blkio: Propagate cgroup weight updation to cfq groups
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 /*
46  * Allow merged cfqqs to perform this amount of seeky I/O before
47  * deciding to break the queues up again.
48  */
49 #define CFQQ_COOP_TOUT          (HZ)
50
51 #define CFQ_SLICE_SCALE         (5)
52 #define CFQ_HW_QUEUE_MIN        (5)
53 #define CFQ_SERVICE_SHIFT       12
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples)   ((samples) > 80)
71 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74  * Most of our rbtree usage is for sorting with min extraction, so
75  * if we cache the leftmost node we don't have to walk down the tree
76  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77  * move this into the elevator for the rq sorting as well.
78  */
79 struct cfq_rb_root {
80         struct rb_root rb;
81         struct rb_node *left;
82         unsigned count;
83         u64 min_vdisktime;
84         struct rb_node *active;
85         unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         /* time when queue got scheduled in to dispatch first request. */
119         unsigned long dispatch_start;
120         /* time when first request from queue completed and slice started. */
121         unsigned long slice_start;
122         unsigned long slice_end;
123         long slice_resid;
124         unsigned int slice_dispatch;
125
126         /* pending metadata requests */
127         int meta_pending;
128         /* number of requests that are on the dispatch list or inside driver */
129         int dispatched;
130
131         /* io prio of this group */
132         unsigned short ioprio, org_ioprio;
133         unsigned short ioprio_class, org_ioprio_class;
134
135         unsigned int seek_samples;
136         u64 seek_total;
137         sector_t seek_mean;
138         sector_t last_request_pos;
139         unsigned long seeky_start;
140
141         pid_t pid;
142
143         struct cfq_rb_root *service_tree;
144         struct cfq_queue *new_cfqq;
145         struct cfq_group *cfqg;
146         /* Sectors dispatched in current dispatch round */
147         unsigned long nr_sectors;
148 };
149
150 /*
151  * First index in the service_trees.
152  * IDLE is handled separately, so it has negative index
153  */
154 enum wl_prio_t {
155         BE_WORKLOAD = 0,
156         RT_WORKLOAD = 1,
157         IDLE_WORKLOAD = 2,
158 };
159
160 /*
161  * Second index in the service_trees.
162  */
163 enum wl_type_t {
164         ASYNC_WORKLOAD = 0,
165         SYNC_NOIDLE_WORKLOAD = 1,
166         SYNC_WORKLOAD = 2
167 };
168
169 /* This is per cgroup per device grouping structure */
170 struct cfq_group {
171         /* group service_tree member */
172         struct rb_node rb_node;
173
174         /* group service_tree key */
175         u64 vdisktime;
176         unsigned int weight;
177         bool on_st;
178
179         /* number of cfqq currently on this group */
180         int nr_cfqq;
181
182         /* Per group busy queus average. Useful for workload slice calc. */
183         unsigned int busy_queues_avg[2];
184         /*
185          * rr lists of queues with requests, onle rr for each priority class.
186          * Counts are embedded in the cfq_rb_root
187          */
188         struct cfq_rb_root service_trees[2][3];
189         struct cfq_rb_root service_tree_idle;
190
191         unsigned long saved_workload_slice;
192         enum wl_type_t saved_workload;
193         enum wl_prio_t saved_serving_prio;
194         struct blkio_group blkg;
195 #ifdef CONFIG_CFQ_GROUP_IOSCHED
196         struct hlist_node cfqd_node;
197         atomic_t ref;
198 #endif
199 };
200
201 /*
202  * Per block device queue structure
203  */
204 struct cfq_data {
205         struct request_queue *queue;
206         /* Root service tree for cfq_groups */
207         struct cfq_rb_root grp_service_tree;
208         struct cfq_group root_group;
209         /* Number of active cfq groups on group service tree */
210         int nr_groups;
211
212         /*
213          * The priority currently being served
214          */
215         enum wl_prio_t serving_prio;
216         enum wl_type_t serving_type;
217         unsigned long workload_expires;
218         struct cfq_group *serving_group;
219         bool noidle_tree_requires_idle;
220
221         /*
222          * Each priority tree is sorted by next_request position.  These
223          * trees are used when determining if two or more queues are
224          * interleaving requests (see cfq_close_cooperator).
225          */
226         struct rb_root prio_trees[CFQ_PRIO_LISTS];
227
228         unsigned int busy_queues;
229
230         int rq_in_driver[2];
231         int sync_flight;
232
233         /*
234          * queue-depth detection
235          */
236         int rq_queued;
237         int hw_tag;
238         /*
239          * hw_tag can be
240          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
241          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
242          *  0 => no NCQ
243          */
244         int hw_tag_est_depth;
245         unsigned int hw_tag_samples;
246
247         /*
248          * idle window management
249          */
250         struct timer_list idle_slice_timer;
251         struct work_struct unplug_work;
252
253         struct cfq_queue *active_queue;
254         struct cfq_io_context *active_cic;
255
256         /*
257          * async queue for each priority case
258          */
259         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
260         struct cfq_queue *async_idle_cfqq;
261
262         sector_t last_position;
263
264         /*
265          * tunables, see top of file
266          */
267         unsigned int cfq_quantum;
268         unsigned int cfq_fifo_expire[2];
269         unsigned int cfq_back_penalty;
270         unsigned int cfq_back_max;
271         unsigned int cfq_slice[2];
272         unsigned int cfq_slice_async_rq;
273         unsigned int cfq_slice_idle;
274         unsigned int cfq_latency;
275
276         struct list_head cic_list;
277
278         /*
279          * Fallback dummy cfqq for extreme OOM conditions
280          */
281         struct cfq_queue oom_cfqq;
282
283         unsigned long last_end_sync_rq;
284
285         /* List of cfq groups being managed on this device*/
286         struct hlist_head cfqg_list;
287 };
288
289 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
290
291 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
292                                             enum wl_prio_t prio,
293                                             enum wl_type_t type,
294                                             struct cfq_data *cfqd)
295 {
296         if (!cfqg)
297                 return NULL;
298
299         if (prio == IDLE_WORKLOAD)
300                 return &cfqg->service_tree_idle;
301
302         return &cfqg->service_trees[prio][type];
303 }
304
305 enum cfqq_state_flags {
306         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
307         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
308         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
309         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
310         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
311         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
312         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
313         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
314         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
315         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
316         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
317 };
318
319 #define CFQ_CFQQ_FNS(name)                                              \
320 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
321 {                                                                       \
322         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
323 }                                                                       \
324 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
325 {                                                                       \
326         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
327 }                                                                       \
328 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
329 {                                                                       \
330         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
331 }
332
333 CFQ_CFQQ_FNS(on_rr);
334 CFQ_CFQQ_FNS(wait_request);
335 CFQ_CFQQ_FNS(must_dispatch);
336 CFQ_CFQQ_FNS(must_alloc_slice);
337 CFQ_CFQQ_FNS(fifo_expire);
338 CFQ_CFQQ_FNS(idle_window);
339 CFQ_CFQQ_FNS(prio_changed);
340 CFQ_CFQQ_FNS(slice_new);
341 CFQ_CFQQ_FNS(sync);
342 CFQ_CFQQ_FNS(coop);
343 CFQ_CFQQ_FNS(deep);
344 #undef CFQ_CFQQ_FNS
345
346 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
347 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
348         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
349                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
350                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
351
352 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
353         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
354                                 blkg_path(&(cfqg)->blkg), ##args);      \
355
356 #else
357 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
358         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
359 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
360 #endif
361 #define cfq_log(cfqd, fmt, args...)     \
362         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
363
364 /* Traverses through cfq group service trees */
365 #define for_each_cfqg_st(cfqg, i, j, st) \
366         for (i = 0; i <= IDLE_WORKLOAD; i++) \
367                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
368                         : &cfqg->service_tree_idle; \
369                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
370                         (i == IDLE_WORKLOAD && j == 0); \
371                         j++, st = i < IDLE_WORKLOAD ? \
372                         &cfqg->service_trees[i][j]: NULL) \
373
374
375 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
376 {
377         if (cfq_class_idle(cfqq))
378                 return IDLE_WORKLOAD;
379         if (cfq_class_rt(cfqq))
380                 return RT_WORKLOAD;
381         return BE_WORKLOAD;
382 }
383
384
385 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
386 {
387         if (!cfq_cfqq_sync(cfqq))
388                 return ASYNC_WORKLOAD;
389         if (!cfq_cfqq_idle_window(cfqq))
390                 return SYNC_NOIDLE_WORKLOAD;
391         return SYNC_WORKLOAD;
392 }
393
394 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
395                                         struct cfq_data *cfqd,
396                                         struct cfq_group *cfqg)
397 {
398         if (wl == IDLE_WORKLOAD)
399                 return cfqg->service_tree_idle.count;
400
401         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
402                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
403                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
404 }
405
406 static void cfq_dispatch_insert(struct request_queue *, struct request *);
407 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
408                                        struct io_context *, gfp_t);
409 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
410                                                 struct io_context *);
411
412 static inline int rq_in_driver(struct cfq_data *cfqd)
413 {
414         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
415 }
416
417 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
418                                             bool is_sync)
419 {
420         return cic->cfqq[is_sync];
421 }
422
423 static inline void cic_set_cfqq(struct cfq_io_context *cic,
424                                 struct cfq_queue *cfqq, bool is_sync)
425 {
426         cic->cfqq[is_sync] = cfqq;
427 }
428
429 /*
430  * We regard a request as SYNC, if it's either a read or has the SYNC bit
431  * set (in which case it could also be direct WRITE).
432  */
433 static inline bool cfq_bio_sync(struct bio *bio)
434 {
435         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
436 }
437
438 /*
439  * scheduler run of queue, if there are requests pending and no one in the
440  * driver that will restart queueing
441  */
442 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
443 {
444         if (cfqd->busy_queues) {
445                 cfq_log(cfqd, "schedule dispatch");
446                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
447         }
448 }
449
450 static int cfq_queue_empty(struct request_queue *q)
451 {
452         struct cfq_data *cfqd = q->elevator->elevator_data;
453
454         return !cfqd->rq_queued;
455 }
456
457 /*
458  * Scale schedule slice based on io priority. Use the sync time slice only
459  * if a queue is marked sync and has sync io queued. A sync queue with async
460  * io only, should not get full sync slice length.
461  */
462 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
463                                  unsigned short prio)
464 {
465         const int base_slice = cfqd->cfq_slice[sync];
466
467         WARN_ON(prio >= IOPRIO_BE_NR);
468
469         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
470 }
471
472 static inline int
473 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
474 {
475         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
476 }
477
478 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
479 {
480         u64 d = delta << CFQ_SERVICE_SHIFT;
481
482         d = d * BLKIO_WEIGHT_DEFAULT;
483         do_div(d, cfqg->weight);
484         return d;
485 }
486
487 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
488 {
489         s64 delta = (s64)(vdisktime - min_vdisktime);
490         if (delta > 0)
491                 min_vdisktime = vdisktime;
492
493         return min_vdisktime;
494 }
495
496 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
497 {
498         s64 delta = (s64)(vdisktime - min_vdisktime);
499         if (delta < 0)
500                 min_vdisktime = vdisktime;
501
502         return min_vdisktime;
503 }
504
505 static void update_min_vdisktime(struct cfq_rb_root *st)
506 {
507         u64 vdisktime = st->min_vdisktime;
508         struct cfq_group *cfqg;
509
510         if (st->active) {
511                 cfqg = rb_entry_cfqg(st->active);
512                 vdisktime = cfqg->vdisktime;
513         }
514
515         if (st->left) {
516                 cfqg = rb_entry_cfqg(st->left);
517                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
518         }
519
520         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
521 }
522
523 /*
524  * get averaged number of queues of RT/BE priority.
525  * average is updated, with a formula that gives more weight to higher numbers,
526  * to quickly follows sudden increases and decrease slowly
527  */
528
529 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
530                                         struct cfq_group *cfqg, bool rt)
531 {
532         unsigned min_q, max_q;
533         unsigned mult  = cfq_hist_divisor - 1;
534         unsigned round = cfq_hist_divisor / 2;
535         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
536
537         min_q = min(cfqg->busy_queues_avg[rt], busy);
538         max_q = max(cfqg->busy_queues_avg[rt], busy);
539         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
540                 cfq_hist_divisor;
541         return cfqg->busy_queues_avg[rt];
542 }
543
544 static inline unsigned
545 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
546 {
547         struct cfq_rb_root *st = &cfqd->grp_service_tree;
548
549         return cfq_target_latency * cfqg->weight / st->total_weight;
550 }
551
552 static inline void
553 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
554 {
555         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
556         if (cfqd->cfq_latency) {
557                 /*
558                  * interested queues (we consider only the ones with the same
559                  * priority class in the cfq group)
560                  */
561                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
562                                                 cfq_class_rt(cfqq));
563                 unsigned sync_slice = cfqd->cfq_slice[1];
564                 unsigned expect_latency = sync_slice * iq;
565                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
566
567                 if (expect_latency > group_slice) {
568                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
569                         /* scale low_slice according to IO priority
570                          * and sync vs async */
571                         unsigned low_slice =
572                                 min(slice, base_low_slice * slice / sync_slice);
573                         /* the adapted slice value is scaled to fit all iqs
574                          * into the target latency */
575                         slice = max(slice * group_slice / expect_latency,
576                                     low_slice);
577                 }
578         }
579         cfqq->slice_start = jiffies;
580         cfqq->slice_end = jiffies + slice;
581         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
582 }
583
584 /*
585  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
586  * isn't valid until the first request from the dispatch is activated
587  * and the slice time set.
588  */
589 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
590 {
591         if (cfq_cfqq_slice_new(cfqq))
592                 return 0;
593         if (time_before(jiffies, cfqq->slice_end))
594                 return 0;
595
596         return 1;
597 }
598
599 /*
600  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
601  * We choose the request that is closest to the head right now. Distance
602  * behind the head is penalized and only allowed to a certain extent.
603  */
604 static struct request *
605 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
606 {
607         sector_t s1, s2, d1 = 0, d2 = 0;
608         unsigned long back_max;
609 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
610 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
611         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
612
613         if (rq1 == NULL || rq1 == rq2)
614                 return rq2;
615         if (rq2 == NULL)
616                 return rq1;
617
618         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
619                 return rq1;
620         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
621                 return rq2;
622         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
623                 return rq1;
624         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
625                 return rq2;
626
627         s1 = blk_rq_pos(rq1);
628         s2 = blk_rq_pos(rq2);
629
630         /*
631          * by definition, 1KiB is 2 sectors
632          */
633         back_max = cfqd->cfq_back_max * 2;
634
635         /*
636          * Strict one way elevator _except_ in the case where we allow
637          * short backward seeks which are biased as twice the cost of a
638          * similar forward seek.
639          */
640         if (s1 >= last)
641                 d1 = s1 - last;
642         else if (s1 + back_max >= last)
643                 d1 = (last - s1) * cfqd->cfq_back_penalty;
644         else
645                 wrap |= CFQ_RQ1_WRAP;
646
647         if (s2 >= last)
648                 d2 = s2 - last;
649         else if (s2 + back_max >= last)
650                 d2 = (last - s2) * cfqd->cfq_back_penalty;
651         else
652                 wrap |= CFQ_RQ2_WRAP;
653
654         /* Found required data */
655
656         /*
657          * By doing switch() on the bit mask "wrap" we avoid having to
658          * check two variables for all permutations: --> faster!
659          */
660         switch (wrap) {
661         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
662                 if (d1 < d2)
663                         return rq1;
664                 else if (d2 < d1)
665                         return rq2;
666                 else {
667                         if (s1 >= s2)
668                                 return rq1;
669                         else
670                                 return rq2;
671                 }
672
673         case CFQ_RQ2_WRAP:
674                 return rq1;
675         case CFQ_RQ1_WRAP:
676                 return rq2;
677         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
678         default:
679                 /*
680                  * Since both rqs are wrapped,
681                  * start with the one that's further behind head
682                  * (--> only *one* back seek required),
683                  * since back seek takes more time than forward.
684                  */
685                 if (s1 <= s2)
686                         return rq1;
687                 else
688                         return rq2;
689         }
690 }
691
692 /*
693  * The below is leftmost cache rbtree addon
694  */
695 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
696 {
697         /* Service tree is empty */
698         if (!root->count)
699                 return NULL;
700
701         if (!root->left)
702                 root->left = rb_first(&root->rb);
703
704         if (root->left)
705                 return rb_entry(root->left, struct cfq_queue, rb_node);
706
707         return NULL;
708 }
709
710 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
711 {
712         if (!root->left)
713                 root->left = rb_first(&root->rb);
714
715         if (root->left)
716                 return rb_entry_cfqg(root->left);
717
718         return NULL;
719 }
720
721 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
722 {
723         rb_erase(n, root);
724         RB_CLEAR_NODE(n);
725 }
726
727 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
728 {
729         if (root->left == n)
730                 root->left = NULL;
731         rb_erase_init(n, &root->rb);
732         --root->count;
733 }
734
735 /*
736  * would be nice to take fifo expire time into account as well
737  */
738 static struct request *
739 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
740                   struct request *last)
741 {
742         struct rb_node *rbnext = rb_next(&last->rb_node);
743         struct rb_node *rbprev = rb_prev(&last->rb_node);
744         struct request *next = NULL, *prev = NULL;
745
746         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
747
748         if (rbprev)
749                 prev = rb_entry_rq(rbprev);
750
751         if (rbnext)
752                 next = rb_entry_rq(rbnext);
753         else {
754                 rbnext = rb_first(&cfqq->sort_list);
755                 if (rbnext && rbnext != &last->rb_node)
756                         next = rb_entry_rq(rbnext);
757         }
758
759         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
760 }
761
762 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
763                                       struct cfq_queue *cfqq)
764 {
765         /*
766          * just an approximation, should be ok.
767          */
768         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
769                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
770 }
771
772 static inline s64
773 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
774 {
775         return cfqg->vdisktime - st->min_vdisktime;
776 }
777
778 static void
779 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
780 {
781         struct rb_node **node = &st->rb.rb_node;
782         struct rb_node *parent = NULL;
783         struct cfq_group *__cfqg;
784         s64 key = cfqg_key(st, cfqg);
785         int left = 1;
786
787         while (*node != NULL) {
788                 parent = *node;
789                 __cfqg = rb_entry_cfqg(parent);
790
791                 if (key < cfqg_key(st, __cfqg))
792                         node = &parent->rb_left;
793                 else {
794                         node = &parent->rb_right;
795                         left = 0;
796                 }
797         }
798
799         if (left)
800                 st->left = &cfqg->rb_node;
801
802         rb_link_node(&cfqg->rb_node, parent, node);
803         rb_insert_color(&cfqg->rb_node, &st->rb);
804 }
805
806 static void
807 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
808 {
809         struct cfq_rb_root *st = &cfqd->grp_service_tree;
810         struct cfq_group *__cfqg;
811         struct rb_node *n;
812
813         cfqg->nr_cfqq++;
814         if (cfqg->on_st)
815                 return;
816
817         /*
818          * Currently put the group at the end. Later implement something
819          * so that groups get lesser vtime based on their weights, so that
820          * if group does not loose all if it was not continously backlogged.
821          */
822         n = rb_last(&st->rb);
823         if (n) {
824                 __cfqg = rb_entry_cfqg(n);
825                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
826         } else
827                 cfqg->vdisktime = st->min_vdisktime;
828
829         __cfq_group_service_tree_add(st, cfqg);
830         cfqg->on_st = true;
831         cfqd->nr_groups++;
832         st->total_weight += cfqg->weight;
833 }
834
835 static void
836 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
837 {
838         struct cfq_rb_root *st = &cfqd->grp_service_tree;
839
840         if (st->active == &cfqg->rb_node)
841                 st->active = NULL;
842
843         BUG_ON(cfqg->nr_cfqq < 1);
844         cfqg->nr_cfqq--;
845
846         /* If there are other cfq queues under this group, don't delete it */
847         if (cfqg->nr_cfqq)
848                 return;
849
850         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
851         cfqg->on_st = false;
852         cfqd->nr_groups--;
853         st->total_weight -= cfqg->weight;
854         if (!RB_EMPTY_NODE(&cfqg->rb_node))
855                 cfq_rb_erase(&cfqg->rb_node, st);
856         cfqg->saved_workload_slice = 0;
857         blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
858 }
859
860 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
861 {
862         unsigned int slice_used, allocated_slice;
863
864         /*
865          * Queue got expired before even a single request completed or
866          * got expired immediately after first request completion.
867          */
868         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
869                 /*
870                  * Also charge the seek time incurred to the group, otherwise
871                  * if there are mutiple queues in the group, each can dispatch
872                  * a single request on seeky media and cause lots of seek time
873                  * and group will never know it.
874                  */
875                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
876                                         1);
877         } else {
878                 slice_used = jiffies - cfqq->slice_start;
879                 allocated_slice = cfqq->slice_end - cfqq->slice_start;
880                 if (slice_used > allocated_slice)
881                         slice_used = allocated_slice;
882         }
883
884         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
885                                 cfqq->nr_sectors);
886         return slice_used;
887 }
888
889 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
890                                 struct cfq_queue *cfqq)
891 {
892         struct cfq_rb_root *st = &cfqd->grp_service_tree;
893         unsigned int used_sl;
894
895         used_sl = cfq_cfqq_slice_usage(cfqq);
896
897         /* Can't update vdisktime while group is on service tree */
898         cfq_rb_erase(&cfqg->rb_node, st);
899         cfqg->vdisktime += cfq_scale_slice(used_sl, cfqg);
900         __cfq_group_service_tree_add(st, cfqg);
901
902         /* This group is being expired. Save the context */
903         if (time_after(cfqd->workload_expires, jiffies)) {
904                 cfqg->saved_workload_slice = cfqd->workload_expires
905                                                 - jiffies;
906                 cfqg->saved_workload = cfqd->serving_type;
907                 cfqg->saved_serving_prio = cfqd->serving_prio;
908         } else
909                 cfqg->saved_workload_slice = 0;
910
911         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
912                                         st->min_vdisktime);
913         blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
914                                                 cfqq->nr_sectors);
915 }
916
917 #ifdef CONFIG_CFQ_GROUP_IOSCHED
918 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
919 {
920         if (blkg)
921                 return container_of(blkg, struct cfq_group, blkg);
922         return NULL;
923 }
924
925 void
926 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
927 {
928         cfqg_of_blkg(blkg)->weight = weight;
929 }
930
931 static struct cfq_group *
932 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
933 {
934         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
935         struct cfq_group *cfqg = NULL;
936         void *key = cfqd;
937         int i, j;
938         struct cfq_rb_root *st;
939         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
940         unsigned int major, minor;
941
942         /* Do we need to take this reference */
943         if (!css_tryget(&blkcg->css))
944                 return NULL;;
945
946         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
947         if (cfqg || !create)
948                 goto done;
949
950         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
951         if (!cfqg)
952                 goto done;
953
954         cfqg->weight = blkcg->weight;
955         for_each_cfqg_st(cfqg, i, j, st)
956                 *st = CFQ_RB_ROOT;
957         RB_CLEAR_NODE(&cfqg->rb_node);
958
959         /*
960          * Take the initial reference that will be released on destroy
961          * This can be thought of a joint reference by cgroup and
962          * elevator which will be dropped by either elevator exit
963          * or cgroup deletion path depending on who is exiting first.
964          */
965         atomic_set(&cfqg->ref, 1);
966
967         /* Add group onto cgroup list */
968         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
969         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
970                                         MKDEV(major, minor));
971
972         /* Add group on cfqd list */
973         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
974
975 done:
976         css_put(&blkcg->css);
977         return cfqg;
978 }
979
980 /*
981  * Search for the cfq group current task belongs to. If create = 1, then also
982  * create the cfq group if it does not exist. request_queue lock must be held.
983  */
984 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
985 {
986         struct cgroup *cgroup;
987         struct cfq_group *cfqg = NULL;
988
989         rcu_read_lock();
990         cgroup = task_cgroup(current, blkio_subsys_id);
991         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
992         if (!cfqg && create)
993                 cfqg = &cfqd->root_group;
994         rcu_read_unlock();
995         return cfqg;
996 }
997
998 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
999 {
1000         /* Currently, all async queues are mapped to root group */
1001         if (!cfq_cfqq_sync(cfqq))
1002                 cfqg = &cfqq->cfqd->root_group;
1003
1004         cfqq->cfqg = cfqg;
1005         /* cfqq reference on cfqg */
1006         atomic_inc(&cfqq->cfqg->ref);
1007 }
1008
1009 static void cfq_put_cfqg(struct cfq_group *cfqg)
1010 {
1011         struct cfq_rb_root *st;
1012         int i, j;
1013
1014         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1015         if (!atomic_dec_and_test(&cfqg->ref))
1016                 return;
1017         for_each_cfqg_st(cfqg, i, j, st)
1018                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1019         kfree(cfqg);
1020 }
1021
1022 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1023 {
1024         /* Something wrong if we are trying to remove same group twice */
1025         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1026
1027         hlist_del_init(&cfqg->cfqd_node);
1028
1029         /*
1030          * Put the reference taken at the time of creation so that when all
1031          * queues are gone, group can be destroyed.
1032          */
1033         cfq_put_cfqg(cfqg);
1034 }
1035
1036 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1037 {
1038         struct hlist_node *pos, *n;
1039         struct cfq_group *cfqg;
1040
1041         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1042                 /*
1043                  * If cgroup removal path got to blk_group first and removed
1044                  * it from cgroup list, then it will take care of destroying
1045                  * cfqg also.
1046                  */
1047                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1048                         cfq_destroy_cfqg(cfqd, cfqg);
1049         }
1050 }
1051
1052 /*
1053  * Blk cgroup controller notification saying that blkio_group object is being
1054  * delinked as associated cgroup object is going away. That also means that
1055  * no new IO will come in this group. So get rid of this group as soon as
1056  * any pending IO in the group is finished.
1057  *
1058  * This function is called under rcu_read_lock(). key is the rcu protected
1059  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1060  * read lock.
1061  *
1062  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1063  * it should not be NULL as even if elevator was exiting, cgroup deltion
1064  * path got to it first.
1065  */
1066 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1067 {
1068         unsigned long  flags;
1069         struct cfq_data *cfqd = key;
1070
1071         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1072         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1073         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1074 }
1075
1076 #else /* GROUP_IOSCHED */
1077 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1078 {
1079         return &cfqd->root_group;
1080 }
1081 static inline void
1082 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1083         cfqq->cfqg = cfqg;
1084 }
1085
1086 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1087 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1088
1089 #endif /* GROUP_IOSCHED */
1090
1091 /*
1092  * The cfqd->service_trees holds all pending cfq_queue's that have
1093  * requests waiting to be processed. It is sorted in the order that
1094  * we will service the queues.
1095  */
1096 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1097                                  bool add_front)
1098 {
1099         struct rb_node **p, *parent;
1100         struct cfq_queue *__cfqq;
1101         unsigned long rb_key;
1102         struct cfq_rb_root *service_tree;
1103         int left;
1104         int new_cfqq = 1;
1105
1106         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1107                                                 cfqq_type(cfqq), cfqd);
1108         if (cfq_class_idle(cfqq)) {
1109                 rb_key = CFQ_IDLE_DELAY;
1110                 parent = rb_last(&service_tree->rb);
1111                 if (parent && parent != &cfqq->rb_node) {
1112                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1113                         rb_key += __cfqq->rb_key;
1114                 } else
1115                         rb_key += jiffies;
1116         } else if (!add_front) {
1117                 /*
1118                  * Get our rb key offset. Subtract any residual slice
1119                  * value carried from last service. A negative resid
1120                  * count indicates slice overrun, and this should position
1121                  * the next service time further away in the tree.
1122                  */
1123                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1124                 rb_key -= cfqq->slice_resid;
1125                 cfqq->slice_resid = 0;
1126         } else {
1127                 rb_key = -HZ;
1128                 __cfqq = cfq_rb_first(service_tree);
1129                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1130         }
1131
1132         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1133                 new_cfqq = 0;
1134                 /*
1135                  * same position, nothing more to do
1136                  */
1137                 if (rb_key == cfqq->rb_key &&
1138                     cfqq->service_tree == service_tree)
1139                         return;
1140
1141                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1142                 cfqq->service_tree = NULL;
1143         }
1144
1145         left = 1;
1146         parent = NULL;
1147         cfqq->service_tree = service_tree;
1148         p = &service_tree->rb.rb_node;
1149         while (*p) {
1150                 struct rb_node **n;
1151
1152                 parent = *p;
1153                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1154
1155                 /*
1156                  * sort by key, that represents service time.
1157                  */
1158                 if (time_before(rb_key, __cfqq->rb_key))
1159                         n = &(*p)->rb_left;
1160                 else {
1161                         n = &(*p)->rb_right;
1162                         left = 0;
1163                 }
1164
1165                 p = n;
1166         }
1167
1168         if (left)
1169                 service_tree->left = &cfqq->rb_node;
1170
1171         cfqq->rb_key = rb_key;
1172         rb_link_node(&cfqq->rb_node, parent, p);
1173         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1174         service_tree->count++;
1175         if (add_front || !new_cfqq)
1176                 return;
1177         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1178 }
1179
1180 static struct cfq_queue *
1181 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1182                      sector_t sector, struct rb_node **ret_parent,
1183                      struct rb_node ***rb_link)
1184 {
1185         struct rb_node **p, *parent;
1186         struct cfq_queue *cfqq = NULL;
1187
1188         parent = NULL;
1189         p = &root->rb_node;
1190         while (*p) {
1191                 struct rb_node **n;
1192
1193                 parent = *p;
1194                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1195
1196                 /*
1197                  * Sort strictly based on sector.  Smallest to the left,
1198                  * largest to the right.
1199                  */
1200                 if (sector > blk_rq_pos(cfqq->next_rq))
1201                         n = &(*p)->rb_right;
1202                 else if (sector < blk_rq_pos(cfqq->next_rq))
1203                         n = &(*p)->rb_left;
1204                 else
1205                         break;
1206                 p = n;
1207                 cfqq = NULL;
1208         }
1209
1210         *ret_parent = parent;
1211         if (rb_link)
1212                 *rb_link = p;
1213         return cfqq;
1214 }
1215
1216 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1217 {
1218         struct rb_node **p, *parent;
1219         struct cfq_queue *__cfqq;
1220
1221         if (cfqq->p_root) {
1222                 rb_erase(&cfqq->p_node, cfqq->p_root);
1223                 cfqq->p_root = NULL;
1224         }
1225
1226         if (cfq_class_idle(cfqq))
1227                 return;
1228         if (!cfqq->next_rq)
1229                 return;
1230
1231         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1232         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1233                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1234         if (!__cfqq) {
1235                 rb_link_node(&cfqq->p_node, parent, p);
1236                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1237         } else
1238                 cfqq->p_root = NULL;
1239 }
1240
1241 /*
1242  * Update cfqq's position in the service tree.
1243  */
1244 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1245 {
1246         /*
1247          * Resorting requires the cfqq to be on the RR list already.
1248          */
1249         if (cfq_cfqq_on_rr(cfqq)) {
1250                 cfq_service_tree_add(cfqd, cfqq, 0);
1251                 cfq_prio_tree_add(cfqd, cfqq);
1252         }
1253 }
1254
1255 /*
1256  * add to busy list of queues for service, trying to be fair in ordering
1257  * the pending list according to last request service
1258  */
1259 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1260 {
1261         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1262         BUG_ON(cfq_cfqq_on_rr(cfqq));
1263         cfq_mark_cfqq_on_rr(cfqq);
1264         cfqd->busy_queues++;
1265
1266         cfq_resort_rr_list(cfqd, cfqq);
1267 }
1268
1269 /*
1270  * Called when the cfqq no longer has requests pending, remove it from
1271  * the service tree.
1272  */
1273 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1274 {
1275         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1276         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1277         cfq_clear_cfqq_on_rr(cfqq);
1278
1279         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1280                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1281                 cfqq->service_tree = NULL;
1282         }
1283         if (cfqq->p_root) {
1284                 rb_erase(&cfqq->p_node, cfqq->p_root);
1285                 cfqq->p_root = NULL;
1286         }
1287
1288         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1289         BUG_ON(!cfqd->busy_queues);
1290         cfqd->busy_queues--;
1291 }
1292
1293 /*
1294  * rb tree support functions
1295  */
1296 static void cfq_del_rq_rb(struct request *rq)
1297 {
1298         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1299         const int sync = rq_is_sync(rq);
1300
1301         BUG_ON(!cfqq->queued[sync]);
1302         cfqq->queued[sync]--;
1303
1304         elv_rb_del(&cfqq->sort_list, rq);
1305
1306         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1307                 /*
1308                  * Queue will be deleted from service tree when we actually
1309                  * expire it later. Right now just remove it from prio tree
1310                  * as it is empty.
1311                  */
1312                 if (cfqq->p_root) {
1313                         rb_erase(&cfqq->p_node, cfqq->p_root);
1314                         cfqq->p_root = NULL;
1315                 }
1316         }
1317 }
1318
1319 static void cfq_add_rq_rb(struct request *rq)
1320 {
1321         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1322         struct cfq_data *cfqd = cfqq->cfqd;
1323         struct request *__alias, *prev;
1324
1325         cfqq->queued[rq_is_sync(rq)]++;
1326
1327         /*
1328          * looks a little odd, but the first insert might return an alias.
1329          * if that happens, put the alias on the dispatch list
1330          */
1331         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1332                 cfq_dispatch_insert(cfqd->queue, __alias);
1333
1334         if (!cfq_cfqq_on_rr(cfqq))
1335                 cfq_add_cfqq_rr(cfqd, cfqq);
1336
1337         /*
1338          * check if this request is a better next-serve candidate
1339          */
1340         prev = cfqq->next_rq;
1341         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1342
1343         /*
1344          * adjust priority tree position, if ->next_rq changes
1345          */
1346         if (prev != cfqq->next_rq)
1347                 cfq_prio_tree_add(cfqd, cfqq);
1348
1349         BUG_ON(!cfqq->next_rq);
1350 }
1351
1352 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1353 {
1354         elv_rb_del(&cfqq->sort_list, rq);
1355         cfqq->queued[rq_is_sync(rq)]--;
1356         cfq_add_rq_rb(rq);
1357 }
1358
1359 static struct request *
1360 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1361 {
1362         struct task_struct *tsk = current;
1363         struct cfq_io_context *cic;
1364         struct cfq_queue *cfqq;
1365
1366         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1367         if (!cic)
1368                 return NULL;
1369
1370         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1371         if (cfqq) {
1372                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1373
1374                 return elv_rb_find(&cfqq->sort_list, sector);
1375         }
1376
1377         return NULL;
1378 }
1379
1380 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1381 {
1382         struct cfq_data *cfqd = q->elevator->elevator_data;
1383
1384         cfqd->rq_in_driver[rq_is_sync(rq)]++;
1385         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1386                                                 rq_in_driver(cfqd));
1387
1388         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1389 }
1390
1391 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1392 {
1393         struct cfq_data *cfqd = q->elevator->elevator_data;
1394         const int sync = rq_is_sync(rq);
1395
1396         WARN_ON(!cfqd->rq_in_driver[sync]);
1397         cfqd->rq_in_driver[sync]--;
1398         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1399                                                 rq_in_driver(cfqd));
1400 }
1401
1402 static void cfq_remove_request(struct request *rq)
1403 {
1404         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1405
1406         if (cfqq->next_rq == rq)
1407                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1408
1409         list_del_init(&rq->queuelist);
1410         cfq_del_rq_rb(rq);
1411
1412         cfqq->cfqd->rq_queued--;
1413         if (rq_is_meta(rq)) {
1414                 WARN_ON(!cfqq->meta_pending);
1415                 cfqq->meta_pending--;
1416         }
1417 }
1418
1419 static int cfq_merge(struct request_queue *q, struct request **req,
1420                      struct bio *bio)
1421 {
1422         struct cfq_data *cfqd = q->elevator->elevator_data;
1423         struct request *__rq;
1424
1425         __rq = cfq_find_rq_fmerge(cfqd, bio);
1426         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1427                 *req = __rq;
1428                 return ELEVATOR_FRONT_MERGE;
1429         }
1430
1431         return ELEVATOR_NO_MERGE;
1432 }
1433
1434 static void cfq_merged_request(struct request_queue *q, struct request *req,
1435                                int type)
1436 {
1437         if (type == ELEVATOR_FRONT_MERGE) {
1438                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1439
1440                 cfq_reposition_rq_rb(cfqq, req);
1441         }
1442 }
1443
1444 static void
1445 cfq_merged_requests(struct request_queue *q, struct request *rq,
1446                     struct request *next)
1447 {
1448         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1449         /*
1450          * reposition in fifo if next is older than rq
1451          */
1452         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1453             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1454                 list_move(&rq->queuelist, &next->queuelist);
1455                 rq_set_fifo_time(rq, rq_fifo_time(next));
1456         }
1457
1458         if (cfqq->next_rq == next)
1459                 cfqq->next_rq = rq;
1460         cfq_remove_request(next);
1461 }
1462
1463 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1464                            struct bio *bio)
1465 {
1466         struct cfq_data *cfqd = q->elevator->elevator_data;
1467         struct cfq_io_context *cic;
1468         struct cfq_queue *cfqq;
1469
1470         /* Deny merge if bio and rq don't belong to same cfq group */
1471         if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1472                 return false;
1473         /*
1474          * Disallow merge of a sync bio into an async request.
1475          */
1476         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1477                 return false;
1478
1479         /*
1480          * Lookup the cfqq that this bio will be queued with. Allow
1481          * merge only if rq is queued there.
1482          */
1483         cic = cfq_cic_lookup(cfqd, current->io_context);
1484         if (!cic)
1485                 return false;
1486
1487         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1488         return cfqq == RQ_CFQQ(rq);
1489 }
1490
1491 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1492                                    struct cfq_queue *cfqq)
1493 {
1494         if (cfqq) {
1495                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1496                 cfqq->slice_start = 0;
1497                 cfqq->dispatch_start = jiffies;
1498                 cfqq->slice_end = 0;
1499                 cfqq->slice_dispatch = 0;
1500                 cfqq->nr_sectors = 0;
1501
1502                 cfq_clear_cfqq_wait_request(cfqq);
1503                 cfq_clear_cfqq_must_dispatch(cfqq);
1504                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1505                 cfq_clear_cfqq_fifo_expire(cfqq);
1506                 cfq_mark_cfqq_slice_new(cfqq);
1507
1508                 del_timer(&cfqd->idle_slice_timer);
1509         }
1510
1511         cfqd->active_queue = cfqq;
1512 }
1513
1514 /*
1515  * current cfqq expired its slice (or was too idle), select new one
1516  */
1517 static void
1518 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1519                     bool timed_out)
1520 {
1521         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1522
1523         if (cfq_cfqq_wait_request(cfqq))
1524                 del_timer(&cfqd->idle_slice_timer);
1525
1526         cfq_clear_cfqq_wait_request(cfqq);
1527
1528         /*
1529          * store what was left of this slice, if the queue idled/timed out
1530          */
1531         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1532                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1533                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1534         }
1535
1536         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1537
1538         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1539                 cfq_del_cfqq_rr(cfqd, cfqq);
1540
1541         cfq_resort_rr_list(cfqd, cfqq);
1542
1543         if (cfqq == cfqd->active_queue)
1544                 cfqd->active_queue = NULL;
1545
1546         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1547                 cfqd->grp_service_tree.active = NULL;
1548
1549         if (cfqd->active_cic) {
1550                 put_io_context(cfqd->active_cic->ioc);
1551                 cfqd->active_cic = NULL;
1552         }
1553 }
1554
1555 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1556 {
1557         struct cfq_queue *cfqq = cfqd->active_queue;
1558
1559         if (cfqq)
1560                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1561 }
1562
1563 /*
1564  * Get next queue for service. Unless we have a queue preemption,
1565  * we'll simply select the first cfqq in the service tree.
1566  */
1567 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1568 {
1569         struct cfq_rb_root *service_tree =
1570                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1571                                         cfqd->serving_type, cfqd);
1572
1573         if (!cfqd->rq_queued)
1574                 return NULL;
1575
1576         /* There is nothing to dispatch */
1577         if (!service_tree)
1578                 return NULL;
1579         if (RB_EMPTY_ROOT(&service_tree->rb))
1580                 return NULL;
1581         return cfq_rb_first(service_tree);
1582 }
1583
1584 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1585 {
1586         struct cfq_group *cfqg;
1587         struct cfq_queue *cfqq;
1588         int i, j;
1589         struct cfq_rb_root *st;
1590
1591         if (!cfqd->rq_queued)
1592                 return NULL;
1593
1594         cfqg = cfq_get_next_cfqg(cfqd);
1595         if (!cfqg)
1596                 return NULL;
1597
1598         for_each_cfqg_st(cfqg, i, j, st)
1599                 if ((cfqq = cfq_rb_first(st)) != NULL)
1600                         return cfqq;
1601         return NULL;
1602 }
1603
1604 /*
1605  * Get and set a new active queue for service.
1606  */
1607 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1608                                               struct cfq_queue *cfqq)
1609 {
1610         if (!cfqq)
1611                 cfqq = cfq_get_next_queue(cfqd);
1612
1613         __cfq_set_active_queue(cfqd, cfqq);
1614         return cfqq;
1615 }
1616
1617 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1618                                           struct request *rq)
1619 {
1620         if (blk_rq_pos(rq) >= cfqd->last_position)
1621                 return blk_rq_pos(rq) - cfqd->last_position;
1622         else
1623                 return cfqd->last_position - blk_rq_pos(rq);
1624 }
1625
1626 #define CFQQ_SEEK_THR           8 * 1024
1627 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1628
1629 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1630                                struct request *rq)
1631 {
1632         sector_t sdist = cfqq->seek_mean;
1633
1634         if (!sample_valid(cfqq->seek_samples))
1635                 sdist = CFQQ_SEEK_THR;
1636
1637         return cfq_dist_from_last(cfqd, rq) <= sdist;
1638 }
1639
1640 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1641                                     struct cfq_queue *cur_cfqq)
1642 {
1643         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1644         struct rb_node *parent, *node;
1645         struct cfq_queue *__cfqq;
1646         sector_t sector = cfqd->last_position;
1647
1648         if (RB_EMPTY_ROOT(root))
1649                 return NULL;
1650
1651         /*
1652          * First, if we find a request starting at the end of the last
1653          * request, choose it.
1654          */
1655         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1656         if (__cfqq)
1657                 return __cfqq;
1658
1659         /*
1660          * If the exact sector wasn't found, the parent of the NULL leaf
1661          * will contain the closest sector.
1662          */
1663         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1664         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1665                 return __cfqq;
1666
1667         if (blk_rq_pos(__cfqq->next_rq) < sector)
1668                 node = rb_next(&__cfqq->p_node);
1669         else
1670                 node = rb_prev(&__cfqq->p_node);
1671         if (!node)
1672                 return NULL;
1673
1674         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1675         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1676                 return __cfqq;
1677
1678         return NULL;
1679 }
1680
1681 /*
1682  * cfqd - obvious
1683  * cur_cfqq - passed in so that we don't decide that the current queue is
1684  *            closely cooperating with itself.
1685  *
1686  * So, basically we're assuming that that cur_cfqq has dispatched at least
1687  * one request, and that cfqd->last_position reflects a position on the disk
1688  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1689  * assumption.
1690  */
1691 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1692                                               struct cfq_queue *cur_cfqq)
1693 {
1694         struct cfq_queue *cfqq;
1695
1696         if (!cfq_cfqq_sync(cur_cfqq))
1697                 return NULL;
1698         if (CFQQ_SEEKY(cur_cfqq))
1699                 return NULL;
1700
1701         /*
1702          * We should notice if some of the queues are cooperating, eg
1703          * working closely on the same area of the disk. In that case,
1704          * we can group them together and don't waste time idling.
1705          */
1706         cfqq = cfqq_close(cfqd, cur_cfqq);
1707         if (!cfqq)
1708                 return NULL;
1709
1710         /* If new queue belongs to different cfq_group, don't choose it */
1711         if (cur_cfqq->cfqg != cfqq->cfqg)
1712                 return NULL;
1713
1714         /*
1715          * It only makes sense to merge sync queues.
1716          */
1717         if (!cfq_cfqq_sync(cfqq))
1718                 return NULL;
1719         if (CFQQ_SEEKY(cfqq))
1720                 return NULL;
1721
1722         /*
1723          * Do not merge queues of different priority classes
1724          */
1725         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1726                 return NULL;
1727
1728         return cfqq;
1729 }
1730
1731 /*
1732  * Determine whether we should enforce idle window for this queue.
1733  */
1734
1735 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1736 {
1737         enum wl_prio_t prio = cfqq_prio(cfqq);
1738         struct cfq_rb_root *service_tree = cfqq->service_tree;
1739
1740         BUG_ON(!service_tree);
1741         BUG_ON(!service_tree->count);
1742
1743         /* We never do for idle class queues. */
1744         if (prio == IDLE_WORKLOAD)
1745                 return false;
1746
1747         /* We do for queues that were marked with idle window flag. */
1748         if (cfq_cfqq_idle_window(cfqq))
1749                 return true;
1750
1751         /*
1752          * Otherwise, we do only if they are the last ones
1753          * in their service tree.
1754          */
1755         return service_tree->count == 1;
1756 }
1757
1758 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1759 {
1760         struct cfq_queue *cfqq = cfqd->active_queue;
1761         struct cfq_io_context *cic;
1762         unsigned long sl;
1763
1764         /*
1765          * SSD device without seek penalty, disable idling. But only do so
1766          * for devices that support queuing, otherwise we still have a problem
1767          * with sync vs async workloads.
1768          */
1769         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1770                 return;
1771
1772         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1773         WARN_ON(cfq_cfqq_slice_new(cfqq));
1774
1775         /*
1776          * idle is disabled, either manually or by past process history
1777          */
1778         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1779                 return;
1780
1781         /*
1782          * still active requests from this queue, don't idle
1783          */
1784         if (cfqq->dispatched)
1785                 return;
1786
1787         /*
1788          * task has exited, don't wait
1789          */
1790         cic = cfqd->active_cic;
1791         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1792                 return;
1793
1794         /*
1795          * If our average think time is larger than the remaining time
1796          * slice, then don't idle. This avoids overrunning the allotted
1797          * time slice.
1798          */
1799         if (sample_valid(cic->ttime_samples) &&
1800             (cfqq->slice_end - jiffies < cic->ttime_mean))
1801                 return;
1802
1803         cfq_mark_cfqq_wait_request(cfqq);
1804
1805         sl = cfqd->cfq_slice_idle;
1806
1807         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1808         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1809 }
1810
1811 /*
1812  * Move request from internal lists to the request queue dispatch list.
1813  */
1814 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1815 {
1816         struct cfq_data *cfqd = q->elevator->elevator_data;
1817         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1818
1819         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1820
1821         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1822         cfq_remove_request(rq);
1823         cfqq->dispatched++;
1824         elv_dispatch_sort(q, rq);
1825
1826         if (cfq_cfqq_sync(cfqq))
1827                 cfqd->sync_flight++;
1828         cfqq->nr_sectors += blk_rq_sectors(rq);
1829 }
1830
1831 /*
1832  * return expired entry, or NULL to just start from scratch in rbtree
1833  */
1834 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1835 {
1836         struct request *rq = NULL;
1837
1838         if (cfq_cfqq_fifo_expire(cfqq))
1839                 return NULL;
1840
1841         cfq_mark_cfqq_fifo_expire(cfqq);
1842
1843         if (list_empty(&cfqq->fifo))
1844                 return NULL;
1845
1846         rq = rq_entry_fifo(cfqq->fifo.next);
1847         if (time_before(jiffies, rq_fifo_time(rq)))
1848                 rq = NULL;
1849
1850         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1851         return rq;
1852 }
1853
1854 static inline int
1855 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1856 {
1857         const int base_rq = cfqd->cfq_slice_async_rq;
1858
1859         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1860
1861         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1862 }
1863
1864 /*
1865  * Must be called with the queue_lock held.
1866  */
1867 static int cfqq_process_refs(struct cfq_queue *cfqq)
1868 {
1869         int process_refs, io_refs;
1870
1871         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1872         process_refs = atomic_read(&cfqq->ref) - io_refs;
1873         BUG_ON(process_refs < 0);
1874         return process_refs;
1875 }
1876
1877 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1878 {
1879         int process_refs, new_process_refs;
1880         struct cfq_queue *__cfqq;
1881
1882         /* Avoid a circular list and skip interim queue merges */
1883         while ((__cfqq = new_cfqq->new_cfqq)) {
1884                 if (__cfqq == cfqq)
1885                         return;
1886                 new_cfqq = __cfqq;
1887         }
1888
1889         process_refs = cfqq_process_refs(cfqq);
1890         /*
1891          * If the process for the cfqq has gone away, there is no
1892          * sense in merging the queues.
1893          */
1894         if (process_refs == 0)
1895                 return;
1896
1897         /*
1898          * Merge in the direction of the lesser amount of work.
1899          */
1900         new_process_refs = cfqq_process_refs(new_cfqq);
1901         if (new_process_refs >= process_refs) {
1902                 cfqq->new_cfqq = new_cfqq;
1903                 atomic_add(process_refs, &new_cfqq->ref);
1904         } else {
1905                 new_cfqq->new_cfqq = cfqq;
1906                 atomic_add(new_process_refs, &cfqq->ref);
1907         }
1908 }
1909
1910 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1911                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1912                                 bool prio_changed)
1913 {
1914         struct cfq_queue *queue;
1915         int i;
1916         bool key_valid = false;
1917         unsigned long lowest_key = 0;
1918         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1919
1920         if (prio_changed) {
1921                 /*
1922                  * When priorities switched, we prefer starting
1923                  * from SYNC_NOIDLE (first choice), or just SYNC
1924                  * over ASYNC
1925                  */
1926                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1927                         return cur_best;
1928                 cur_best = SYNC_WORKLOAD;
1929                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1930                         return cur_best;
1931
1932                 return ASYNC_WORKLOAD;
1933         }
1934
1935         for (i = 0; i < 3; ++i) {
1936                 /* otherwise, select the one with lowest rb_key */
1937                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1938                 if (queue &&
1939                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1940                         lowest_key = queue->rb_key;
1941                         cur_best = i;
1942                         key_valid = true;
1943                 }
1944         }
1945
1946         return cur_best;
1947 }
1948
1949 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1950 {
1951         enum wl_prio_t previous_prio = cfqd->serving_prio;
1952         bool prio_changed;
1953         unsigned slice;
1954         unsigned count;
1955         struct cfq_rb_root *st;
1956         unsigned group_slice;
1957
1958         if (!cfqg) {
1959                 cfqd->serving_prio = IDLE_WORKLOAD;
1960                 cfqd->workload_expires = jiffies + 1;
1961                 return;
1962         }
1963
1964         /* Choose next priority. RT > BE > IDLE */
1965         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
1966                 cfqd->serving_prio = RT_WORKLOAD;
1967         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
1968                 cfqd->serving_prio = BE_WORKLOAD;
1969         else {
1970                 cfqd->serving_prio = IDLE_WORKLOAD;
1971                 cfqd->workload_expires = jiffies + 1;
1972                 return;
1973         }
1974
1975         /*
1976          * For RT and BE, we have to choose also the type
1977          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1978          * expiration time
1979          */
1980         prio_changed = (cfqd->serving_prio != previous_prio);
1981         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1982                                 cfqd);
1983         count = st->count;
1984
1985         /*
1986          * If priority didn't change, check workload expiration,
1987          * and that we still have other queues ready
1988          */
1989         if (!prio_changed && count &&
1990             !time_after(jiffies, cfqd->workload_expires))
1991                 return;
1992
1993         /* otherwise select new workload type */
1994         cfqd->serving_type =
1995                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1996         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1997                                 cfqd);
1998         count = st->count;
1999
2000         /*
2001          * the workload slice is computed as a fraction of target latency
2002          * proportional to the number of queues in that workload, over
2003          * all the queues in the same priority class
2004          */
2005         group_slice = cfq_group_slice(cfqd, cfqg);
2006
2007         slice = group_slice * count /
2008                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2009                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2010
2011         if (cfqd->serving_type == ASYNC_WORKLOAD)
2012                 /* async workload slice is scaled down according to
2013                  * the sync/async slice ratio. */
2014                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2015         else
2016                 /* sync workload slice is at least 2 * cfq_slice_idle */
2017                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2018
2019         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2020         cfqd->workload_expires = jiffies + slice;
2021         cfqd->noidle_tree_requires_idle = false;
2022 }
2023
2024 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2025 {
2026         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2027         struct cfq_group *cfqg;
2028
2029         if (RB_EMPTY_ROOT(&st->rb))
2030                 return NULL;
2031         cfqg = cfq_rb_first_group(st);
2032         st->active = &cfqg->rb_node;
2033         update_min_vdisktime(st);
2034         return cfqg;
2035 }
2036
2037 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2038 {
2039         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2040
2041         cfqd->serving_group = cfqg;
2042
2043         /* Restore the workload type data */
2044         if (cfqg->saved_workload_slice) {
2045                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2046                 cfqd->serving_type = cfqg->saved_workload;
2047                 cfqd->serving_prio = cfqg->saved_serving_prio;
2048         }
2049         choose_service_tree(cfqd, cfqg);
2050 }
2051
2052 /*
2053  * Select a queue for service. If we have a current active queue,
2054  * check whether to continue servicing it, or retrieve and set a new one.
2055  */
2056 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2057 {
2058         struct cfq_queue *cfqq, *new_cfqq = NULL;
2059
2060         cfqq = cfqd->active_queue;
2061         if (!cfqq)
2062                 goto new_queue;
2063
2064         if (!cfqd->rq_queued)
2065                 return NULL;
2066         /*
2067          * The active queue has run out of time, expire it and select new.
2068          */
2069         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
2070                 goto expire;
2071
2072         /*
2073          * The active queue has requests and isn't expired, allow it to
2074          * dispatch.
2075          */
2076         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2077                 goto keep_queue;
2078
2079         /*
2080          * If another queue has a request waiting within our mean seek
2081          * distance, let it run.  The expire code will check for close
2082          * cooperators and put the close queue at the front of the service
2083          * tree.  If possible, merge the expiring queue with the new cfqq.
2084          */
2085         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2086         if (new_cfqq) {
2087                 if (!cfqq->new_cfqq)
2088                         cfq_setup_merge(cfqq, new_cfqq);
2089                 goto expire;
2090         }
2091
2092         /*
2093          * No requests pending. If the active queue still has requests in
2094          * flight or is idling for a new request, allow either of these
2095          * conditions to happen (or time out) before selecting a new queue.
2096          */
2097         if (timer_pending(&cfqd->idle_slice_timer) ||
2098             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2099                 cfqq = NULL;
2100                 goto keep_queue;
2101         }
2102
2103 expire:
2104         cfq_slice_expired(cfqd, 0);
2105 new_queue:
2106         /*
2107          * Current queue expired. Check if we have to switch to a new
2108          * service tree
2109          */
2110         if (!new_cfqq)
2111                 cfq_choose_cfqg(cfqd);
2112
2113         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2114 keep_queue:
2115         return cfqq;
2116 }
2117
2118 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2119 {
2120         int dispatched = 0;
2121
2122         while (cfqq->next_rq) {
2123                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2124                 dispatched++;
2125         }
2126
2127         BUG_ON(!list_empty(&cfqq->fifo));
2128
2129         /* By default cfqq is not expired if it is empty. Do it explicitly */
2130         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2131         return dispatched;
2132 }
2133
2134 /*
2135  * Drain our current requests. Used for barriers and when switching
2136  * io schedulers on-the-fly.
2137  */
2138 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2139 {
2140         struct cfq_queue *cfqq;
2141         int dispatched = 0;
2142
2143         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2144                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2145
2146         cfq_slice_expired(cfqd, 0);
2147         BUG_ON(cfqd->busy_queues);
2148
2149         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2150         return dispatched;
2151 }
2152
2153 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2154 {
2155         unsigned int max_dispatch;
2156
2157         /*
2158          * Drain async requests before we start sync IO
2159          */
2160         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2161                 return false;
2162
2163         /*
2164          * If this is an async queue and we have sync IO in flight, let it wait
2165          */
2166         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2167                 return false;
2168
2169         max_dispatch = cfqd->cfq_quantum;
2170         if (cfq_class_idle(cfqq))
2171                 max_dispatch = 1;
2172
2173         /*
2174          * Does this cfqq already have too much IO in flight?
2175          */
2176         if (cfqq->dispatched >= max_dispatch) {
2177                 /*
2178                  * idle queue must always only have a single IO in flight
2179                  */
2180                 if (cfq_class_idle(cfqq))
2181                         return false;
2182
2183                 /*
2184                  * We have other queues, don't allow more IO from this one
2185                  */
2186                 if (cfqd->busy_queues > 1)
2187                         return false;
2188
2189                 /*
2190                  * Sole queue user, no limit
2191                  */
2192                 max_dispatch = -1;
2193         }
2194
2195         /*
2196          * Async queues must wait a bit before being allowed dispatch.
2197          * We also ramp up the dispatch depth gradually for async IO,
2198          * based on the last sync IO we serviced
2199          */
2200         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2201                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2202                 unsigned int depth;
2203
2204                 depth = last_sync / cfqd->cfq_slice[1];
2205                 if (!depth && !cfqq->dispatched)
2206                         depth = 1;
2207                 if (depth < max_dispatch)
2208                         max_dispatch = depth;
2209         }
2210
2211         /*
2212          * If we're below the current max, allow a dispatch
2213          */
2214         return cfqq->dispatched < max_dispatch;
2215 }
2216
2217 /*
2218  * Dispatch a request from cfqq, moving them to the request queue
2219  * dispatch list.
2220  */
2221 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2222 {
2223         struct request *rq;
2224
2225         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2226
2227         if (!cfq_may_dispatch(cfqd, cfqq))
2228                 return false;
2229
2230         /*
2231          * follow expired path, else get first next available
2232          */
2233         rq = cfq_check_fifo(cfqq);
2234         if (!rq)
2235                 rq = cfqq->next_rq;
2236
2237         /*
2238          * insert request into driver dispatch list
2239          */
2240         cfq_dispatch_insert(cfqd->queue, rq);
2241
2242         if (!cfqd->active_cic) {
2243                 struct cfq_io_context *cic = RQ_CIC(rq);
2244
2245                 atomic_long_inc(&cic->ioc->refcount);
2246                 cfqd->active_cic = cic;
2247         }
2248
2249         return true;
2250 }
2251
2252 /*
2253  * Find the cfqq that we need to service and move a request from that to the
2254  * dispatch list
2255  */
2256 static int cfq_dispatch_requests(struct request_queue *q, int force)
2257 {
2258         struct cfq_data *cfqd = q->elevator->elevator_data;
2259         struct cfq_queue *cfqq;
2260
2261         if (!cfqd->busy_queues)
2262                 return 0;
2263
2264         if (unlikely(force))
2265                 return cfq_forced_dispatch(cfqd);
2266
2267         cfqq = cfq_select_queue(cfqd);
2268         if (!cfqq)
2269                 return 0;
2270
2271         /*
2272          * Dispatch a request from this cfqq, if it is allowed
2273          */
2274         if (!cfq_dispatch_request(cfqd, cfqq))
2275                 return 0;
2276
2277         cfqq->slice_dispatch++;
2278         cfq_clear_cfqq_must_dispatch(cfqq);
2279
2280         /*
2281          * expire an async queue immediately if it has used up its slice. idle
2282          * queue always expire after 1 dispatch round.
2283          */
2284         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2285             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2286             cfq_class_idle(cfqq))) {
2287                 cfqq->slice_end = jiffies + 1;
2288                 cfq_slice_expired(cfqd, 0);
2289         }
2290
2291         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2292         return 1;
2293 }
2294
2295 /*
2296  * task holds one reference to the queue, dropped when task exits. each rq
2297  * in-flight on this queue also holds a reference, dropped when rq is freed.
2298  *
2299  * Each cfq queue took a reference on the parent group. Drop it now.
2300  * queue lock must be held here.
2301  */
2302 static void cfq_put_queue(struct cfq_queue *cfqq)
2303 {
2304         struct cfq_data *cfqd = cfqq->cfqd;
2305         struct cfq_group *cfqg;
2306
2307         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2308
2309         if (!atomic_dec_and_test(&cfqq->ref))
2310                 return;
2311
2312         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2313         BUG_ON(rb_first(&cfqq->sort_list));
2314         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2315         cfqg = cfqq->cfqg;
2316
2317         if (unlikely(cfqd->active_queue == cfqq)) {
2318                 __cfq_slice_expired(cfqd, cfqq, 0);
2319                 cfq_schedule_dispatch(cfqd);
2320         }
2321
2322         BUG_ON(cfq_cfqq_on_rr(cfqq));
2323         kmem_cache_free(cfq_pool, cfqq);
2324         cfq_put_cfqg(cfqg);
2325 }
2326
2327 /*
2328  * Must always be called with the rcu_read_lock() held
2329  */
2330 static void
2331 __call_for_each_cic(struct io_context *ioc,
2332                     void (*func)(struct io_context *, struct cfq_io_context *))
2333 {
2334         struct cfq_io_context *cic;
2335         struct hlist_node *n;
2336
2337         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2338                 func(ioc, cic);
2339 }
2340
2341 /*
2342  * Call func for each cic attached to this ioc.
2343  */
2344 static void
2345 call_for_each_cic(struct io_context *ioc,
2346                   void (*func)(struct io_context *, struct cfq_io_context *))
2347 {
2348         rcu_read_lock();
2349         __call_for_each_cic(ioc, func);
2350         rcu_read_unlock();
2351 }
2352
2353 static void cfq_cic_free_rcu(struct rcu_head *head)
2354 {
2355         struct cfq_io_context *cic;
2356
2357         cic = container_of(head, struct cfq_io_context, rcu_head);
2358
2359         kmem_cache_free(cfq_ioc_pool, cic);
2360         elv_ioc_count_dec(cfq_ioc_count);
2361
2362         if (ioc_gone) {
2363                 /*
2364                  * CFQ scheduler is exiting, grab exit lock and check
2365                  * the pending io context count. If it hits zero,
2366                  * complete ioc_gone and set it back to NULL
2367                  */
2368                 spin_lock(&ioc_gone_lock);
2369                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2370                         complete(ioc_gone);
2371                         ioc_gone = NULL;
2372                 }
2373                 spin_unlock(&ioc_gone_lock);
2374         }
2375 }
2376
2377 static void cfq_cic_free(struct cfq_io_context *cic)
2378 {
2379         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2380 }
2381
2382 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2383 {
2384         unsigned long flags;
2385
2386         BUG_ON(!cic->dead_key);
2387
2388         spin_lock_irqsave(&ioc->lock, flags);
2389         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2390         hlist_del_rcu(&cic->cic_list);
2391         spin_unlock_irqrestore(&ioc->lock, flags);
2392
2393         cfq_cic_free(cic);
2394 }
2395
2396 /*
2397  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2398  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2399  * and ->trim() which is called with the task lock held
2400  */
2401 static void cfq_free_io_context(struct io_context *ioc)
2402 {
2403         /*
2404          * ioc->refcount is zero here, or we are called from elv_unregister(),
2405          * so no more cic's are allowed to be linked into this ioc.  So it
2406          * should be ok to iterate over the known list, we will see all cic's
2407          * since no new ones are added.
2408          */
2409         __call_for_each_cic(ioc, cic_free_func);
2410 }
2411
2412 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2413 {
2414         struct cfq_queue *__cfqq, *next;
2415
2416         if (unlikely(cfqq == cfqd->active_queue)) {
2417                 __cfq_slice_expired(cfqd, cfqq, 0);
2418                 cfq_schedule_dispatch(cfqd);
2419         }
2420
2421         /*
2422          * If this queue was scheduled to merge with another queue, be
2423          * sure to drop the reference taken on that queue (and others in
2424          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2425          */
2426         __cfqq = cfqq->new_cfqq;
2427         while (__cfqq) {
2428                 if (__cfqq == cfqq) {
2429                         WARN(1, "cfqq->new_cfqq loop detected\n");
2430                         break;
2431                 }
2432                 next = __cfqq->new_cfqq;
2433                 cfq_put_queue(__cfqq);
2434                 __cfqq = next;
2435         }
2436
2437         cfq_put_queue(cfqq);
2438 }
2439
2440 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2441                                          struct cfq_io_context *cic)
2442 {
2443         struct io_context *ioc = cic->ioc;
2444
2445         list_del_init(&cic->queue_list);
2446
2447         /*
2448          * Make sure key == NULL is seen for dead queues
2449          */
2450         smp_wmb();
2451         cic->dead_key = (unsigned long) cic->key;
2452         cic->key = NULL;
2453
2454         if (ioc->ioc_data == cic)
2455                 rcu_assign_pointer(ioc->ioc_data, NULL);
2456
2457         if (cic->cfqq[BLK_RW_ASYNC]) {
2458                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2459                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2460         }
2461
2462         if (cic->cfqq[BLK_RW_SYNC]) {
2463                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2464                 cic->cfqq[BLK_RW_SYNC] = NULL;
2465         }
2466 }
2467
2468 static void cfq_exit_single_io_context(struct io_context *ioc,
2469                                        struct cfq_io_context *cic)
2470 {
2471         struct cfq_data *cfqd = cic->key;
2472
2473         if (cfqd) {
2474                 struct request_queue *q = cfqd->queue;
2475                 unsigned long flags;
2476
2477                 spin_lock_irqsave(q->queue_lock, flags);
2478
2479                 /*
2480                  * Ensure we get a fresh copy of the ->key to prevent
2481                  * race between exiting task and queue
2482                  */
2483                 smp_read_barrier_depends();
2484                 if (cic->key)
2485                         __cfq_exit_single_io_context(cfqd, cic);
2486
2487                 spin_unlock_irqrestore(q->queue_lock, flags);
2488         }
2489 }
2490
2491 /*
2492  * The process that ioc belongs to has exited, we need to clean up
2493  * and put the internal structures we have that belongs to that process.
2494  */
2495 static void cfq_exit_io_context(struct io_context *ioc)
2496 {
2497         call_for_each_cic(ioc, cfq_exit_single_io_context);
2498 }
2499
2500 static struct cfq_io_context *
2501 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2502 {
2503         struct cfq_io_context *cic;
2504
2505         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2506                                                         cfqd->queue->node);
2507         if (cic) {
2508                 cic->last_end_request = jiffies;
2509                 INIT_LIST_HEAD(&cic->queue_list);
2510                 INIT_HLIST_NODE(&cic->cic_list);
2511                 cic->dtor = cfq_free_io_context;
2512                 cic->exit = cfq_exit_io_context;
2513                 elv_ioc_count_inc(cfq_ioc_count);
2514         }
2515
2516         return cic;
2517 }
2518
2519 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2520 {
2521         struct task_struct *tsk = current;
2522         int ioprio_class;
2523
2524         if (!cfq_cfqq_prio_changed(cfqq))
2525                 return;
2526
2527         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2528         switch (ioprio_class) {
2529         default:
2530                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2531         case IOPRIO_CLASS_NONE:
2532                 /*
2533                  * no prio set, inherit CPU scheduling settings
2534                  */
2535                 cfqq->ioprio = task_nice_ioprio(tsk);
2536                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2537                 break;
2538         case IOPRIO_CLASS_RT:
2539                 cfqq->ioprio = task_ioprio(ioc);
2540                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2541                 break;
2542         case IOPRIO_CLASS_BE:
2543                 cfqq->ioprio = task_ioprio(ioc);
2544                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2545                 break;
2546         case IOPRIO_CLASS_IDLE:
2547                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2548                 cfqq->ioprio = 7;
2549                 cfq_clear_cfqq_idle_window(cfqq);
2550                 break;
2551         }
2552
2553         /*
2554          * keep track of original prio settings in case we have to temporarily
2555          * elevate the priority of this queue
2556          */
2557         cfqq->org_ioprio = cfqq->ioprio;
2558         cfqq->org_ioprio_class = cfqq->ioprio_class;
2559         cfq_clear_cfqq_prio_changed(cfqq);
2560 }
2561
2562 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2563 {
2564         struct cfq_data *cfqd = cic->key;
2565         struct cfq_queue *cfqq;
2566         unsigned long flags;
2567
2568         if (unlikely(!cfqd))
2569                 return;
2570
2571         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2572
2573         cfqq = cic->cfqq[BLK_RW_ASYNC];
2574         if (cfqq) {
2575                 struct cfq_queue *new_cfqq;
2576                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2577                                                 GFP_ATOMIC);
2578                 if (new_cfqq) {
2579                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2580                         cfq_put_queue(cfqq);
2581                 }
2582         }
2583
2584         cfqq = cic->cfqq[BLK_RW_SYNC];
2585         if (cfqq)
2586                 cfq_mark_cfqq_prio_changed(cfqq);
2587
2588         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2589 }
2590
2591 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2592 {
2593         call_for_each_cic(ioc, changed_ioprio);
2594         ioc->ioprio_changed = 0;
2595 }
2596
2597 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2598                           pid_t pid, bool is_sync)
2599 {
2600         RB_CLEAR_NODE(&cfqq->rb_node);
2601         RB_CLEAR_NODE(&cfqq->p_node);
2602         INIT_LIST_HEAD(&cfqq->fifo);
2603
2604         atomic_set(&cfqq->ref, 0);
2605         cfqq->cfqd = cfqd;
2606
2607         cfq_mark_cfqq_prio_changed(cfqq);
2608
2609         if (is_sync) {
2610                 if (!cfq_class_idle(cfqq))
2611                         cfq_mark_cfqq_idle_window(cfqq);
2612                 cfq_mark_cfqq_sync(cfqq);
2613         }
2614         cfqq->pid = pid;
2615 }
2616
2617 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2618 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2619 {
2620         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2621         struct cfq_data *cfqd = cic->key;
2622         unsigned long flags;
2623         struct request_queue *q;
2624
2625         if (unlikely(!cfqd))
2626                 return;
2627
2628         q = cfqd->queue;
2629
2630         spin_lock_irqsave(q->queue_lock, flags);
2631
2632         if (sync_cfqq) {
2633                 /*
2634                  * Drop reference to sync queue. A new sync queue will be
2635                  * assigned in new group upon arrival of a fresh request.
2636                  */
2637                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2638                 cic_set_cfqq(cic, NULL, 1);
2639                 cfq_put_queue(sync_cfqq);
2640         }
2641
2642         spin_unlock_irqrestore(q->queue_lock, flags);
2643 }
2644
2645 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2646 {
2647         call_for_each_cic(ioc, changed_cgroup);
2648         ioc->cgroup_changed = 0;
2649 }
2650 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2651
2652 static struct cfq_queue *
2653 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2654                      struct io_context *ioc, gfp_t gfp_mask)
2655 {
2656         struct cfq_queue *cfqq, *new_cfqq = NULL;
2657         struct cfq_io_context *cic;
2658         struct cfq_group *cfqg;
2659
2660 retry:
2661         cfqg = cfq_get_cfqg(cfqd, 1);
2662         cic = cfq_cic_lookup(cfqd, ioc);
2663         /* cic always exists here */
2664         cfqq = cic_to_cfqq(cic, is_sync);
2665
2666         /*
2667          * Always try a new alloc if we fell back to the OOM cfqq
2668          * originally, since it should just be a temporary situation.
2669          */
2670         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2671                 cfqq = NULL;
2672                 if (new_cfqq) {
2673                         cfqq = new_cfqq;
2674                         new_cfqq = NULL;
2675                 } else if (gfp_mask & __GFP_WAIT) {
2676                         spin_unlock_irq(cfqd->queue->queue_lock);
2677                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2678                                         gfp_mask | __GFP_ZERO,
2679                                         cfqd->queue->node);
2680                         spin_lock_irq(cfqd->queue->queue_lock);
2681                         if (new_cfqq)
2682                                 goto retry;
2683                 } else {
2684                         cfqq = kmem_cache_alloc_node(cfq_pool,
2685                                         gfp_mask | __GFP_ZERO,
2686                                         cfqd->queue->node);
2687                 }
2688
2689                 if (cfqq) {
2690                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2691                         cfq_init_prio_data(cfqq, ioc);
2692                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2693                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2694                 } else
2695                         cfqq = &cfqd->oom_cfqq;
2696         }
2697
2698         if (new_cfqq)
2699                 kmem_cache_free(cfq_pool, new_cfqq);
2700
2701         return cfqq;
2702 }
2703
2704 static struct cfq_queue **
2705 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2706 {
2707         switch (ioprio_class) {
2708         case IOPRIO_CLASS_RT:
2709                 return &cfqd->async_cfqq[0][ioprio];
2710         case IOPRIO_CLASS_BE:
2711                 return &cfqd->async_cfqq[1][ioprio];
2712         case IOPRIO_CLASS_IDLE:
2713                 return &cfqd->async_idle_cfqq;
2714         default:
2715                 BUG();
2716         }
2717 }
2718
2719 static struct cfq_queue *
2720 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2721               gfp_t gfp_mask)
2722 {
2723         const int ioprio = task_ioprio(ioc);
2724         const int ioprio_class = task_ioprio_class(ioc);
2725         struct cfq_queue **async_cfqq = NULL;
2726         struct cfq_queue *cfqq = NULL;
2727
2728         if (!is_sync) {
2729                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2730                 cfqq = *async_cfqq;
2731         }
2732
2733         if (!cfqq)
2734                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2735
2736         /*
2737          * pin the queue now that it's allocated, scheduler exit will prune it
2738          */
2739         if (!is_sync && !(*async_cfqq)) {
2740                 atomic_inc(&cfqq->ref);
2741                 *async_cfqq = cfqq;
2742         }
2743
2744         atomic_inc(&cfqq->ref);
2745         return cfqq;
2746 }
2747
2748 /*
2749  * We drop cfq io contexts lazily, so we may find a dead one.
2750  */
2751 static void
2752 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2753                   struct cfq_io_context *cic)
2754 {
2755         unsigned long flags;
2756
2757         WARN_ON(!list_empty(&cic->queue_list));
2758
2759         spin_lock_irqsave(&ioc->lock, flags);
2760
2761         BUG_ON(ioc->ioc_data == cic);
2762
2763         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2764         hlist_del_rcu(&cic->cic_list);
2765         spin_unlock_irqrestore(&ioc->lock, flags);
2766
2767         cfq_cic_free(cic);
2768 }
2769
2770 static struct cfq_io_context *
2771 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2772 {
2773         struct cfq_io_context *cic;
2774         unsigned long flags;
2775         void *k;
2776
2777         if (unlikely(!ioc))
2778                 return NULL;
2779
2780         rcu_read_lock();
2781
2782         /*
2783          * we maintain a last-hit cache, to avoid browsing over the tree
2784          */
2785         cic = rcu_dereference(ioc->ioc_data);
2786         if (cic && cic->key == cfqd) {
2787                 rcu_read_unlock();
2788                 return cic;
2789         }
2790
2791         do {
2792                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2793                 rcu_read_unlock();
2794                 if (!cic)
2795                         break;
2796                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2797                 k = cic->key;
2798                 if (unlikely(!k)) {
2799                         cfq_drop_dead_cic(cfqd, ioc, cic);
2800                         rcu_read_lock();
2801                         continue;
2802                 }
2803
2804                 spin_lock_irqsave(&ioc->lock, flags);
2805                 rcu_assign_pointer(ioc->ioc_data, cic);
2806                 spin_unlock_irqrestore(&ioc->lock, flags);
2807                 break;
2808         } while (1);
2809
2810         return cic;
2811 }
2812
2813 /*
2814  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2815  * the process specific cfq io context when entered from the block layer.
2816  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2817  */
2818 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2819                         struct cfq_io_context *cic, gfp_t gfp_mask)
2820 {
2821         unsigned long flags;
2822         int ret;
2823
2824         ret = radix_tree_preload(gfp_mask);
2825         if (!ret) {
2826                 cic->ioc = ioc;
2827                 cic->key = cfqd;
2828
2829                 spin_lock_irqsave(&ioc->lock, flags);
2830                 ret = radix_tree_insert(&ioc->radix_root,
2831                                                 (unsigned long) cfqd, cic);
2832                 if (!ret)
2833                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2834                 spin_unlock_irqrestore(&ioc->lock, flags);
2835
2836                 radix_tree_preload_end();
2837
2838                 if (!ret) {
2839                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2840                         list_add(&cic->queue_list, &cfqd->cic_list);
2841                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2842                 }
2843         }
2844
2845         if (ret)
2846                 printk(KERN_ERR "cfq: cic link failed!\n");
2847
2848         return ret;
2849 }
2850
2851 /*
2852  * Setup general io context and cfq io context. There can be several cfq
2853  * io contexts per general io context, if this process is doing io to more
2854  * than one device managed by cfq.
2855  */
2856 static struct cfq_io_context *
2857 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2858 {
2859         struct io_context *ioc = NULL;
2860         struct cfq_io_context *cic;
2861
2862         might_sleep_if(gfp_mask & __GFP_WAIT);
2863
2864         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2865         if (!ioc)
2866                 return NULL;
2867
2868         cic = cfq_cic_lookup(cfqd, ioc);
2869         if (cic)
2870                 goto out;
2871
2872         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2873         if (cic == NULL)
2874                 goto err;
2875
2876         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2877                 goto err_free;
2878
2879 out:
2880         smp_read_barrier_depends();
2881         if (unlikely(ioc->ioprio_changed))
2882                 cfq_ioc_set_ioprio(ioc);
2883
2884 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2885         if (unlikely(ioc->cgroup_changed))
2886                 cfq_ioc_set_cgroup(ioc);
2887 #endif
2888         return cic;
2889 err_free:
2890         cfq_cic_free(cic);
2891 err:
2892         put_io_context(ioc);
2893         return NULL;
2894 }
2895
2896 static void
2897 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2898 {
2899         unsigned long elapsed = jiffies - cic->last_end_request;
2900         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2901
2902         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2903         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2904         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2905 }
2906
2907 static void
2908 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2909                        struct request *rq)
2910 {
2911         sector_t sdist;
2912         u64 total;
2913
2914         if (!cfqq->last_request_pos)
2915                 sdist = 0;
2916         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2917                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2918         else
2919                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2920
2921         /*
2922          * Don't allow the seek distance to get too large from the
2923          * odd fragment, pagein, etc
2924          */
2925         if (cfqq->seek_samples <= 60) /* second&third seek */
2926                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2927         else
2928                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2929
2930         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2931         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2932         total = cfqq->seek_total + (cfqq->seek_samples/2);
2933         do_div(total, cfqq->seek_samples);
2934         cfqq->seek_mean = (sector_t)total;
2935
2936         /*
2937          * If this cfqq is shared between multiple processes, check to
2938          * make sure that those processes are still issuing I/Os within
2939          * the mean seek distance.  If not, it may be time to break the
2940          * queues apart again.
2941          */
2942         if (cfq_cfqq_coop(cfqq)) {
2943                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2944                         cfqq->seeky_start = jiffies;
2945                 else if (!CFQQ_SEEKY(cfqq))
2946                         cfqq->seeky_start = 0;
2947         }
2948 }
2949
2950 /*
2951  * Disable idle window if the process thinks too long or seeks so much that
2952  * it doesn't matter
2953  */
2954 static void
2955 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2956                        struct cfq_io_context *cic)
2957 {
2958         int old_idle, enable_idle;
2959
2960         /*
2961          * Don't idle for async or idle io prio class
2962          */
2963         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2964                 return;
2965
2966         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2967
2968         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2969                 cfq_mark_cfqq_deep(cfqq);
2970
2971         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2972             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2973              && CFQQ_SEEKY(cfqq)))
2974                 enable_idle = 0;
2975         else if (sample_valid(cic->ttime_samples)) {
2976                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2977                         enable_idle = 0;
2978                 else
2979                         enable_idle = 1;
2980         }
2981
2982         if (old_idle != enable_idle) {
2983                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2984                 if (enable_idle)
2985                         cfq_mark_cfqq_idle_window(cfqq);
2986                 else
2987                         cfq_clear_cfqq_idle_window(cfqq);
2988         }
2989 }
2990
2991 /*
2992  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2993  * no or if we aren't sure, a 1 will cause a preempt.
2994  */
2995 static bool
2996 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2997                    struct request *rq)
2998 {
2999         struct cfq_queue *cfqq;
3000
3001         cfqq = cfqd->active_queue;
3002         if (!cfqq)
3003                 return false;
3004
3005         if (cfq_class_idle(new_cfqq))
3006                 return false;
3007
3008         if (cfq_class_idle(cfqq))
3009                 return true;
3010
3011         /*
3012          * if the new request is sync, but the currently running queue is
3013          * not, let the sync request have priority.
3014          */
3015         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3016                 return true;
3017
3018         if (new_cfqq->cfqg != cfqq->cfqg)
3019                 return false;
3020
3021         if (cfq_slice_used(cfqq))
3022                 return true;
3023
3024         /* Allow preemption only if we are idling on sync-noidle tree */
3025         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3026             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3027             new_cfqq->service_tree->count == 2 &&
3028             RB_EMPTY_ROOT(&cfqq->sort_list))
3029                 return true;
3030
3031         /*
3032          * So both queues are sync. Let the new request get disk time if
3033          * it's a metadata request and the current queue is doing regular IO.
3034          */
3035         if (rq_is_meta(rq) && !cfqq->meta_pending)
3036                 return true;
3037
3038         /*
3039          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3040          */
3041         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3042                 return true;
3043
3044         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3045                 return false;
3046
3047         /*
3048          * if this request is as-good as one we would expect from the
3049          * current cfqq, let it preempt
3050          */
3051         if (cfq_rq_close(cfqd, cfqq, rq))
3052                 return true;
3053
3054         return false;
3055 }
3056
3057 /*
3058  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3059  * let it have half of its nominal slice.
3060  */
3061 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3062 {
3063         cfq_log_cfqq(cfqd, cfqq, "preempt");
3064         cfq_slice_expired(cfqd, 1);
3065
3066         /*
3067          * Put the new queue at the front of the of the current list,
3068          * so we know that it will be selected next.
3069          */
3070         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3071
3072         cfq_service_tree_add(cfqd, cfqq, 1);
3073
3074         cfqq->slice_end = 0;
3075         cfq_mark_cfqq_slice_new(cfqq);
3076 }
3077
3078 /*
3079  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3080  * something we should do about it
3081  */
3082 static void
3083 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3084                 struct request *rq)
3085 {
3086         struct cfq_io_context *cic = RQ_CIC(rq);
3087
3088         cfqd->rq_queued++;
3089         if (rq_is_meta(rq))
3090                 cfqq->meta_pending++;
3091
3092         cfq_update_io_thinktime(cfqd, cic);
3093         cfq_update_io_seektime(cfqd, cfqq, rq);
3094         cfq_update_idle_window(cfqd, cfqq, cic);
3095
3096         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3097
3098         if (cfqq == cfqd->active_queue) {
3099                 /*
3100                  * Remember that we saw a request from this process, but
3101                  * don't start queuing just yet. Otherwise we risk seeing lots
3102                  * of tiny requests, because we disrupt the normal plugging
3103                  * and merging. If the request is already larger than a single
3104                  * page, let it rip immediately. For that case we assume that
3105                  * merging is already done. Ditto for a busy system that
3106                  * has other work pending, don't risk delaying until the
3107                  * idle timer unplug to continue working.
3108                  */
3109                 if (cfq_cfqq_wait_request(cfqq)) {
3110                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3111                             cfqd->busy_queues > 1) {
3112                                 del_timer(&cfqd->idle_slice_timer);
3113                                 __blk_run_queue(cfqd->queue);
3114                         } else
3115                                 cfq_mark_cfqq_must_dispatch(cfqq);
3116                 }
3117         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3118                 /*
3119                  * not the active queue - expire current slice if it is
3120                  * idle and has expired it's mean thinktime or this new queue
3121                  * has some old slice time left and is of higher priority or
3122                  * this new queue is RT and the current one is BE
3123                  */
3124                 cfq_preempt_queue(cfqd, cfqq);
3125                 __blk_run_queue(cfqd->queue);
3126         }
3127 }
3128
3129 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3130 {
3131         struct cfq_data *cfqd = q->elevator->elevator_data;
3132         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3133
3134         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3135         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3136
3137         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3138         list_add_tail(&rq->queuelist, &cfqq->fifo);
3139         cfq_add_rq_rb(rq);
3140
3141         cfq_rq_enqueued(cfqd, cfqq, rq);
3142 }
3143
3144 /*
3145  * Update hw_tag based on peak queue depth over 50 samples under
3146  * sufficient load.
3147  */
3148 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3149 {
3150         struct cfq_queue *cfqq = cfqd->active_queue;
3151
3152         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3153                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3154
3155         if (cfqd->hw_tag == 1)
3156                 return;
3157
3158         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3159             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3160                 return;
3161
3162         /*
3163          * If active queue hasn't enough requests and can idle, cfq might not
3164          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3165          * case
3166          */
3167         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3168             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3169             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3170                 return;
3171
3172         if (cfqd->hw_tag_samples++ < 50)
3173                 return;
3174
3175         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3176                 cfqd->hw_tag = 1;
3177         else
3178                 cfqd->hw_tag = 0;
3179 }
3180
3181 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3182 {
3183         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3184         struct cfq_data *cfqd = cfqq->cfqd;
3185         const int sync = rq_is_sync(rq);
3186         unsigned long now;
3187
3188         now = jiffies;
3189         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3190
3191         cfq_update_hw_tag(cfqd);
3192
3193         WARN_ON(!cfqd->rq_in_driver[sync]);
3194         WARN_ON(!cfqq->dispatched);
3195         cfqd->rq_in_driver[sync]--;
3196         cfqq->dispatched--;
3197
3198         if (cfq_cfqq_sync(cfqq))
3199                 cfqd->sync_flight--;
3200
3201         if (sync) {
3202                 RQ_CIC(rq)->last_end_request = now;
3203                 cfqd->last_end_sync_rq = now;
3204         }
3205
3206         /*
3207          * If this is the active queue, check if it needs to be expired,
3208          * or if we want to idle in case it has no pending requests.
3209          */
3210         if (cfqd->active_queue == cfqq) {
3211                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3212
3213                 if (cfq_cfqq_slice_new(cfqq)) {
3214                         cfq_set_prio_slice(cfqd, cfqq);
3215                         cfq_clear_cfqq_slice_new(cfqq);
3216                 }
3217                 /*
3218                  * Idling is not enabled on:
3219                  * - expired queues
3220                  * - idle-priority queues
3221                  * - async queues
3222                  * - queues with still some requests queued
3223                  * - when there is a close cooperator
3224                  */
3225                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3226                         cfq_slice_expired(cfqd, 1);
3227                 else if (sync && cfqq_empty &&
3228                          !cfq_close_cooperator(cfqd, cfqq)) {
3229                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3230                         /*
3231                          * Idling is enabled for SYNC_WORKLOAD.
3232                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3233                          * only if we processed at least one !rq_noidle request
3234                          */
3235                         if (cfqd->serving_type == SYNC_WORKLOAD
3236                             || cfqd->noidle_tree_requires_idle)
3237                                 cfq_arm_slice_timer(cfqd);
3238                 }
3239         }
3240
3241         if (!rq_in_driver(cfqd))
3242                 cfq_schedule_dispatch(cfqd);
3243 }
3244
3245 /*
3246  * we temporarily boost lower priority queues if they are holding fs exclusive
3247  * resources. they are boosted to normal prio (CLASS_BE/4)
3248  */
3249 static void cfq_prio_boost(struct cfq_queue *cfqq)
3250 {
3251         if (has_fs_excl()) {
3252                 /*
3253                  * boost idle prio on transactions that would lock out other
3254                  * users of the filesystem
3255                  */
3256                 if (cfq_class_idle(cfqq))
3257                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3258                 if (cfqq->ioprio > IOPRIO_NORM)
3259                         cfqq->ioprio = IOPRIO_NORM;
3260         } else {
3261                 /*
3262                  * unboost the queue (if needed)
3263                  */
3264                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3265                 cfqq->ioprio = cfqq->org_ioprio;
3266         }
3267 }
3268
3269 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3270 {
3271         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3272                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3273                 return ELV_MQUEUE_MUST;
3274         }
3275
3276         return ELV_MQUEUE_MAY;
3277 }
3278
3279 static int cfq_may_queue(struct request_queue *q, int rw)
3280 {
3281         struct cfq_data *cfqd = q->elevator->elevator_data;
3282         struct task_struct *tsk = current;
3283         struct cfq_io_context *cic;
3284         struct cfq_queue *cfqq;
3285
3286         /*
3287          * don't force setup of a queue from here, as a call to may_queue
3288          * does not necessarily imply that a request actually will be queued.
3289          * so just lookup a possibly existing queue, or return 'may queue'
3290          * if that fails
3291          */
3292         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3293         if (!cic)
3294                 return ELV_MQUEUE_MAY;
3295
3296         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3297         if (cfqq) {
3298                 cfq_init_prio_data(cfqq, cic->ioc);
3299                 cfq_prio_boost(cfqq);
3300
3301                 return __cfq_may_queue(cfqq);
3302         }
3303
3304         return ELV_MQUEUE_MAY;
3305 }
3306
3307 /*
3308  * queue lock held here
3309  */
3310 static void cfq_put_request(struct request *rq)
3311 {
3312         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3313
3314         if (cfqq) {
3315                 const int rw = rq_data_dir(rq);
3316
3317                 BUG_ON(!cfqq->allocated[rw]);
3318                 cfqq->allocated[rw]--;
3319
3320                 put_io_context(RQ_CIC(rq)->ioc);
3321
3322                 rq->elevator_private = NULL;
3323                 rq->elevator_private2 = NULL;
3324
3325                 cfq_put_queue(cfqq);
3326         }
3327 }
3328
3329 static struct cfq_queue *
3330 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3331                 struct cfq_queue *cfqq)
3332 {
3333         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3334         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3335         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3336         cfq_put_queue(cfqq);
3337         return cic_to_cfqq(cic, 1);
3338 }
3339
3340 static int should_split_cfqq(struct cfq_queue *cfqq)
3341 {
3342         if (cfqq->seeky_start &&
3343             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3344                 return 1;
3345         return 0;
3346 }
3347
3348 /*
3349  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3350  * was the last process referring to said cfqq.
3351  */
3352 static struct cfq_queue *
3353 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3354 {
3355         if (cfqq_process_refs(cfqq) == 1) {
3356                 cfqq->seeky_start = 0;
3357                 cfqq->pid = current->pid;
3358                 cfq_clear_cfqq_coop(cfqq);
3359                 return cfqq;
3360         }
3361
3362         cic_set_cfqq(cic, NULL, 1);
3363         cfq_put_queue(cfqq);
3364         return NULL;
3365 }
3366 /*
3367  * Allocate cfq data structures associated with this request.
3368  */
3369 static int
3370 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3371 {
3372         struct cfq_data *cfqd = q->elevator->elevator_data;
3373         struct cfq_io_context *cic;
3374         const int rw = rq_data_dir(rq);
3375         const bool is_sync = rq_is_sync(rq);
3376         struct cfq_queue *cfqq;
3377         unsigned long flags;
3378
3379         might_sleep_if(gfp_mask & __GFP_WAIT);
3380
3381         cic = cfq_get_io_context(cfqd, gfp_mask);
3382
3383         spin_lock_irqsave(q->queue_lock, flags);
3384
3385         if (!cic)
3386                 goto queue_fail;
3387
3388 new_queue:
3389         cfqq = cic_to_cfqq(cic, is_sync);
3390         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3391                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3392                 cic_set_cfqq(cic, cfqq, is_sync);
3393         } else {
3394                 /*
3395                  * If the queue was seeky for too long, break it apart.
3396                  */
3397                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3398                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3399                         cfqq = split_cfqq(cic, cfqq);
3400                         if (!cfqq)
3401                                 goto new_queue;
3402                 }
3403
3404                 /*
3405                  * Check to see if this queue is scheduled to merge with
3406                  * another, closely cooperating queue.  The merging of
3407                  * queues happens here as it must be done in process context.
3408                  * The reference on new_cfqq was taken in merge_cfqqs.
3409                  */
3410                 if (cfqq->new_cfqq)
3411                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3412         }
3413
3414         cfqq->allocated[rw]++;
3415         atomic_inc(&cfqq->ref);
3416
3417         spin_unlock_irqrestore(q->queue_lock, flags);
3418
3419         rq->elevator_private = cic;
3420         rq->elevator_private2 = cfqq;
3421         return 0;
3422
3423 queue_fail:
3424         if (cic)
3425                 put_io_context(cic->ioc);
3426
3427         cfq_schedule_dispatch(cfqd);
3428         spin_unlock_irqrestore(q->queue_lock, flags);
3429         cfq_log(cfqd, "set_request fail");
3430         return 1;
3431 }
3432
3433 static void cfq_kick_queue(struct work_struct *work)
3434 {
3435         struct cfq_data *cfqd =
3436                 container_of(work, struct cfq_data, unplug_work);
3437         struct request_queue *q = cfqd->queue;
3438
3439         spin_lock_irq(q->queue_lock);
3440         __blk_run_queue(cfqd->queue);
3441         spin_unlock_irq(q->queue_lock);
3442 }
3443
3444 /*
3445  * Timer running if the active_queue is currently idling inside its time slice
3446  */
3447 static void cfq_idle_slice_timer(unsigned long data)
3448 {
3449         struct cfq_data *cfqd = (struct cfq_data *) data;
3450         struct cfq_queue *cfqq;
3451         unsigned long flags;
3452         int timed_out = 1;
3453
3454         cfq_log(cfqd, "idle timer fired");
3455
3456         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3457
3458         cfqq = cfqd->active_queue;
3459         if (cfqq) {
3460                 timed_out = 0;
3461
3462                 /*
3463                  * We saw a request before the queue expired, let it through
3464                  */
3465                 if (cfq_cfqq_must_dispatch(cfqq))
3466                         goto out_kick;
3467
3468                 /*
3469                  * expired
3470                  */
3471                 if (cfq_slice_used(cfqq))
3472                         goto expire;
3473
3474                 /*
3475                  * only expire and reinvoke request handler, if there are
3476                  * other queues with pending requests
3477                  */
3478                 if (!cfqd->busy_queues)
3479                         goto out_cont;
3480
3481                 /*
3482                  * not expired and it has a request pending, let it dispatch
3483                  */
3484                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3485                         goto out_kick;
3486
3487                 /*
3488                  * Queue depth flag is reset only when the idle didn't succeed
3489                  */
3490                 cfq_clear_cfqq_deep(cfqq);
3491         }
3492 expire:
3493         cfq_slice_expired(cfqd, timed_out);
3494 out_kick:
3495         cfq_schedule_dispatch(cfqd);
3496 out_cont:
3497         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3498 }
3499
3500 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3501 {
3502         del_timer_sync(&cfqd->idle_slice_timer);
3503         cancel_work_sync(&cfqd->unplug_work);
3504 }
3505
3506 static void cfq_put_async_queues(struct cfq_data *cfqd)
3507 {
3508         int i;
3509
3510         for (i = 0; i < IOPRIO_BE_NR; i++) {
3511                 if (cfqd->async_cfqq[0][i])
3512                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3513                 if (cfqd->async_cfqq[1][i])
3514                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3515         }
3516
3517         if (cfqd->async_idle_cfqq)
3518                 cfq_put_queue(cfqd->async_idle_cfqq);
3519 }
3520
3521 static void cfq_exit_queue(struct elevator_queue *e)
3522 {
3523         struct cfq_data *cfqd = e->elevator_data;
3524         struct request_queue *q = cfqd->queue;
3525
3526         cfq_shutdown_timer_wq(cfqd);
3527
3528         spin_lock_irq(q->queue_lock);
3529
3530         if (cfqd->active_queue)
3531                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3532
3533         while (!list_empty(&cfqd->cic_list)) {
3534                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3535                                                         struct cfq_io_context,
3536                                                         queue_list);
3537
3538                 __cfq_exit_single_io_context(cfqd, cic);
3539         }
3540
3541         cfq_put_async_queues(cfqd);
3542         cfq_release_cfq_groups(cfqd);
3543         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3544
3545         spin_unlock_irq(q->queue_lock);
3546
3547         cfq_shutdown_timer_wq(cfqd);
3548
3549         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3550         synchronize_rcu();
3551         kfree(cfqd);
3552 }
3553
3554 static void *cfq_init_queue(struct request_queue *q)
3555 {
3556         struct cfq_data *cfqd;
3557         int i, j;
3558         struct cfq_group *cfqg;
3559         struct cfq_rb_root *st;
3560
3561         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3562         if (!cfqd)
3563                 return NULL;
3564
3565         /* Init root service tree */
3566         cfqd->grp_service_tree = CFQ_RB_ROOT;
3567
3568         /* Init root group */
3569         cfqg = &cfqd->root_group;
3570         for_each_cfqg_st(cfqg, i, j, st)
3571                 *st = CFQ_RB_ROOT;
3572         RB_CLEAR_NODE(&cfqg->rb_node);
3573
3574         /* Give preference to root group over other groups */
3575         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3576
3577 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3578         /*
3579          * Take a reference to root group which we never drop. This is just
3580          * to make sure that cfq_put_cfqg() does not try to kfree root group
3581          */
3582         atomic_set(&cfqg->ref, 1);
3583         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3584                                         0);
3585 #endif
3586         /*
3587          * Not strictly needed (since RB_ROOT just clears the node and we
3588          * zeroed cfqd on alloc), but better be safe in case someone decides
3589          * to add magic to the rb code
3590          */
3591         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3592                 cfqd->prio_trees[i] = RB_ROOT;
3593
3594         /*
3595          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3596          * Grab a permanent reference to it, so that the normal code flow
3597          * will not attempt to free it.
3598          */
3599         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3600         atomic_inc(&cfqd->oom_cfqq.ref);
3601         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3602
3603         INIT_LIST_HEAD(&cfqd->cic_list);
3604
3605         cfqd->queue = q;
3606
3607         init_timer(&cfqd->idle_slice_timer);
3608         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3609         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3610
3611         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3612
3613         cfqd->cfq_quantum = cfq_quantum;
3614         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3615         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3616         cfqd->cfq_back_max = cfq_back_max;
3617         cfqd->cfq_back_penalty = cfq_back_penalty;
3618         cfqd->cfq_slice[0] = cfq_slice_async;
3619         cfqd->cfq_slice[1] = cfq_slice_sync;
3620         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3621         cfqd->cfq_slice_idle = cfq_slice_idle;
3622         cfqd->cfq_latency = 1;
3623         cfqd->hw_tag = -1;
3624         cfqd->last_end_sync_rq = jiffies;
3625         return cfqd;
3626 }
3627
3628 static void cfq_slab_kill(void)
3629 {
3630         /*
3631          * Caller already ensured that pending RCU callbacks are completed,
3632          * so we should have no busy allocations at this point.
3633          */
3634         if (cfq_pool)
3635                 kmem_cache_destroy(cfq_pool);
3636         if (cfq_ioc_pool)
3637                 kmem_cache_destroy(cfq_ioc_pool);
3638 }
3639
3640 static int __init cfq_slab_setup(void)
3641 {
3642         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3643         if (!cfq_pool)
3644                 goto fail;
3645
3646         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3647         if (!cfq_ioc_pool)
3648                 goto fail;
3649
3650         return 0;
3651 fail:
3652         cfq_slab_kill();
3653         return -ENOMEM;
3654 }
3655
3656 /*
3657  * sysfs parts below -->
3658  */
3659 static ssize_t
3660 cfq_var_show(unsigned int var, char *page)
3661 {
3662         return sprintf(page, "%d\n", var);
3663 }
3664
3665 static ssize_t
3666 cfq_var_store(unsigned int *var, const char *page, size_t count)
3667 {
3668         char *p = (char *) page;
3669
3670         *var = simple_strtoul(p, &p, 10);
3671         return count;
3672 }
3673
3674 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3675 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3676 {                                                                       \
3677         struct cfq_data *cfqd = e->elevator_data;                       \
3678         unsigned int __data = __VAR;                                    \
3679         if (__CONV)                                                     \
3680                 __data = jiffies_to_msecs(__data);                      \
3681         return cfq_var_show(__data, (page));                            \
3682 }
3683 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3684 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3685 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3686 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3687 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3688 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3689 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3690 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3691 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3692 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3693 #undef SHOW_FUNCTION
3694
3695 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3696 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3697 {                                                                       \
3698         struct cfq_data *cfqd = e->elevator_data;                       \
3699         unsigned int __data;                                            \
3700         int ret = cfq_var_store(&__data, (page), count);                \
3701         if (__data < (MIN))                                             \
3702                 __data = (MIN);                                         \
3703         else if (__data > (MAX))                                        \
3704                 __data = (MAX);                                         \
3705         if (__CONV)                                                     \
3706                 *(__PTR) = msecs_to_jiffies(__data);                    \
3707         else                                                            \
3708                 *(__PTR) = __data;                                      \
3709         return ret;                                                     \
3710 }
3711 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3712 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3713                 UINT_MAX, 1);
3714 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3715                 UINT_MAX, 1);
3716 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3717 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3718                 UINT_MAX, 0);
3719 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3720 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3721 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3722 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3723                 UINT_MAX, 0);
3724 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3725 #undef STORE_FUNCTION
3726
3727 #define CFQ_ATTR(name) \
3728         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3729
3730 static struct elv_fs_entry cfq_attrs[] = {
3731         CFQ_ATTR(quantum),
3732         CFQ_ATTR(fifo_expire_sync),
3733         CFQ_ATTR(fifo_expire_async),
3734         CFQ_ATTR(back_seek_max),
3735         CFQ_ATTR(back_seek_penalty),
3736         CFQ_ATTR(slice_sync),
3737         CFQ_ATTR(slice_async),
3738         CFQ_ATTR(slice_async_rq),
3739         CFQ_ATTR(slice_idle),
3740         CFQ_ATTR(low_latency),
3741         __ATTR_NULL
3742 };
3743
3744 static struct elevator_type iosched_cfq = {
3745         .ops = {
3746                 .elevator_merge_fn =            cfq_merge,
3747                 .elevator_merged_fn =           cfq_merged_request,
3748                 .elevator_merge_req_fn =        cfq_merged_requests,
3749                 .elevator_allow_merge_fn =      cfq_allow_merge,
3750                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3751                 .elevator_add_req_fn =          cfq_insert_request,
3752                 .elevator_activate_req_fn =     cfq_activate_request,
3753                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3754                 .elevator_queue_empty_fn =      cfq_queue_empty,
3755                 .elevator_completed_req_fn =    cfq_completed_request,
3756                 .elevator_former_req_fn =       elv_rb_former_request,
3757                 .elevator_latter_req_fn =       elv_rb_latter_request,
3758                 .elevator_set_req_fn =          cfq_set_request,
3759                 .elevator_put_req_fn =          cfq_put_request,
3760                 .elevator_may_queue_fn =        cfq_may_queue,
3761                 .elevator_init_fn =             cfq_init_queue,
3762                 .elevator_exit_fn =             cfq_exit_queue,
3763                 .trim =                         cfq_free_io_context,
3764         },
3765         .elevator_attrs =       cfq_attrs,
3766         .elevator_name =        "cfq",
3767         .elevator_owner =       THIS_MODULE,
3768 };
3769
3770 static int __init cfq_init(void)
3771 {
3772         /*
3773          * could be 0 on HZ < 1000 setups
3774          */
3775         if (!cfq_slice_async)
3776                 cfq_slice_async = 1;
3777         if (!cfq_slice_idle)
3778                 cfq_slice_idle = 1;
3779
3780         if (cfq_slab_setup())
3781                 return -ENOMEM;
3782
3783         elv_register(&iosched_cfq);
3784
3785         return 0;
3786 }
3787
3788 static void __exit cfq_exit(void)
3789 {
3790         DECLARE_COMPLETION_ONSTACK(all_gone);
3791         elv_unregister(&iosched_cfq);
3792         ioc_gone = &all_gone;
3793         /* ioc_gone's update must be visible before reading ioc_count */
3794         smp_wmb();
3795
3796         /*
3797          * this also protects us from entering cfq_slab_kill() with
3798          * pending RCU callbacks
3799          */
3800         if (elv_ioc_count_read(cfq_ioc_count))
3801                 wait_for_completion(&all_gone);
3802         cfq_slab_kill();
3803 }
3804
3805 module_init(cfq_init);
3806 module_exit(cfq_exit);
3807
3808 MODULE_AUTHOR("Jens Axboe");
3809 MODULE_LICENSE("GPL");
3810 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");