while (q->rq.elvpriv) {
713                 blk_remove_plug(q);
714                 q->request_fn(q);
715                 spin_unlock_irq(q->queue_lock);
716                 msleep(10);
717                 spin_lock_irq(q->queue_lock);
718                 elv_drain_elevator(q);
719         }
720
721         spin_unlock_irq(q->queue_lock);
722
723         /*
724          * unregister old elevator data
725          */
726         elv_unregister_queue(q);
727         old_elevator = q->elevator;
728
729         /*
730          * attach and start new elevator
731          */
732         if (elevator_attach(q, new_e, e))
733                 goto fail;
734
735         if (elv_register_queue(q))
736                 goto fail_register;
737
738         /*
739          * finally exit old elevator and turn off BYPASS.
740          */
741         elevator_exit(old_elevator);
742         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
743         return;
744
745 fail_register:
746         /*
747          * switch failed, exit the new io scheduler and reattach the old
748          * one again (along with re-adding the sysfs dir)
749          */
750         elevator_exit(e);
751         e = NULL;
752 fail:
753         q->elevator = old_elevator;
754         elv_register_queue(q);
755         clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
756         kfree(e);
757 error:
758         elevator_put(new_e);
759         printk(KERN_ERR "elevator: switch to %s failed\n",new_e->elevator_name);
760 }
761
762 ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
763 {
764         char elevator_name[ELV_NAME_MAX];
765         struct elevator_type *e;
766
767         memset(elevator_name, 0, sizeof(elevator_name));
768         strncpy(elevator_name, name, sizeof(elevator_name));
769
770         if (elevator_name[strlen(elevator_name) - 1] == '\n')
771                 elevator_name[strlen(elevator_name) - 1] = '\0';
772
773         e = elevator_get(elevator_name);
774         if (!e) {
775                 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
776                 return -EINVAL;
777         }
778
779         if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
780                 elevator_put(e);
781                 return count;
782         }
783
784         elevator_switch(q, e);
785         return count;
786 }
787
788 ssize_t elv_iosched_show(request_queue_t *q, char *name)
789 {
790         elevator_t *e = q->elevator;
791         struct elevator_type *elv = e->elevator_type;
792         struct list_head *entry;
793         int len = 0;
794
795         spin_lock_irq(q->queue_lock);
796         list_for_each(entry, &elv_list) {
797                 struct elevator_type *__e;
798
799                 __e = list_entry(entry, struct elevator_type, list);
800                 if (!strcmp(elv->elevator_name, __e->elevator_name))
801                         len += sprintf(name+len, "[%s] ", elv->elevator_name);
802                 else
803                         len += sprintf(name+len, "%s ", __e->elevator_name);
804         }
805         spin_unlock_irq(q->queue_lock);
806
807         len += sprintf(len+name, "\n");
808         return len;
809 }
810
811 EXPORT_SYMBOL(elv_dispatch_sort);
812 EXPORT_SYMBOL(elv_add_request);
813 EXPORT_SYMBOL(__elv_add_request);
814 EXPORT_SYMBOL(elv_requeue_request);
815 EXPORT_SYMBOL(elv_next_request);
816 EXPORT_SYMBOL(elv_dequeue_request);
817 EXPORT_SYMBOL(elv_queue_empty);
818 EXPORT_SYMBOL(elv_completed_request);
819 EXPORT_SYMBOL(elevator_exit);
820 EXPORT_SYMBOL(elevator_init);