cfq-iosched: get rid of ->cur_rr and ->cfq_list
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17  * tunables
18  */
19 static const int cfq_quantum = 4;               /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 /*
30  * grace period before allowing idle class to get disk access
31  */
32 #define CFQ_IDLE_GRACE          (HZ / 10)
33
34 /*
35  * below this threshold, we consider thinktime immediate
36  */
37 #define CFQ_MIN_TT              (2)
38
39 #define CFQ_SLICE_SCALE         (5)
40
41 #define CFQ_KEY_ASYNC           (0)
42
43 /*
44  * for the hash of cfqq inside the cfqd
45  */
46 #define CFQ_QHASH_SHIFT         6
47 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
48
49 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
50 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
51
52 static struct kmem_cache *cfq_pool;
53 static struct kmem_cache *cfq_ioc_pool;
54
55 static DEFINE_PER_CPU(unsigned long, ioc_count);
56 static struct completion *ioc_gone;
57
58 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
59 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
60 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
61
62 #define ASYNC                   (0)
63 #define SYNC                    (1)
64
65 #define cfq_cfqq_sync(cfqq)     ((cfqq)->key != CFQ_KEY_ASYNC)
66
67 #define sample_valid(samples)   ((samples) > 80)
68
69 /*
70  * Most of our rbtree usage is for sorting with min extraction, so
71  * if we cache the leftmost node we don't have to walk down the tree
72  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73  * move this into the elevator for the rq sorting as well.
74  */
75 struct cfq_rb_root {
76         struct rb_root rb;
77         struct rb_node *left;
78 };
79 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
80
81 /*
82  * Per block device queue structure
83  */
84 struct cfq_data {
85         request_queue_t *queue;
86
87         /*
88          * rr list of queues with requests and the count of them
89          */
90         struct cfq_rb_root service_tree;
91         unsigned int busy_queues;
92
93         /*
94          * cfqq lookup hash
95          */
96         struct hlist_head *cfq_hash;
97
98         int rq_in_driver;
99         int hw_tag;
100
101         /*
102          * idle window management
103          */
104         struct timer_list idle_slice_timer;
105         struct work_struct unplug_work;
106
107         struct cfq_queue *active_queue;
108         struct cfq_io_context *active_cic;
109         unsigned int dispatch_slice;
110
111         struct timer_list idle_class_timer;
112
113         sector_t last_position;
114         unsigned long last_end_request;
115
116         /*
117          * tunables, see top of file
118          */
119         unsigned int cfq_quantum;
120         unsigned int cfq_fifo_expire[2];
121         unsigned int cfq_back_penalty;
122         unsigned int cfq_back_max;
123         unsigned int cfq_slice[2];
124         unsigned int cfq_slice_async_rq;
125         unsigned int cfq_slice_idle;
126
127         struct list_head cic_list;
128
129         sector_t new_seek_mean;
130         u64 new_seek_total;
131 };
132
133 /*
134  * Per process-grouping structure
135  */
136 struct cfq_queue {
137         /* reference count */
138         atomic_t ref;
139         /* parent cfq_data */
140         struct cfq_data *cfqd;
141         /* cfqq lookup hash */
142         struct hlist_node cfq_hash;
143         /* hash key */
144         unsigned int key;
145         /* service_tree member */
146         struct rb_node rb_node;
147         /* service_tree key */
148         unsigned long rb_key;
149         /* sorted list of pending requests */
150         struct rb_root sort_list;
151         /* if fifo isn't expired, next request to serve */
152         struct request *next_rq;
153         /* requests queued in sort_list */
154         int queued[2];
155         /* currently allocated requests */
156         int allocated[2];
157         /* pending metadata requests */
158         int meta_pending;
159         /* fifo list of requests in sort_list */
160         struct list_head fifo;
161
162         unsigned long slice_end;
163         long slice_resid;
164
165         /* number of requests that are on the dispatch list or inside driver */
166         int dispatched;
167
168         /* io prio of this group */
169         unsigned short ioprio, org_ioprio;
170         unsigned short ioprio_class, org_ioprio_class;
171
172         /* various state flags, see below */
173         unsigned int flags;
174
175         sector_t last_request_pos;
176 };
177
178 enum cfqq_state_flags {
179         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
180         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
181         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
182         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
183         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
184         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
185         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
186         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
187         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
188         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
189 };
190
191 #define CFQ_CFQQ_FNS(name)                                              \
192 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
193 {                                                                       \
194         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
195 }                                                                       \
196 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
197 {                                                                       \
198         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
199 }                                                                       \
200 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
201 {                                                                       \
202         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
203 }
204
205 CFQ_CFQQ_FNS(on_rr);
206 CFQ_CFQQ_FNS(wait_request);
207 CFQ_CFQQ_FNS(must_alloc);
208 CFQ_CFQQ_FNS(must_alloc_slice);
209 CFQ_CFQQ_FNS(must_dispatch);
210 CFQ_CFQQ_FNS(fifo_expire);
211 CFQ_CFQQ_FNS(idle_window);
212 CFQ_CFQQ_FNS(prio_changed);
213 CFQ_CFQQ_FNS(queue_new);
214 CFQ_CFQQ_FNS(slice_new);
215 #undef CFQ_CFQQ_FNS
216
217 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
218 static void cfq_dispatch_insert(request_queue_t *, struct request *);
219 static struct cfq_queue *cfq_get_queue(struct cfq_data *, unsigned int, struct task_struct *, gfp_t);
220
221 /*
222  * scheduler run of queue, if there are requests pending and no one in the
223  * driver that will restart queueing
224  */
225 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
226 {
227         if (cfqd->busy_queues)
228                 kblockd_schedule_work(&cfqd->unplug_work);
229 }
230
231 static int cfq_queue_empty(request_queue_t *q)
232 {
233         struct cfq_data *cfqd = q->elevator->elevator_data;
234
235         return !cfqd->busy_queues;
236 }
237
238 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
239 {
240         /*
241          * Use the per-process queue, for read requests and syncronous writes
242          */
243         if (!(rw & REQ_RW) || is_sync)
244                 return task->pid;
245
246         return CFQ_KEY_ASYNC;
247 }
248
249 /*
250  * Scale schedule slice based on io priority. Use the sync time slice only
251  * if a queue is marked sync and has sync io queued. A sync queue with async
252  * io only, should not get full sync slice length.
253  */
254 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
255                                  unsigned short prio)
256 {
257         const int base_slice = cfqd->cfq_slice[sync];
258
259         WARN_ON(prio >= IOPRIO_BE_NR);
260
261         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
262 }
263
264 static inline int
265 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
266 {
267         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
268 }
269
270 static inline void
271 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
272 {
273         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
274 }
275
276 /*
277  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
278  * isn't valid until the first request from the dispatch is activated
279  * and the slice time set.
280  */
281 static inline int cfq_slice_used(struct cfq_queue *cfqq)
282 {
283         if (cfq_cfqq_slice_new(cfqq))
284                 return 0;
285         if (time_before(jiffies, cfqq->slice_end))
286                 return 0;
287
288         return 1;
289 }
290
291 /*
292  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
293  * We choose the request that is closest to the head right now. Distance
294  * behind the head is penalized and only allowed to a certain extent.
295  */
296 static struct request *
297 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
298 {
299         sector_t last, s1, s2, d1 = 0, d2 = 0;
300         unsigned long back_max;
301 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
302 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
303         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
304
305         if (rq1 == NULL || rq1 == rq2)
306                 return rq2;
307         if (rq2 == NULL)
308                 return rq1;
309
310         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
311                 return rq1;
312         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
313                 return rq2;
314         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
315                 return rq1;
316         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
317                 return rq2;
318
319         s1 = rq1->sector;
320         s2 = rq2->sector;
321
322         last = cfqd->last_position;
323
324         /*
325          * by definition, 1KiB is 2 sectors
326          */
327         back_max = cfqd->cfq_back_max * 2;
328
329         /*
330          * Strict one way elevator _except_ in the case where we allow
331          * short backward seeks which are biased as twice the cost of a
332          * similar forward seek.
333          */
334         if (s1 >= last)
335                 d1 = s1 - last;
336         else if (s1 + back_max >= last)
337                 d1 = (last - s1) * cfqd->cfq_back_penalty;
338         else
339                 wrap |= CFQ_RQ1_WRAP;
340
341         if (s2 >= last)
342                 d2 = s2 - last;
343         else if (s2 + back_max >= last)
344                 d2 = (last - s2) * cfqd->cfq_back_penalty;
345         else
346                 wrap |= CFQ_RQ2_WRAP;
347
348         /* Found required data */
349
350         /*
351          * By doing switch() on the bit mask "wrap" we avoid having to
352          * check two variables for all permutations: --> faster!
353          */
354         switch (wrap) {
355         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
356                 if (d1 < d2)
357                         return rq1;
358                 else if (d2 < d1)
359                         return rq2;
360                 else {
361                         if (s1 >= s2)
362                                 return rq1;
363                         else
364                                 return rq2;
365                 }
366
367         case CFQ_RQ2_WRAP:
368                 return rq1;
369         case CFQ_RQ1_WRAP:
370                 return rq2;
371         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
372         default:
373                 /*
374                  * Since both rqs are wrapped,
375                  * start with the one that's further behind head
376                  * (--> only *one* back seek required),
377                  * since back seek takes more time than forward.
378                  */
379                 if (s1 <= s2)
380                         return rq1;
381                 else
382                         return rq2;
383         }
384 }
385
386 /*
387  * The below is leftmost cache rbtree addon
388  */
389 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
390 {
391         if (!root->left)
392                 root->left = rb_first(&root->rb);
393
394         return root->left;
395 }
396
397 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
398 {
399         if (root->left == n)
400                 root->left = NULL;
401
402         rb_erase(n, &root->rb);
403         RB_CLEAR_NODE(n);
404 }
405
406 /*
407  * would be nice to take fifo expire time into account as well
408  */
409 static struct request *
410 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
411                   struct request *last)
412 {
413         struct rb_node *rbnext = rb_next(&last->rb_node);
414         struct rb_node *rbprev = rb_prev(&last->rb_node);
415         struct request *next = NULL, *prev = NULL;
416
417         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
418
419         if (rbprev)
420                 prev = rb_entry_rq(rbprev);
421
422         if (rbnext)
423                 next = rb_entry_rq(rbnext);
424         else {
425                 rbnext = rb_first(&cfqq->sort_list);
426                 if (rbnext && rbnext != &last->rb_node)
427                         next = rb_entry_rq(rbnext);
428         }
429
430         return cfq_choose_req(cfqd, next, prev);
431 }
432
433 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
434                                       struct cfq_queue *cfqq)
435 {
436         /*
437          * just an approximation, should be ok.
438          */
439         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
440                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
441 }
442
443 /*
444  * The cfqd->service_tree holds all pending cfq_queue's that have
445  * requests waiting to be processed. It is sorted in the order that
446  * we will service the queues.
447  */
448 static void cfq_service_tree_add(struct cfq_data *cfqd,
449                                     struct cfq_queue *cfqq, int add_front)
450 {
451         struct rb_node **p = &cfqd->service_tree.rb.rb_node;
452         struct rb_node *parent = NULL;
453         unsigned long rb_key;
454         int left;
455
456         if (!add_front) {
457                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
458                 rb_key += cfqq->slice_resid;
459                 cfqq->slice_resid = 0;
460         } else
461                 rb_key = 0;
462
463         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
464                 /*
465                  * same position, nothing more to do
466                  */
467                 if (rb_key == cfqq->rb_key)
468                         return;
469
470                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
471         }
472
473         left = 1;
474         while (*p) {
475                 struct cfq_queue *__cfqq;
476                 struct rb_node **n;
477
478                 parent = *p;
479                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
480
481                 /*
482                  * sort RT queues first, we always want to give
483                  * preference to them. IDLE queues goes to the back.
484                  * after that, sort on the next service time.
485                  */
486                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
487                         n = &(*p)->rb_left;
488                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
489                         n = &(*p)->rb_right;
490                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
491                         n = &(*p)->rb_left;
492                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
493                         n = &(*p)->rb_right;
494                 else if (rb_key < __cfqq->rb_key)
495                         n = &(*p)->rb_left;
496                 else
497                         n = &(*p)->rb_right;
498
499                 if (n == &(*p)->rb_right)
500                         left = 0;
501
502                 p = n;
503         }
504
505         if (left)
506                 cfqd->service_tree.left = &cfqq->rb_node;
507
508         cfqq->rb_key = rb_key;
509         rb_link_node(&cfqq->rb_node, parent, p);
510         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
511 }
512
513 /*
514  * Update cfqq's position in the service tree.
515  */
516 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
517 {
518         /*
519          * Resorting requires the cfqq to be on the RR list already.
520          */
521         if (cfq_cfqq_on_rr(cfqq))
522                 cfq_service_tree_add(cfqd, cfqq, 0);
523 }
524
525 /*
526  * add to busy list of queues for service, trying to be fair in ordering
527  * the pending list according to last request service
528  */
529 static inline void
530 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
531 {
532         BUG_ON(cfq_cfqq_on_rr(cfqq));
533         cfq_mark_cfqq_on_rr(cfqq);
534         cfqd->busy_queues++;
535
536         cfq_resort_rr_list(cfqd, cfqq);
537 }
538
539 /*
540  * Called when the cfqq no longer has requests pending, remove it from
541  * the service tree.
542  */
543 static inline void
544 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
545 {
546         BUG_ON(!cfq_cfqq_on_rr(cfqq));
547         cfq_clear_cfqq_on_rr(cfqq);
548
549         if (!RB_EMPTY_NODE(&cfqq->rb_node))
550                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
551
552         BUG_ON(!cfqd->busy_queues);
553         cfqd->busy_queues--;
554 }
555
556 /*
557  * rb tree support functions
558  */
559 static inline void cfq_del_rq_rb(struct request *rq)
560 {
561         struct cfq_queue *cfqq = RQ_CFQQ(rq);
562         struct cfq_data *cfqd = cfqq->cfqd;
563         const int sync = rq_is_sync(rq);
564
565         BUG_ON(!cfqq->queued[sync]);
566         cfqq->queued[sync]--;
567
568         elv_rb_del(&cfqq->sort_list, rq);
569
570         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
571                 cfq_del_cfqq_rr(cfqd, cfqq);
572 }
573
574 static void cfq_add_rq_rb(struct request *rq)
575 {
576         struct cfq_queue *cfqq = RQ_CFQQ(rq);
577         struct cfq_data *cfqd = cfqq->cfqd;
578         struct request *__alias;
579
580         cfqq->queued[rq_is_sync(rq)]++;
581
582         /*
583          * looks a little odd, but the first insert might return an alias.
584          * if that happens, put the alias on the dispatch list
585          */
586         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
587                 cfq_dispatch_insert(cfqd->queue, __alias);
588
589         if (!cfq_cfqq_on_rr(cfqq))
590                 cfq_add_cfqq_rr(cfqd, cfqq);
591
592         /*
593          * check if this request is a better next-serve candidate
594          */
595         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
596         BUG_ON(!cfqq->next_rq);
597 }
598
599 static inline void
600 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
601 {
602         elv_rb_del(&cfqq->sort_list, rq);
603         cfqq->queued[rq_is_sync(rq)]--;
604         cfq_add_rq_rb(rq);
605 }
606
607 static struct request *
608 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
609 {
610         struct task_struct *tsk = current;
611         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
612         struct cfq_queue *cfqq;
613
614         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
615         if (cfqq) {
616                 sector_t sector = bio->bi_sector + bio_sectors(bio);
617
618                 return elv_rb_find(&cfqq->sort_list, sector);
619         }
620
621         return NULL;
622 }
623
624 static void cfq_activate_request(request_queue_t *q, struct request *rq)
625 {
626         struct cfq_data *cfqd = q->elevator->elevator_data;
627
628         cfqd->rq_in_driver++;
629
630         /*
631          * If the depth is larger 1, it really could be queueing. But lets
632          * make the mark a little higher - idling could still be good for
633          * low queueing, and a low queueing number could also just indicate
634          * a SCSI mid layer like behaviour where limit+1 is often seen.
635          */
636         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
637                 cfqd->hw_tag = 1;
638
639         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
640 }
641
642 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
643 {
644         struct cfq_data *cfqd = q->elevator->elevator_data;
645
646         WARN_ON(!cfqd->rq_in_driver);
647         cfqd->rq_in_driver--;
648 }
649
650 static void cfq_remove_request(struct request *rq)
651 {
652         struct cfq_queue *cfqq = RQ_CFQQ(rq);
653
654         if (cfqq->next_rq == rq)
655                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
656
657         list_del_init(&rq->queuelist);
658         cfq_del_rq_rb(rq);
659
660         if (rq_is_meta(rq)) {
661                 WARN_ON(!cfqq->meta_pending);
662                 cfqq->meta_pending--;
663         }
664 }
665
666 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
667 {
668         struct cfq_data *cfqd = q->elevator->elevator_data;
669         struct request *__rq;
670
671         __rq = cfq_find_rq_fmerge(cfqd, bio);
672         if (__rq && elv_rq_merge_ok(__rq, bio)) {
673                 *req = __rq;
674                 return ELEVATOR_FRONT_MERGE;
675         }
676
677         return ELEVATOR_NO_MERGE;
678 }
679
680 static void cfq_merged_request(request_queue_t *q, struct request *req,
681                                int type)
682 {
683         if (type == ELEVATOR_FRONT_MERGE) {
684                 struct cfq_queue *cfqq = RQ_CFQQ(req);
685
686                 cfq_reposition_rq_rb(cfqq, req);
687         }
688 }
689
690 static void
691 cfq_merged_requests(request_queue_t *q, struct request *rq,
692                     struct request *next)
693 {
694         /*
695          * reposition in fifo if next is older than rq
696          */
697         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
698             time_before(next->start_time, rq->start_time))
699                 list_move(&rq->queuelist, &next->queuelist);
700
701         cfq_remove_request(next);
702 }
703
704 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
705                            struct bio *bio)
706 {
707         struct cfq_data *cfqd = q->elevator->elevator_data;
708         const int rw = bio_data_dir(bio);
709         struct cfq_queue *cfqq;
710         pid_t key;
711
712         /*
713          * Disallow merge of a sync bio into an async request.
714          */
715         if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
716                 return 0;
717
718         /*
719          * Lookup the cfqq that this bio will be queued with. Allow
720          * merge only if rq is queued there.
721          */
722         key = cfq_queue_pid(current, rw, bio_sync(bio));
723         cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
724
725         if (cfqq == RQ_CFQQ(rq))
726                 return 1;
727
728         return 0;
729 }
730
731 static inline void
732 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
733 {
734         if (cfqq) {
735                 /*
736                  * stop potential idle class queues waiting service
737                  */
738                 del_timer(&cfqd->idle_class_timer);
739
740                 cfqq->slice_end = 0;
741                 cfq_clear_cfqq_must_alloc_slice(cfqq);
742                 cfq_clear_cfqq_fifo_expire(cfqq);
743                 cfq_mark_cfqq_slice_new(cfqq);
744                 cfq_clear_cfqq_queue_new(cfqq);
745         }
746
747         cfqd->active_queue = cfqq;
748 }
749
750 /*
751  * current cfqq expired its slice (or was too idle), select new one
752  */
753 static void
754 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
755                     int preempted, int timed_out)
756 {
757         if (cfq_cfqq_wait_request(cfqq))
758                 del_timer(&cfqd->idle_slice_timer);
759
760         cfq_clear_cfqq_must_dispatch(cfqq);
761         cfq_clear_cfqq_wait_request(cfqq);
762
763         /*
764          * store what was left of this slice, if the queue idled out
765          * or was preempted
766          */
767         if (timed_out && !cfq_cfqq_slice_new(cfqq))
768                 cfqq->slice_resid = cfqq->slice_end - jiffies;
769
770         cfq_resort_rr_list(cfqd, cfqq);
771
772         if (cfqq == cfqd->active_queue)
773                 cfqd->active_queue = NULL;
774
775         if (cfqd->active_cic) {
776                 put_io_context(cfqd->active_cic->ioc);
777                 cfqd->active_cic = NULL;
778         }
779
780         cfqd->dispatch_slice = 0;
781 }
782
783 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted,
784                                      int timed_out)
785 {
786         struct cfq_queue *cfqq = cfqd->active_queue;
787
788         if (cfqq)
789                 __cfq_slice_expired(cfqd, cfqq, preempted, timed_out);
790 }
791
792 /*
793  * Get next queue for service. Unless we have a queue preemption,
794  * we'll simply select the first cfqq in the service tree.
795  */
796 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
797 {
798         struct cfq_queue *cfqq;
799         struct rb_node *n;
800
801         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
802                 return NULL;
803
804         n = cfq_rb_first(&cfqd->service_tree);
805         cfqq = rb_entry(n, struct cfq_queue, rb_node);
806
807         if (cfq_class_idle(cfqq)) {
808                 unsigned long end;
809
810                 /*
811                  * if we have idle queues and no rt or be queues had
812                  * pending requests, either allow immediate service if
813                  * the grace period has passed or arm the idle grace
814                  * timer
815                  */
816                 end = cfqd->last_end_request + CFQ_IDLE_GRACE;
817                 if (time_before(jiffies, end)) {
818                         mod_timer(&cfqd->idle_class_timer, end);
819                         cfqq = NULL;
820                 }
821         }
822
823         return cfqq;
824 }
825
826 /*
827  * Get and set a new active queue for service.
828  */
829 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
830 {
831         struct cfq_queue *cfqq;
832
833         cfqq = cfq_get_next_queue(cfqd);
834         __cfq_set_active_queue(cfqd, cfqq);
835         return cfqq;
836 }
837
838 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
839                                           struct request *rq)
840 {
841         if (rq->sector >= cfqd->last_position)
842                 return rq->sector - cfqd->last_position;
843         else
844                 return cfqd->last_position - rq->sector;
845 }
846
847 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
848 {
849         struct cfq_io_context *cic = cfqd->active_cic;
850
851         if (!sample_valid(cic->seek_samples))
852                 return 0;
853
854         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
855 }
856
857 static int cfq_close_cooperator(struct cfq_data *cfq_data,
858                                 struct cfq_queue *cfqq)
859 {
860         /*
861          * We should notice if some of the queues are cooperating, eg
862          * working closely on the same area of the disk. In that case,
863          * we can group them together and don't waste time idling.
864          */
865         return 0;
866 }
867
868 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
869
870 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
871 {
872         struct cfq_queue *cfqq = cfqd->active_queue;
873         struct cfq_io_context *cic;
874         unsigned long sl;
875
876         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
877         WARN_ON(cfq_cfqq_slice_new(cfqq));
878
879         /*
880          * idle is disabled, either manually or by past process history
881          */
882         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
883                 return;
884
885         /*
886          * task has exited, don't wait
887          */
888         cic = cfqd->active_cic;
889         if (!cic || !cic->ioc->task)
890                 return;
891
892         /*
893          * See if this prio level has a good candidate
894          */
895         if (cfq_close_cooperator(cfqd, cfqq) &&
896             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
897                 return;
898
899         cfq_mark_cfqq_must_dispatch(cfqq);
900         cfq_mark_cfqq_wait_request(cfqq);
901
902         /*
903          * we don't want to idle for seeks, but we do want to allow
904          * fair distribution of slice time for a process doing back-to-back
905          * seeks. so allow a little bit of time for him to submit a new rq
906          */
907         sl = cfqd->cfq_slice_idle;
908         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
909                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
910
911         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
912 }
913
914 /*
915  * Move request from internal lists to the request queue dispatch list.
916  */
917 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
918 {
919         struct cfq_queue *cfqq = RQ_CFQQ(rq);
920
921         cfq_remove_request(rq);
922         cfqq->dispatched++;
923         elv_dispatch_sort(q, rq);
924 }
925
926 /*
927  * return expired entry, or NULL to just start from scratch in rbtree
928  */
929 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
930 {
931         struct cfq_data *cfqd = cfqq->cfqd;
932         struct request *rq;
933         int fifo;
934
935         if (cfq_cfqq_fifo_expire(cfqq))
936                 return NULL;
937
938         cfq_mark_cfqq_fifo_expire(cfqq);
939
940         if (list_empty(&cfqq->fifo))
941                 return NULL;
942
943         fifo = cfq_cfqq_sync(cfqq);
944         rq = rq_entry_fifo(cfqq->fifo.next);
945
946         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
947                 return NULL;
948
949         return rq;
950 }
951
952 static inline int
953 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
954 {
955         const int base_rq = cfqd->cfq_slice_async_rq;
956
957         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
958
959         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
960 }
961
962 /*
963  * Select a queue for service. If we have a current active queue,
964  * check whether to continue servicing it, or retrieve and set a new one.
965  */
966 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
967 {
968         struct cfq_queue *cfqq;
969
970         cfqq = cfqd->active_queue;
971         if (!cfqq)
972                 goto new_queue;
973
974         /*
975          * The active queue has run out of time, expire it and select new.
976          */
977         if (cfq_slice_used(cfqq))
978                 goto expire;
979
980         /*
981          * The active queue has requests and isn't expired, allow it to
982          * dispatch.
983          */
984         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
985                 goto keep_queue;
986
987         /*
988          * No requests pending. If the active queue still has requests in
989          * flight or is idling for a new request, allow either of these
990          * conditions to happen (or time out) before selecting a new queue.
991          */
992         if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
993                 cfqq = NULL;
994                 goto keep_queue;
995         }
996
997 expire:
998         cfq_slice_expired(cfqd, 0, 0);
999 new_queue:
1000         cfqq = cfq_set_active_queue(cfqd);
1001 keep_queue:
1002         return cfqq;
1003 }
1004
1005 /*
1006  * Dispatch some requests from cfqq, moving them to the request queue
1007  * dispatch list.
1008  */
1009 static int
1010 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1011                         int max_dispatch)
1012 {
1013         int dispatched = 0;
1014
1015         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1016
1017         do {
1018                 struct request *rq;
1019
1020                 /*
1021                  * follow expired path, else get first next available
1022                  */
1023                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1024                         rq = cfqq->next_rq;
1025
1026                 /*
1027                  * finally, insert request into driver dispatch list
1028                  */
1029                 cfq_dispatch_insert(cfqd->queue, rq);
1030
1031                 cfqd->dispatch_slice++;
1032                 dispatched++;
1033
1034                 if (!cfqd->active_cic) {
1035                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1036                         cfqd->active_cic = RQ_CIC(rq);
1037                 }
1038
1039                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1040                         break;
1041
1042         } while (dispatched < max_dispatch);
1043
1044         /*
1045          * expire an async queue immediately if it has used up its slice. idle
1046          * queue always expire after 1 dispatch round.
1047          */
1048         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1049             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1050             cfq_class_idle(cfqq))) {
1051                 cfqq->slice_end = jiffies + 1;
1052                 cfq_slice_expired(cfqd, 0, 0);
1053         }
1054
1055         return dispatched;
1056 }
1057
1058 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1059 {
1060         int dispatched = 0;
1061
1062         while (cfqq->next_rq) {
1063                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1064                 dispatched++;
1065         }
1066
1067         BUG_ON(!list_empty(&cfqq->fifo));
1068         return dispatched;
1069 }
1070
1071 /*
1072  * Drain our current requests. Used for barriers and when switching
1073  * io schedulers on-the-fly.
1074  */
1075 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1076 {
1077         int dispatched = 0;
1078         struct rb_node *n;
1079
1080         while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1081                 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1082
1083                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1084         }
1085
1086         cfq_slice_expired(cfqd, 0, 0);
1087
1088         BUG_ON(cfqd->busy_queues);
1089
1090         return dispatched;
1091 }
1092
1093 static int cfq_dispatch_requests(request_queue_t *q, int force)
1094 {
1095         struct cfq_data *cfqd = q->elevator->elevator_data;
1096         struct cfq_queue *cfqq;
1097         int dispatched;
1098
1099         if (!cfqd->busy_queues)
1100                 return 0;
1101
1102         if (unlikely(force))
1103                 return cfq_forced_dispatch(cfqd);
1104
1105         dispatched = 0;
1106         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1107                 int max_dispatch;
1108
1109                 if (cfqd->busy_queues > 1) {
1110                         /*
1111                          * So we have dispatched before in this round, if the
1112                          * next queue has idling enabled (must be sync), don't
1113                          * allow it service until the previous have completed.
1114                          */
1115                         if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1116                             dispatched)
1117                                 break;
1118                         if (cfqq->dispatched >= cfqd->cfq_quantum)
1119                                 break;
1120                 }
1121
1122                 cfq_clear_cfqq_must_dispatch(cfqq);
1123                 cfq_clear_cfqq_wait_request(cfqq);
1124                 del_timer(&cfqd->idle_slice_timer);
1125
1126                 max_dispatch = cfqd->cfq_quantum;
1127                 if (cfq_class_idle(cfqq))
1128                         max_dispatch = 1;
1129
1130                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1131         }
1132
1133         return dispatched;
1134 }
1135
1136 /*
1137  * task holds one reference to the queue, dropped when task exits. each rq
1138  * in-flight on this queue also holds a reference, dropped when rq is freed.
1139  *
1140  * queue lock must be held here.
1141  */
1142 static void cfq_put_queue(struct cfq_queue *cfqq)
1143 {
1144         struct cfq_data *cfqd = cfqq->cfqd;
1145
1146         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1147
1148         if (!atomic_dec_and_test(&cfqq->ref))
1149                 return;
1150
1151         BUG_ON(rb_first(&cfqq->sort_list));
1152         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1153         BUG_ON(cfq_cfqq_on_rr(cfqq));
1154
1155         if (unlikely(cfqd->active_queue == cfqq)) {
1156                 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1157                 cfq_schedule_dispatch(cfqd);
1158         }
1159
1160         /*
1161          * it's on the empty list and still hashed
1162          */
1163         hlist_del(&cfqq->cfq_hash);
1164         kmem_cache_free(cfq_pool, cfqq);
1165 }
1166
1167 static struct cfq_queue *
1168 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1169                     const int hashval)
1170 {
1171         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1172         struct hlist_node *entry;
1173         struct cfq_queue *__cfqq;
1174
1175         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1176                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1177
1178                 if (__cfqq->key == key && (__p == prio || !prio))
1179                         return __cfqq;
1180         }
1181
1182         return NULL;
1183 }
1184
1185 static struct cfq_queue *
1186 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1187 {
1188         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1189 }
1190
1191 static void cfq_free_io_context(struct io_context *ioc)
1192 {
1193         struct cfq_io_context *__cic;
1194         struct rb_node *n;
1195         int freed = 0;
1196
1197         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1198                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1199                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1200                 kmem_cache_free(cfq_ioc_pool, __cic);
1201                 freed++;
1202         }
1203
1204         elv_ioc_count_mod(ioc_count, -freed);
1205
1206         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1207                 complete(ioc_gone);
1208 }
1209
1210 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1211 {
1212         if (unlikely(cfqq == cfqd->active_queue)) {
1213                 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1214                 cfq_schedule_dispatch(cfqd);
1215         }
1216
1217         cfq_put_queue(cfqq);
1218 }
1219
1220 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1221                                          struct cfq_io_context *cic)
1222 {
1223         list_del_init(&cic->queue_list);
1224         smp_wmb();
1225         cic->key = NULL;
1226
1227         if (cic->cfqq[ASYNC]) {
1228                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1229                 cic->cfqq[ASYNC] = NULL;
1230         }
1231
1232         if (cic->cfqq[SYNC]) {
1233                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1234                 cic->cfqq[SYNC] = NULL;
1235         }
1236 }
1237
1238 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1239 {
1240         struct cfq_data *cfqd = cic->key;
1241
1242         if (cfqd) {
1243                 request_queue_t *q = cfqd->queue;
1244
1245                 spin_lock_irq(q->queue_lock);
1246                 __cfq_exit_single_io_context(cfqd, cic);
1247                 spin_unlock_irq(q->queue_lock);
1248         }
1249 }
1250
1251 /*
1252  * The process that ioc belongs to has exited, we need to clean up
1253  * and put the internal structures we have that belongs to that process.
1254  */
1255 static void cfq_exit_io_context(struct io_context *ioc)
1256 {
1257         struct cfq_io_context *__cic;
1258         struct rb_node *n;
1259
1260         /*
1261          * put the reference this task is holding to the various queues
1262          */
1263
1264         n = rb_first(&ioc->cic_root);
1265         while (n != NULL) {
1266                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1267
1268                 cfq_exit_single_io_context(__cic);
1269                 n = rb_next(n);
1270         }
1271 }
1272
1273 static struct cfq_io_context *
1274 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1275 {
1276         struct cfq_io_context *cic;
1277
1278         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1279         if (cic) {
1280                 memset(cic, 0, sizeof(*cic));
1281                 cic->last_end_request = jiffies;
1282                 INIT_LIST_HEAD(&cic->queue_list);
1283                 cic->dtor = cfq_free_io_context;
1284                 cic->exit = cfq_exit_io_context;
1285                 elv_ioc_count_inc(ioc_count);
1286         }
1287
1288         return cic;
1289 }
1290
1291 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1292 {
1293         struct task_struct *tsk = current;
1294         int ioprio_class;
1295
1296         if (!cfq_cfqq_prio_changed(cfqq))
1297                 return;
1298
1299         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1300         switch (ioprio_class) {
1301                 default:
1302                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1303                 case IOPRIO_CLASS_NONE:
1304                         /*
1305                          * no prio set, place us in the middle of the BE classes
1306                          */
1307                         cfqq->ioprio = task_nice_ioprio(tsk);
1308                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1309                         break;
1310                 case IOPRIO_CLASS_RT:
1311                         cfqq->ioprio = task_ioprio(tsk);
1312                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1313                         break;
1314                 case IOPRIO_CLASS_BE:
1315                         cfqq->ioprio = task_ioprio(tsk);
1316                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1317                         break;
1318                 case IOPRIO_CLASS_IDLE:
1319                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1320                         cfqq->ioprio = 7;
1321                         cfq_clear_cfqq_idle_window(cfqq);
1322                         break;
1323         }
1324
1325         /*
1326          * keep track of original prio settings in case we have to temporarily
1327          * elevate the priority of this queue
1328          */
1329         cfqq->org_ioprio = cfqq->ioprio;
1330         cfqq->org_ioprio_class = cfqq->ioprio_class;
1331         cfq_clear_cfqq_prio_changed(cfqq);
1332 }
1333
1334 static inline void changed_ioprio(struct cfq_io_context *cic)
1335 {
1336         struct cfq_data *cfqd = cic->key;
1337         struct cfq_queue *cfqq;
1338         unsigned long flags;
1339
1340         if (unlikely(!cfqd))
1341                 return;
1342
1343         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1344
1345         cfqq = cic->cfqq[ASYNC];
1346         if (cfqq) {
1347                 struct cfq_queue *new_cfqq;
1348                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1349                                          GFP_ATOMIC);
1350                 if (new_cfqq) {
1351                         cic->cfqq[ASYNC] = new_cfqq;
1352                         cfq_put_queue(cfqq);
1353                 }
1354         }
1355
1356         cfqq = cic->cfqq[SYNC];
1357         if (cfqq)
1358                 cfq_mark_cfqq_prio_changed(cfqq);
1359
1360         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1361 }
1362
1363 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1364 {
1365         struct cfq_io_context *cic;
1366         struct rb_node *n;
1367
1368         ioc->ioprio_changed = 0;
1369
1370         n = rb_first(&ioc->cic_root);
1371         while (n != NULL) {
1372                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1373
1374                 changed_ioprio(cic);
1375                 n = rb_next(n);
1376         }
1377 }
1378
1379 static struct cfq_queue *
1380 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1381               gfp_t gfp_mask)
1382 {
1383         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1384         struct cfq_queue *cfqq, *new_cfqq = NULL;
1385         unsigned short ioprio;
1386
1387 retry:
1388         ioprio = tsk->ioprio;
1389         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1390
1391         if (!cfqq) {
1392                 if (new_cfqq) {
1393                         cfqq = new_cfqq;
1394                         new_cfqq = NULL;
1395                 } else if (gfp_mask & __GFP_WAIT) {
1396                         /*
1397                          * Inform the allocator of the fact that we will
1398                          * just repeat this allocation if it fails, to allow
1399                          * the allocator to do whatever it needs to attempt to
1400                          * free memory.
1401                          */
1402                         spin_unlock_irq(cfqd->queue->queue_lock);
1403                         new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1404                         spin_lock_irq(cfqd->queue->queue_lock);
1405                         goto retry;
1406                 } else {
1407                         cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1408                         if (!cfqq)
1409                                 goto out;
1410                 }
1411
1412                 memset(cfqq, 0, sizeof(*cfqq));
1413
1414                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1415                 RB_CLEAR_NODE(&cfqq->rb_node);
1416                 INIT_LIST_HEAD(&cfqq->fifo);
1417
1418                 cfqq->key = key;
1419                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1420                 atomic_set(&cfqq->ref, 0);
1421                 cfqq->cfqd = cfqd;
1422
1423                 if (key != CFQ_KEY_ASYNC)
1424                         cfq_mark_cfqq_idle_window(cfqq);
1425
1426                 cfq_mark_cfqq_prio_changed(cfqq);
1427                 cfq_mark_cfqq_queue_new(cfqq);
1428                 cfq_init_prio_data(cfqq);
1429         }
1430
1431         if (new_cfqq)
1432                 kmem_cache_free(cfq_pool, new_cfqq);
1433
1434         atomic_inc(&cfqq->ref);
1435 out:
1436         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1437         return cfqq;
1438 }
1439
1440 /*
1441  * We drop cfq io contexts lazily, so we may find a dead one.
1442  */
1443 static void
1444 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1445 {
1446         WARN_ON(!list_empty(&cic->queue_list));
1447         rb_erase(&cic->rb_node, &ioc->cic_root);
1448         kmem_cache_free(cfq_ioc_pool, cic);
1449         elv_ioc_count_dec(ioc_count);
1450 }
1451
1452 static struct cfq_io_context *
1453 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1454 {
1455         struct rb_node *n;
1456         struct cfq_io_context *cic;
1457         void *k, *key = cfqd;
1458
1459 restart:
1460         n = ioc->cic_root.rb_node;
1461         while (n) {
1462                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1463                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1464                 k = cic->key;
1465                 if (unlikely(!k)) {
1466                         cfq_drop_dead_cic(ioc, cic);
1467                         goto restart;
1468                 }
1469
1470                 if (key < k)
1471                         n = n->rb_left;
1472                 else if (key > k)
1473                         n = n->rb_right;
1474                 else
1475                         return cic;
1476         }
1477
1478         return NULL;
1479 }
1480
1481 static inline void
1482 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1483              struct cfq_io_context *cic)
1484 {
1485         struct rb_node **p;
1486         struct rb_node *parent;
1487         struct cfq_io_context *__cic;
1488         unsigned long flags;
1489         void *k;
1490
1491         cic->ioc = ioc;
1492         cic->key = cfqd;
1493
1494 restart:
1495         parent = NULL;
1496         p = &ioc->cic_root.rb_node;
1497         while (*p) {
1498                 parent = *p;
1499                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1500                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1501                 k = __cic->key;
1502                 if (unlikely(!k)) {
1503                         cfq_drop_dead_cic(ioc, __cic);
1504                         goto restart;
1505                 }
1506
1507                 if (cic->key < k)
1508                         p = &(*p)->rb_left;
1509                 else if (cic->key > k)
1510                         p = &(*p)->rb_right;
1511                 else
1512                         BUG();
1513         }
1514
1515         rb_link_node(&cic->rb_node, parent, p);
1516         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1517
1518         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1519         list_add(&cic->queue_list, &cfqd->cic_list);
1520         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1521 }
1522
1523 /*
1524  * Setup general io context and cfq io context. There can be several cfq
1525  * io contexts per general io context, if this process is doing io to more
1526  * than one device managed by cfq.
1527  */
1528 static struct cfq_io_context *
1529 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1530 {
1531         struct io_context *ioc = NULL;
1532         struct cfq_io_context *cic;
1533
1534         might_sleep_if(gfp_mask & __GFP_WAIT);
1535
1536         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1537         if (!ioc)
1538                 return NULL;
1539
1540         cic = cfq_cic_rb_lookup(cfqd, ioc);
1541         if (cic)
1542                 goto out;
1543
1544         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1545         if (cic == NULL)
1546                 goto err;
1547
1548         cfq_cic_link(cfqd, ioc, cic);
1549 out:
1550         smp_read_barrier_depends();
1551         if (unlikely(ioc->ioprio_changed))
1552                 cfq_ioc_set_ioprio(ioc);
1553
1554         return cic;
1555 err:
1556         put_io_context(ioc);
1557         return NULL;
1558 }
1559
1560 static void
1561 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1562 {
1563         unsigned long elapsed = jiffies - cic->last_end_request;
1564         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1565
1566         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1567         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1568         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1569 }
1570
1571 static void
1572 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1573                        struct request *rq)
1574 {
1575         sector_t sdist;
1576         u64 total;
1577
1578         if (cic->last_request_pos < rq->sector)
1579                 sdist = rq->sector - cic->last_request_pos;
1580         else
1581                 sdist = cic->last_request_pos - rq->sector;
1582
1583         if (!cic->seek_samples) {
1584                 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1585                 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1586         }
1587
1588         /*
1589          * Don't allow the seek distance to get too large from the
1590          * odd fragment, pagein, etc
1591          */
1592         if (cic->seek_samples <= 60) /* second&third seek */
1593                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1594         else
1595                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1596
1597         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1598         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1599         total = cic->seek_total + (cic->seek_samples/2);
1600         do_div(total, cic->seek_samples);
1601         cic->seek_mean = (sector_t)total;
1602 }
1603
1604 /*
1605  * Disable idle window if the process thinks too long or seeks so much that
1606  * it doesn't matter
1607  */
1608 static void
1609 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1610                        struct cfq_io_context *cic)
1611 {
1612         int enable_idle = cfq_cfqq_idle_window(cfqq);
1613
1614         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1615             (cfqd->hw_tag && CIC_SEEKY(cic)))
1616                 enable_idle = 0;
1617         else if (sample_valid(cic->ttime_samples)) {
1618                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1619                         enable_idle = 0;
1620                 else
1621                         enable_idle = 1;
1622         }
1623
1624         if (enable_idle)
1625                 cfq_mark_cfqq_idle_window(cfqq);
1626         else
1627                 cfq_clear_cfqq_idle_window(cfqq);
1628 }
1629
1630 /*
1631  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1632  * no or if we aren't sure, a 1 will cause a preempt.
1633  */
1634 static int
1635 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1636                    struct request *rq)
1637 {
1638         struct cfq_queue *cfqq;
1639
1640         cfqq = cfqd->active_queue;
1641         if (!cfqq)
1642                 return 0;
1643
1644         if (cfq_slice_used(cfqq))
1645                 return 1;
1646
1647         if (cfq_class_idle(new_cfqq))
1648                 return 0;
1649
1650         if (cfq_class_idle(cfqq))
1651                 return 1;
1652
1653         /*
1654          * if the new request is sync, but the currently running queue is
1655          * not, let the sync request have priority.
1656          */
1657         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1658                 return 1;
1659
1660         /*
1661          * So both queues are sync. Let the new request get disk time if
1662          * it's a metadata request and the current queue is doing regular IO.
1663          */
1664         if (rq_is_meta(rq) && !cfqq->meta_pending)
1665                 return 1;
1666
1667         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1668                 return 0;
1669
1670         /*
1671          * if this request is as-good as one we would expect from the
1672          * current cfqq, let it preempt
1673          */
1674         if (cfq_rq_close(cfqd, rq))
1675                 return 1;
1676
1677         return 0;
1678 }
1679
1680 /*
1681  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1682  * let it have half of its nominal slice.
1683  */
1684 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1685 {
1686         cfq_slice_expired(cfqd, 1, 1);
1687
1688         /*
1689          * Put the new queue at the front of the of the current list,
1690          * so we know that it will be selected next.
1691          */
1692         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1693
1694         cfq_service_tree_add(cfqd, cfqq, 1);
1695
1696         cfqq->slice_end = 0;
1697         cfq_mark_cfqq_slice_new(cfqq);
1698 }
1699
1700 /*
1701  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1702  * something we should do about it
1703  */
1704 static void
1705 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1706                 struct request *rq)
1707 {
1708         struct cfq_io_context *cic = RQ_CIC(rq);
1709
1710         if (rq_is_meta(rq))
1711                 cfqq->meta_pending++;
1712
1713         cfq_update_io_thinktime(cfqd, cic);
1714         cfq_update_io_seektime(cfqd, cic, rq);
1715         cfq_update_idle_window(cfqd, cfqq, cic);
1716
1717         cic->last_request_pos = rq->sector + rq->nr_sectors;
1718         cfqq->last_request_pos = cic->last_request_pos;
1719
1720         if (cfqq == cfqd->active_queue) {
1721                 /*
1722                  * if we are waiting for a request for this queue, let it rip
1723                  * immediately and flag that we must not expire this queue
1724                  * just now
1725                  */
1726                 if (cfq_cfqq_wait_request(cfqq)) {
1727                         cfq_mark_cfqq_must_dispatch(cfqq);
1728                         del_timer(&cfqd->idle_slice_timer);
1729                         blk_start_queueing(cfqd->queue);
1730                 }
1731         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1732                 /*
1733                  * not the active queue - expire current slice if it is
1734                  * idle and has expired it's mean thinktime or this new queue
1735                  * has some old slice time left and is of higher priority
1736                  */
1737                 cfq_preempt_queue(cfqd, cfqq);
1738                 cfq_mark_cfqq_must_dispatch(cfqq);
1739                 blk_start_queueing(cfqd->queue);
1740         }
1741 }
1742
1743 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1744 {
1745         struct cfq_data *cfqd = q->elevator->elevator_data;
1746         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1747
1748         cfq_init_prio_data(cfqq);
1749
1750         cfq_add_rq_rb(rq);
1751
1752         list_add_tail(&rq->queuelist, &cfqq->fifo);
1753
1754         cfq_rq_enqueued(cfqd, cfqq, rq);
1755 }
1756
1757 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1758 {
1759         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1760         struct cfq_data *cfqd = cfqq->cfqd;
1761         const int sync = rq_is_sync(rq);
1762         unsigned long now;
1763
1764         now = jiffies;
1765
1766         WARN_ON(!cfqd->rq_in_driver);
1767         WARN_ON(!cfqq->dispatched);
1768         cfqd->rq_in_driver--;
1769         cfqq->dispatched--;
1770
1771         if (!cfq_class_idle(cfqq))
1772                 cfqd->last_end_request = now;
1773
1774         if (sync)
1775                 RQ_CIC(rq)->last_end_request = now;
1776
1777         /*
1778          * If this is the active queue, check if it needs to be expired,
1779          * or if we want to idle in case it has no pending requests.
1780          */
1781         if (cfqd->active_queue == cfqq) {
1782                 if (cfq_cfqq_slice_new(cfqq)) {
1783                         cfq_set_prio_slice(cfqd, cfqq);
1784                         cfq_clear_cfqq_slice_new(cfqq);
1785                 }
1786                 if (cfq_slice_used(cfqq))
1787                         cfq_slice_expired(cfqd, 0, 1);
1788                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1789                         cfq_arm_slice_timer(cfqd);
1790         }
1791
1792         if (!cfqd->rq_in_driver)
1793                 cfq_schedule_dispatch(cfqd);
1794 }
1795
1796 /*
1797  * we temporarily boost lower priority queues if they are holding fs exclusive
1798  * resources. they are boosted to normal prio (CLASS_BE/4)
1799  */
1800 static void cfq_prio_boost(struct cfq_queue *cfqq)
1801 {
1802         if (has_fs_excl()) {
1803                 /*
1804                  * boost idle prio on transactions that would lock out other
1805                  * users of the filesystem
1806                  */
1807                 if (cfq_class_idle(cfqq))
1808                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1809                 if (cfqq->ioprio > IOPRIO_NORM)
1810                         cfqq->ioprio = IOPRIO_NORM;
1811         } else {
1812                 /*
1813                  * check if we need to unboost the queue
1814                  */
1815                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1816                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1817                 if (cfqq->ioprio != cfqq->org_ioprio)
1818                         cfqq->ioprio = cfqq->org_ioprio;
1819         }
1820 }
1821
1822 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1823 {
1824         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1825             !cfq_cfqq_must_alloc_slice(cfqq)) {
1826                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1827                 return ELV_MQUEUE_MUST;
1828         }
1829
1830         return ELV_MQUEUE_MAY;
1831 }
1832
1833 static int cfq_may_queue(request_queue_t *q, int rw)
1834 {
1835         struct cfq_data *cfqd = q->elevator->elevator_data;
1836         struct task_struct *tsk = current;
1837         struct cfq_queue *cfqq;
1838         unsigned int key;
1839
1840         key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1841
1842         /*
1843          * don't force setup of a queue from here, as a call to may_queue
1844          * does not necessarily imply that a request actually will be queued.
1845          * so just lookup a possibly existing queue, or return 'may queue'
1846          * if that fails
1847          */
1848         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1849         if (cfqq) {
1850                 cfq_init_prio_data(cfqq);
1851                 cfq_prio_boost(cfqq);
1852
1853                 return __cfq_may_queue(cfqq);
1854         }
1855
1856         return ELV_MQUEUE_MAY;
1857 }
1858
1859 /*
1860  * queue lock held here
1861  */
1862 static void cfq_put_request(struct request *rq)
1863 {
1864         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1865
1866         if (cfqq) {
1867                 const int rw = rq_data_dir(rq);
1868
1869                 BUG_ON(!cfqq->allocated[rw]);
1870                 cfqq->allocated[rw]--;
1871
1872                 put_io_context(RQ_CIC(rq)->ioc);
1873
1874                 rq->elevator_private = NULL;
1875                 rq->elevator_private2 = NULL;
1876
1877                 cfq_put_queue(cfqq);
1878         }
1879 }
1880
1881 /*
1882  * Allocate cfq data structures associated with this request.
1883  */
1884 static int
1885 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1886 {
1887         struct cfq_data *cfqd = q->elevator->elevator_data;
1888         struct task_struct *tsk = current;
1889         struct cfq_io_context *cic;
1890         const int rw = rq_data_dir(rq);
1891         const int is_sync = rq_is_sync(rq);
1892         pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1893         struct cfq_queue *cfqq;
1894         unsigned long flags;
1895
1896         might_sleep_if(gfp_mask & __GFP_WAIT);
1897
1898         cic = cfq_get_io_context(cfqd, gfp_mask);
1899
1900         spin_lock_irqsave(q->queue_lock, flags);
1901
1902         if (!cic)
1903                 goto queue_fail;
1904
1905         if (!cic->cfqq[is_sync]) {
1906                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1907                 if (!cfqq)
1908                         goto queue_fail;
1909
1910                 cic->cfqq[is_sync] = cfqq;
1911         } else
1912                 cfqq = cic->cfqq[is_sync];
1913
1914         cfqq->allocated[rw]++;
1915         cfq_clear_cfqq_must_alloc(cfqq);
1916         atomic_inc(&cfqq->ref);
1917
1918         spin_unlock_irqrestore(q->queue_lock, flags);
1919
1920         rq->elevator_private = cic;
1921         rq->elevator_private2 = cfqq;
1922         return 0;
1923
1924 queue_fail:
1925         if (cic)
1926                 put_io_context(cic->ioc);
1927
1928         cfq_schedule_dispatch(cfqd);
1929         spin_unlock_irqrestore(q->queue_lock, flags);
1930         return 1;
1931 }
1932
1933 static void cfq_kick_queue(struct work_struct *work)
1934 {
1935         struct cfq_data *cfqd =
1936                 container_of(work, struct cfq_data, unplug_work);
1937         request_queue_t *q = cfqd->queue;
1938         unsigned long flags;
1939
1940         spin_lock_irqsave(q->queue_lock, flags);
1941         blk_start_queueing(q);
1942         spin_unlock_irqrestore(q->queue_lock, flags);
1943 }
1944
1945 /*
1946  * Timer running if the active_queue is currently idling inside its time slice
1947  */
1948 static void cfq_idle_slice_timer(unsigned long data)
1949 {
1950         struct cfq_data *cfqd = (struct cfq_data *) data;
1951         struct cfq_queue *cfqq;
1952         unsigned long flags;
1953         int timed_out = 1;
1954
1955         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1956
1957         if ((cfqq = cfqd->active_queue) != NULL) {
1958                 timed_out = 0;
1959
1960                 /*
1961                  * expired
1962                  */
1963                 if (cfq_slice_used(cfqq))
1964                         goto expire;
1965
1966                 /*
1967                  * only expire and reinvoke request handler, if there are
1968                  * other queues with pending requests
1969                  */
1970                 if (!cfqd->busy_queues)
1971                         goto out_cont;
1972
1973                 /*
1974                  * not expired and it has a request pending, let it dispatch
1975                  */
1976                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1977                         cfq_mark_cfqq_must_dispatch(cfqq);
1978                         goto out_kick;
1979                 }
1980         }
1981 expire:
1982         cfq_slice_expired(cfqd, 0, timed_out);
1983 out_kick:
1984         cfq_schedule_dispatch(cfqd);
1985 out_cont:
1986         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1987 }
1988
1989 /*
1990  * Timer running if an idle class queue is waiting for service
1991  */
1992 static void cfq_idle_class_timer(unsigned long data)
1993 {
1994         struct cfq_data *cfqd = (struct cfq_data *) data;
1995         unsigned long flags, end;
1996
1997         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1998
1999         /*
2000          * race with a non-idle queue, reset timer
2001          */
2002         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2003         if (!time_after_eq(jiffies, end))
2004                 mod_timer(&cfqd->idle_class_timer, end);
2005         else
2006                 cfq_schedule_dispatch(cfqd);
2007
2008         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2009 }
2010
2011 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2012 {
2013         del_timer_sync(&cfqd->idle_slice_timer);
2014         del_timer_sync(&cfqd->idle_class_timer);
2015         blk_sync_queue(cfqd->queue);
2016 }
2017
2018 static void cfq_exit_queue(elevator_t *e)
2019 {
2020         struct cfq_data *cfqd = e->elevator_data;
2021         request_queue_t *q = cfqd->queue;
2022
2023         cfq_shutdown_timer_wq(cfqd);
2024
2025         spin_lock_irq(q->queue_lock);
2026
2027         if (cfqd->active_queue)
2028                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, 0);
2029
2030         while (!list_empty(&cfqd->cic_list)) {
2031                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2032                                                         struct cfq_io_context,
2033                                                         queue_list);
2034
2035                 __cfq_exit_single_io_context(cfqd, cic);
2036         }
2037
2038         spin_unlock_irq(q->queue_lock);
2039
2040         cfq_shutdown_timer_wq(cfqd);
2041
2042         kfree(cfqd->cfq_hash);
2043         kfree(cfqd);
2044 }
2045
2046 static void *cfq_init_queue(request_queue_t *q)
2047 {
2048         struct cfq_data *cfqd;
2049         int i;
2050
2051         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2052         if (!cfqd)
2053                 return NULL;
2054
2055         memset(cfqd, 0, sizeof(*cfqd));
2056
2057         cfqd->service_tree = CFQ_RB_ROOT;
2058         INIT_LIST_HEAD(&cfqd->cic_list);
2059
2060         cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2061         if (!cfqd->cfq_hash)
2062                 goto out_free;
2063
2064         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2065                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2066
2067         cfqd->queue = q;
2068
2069         init_timer(&cfqd->idle_slice_timer);
2070         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2071         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2072
2073         init_timer(&cfqd->idle_class_timer);
2074         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2075         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2076
2077         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2078
2079         cfqd->cfq_quantum = cfq_quantum;
2080         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2081         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2082         cfqd->cfq_back_max = cfq_back_max;
2083         cfqd->cfq_back_penalty = cfq_back_penalty;
2084         cfqd->cfq_slice[0] = cfq_slice_async;
2085         cfqd->cfq_slice[1] = cfq_slice_sync;
2086         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2087         cfqd->cfq_slice_idle = cfq_slice_idle;
2088
2089         return cfqd;
2090 out_free:
2091         kfree(cfqd);
2092         return NULL;
2093 }
2094
2095 static void cfq_slab_kill(void)
2096 {
2097         if (cfq_pool)
2098                 kmem_cache_destroy(cfq_pool);
2099         if (cfq_ioc_pool)
2100                 kmem_cache_destroy(cfq_ioc_pool);
2101 }
2102
2103 static int __init cfq_slab_setup(void)
2104 {
2105         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2106                                         NULL, NULL);
2107         if (!cfq_pool)
2108                 goto fail;
2109
2110         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2111                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2112         if (!cfq_ioc_pool)
2113                 goto fail;
2114
2115         return 0;
2116 fail:
2117         cfq_slab_kill();
2118         return -ENOMEM;
2119 }
2120
2121 /*
2122  * sysfs parts below -->
2123  */
2124 static ssize_t
2125 cfq_var_show(unsigned int var, char *page)
2126 {
2127         return sprintf(page, "%d\n", var);
2128 }
2129
2130 static ssize_t
2131 cfq_var_store(unsigned int *var, const char *page, size_t count)
2132 {
2133         char *p = (char *) page;
2134
2135         *var = simple_strtoul(p, &p, 10);
2136         return count;
2137 }
2138
2139 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2140 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2141 {                                                                       \
2142         struct cfq_data *cfqd = e->elevator_data;                       \
2143         unsigned int __data = __VAR;                                    \
2144         if (__CONV)                                                     \
2145                 __data = jiffies_to_msecs(__data);                      \
2146         return cfq_var_show(__data, (page));                            \
2147 }
2148 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2149 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2150 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2151 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2152 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2153 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2154 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2155 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2156 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2157 #undef SHOW_FUNCTION
2158
2159 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2160 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2161 {                                                                       \
2162         struct cfq_data *cfqd = e->elevator_data;                       \
2163         unsigned int __data;                                            \
2164         int ret = cfq_var_store(&__data, (page), count);                \
2165         if (__data < (MIN))                                             \
2166                 __data = (MIN);                                         \
2167         else if (__data > (MAX))                                        \
2168                 __data = (MAX);                                         \
2169         if (__CONV)                                                     \
2170                 *(__PTR) = msecs_to_jiffies(__data);                    \
2171         else                                                            \
2172                 *(__PTR) = __data;                                      \
2173         return ret;                                                     \
2174 }
2175 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2176 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2177 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2178 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2179 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2180 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2181 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2182 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2183 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2184 #undef STORE_FUNCTION
2185
2186 #define CFQ_ATTR(name) \
2187         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2188
2189 static struct elv_fs_entry cfq_attrs[] = {
2190         CFQ_ATTR(quantum),
2191         CFQ_ATTR(fifo_expire_sync),
2192         CFQ_ATTR(fifo_expire_async),
2193         CFQ_ATTR(back_seek_max),
2194         CFQ_ATTR(back_seek_penalty),
2195         CFQ_ATTR(slice_sync),
2196         CFQ_ATTR(slice_async),
2197         CFQ_ATTR(slice_async_rq),
2198         CFQ_ATTR(slice_idle),
2199         __ATTR_NULL
2200 };
2201
2202 static struct elevator_type iosched_cfq = {
2203         .ops = {
2204                 .elevator_merge_fn =            cfq_merge,
2205                 .elevator_merged_fn =           cfq_merged_request,
2206                 .elevator_merge_req_fn =        cfq_merged_requests,
2207                 .elevator_allow_merge_fn =      cfq_allow_merge,
2208                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2209                 .elevator_add_req_fn =          cfq_insert_request,
2210                 .elevator_activate_req_fn =     cfq_activate_request,
2211                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2212                 .elevator_queue_empty_fn =      cfq_queue_empty,
2213                 .elevator_completed_req_fn =    cfq_completed_request,
2214                 .elevator_former_req_fn =       elv_rb_former_request,
2215                 .elevator_latter_req_fn =       elv_rb_latter_request,
2216                 .elevator_set_req_fn =          cfq_set_request,
2217                 .elevator_put_req_fn =          cfq_put_request,
2218                 .elevator_may_queue_fn =        cfq_may_queue,
2219                 .elevator_init_fn =             cfq_init_queue,
2220                 .elevator_exit_fn =             cfq_exit_queue,
2221                 .trim =                         cfq_free_io_context,
2222         },
2223         .elevator_attrs =       cfq_attrs,
2224         .elevator_name =        "cfq",
2225         .elevator_owner =       THIS_MODULE,
2226 };
2227
2228 static int __init cfq_init(void)
2229 {
2230         int ret;
2231
2232         /*
2233          * could be 0 on HZ < 1000 setups
2234          */
2235         if (!cfq_slice_async)
2236                 cfq_slice_async = 1;
2237         if (!cfq_slice_idle)
2238                 cfq_slice_idle = 1;
2239
2240         if (cfq_slab_setup())
2241                 return -ENOMEM;
2242
2243         ret = elv_register(&iosched_cfq);
2244         if (ret)
2245                 cfq_slab_kill();
2246
2247         return ret;
2248 }
2249
2250 static void __exit cfq_exit(void)
2251 {
2252         DECLARE_COMPLETION_ONSTACK(all_gone);
2253         elv_unregister(&iosched_cfq);
2254         ioc_gone = &all_gone;
2255         /* ioc_gone's update must be visible before reading ioc_count */
2256         smp_wmb();
2257         if (elv_ioc_count_read(ioc_count))
2258                 wait_for_completion(ioc_gone);
2259         synchronize_rcu();
2260         cfq_slab_kill();
2261 }
2262
2263 module_init(cfq_init);
2264 module_exit(cfq_exit);
2265
2266 MODULE_AUTHOR("Jens Axboe");
2267 MODULE_LICENSE("GPL");
2268 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");