cfq-iosched: fix think time allowed for seekers
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples)   ((samples) > 80)
60
61 /*
62  * Most of our rbtree usage is for sorting with min extraction, so
63  * if we cache the leftmost node we don't have to walk down the tree
64  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65  * move this into the elevator for the rq sorting as well.
66  */
67 struct cfq_rb_root {
68         struct rb_root rb;
69         struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74  * Per process-grouping structure
75  */
76 struct cfq_queue {
77         /* reference count */
78         atomic_t ref;
79         /* various state flags, see below */
80         unsigned int flags;
81         /* parent cfq_data */
82         struct cfq_data *cfqd;
83         /* service_tree member */
84         struct rb_node rb_node;
85         /* service_tree key */
86         unsigned long rb_key;
87         /* prio tree member */
88         struct rb_node p_node;
89         /* prio tree root we belong to, if any */
90         struct rb_root *p_root;
91         /* sorted list of pending requests */
92         struct rb_root sort_list;
93         /* if fifo isn't expired, next request to serve */
94         struct request *next_rq;
95         /* requests queued in sort_list */
96         int queued[2];
97         /* currently allocated requests */
98         int allocated[2];
99         /* fifo list of requests in sort_list */
100         struct list_head fifo;
101
102         unsigned long slice_end;
103         long slice_resid;
104         unsigned int slice_dispatch;
105
106         /* pending metadata requests */
107         int meta_pending;
108         /* number of requests that are on the dispatch list or inside driver */
109         int dispatched;
110
111         /* io prio of this group */
112         unsigned short ioprio, org_ioprio;
113         unsigned short ioprio_class, org_ioprio_class;
114
115         pid_t pid;
116 };
117
118 /*
119  * Per block device queue structure
120  */
121 struct cfq_data {
122         struct request_queue *queue;
123
124         /*
125          * rr list of queues with requests and the count of them
126          */
127         struct cfq_rb_root service_tree;
128
129         /*
130          * Each priority tree is sorted by next_request position.  These
131          * trees are used when determining if two or more queues are
132          * interleaving requests (see cfq_close_cooperator).
133          */
134         struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136         unsigned int busy_queues;
137
138         int rq_in_driver[2];
139         int sync_flight;
140
141         /*
142          * queue-depth detection
143          */
144         int rq_queued;
145         int hw_tag;
146         int hw_tag_samples;
147         int rq_in_driver_peak;
148
149         /*
150          * idle window management
151          */
152         struct timer_list idle_slice_timer;
153         struct work_struct unplug_work;
154
155         struct cfq_queue *active_queue;
156         struct cfq_io_context *active_cic;
157
158         /*
159          * async queue for each priority case
160          */
161         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162         struct cfq_queue *async_idle_cfqq;
163
164         sector_t last_position;
165
166         /*
167          * tunables, see top of file
168          */
169         unsigned int cfq_quantum;
170         unsigned int cfq_fifo_expire[2];
171         unsigned int cfq_back_penalty;
172         unsigned int cfq_back_max;
173         unsigned int cfq_slice[2];
174         unsigned int cfq_slice_async_rq;
175         unsigned int cfq_slice_idle;
176         unsigned int cfq_latency;
177
178         struct list_head cic_list;
179
180         /*
181          * Fallback dummy cfqq for extreme OOM conditions
182          */
183         struct cfq_queue oom_cfqq;
184
185         unsigned long last_end_sync_rq;
186 };
187
188 enum cfqq_state_flags {
189         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
190         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
191         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
192         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
193         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
194         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
195         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
196         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
197         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
198         CFQ_CFQQ_FLAG_coop,             /* has done a coop jump of the queue */
199 };
200
201 #define CFQ_CFQQ_FNS(name)                                              \
202 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
203 {                                                                       \
204         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
205 }                                                                       \
206 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
207 {                                                                       \
208         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
209 }                                                                       \
210 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
211 {                                                                       \
212         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
213 }
214
215 CFQ_CFQQ_FNS(on_rr);
216 CFQ_CFQQ_FNS(wait_request);
217 CFQ_CFQQ_FNS(must_dispatch);
218 CFQ_CFQQ_FNS(must_alloc_slice);
219 CFQ_CFQQ_FNS(fifo_expire);
220 CFQ_CFQQ_FNS(idle_window);
221 CFQ_CFQQ_FNS(prio_changed);
222 CFQ_CFQQ_FNS(slice_new);
223 CFQ_CFQQ_FNS(sync);
224 CFQ_CFQQ_FNS(coop);
225 #undef CFQ_CFQQ_FNS
226
227 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
228         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229 #define cfq_log(cfqd, fmt, args...)     \
230         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
232 static void cfq_dispatch_insert(struct request_queue *, struct request *);
233 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
234                                        struct io_context *, gfp_t);
235 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
236                                                 struct io_context *);
237
238 static inline int rq_in_driver(struct cfq_data *cfqd)
239 {
240         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
241 }
242
243 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
244                                             int is_sync)
245 {
246         return cic->cfqq[!!is_sync];
247 }
248
249 static inline void cic_set_cfqq(struct cfq_io_context *cic,
250                                 struct cfq_queue *cfqq, int is_sync)
251 {
252         cic->cfqq[!!is_sync] = cfqq;
253 }
254
255 /*
256  * We regard a request as SYNC, if it's either a read or has the SYNC bit
257  * set (in which case it could also be direct WRITE).
258  */
259 static inline int cfq_bio_sync(struct bio *bio)
260 {
261         if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
262                 return 1;
263
264         return 0;
265 }
266
267 /*
268  * scheduler run of queue, if there are requests pending and no one in the
269  * driver that will restart queueing
270  */
271 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
272 {
273         if (cfqd->busy_queues) {
274                 cfq_log(cfqd, "schedule dispatch");
275                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
276         }
277 }
278
279 static int cfq_queue_empty(struct request_queue *q)
280 {
281         struct cfq_data *cfqd = q->elevator->elevator_data;
282
283         return !cfqd->busy_queues;
284 }
285
286 /*
287  * Scale schedule slice based on io priority. Use the sync time slice only
288  * if a queue is marked sync and has sync io queued. A sync queue with async
289  * io only, should not get full sync slice length.
290  */
291 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
292                                  unsigned short prio)
293 {
294         const int base_slice = cfqd->cfq_slice[sync];
295
296         WARN_ON(prio >= IOPRIO_BE_NR);
297
298         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
299 }
300
301 static inline int
302 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
303 {
304         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
305 }
306
307 static inline void
308 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
309 {
310         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
311         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
312 }
313
314 /*
315  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
316  * isn't valid until the first request from the dispatch is activated
317  * and the slice time set.
318  */
319 static inline int cfq_slice_used(struct cfq_queue *cfqq)
320 {
321         if (cfq_cfqq_slice_new(cfqq))
322                 return 0;
323         if (time_before(jiffies, cfqq->slice_end))
324                 return 0;
325
326         return 1;
327 }
328
329 /*
330  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
331  * We choose the request that is closest to the head right now. Distance
332  * behind the head is penalized and only allowed to a certain extent.
333  */
334 static struct request *
335 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
336 {
337         sector_t last, s1, s2, d1 = 0, d2 = 0;
338         unsigned long back_max;
339 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
340 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
341         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
342
343         if (rq1 == NULL || rq1 == rq2)
344                 return rq2;
345         if (rq2 == NULL)
346                 return rq1;
347
348         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
349                 return rq1;
350         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
351                 return rq2;
352         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
353                 return rq1;
354         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
355                 return rq2;
356
357         s1 = blk_rq_pos(rq1);
358         s2 = blk_rq_pos(rq2);
359
360         last = cfqd->last_position;
361
362         /*
363          * by definition, 1KiB is 2 sectors
364          */
365         back_max = cfqd->cfq_back_max * 2;
366
367         /*
368          * Strict one way elevator _except_ in the case where we allow
369          * short backward seeks which are biased as twice the cost of a
370          * similar forward seek.
371          */
372         if (s1 >= last)
373                 d1 = s1 - last;
374         else if (s1 + back_max >= last)
375                 d1 = (last - s1) * cfqd->cfq_back_penalty;
376         else
377                 wrap |= CFQ_RQ1_WRAP;
378
379         if (s2 >= last)
380                 d2 = s2 - last;
381         else if (s2 + back_max >= last)
382                 d2 = (last - s2) * cfqd->cfq_back_penalty;
383         else
384                 wrap |= CFQ_RQ2_WRAP;
385
386         /* Found required data */
387
388         /*
389          * By doing switch() on the bit mask "wrap" we avoid having to
390          * check two variables for all permutations: --> faster!
391          */
392         switch (wrap) {
393         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
394                 if (d1 < d2)
395                         return rq1;
396                 else if (d2 < d1)
397                         return rq2;
398                 else {
399                         if (s1 >= s2)
400                                 return rq1;
401                         else
402                                 return rq2;
403                 }
404
405         case CFQ_RQ2_WRAP:
406                 return rq1;
407         case CFQ_RQ1_WRAP:
408                 return rq2;
409         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
410         default:
411                 /*
412                  * Since both rqs are wrapped,
413                  * start with the one that's further behind head
414                  * (--> only *one* back seek required),
415                  * since back seek takes more time than forward.
416                  */
417                 if (s1 <= s2)
418                         return rq1;
419                 else
420                         return rq2;
421         }
422 }
423
424 /*
425  * The below is leftmost cache rbtree addon
426  */
427 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
428 {
429         if (!root->left)
430                 root->left = rb_first(&root->rb);
431
432         if (root->left)
433                 return rb_entry(root->left, struct cfq_queue, rb_node);
434
435         return NULL;
436 }
437
438 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
439 {
440         rb_erase(n, root);
441         RB_CLEAR_NODE(n);
442 }
443
444 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
445 {
446         if (root->left == n)
447                 root->left = NULL;
448         rb_erase_init(n, &root->rb);
449 }
450
451 /*
452  * would be nice to take fifo expire time into account as well
453  */
454 static struct request *
455 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
456                   struct request *last)
457 {
458         struct rb_node *rbnext = rb_next(&last->rb_node);
459         struct rb_node *rbprev = rb_prev(&last->rb_node);
460         struct request *next = NULL, *prev = NULL;
461
462         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
463
464         if (rbprev)
465                 prev = rb_entry_rq(rbprev);
466
467         if (rbnext)
468                 next = rb_entry_rq(rbnext);
469         else {
470                 rbnext = rb_first(&cfqq->sort_list);
471                 if (rbnext && rbnext != &last->rb_node)
472                         next = rb_entry_rq(rbnext);
473         }
474
475         return cfq_choose_req(cfqd, next, prev);
476 }
477
478 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
479                                       struct cfq_queue *cfqq)
480 {
481         /*
482          * just an approximation, should be ok.
483          */
484         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
485                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
486 }
487
488 /*
489  * The cfqd->service_tree holds all pending cfq_queue's that have
490  * requests waiting to be processed. It is sorted in the order that
491  * we will service the queues.
492  */
493 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
494                                  int add_front)
495 {
496         struct rb_node **p, *parent;
497         struct cfq_queue *__cfqq;
498         unsigned long rb_key;
499         int left;
500
501         if (cfq_class_idle(cfqq)) {
502                 rb_key = CFQ_IDLE_DELAY;
503                 parent = rb_last(&cfqd->service_tree.rb);
504                 if (parent && parent != &cfqq->rb_node) {
505                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
506                         rb_key += __cfqq->rb_key;
507                 } else
508                         rb_key += jiffies;
509         } else if (!add_front) {
510                 /*
511                  * Get our rb key offset. Subtract any residual slice
512                  * value carried from last service. A negative resid
513                  * count indicates slice overrun, and this should position
514                  * the next service time further away in the tree.
515                  */
516                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
517                 rb_key -= cfqq->slice_resid;
518                 cfqq->slice_resid = 0;
519         } else {
520                 rb_key = -HZ;
521                 __cfqq = cfq_rb_first(&cfqd->service_tree);
522                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
523         }
524
525         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
526                 /*
527                  * same position, nothing more to do
528                  */
529                 if (rb_key == cfqq->rb_key)
530                         return;
531
532                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
533         }
534
535         left = 1;
536         parent = NULL;
537         p = &cfqd->service_tree.rb.rb_node;
538         while (*p) {
539                 struct rb_node **n;
540
541                 parent = *p;
542                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
543
544                 /*
545                  * sort RT queues first, we always want to give
546                  * preference to them. IDLE queues goes to the back.
547                  * after that, sort on the next service time.
548                  */
549                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
550                         n = &(*p)->rb_left;
551                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
552                         n = &(*p)->rb_right;
553                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
554                         n = &(*p)->rb_left;
555                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
556                         n = &(*p)->rb_right;
557                 else if (time_before(rb_key, __cfqq->rb_key))
558                         n = &(*p)->rb_left;
559                 else
560                         n = &(*p)->rb_right;
561
562                 if (n == &(*p)->rb_right)
563                         left = 0;
564
565                 p = n;
566         }
567
568         if (left)
569                 cfqd->service_tree.left = &cfqq->rb_node;
570
571         cfqq->rb_key = rb_key;
572         rb_link_node(&cfqq->rb_node, parent, p);
573         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
574 }
575
576 static struct cfq_queue *
577 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
578                      sector_t sector, struct rb_node **ret_parent,
579                      struct rb_node ***rb_link)
580 {
581         struct rb_node **p, *parent;
582         struct cfq_queue *cfqq = NULL;
583
584         parent = NULL;
585         p = &root->rb_node;
586         while (*p) {
587                 struct rb_node **n;
588
589                 parent = *p;
590                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
591
592                 /*
593                  * Sort strictly based on sector.  Smallest to the left,
594                  * largest to the right.
595                  */
596                 if (sector > blk_rq_pos(cfqq->next_rq))
597                         n = &(*p)->rb_right;
598                 else if (sector < blk_rq_pos(cfqq->next_rq))
599                         n = &(*p)->rb_left;
600                 else
601                         break;
602                 p = n;
603                 cfqq = NULL;
604         }
605
606         *ret_parent = parent;
607         if (rb_link)
608                 *rb_link = p;
609         return cfqq;
610 }
611
612 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
613 {
614         struct rb_node **p, *parent;
615         struct cfq_queue *__cfqq;
616
617         if (cfqq->p_root) {
618                 rb_erase(&cfqq->p_node, cfqq->p_root);
619                 cfqq->p_root = NULL;
620         }
621
622         if (cfq_class_idle(cfqq))
623                 return;
624         if (!cfqq->next_rq)
625                 return;
626
627         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
628         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
629                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
630         if (!__cfqq) {
631                 rb_link_node(&cfqq->p_node, parent, p);
632                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
633         } else
634                 cfqq->p_root = NULL;
635 }
636
637 /*
638  * Update cfqq's position in the service tree.
639  */
640 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
641 {
642         /*
643          * Resorting requires the cfqq to be on the RR list already.
644          */
645         if (cfq_cfqq_on_rr(cfqq)) {
646                 cfq_service_tree_add(cfqd, cfqq, 0);
647                 cfq_prio_tree_add(cfqd, cfqq);
648         }
649 }
650
651 /*
652  * add to busy list of queues for service, trying to be fair in ordering
653  * the pending list according to last request service
654  */
655 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
656 {
657         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
658         BUG_ON(cfq_cfqq_on_rr(cfqq));
659         cfq_mark_cfqq_on_rr(cfqq);
660         cfqd->busy_queues++;
661
662         cfq_resort_rr_list(cfqd, cfqq);
663 }
664
665 /*
666  * Called when the cfqq no longer has requests pending, remove it from
667  * the service tree.
668  */
669 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
670 {
671         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
672         BUG_ON(!cfq_cfqq_on_rr(cfqq));
673         cfq_clear_cfqq_on_rr(cfqq);
674
675         if (!RB_EMPTY_NODE(&cfqq->rb_node))
676                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
677         if (cfqq->p_root) {
678                 rb_erase(&cfqq->p_node, cfqq->p_root);
679                 cfqq->p_root = NULL;
680         }
681
682         BUG_ON(!cfqd->busy_queues);
683         cfqd->busy_queues--;
684 }
685
686 /*
687  * rb tree support functions
688  */
689 static void cfq_del_rq_rb(struct request *rq)
690 {
691         struct cfq_queue *cfqq = RQ_CFQQ(rq);
692         struct cfq_data *cfqd = cfqq->cfqd;
693         const int sync = rq_is_sync(rq);
694
695         BUG_ON(!cfqq->queued[sync]);
696         cfqq->queued[sync]--;
697
698         elv_rb_del(&cfqq->sort_list, rq);
699
700         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
701                 cfq_del_cfqq_rr(cfqd, cfqq);
702 }
703
704 static void cfq_add_rq_rb(struct request *rq)
705 {
706         struct cfq_queue *cfqq = RQ_CFQQ(rq);
707         struct cfq_data *cfqd = cfqq->cfqd;
708         struct request *__alias, *prev;
709
710         cfqq->queued[rq_is_sync(rq)]++;
711
712         /*
713          * looks a little odd, but the first insert might return an alias.
714          * if that happens, put the alias on the dispatch list
715          */
716         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
717                 cfq_dispatch_insert(cfqd->queue, __alias);
718
719         if (!cfq_cfqq_on_rr(cfqq))
720                 cfq_add_cfqq_rr(cfqd, cfqq);
721
722         /*
723          * check if this request is a better next-serve candidate
724          */
725         prev = cfqq->next_rq;
726         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
727
728         /*
729          * adjust priority tree position, if ->next_rq changes
730          */
731         if (prev != cfqq->next_rq)
732                 cfq_prio_tree_add(cfqd, cfqq);
733
734         BUG_ON(!cfqq->next_rq);
735 }
736
737 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
738 {
739         elv_rb_del(&cfqq->sort_list, rq);
740         cfqq->queued[rq_is_sync(rq)]--;
741         cfq_add_rq_rb(rq);
742 }
743
744 static struct request *
745 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
746 {
747         struct task_struct *tsk = current;
748         struct cfq_io_context *cic;
749         struct cfq_queue *cfqq;
750
751         cic = cfq_cic_lookup(cfqd, tsk->io_context);
752         if (!cic)
753                 return NULL;
754
755         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
756         if (cfqq) {
757                 sector_t sector = bio->bi_sector + bio_sectors(bio);
758
759                 return elv_rb_find(&cfqq->sort_list, sector);
760         }
761
762         return NULL;
763 }
764
765 static void cfq_activate_request(struct request_queue *q, struct request *rq)
766 {
767         struct cfq_data *cfqd = q->elevator->elevator_data;
768
769         cfqd->rq_in_driver[rq_is_sync(rq)]++;
770         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
771                                                 rq_in_driver(cfqd));
772
773         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
774 }
775
776 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
777 {
778         struct cfq_data *cfqd = q->elevator->elevator_data;
779         const int sync = rq_is_sync(rq);
780
781         WARN_ON(!cfqd->rq_in_driver[sync]);
782         cfqd->rq_in_driver[sync]--;
783         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
784                                                 rq_in_driver(cfqd));
785 }
786
787 static void cfq_remove_request(struct request *rq)
788 {
789         struct cfq_queue *cfqq = RQ_CFQQ(rq);
790
791         if (cfqq->next_rq == rq)
792                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
793
794         list_del_init(&rq->queuelist);
795         cfq_del_rq_rb(rq);
796
797         cfqq->cfqd->rq_queued--;
798         if (rq_is_meta(rq)) {
799                 WARN_ON(!cfqq->meta_pending);
800                 cfqq->meta_pending--;
801         }
802 }
803
804 static int cfq_merge(struct request_queue *q, struct request **req,
805                      struct bio *bio)
806 {
807         struct cfq_data *cfqd = q->elevator->elevator_data;
808         struct request *__rq;
809
810         __rq = cfq_find_rq_fmerge(cfqd, bio);
811         if (__rq && elv_rq_merge_ok(__rq, bio)) {
812                 *req = __rq;
813                 return ELEVATOR_FRONT_MERGE;
814         }
815
816         return ELEVATOR_NO_MERGE;
817 }
818
819 static void cfq_merged_request(struct request_queue *q, struct request *req,
820                                int type)
821 {
822         if (type == ELEVATOR_FRONT_MERGE) {
823                 struct cfq_queue *cfqq = RQ_CFQQ(req);
824
825                 cfq_reposition_rq_rb(cfqq, req);
826         }
827 }
828
829 static void
830 cfq_merged_requests(struct request_queue *q, struct request *rq,
831                     struct request *next)
832 {
833         /*
834          * reposition in fifo if next is older than rq
835          */
836         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
837             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
838                 list_move(&rq->queuelist, &next->queuelist);
839                 rq_set_fifo_time(rq, rq_fifo_time(next));
840         }
841
842         cfq_remove_request(next);
843 }
844
845 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
846                            struct bio *bio)
847 {
848         struct cfq_data *cfqd = q->elevator->elevator_data;
849         struct cfq_io_context *cic;
850         struct cfq_queue *cfqq;
851
852         /*
853          * Disallow merge of a sync bio into an async request.
854          */
855         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
856                 return 0;
857
858         /*
859          * Lookup the cfqq that this bio will be queued with. Allow
860          * merge only if rq is queued there.
861          */
862         cic = cfq_cic_lookup(cfqd, current->io_context);
863         if (!cic)
864                 return 0;
865
866         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
867         if (cfqq == RQ_CFQQ(rq))
868                 return 1;
869
870         return 0;
871 }
872
873 static void __cfq_set_active_queue(struct cfq_data *cfqd,
874                                    struct cfq_queue *cfqq)
875 {
876         if (cfqq) {
877                 cfq_log_cfqq(cfqd, cfqq, "set_active");
878                 cfqq->slice_end = 0;
879                 cfqq->slice_dispatch = 0;
880
881                 cfq_clear_cfqq_wait_request(cfqq);
882                 cfq_clear_cfqq_must_dispatch(cfqq);
883                 cfq_clear_cfqq_must_alloc_slice(cfqq);
884                 cfq_clear_cfqq_fifo_expire(cfqq);
885                 cfq_mark_cfqq_slice_new(cfqq);
886
887                 del_timer(&cfqd->idle_slice_timer);
888         }
889
890         cfqd->active_queue = cfqq;
891 }
892
893 /*
894  * current cfqq expired its slice (or was too idle), select new one
895  */
896 static void
897 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
898                     int timed_out)
899 {
900         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
901
902         if (cfq_cfqq_wait_request(cfqq))
903                 del_timer(&cfqd->idle_slice_timer);
904
905         cfq_clear_cfqq_wait_request(cfqq);
906
907         /*
908          * store what was left of this slice, if the queue idled/timed out
909          */
910         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
911                 cfqq->slice_resid = cfqq->slice_end - jiffies;
912                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
913         }
914
915         cfq_resort_rr_list(cfqd, cfqq);
916
917         if (cfqq == cfqd->active_queue)
918                 cfqd->active_queue = NULL;
919
920         if (cfqd->active_cic) {
921                 put_io_context(cfqd->active_cic->ioc);
922                 cfqd->active_cic = NULL;
923         }
924 }
925
926 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
927 {
928         struct cfq_queue *cfqq = cfqd->active_queue;
929
930         if (cfqq)
931                 __cfq_slice_expired(cfqd, cfqq, timed_out);
932 }
933
934 /*
935  * Get next queue for service. Unless we have a queue preemption,
936  * we'll simply select the first cfqq in the service tree.
937  */
938 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
939 {
940         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
941                 return NULL;
942
943         return cfq_rb_first(&cfqd->service_tree);
944 }
945
946 /*
947  * Get and set a new active queue for service.
948  */
949 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
950                                               struct cfq_queue *cfqq)
951 {
952         if (!cfqq) {
953                 cfqq = cfq_get_next_queue(cfqd);
954                 if (cfqq)
955                         cfq_clear_cfqq_coop(cfqq);
956         }
957
958         __cfq_set_active_queue(cfqd, cfqq);
959         return cfqq;
960 }
961
962 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
963                                           struct request *rq)
964 {
965         if (blk_rq_pos(rq) >= cfqd->last_position)
966                 return blk_rq_pos(rq) - cfqd->last_position;
967         else
968                 return cfqd->last_position - blk_rq_pos(rq);
969 }
970
971 #define CIC_SEEK_THR    8 * 1024
972 #define CIC_SEEKY(cic)  ((cic)->seek_mean > CIC_SEEK_THR)
973
974 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
975 {
976         struct cfq_io_context *cic = cfqd->active_cic;
977         sector_t sdist = cic->seek_mean;
978
979         if (!sample_valid(cic->seek_samples))
980                 sdist = CIC_SEEK_THR;
981
982         return cfq_dist_from_last(cfqd, rq) <= sdist;
983 }
984
985 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
986                                     struct cfq_queue *cur_cfqq)
987 {
988         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
989         struct rb_node *parent, *node;
990         struct cfq_queue *__cfqq;
991         sector_t sector = cfqd->last_position;
992
993         if (RB_EMPTY_ROOT(root))
994                 return NULL;
995
996         /*
997          * First, if we find a request starting at the end of the last
998          * request, choose it.
999          */
1000         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1001         if (__cfqq)
1002                 return __cfqq;
1003
1004         /*
1005          * If the exact sector wasn't found, the parent of the NULL leaf
1006          * will contain the closest sector.
1007          */
1008         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1009         if (cfq_rq_close(cfqd, __cfqq->next_rq))
1010                 return __cfqq;
1011
1012         if (blk_rq_pos(__cfqq->next_rq) < sector)
1013                 node = rb_next(&__cfqq->p_node);
1014         else
1015                 node = rb_prev(&__cfqq->p_node);
1016         if (!node)
1017                 return NULL;
1018
1019         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1020         if (cfq_rq_close(cfqd, __cfqq->next_rq))
1021                 return __cfqq;
1022
1023         return NULL;
1024 }
1025
1026 /*
1027  * cfqd - obvious
1028  * cur_cfqq - passed in so that we don't decide that the current queue is
1029  *            closely cooperating with itself.
1030  *
1031  * So, basically we're assuming that that cur_cfqq has dispatched at least
1032  * one request, and that cfqd->last_position reflects a position on the disk
1033  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1034  * assumption.
1035  */
1036 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1037                                               struct cfq_queue *cur_cfqq,
1038                                               int probe)
1039 {
1040         struct cfq_queue *cfqq;
1041
1042         /*
1043          * A valid cfq_io_context is necessary to compare requests against
1044          * the seek_mean of the current cfqq.
1045          */
1046         if (!cfqd->active_cic)
1047                 return NULL;
1048
1049         /*
1050          * We should notice if some of the queues are cooperating, eg
1051          * working closely on the same area of the disk. In that case,
1052          * we can group them together and don't waste time idling.
1053          */
1054         cfqq = cfqq_close(cfqd, cur_cfqq);
1055         if (!cfqq)
1056                 return NULL;
1057
1058         if (cfq_cfqq_coop(cfqq))
1059                 return NULL;
1060
1061         if (!probe)
1062                 cfq_mark_cfqq_coop(cfqq);
1063         return cfqq;
1064 }
1065
1066 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1067 {
1068         struct cfq_queue *cfqq = cfqd->active_queue;
1069         struct cfq_io_context *cic;
1070         unsigned long sl;
1071
1072         /*
1073          * SSD device without seek penalty, disable idling. But only do so
1074          * for devices that support queuing, otherwise we still have a problem
1075          * with sync vs async workloads.
1076          */
1077         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1078                 return;
1079
1080         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1081         WARN_ON(cfq_cfqq_slice_new(cfqq));
1082
1083         /*
1084          * idle is disabled, either manually or by past process history
1085          */
1086         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1087                 return;
1088
1089         /*
1090          * still requests with the driver, don't idle
1091          */
1092         if (rq_in_driver(cfqd))
1093                 return;
1094
1095         /*
1096          * task has exited, don't wait
1097          */
1098         cic = cfqd->active_cic;
1099         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1100                 return;
1101
1102         cfq_mark_cfqq_wait_request(cfqq);
1103
1104         /*
1105          * we don't want to idle for seeks, but we do want to allow
1106          * fair distribution of slice time for a process doing back-to-back
1107          * seeks. so allow a little bit of time for him to submit a new rq
1108          */
1109         sl = cfqd->cfq_slice_idle;
1110         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1111                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1112
1113         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1114         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1115 }
1116
1117 /*
1118  * Move request from internal lists to the request queue dispatch list.
1119  */
1120 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1121 {
1122         struct cfq_data *cfqd = q->elevator->elevator_data;
1123         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1124
1125         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1126
1127         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1128         cfq_remove_request(rq);
1129         cfqq->dispatched++;
1130         elv_dispatch_sort(q, rq);
1131
1132         if (cfq_cfqq_sync(cfqq))
1133                 cfqd->sync_flight++;
1134 }
1135
1136 /*
1137  * return expired entry, or NULL to just start from scratch in rbtree
1138  */
1139 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1140 {
1141         struct request *rq = NULL;
1142
1143         if (cfq_cfqq_fifo_expire(cfqq))
1144                 return NULL;
1145
1146         cfq_mark_cfqq_fifo_expire(cfqq);
1147
1148         if (list_empty(&cfqq->fifo))
1149                 return NULL;
1150
1151         rq = rq_entry_fifo(cfqq->fifo.next);
1152         if (time_before(jiffies, rq_fifo_time(rq)))
1153                 rq = NULL;
1154
1155         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1156         return rq;
1157 }
1158
1159 static inline int
1160 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1161 {
1162         const int base_rq = cfqd->cfq_slice_async_rq;
1163
1164         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1165
1166         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1167 }
1168
1169 /*
1170  * Select a queue for service. If we have a current active queue,
1171  * check whether to continue servicing it, or retrieve and set a new one.
1172  */
1173 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1174 {
1175         struct cfq_queue *cfqq, *new_cfqq = NULL;
1176
1177         cfqq = cfqd->active_queue;
1178         if (!cfqq)
1179                 goto new_queue;
1180
1181         /*
1182          * The active queue has run out of time, expire it and select new.
1183          */
1184         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1185                 goto expire;
1186
1187         /*
1188          * The active queue has requests and isn't expired, allow it to
1189          * dispatch.
1190          */
1191         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1192                 goto keep_queue;
1193
1194         /*
1195          * If another queue has a request waiting within our mean seek
1196          * distance, let it run.  The expire code will check for close
1197          * cooperators and put the close queue at the front of the service
1198          * tree.
1199          */
1200         new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1201         if (new_cfqq)
1202                 goto expire;
1203
1204         /*
1205          * No requests pending. If the active queue still has requests in
1206          * flight or is idling for a new request, allow either of these
1207          * conditions to happen (or time out) before selecting a new queue.
1208          */
1209         if (timer_pending(&cfqd->idle_slice_timer) ||
1210             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1211                 cfqq = NULL;
1212                 goto keep_queue;
1213         }
1214
1215 expire:
1216         cfq_slice_expired(cfqd, 0);
1217 new_queue:
1218         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1219 keep_queue:
1220         return cfqq;
1221 }
1222
1223 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1224 {
1225         int dispatched = 0;
1226
1227         while (cfqq->next_rq) {
1228                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1229                 dispatched++;
1230         }
1231
1232         BUG_ON(!list_empty(&cfqq->fifo));
1233         return dispatched;
1234 }
1235
1236 /*
1237  * Drain our current requests. Used for barriers and when switching
1238  * io schedulers on-the-fly.
1239  */
1240 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1241 {
1242         struct cfq_queue *cfqq;
1243         int dispatched = 0;
1244
1245         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1246                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1247
1248         cfq_slice_expired(cfqd, 0);
1249
1250         BUG_ON(cfqd->busy_queues);
1251
1252         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1253         return dispatched;
1254 }
1255
1256 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1257 {
1258         unsigned int max_dispatch;
1259
1260         /*
1261          * Drain async requests before we start sync IO
1262          */
1263         if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1264                 return false;
1265
1266         /*
1267          * If this is an async queue and we have sync IO in flight, let it wait
1268          */
1269         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1270                 return false;
1271
1272         max_dispatch = cfqd->cfq_quantum;
1273         if (cfq_class_idle(cfqq))
1274                 max_dispatch = 1;
1275
1276         /*
1277          * Does this cfqq already have too much IO in flight?
1278          */
1279         if (cfqq->dispatched >= max_dispatch) {
1280                 /*
1281                  * idle queue must always only have a single IO in flight
1282                  */
1283                 if (cfq_class_idle(cfqq))
1284                         return false;
1285
1286                 /*
1287                  * We have other queues, don't allow more IO from this one
1288                  */
1289                 if (cfqd->busy_queues > 1)
1290                         return false;
1291
1292                 /*
1293                  * Sole queue user, allow bigger slice
1294                  */
1295                 max_dispatch *= 4;
1296         }
1297
1298         /*
1299          * Async queues must wait a bit before being allowed dispatch.
1300          * We also ramp up the dispatch depth gradually for async IO,
1301          * based on the last sync IO we serviced
1302          */
1303         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1304                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1305                 unsigned int depth;
1306
1307                 depth = last_sync / cfqd->cfq_slice[1];
1308                 if (!depth && !cfqq->dispatched)
1309                         depth = 1;
1310                 if (depth < max_dispatch)
1311                         max_dispatch = depth;
1312         }
1313
1314         /*
1315          * If we're below the current max, allow a dispatch
1316          */
1317         return cfqq->dispatched < max_dispatch;
1318 }
1319
1320 /*
1321  * Dispatch a request from cfqq, moving them to the request queue
1322  * dispatch list.
1323  */
1324 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1325 {
1326         struct request *rq;
1327
1328         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1329
1330         if (!cfq_may_dispatch(cfqd, cfqq))
1331                 return false;
1332
1333         /*
1334          * follow expired path, else get first next available
1335          */
1336         rq = cfq_check_fifo(cfqq);
1337         if (!rq)
1338                 rq = cfqq->next_rq;
1339
1340         /*
1341          * insert request into driver dispatch list
1342          */
1343         cfq_dispatch_insert(cfqd->queue, rq);
1344
1345         if (!cfqd->active_cic) {
1346                 struct cfq_io_context *cic = RQ_CIC(rq);
1347
1348                 atomic_long_inc(&cic->ioc->refcount);
1349                 cfqd->active_cic = cic;
1350         }
1351
1352         return true;
1353 }
1354
1355 /*
1356  * Find the cfqq that we need to service and move a request from that to the
1357  * dispatch list
1358  */
1359 static int cfq_dispatch_requests(struct request_queue *q, int force)
1360 {
1361         struct cfq_data *cfqd = q->elevator->elevator_data;
1362         struct cfq_queue *cfqq;
1363
1364         if (!cfqd->busy_queues)
1365                 return 0;
1366
1367         if (unlikely(force))
1368                 return cfq_forced_dispatch(cfqd);
1369
1370         cfqq = cfq_select_queue(cfqd);
1371         if (!cfqq)
1372                 return 0;
1373
1374         /*
1375          * Dispatch a request from this cfqq, if it is allowed
1376          */
1377         if (!cfq_dispatch_request(cfqd, cfqq))
1378                 return 0;
1379
1380         cfqq->slice_dispatch++;
1381         cfq_clear_cfqq_must_dispatch(cfqq);
1382
1383         /*
1384          * expire an async queue immediately if it has used up its slice. idle
1385          * queue always expire after 1 dispatch round.
1386          */
1387         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1388             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1389             cfq_class_idle(cfqq))) {
1390                 cfqq->slice_end = jiffies + 1;
1391                 cfq_slice_expired(cfqd, 0);
1392         }
1393
1394         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1395         return 1;
1396 }
1397
1398 /*
1399  * task holds one reference to the queue, dropped when task exits. each rq
1400  * in-flight on this queue also holds a reference, dropped when rq is freed.
1401  *
1402  * queue lock must be held here.
1403  */
1404 static void cfq_put_queue(struct cfq_queue *cfqq)
1405 {
1406         struct cfq_data *cfqd = cfqq->cfqd;
1407
1408         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1409
1410         if (!atomic_dec_and_test(&cfqq->ref))
1411                 return;
1412
1413         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1414         BUG_ON(rb_first(&cfqq->sort_list));
1415         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1416         BUG_ON(cfq_cfqq_on_rr(cfqq));
1417
1418         if (unlikely(cfqd->active_queue == cfqq)) {
1419                 __cfq_slice_expired(cfqd, cfqq, 0);
1420                 cfq_schedule_dispatch(cfqd);
1421         }
1422
1423         kmem_cache_free(cfq_pool, cfqq);
1424 }
1425
1426 /*
1427  * Must always be called with the rcu_read_lock() held
1428  */
1429 static void
1430 __call_for_each_cic(struct io_context *ioc,
1431                     void (*func)(struct io_context *, struct cfq_io_context *))
1432 {
1433         struct cfq_io_context *cic;
1434         struct hlist_node *n;
1435
1436         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1437                 func(ioc, cic);
1438 }
1439
1440 /*
1441  * Call func for each cic attached to this ioc.
1442  */
1443 static void
1444 call_for_each_cic(struct io_context *ioc,
1445                   void (*func)(struct io_context *, struct cfq_io_context *))
1446 {
1447         rcu_read_lock();
1448         __call_for_each_cic(ioc, func);
1449         rcu_read_unlock();
1450 }
1451
1452 static void cfq_cic_free_rcu(struct rcu_head *head)
1453 {
1454         struct cfq_io_context *cic;
1455
1456         cic = container_of(head, struct cfq_io_context, rcu_head);
1457
1458         kmem_cache_free(cfq_ioc_pool, cic);
1459         elv_ioc_count_dec(cfq_ioc_count);
1460
1461         if (ioc_gone) {
1462                 /*
1463                  * CFQ scheduler is exiting, grab exit lock and check
1464                  * the pending io context count. If it hits zero,
1465                  * complete ioc_gone and set it back to NULL
1466                  */
1467                 spin_lock(&ioc_gone_lock);
1468                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1469                         complete(ioc_gone);
1470                         ioc_gone = NULL;
1471                 }
1472                 spin_unlock(&ioc_gone_lock);
1473         }
1474 }
1475
1476 static void cfq_cic_free(struct cfq_io_context *cic)
1477 {
1478         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1479 }
1480
1481 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1482 {
1483         unsigned long flags;
1484
1485         BUG_ON(!cic->dead_key);
1486
1487         spin_lock_irqsave(&ioc->lock, flags);
1488         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1489         hlist_del_rcu(&cic->cic_list);
1490         spin_unlock_irqrestore(&ioc->lock, flags);
1491
1492         cfq_cic_free(cic);
1493 }
1494
1495 /*
1496  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1497  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1498  * and ->trim() which is called with the task lock held
1499  */
1500 static void cfq_free_io_context(struct io_context *ioc)
1501 {
1502         /*
1503          * ioc->refcount is zero here, or we are called from elv_unregister(),
1504          * so no more cic's are allowed to be linked into this ioc.  So it
1505          * should be ok to iterate over the known list, we will see all cic's
1506          * since no new ones are added.
1507          */
1508         __call_for_each_cic(ioc, cic_free_func);
1509 }
1510
1511 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1512 {
1513         if (unlikely(cfqq == cfqd->active_queue)) {
1514                 __cfq_slice_expired(cfqd, cfqq, 0);
1515                 cfq_schedule_dispatch(cfqd);
1516         }
1517
1518         cfq_put_queue(cfqq);
1519 }
1520
1521 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1522                                          struct cfq_io_context *cic)
1523 {
1524         struct io_context *ioc = cic->ioc;
1525
1526         list_del_init(&cic->queue_list);
1527
1528         /*
1529          * Make sure key == NULL is seen for dead queues
1530          */
1531         smp_wmb();
1532         cic->dead_key = (unsigned long) cic->key;
1533         cic->key = NULL;
1534
1535         if (ioc->ioc_data == cic)
1536                 rcu_assign_pointer(ioc->ioc_data, NULL);
1537
1538         if (cic->cfqq[BLK_RW_ASYNC]) {
1539                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1540                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1541         }
1542
1543         if (cic->cfqq[BLK_RW_SYNC]) {
1544                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1545                 cic->cfqq[BLK_RW_SYNC] = NULL;
1546         }
1547 }
1548
1549 static void cfq_exit_single_io_context(struct io_context *ioc,
1550                                        struct cfq_io_context *cic)
1551 {
1552         struct cfq_data *cfqd = cic->key;
1553
1554         if (cfqd) {
1555                 struct request_queue *q = cfqd->queue;
1556                 unsigned long flags;
1557
1558                 spin_lock_irqsave(q->queue_lock, flags);
1559
1560                 /*
1561                  * Ensure we get a fresh copy of the ->key to prevent
1562                  * race between exiting task and queue
1563                  */
1564                 smp_read_barrier_depends();
1565                 if (cic->key)
1566                         __cfq_exit_single_io_context(cfqd, cic);
1567
1568                 spin_unlock_irqrestore(q->queue_lock, flags);
1569         }
1570 }
1571
1572 /*
1573  * The process that ioc belongs to has exited, we need to clean up
1574  * and put the internal structures we have that belongs to that process.
1575  */
1576 static void cfq_exit_io_context(struct io_context *ioc)
1577 {
1578         call_for_each_cic(ioc, cfq_exit_single_io_context);
1579 }
1580
1581 static struct cfq_io_context *
1582 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1583 {
1584         struct cfq_io_context *cic;
1585
1586         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1587                                                         cfqd->queue->node);
1588         if (cic) {
1589                 cic->last_end_request = jiffies;
1590                 INIT_LIST_HEAD(&cic->queue_list);
1591                 INIT_HLIST_NODE(&cic->cic_list);
1592                 cic->dtor = cfq_free_io_context;
1593                 cic->exit = cfq_exit_io_context;
1594                 elv_ioc_count_inc(cfq_ioc_count);
1595         }
1596
1597         return cic;
1598 }
1599
1600 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1601 {
1602         struct task_struct *tsk = current;
1603         int ioprio_class;
1604
1605         if (!cfq_cfqq_prio_changed(cfqq))
1606                 return;
1607
1608         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1609         switch (ioprio_class) {
1610         default:
1611                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1612         case IOPRIO_CLASS_NONE:
1613                 /*
1614                  * no prio set, inherit CPU scheduling settings
1615                  */
1616                 cfqq->ioprio = task_nice_ioprio(tsk);
1617                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1618                 break;
1619         case IOPRIO_CLASS_RT:
1620                 cfqq->ioprio = task_ioprio(ioc);
1621                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1622                 break;
1623         case IOPRIO_CLASS_BE:
1624                 cfqq->ioprio = task_ioprio(ioc);
1625                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1626                 break;
1627         case IOPRIO_CLASS_IDLE:
1628                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1629                 cfqq->ioprio = 7;
1630                 cfq_clear_cfqq_idle_window(cfqq);
1631                 break;
1632         }
1633
1634         /*
1635          * keep track of original prio settings in case we have to temporarily
1636          * elevate the priority of this queue
1637          */
1638         cfqq->org_ioprio = cfqq->ioprio;
1639         cfqq->org_ioprio_class = cfqq->ioprio_class;
1640         cfq_clear_cfqq_prio_changed(cfqq);
1641 }
1642
1643 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1644 {
1645         struct cfq_data *cfqd = cic->key;
1646         struct cfq_queue *cfqq;
1647         unsigned long flags;
1648
1649         if (unlikely(!cfqd))
1650                 return;
1651
1652         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1653
1654         cfqq = cic->cfqq[BLK_RW_ASYNC];
1655         if (cfqq) {
1656                 struct cfq_queue *new_cfqq;
1657                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1658                                                 GFP_ATOMIC);
1659                 if (new_cfqq) {
1660                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1661                         cfq_put_queue(cfqq);
1662                 }
1663         }
1664
1665         cfqq = cic->cfqq[BLK_RW_SYNC];
1666         if (cfqq)
1667                 cfq_mark_cfqq_prio_changed(cfqq);
1668
1669         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1670 }
1671
1672 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1673 {
1674         call_for_each_cic(ioc, changed_ioprio);
1675         ioc->ioprio_changed = 0;
1676 }
1677
1678 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1679                           pid_t pid, int is_sync)
1680 {
1681         RB_CLEAR_NODE(&cfqq->rb_node);
1682         RB_CLEAR_NODE(&cfqq->p_node);
1683         INIT_LIST_HEAD(&cfqq->fifo);
1684
1685         atomic_set(&cfqq->ref, 0);
1686         cfqq->cfqd = cfqd;
1687
1688         cfq_mark_cfqq_prio_changed(cfqq);
1689
1690         if (is_sync) {
1691                 if (!cfq_class_idle(cfqq))
1692                         cfq_mark_cfqq_idle_window(cfqq);
1693                 cfq_mark_cfqq_sync(cfqq);
1694         }
1695         cfqq->pid = pid;
1696 }
1697
1698 static struct cfq_queue *
1699 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1700                      struct io_context *ioc, gfp_t gfp_mask)
1701 {
1702         struct cfq_queue *cfqq, *new_cfqq = NULL;
1703         struct cfq_io_context *cic;
1704
1705 retry:
1706         cic = cfq_cic_lookup(cfqd, ioc);
1707         /* cic always exists here */
1708         cfqq = cic_to_cfqq(cic, is_sync);
1709
1710         /*
1711          * Always try a new alloc if we fell back to the OOM cfqq
1712          * originally, since it should just be a temporary situation.
1713          */
1714         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1715                 cfqq = NULL;
1716                 if (new_cfqq) {
1717                         cfqq = new_cfqq;
1718                         new_cfqq = NULL;
1719                 } else if (gfp_mask & __GFP_WAIT) {
1720                         spin_unlock_irq(cfqd->queue->queue_lock);
1721                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1722                                         gfp_mask | __GFP_ZERO,
1723                                         cfqd->queue->node);
1724                         spin_lock_irq(cfqd->queue->queue_lock);
1725                         if (new_cfqq)
1726                                 goto retry;
1727                 } else {
1728                         cfqq = kmem_cache_alloc_node(cfq_pool,
1729                                         gfp_mask | __GFP_ZERO,
1730                                         cfqd->queue->node);
1731                 }
1732
1733                 if (cfqq) {
1734                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1735                         cfq_init_prio_data(cfqq, ioc);
1736                         cfq_log_cfqq(cfqd, cfqq, "alloced");
1737                 } else
1738                         cfqq = &cfqd->oom_cfqq;
1739         }
1740
1741         if (new_cfqq)
1742                 kmem_cache_free(cfq_pool, new_cfqq);
1743
1744         return cfqq;
1745 }
1746
1747 static struct cfq_queue **
1748 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1749 {
1750         switch (ioprio_class) {
1751         case IOPRIO_CLASS_RT:
1752                 return &cfqd->async_cfqq[0][ioprio];
1753         case IOPRIO_CLASS_BE:
1754                 return &cfqd->async_cfqq[1][ioprio];
1755         case IOPRIO_CLASS_IDLE:
1756                 return &cfqd->async_idle_cfqq;
1757         default:
1758                 BUG();
1759         }
1760 }
1761
1762 static struct cfq_queue *
1763 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1764               gfp_t gfp_mask)
1765 {
1766         const int ioprio = task_ioprio(ioc);
1767         const int ioprio_class = task_ioprio_class(ioc);
1768         struct cfq_queue **async_cfqq = NULL;
1769         struct cfq_queue *cfqq = NULL;
1770
1771         if (!is_sync) {
1772                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1773                 cfqq = *async_cfqq;
1774         }
1775
1776         if (!cfqq)
1777                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1778
1779         /*
1780          * pin the queue now that it's allocated, scheduler exit will prune it
1781          */
1782         if (!is_sync && !(*async_cfqq)) {
1783                 atomic_inc(&cfqq->ref);
1784                 *async_cfqq = cfqq;
1785         }
1786
1787         atomic_inc(&cfqq->ref);
1788         return cfqq;
1789 }
1790
1791 /*
1792  * We drop cfq io contexts lazily, so we may find a dead one.
1793  */
1794 static void
1795 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1796                   struct cfq_io_context *cic)
1797 {
1798         unsigned long flags;
1799
1800         WARN_ON(!list_empty(&cic->queue_list));
1801
1802         spin_lock_irqsave(&ioc->lock, flags);
1803
1804         BUG_ON(ioc->ioc_data == cic);
1805
1806         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1807         hlist_del_rcu(&cic->cic_list);
1808         spin_unlock_irqrestore(&ioc->lock, flags);
1809
1810         cfq_cic_free(cic);
1811 }
1812
1813 static struct cfq_io_context *
1814 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1815 {
1816         struct cfq_io_context *cic;
1817         unsigned long flags;
1818         void *k;
1819
1820         if (unlikely(!ioc))
1821                 return NULL;
1822
1823         rcu_read_lock();
1824
1825         /*
1826          * we maintain a last-hit cache, to avoid browsing over the tree
1827          */
1828         cic = rcu_dereference(ioc->ioc_data);
1829         if (cic && cic->key == cfqd) {
1830                 rcu_read_unlock();
1831                 return cic;
1832         }
1833
1834         do {
1835                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1836                 rcu_read_unlock();
1837                 if (!cic)
1838                         break;
1839                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1840                 k = cic->key;
1841                 if (unlikely(!k)) {
1842                         cfq_drop_dead_cic(cfqd, ioc, cic);
1843                         rcu_read_lock();
1844                         continue;
1845                 }
1846
1847                 spin_lock_irqsave(&ioc->lock, flags);
1848                 rcu_assign_pointer(ioc->ioc_data, cic);
1849                 spin_unlock_irqrestore(&ioc->lock, flags);
1850                 break;
1851         } while (1);
1852
1853         return cic;
1854 }
1855
1856 /*
1857  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1858  * the process specific cfq io context when entered from the block layer.
1859  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1860  */
1861 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1862                         struct cfq_io_context *cic, gfp_t gfp_mask)
1863 {
1864         unsigned long flags;
1865         int ret;
1866
1867         ret = radix_tree_preload(gfp_mask);
1868         if (!ret) {
1869                 cic->ioc = ioc;
1870                 cic->key = cfqd;
1871
1872                 spin_lock_irqsave(&ioc->lock, flags);
1873                 ret = radix_tree_insert(&ioc->radix_root,
1874                                                 (unsigned long) cfqd, cic);
1875                 if (!ret)
1876                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1877                 spin_unlock_irqrestore(&ioc->lock, flags);
1878
1879                 radix_tree_preload_end();
1880
1881                 if (!ret) {
1882                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1883                         list_add(&cic->queue_list, &cfqd->cic_list);
1884                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1885                 }
1886         }
1887
1888         if (ret)
1889                 printk(KERN_ERR "cfq: cic link failed!\n");
1890
1891         return ret;
1892 }
1893
1894 /*
1895  * Setup general io context and cfq io context. There can be several cfq
1896  * io contexts per general io context, if this process is doing io to more
1897  * than one device managed by cfq.
1898  */
1899 static struct cfq_io_context *
1900 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1901 {
1902         struct io_context *ioc = NULL;
1903         struct cfq_io_context *cic;
1904
1905         might_sleep_if(gfp_mask & __GFP_WAIT);
1906
1907         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1908         if (!ioc)
1909                 return NULL;
1910
1911         cic = cfq_cic_lookup(cfqd, ioc);
1912         if (cic)
1913                 goto out;
1914
1915         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1916         if (cic == NULL)
1917                 goto err;
1918
1919         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1920                 goto err_free;
1921
1922 out:
1923         smp_read_barrier_depends();
1924         if (unlikely(ioc->ioprio_changed))
1925                 cfq_ioc_set_ioprio(ioc);
1926
1927         return cic;
1928 err_free:
1929         cfq_cic_free(cic);
1930 err:
1931         put_io_context(ioc);
1932         return NULL;
1933 }
1934
1935 static void
1936 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1937 {
1938         unsigned long elapsed = jiffies - cic->last_end_request;
1939         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1940
1941         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1942         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1943         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1944 }
1945
1946 static void
1947 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1948                        struct request *rq)
1949 {
1950         sector_t sdist;
1951         u64 total;
1952
1953         if (!cic->last_request_pos)
1954                 sdist = 0;
1955         else if (cic->last_request_pos < blk_rq_pos(rq))
1956                 sdist = blk_rq_pos(rq) - cic->last_request_pos;
1957         else
1958                 sdist = cic->last_request_pos - blk_rq_pos(rq);
1959
1960         /*
1961          * Don't allow the seek distance to get too large from the
1962          * odd fragment, pagein, etc
1963          */
1964         if (cic->seek_samples <= 60) /* second&third seek */
1965                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1966         else
1967                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1968
1969         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1970         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1971         total = cic->seek_total + (cic->seek_samples/2);
1972         do_div(total, cic->seek_samples);
1973         cic->seek_mean = (sector_t)total;
1974 }
1975
1976 /*
1977  * Disable idle window if the process thinks too long or seeks so much that
1978  * it doesn't matter
1979  */
1980 static void
1981 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1982                        struct cfq_io_context *cic)
1983 {
1984         int old_idle, enable_idle;
1985
1986         /*
1987          * Don't idle for async or idle io prio class
1988          */
1989         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1990                 return;
1991
1992         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1993
1994         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1995             (!cfqd->cfq_latency && cfqd->hw_tag && CIC_SEEKY(cic)))
1996                 enable_idle = 0;
1997         else if (sample_valid(cic->ttime_samples)) {
1998                 unsigned int slice_idle = cfqd->cfq_slice_idle;
1999                 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
2000                         slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2001                 if (cic->ttime_mean > slice_idle)
2002                         enable_idle = 0;
2003                 else
2004                         enable_idle = 1;
2005         }
2006
2007         if (old_idle != enable_idle) {
2008                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2009                 if (enable_idle)
2010                         cfq_mark_cfqq_idle_window(cfqq);
2011                 else
2012                         cfq_clear_cfqq_idle_window(cfqq);
2013         }
2014 }
2015
2016 /*
2017  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2018  * no or if we aren't sure, a 1 will cause a preempt.
2019  */
2020 static int
2021 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2022                    struct request *rq)
2023 {
2024         struct cfq_queue *cfqq;
2025
2026         cfqq = cfqd->active_queue;
2027         if (!cfqq)
2028                 return 0;
2029
2030         if (cfq_slice_used(cfqq))
2031                 return 1;
2032
2033         if (cfq_class_idle(new_cfqq))
2034                 return 0;
2035
2036         if (cfq_class_idle(cfqq))
2037                 return 1;
2038
2039         /*
2040          * if the new request is sync, but the currently running queue is
2041          * not, let the sync request have priority.
2042          */
2043         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2044                 return 1;
2045
2046         /*
2047          * So both queues are sync. Let the new request get disk time if
2048          * it's a metadata request and the current queue is doing regular IO.
2049          */
2050         if (rq_is_meta(rq) && !cfqq->meta_pending)
2051                 return 1;
2052
2053         /*
2054          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2055          */
2056         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2057                 return 1;
2058
2059         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2060                 return 0;
2061
2062         /*
2063          * if this request is as-good as one we would expect from the
2064          * current cfqq, let it preempt
2065          */
2066         if (cfq_rq_close(cfqd, rq))
2067                 return 1;
2068
2069         return 0;
2070 }
2071
2072 /*
2073  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2074  * let it have half of its nominal slice.
2075  */
2076 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2077 {
2078         cfq_log_cfqq(cfqd, cfqq, "preempt");
2079         cfq_slice_expired(cfqd, 1);
2080
2081         /*
2082          * Put the new queue at the front of the of the current list,
2083          * so we know that it will be selected next.
2084          */
2085         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2086
2087         cfq_service_tree_add(cfqd, cfqq, 1);
2088
2089         cfqq->slice_end = 0;
2090         cfq_mark_cfqq_slice_new(cfqq);
2091 }
2092
2093 /*
2094  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2095  * something we should do about it
2096  */
2097 static void
2098 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2099                 struct request *rq)
2100 {
2101         struct cfq_io_context *cic = RQ_CIC(rq);
2102
2103         cfqd->rq_queued++;
2104         if (rq_is_meta(rq))
2105                 cfqq->meta_pending++;
2106
2107         cfq_update_io_thinktime(cfqd, cic);
2108         cfq_update_io_seektime(cfqd, cic, rq);
2109         cfq_update_idle_window(cfqd, cfqq, cic);
2110
2111         cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2112
2113         if (cfqq == cfqd->active_queue) {
2114                 /*
2115                  * Remember that we saw a request from this process, but
2116                  * don't start queuing just yet. Otherwise we risk seeing lots
2117                  * of tiny requests, because we disrupt the normal plugging
2118                  * and merging. If the request is already larger than a single
2119                  * page, let it rip immediately. For that case we assume that
2120                  * merging is already done. Ditto for a busy system that
2121                  * has other work pending, don't risk delaying until the
2122                  * idle timer unplug to continue working.
2123                  */
2124                 if (cfq_cfqq_wait_request(cfqq)) {
2125                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2126                             cfqd->busy_queues > 1) {
2127                                 del_timer(&cfqd->idle_slice_timer);
2128                         __blk_run_queue(cfqd->queue);
2129                         }
2130                         cfq_mark_cfqq_must_dispatch(cfqq);
2131                 }
2132         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2133                 /*
2134                  * not the active queue - expire current slice if it is
2135                  * idle and has expired it's mean thinktime or this new queue
2136                  * has some old slice time left and is of higher priority or
2137                  * this new queue is RT and the current one is BE
2138                  */
2139                 cfq_preempt_queue(cfqd, cfqq);
2140                 __blk_run_queue(cfqd->queue);
2141         }
2142 }
2143
2144 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2145 {
2146         struct cfq_data *cfqd = q->elevator->elevator_data;
2147         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2148
2149         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2150         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2151
2152         cfq_add_rq_rb(rq);
2153
2154         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2155         list_add_tail(&rq->queuelist, &cfqq->fifo);
2156
2157         cfq_rq_enqueued(cfqd, cfqq, rq);
2158 }
2159
2160 /*
2161  * Update hw_tag based on peak queue depth over 50 samples under
2162  * sufficient load.
2163  */
2164 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2165 {
2166         if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2167                 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2168
2169         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2170             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2171                 return;
2172
2173         if (cfqd->hw_tag_samples++ < 50)
2174                 return;
2175
2176         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2177                 cfqd->hw_tag = 1;
2178         else
2179                 cfqd->hw_tag = 0;
2180
2181         cfqd->hw_tag_samples = 0;
2182         cfqd->rq_in_driver_peak = 0;
2183 }
2184
2185 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2186 {
2187         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2188         struct cfq_data *cfqd = cfqq->cfqd;
2189         const int sync = rq_is_sync(rq);
2190         unsigned long now;
2191
2192         now = jiffies;
2193         cfq_log_cfqq(cfqd, cfqq, "complete");
2194
2195         cfq_update_hw_tag(cfqd);
2196
2197         WARN_ON(!cfqd->rq_in_driver[sync]);
2198         WARN_ON(!cfqq->dispatched);
2199         cfqd->rq_in_driver[sync]--;
2200         cfqq->dispatched--;
2201
2202         if (cfq_cfqq_sync(cfqq))
2203                 cfqd->sync_flight--;
2204
2205         if (sync) {
2206                 RQ_CIC(rq)->last_end_request = now;
2207                 cfqd->last_end_sync_rq = now;
2208         }
2209
2210         /*
2211          * If this is the active queue, check if it needs to be expired,
2212          * or if we want to idle in case it has no pending requests.
2213          */
2214         if (cfqd->active_queue == cfqq) {
2215                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2216
2217                 if (cfq_cfqq_slice_new(cfqq)) {
2218                         cfq_set_prio_slice(cfqd, cfqq);
2219                         cfq_clear_cfqq_slice_new(cfqq);
2220                 }
2221                 /*
2222                  * If there are no requests waiting in this queue, and
2223                  * there are other queues ready to issue requests, AND
2224                  * those other queues are issuing requests within our
2225                  * mean seek distance, give them a chance to run instead
2226                  * of idling.
2227                  */
2228                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2229                         cfq_slice_expired(cfqd, 1);
2230                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2231                          sync && !rq_noidle(rq))
2232                         cfq_arm_slice_timer(cfqd);
2233         }
2234
2235         if (!rq_in_driver(cfqd))
2236                 cfq_schedule_dispatch(cfqd);
2237 }
2238
2239 /*
2240  * we temporarily boost lower priority queues if they are holding fs exclusive
2241  * resources. they are boosted to normal prio (CLASS_BE/4)
2242  */
2243 static void cfq_prio_boost(struct cfq_queue *cfqq)
2244 {
2245         if (has_fs_excl()) {
2246                 /*
2247                  * boost idle prio on transactions that would lock out other
2248                  * users of the filesystem
2249                  */
2250                 if (cfq_class_idle(cfqq))
2251                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2252                 if (cfqq->ioprio > IOPRIO_NORM)
2253                         cfqq->ioprio = IOPRIO_NORM;
2254         } else {
2255                 /*
2256                  * check if we need to unboost the queue
2257                  */
2258                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2259                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2260                 if (cfqq->ioprio != cfqq->org_ioprio)
2261                         cfqq->ioprio = cfqq->org_ioprio;
2262         }
2263 }
2264
2265 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2266 {
2267         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2268                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2269                 return ELV_MQUEUE_MUST;
2270         }
2271
2272         return ELV_MQUEUE_MAY;
2273 }
2274
2275 static int cfq_may_queue(struct request_queue *q, int rw)
2276 {
2277         struct cfq_data *cfqd = q->elevator->elevator_data;
2278         struct task_struct *tsk = current;
2279         struct cfq_io_context *cic;
2280         struct cfq_queue *cfqq;
2281
2282         /*
2283          * don't force setup of a queue from here, as a call to may_queue
2284          * does not necessarily imply that a request actually will be queued.
2285          * so just lookup a possibly existing queue, or return 'may queue'
2286          * if that fails
2287          */
2288         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2289         if (!cic)
2290                 return ELV_MQUEUE_MAY;
2291
2292         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2293         if (cfqq) {
2294                 cfq_init_prio_data(cfqq, cic->ioc);
2295                 cfq_prio_boost(cfqq);
2296
2297                 return __cfq_may_queue(cfqq);
2298         }
2299
2300         return ELV_MQUEUE_MAY;
2301 }
2302
2303 /*
2304  * queue lock held here
2305  */
2306 static void cfq_put_request(struct request *rq)
2307 {
2308         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2309
2310         if (cfqq) {
2311                 const int rw = rq_data_dir(rq);
2312
2313                 BUG_ON(!cfqq->allocated[rw]);
2314                 cfqq->allocated[rw]--;
2315
2316                 put_io_context(RQ_CIC(rq)->ioc);
2317
2318                 rq->elevator_private = NULL;
2319                 rq->elevator_private2 = NULL;
2320
2321                 cfq_put_queue(cfqq);
2322         }
2323 }
2324
2325 /*
2326  * Allocate cfq data structures associated with this request.
2327  */
2328 static int
2329 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2330 {
2331         struct cfq_data *cfqd = q->elevator->elevator_data;
2332         struct cfq_io_context *cic;
2333         const int rw = rq_data_dir(rq);
2334         const int is_sync = rq_is_sync(rq);
2335         struct cfq_queue *cfqq;
2336         unsigned long flags;
2337
2338         might_sleep_if(gfp_mask & __GFP_WAIT);
2339
2340         cic = cfq_get_io_context(cfqd, gfp_mask);
2341
2342         spin_lock_irqsave(q->queue_lock, flags);
2343
2344         if (!cic)
2345                 goto queue_fail;
2346
2347         cfqq = cic_to_cfqq(cic, is_sync);
2348         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2349                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2350                 cic_set_cfqq(cic, cfqq, is_sync);
2351         }
2352
2353         cfqq->allocated[rw]++;
2354         atomic_inc(&cfqq->ref);
2355
2356         spin_unlock_irqrestore(q->queue_lock, flags);
2357
2358         rq->elevator_private = cic;
2359         rq->elevator_private2 = cfqq;
2360         return 0;
2361
2362 queue_fail:
2363         if (cic)
2364                 put_io_context(cic->ioc);
2365
2366         cfq_schedule_dispatch(cfqd);
2367         spin_unlock_irqrestore(q->queue_lock, flags);
2368         cfq_log(cfqd, "set_request fail");
2369         return 1;
2370 }
2371
2372 static void cfq_kick_queue(struct work_struct *work)
2373 {
2374         struct cfq_data *cfqd =
2375                 container_of(work, struct cfq_data, unplug_work);
2376         struct request_queue *q = cfqd->queue;
2377
2378         spin_lock_irq(q->queue_lock);
2379         __blk_run_queue(cfqd->queue);
2380         spin_unlock_irq(q->queue_lock);
2381 }
2382
2383 /*
2384  * Timer running if the active_queue is currently idling inside its time slice
2385  */
2386 static void cfq_idle_slice_timer(unsigned long data)
2387 {
2388         struct cfq_data *cfqd = (struct cfq_data *) data;
2389         struct cfq_queue *cfqq;
2390         unsigned long flags;
2391         int timed_out = 1;
2392
2393         cfq_log(cfqd, "idle timer fired");
2394
2395         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2396
2397         cfqq = cfqd->active_queue;
2398         if (cfqq) {
2399                 timed_out = 0;
2400
2401                 /*
2402                  * We saw a request before the queue expired, let it through
2403                  */
2404                 if (cfq_cfqq_must_dispatch(cfqq))
2405                         goto out_kick;
2406
2407                 /*
2408                  * expired
2409                  */
2410                 if (cfq_slice_used(cfqq))
2411                         goto expire;
2412
2413                 /*
2414                  * only expire and reinvoke request handler, if there are
2415                  * other queues with pending requests
2416                  */
2417                 if (!cfqd->busy_queues)
2418                         goto out_cont;
2419
2420                 /*
2421                  * not expired and it has a request pending, let it dispatch
2422                  */
2423                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2424                         goto out_kick;
2425         }
2426 expire:
2427         cfq_slice_expired(cfqd, timed_out);
2428 out_kick:
2429         cfq_schedule_dispatch(cfqd);
2430 out_cont:
2431         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2432 }
2433
2434 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2435 {
2436         del_timer_sync(&cfqd->idle_slice_timer);
2437         cancel_work_sync(&cfqd->unplug_work);
2438 }
2439
2440 static void cfq_put_async_queues(struct cfq_data *cfqd)
2441 {
2442         int i;
2443
2444         for (i = 0; i < IOPRIO_BE_NR; i++) {
2445                 if (cfqd->async_cfqq[0][i])
2446                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2447                 if (cfqd->async_cfqq[1][i])
2448                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2449         }
2450
2451         if (cfqd->async_idle_cfqq)
2452                 cfq_put_queue(cfqd->async_idle_cfqq);
2453 }
2454
2455 static void cfq_exit_queue(struct elevator_queue *e)
2456 {
2457         struct cfq_data *cfqd = e->elevator_data;
2458         struct request_queue *q = cfqd->queue;
2459
2460         cfq_shutdown_timer_wq(cfqd);
2461
2462         spin_lock_irq(q->queue_lock);
2463
2464         if (cfqd->active_queue)
2465                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2466
2467         while (!list_empty(&cfqd->cic_list)) {
2468                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2469                                                         struct cfq_io_context,
2470                                                         queue_list);
2471
2472                 __cfq_exit_single_io_context(cfqd, cic);
2473         }
2474
2475         cfq_put_async_queues(cfqd);
2476
2477         spin_unlock_irq(q->queue_lock);
2478
2479         cfq_shutdown_timer_wq(cfqd);
2480
2481         kfree(cfqd);
2482 }
2483
2484 static void *cfq_init_queue(struct request_queue *q)
2485 {
2486         struct cfq_data *cfqd;
2487         int i;
2488
2489         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2490         if (!cfqd)
2491                 return NULL;
2492
2493         cfqd->service_tree = CFQ_RB_ROOT;
2494
2495         /*
2496          * Not strictly needed (since RB_ROOT just clears the node and we
2497          * zeroed cfqd on alloc), but better be safe in case someone decides
2498          * to add magic to the rb code
2499          */
2500         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2501                 cfqd->prio_trees[i] = RB_ROOT;
2502
2503         /*
2504          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2505          * Grab a permanent reference to it, so that the normal code flow
2506          * will not attempt to free it.
2507          */
2508         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2509         atomic_inc(&cfqd->oom_cfqq.ref);
2510
2511         INIT_LIST_HEAD(&cfqd->cic_list);
2512
2513         cfqd->queue = q;
2514
2515         init_timer(&cfqd->idle_slice_timer);
2516         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2517         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2518
2519         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2520
2521         cfqd->cfq_quantum = cfq_quantum;
2522         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2523         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2524         cfqd->cfq_back_max = cfq_back_max;
2525         cfqd->cfq_back_penalty = cfq_back_penalty;
2526         cfqd->cfq_slice[0] = cfq_slice_async;
2527         cfqd->cfq_slice[1] = cfq_slice_sync;
2528         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2529         cfqd->cfq_slice_idle = cfq_slice_idle;
2530         cfqd->cfq_latency = 1;
2531         cfqd->hw_tag = 1;
2532         cfqd->last_end_sync_rq = jiffies;
2533         return cfqd;
2534 }
2535
2536 static void cfq_slab_kill(void)
2537 {
2538         /*
2539          * Caller already ensured that pending RCU callbacks are completed,
2540          * so we should have no busy allocations at this point.
2541          */
2542         if (cfq_pool)
2543                 kmem_cache_destroy(cfq_pool);
2544         if (cfq_ioc_pool)
2545                 kmem_cache_destroy(cfq_ioc_pool);
2546 }
2547
2548 static int __init cfq_slab_setup(void)
2549 {
2550         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2551         if (!cfq_pool)
2552                 goto fail;
2553
2554         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2555         if (!cfq_ioc_pool)
2556                 goto fail;
2557
2558         return 0;
2559 fail:
2560         cfq_slab_kill();
2561         return -ENOMEM;
2562 }
2563
2564 /*
2565  * sysfs parts below -->
2566  */
2567 static ssize_t
2568 cfq_var_show(unsigned int var, char *page)
2569 {
2570         return sprintf(page, "%d\n", var);
2571 }
2572
2573 static ssize_t
2574 cfq_var_store(unsigned int *var, const char *page, size_t count)
2575 {
2576         char *p = (char *) page;
2577
2578         *var = simple_strtoul(p, &p, 10);
2579         return count;
2580 }
2581
2582 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2583 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2584 {                                                                       \
2585         struct cfq_data *cfqd = e->elevator_data;                       \
2586         unsigned int __data = __VAR;                                    \
2587         if (__CONV)                                                     \
2588                 __data = jiffies_to_msecs(__data);                      \
2589         return cfq_var_show(__data, (page));                            \
2590 }
2591 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2592 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2593 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2594 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2595 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2596 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2597 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2598 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2599 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2600 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2601 #undef SHOW_FUNCTION
2602
2603 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2604 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2605 {                                                                       \
2606         struct cfq_data *cfqd = e->elevator_data;                       \
2607         unsigned int __data;                                            \
2608         int ret = cfq_var_store(&__data, (page), count);                \
2609         if (__data < (MIN))                                             \
2610                 __data = (MIN);                                         \
2611         else if (__data > (MAX))                                        \
2612                 __data = (MAX);                                         \
2613         if (__CONV)                                                     \
2614                 *(__PTR) = msecs_to_jiffies(__data);                    \
2615         else                                                            \
2616                 *(__PTR) = __data;                                      \
2617         return ret;                                                     \
2618 }
2619 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2620 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2621                 UINT_MAX, 1);
2622 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2623                 UINT_MAX, 1);
2624 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2625 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2626                 UINT_MAX, 0);
2627 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2628 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2629 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2630 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2631                 UINT_MAX, 0);
2632 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2633 #undef STORE_FUNCTION
2634
2635 #define CFQ_ATTR(name) \
2636         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2637
2638 static struct elv_fs_entry cfq_attrs[] = {
2639         CFQ_ATTR(quantum),
2640         CFQ_ATTR(fifo_expire_sync),
2641         CFQ_ATTR(fifo_expire_async),
2642         CFQ_ATTR(back_seek_max),
2643         CFQ_ATTR(back_seek_penalty),
2644         CFQ_ATTR(slice_sync),
2645         CFQ_ATTR(slice_async),
2646         CFQ_ATTR(slice_async_rq),
2647         CFQ_ATTR(slice_idle),
2648         CFQ_ATTR(low_latency),
2649         __ATTR_NULL
2650 };
2651
2652 static struct elevator_type iosched_cfq = {
2653         .ops = {
2654                 .elevator_merge_fn =            cfq_merge,
2655                 .elevator_merged_fn =           cfq_merged_request,
2656                 .elevator_merge_req_fn =        cfq_merged_requests,
2657                 .elevator_allow_merge_fn =      cfq_allow_merge,
2658                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2659                 .elevator_add_req_fn =          cfq_insert_request,
2660                 .elevator_activate_req_fn =     cfq_activate_request,
2661                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2662                 .elevator_queue_empty_fn =      cfq_queue_empty,
2663                 .elevator_completed_req_fn =    cfq_completed_request,
2664                 .elevator_former_req_fn =       elv_rb_former_request,
2665                 .elevator_latter_req_fn =       elv_rb_latter_request,
2666                 .elevator_set_req_fn =          cfq_set_request,
2667                 .elevator_put_req_fn =          cfq_put_request,
2668                 .elevator_may_queue_fn =        cfq_may_queue,
2669                 .elevator_init_fn =             cfq_init_queue,
2670                 .elevator_exit_fn =             cfq_exit_queue,
2671                 .trim =                         cfq_free_io_context,
2672         },
2673         .elevator_attrs =       cfq_attrs,
2674         .elevator_name =        "cfq",
2675         .elevator_owner =       THIS_MODULE,
2676 };
2677
2678 static int __init cfq_init(void)
2679 {
2680         /*
2681          * could be 0 on HZ < 1000 setups
2682          */
2683         if (!cfq_slice_async)
2684                 cfq_slice_async = 1;
2685         if (!cfq_slice_idle)
2686                 cfq_slice_idle = 1;
2687
2688         if (cfq_slab_setup())
2689                 return -ENOMEM;
2690
2691         elv_register(&iosched_cfq);
2692
2693         return 0;
2694 }
2695
2696 static void __exit cfq_exit(void)
2697 {
2698         DECLARE_COMPLETION_ONSTACK(all_gone);
2699         elv_unregister(&iosched_cfq);
2700         ioc_gone = &all_gone;
2701         /* ioc_gone's update must be visible before reading ioc_count */
2702         smp_wmb();
2703
2704         /*
2705          * this also protects us from entering cfq_slab_kill() with
2706          * pending RCU callbacks
2707          */
2708         if (elv_ioc_count_read(cfq_ioc_count))
2709                 wait_for_completion(&all_gone);
2710         cfq_slab_kill();
2711 }
2712
2713 module_init(cfq_init);
2714 module_exit(cfq_exit);
2715
2716 MODULE_AUTHOR("Jens Axboe");
2717 MODULE_LICENSE("GPL");
2718 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");