cfq: merge cooperating cfq_queues
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples)   ((samples) > 80)
60
61 /*
62  * Most of our rbtree usage is for sorting with min extraction, so
63  * if we cache the leftmost node we don't have to walk down the tree
64  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65  * move this into the elevator for the rq sorting as well.
66  */
67 struct cfq_rb_root {
68         struct rb_root rb;
69         struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74  * Per process-grouping structure
75  */
76 struct cfq_queue {
77         /* reference count */
78         atomic_t ref;
79         /* various state flags, see below */
80         unsigned int flags;
81         /* parent cfq_data */
82         struct cfq_data *cfqd;
83         /* service_tree member */
84         struct rb_node rb_node;
85         /* service_tree key */
86         unsigned long rb_key;
87         /* prio tree member */
88         struct rb_node p_node;
89         /* prio tree root we belong to, if any */
90         struct rb_root *p_root;
91         /* sorted list of pending requests */
92         struct rb_root sort_list;
93         /* if fifo isn't expired, next request to serve */
94         struct request *next_rq;
95         /* requests queued in sort_list */
96         int queued[2];
97         /* currently allocated requests */
98         int allocated[2];
99         /* fifo list of requests in sort_list */
100         struct list_head fifo;
101
102         unsigned long slice_end;
103         long slice_resid;
104         unsigned int slice_dispatch;
105
106         /* pending metadata requests */
107         int meta_pending;
108         /* number of requests that are on the dispatch list or inside driver */
109         int dispatched;
110
111         /* io prio of this group */
112         unsigned short ioprio, org_ioprio;
113         unsigned short ioprio_class, org_ioprio_class;
114
115         unsigned int seek_samples;
116         u64 seek_total;
117         sector_t seek_mean;
118         sector_t last_request_pos;
119
120         pid_t pid;
121
122         struct cfq_queue *new_cfqq;
123 };
124
125 /*
126  * Per block device queue structure
127  */
128 struct cfq_data {
129         struct request_queue *queue;
130
131         /*
132          * rr list of queues with requests and the count of them
133          */
134         struct cfq_rb_root service_tree;
135
136         /*
137          * Each priority tree is sorted by next_request position.  These
138          * trees are used when determining if two or more queues are
139          * interleaving requests (see cfq_close_cooperator).
140          */
141         struct rb_root prio_trees[CFQ_PRIO_LISTS];
142
143         unsigned int busy_queues;
144
145         int rq_in_driver[2];
146         int sync_flight;
147
148         /*
149          * queue-depth detection
150          */
151         int rq_queued;
152         int hw_tag;
153         int hw_tag_samples;
154         int rq_in_driver_peak;
155
156         /*
157          * idle window management
158          */
159         struct timer_list idle_slice_timer;
160         struct work_struct unplug_work;
161
162         struct cfq_queue *active_queue;
163         struct cfq_io_context *active_cic;
164
165         /*
166          * async queue for each priority case
167          */
168         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
169         struct cfq_queue *async_idle_cfqq;
170
171         sector_t last_position;
172
173         /*
174          * tunables, see top of file
175          */
176         unsigned int cfq_quantum;
177         unsigned int cfq_fifo_expire[2];
178         unsigned int cfq_back_penalty;
179         unsigned int cfq_back_max;
180         unsigned int cfq_slice[2];
181         unsigned int cfq_slice_async_rq;
182         unsigned int cfq_slice_idle;
183         unsigned int cfq_latency;
184
185         struct list_head cic_list;
186
187         /*
188          * Fallback dummy cfqq for extreme OOM conditions
189          */
190         struct cfq_queue oom_cfqq;
191
192         unsigned long last_end_sync_rq;
193 };
194
195 enum cfqq_state_flags {
196         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
197         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
198         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
199         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
200         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
201         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
202         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
203         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
204         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
205         CFQ_CFQQ_FLAG_coop,             /* has done a coop jump of the queue */
206 };
207
208 #define CFQ_CFQQ_FNS(name)                                              \
209 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
210 {                                                                       \
211         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
212 }                                                                       \
213 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
214 {                                                                       \
215         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
216 }                                                                       \
217 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
218 {                                                                       \
219         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
220 }
221
222 CFQ_CFQQ_FNS(on_rr);
223 CFQ_CFQQ_FNS(wait_request);
224 CFQ_CFQQ_FNS(must_dispatch);
225 CFQ_CFQQ_FNS(must_alloc_slice);
226 CFQ_CFQQ_FNS(fifo_expire);
227 CFQ_CFQQ_FNS(idle_window);
228 CFQ_CFQQ_FNS(prio_changed);
229 CFQ_CFQQ_FNS(slice_new);
230 CFQ_CFQQ_FNS(sync);
231 CFQ_CFQQ_FNS(coop);
232 #undef CFQ_CFQQ_FNS
233
234 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
235         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
236 #define cfq_log(cfqd, fmt, args...)     \
237         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
238
239 static void cfq_dispatch_insert(struct request_queue *, struct request *);
240 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
241                                        struct io_context *, gfp_t);
242 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
243                                                 struct io_context *);
244
245 static inline int rq_in_driver(struct cfq_data *cfqd)
246 {
247         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
248 }
249
250 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
251                                             bool is_sync)
252 {
253         return cic->cfqq[is_sync];
254 }
255
256 static inline void cic_set_cfqq(struct cfq_io_context *cic,
257                                 struct cfq_queue *cfqq, bool is_sync)
258 {
259         cic->cfqq[is_sync] = cfqq;
260 }
261
262 /*
263  * We regard a request as SYNC, if it's either a read or has the SYNC bit
264  * set (in which case it could also be direct WRITE).
265  */
266 static inline bool cfq_bio_sync(struct bio *bio)
267 {
268         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
269 }
270
271 /*
272  * scheduler run of queue, if there are requests pending and no one in the
273  * driver that will restart queueing
274  */
275 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
276 {
277         if (cfqd->busy_queues) {
278                 cfq_log(cfqd, "schedule dispatch");
279                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
280         }
281 }
282
283 static int cfq_queue_empty(struct request_queue *q)
284 {
285         struct cfq_data *cfqd = q->elevator->elevator_data;
286
287         return !cfqd->busy_queues;
288 }
289
290 /*
291  * Scale schedule slice based on io priority. Use the sync time slice only
292  * if a queue is marked sync and has sync io queued. A sync queue with async
293  * io only, should not get full sync slice length.
294  */
295 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
296                                  unsigned short prio)
297 {
298         const int base_slice = cfqd->cfq_slice[sync];
299
300         WARN_ON(prio >= IOPRIO_BE_NR);
301
302         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
303 }
304
305 static inline int
306 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
307 {
308         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
309 }
310
311 static inline void
312 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
313 {
314         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
315         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
316 }
317
318 /*
319  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
320  * isn't valid until the first request from the dispatch is activated
321  * and the slice time set.
322  */
323 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
324 {
325         if (cfq_cfqq_slice_new(cfqq))
326                 return 0;
327         if (time_before(jiffies, cfqq->slice_end))
328                 return 0;
329
330         return 1;
331 }
332
333 /*
334  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
335  * We choose the request that is closest to the head right now. Distance
336  * behind the head is penalized and only allowed to a certain extent.
337  */
338 static struct request *
339 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
340 {
341         sector_t last, s1, s2, d1 = 0, d2 = 0;
342         unsigned long back_max;
343 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
344 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
345         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
346
347         if (rq1 == NULL || rq1 == rq2)
348                 return rq2;
349         if (rq2 == NULL)
350                 return rq1;
351
352         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
353                 return rq1;
354         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
355                 return rq2;
356         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
357                 return rq1;
358         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
359                 return rq2;
360
361         s1 = blk_rq_pos(rq1);
362         s2 = blk_rq_pos(rq2);
363
364         last = cfqd->last_position;
365
366         /*
367          * by definition, 1KiB is 2 sectors
368          */
369         back_max = cfqd->cfq_back_max * 2;
370
371         /*
372          * Strict one way elevator _except_ in the case where we allow
373          * short backward seeks which are biased as twice the cost of a
374          * similar forward seek.
375          */
376         if (s1 >= last)
377                 d1 = s1 - last;
378         else if (s1 + back_max >= last)
379                 d1 = (last - s1) * cfqd->cfq_back_penalty;
380         else
381                 wrap |= CFQ_RQ1_WRAP;
382
383         if (s2 >= last)
384                 d2 = s2 - last;
385         else if (s2 + back_max >= last)
386                 d2 = (last - s2) * cfqd->cfq_back_penalty;
387         else
388                 wrap |= CFQ_RQ2_WRAP;
389
390         /* Found required data */
391
392         /*
393          * By doing switch() on the bit mask "wrap" we avoid having to
394          * check two variables for all permutations: --> faster!
395          */
396         switch (wrap) {
397         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
398                 if (d1 < d2)
399                         return rq1;
400                 else if (d2 < d1)
401                         return rq2;
402                 else {
403                         if (s1 >= s2)
404                                 return rq1;
405                         else
406                                 return rq2;
407                 }
408
409         case CFQ_RQ2_WRAP:
410                 return rq1;
411         case CFQ_RQ1_WRAP:
412                 return rq2;
413         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
414         default:
415                 /*
416                  * Since both rqs are wrapped,
417                  * start with the one that's further behind head
418                  * (--> only *one* back seek required),
419                  * since back seek takes more time than forward.
420                  */
421                 if (s1 <= s2)
422                         return rq1;
423                 else
424                         return rq2;
425         }
426 }
427
428 /*
429  * The below is leftmost cache rbtree addon
430  */
431 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
432 {
433         if (!root->left)
434                 root->left = rb_first(&root->rb);
435
436         if (root->left)
437                 return rb_entry(root->left, struct cfq_queue, rb_node);
438
439         return NULL;
440 }
441
442 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
443 {
444         rb_erase(n, root);
445         RB_CLEAR_NODE(n);
446 }
447
448 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
449 {
450         if (root->left == n)
451                 root->left = NULL;
452         rb_erase_init(n, &root->rb);
453 }
454
455 /*
456  * would be nice to take fifo expire time into account as well
457  */
458 static struct request *
459 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
460                   struct request *last)
461 {
462         struct rb_node *rbnext = rb_next(&last->rb_node);
463         struct rb_node *rbprev = rb_prev(&last->rb_node);
464         struct request *next = NULL, *prev = NULL;
465
466         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
467
468         if (rbprev)
469                 prev = rb_entry_rq(rbprev);
470
471         if (rbnext)
472                 next = rb_entry_rq(rbnext);
473         else {
474                 rbnext = rb_first(&cfqq->sort_list);
475                 if (rbnext && rbnext != &last->rb_node)
476                         next = rb_entry_rq(rbnext);
477         }
478
479         return cfq_choose_req(cfqd, next, prev);
480 }
481
482 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
483                                       struct cfq_queue *cfqq)
484 {
485         /*
486          * just an approximation, should be ok.
487          */
488         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
489                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
490 }
491
492 /*
493  * The cfqd->service_tree holds all pending cfq_queue's that have
494  * requests waiting to be processed. It is sorted in the order that
495  * we will service the queues.
496  */
497 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
498                                  bool add_front)
499 {
500         struct rb_node **p, *parent;
501         struct cfq_queue *__cfqq;
502         unsigned long rb_key;
503         int left;
504
505         if (cfq_class_idle(cfqq)) {
506                 rb_key = CFQ_IDLE_DELAY;
507                 parent = rb_last(&cfqd->service_tree.rb);
508                 if (parent && parent != &cfqq->rb_node) {
509                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
510                         rb_key += __cfqq->rb_key;
511                 } else
512                         rb_key += jiffies;
513         } else if (!add_front) {
514                 /*
515                  * Get our rb key offset. Subtract any residual slice
516                  * value carried from last service. A negative resid
517                  * count indicates slice overrun, and this should position
518                  * the next service time further away in the tree.
519                  */
520                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
521                 rb_key -= cfqq->slice_resid;
522                 cfqq->slice_resid = 0;
523         } else {
524                 rb_key = -HZ;
525                 __cfqq = cfq_rb_first(&cfqd->service_tree);
526                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
527         }
528
529         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
530                 /*
531                  * same position, nothing more to do
532                  */
533                 if (rb_key == cfqq->rb_key)
534                         return;
535
536                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
537         }
538
539         left = 1;
540         parent = NULL;
541         p = &cfqd->service_tree.rb.rb_node;
542         while (*p) {
543                 struct rb_node **n;
544
545                 parent = *p;
546                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
547
548                 /*
549                  * sort RT queues first, we always want to give
550                  * preference to them. IDLE queues goes to the back.
551                  * after that, sort on the next service time.
552                  */
553                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
554                         n = &(*p)->rb_left;
555                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
556                         n = &(*p)->rb_right;
557                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
558                         n = &(*p)->rb_left;
559                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
560                         n = &(*p)->rb_right;
561                 else if (time_before(rb_key, __cfqq->rb_key))
562                         n = &(*p)->rb_left;
563                 else
564                         n = &(*p)->rb_right;
565
566                 if (n == &(*p)->rb_right)
567                         left = 0;
568
569                 p = n;
570         }
571
572         if (left)
573                 cfqd->service_tree.left = &cfqq->rb_node;
574
575         cfqq->rb_key = rb_key;
576         rb_link_node(&cfqq->rb_node, parent, p);
577         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
578 }
579
580 static struct cfq_queue *
581 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
582                      sector_t sector, struct rb_node **ret_parent,
583                      struct rb_node ***rb_link)
584 {
585         struct rb_node **p, *parent;
586         struct cfq_queue *cfqq = NULL;
587
588         parent = NULL;
589         p = &root->rb_node;
590         while (*p) {
591                 struct rb_node **n;
592
593                 parent = *p;
594                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
595
596                 /*
597                  * Sort strictly based on sector.  Smallest to the left,
598                  * largest to the right.
599                  */
600                 if (sector > blk_rq_pos(cfqq->next_rq))
601                         n = &(*p)->rb_right;
602                 else if (sector < blk_rq_pos(cfqq->next_rq))
603                         n = &(*p)->rb_left;
604                 else
605                         break;
606                 p = n;
607                 cfqq = NULL;
608         }
609
610         *ret_parent = parent;
611         if (rb_link)
612                 *rb_link = p;
613         return cfqq;
614 }
615
616 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
617 {
618         struct rb_node **p, *parent;
619         struct cfq_queue *__cfqq;
620
621         if (cfqq->p_root) {
622                 rb_erase(&cfqq->p_node, cfqq->p_root);
623                 cfqq->p_root = NULL;
624         }
625
626         if (cfq_class_idle(cfqq))
627                 return;
628         if (!cfqq->next_rq)
629                 return;
630
631         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
632         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
633                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
634         if (!__cfqq) {
635                 rb_link_node(&cfqq->p_node, parent, p);
636                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
637         } else
638                 cfqq->p_root = NULL;
639 }
640
641 /*
642  * Update cfqq's position in the service tree.
643  */
644 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
645 {
646         /*
647          * Resorting requires the cfqq to be on the RR list already.
648          */
649         if (cfq_cfqq_on_rr(cfqq)) {
650                 cfq_service_tree_add(cfqd, cfqq, 0);
651                 cfq_prio_tree_add(cfqd, cfqq);
652         }
653 }
654
655 /*
656  * add to busy list of queues for service, trying to be fair in ordering
657  * the pending list according to last request service
658  */
659 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
660 {
661         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
662         BUG_ON(cfq_cfqq_on_rr(cfqq));
663         cfq_mark_cfqq_on_rr(cfqq);
664         cfqd->busy_queues++;
665
666         cfq_resort_rr_list(cfqd, cfqq);
667 }
668
669 /*
670  * Called when the cfqq no longer has requests pending, remove it from
671  * the service tree.
672  */
673 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
674 {
675         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
676         BUG_ON(!cfq_cfqq_on_rr(cfqq));
677         cfq_clear_cfqq_on_rr(cfqq);
678
679         if (!RB_EMPTY_NODE(&cfqq->rb_node))
680                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
681         if (cfqq->p_root) {
682                 rb_erase(&cfqq->p_node, cfqq->p_root);
683                 cfqq->p_root = NULL;
684         }
685
686         BUG_ON(!cfqd->busy_queues);
687         cfqd->busy_queues--;
688 }
689
690 /*
691  * rb tree support functions
692  */
693 static void cfq_del_rq_rb(struct request *rq)
694 {
695         struct cfq_queue *cfqq = RQ_CFQQ(rq);
696         struct cfq_data *cfqd = cfqq->cfqd;
697         const int sync = rq_is_sync(rq);
698
699         BUG_ON(!cfqq->queued[sync]);
700         cfqq->queued[sync]--;
701
702         elv_rb_del(&cfqq->sort_list, rq);
703
704         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
705                 cfq_del_cfqq_rr(cfqd, cfqq);
706 }
707
708 static void cfq_add_rq_rb(struct request *rq)
709 {
710         struct cfq_queue *cfqq = RQ_CFQQ(rq);
711         struct cfq_data *cfqd = cfqq->cfqd;
712         struct request *__alias, *prev;
713
714         cfqq->queued[rq_is_sync(rq)]++;
715
716         /*
717          * looks a little odd, but the first insert might return an alias.
718          * if that happens, put the alias on the dispatch list
719          */
720         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
721                 cfq_dispatch_insert(cfqd->queue, __alias);
722
723         if (!cfq_cfqq_on_rr(cfqq))
724                 cfq_add_cfqq_rr(cfqd, cfqq);
725
726         /*
727          * check if this request is a better next-serve candidate
728          */
729         prev = cfqq->next_rq;
730         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
731
732         /*
733          * adjust priority tree position, if ->next_rq changes
734          */
735         if (prev != cfqq->next_rq)
736                 cfq_prio_tree_add(cfqd, cfqq);
737
738         BUG_ON(!cfqq->next_rq);
739 }
740
741 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
742 {
743         elv_rb_del(&cfqq->sort_list, rq);
744         cfqq->queued[rq_is_sync(rq)]--;
745         cfq_add_rq_rb(rq);
746 }
747
748 static struct request *
749 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
750 {
751         struct task_struct *tsk = current;
752         struct cfq_io_context *cic;
753         struct cfq_queue *cfqq;
754
755         cic = cfq_cic_lookup(cfqd, tsk->io_context);
756         if (!cic)
757                 return NULL;
758
759         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
760         if (cfqq) {
761                 sector_t sector = bio->bi_sector + bio_sectors(bio);
762
763                 return elv_rb_find(&cfqq->sort_list, sector);
764         }
765
766         return NULL;
767 }
768
769 static void cfq_activate_request(struct request_queue *q, struct request *rq)
770 {
771         struct cfq_data *cfqd = q->elevator->elevator_data;
772
773         cfqd->rq_in_driver[rq_is_sync(rq)]++;
774         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
775                                                 rq_in_driver(cfqd));
776
777         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
778 }
779
780 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
781 {
782         struct cfq_data *cfqd = q->elevator->elevator_data;
783         const int sync = rq_is_sync(rq);
784
785         WARN_ON(!cfqd->rq_in_driver[sync]);
786         cfqd->rq_in_driver[sync]--;
787         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
788                                                 rq_in_driver(cfqd));
789 }
790
791 static void cfq_remove_request(struct request *rq)
792 {
793         struct cfq_queue *cfqq = RQ_CFQQ(rq);
794
795         if (cfqq->next_rq == rq)
796                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
797
798         list_del_init(&rq->queuelist);
799         cfq_del_rq_rb(rq);
800
801         cfqq->cfqd->rq_queued--;
802         if (rq_is_meta(rq)) {
803                 WARN_ON(!cfqq->meta_pending);
804                 cfqq->meta_pending--;
805         }
806 }
807
808 static int cfq_merge(struct request_queue *q, struct request **req,
809                      struct bio *bio)
810 {
811         struct cfq_data *cfqd = q->elevator->elevator_data;
812         struct request *__rq;
813
814         __rq = cfq_find_rq_fmerge(cfqd, bio);
815         if (__rq && elv_rq_merge_ok(__rq, bio)) {
816                 *req = __rq;
817                 return ELEVATOR_FRONT_MERGE;
818         }
819
820         return ELEVATOR_NO_MERGE;
821 }
822
823 static void cfq_merged_request(struct request_queue *q, struct request *req,
824                                int type)
825 {
826         if (type == ELEVATOR_FRONT_MERGE) {
827                 struct cfq_queue *cfqq = RQ_CFQQ(req);
828
829                 cfq_reposition_rq_rb(cfqq, req);
830         }
831 }
832
833 static void
834 cfq_merged_requests(struct request_queue *q, struct request *rq,
835                     struct request *next)
836 {
837         /*
838          * reposition in fifo if next is older than rq
839          */
840         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
841             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
842                 list_move(&rq->queuelist, &next->queuelist);
843                 rq_set_fifo_time(rq, rq_fifo_time(next));
844         }
845
846         cfq_remove_request(next);
847 }
848
849 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
850                            struct bio *bio)
851 {
852         struct cfq_data *cfqd = q->elevator->elevator_data;
853         struct cfq_io_context *cic;
854         struct cfq_queue *cfqq;
855
856         /*
857          * Disallow merge of a sync bio into an async request.
858          */
859         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
860                 return false;
861
862         /*
863          * Lookup the cfqq that this bio will be queued with. Allow
864          * merge only if rq is queued there.
865          */
866         cic = cfq_cic_lookup(cfqd, current->io_context);
867         if (!cic)
868                 return false;
869
870         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
871         return cfqq == RQ_CFQQ(rq);
872 }
873
874 static void __cfq_set_active_queue(struct cfq_data *cfqd,
875                                    struct cfq_queue *cfqq)
876 {
877         if (cfqq) {
878                 cfq_log_cfqq(cfqd, cfqq, "set_active");
879                 cfqq->slice_end = 0;
880                 cfqq->slice_dispatch = 0;
881
882                 cfq_clear_cfqq_wait_request(cfqq);
883                 cfq_clear_cfqq_must_dispatch(cfqq);
884                 cfq_clear_cfqq_must_alloc_slice(cfqq);
885                 cfq_clear_cfqq_fifo_expire(cfqq);
886                 cfq_mark_cfqq_slice_new(cfqq);
887
888                 del_timer(&cfqd->idle_slice_timer);
889         }
890
891         cfqd->active_queue = cfqq;
892 }
893
894 /*
895  * current cfqq expired its slice (or was too idle), select new one
896  */
897 static void
898 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
899                     bool timed_out)
900 {
901         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
902
903         if (cfq_cfqq_wait_request(cfqq))
904                 del_timer(&cfqd->idle_slice_timer);
905
906         cfq_clear_cfqq_wait_request(cfqq);
907
908         /*
909          * store what was left of this slice, if the queue idled/timed out
910          */
911         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
912                 cfqq->slice_resid = cfqq->slice_end - jiffies;
913                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
914         }
915
916         cfq_resort_rr_list(cfqd, cfqq);
917
918         if (cfqq == cfqd->active_queue)
919                 cfqd->active_queue = NULL;
920
921         if (cfqd->active_cic) {
922                 put_io_context(cfqd->active_cic->ioc);
923                 cfqd->active_cic = NULL;
924         }
925 }
926
927 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
928 {
929         struct cfq_queue *cfqq = cfqd->active_queue;
930
931         if (cfqq)
932                 __cfq_slice_expired(cfqd, cfqq, timed_out);
933 }
934
935 /*
936  * Get next queue for service. Unless we have a queue preemption,
937  * we'll simply select the first cfqq in the service tree.
938  */
939 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
940 {
941         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
942                 return NULL;
943
944         return cfq_rb_first(&cfqd->service_tree);
945 }
946
947 /*
948  * Get and set a new active queue for service.
949  */
950 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
951                                               struct cfq_queue *cfqq)
952 {
953         if (!cfqq) {
954                 cfqq = cfq_get_next_queue(cfqd);
955                 if (cfqq)
956                         cfq_clear_cfqq_coop(cfqq);
957         }
958
959         __cfq_set_active_queue(cfqd, cfqq);
960         return cfqq;
961 }
962
963 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
964                                           struct request *rq)
965 {
966         if (blk_rq_pos(rq) >= cfqd->last_position)
967                 return blk_rq_pos(rq) - cfqd->last_position;
968         else
969                 return cfqd->last_position - blk_rq_pos(rq);
970 }
971
972 #define CFQQ_SEEK_THR           8 * 1024
973 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
974
975 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
976                                struct request *rq)
977 {
978         sector_t sdist = cfqq->seek_mean;
979
980         if (!sample_valid(cfqq->seek_samples))
981                 sdist = CFQQ_SEEK_THR;
982
983         return cfq_dist_from_last(cfqd, rq) <= sdist;
984 }
985
986 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
987                                     struct cfq_queue *cur_cfqq)
988 {
989         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
990         struct rb_node *parent, *node;
991         struct cfq_queue *__cfqq;
992         sector_t sector = cfqd->last_position;
993
994         if (RB_EMPTY_ROOT(root))
995                 return NULL;
996
997         /*
998          * First, if we find a request starting at the end of the last
999          * request, choose it.
1000          */
1001         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1002         if (__cfqq)
1003                 return __cfqq;
1004
1005         /*
1006          * If the exact sector wasn't found, the parent of the NULL leaf
1007          * will contain the closest sector.
1008          */
1009         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1010         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1011                 return __cfqq;
1012
1013         if (blk_rq_pos(__cfqq->next_rq) < sector)
1014                 node = rb_next(&__cfqq->p_node);
1015         else
1016                 node = rb_prev(&__cfqq->p_node);
1017         if (!node)
1018                 return NULL;
1019
1020         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1021         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1022                 return __cfqq;
1023
1024         return NULL;
1025 }
1026
1027 /*
1028  * cfqd - obvious
1029  * cur_cfqq - passed in so that we don't decide that the current queue is
1030  *            closely cooperating with itself.
1031  *
1032  * So, basically we're assuming that that cur_cfqq has dispatched at least
1033  * one request, and that cfqd->last_position reflects a position on the disk
1034  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1035  * assumption.
1036  */
1037 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1038                                               struct cfq_queue *cur_cfqq,
1039                                               bool probe)
1040 {
1041         struct cfq_queue *cfqq;
1042
1043         /*
1044          * We should notice if some of the queues are cooperating, eg
1045          * working closely on the same area of the disk. In that case,
1046          * we can group them together and don't waste time idling.
1047          */
1048         cfqq = cfqq_close(cfqd, cur_cfqq);
1049         if (!cfqq)
1050                 return NULL;
1051
1052         /*
1053          * It only makes sense to merge sync queues.
1054          */
1055         if (!cfq_cfqq_sync(cfqq))
1056                 return NULL;
1057
1058         if (cfq_cfqq_coop(cfqq))
1059                 return NULL;
1060
1061         if (!probe)
1062                 cfq_mark_cfqq_coop(cfqq);
1063         return cfqq;
1064 }
1065
1066 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1067 {
1068         struct cfq_queue *cfqq = cfqd->active_queue;
1069         struct cfq_io_context *cic;
1070         unsigned long sl;
1071
1072         /*
1073          * SSD device without seek penalty, disable idling. But only do so
1074          * for devices that support queuing, otherwise we still have a problem
1075          * with sync vs async workloads.
1076          */
1077         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1078                 return;
1079
1080         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1081         WARN_ON(cfq_cfqq_slice_new(cfqq));
1082
1083         /*
1084          * idle is disabled, either manually or by past process history
1085          */
1086         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1087                 return;
1088
1089         /*
1090          * still requests with the driver, don't idle
1091          */
1092         if (rq_in_driver(cfqd))
1093                 return;
1094
1095         /*
1096          * task has exited, don't wait
1097          */
1098         cic = cfqd->active_cic;
1099         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1100                 return;
1101
1102         /*
1103          * If our average think time is larger than the remaining time
1104          * slice, then don't idle. This avoids overrunning the allotted
1105          * time slice.
1106          */
1107         if (sample_valid(cic->ttime_samples) &&
1108             (cfqq->slice_end - jiffies < cic->ttime_mean))
1109                 return;
1110
1111         cfq_mark_cfqq_wait_request(cfqq);
1112
1113         /*
1114          * we don't want to idle for seeks, but we do want to allow
1115          * fair distribution of slice time for a process doing back-to-back
1116          * seeks. so allow a little bit of time for him to submit a new rq
1117          */
1118         sl = cfqd->cfq_slice_idle;
1119         if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
1120                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1121
1122         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1123         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1124 }
1125
1126 /*
1127  * Move request from internal lists to the request queue dispatch list.
1128  */
1129 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1130 {
1131         struct cfq_data *cfqd = q->elevator->elevator_data;
1132         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1133
1134         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1135
1136         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1137         cfq_remove_request(rq);
1138         cfqq->dispatched++;
1139         elv_dispatch_sort(q, rq);
1140
1141         if (cfq_cfqq_sync(cfqq))
1142                 cfqd->sync_flight++;
1143 }
1144
1145 /*
1146  * return expired entry, or NULL to just start from scratch in rbtree
1147  */
1148 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1149 {
1150         struct request *rq = NULL;
1151
1152         if (cfq_cfqq_fifo_expire(cfqq))
1153                 return NULL;
1154
1155         cfq_mark_cfqq_fifo_expire(cfqq);
1156
1157         if (list_empty(&cfqq->fifo))
1158                 return NULL;
1159
1160         rq = rq_entry_fifo(cfqq->fifo.next);
1161         if (time_before(jiffies, rq_fifo_time(rq)))
1162                 rq = NULL;
1163
1164         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1165         return rq;
1166 }
1167
1168 static inline int
1169 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1170 {
1171         const int base_rq = cfqd->cfq_slice_async_rq;
1172
1173         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1174
1175         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1176 }
1177
1178 /*
1179  * Must be called with the queue_lock held.
1180  */
1181 static int cfqq_process_refs(struct cfq_queue *cfqq)
1182 {
1183         int process_refs, io_refs;
1184
1185         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1186         process_refs = atomic_read(&cfqq->ref) - io_refs;
1187         BUG_ON(process_refs < 0);
1188         return process_refs;
1189 }
1190
1191 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1192 {
1193         int process_refs;
1194         struct cfq_queue *__cfqq;
1195
1196         /* Avoid a circular list and skip interim queue merges */
1197         while ((__cfqq = new_cfqq->new_cfqq)) {
1198                 if (__cfqq == cfqq)
1199                         return;
1200                 new_cfqq = __cfqq;
1201         }
1202
1203         process_refs = cfqq_process_refs(cfqq);
1204         /*
1205          * If the process for the cfqq has gone away, there is no
1206          * sense in merging the queues.
1207          */
1208         if (process_refs == 0)
1209                 return;
1210
1211         cfqq->new_cfqq = new_cfqq;
1212         atomic_add(process_refs, &new_cfqq->ref);
1213 }
1214
1215 /*
1216  * Select a queue for service. If we have a current active queue,
1217  * check whether to continue servicing it, or retrieve and set a new one.
1218  */
1219 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1220 {
1221         struct cfq_queue *cfqq, *new_cfqq = NULL;
1222
1223         cfqq = cfqd->active_queue;
1224         if (!cfqq)
1225                 goto new_queue;
1226
1227         /*
1228          * The active queue has run out of time, expire it and select new.
1229          */
1230         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1231                 goto expire;
1232
1233         /*
1234          * The active queue has requests and isn't expired, allow it to
1235          * dispatch.
1236          */
1237         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1238                 goto keep_queue;
1239
1240         /*
1241          * If another queue has a request waiting within our mean seek
1242          * distance, let it run.  The expire code will check for close
1243          * cooperators and put the close queue at the front of the service
1244          * tree.  If possible, merge the expiring queue with the new cfqq.
1245          */
1246         new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1247         if (new_cfqq) {
1248                 if (!cfqq->new_cfqq)
1249                         cfq_setup_merge(cfqq, new_cfqq);
1250                 goto expire;
1251         }
1252
1253         /*
1254          * No requests pending. If the active queue still has requests in
1255          * flight or is idling for a new request, allow either of these
1256          * conditions to happen (or time out) before selecting a new queue.
1257          */
1258         if (timer_pending(&cfqd->idle_slice_timer) ||
1259             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1260                 cfqq = NULL;
1261                 goto keep_queue;
1262         }
1263
1264 expire:
1265         cfq_slice_expired(cfqd, 0);
1266 new_queue:
1267         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1268 keep_queue:
1269         return cfqq;
1270 }
1271
1272 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1273 {
1274         int dispatched = 0;
1275
1276         while (cfqq->next_rq) {
1277                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1278                 dispatched++;
1279         }
1280
1281         BUG_ON(!list_empty(&cfqq->fifo));
1282         return dispatched;
1283 }
1284
1285 /*
1286  * Drain our current requests. Used for barriers and when switching
1287  * io schedulers on-the-fly.
1288  */
1289 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1290 {
1291         struct cfq_queue *cfqq;
1292         int dispatched = 0;
1293
1294         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1295                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1296
1297         cfq_slice_expired(cfqd, 0);
1298
1299         BUG_ON(cfqd->busy_queues);
1300
1301         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1302         return dispatched;
1303 }
1304
1305 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1306 {
1307         unsigned int max_dispatch;
1308
1309         /*
1310          * Drain async requests before we start sync IO
1311          */
1312         if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1313                 return false;
1314
1315         /*
1316          * If this is an async queue and we have sync IO in flight, let it wait
1317          */
1318         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1319                 return false;
1320
1321         max_dispatch = cfqd->cfq_quantum;
1322         if (cfq_class_idle(cfqq))
1323                 max_dispatch = 1;
1324
1325         /*
1326          * Does this cfqq already have too much IO in flight?
1327          */
1328         if (cfqq->dispatched >= max_dispatch) {
1329                 /*
1330                  * idle queue must always only have a single IO in flight
1331                  */
1332                 if (cfq_class_idle(cfqq))
1333                         return false;
1334
1335                 /*
1336                  * We have other queues, don't allow more IO from this one
1337                  */
1338                 if (cfqd->busy_queues > 1)
1339                         return false;
1340
1341                 /*
1342                  * Sole queue user, allow bigger slice
1343                  */
1344                 max_dispatch *= 4;
1345         }
1346
1347         /*
1348          * Async queues must wait a bit before being allowed dispatch.
1349          * We also ramp up the dispatch depth gradually for async IO,
1350          * based on the last sync IO we serviced
1351          */
1352         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1353                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1354                 unsigned int depth;
1355
1356                 depth = last_sync / cfqd->cfq_slice[1];
1357                 if (!depth && !cfqq->dispatched)
1358                         depth = 1;
1359                 if (depth < max_dispatch)
1360                         max_dispatch = depth;
1361         }
1362
1363         /*
1364          * If we're below the current max, allow a dispatch
1365          */
1366         return cfqq->dispatched < max_dispatch;
1367 }
1368
1369 /*
1370  * Dispatch a request from cfqq, moving them to the request queue
1371  * dispatch list.
1372  */
1373 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1374 {
1375         struct request *rq;
1376
1377         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1378
1379         if (!cfq_may_dispatch(cfqd, cfqq))
1380                 return false;
1381
1382         /*
1383          * follow expired path, else get first next available
1384          */
1385         rq = cfq_check_fifo(cfqq);
1386         if (!rq)
1387                 rq = cfqq->next_rq;
1388
1389         /*
1390          * insert request into driver dispatch list
1391          */
1392         cfq_dispatch_insert(cfqd->queue, rq);
1393
1394         if (!cfqd->active_cic) {
1395                 struct cfq_io_context *cic = RQ_CIC(rq);
1396
1397                 atomic_long_inc(&cic->ioc->refcount);
1398                 cfqd->active_cic = cic;
1399         }
1400
1401         return true;
1402 }
1403
1404 /*
1405  * Find the cfqq that we need to service and move a request from that to the
1406  * dispatch list
1407  */
1408 static int cfq_dispatch_requests(struct request_queue *q, int force)
1409 {
1410         struct cfq_data *cfqd = q->elevator->elevator_data;
1411         struct cfq_queue *cfqq;
1412
1413         if (!cfqd->busy_queues)
1414                 return 0;
1415
1416         if (unlikely(force))
1417                 return cfq_forced_dispatch(cfqd);
1418
1419         cfqq = cfq_select_queue(cfqd);
1420         if (!cfqq)
1421                 return 0;
1422
1423         /*
1424          * Dispatch a request from this cfqq, if it is allowed
1425          */
1426         if (!cfq_dispatch_request(cfqd, cfqq))
1427                 return 0;
1428
1429         cfqq->slice_dispatch++;
1430         cfq_clear_cfqq_must_dispatch(cfqq);
1431
1432         /*
1433          * expire an async queue immediately if it has used up its slice. idle
1434          * queue always expire after 1 dispatch round.
1435          */
1436         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1437             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1438             cfq_class_idle(cfqq))) {
1439                 cfqq->slice_end = jiffies + 1;
1440                 cfq_slice_expired(cfqd, 0);
1441         }
1442
1443         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1444         return 1;
1445 }
1446
1447 /*
1448  * task holds one reference to the queue, dropped when task exits. each rq
1449  * in-flight on this queue also holds a reference, dropped when rq is freed.
1450  *
1451  * queue lock must be held here.
1452  */
1453 static void cfq_put_queue(struct cfq_queue *cfqq)
1454 {
1455         struct cfq_data *cfqd = cfqq->cfqd;
1456
1457         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1458
1459         if (!atomic_dec_and_test(&cfqq->ref))
1460                 return;
1461
1462         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1463         BUG_ON(rb_first(&cfqq->sort_list));
1464         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1465         BUG_ON(cfq_cfqq_on_rr(cfqq));
1466
1467         if (unlikely(cfqd->active_queue == cfqq)) {
1468                 __cfq_slice_expired(cfqd, cfqq, 0);
1469                 cfq_schedule_dispatch(cfqd);
1470         }
1471
1472         kmem_cache_free(cfq_pool, cfqq);
1473 }
1474
1475 /*
1476  * Must always be called with the rcu_read_lock() held
1477  */
1478 static void
1479 __call_for_each_cic(struct io_context *ioc,
1480                     void (*func)(struct io_context *, struct cfq_io_context *))
1481 {
1482         struct cfq_io_context *cic;
1483         struct hlist_node *n;
1484
1485         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1486                 func(ioc, cic);
1487 }
1488
1489 /*
1490  * Call func for each cic attached to this ioc.
1491  */
1492 static void
1493 call_for_each_cic(struct io_context *ioc,
1494                   void (*func)(struct io_context *, struct cfq_io_context *))
1495 {
1496         rcu_read_lock();
1497         __call_for_each_cic(ioc, func);
1498         rcu_read_unlock();
1499 }
1500
1501 static void cfq_cic_free_rcu(struct rcu_head *head)
1502 {
1503         struct cfq_io_context *cic;
1504
1505         cic = container_of(head, struct cfq_io_context, rcu_head);
1506
1507         kmem_cache_free(cfq_ioc_pool, cic);
1508         elv_ioc_count_dec(cfq_ioc_count);
1509
1510         if (ioc_gone) {
1511                 /*
1512                  * CFQ scheduler is exiting, grab exit lock and check
1513                  * the pending io context count. If it hits zero,
1514                  * complete ioc_gone and set it back to NULL
1515                  */
1516                 spin_lock(&ioc_gone_lock);
1517                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1518                         complete(ioc_gone);
1519                         ioc_gone = NULL;
1520                 }
1521                 spin_unlock(&ioc_gone_lock);
1522         }
1523 }
1524
1525 static void cfq_cic_free(struct cfq_io_context *cic)
1526 {
1527         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1528 }
1529
1530 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1531 {
1532         unsigned long flags;
1533
1534         BUG_ON(!cic->dead_key);
1535
1536         spin_lock_irqsave(&ioc->lock, flags);
1537         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1538         hlist_del_rcu(&cic->cic_list);
1539         spin_unlock_irqrestore(&ioc->lock, flags);
1540
1541         cfq_cic_free(cic);
1542 }
1543
1544 /*
1545  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1546  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1547  * and ->trim() which is called with the task lock held
1548  */
1549 static void cfq_free_io_context(struct io_context *ioc)
1550 {
1551         /*
1552          * ioc->refcount is zero here, or we are called from elv_unregister(),
1553          * so no more cic's are allowed to be linked into this ioc.  So it
1554          * should be ok to iterate over the known list, we will see all cic's
1555          * since no new ones are added.
1556          */
1557         __call_for_each_cic(ioc, cic_free_func);
1558 }
1559
1560 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1561 {
1562         struct cfq_queue *__cfqq, *next;
1563
1564         if (unlikely(cfqq == cfqd->active_queue)) {
1565                 __cfq_slice_expired(cfqd, cfqq, 0);
1566                 cfq_schedule_dispatch(cfqd);
1567         }
1568
1569         /*
1570          * If this queue was scheduled to merge with another queue, be
1571          * sure to drop the reference taken on that queue (and others in
1572          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
1573          */
1574         __cfqq = cfqq->new_cfqq;
1575         while (__cfqq) {
1576                 if (__cfqq == cfqq) {
1577                         WARN(1, "cfqq->new_cfqq loop detected\n");
1578                         break;
1579                 }
1580                 next = __cfqq->new_cfqq;
1581                 cfq_put_queue(__cfqq);
1582                 __cfqq = next;
1583         }
1584
1585         cfq_put_queue(cfqq);
1586 }
1587
1588 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1589                                          struct cfq_io_context *cic)
1590 {
1591         struct io_context *ioc = cic->ioc;
1592
1593         list_del_init(&cic->queue_list);
1594
1595         /*
1596          * Make sure key == NULL is seen for dead queues
1597          */
1598         smp_wmb();
1599         cic->dead_key = (unsigned long) cic->key;
1600         cic->key = NULL;
1601
1602         if (ioc->ioc_data == cic)
1603                 rcu_assign_pointer(ioc->ioc_data, NULL);
1604
1605         if (cic->cfqq[BLK_RW_ASYNC]) {
1606                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1607                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1608         }
1609
1610         if (cic->cfqq[BLK_RW_SYNC]) {
1611                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1612                 cic->cfqq[BLK_RW_SYNC] = NULL;
1613         }
1614 }
1615
1616 static void cfq_exit_single_io_context(struct io_context *ioc,
1617                                        struct cfq_io_context *cic)
1618 {
1619         struct cfq_data *cfqd = cic->key;
1620
1621         if (cfqd) {
1622                 struct request_queue *q = cfqd->queue;
1623                 unsigned long flags;
1624
1625                 spin_lock_irqsave(q->queue_lock, flags);
1626
1627                 /*
1628                  * Ensure we get a fresh copy of the ->key to prevent
1629                  * race between exiting task and queue
1630                  */
1631                 smp_read_barrier_depends();
1632                 if (cic->key)
1633                         __cfq_exit_single_io_context(cfqd, cic);
1634
1635                 spin_unlock_irqrestore(q->queue_lock, flags);
1636         }
1637 }
1638
1639 /*
1640  * The process that ioc belongs to has exited, we need to clean up
1641  * and put the internal structures we have that belongs to that process.
1642  */
1643 static void cfq_exit_io_context(struct io_context *ioc)
1644 {
1645         call_for_each_cic(ioc, cfq_exit_single_io_context);
1646 }
1647
1648 static struct cfq_io_context *
1649 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1650 {
1651         struct cfq_io_context *cic;
1652
1653         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1654                                                         cfqd->queue->node);
1655         if (cic) {
1656                 cic->last_end_request = jiffies;
1657                 INIT_LIST_HEAD(&cic->queue_list);
1658                 INIT_HLIST_NODE(&cic->cic_list);
1659                 cic->dtor = cfq_free_io_context;
1660                 cic->exit = cfq_exit_io_context;
1661                 elv_ioc_count_inc(cfq_ioc_count);
1662         }
1663
1664         return cic;
1665 }
1666
1667 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1668 {
1669         struct task_struct *tsk = current;
1670         int ioprio_class;
1671
1672         if (!cfq_cfqq_prio_changed(cfqq))
1673                 return;
1674
1675         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1676         switch (ioprio_class) {
1677         default:
1678                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1679         case IOPRIO_CLASS_NONE:
1680                 /*
1681                  * no prio set, inherit CPU scheduling settings
1682                  */
1683                 cfqq->ioprio = task_nice_ioprio(tsk);
1684                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1685                 break;
1686         case IOPRIO_CLASS_RT:
1687                 cfqq->ioprio = task_ioprio(ioc);
1688                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1689                 break;
1690         case IOPRIO_CLASS_BE:
1691                 cfqq->ioprio = task_ioprio(ioc);
1692                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1693                 break;
1694         case IOPRIO_CLASS_IDLE:
1695                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1696                 cfqq->ioprio = 7;
1697                 cfq_clear_cfqq_idle_window(cfqq);
1698                 break;
1699         }
1700
1701         /*
1702          * keep track of original prio settings in case we have to temporarily
1703          * elevate the priority of this queue
1704          */
1705         cfqq->org_ioprio = cfqq->ioprio;
1706         cfqq->org_ioprio_class = cfqq->ioprio_class;
1707         cfq_clear_cfqq_prio_changed(cfqq);
1708 }
1709
1710 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1711 {
1712         struct cfq_data *cfqd = cic->key;
1713         struct cfq_queue *cfqq;
1714         unsigned long flags;
1715
1716         if (unlikely(!cfqd))
1717                 return;
1718
1719         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1720
1721         cfqq = cic->cfqq[BLK_RW_ASYNC];
1722         if (cfqq) {
1723                 struct cfq_queue *new_cfqq;
1724                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1725                                                 GFP_ATOMIC);
1726                 if (new_cfqq) {
1727                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1728                         cfq_put_queue(cfqq);
1729                 }
1730         }
1731
1732         cfqq = cic->cfqq[BLK_RW_SYNC];
1733         if (cfqq)
1734                 cfq_mark_cfqq_prio_changed(cfqq);
1735
1736         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1737 }
1738
1739 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1740 {
1741         call_for_each_cic(ioc, changed_ioprio);
1742         ioc->ioprio_changed = 0;
1743 }
1744
1745 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1746                           pid_t pid, bool is_sync)
1747 {
1748         RB_CLEAR_NODE(&cfqq->rb_node);
1749         RB_CLEAR_NODE(&cfqq->p_node);
1750         INIT_LIST_HEAD(&cfqq->fifo);
1751
1752         atomic_set(&cfqq->ref, 0);
1753         cfqq->cfqd = cfqd;
1754
1755         cfq_mark_cfqq_prio_changed(cfqq);
1756
1757         if (is_sync) {
1758                 if (!cfq_class_idle(cfqq))
1759                         cfq_mark_cfqq_idle_window(cfqq);
1760                 cfq_mark_cfqq_sync(cfqq);
1761         }
1762         cfqq->pid = pid;
1763 }
1764
1765 static struct cfq_queue *
1766 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1767                      struct io_context *ioc, gfp_t gfp_mask)
1768 {
1769         struct cfq_queue *cfqq, *new_cfqq = NULL;
1770         struct cfq_io_context *cic;
1771
1772 retry:
1773         cic = cfq_cic_lookup(cfqd, ioc);
1774         /* cic always exists here */
1775         cfqq = cic_to_cfqq(cic, is_sync);
1776
1777         /*
1778          * Always try a new alloc if we fell back to the OOM cfqq
1779          * originally, since it should just be a temporary situation.
1780          */
1781         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1782                 cfqq = NULL;
1783                 if (new_cfqq) {
1784                         cfqq = new_cfqq;
1785                         new_cfqq = NULL;
1786                 } else if (gfp_mask & __GFP_WAIT) {
1787                         spin_unlock_irq(cfqd->queue->queue_lock);
1788                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1789                                         gfp_mask | __GFP_ZERO,
1790                                         cfqd->queue->node);
1791                         spin_lock_irq(cfqd->queue->queue_lock);
1792                         if (new_cfqq)
1793                                 goto retry;
1794                 } else {
1795                         cfqq = kmem_cache_alloc_node(cfq_pool,
1796                                         gfp_mask | __GFP_ZERO,
1797                                         cfqd->queue->node);
1798                 }
1799
1800                 if (cfqq) {
1801                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1802                         cfq_init_prio_data(cfqq, ioc);
1803                         cfq_log_cfqq(cfqd, cfqq, "alloced");
1804                 } else
1805                         cfqq = &cfqd->oom_cfqq;
1806         }
1807
1808         if (new_cfqq)
1809                 kmem_cache_free(cfq_pool, new_cfqq);
1810
1811         return cfqq;
1812 }
1813
1814 static struct cfq_queue **
1815 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1816 {
1817         switch (ioprio_class) {
1818         case IOPRIO_CLASS_RT:
1819                 return &cfqd->async_cfqq[0][ioprio];
1820         case IOPRIO_CLASS_BE:
1821                 return &cfqd->async_cfqq[1][ioprio];
1822         case IOPRIO_CLASS_IDLE:
1823                 return &cfqd->async_idle_cfqq;
1824         default:
1825                 BUG();
1826         }
1827 }
1828
1829 static struct cfq_queue *
1830 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1831               gfp_t gfp_mask)
1832 {
1833         const int ioprio = task_ioprio(ioc);
1834         const int ioprio_class = task_ioprio_class(ioc);
1835         struct cfq_queue **async_cfqq = NULL;
1836         struct cfq_queue *cfqq = NULL;
1837
1838         if (!is_sync) {
1839                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1840                 cfqq = *async_cfqq;
1841         }
1842
1843         if (!cfqq)
1844                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1845
1846         /*
1847          * pin the queue now that it's allocated, scheduler exit will prune it
1848          */
1849         if (!is_sync && !(*async_cfqq)) {
1850                 atomic_inc(&cfqq->ref);
1851                 *async_cfqq = cfqq;
1852         }
1853
1854         atomic_inc(&cfqq->ref);
1855         return cfqq;
1856 }
1857
1858 /*
1859  * We drop cfq io contexts lazily, so we may find a dead one.
1860  */
1861 static void
1862 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1863                   struct cfq_io_context *cic)
1864 {
1865         unsigned long flags;
1866
1867         WARN_ON(!list_empty(&cic->queue_list));
1868
1869         spin_lock_irqsave(&ioc->lock, flags);
1870
1871         BUG_ON(ioc->ioc_data == cic);
1872
1873         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1874         hlist_del_rcu(&cic->cic_list);
1875         spin_unlock_irqrestore(&ioc->lock, flags);
1876
1877         cfq_cic_free(cic);
1878 }
1879
1880 static struct cfq_io_context *
1881 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1882 {
1883         struct cfq_io_context *cic;
1884         unsigned long flags;
1885         void *k;
1886
1887         if (unlikely(!ioc))
1888                 return NULL;
1889
1890         rcu_read_lock();
1891
1892         /*
1893          * we maintain a last-hit cache, to avoid browsing over the tree
1894          */
1895         cic = rcu_dereference(ioc->ioc_data);
1896         if (cic && cic->key == cfqd) {
1897                 rcu_read_unlock();
1898                 return cic;
1899         }
1900
1901         do {
1902                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1903                 rcu_read_unlock();
1904                 if (!cic)
1905                         break;
1906                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1907                 k = cic->key;
1908                 if (unlikely(!k)) {
1909                         cfq_drop_dead_cic(cfqd, ioc, cic);
1910                         rcu_read_lock();
1911                         continue;
1912                 }
1913
1914                 spin_lock_irqsave(&ioc->lock, flags);
1915                 rcu_assign_pointer(ioc->ioc_data, cic);
1916                 spin_unlock_irqrestore(&ioc->lock, flags);
1917                 break;
1918         } while (1);
1919
1920         return cic;
1921 }
1922
1923 /*
1924  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1925  * the process specific cfq io context when entered from the block layer.
1926  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1927  */
1928 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1929                         struct cfq_io_context *cic, gfp_t gfp_mask)
1930 {
1931         unsigned long flags;
1932         int ret;
1933
1934         ret = radix_tree_preload(gfp_mask);
1935         if (!ret) {
1936                 cic->ioc = ioc;
1937                 cic->key = cfqd;
1938
1939                 spin_lock_irqsave(&ioc->lock, flags);
1940                 ret = radix_tree_insert(&ioc->radix_root,
1941                                                 (unsigned long) cfqd, cic);
1942                 if (!ret)
1943                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1944                 spin_unlock_irqrestore(&ioc->lock, flags);
1945
1946                 radix_tree_preload_end();
1947
1948                 if (!ret) {
1949                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1950                         list_add(&cic->queue_list, &cfqd->cic_list);
1951                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1952                 }
1953         }
1954
1955         if (ret)
1956                 printk(KERN_ERR "cfq: cic link failed!\n");
1957
1958         return ret;
1959 }
1960
1961 /*
1962  * Setup general io context and cfq io context. There can be several cfq
1963  * io contexts per general io context, if this process is doing io to more
1964  * than one device managed by cfq.
1965  */
1966 static struct cfq_io_context *
1967 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1968 {
1969         struct io_context *ioc = NULL;
1970         struct cfq_io_context *cic;
1971
1972         might_sleep_if(gfp_mask & __GFP_WAIT);
1973
1974         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1975         if (!ioc)
1976                 return NULL;
1977
1978         cic = cfq_cic_lookup(cfqd, ioc);
1979         if (cic)
1980                 goto out;
1981
1982         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1983         if (cic == NULL)
1984                 goto err;
1985
1986         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1987                 goto err_free;
1988
1989 out:
1990         smp_read_barrier_depends();
1991         if (unlikely(ioc->ioprio_changed))
1992                 cfq_ioc_set_ioprio(ioc);
1993
1994         return cic;
1995 err_free:
1996         cfq_cic_free(cic);
1997 err:
1998         put_io_context(ioc);
1999         return NULL;
2000 }
2001
2002 static void
2003 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2004 {
2005         unsigned long elapsed = jiffies - cic->last_end_request;
2006         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2007
2008         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2009         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2010         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2011 }
2012
2013 static void
2014 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2015                        struct request *rq)
2016 {
2017         sector_t sdist;
2018         u64 total;
2019
2020         if (!cfqq->last_request_pos)
2021                 sdist = 0;
2022         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2023                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2024         else
2025                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2026
2027         /*
2028          * Don't allow the seek distance to get too large from the
2029          * odd fragment, pagein, etc
2030          */
2031         if (cfqq->seek_samples <= 60) /* second&third seek */
2032                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2033         else
2034                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2035
2036         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2037         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2038         total = cfqq->seek_total + (cfqq->seek_samples/2);
2039         do_div(total, cfqq->seek_samples);
2040         cfqq->seek_mean = (sector_t)total;
2041 }
2042
2043 /*
2044  * Disable idle window if the process thinks too long or seeks so much that
2045  * it doesn't matter
2046  */
2047 static void
2048 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2049                        struct cfq_io_context *cic)
2050 {
2051         int old_idle, enable_idle;
2052
2053         /*
2054          * Don't idle for async or idle io prio class
2055          */
2056         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2057                 return;
2058
2059         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2060
2061         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2062             (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
2063                 enable_idle = 0;
2064         else if (sample_valid(cic->ttime_samples)) {
2065                 unsigned int slice_idle = cfqd->cfq_slice_idle;
2066                 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
2067                         slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2068                 if (cic->ttime_mean > slice_idle)
2069                         enable_idle = 0;
2070                 else
2071                         enable_idle = 1;
2072         }
2073
2074         if (old_idle != enable_idle) {
2075                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2076                 if (enable_idle)
2077                         cfq_mark_cfqq_idle_window(cfqq);
2078                 else
2079                         cfq_clear_cfqq_idle_window(cfqq);
2080         }
2081 }
2082
2083 /*
2084  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2085  * no or if we aren't sure, a 1 will cause a preempt.
2086  */
2087 static bool
2088 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2089                    struct request *rq)
2090 {
2091         struct cfq_queue *cfqq;
2092
2093         cfqq = cfqd->active_queue;
2094         if (!cfqq)
2095                 return false;
2096
2097         if (cfq_slice_used(cfqq))
2098                 return true;
2099
2100         if (cfq_class_idle(new_cfqq))
2101                 return false;
2102
2103         if (cfq_class_idle(cfqq))
2104                 return true;
2105
2106         /*
2107          * if the new request is sync, but the currently running queue is
2108          * not, let the sync request have priority.
2109          */
2110         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2111                 return true;
2112
2113         /*
2114          * So both queues are sync. Let the new request get disk time if
2115          * it's a metadata request and the current queue is doing regular IO.
2116          */
2117         if (rq_is_meta(rq) && !cfqq->meta_pending)
2118                 return false;
2119
2120         /*
2121          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2122          */
2123         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2124                 return true;
2125
2126         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2127                 return false;
2128
2129         /*
2130          * if this request is as-good as one we would expect from the
2131          * current cfqq, let it preempt
2132          */
2133         if (cfq_rq_close(cfqd, cfqq, rq))
2134                 return true;
2135
2136         return false;
2137 }
2138
2139 /*
2140  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2141  * let it have half of its nominal slice.
2142  */
2143 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2144 {
2145         cfq_log_cfqq(cfqd, cfqq, "preempt");
2146         cfq_slice_expired(cfqd, 1);
2147
2148         /*
2149          * Put the new queue at the front of the of the current list,
2150          * so we know that it will be selected next.
2151          */
2152         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2153
2154         cfq_service_tree_add(cfqd, cfqq, 1);
2155
2156         cfqq->slice_end = 0;
2157         cfq_mark_cfqq_slice_new(cfqq);
2158 }
2159
2160 /*
2161  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2162  * something we should do about it
2163  */
2164 static void
2165 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2166                 struct request *rq)
2167 {
2168         struct cfq_io_context *cic = RQ_CIC(rq);
2169
2170         cfqd->rq_queued++;
2171         if (rq_is_meta(rq))
2172                 cfqq->meta_pending++;
2173
2174         cfq_update_io_thinktime(cfqd, cic);
2175         cfq_update_io_seektime(cfqd, cfqq, rq);
2176         cfq_update_idle_window(cfqd, cfqq, cic);
2177
2178         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2179
2180         if (cfqq == cfqd->active_queue) {
2181                 /*
2182                  * Remember that we saw a request from this process, but
2183                  * don't start queuing just yet. Otherwise we risk seeing lots
2184                  * of tiny requests, because we disrupt the normal plugging
2185                  * and merging. If the request is already larger than a single
2186                  * page, let it rip immediately. For that case we assume that
2187                  * merging is already done. Ditto for a busy system that
2188                  * has other work pending, don't risk delaying until the
2189                  * idle timer unplug to continue working.
2190                  */
2191                 if (cfq_cfqq_wait_request(cfqq)) {
2192                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2193                             cfqd->busy_queues > 1) {
2194                                 del_timer(&cfqd->idle_slice_timer);
2195                         __blk_run_queue(cfqd->queue);
2196                         }
2197                         cfq_mark_cfqq_must_dispatch(cfqq);
2198                 }
2199         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2200                 /*
2201                  * not the active queue - expire current slice if it is
2202                  * idle and has expired it's mean thinktime or this new queue
2203                  * has some old slice time left and is of higher priority or
2204                  * this new queue is RT and the current one is BE
2205                  */
2206                 cfq_preempt_queue(cfqd, cfqq);
2207                 __blk_run_queue(cfqd->queue);
2208         }
2209 }
2210
2211 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2212 {
2213         struct cfq_data *cfqd = q->elevator->elevator_data;
2214         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2215
2216         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2217         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2218
2219         cfq_add_rq_rb(rq);
2220
2221         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2222         list_add_tail(&rq->queuelist, &cfqq->fifo);
2223
2224         cfq_rq_enqueued(cfqd, cfqq, rq);
2225 }
2226
2227 /*
2228  * Update hw_tag based on peak queue depth over 50 samples under
2229  * sufficient load.
2230  */
2231 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2232 {
2233         if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2234                 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2235
2236         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2237             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2238                 return;
2239
2240         if (cfqd->hw_tag_samples++ < 50)
2241                 return;
2242
2243         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2244                 cfqd->hw_tag = 1;
2245         else
2246                 cfqd->hw_tag = 0;
2247
2248         cfqd->hw_tag_samples = 0;
2249         cfqd->rq_in_driver_peak = 0;
2250 }
2251
2252 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2253 {
2254         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2255         struct cfq_data *cfqd = cfqq->cfqd;
2256         const int sync = rq_is_sync(rq);
2257         unsigned long now;
2258
2259         now = jiffies;
2260         cfq_log_cfqq(cfqd, cfqq, "complete");
2261
2262         cfq_update_hw_tag(cfqd);
2263
2264         WARN_ON(!cfqd->rq_in_driver[sync]);
2265         WARN_ON(!cfqq->dispatched);
2266         cfqd->rq_in_driver[sync]--;
2267         cfqq->dispatched--;
2268
2269         if (cfq_cfqq_sync(cfqq))
2270                 cfqd->sync_flight--;
2271
2272         if (sync) {
2273                 RQ_CIC(rq)->last_end_request = now;
2274                 cfqd->last_end_sync_rq = now;
2275         }
2276
2277         /*
2278          * If this is the active queue, check if it needs to be expired,
2279          * or if we want to idle in case it has no pending requests.
2280          */
2281         if (cfqd->active_queue == cfqq) {
2282                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2283
2284                 if (cfq_cfqq_slice_new(cfqq)) {
2285                         cfq_set_prio_slice(cfqd, cfqq);
2286                         cfq_clear_cfqq_slice_new(cfqq);
2287                 }
2288                 /*
2289                  * If there are no requests waiting in this queue, and
2290                  * there are other queues ready to issue requests, AND
2291                  * those other queues are issuing requests within our
2292                  * mean seek distance, give them a chance to run instead
2293                  * of idling.
2294                  */
2295                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2296                         cfq_slice_expired(cfqd, 1);
2297                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2298                          sync && !rq_noidle(rq))
2299                         cfq_arm_slice_timer(cfqd);
2300         }
2301
2302         if (!rq_in_driver(cfqd))
2303                 cfq_schedule_dispatch(cfqd);
2304 }
2305
2306 /*
2307  * we temporarily boost lower priority queues if they are holding fs exclusive
2308  * resources. they are boosted to normal prio (CLASS_BE/4)
2309  */
2310 static void cfq_prio_boost(struct cfq_queue *cfqq)
2311 {
2312         if (has_fs_excl()) {
2313                 /*
2314                  * boost idle prio on transactions that would lock out other
2315                  * users of the filesystem
2316                  */
2317                 if (cfq_class_idle(cfqq))
2318                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2319                 if (cfqq->ioprio > IOPRIO_NORM)
2320                         cfqq->ioprio = IOPRIO_NORM;
2321         } else {
2322                 /*
2323                  * check if we need to unboost the queue
2324                  */
2325                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2326                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2327                 if (cfqq->ioprio != cfqq->org_ioprio)
2328                         cfqq->ioprio = cfqq->org_ioprio;
2329         }
2330 }
2331
2332 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2333 {
2334         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2335                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2336                 return ELV_MQUEUE_MUST;
2337         }
2338
2339         return ELV_MQUEUE_MAY;
2340 }
2341
2342 static int cfq_may_queue(struct request_queue *q, int rw)
2343 {
2344         struct cfq_data *cfqd = q->elevator->elevator_data;
2345         struct task_struct *tsk = current;
2346         struct cfq_io_context *cic;
2347         struct cfq_queue *cfqq;
2348
2349         /*
2350          * don't force setup of a queue from here, as a call to may_queue
2351          * does not necessarily imply that a request actually will be queued.
2352          * so just lookup a possibly existing queue, or return 'may queue'
2353          * if that fails
2354          */
2355         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2356         if (!cic)
2357                 return ELV_MQUEUE_MAY;
2358
2359         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2360         if (cfqq) {
2361                 cfq_init_prio_data(cfqq, cic->ioc);
2362                 cfq_prio_boost(cfqq);
2363
2364                 return __cfq_may_queue(cfqq);
2365         }
2366
2367         return ELV_MQUEUE_MAY;
2368 }
2369
2370 /*
2371  * queue lock held here
2372  */
2373 static void cfq_put_request(struct request *rq)
2374 {
2375         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2376
2377         if (cfqq) {
2378                 const int rw = rq_data_dir(rq);
2379
2380                 BUG_ON(!cfqq->allocated[rw]);
2381                 cfqq->allocated[rw]--;
2382
2383                 put_io_context(RQ_CIC(rq)->ioc);
2384
2385                 rq->elevator_private = NULL;
2386                 rq->elevator_private2 = NULL;
2387
2388                 cfq_put_queue(cfqq);
2389         }
2390 }
2391
2392 static struct cfq_queue *
2393 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2394                 struct cfq_queue *cfqq)
2395 {
2396         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2397         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2398         cfq_put_queue(cfqq);
2399         return cic_to_cfqq(cic, 1);
2400 }
2401
2402 /*
2403  * Allocate cfq data structures associated with this request.
2404  */
2405 static int
2406 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2407 {
2408         struct cfq_data *cfqd = q->elevator->elevator_data;
2409         struct cfq_io_context *cic;
2410         const int rw = rq_data_dir(rq);
2411         const bool is_sync = rq_is_sync(rq);
2412         struct cfq_queue *cfqq;
2413         unsigned long flags;
2414
2415         might_sleep_if(gfp_mask & __GFP_WAIT);
2416
2417         cic = cfq_get_io_context(cfqd, gfp_mask);
2418
2419         spin_lock_irqsave(q->queue_lock, flags);
2420
2421         if (!cic)
2422                 goto queue_fail;
2423
2424         cfqq = cic_to_cfqq(cic, is_sync);
2425         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2426                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2427                 cic_set_cfqq(cic, cfqq, is_sync);
2428         } else {
2429                 /*
2430                  * Check to see if this queue is scheduled to merge with
2431                  * another, closely cooperating queue.  The merging of
2432                  * queues happens here as it must be done in process context.
2433                  * The reference on new_cfqq was taken in merge_cfqqs.
2434                  */
2435                 if (cfqq->new_cfqq)
2436                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2437         }
2438
2439         cfqq->allocated[rw]++;
2440         atomic_inc(&cfqq->ref);
2441
2442         spin_unlock_irqrestore(q->queue_lock, flags);
2443
2444         rq->elevator_private = cic;
2445         rq->elevator_private2 = cfqq;
2446         return 0;
2447
2448 queue_fail:
2449         if (cic)
2450                 put_io_context(cic->ioc);
2451
2452         cfq_schedule_dispatch(cfqd);
2453         spin_unlock_irqrestore(q->queue_lock, flags);
2454         cfq_log(cfqd, "set_request fail");
2455         return 1;
2456 }
2457
2458 static void cfq_kick_queue(struct work_struct *work)
2459 {
2460         struct cfq_data *cfqd =
2461                 container_of(work, struct cfq_data, unplug_work);
2462         struct request_queue *q = cfqd->queue;
2463
2464         spin_lock_irq(q->queue_lock);
2465         __blk_run_queue(cfqd->queue);
2466         spin_unlock_irq(q->queue_lock);
2467 }
2468
2469 /*
2470  * Timer running if the active_queue is currently idling inside its time slice
2471  */
2472 static void cfq_idle_slice_timer(unsigned long data)
2473 {
2474         struct cfq_data *cfqd = (struct cfq_data *) data;
2475         struct cfq_queue *cfqq;
2476         unsigned long flags;
2477         int timed_out = 1;
2478
2479         cfq_log(cfqd, "idle timer fired");
2480
2481         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2482
2483         cfqq = cfqd->active_queue;
2484         if (cfqq) {
2485                 timed_out = 0;
2486
2487                 /*
2488                  * We saw a request before the queue expired, let it through
2489                  */
2490                 if (cfq_cfqq_must_dispatch(cfqq))
2491                         goto out_kick;
2492
2493                 /*
2494                  * expired
2495                  */
2496                 if (cfq_slice_used(cfqq))
2497                         goto expire;
2498
2499                 /*
2500                  * only expire and reinvoke request handler, if there are
2501                  * other queues with pending requests
2502                  */
2503                 if (!cfqd->busy_queues)
2504                         goto out_cont;
2505
2506                 /*
2507                  * not expired and it has a request pending, let it dispatch
2508                  */
2509                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2510                         goto out_kick;
2511         }
2512 expire:
2513         cfq_slice_expired(cfqd, timed_out);
2514 out_kick:
2515         cfq_schedule_dispatch(cfqd);
2516 out_cont:
2517         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2518 }
2519
2520 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2521 {
2522         del_timer_sync(&cfqd->idle_slice_timer);
2523         cancel_work_sync(&cfqd->unplug_work);
2524 }
2525
2526 static void cfq_put_async_queues(struct cfq_data *cfqd)
2527 {
2528         int i;
2529
2530         for (i = 0; i < IOPRIO_BE_NR; i++) {
2531                 if (cfqd->async_cfqq[0][i])
2532                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2533                 if (cfqd->async_cfqq[1][i])
2534                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2535         }
2536
2537         if (cfqd->async_idle_cfqq)
2538                 cfq_put_queue(cfqd->async_idle_cfqq);
2539 }
2540
2541 static void cfq_exit_queue(struct elevator_queue *e)
2542 {
2543         struct cfq_data *cfqd = e->elevator_data;
2544         struct request_queue *q = cfqd->queue;
2545
2546         cfq_shutdown_timer_wq(cfqd);
2547
2548         spin_lock_irq(q->queue_lock);
2549
2550         if (cfqd->active_queue)
2551                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2552
2553         while (!list_empty(&cfqd->cic_list)) {
2554                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2555                                                         struct cfq_io_context,
2556                                                         queue_list);
2557
2558                 __cfq_exit_single_io_context(cfqd, cic);
2559         }
2560
2561         cfq_put_async_queues(cfqd);
2562
2563         spin_unlock_irq(q->queue_lock);
2564
2565         cfq_shutdown_timer_wq(cfqd);
2566
2567         kfree(cfqd);
2568 }
2569
2570 static void *cfq_init_queue(struct request_queue *q)
2571 {
2572         struct cfq_data *cfqd;
2573         int i;
2574
2575         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2576         if (!cfqd)
2577                 return NULL;
2578
2579         cfqd->service_tree = CFQ_RB_ROOT;
2580
2581         /*
2582          * Not strictly needed (since RB_ROOT just clears the node and we
2583          * zeroed cfqd on alloc), but better be safe in case someone decides
2584          * to add magic to the rb code
2585          */
2586         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2587                 cfqd->prio_trees[i] = RB_ROOT;
2588
2589         /*
2590          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2591          * Grab a permanent reference to it, so that the normal code flow
2592          * will not attempt to free it.
2593          */
2594         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2595         atomic_inc(&cfqd->oom_cfqq.ref);
2596
2597         INIT_LIST_HEAD(&cfqd->cic_list);
2598
2599         cfqd->queue = q;
2600
2601         init_timer(&cfqd->idle_slice_timer);
2602         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2603         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2604
2605         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2606
2607         cfqd->cfq_quantum = cfq_quantum;
2608         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2609         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2610         cfqd->cfq_back_max = cfq_back_max;
2611         cfqd->cfq_back_penalty = cfq_back_penalty;
2612         cfqd->cfq_slice[0] = cfq_slice_async;
2613         cfqd->cfq_slice[1] = cfq_slice_sync;
2614         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2615         cfqd->cfq_slice_idle = cfq_slice_idle;
2616         cfqd->cfq_latency = 1;
2617         cfqd->hw_tag = 1;
2618         cfqd->last_end_sync_rq = jiffies;
2619         return cfqd;
2620 }
2621
2622 static void cfq_slab_kill(void)
2623 {
2624         /*
2625          * Caller already ensured that pending RCU callbacks are completed,
2626          * so we should have no busy allocations at this point.
2627          */
2628         if (cfq_pool)
2629                 kmem_cache_destroy(cfq_pool);
2630         if (cfq_ioc_pool)
2631                 kmem_cache_destroy(cfq_ioc_pool);
2632 }
2633
2634 static int __init cfq_slab_setup(void)
2635 {
2636         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2637         if (!cfq_pool)
2638                 goto fail;
2639
2640         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2641         if (!cfq_ioc_pool)
2642                 goto fail;
2643
2644         return 0;
2645 fail:
2646         cfq_slab_kill();
2647         return -ENOMEM;
2648 }
2649
2650 /*
2651  * sysfs parts below -->
2652  */
2653 static ssize_t
2654 cfq_var_show(unsigned int var, char *page)
2655 {
2656         return sprintf(page, "%d\n", var);
2657 }
2658
2659 static ssize_t
2660 cfq_var_store(unsigned int *var, const char *page, size_t count)
2661 {
2662         char *p = (char *) page;
2663
2664         *var = simple_strtoul(p, &p, 10);
2665         return count;
2666 }
2667
2668 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2669 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2670 {                                                                       \
2671         struct cfq_data *cfqd = e->elevator_data;                       \
2672         unsigned int __data = __VAR;                                    \
2673         if (__CONV)                                                     \
2674                 __data = jiffies_to_msecs(__data);                      \
2675         return cfq_var_show(__data, (page));                            \
2676 }
2677 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2678 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2679 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2680 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2681 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2682 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2683 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2684 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2685 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2686 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2687 #undef SHOW_FUNCTION
2688
2689 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2690 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2691 {                                                                       \
2692         struct cfq_data *cfqd = e->elevator_data;                       \
2693         unsigned int __data;                                            \
2694         int ret = cfq_var_store(&__data, (page), count);                \
2695         if (__data < (MIN))                                             \
2696                 __data = (MIN);                                         \
2697         else if (__data > (MAX))                                        \
2698                 __data = (MAX);                                         \
2699         if (__CONV)                                                     \
2700                 *(__PTR) = msecs_to_jiffies(__data);                    \
2701         else                                                            \
2702                 *(__PTR) = __data;                                      \
2703         return ret;                                                     \
2704 }
2705 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2706 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2707                 UINT_MAX, 1);
2708 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2709                 UINT_MAX, 1);
2710 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2711 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2712                 UINT_MAX, 0);
2713 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2714 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2715 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2716 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2717                 UINT_MAX, 0);
2718 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2719 #undef STORE_FUNCTION
2720
2721 #define CFQ_ATTR(name) \
2722         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2723
2724 static struct elv_fs_entry cfq_attrs[] = {
2725         CFQ_ATTR(quantum),
2726         CFQ_ATTR(fifo_expire_sync),
2727         CFQ_ATTR(fifo_expire_async),
2728         CFQ_ATTR(back_seek_max),
2729         CFQ_ATTR(back_seek_penalty),
2730         CFQ_ATTR(slice_sync),
2731         CFQ_ATTR(slice_async),
2732         CFQ_ATTR(slice_async_rq),
2733         CFQ_ATTR(slice_idle),
2734         CFQ_ATTR(low_latency),
2735         __ATTR_NULL
2736 };
2737
2738 static struct elevator_type iosched_cfq = {
2739         .ops = {
2740                 .elevator_merge_fn =            cfq_merge,
2741                 .elevator_merged_fn =           cfq_merged_request,
2742                 .elevator_merge_req_fn =        cfq_merged_requests,
2743                 .elevator_allow_merge_fn =      cfq_allow_merge,
2744                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2745                 .elevator_add_req_fn =          cfq_insert_request,
2746                 .elevator_activate_req_fn =     cfq_activate_request,
2747                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2748                 .elevator_queue_empty_fn =      cfq_queue_empty,
2749                 .elevator_completed_req_fn =    cfq_completed_request,
2750                 .elevator_former_req_fn =       elv_rb_former_request,
2751                 .elevator_latter_req_fn =       elv_rb_latter_request,
2752                 .elevator_set_req_fn =          cfq_set_request,
2753                 .elevator_put_req_fn =          cfq_put_request,
2754                 .elevator_may_queue_fn =        cfq_may_queue,
2755                 .elevator_init_fn =             cfq_init_queue,
2756                 .elevator_exit_fn =             cfq_exit_queue,
2757                 .trim =                         cfq_free_io_context,
2758         },
2759         .elevator_attrs =       cfq_attrs,
2760         .elevator_name =        "cfq",
2761         .elevator_owner =       THIS_MODULE,
2762 };
2763
2764 static int __init cfq_init(void)
2765 {
2766         /*
2767          * could be 0 on HZ < 1000 setups
2768          */
2769         if (!cfq_slice_async)
2770                 cfq_slice_async = 1;
2771         if (!cfq_slice_idle)
2772                 cfq_slice_idle = 1;
2773
2774         if (cfq_slab_setup())
2775                 return -ENOMEM;
2776
2777         elv_register(&iosched_cfq);
2778
2779         return 0;
2780 }
2781
2782 static void __exit cfq_exit(void)
2783 {
2784         DECLARE_COMPLETION_ONSTACK(all_gone);
2785         elv_unregister(&iosched_cfq);
2786         ioc_gone = &all_gone;
2787         /* ioc_gone's update must be visible before reading ioc_count */
2788         smp_wmb();
2789
2790         /*
2791          * this also protects us from entering cfq_slab_kill() with
2792          * pending RCU callbacks
2793          */
2794         if (elv_ioc_count_read(cfq_ioc_count))
2795                 wait_for_completion(&all_gone);
2796         cfq_slab_kill();
2797 }
2798
2799 module_init(cfq_init);
2800 module_exit(cfq_exit);
2801
2802 MODULE_AUTHOR("Jens Axboe");
2803 MODULE_LICENSE("GPL");
2804 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");