blkio: Introduce the notion of cfq groups
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16
17 /*
18  * tunables
19  */
20 /* max queue in one round of service */
21 static const int cfq_quantum = 4;
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 /* maximum backwards seek, in KiB */
24 static const int cfq_back_max = 16 * 1024;
25 /* penalty of a backwards seek */
26 static const int cfq_back_penalty = 2;
27 static const int cfq_slice_sync = HZ / 10;
28 static int cfq_slice_async = HZ / 25;
29 static const int cfq_slice_async_rq = 2;
30 static int cfq_slice_idle = HZ / 125;
31 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32 static const int cfq_hist_divisor = 4;
33
34 /*
35  * offset from end of service tree
36  */
37 #define CFQ_IDLE_DELAY          (HZ / 5)
38
39 /*
40  * below this threshold, we consider thinktime immediate
41  */
42 #define CFQ_MIN_TT              (2)
43
44 /*
45  * Allow merged cfqqs to perform this amount of seeky I/O before
46  * deciding to break the queues up again.
47  */
48 #define CFQQ_COOP_TOUT          (HZ)
49
50 #define CFQ_SLICE_SCALE         (5)
51 #define CFQ_HW_QUEUE_MIN        (5)
52
53 #define RQ_CIC(rq)              \
54         ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
56
57 static struct kmem_cache *cfq_pool;
58 static struct kmem_cache *cfq_ioc_pool;
59
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61 static struct completion *ioc_gone;
62 static DEFINE_SPINLOCK(ioc_gone_lock);
63
64 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples)   ((samples) > 80)
69
70 /*
71  * Most of our rbtree usage is for sorting with min extraction, so
72  * if we cache the leftmost node we don't have to walk down the tree
73  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74  * move this into the elevator for the rq sorting as well.
75  */
76 struct cfq_rb_root {
77         struct rb_root rb;
78         struct rb_node *left;
79         unsigned count;
80 };
81 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82
83 /*
84  * Per process-grouping structure
85  */
86 struct cfq_queue {
87         /* reference count */
88         atomic_t ref;
89         /* various state flags, see below */
90         unsigned int flags;
91         /* parent cfq_data */
92         struct cfq_data *cfqd;
93         /* service_tree member */
94         struct rb_node rb_node;
95         /* service_tree key */
96         unsigned long rb_key;
97         /* prio tree member */
98         struct rb_node p_node;
99         /* prio tree root we belong to, if any */
100         struct rb_root *p_root;
101         /* sorted list of pending requests */
102         struct rb_root sort_list;
103         /* if fifo isn't expired, next request to serve */
104         struct request *next_rq;
105         /* requests queued in sort_list */
106         int queued[2];
107         /* currently allocated requests */
108         int allocated[2];
109         /* fifo list of requests in sort_list */
110         struct list_head fifo;
111
112         unsigned long slice_end;
113         long slice_resid;
114         unsigned int slice_dispatch;
115
116         /* pending metadata requests */
117         int meta_pending;
118         /* number of requests that are on the dispatch list or inside driver */
119         int dispatched;
120
121         /* io prio of this group */
122         unsigned short ioprio, org_ioprio;
123         unsigned short ioprio_class, org_ioprio_class;
124
125         unsigned int seek_samples;
126         u64 seek_total;
127         sector_t seek_mean;
128         sector_t last_request_pos;
129         unsigned long seeky_start;
130
131         pid_t pid;
132
133         struct cfq_rb_root *service_tree;
134         struct cfq_queue *new_cfqq;
135         struct cfq_group *cfqg;
136 };
137
138 /*
139  * First index in the service_trees.
140  * IDLE is handled separately, so it has negative index
141  */
142 enum wl_prio_t {
143         IDLE_WORKLOAD = -1,
144         BE_WORKLOAD = 0,
145         RT_WORKLOAD = 1
146 };
147
148 /*
149  * Second index in the service_trees.
150  */
151 enum wl_type_t {
152         ASYNC_WORKLOAD = 0,
153         SYNC_NOIDLE_WORKLOAD = 1,
154         SYNC_WORKLOAD = 2
155 };
156
157 /* This is per cgroup per device grouping structure */
158 struct cfq_group {
159         /*
160          * rr lists of queues with requests, onle rr for each priority class.
161          * Counts are embedded in the cfq_rb_root
162          */
163         struct cfq_rb_root service_trees[2][3];
164         struct cfq_rb_root service_tree_idle;
165 };
166
167 /*
168  * Per block device queue structure
169  */
170 struct cfq_data {
171         struct request_queue *queue;
172         struct cfq_group root_group;
173
174         /*
175          * The priority currently being served
176          */
177         enum wl_prio_t serving_prio;
178         enum wl_type_t serving_type;
179         unsigned long workload_expires;
180         struct cfq_group *serving_group;
181         bool noidle_tree_requires_idle;
182
183         /*
184          * Each priority tree is sorted by next_request position.  These
185          * trees are used when determining if two or more queues are
186          * interleaving requests (see cfq_close_cooperator).
187          */
188         struct rb_root prio_trees[CFQ_PRIO_LISTS];
189
190         unsigned int busy_queues;
191         unsigned int busy_queues_avg[2];
192
193         int rq_in_driver[2];
194         int sync_flight;
195
196         /*
197          * queue-depth detection
198          */
199         int rq_queued;
200         int hw_tag;
201         /*
202          * hw_tag can be
203          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
204          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
205          *  0 => no NCQ
206          */
207         int hw_tag_est_depth;
208         unsigned int hw_tag_samples;
209
210         /*
211          * idle window management
212          */
213         struct timer_list idle_slice_timer;
214         struct work_struct unplug_work;
215
216         struct cfq_queue *active_queue;
217         struct cfq_io_context *active_cic;
218
219         /*
220          * async queue for each priority case
221          */
222         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
223         struct cfq_queue *async_idle_cfqq;
224
225         sector_t last_position;
226
227         /*
228          * tunables, see top of file
229          */
230         unsigned int cfq_quantum;
231         unsigned int cfq_fifo_expire[2];
232         unsigned int cfq_back_penalty;
233         unsigned int cfq_back_max;
234         unsigned int cfq_slice[2];
235         unsigned int cfq_slice_async_rq;
236         unsigned int cfq_slice_idle;
237         unsigned int cfq_latency;
238
239         struct list_head cic_list;
240
241         /*
242          * Fallback dummy cfqq for extreme OOM conditions
243          */
244         struct cfq_queue oom_cfqq;
245
246         unsigned long last_end_sync_rq;
247 };
248
249 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
250                                             enum wl_prio_t prio,
251                                             enum wl_type_t type,
252                                             struct cfq_data *cfqd)
253 {
254         if (prio == IDLE_WORKLOAD)
255                 return &cfqg->service_tree_idle;
256
257         return &cfqg->service_trees[prio][type];
258 }
259
260 enum cfqq_state_flags {
261         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
262         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
263         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
264         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
265         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
266         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
267         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
268         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
269         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
270         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
271         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
272 };
273
274 #define CFQ_CFQQ_FNS(name)                                              \
275 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
276 {                                                                       \
277         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
278 }                                                                       \
279 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
280 {                                                                       \
281         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
282 }                                                                       \
283 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
284 {                                                                       \
285         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
286 }
287
288 CFQ_CFQQ_FNS(on_rr);
289 CFQ_CFQQ_FNS(wait_request);
290 CFQ_CFQQ_FNS(must_dispatch);
291 CFQ_CFQQ_FNS(must_alloc_slice);
292 CFQ_CFQQ_FNS(fifo_expire);
293 CFQ_CFQQ_FNS(idle_window);
294 CFQ_CFQQ_FNS(prio_changed);
295 CFQ_CFQQ_FNS(slice_new);
296 CFQ_CFQQ_FNS(sync);
297 CFQ_CFQQ_FNS(coop);
298 CFQ_CFQQ_FNS(deep);
299 #undef CFQ_CFQQ_FNS
300
301 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
302         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
303 #define cfq_log(cfqd, fmt, args...)     \
304         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
305
306 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
307 {
308         if (cfq_class_idle(cfqq))
309                 return IDLE_WORKLOAD;
310         if (cfq_class_rt(cfqq))
311                 return RT_WORKLOAD;
312         return BE_WORKLOAD;
313 }
314
315
316 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
317 {
318         if (!cfq_cfqq_sync(cfqq))
319                 return ASYNC_WORKLOAD;
320         if (!cfq_cfqq_idle_window(cfqq))
321                 return SYNC_NOIDLE_WORKLOAD;
322         return SYNC_WORKLOAD;
323 }
324
325 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
326 {
327         struct cfq_group *cfqg = &cfqd->root_group;
328
329         if (wl == IDLE_WORKLOAD)
330                 return cfqg->service_tree_idle.count;
331
332         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
333                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
334                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
335 }
336
337 static void cfq_dispatch_insert(struct request_queue *, struct request *);
338 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
339                                        struct io_context *, gfp_t);
340 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
341                                                 struct io_context *);
342
343 static inline int rq_in_driver(struct cfq_data *cfqd)
344 {
345         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
346 }
347
348 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
349                                             bool is_sync)
350 {
351         return cic->cfqq[is_sync];
352 }
353
354 static inline void cic_set_cfqq(struct cfq_io_context *cic,
355                                 struct cfq_queue *cfqq, bool is_sync)
356 {
357         cic->cfqq[is_sync] = cfqq;
358 }
359
360 /*
361  * We regard a request as SYNC, if it's either a read or has the SYNC bit
362  * set (in which case it could also be direct WRITE).
363  */
364 static inline bool cfq_bio_sync(struct bio *bio)
365 {
366         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
367 }
368
369 /*
370  * scheduler run of queue, if there are requests pending and no one in the
371  * driver that will restart queueing
372  */
373 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
374 {
375         if (cfqd->busy_queues) {
376                 cfq_log(cfqd, "schedule dispatch");
377                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
378         }
379 }
380
381 static int cfq_queue_empty(struct request_queue *q)
382 {
383         struct cfq_data *cfqd = q->elevator->elevator_data;
384
385         return !cfqd->busy_queues;
386 }
387
388 /*
389  * Scale schedule slice based on io priority. Use the sync time slice only
390  * if a queue is marked sync and has sync io queued. A sync queue with async
391  * io only, should not get full sync slice length.
392  */
393 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
394                                  unsigned short prio)
395 {
396         const int base_slice = cfqd->cfq_slice[sync];
397
398         WARN_ON(prio >= IOPRIO_BE_NR);
399
400         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
401 }
402
403 static inline int
404 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
405 {
406         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
407 }
408
409 /*
410  * get averaged number of queues of RT/BE priority.
411  * average is updated, with a formula that gives more weight to higher numbers,
412  * to quickly follows sudden increases and decrease slowly
413  */
414
415 static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
416 {
417         unsigned min_q, max_q;
418         unsigned mult  = cfq_hist_divisor - 1;
419         unsigned round = cfq_hist_divisor / 2;
420         unsigned busy = cfq_busy_queues_wl(rt, cfqd);
421
422         min_q = min(cfqd->busy_queues_avg[rt], busy);
423         max_q = max(cfqd->busy_queues_avg[rt], busy);
424         cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
425                 cfq_hist_divisor;
426         return cfqd->busy_queues_avg[rt];
427 }
428
429 static inline void
430 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
431 {
432         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
433         if (cfqd->cfq_latency) {
434                 /* interested queues (we consider only the ones with the same
435                  * priority class) */
436                 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
437                 unsigned sync_slice = cfqd->cfq_slice[1];
438                 unsigned expect_latency = sync_slice * iq;
439                 if (expect_latency > cfq_target_latency) {
440                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
441                         /* scale low_slice according to IO priority
442                          * and sync vs async */
443                         unsigned low_slice =
444                                 min(slice, base_low_slice * slice / sync_slice);
445                         /* the adapted slice value is scaled to fit all iqs
446                          * into the target latency */
447                         slice = max(slice * cfq_target_latency / expect_latency,
448                                     low_slice);
449                 }
450         }
451         cfqq->slice_end = jiffies + slice;
452         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
453 }
454
455 /*
456  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
457  * isn't valid until the first request from the dispatch is activated
458  * and the slice time set.
459  */
460 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
461 {
462         if (cfq_cfqq_slice_new(cfqq))
463                 return 0;
464         if (time_before(jiffies, cfqq->slice_end))
465                 return 0;
466
467         return 1;
468 }
469
470 /*
471  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
472  * We choose the request that is closest to the head right now. Distance
473  * behind the head is penalized and only allowed to a certain extent.
474  */
475 static struct request *
476 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
477 {
478         sector_t s1, s2, d1 = 0, d2 = 0;
479         unsigned long back_max;
480 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
481 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
482         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
483
484         if (rq1 == NULL || rq1 == rq2)
485                 return rq2;
486         if (rq2 == NULL)
487                 return rq1;
488
489         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
490                 return rq1;
491         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
492                 return rq2;
493         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
494                 return rq1;
495         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
496                 return rq2;
497
498         s1 = blk_rq_pos(rq1);
499         s2 = blk_rq_pos(rq2);
500
501         /*
502          * by definition, 1KiB is 2 sectors
503          */
504         back_max = cfqd->cfq_back_max * 2;
505
506         /*
507          * Strict one way elevator _except_ in the case where we allow
508          * short backward seeks which are biased as twice the cost of a
509          * similar forward seek.
510          */
511         if (s1 >= last)
512                 d1 = s1 - last;
513         else if (s1 + back_max >= last)
514                 d1 = (last - s1) * cfqd->cfq_back_penalty;
515         else
516                 wrap |= CFQ_RQ1_WRAP;
517
518         if (s2 >= last)
519                 d2 = s2 - last;
520         else if (s2 + back_max >= last)
521                 d2 = (last - s2) * cfqd->cfq_back_penalty;
522         else
523                 wrap |= CFQ_RQ2_WRAP;
524
525         /* Found required data */
526
527         /*
528          * By doing switch() on the bit mask "wrap" we avoid having to
529          * check two variables for all permutations: --> faster!
530          */
531         switch (wrap) {
532         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
533                 if (d1 < d2)
534                         return rq1;
535                 else if (d2 < d1)
536                         return rq2;
537                 else {
538                         if (s1 >= s2)
539                                 return rq1;
540                         else
541                                 return rq2;
542                 }
543
544         case CFQ_RQ2_WRAP:
545                 return rq1;
546         case CFQ_RQ1_WRAP:
547                 return rq2;
548         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
549         default:
550                 /*
551                  * Since both rqs are wrapped,
552                  * start with the one that's further behind head
553                  * (--> only *one* back seek required),
554                  * since back seek takes more time than forward.
555                  */
556                 if (s1 <= s2)
557                         return rq1;
558                 else
559                         return rq2;
560         }
561 }
562
563 /*
564  * The below is leftmost cache rbtree addon
565  */
566 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
567 {
568         if (!root->left)
569                 root->left = rb_first(&root->rb);
570
571         if (root->left)
572                 return rb_entry(root->left, struct cfq_queue, rb_node);
573
574         return NULL;
575 }
576
577 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
578 {
579         rb_erase(n, root);
580         RB_CLEAR_NODE(n);
581 }
582
583 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
584 {
585         if (root->left == n)
586                 root->left = NULL;
587         rb_erase_init(n, &root->rb);
588         --root->count;
589 }
590
591 /*
592  * would be nice to take fifo expire time into account as well
593  */
594 static struct request *
595 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
596                   struct request *last)
597 {
598         struct rb_node *rbnext = rb_next(&last->rb_node);
599         struct rb_node *rbprev = rb_prev(&last->rb_node);
600         struct request *next = NULL, *prev = NULL;
601
602         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
603
604         if (rbprev)
605                 prev = rb_entry_rq(rbprev);
606
607         if (rbnext)
608                 next = rb_entry_rq(rbnext);
609         else {
610                 rbnext = rb_first(&cfqq->sort_list);
611                 if (rbnext && rbnext != &last->rb_node)
612                         next = rb_entry_rq(rbnext);
613         }
614
615         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
616 }
617
618 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
619                                       struct cfq_queue *cfqq)
620 {
621         /*
622          * just an approximation, should be ok.
623          */
624         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
625                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
626 }
627
628 /*
629  * The cfqd->service_trees holds all pending cfq_queue's that have
630  * requests waiting to be processed. It is sorted in the order that
631  * we will service the queues.
632  */
633 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
634                                  bool add_front)
635 {
636         struct rb_node **p, *parent;
637         struct cfq_queue *__cfqq;
638         unsigned long rb_key;
639         struct cfq_rb_root *service_tree;
640         int left;
641
642         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
643                                                 cfqq_type(cfqq), cfqd);
644         if (cfq_class_idle(cfqq)) {
645                 rb_key = CFQ_IDLE_DELAY;
646                 parent = rb_last(&service_tree->rb);
647                 if (parent && parent != &cfqq->rb_node) {
648                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
649                         rb_key += __cfqq->rb_key;
650                 } else
651                         rb_key += jiffies;
652         } else if (!add_front) {
653                 /*
654                  * Get our rb key offset. Subtract any residual slice
655                  * value carried from last service. A negative resid
656                  * count indicates slice overrun, and this should position
657                  * the next service time further away in the tree.
658                  */
659                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
660                 rb_key -= cfqq->slice_resid;
661                 cfqq->slice_resid = 0;
662         } else {
663                 rb_key = -HZ;
664                 __cfqq = cfq_rb_first(service_tree);
665                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
666         }
667
668         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
669                 /*
670                  * same position, nothing more to do
671                  */
672                 if (rb_key == cfqq->rb_key &&
673                     cfqq->service_tree == service_tree)
674                         return;
675
676                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
677                 cfqq->service_tree = NULL;
678         }
679
680         left = 1;
681         parent = NULL;
682         cfqq->service_tree = service_tree;
683         p = &service_tree->rb.rb_node;
684         while (*p) {
685                 struct rb_node **n;
686
687                 parent = *p;
688                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
689
690                 /*
691                  * sort by key, that represents service time.
692                  */
693                 if (time_before(rb_key, __cfqq->rb_key))
694                         n = &(*p)->rb_left;
695                 else {
696                         n = &(*p)->rb_right;
697                         left = 0;
698                 }
699
700                 p = n;
701         }
702
703         if (left)
704                 service_tree->left = &cfqq->rb_node;
705
706         cfqq->rb_key = rb_key;
707         rb_link_node(&cfqq->rb_node, parent, p);
708         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
709         service_tree->count++;
710 }
711
712 static struct cfq_queue *
713 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
714                      sector_t sector, struct rb_node **ret_parent,
715                      struct rb_node ***rb_link)
716 {
717         struct rb_node **p, *parent;
718         struct cfq_queue *cfqq = NULL;
719
720         parent = NULL;
721         p = &root->rb_node;
722         while (*p) {
723                 struct rb_node **n;
724
725                 parent = *p;
726                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
727
728                 /*
729                  * Sort strictly based on sector.  Smallest to the left,
730                  * largest to the right.
731                  */
732                 if (sector > blk_rq_pos(cfqq->next_rq))
733                         n = &(*p)->rb_right;
734                 else if (sector < blk_rq_pos(cfqq->next_rq))
735                         n = &(*p)->rb_left;
736                 else
737                         break;
738                 p = n;
739                 cfqq = NULL;
740         }
741
742         *ret_parent = parent;
743         if (rb_link)
744                 *rb_link = p;
745         return cfqq;
746 }
747
748 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
749 {
750         struct rb_node **p, *parent;
751         struct cfq_queue *__cfqq;
752
753         if (cfqq->p_root) {
754                 rb_erase(&cfqq->p_node, cfqq->p_root);
755                 cfqq->p_root = NULL;
756         }
757
758         if (cfq_class_idle(cfqq))
759                 return;
760         if (!cfqq->next_rq)
761                 return;
762
763         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
764         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
765                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
766         if (!__cfqq) {
767                 rb_link_node(&cfqq->p_node, parent, p);
768                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
769         } else
770                 cfqq->p_root = NULL;
771 }
772
773 /*
774  * Update cfqq's position in the service tree.
775  */
776 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
777 {
778         /*
779          * Resorting requires the cfqq to be on the RR list already.
780          */
781         if (cfq_cfqq_on_rr(cfqq)) {
782                 cfq_service_tree_add(cfqd, cfqq, 0);
783                 cfq_prio_tree_add(cfqd, cfqq);
784         }
785 }
786
787 /*
788  * add to busy list of queues for service, trying to be fair in ordering
789  * the pending list according to last request service
790  */
791 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
792 {
793         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
794         BUG_ON(cfq_cfqq_on_rr(cfqq));
795         cfq_mark_cfqq_on_rr(cfqq);
796         cfqd->busy_queues++;
797
798         cfq_resort_rr_list(cfqd, cfqq);
799 }
800
801 /*
802  * Called when the cfqq no longer has requests pending, remove it from
803  * the service tree.
804  */
805 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
806 {
807         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
808         BUG_ON(!cfq_cfqq_on_rr(cfqq));
809         cfq_clear_cfqq_on_rr(cfqq);
810
811         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
812                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
813                 cfqq->service_tree = NULL;
814         }
815         if (cfqq->p_root) {
816                 rb_erase(&cfqq->p_node, cfqq->p_root);
817                 cfqq->p_root = NULL;
818         }
819
820         BUG_ON(!cfqd->busy_queues);
821         cfqd->busy_queues--;
822 }
823
824 /*
825  * rb tree support functions
826  */
827 static void cfq_del_rq_rb(struct request *rq)
828 {
829         struct cfq_queue *cfqq = RQ_CFQQ(rq);
830         struct cfq_data *cfqd = cfqq->cfqd;
831         const int sync = rq_is_sync(rq);
832
833         BUG_ON(!cfqq->queued[sync]);
834         cfqq->queued[sync]--;
835
836         elv_rb_del(&cfqq->sort_list, rq);
837
838         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
839                 cfq_del_cfqq_rr(cfqd, cfqq);
840 }
841
842 static void cfq_add_rq_rb(struct request *rq)
843 {
844         struct cfq_queue *cfqq = RQ_CFQQ(rq);
845         struct cfq_data *cfqd = cfqq->cfqd;
846         struct request *__alias, *prev;
847
848         cfqq->queued[rq_is_sync(rq)]++;
849
850         /*
851          * looks a little odd, but the first insert might return an alias.
852          * if that happens, put the alias on the dispatch list
853          */
854         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
855                 cfq_dispatch_insert(cfqd->queue, __alias);
856
857         if (!cfq_cfqq_on_rr(cfqq))
858                 cfq_add_cfqq_rr(cfqd, cfqq);
859
860         /*
861          * check if this request is a better next-serve candidate
862          */
863         prev = cfqq->next_rq;
864         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
865
866         /*
867          * adjust priority tree position, if ->next_rq changes
868          */
869         if (prev != cfqq->next_rq)
870                 cfq_prio_tree_add(cfqd, cfqq);
871
872         BUG_ON(!cfqq->next_rq);
873 }
874
875 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
876 {
877         elv_rb_del(&cfqq->sort_list, rq);
878         cfqq->queued[rq_is_sync(rq)]--;
879         cfq_add_rq_rb(rq);
880 }
881
882 static struct request *
883 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
884 {
885         struct task_struct *tsk = current;
886         struct cfq_io_context *cic;
887         struct cfq_queue *cfqq;
888
889         cic = cfq_cic_lookup(cfqd, tsk->io_context);
890         if (!cic)
891                 return NULL;
892
893         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
894         if (cfqq) {
895                 sector_t sector = bio->bi_sector + bio_sectors(bio);
896
897                 return elv_rb_find(&cfqq->sort_list, sector);
898         }
899
900         return NULL;
901 }
902
903 static void cfq_activate_request(struct request_queue *q, struct request *rq)
904 {
905         struct cfq_data *cfqd = q->elevator->elevator_data;
906
907         cfqd->rq_in_driver[rq_is_sync(rq)]++;
908         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
909                                                 rq_in_driver(cfqd));
910
911         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
912 }
913
914 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
915 {
916         struct cfq_data *cfqd = q->elevator->elevator_data;
917         const int sync = rq_is_sync(rq);
918
919         WARN_ON(!cfqd->rq_in_driver[sync]);
920         cfqd->rq_in_driver[sync]--;
921         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
922                                                 rq_in_driver(cfqd));
923 }
924
925 static void cfq_remove_request(struct request *rq)
926 {
927         struct cfq_queue *cfqq = RQ_CFQQ(rq);
928
929         if (cfqq->next_rq == rq)
930                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
931
932         list_del_init(&rq->queuelist);
933         cfq_del_rq_rb(rq);
934
935         cfqq->cfqd->rq_queued--;
936         if (rq_is_meta(rq)) {
937                 WARN_ON(!cfqq->meta_pending);
938                 cfqq->meta_pending--;
939         }
940 }
941
942 static int cfq_merge(struct request_queue *q, struct request **req,
943                      struct bio *bio)
944 {
945         struct cfq_data *cfqd = q->elevator->elevator_data;
946         struct request *__rq;
947
948         __rq = cfq_find_rq_fmerge(cfqd, bio);
949         if (__rq && elv_rq_merge_ok(__rq, bio)) {
950                 *req = __rq;
951                 return ELEVATOR_FRONT_MERGE;
952         }
953
954         return ELEVATOR_NO_MERGE;
955 }
956
957 static void cfq_merged_request(struct request_queue *q, struct request *req,
958                                int type)
959 {
960         if (type == ELEVATOR_FRONT_MERGE) {
961                 struct cfq_queue *cfqq = RQ_CFQQ(req);
962
963                 cfq_reposition_rq_rb(cfqq, req);
964         }
965 }
966
967 static void
968 cfq_merged_requests(struct request_queue *q, struct request *rq,
969                     struct request *next)
970 {
971         struct cfq_queue *cfqq = RQ_CFQQ(rq);
972         /*
973          * reposition in fifo if next is older than rq
974          */
975         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
976             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
977                 list_move(&rq->queuelist, &next->queuelist);
978                 rq_set_fifo_time(rq, rq_fifo_time(next));
979         }
980
981         if (cfqq->next_rq == next)
982                 cfqq->next_rq = rq;
983         cfq_remove_request(next);
984 }
985
986 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
987                            struct bio *bio)
988 {
989         struct cfq_data *cfqd = q->elevator->elevator_data;
990         struct cfq_io_context *cic;
991         struct cfq_queue *cfqq;
992
993         /*
994          * Disallow merge of a sync bio into an async request.
995          */
996         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
997                 return false;
998
999         /*
1000          * Lookup the cfqq that this bio will be queued with. Allow
1001          * merge only if rq is queued there.
1002          */
1003         cic = cfq_cic_lookup(cfqd, current->io_context);
1004         if (!cic)
1005                 return false;
1006
1007         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1008         return cfqq == RQ_CFQQ(rq);
1009 }
1010
1011 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1012                                    struct cfq_queue *cfqq)
1013 {
1014         if (cfqq) {
1015                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1016                 cfqq->slice_end = 0;
1017                 cfqq->slice_dispatch = 0;
1018
1019                 cfq_clear_cfqq_wait_request(cfqq);
1020                 cfq_clear_cfqq_must_dispatch(cfqq);
1021                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1022                 cfq_clear_cfqq_fifo_expire(cfqq);
1023                 cfq_mark_cfqq_slice_new(cfqq);
1024
1025                 del_timer(&cfqd->idle_slice_timer);
1026         }
1027
1028         cfqd->active_queue = cfqq;
1029 }
1030
1031 /*
1032  * current cfqq expired its slice (or was too idle), select new one
1033  */
1034 static void
1035 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1036                     bool timed_out)
1037 {
1038         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1039
1040         if (cfq_cfqq_wait_request(cfqq))
1041                 del_timer(&cfqd->idle_slice_timer);
1042
1043         cfq_clear_cfqq_wait_request(cfqq);
1044
1045         /*
1046          * store what was left of this slice, if the queue idled/timed out
1047          */
1048         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1049                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1050                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1051         }
1052
1053         cfq_resort_rr_list(cfqd, cfqq);
1054
1055         if (cfqq == cfqd->active_queue)
1056                 cfqd->active_queue = NULL;
1057
1058         if (cfqd->active_cic) {
1059                 put_io_context(cfqd->active_cic->ioc);
1060                 cfqd->active_cic = NULL;
1061         }
1062 }
1063
1064 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1065 {
1066         struct cfq_queue *cfqq = cfqd->active_queue;
1067
1068         if (cfqq)
1069                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1070 }
1071
1072 /*
1073  * Get next queue for service. Unless we have a queue preemption,
1074  * we'll simply select the first cfqq in the service tree.
1075  */
1076 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1077 {
1078         struct cfq_rb_root *service_tree =
1079                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1080                                         cfqd->serving_type, cfqd);
1081
1082         if (RB_EMPTY_ROOT(&service_tree->rb))
1083                 return NULL;
1084         return cfq_rb_first(service_tree);
1085 }
1086
1087 /*
1088  * Get and set a new active queue for service.
1089  */
1090 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1091                                               struct cfq_queue *cfqq)
1092 {
1093         if (!cfqq)
1094                 cfqq = cfq_get_next_queue(cfqd);
1095
1096         __cfq_set_active_queue(cfqd, cfqq);
1097         return cfqq;
1098 }
1099
1100 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1101                                           struct request *rq)
1102 {
1103         if (blk_rq_pos(rq) >= cfqd->last_position)
1104                 return blk_rq_pos(rq) - cfqd->last_position;
1105         else
1106                 return cfqd->last_position - blk_rq_pos(rq);
1107 }
1108
1109 #define CFQQ_SEEK_THR           8 * 1024
1110 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1111
1112 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1113                                struct request *rq)
1114 {
1115         sector_t sdist = cfqq->seek_mean;
1116
1117         if (!sample_valid(cfqq->seek_samples))
1118                 sdist = CFQQ_SEEK_THR;
1119
1120         return cfq_dist_from_last(cfqd, rq) <= sdist;
1121 }
1122
1123 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1124                                     struct cfq_queue *cur_cfqq)
1125 {
1126         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1127         struct rb_node *parent, *node;
1128         struct cfq_queue *__cfqq;
1129         sector_t sector = cfqd->last_position;
1130
1131         if (RB_EMPTY_ROOT(root))
1132                 return NULL;
1133
1134         /*
1135          * First, if we find a request starting at the end of the last
1136          * request, choose it.
1137          */
1138         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1139         if (__cfqq)
1140                 return __cfqq;
1141
1142         /*
1143          * If the exact sector wasn't found, the parent of the NULL leaf
1144          * will contain the closest sector.
1145          */
1146         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1147         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1148                 return __cfqq;
1149
1150         if (blk_rq_pos(__cfqq->next_rq) < sector)
1151                 node = rb_next(&__cfqq->p_node);
1152         else
1153                 node = rb_prev(&__cfqq->p_node);
1154         if (!node)
1155                 return NULL;
1156
1157         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1158         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1159                 return __cfqq;
1160
1161         return NULL;
1162 }
1163
1164 /*
1165  * cfqd - obvious
1166  * cur_cfqq - passed in so that we don't decide that the current queue is
1167  *            closely cooperating with itself.
1168  *
1169  * So, basically we're assuming that that cur_cfqq has dispatched at least
1170  * one request, and that cfqd->last_position reflects a position on the disk
1171  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1172  * assumption.
1173  */
1174 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1175                                               struct cfq_queue *cur_cfqq)
1176 {
1177         struct cfq_queue *cfqq;
1178
1179         if (!cfq_cfqq_sync(cur_cfqq))
1180                 return NULL;
1181         if (CFQQ_SEEKY(cur_cfqq))
1182                 return NULL;
1183
1184         /*
1185          * We should notice if some of the queues are cooperating, eg
1186          * working closely on the same area of the disk. In that case,
1187          * we can group them together and don't waste time idling.
1188          */
1189         cfqq = cfqq_close(cfqd, cur_cfqq);
1190         if (!cfqq)
1191                 return NULL;
1192
1193         /*
1194          * It only makes sense to merge sync queues.
1195          */
1196         if (!cfq_cfqq_sync(cfqq))
1197                 return NULL;
1198         if (CFQQ_SEEKY(cfqq))
1199                 return NULL;
1200
1201         /*
1202          * Do not merge queues of different priority classes
1203          */
1204         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1205                 return NULL;
1206
1207         return cfqq;
1208 }
1209
1210 /*
1211  * Determine whether we should enforce idle window for this queue.
1212  */
1213
1214 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1215 {
1216         enum wl_prio_t prio = cfqq_prio(cfqq);
1217         struct cfq_rb_root *service_tree = cfqq->service_tree;
1218
1219         /* We never do for idle class queues. */
1220         if (prio == IDLE_WORKLOAD)
1221                 return false;
1222
1223         /* We do for queues that were marked with idle window flag. */
1224         if (cfq_cfqq_idle_window(cfqq))
1225                 return true;
1226
1227         /*
1228          * Otherwise, we do only if they are the last ones
1229          * in their service tree.
1230          */
1231         if (!service_tree)
1232                 service_tree = service_tree_for(cfqq->cfqg, prio,
1233                                                 cfqq_type(cfqq), cfqd);
1234
1235         if (service_tree->count == 0)
1236                 return true;
1237
1238         return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1239 }
1240
1241 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1242 {
1243         struct cfq_queue *cfqq = cfqd->active_queue;
1244         struct cfq_io_context *cic;
1245         unsigned long sl;
1246
1247         /*
1248          * SSD device without seek penalty, disable idling. But only do so
1249          * for devices that support queuing, otherwise we still have a problem
1250          * with sync vs async workloads.
1251          */
1252         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1253                 return;
1254
1255         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1256         WARN_ON(cfq_cfqq_slice_new(cfqq));
1257
1258         /*
1259          * idle is disabled, either manually or by past process history
1260          */
1261         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1262                 return;
1263
1264         /*
1265          * still active requests from this queue, don't idle
1266          */
1267         if (cfqq->dispatched)
1268                 return;
1269
1270         /*
1271          * task has exited, don't wait
1272          */
1273         cic = cfqd->active_cic;
1274         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1275                 return;
1276
1277         /*
1278          * If our average think time is larger than the remaining time
1279          * slice, then don't idle. This avoids overrunning the allotted
1280          * time slice.
1281          */
1282         if (sample_valid(cic->ttime_samples) &&
1283             (cfqq->slice_end - jiffies < cic->ttime_mean))
1284                 return;
1285
1286         cfq_mark_cfqq_wait_request(cfqq);
1287
1288         sl = cfqd->cfq_slice_idle;
1289
1290         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1291         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1292 }
1293
1294 /*
1295  * Move request from internal lists to the request queue dispatch list.
1296  */
1297 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1298 {
1299         struct cfq_data *cfqd = q->elevator->elevator_data;
1300         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1301
1302         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1303
1304         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1305         cfq_remove_request(rq);
1306         cfqq->dispatched++;
1307         elv_dispatch_sort(q, rq);
1308
1309         if (cfq_cfqq_sync(cfqq))
1310                 cfqd->sync_flight++;
1311 }
1312
1313 /*
1314  * return expired entry, or NULL to just start from scratch in rbtree
1315  */
1316 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1317 {
1318         struct request *rq = NULL;
1319
1320         if (cfq_cfqq_fifo_expire(cfqq))
1321                 return NULL;
1322
1323         cfq_mark_cfqq_fifo_expire(cfqq);
1324
1325         if (list_empty(&cfqq->fifo))
1326                 return NULL;
1327
1328         rq = rq_entry_fifo(cfqq->fifo.next);
1329         if (time_before(jiffies, rq_fifo_time(rq)))
1330                 rq = NULL;
1331
1332         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1333         return rq;
1334 }
1335
1336 static inline int
1337 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1338 {
1339         const int base_rq = cfqd->cfq_slice_async_rq;
1340
1341         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1342
1343         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1344 }
1345
1346 /*
1347  * Must be called with the queue_lock held.
1348  */
1349 static int cfqq_process_refs(struct cfq_queue *cfqq)
1350 {
1351         int process_refs, io_refs;
1352
1353         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1354         process_refs = atomic_read(&cfqq->ref) - io_refs;
1355         BUG_ON(process_refs < 0);
1356         return process_refs;
1357 }
1358
1359 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1360 {
1361         int process_refs, new_process_refs;
1362         struct cfq_queue *__cfqq;
1363
1364         /* Avoid a circular list and skip interim queue merges */
1365         while ((__cfqq = new_cfqq->new_cfqq)) {
1366                 if (__cfqq == cfqq)
1367                         return;
1368                 new_cfqq = __cfqq;
1369         }
1370
1371         process_refs = cfqq_process_refs(cfqq);
1372         /*
1373          * If the process for the cfqq has gone away, there is no
1374          * sense in merging the queues.
1375          */
1376         if (process_refs == 0)
1377                 return;
1378
1379         /*
1380          * Merge in the direction of the lesser amount of work.
1381          */
1382         new_process_refs = cfqq_process_refs(new_cfqq);
1383         if (new_process_refs >= process_refs) {
1384                 cfqq->new_cfqq = new_cfqq;
1385                 atomic_add(process_refs, &new_cfqq->ref);
1386         } else {
1387                 new_cfqq->new_cfqq = cfqq;
1388                 atomic_add(new_process_refs, &cfqq->ref);
1389         }
1390 }
1391
1392 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1393                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1394                                 bool prio_changed)
1395 {
1396         struct cfq_queue *queue;
1397         int i;
1398         bool key_valid = false;
1399         unsigned long lowest_key = 0;
1400         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1401
1402         if (prio_changed) {
1403                 /*
1404                  * When priorities switched, we prefer starting
1405                  * from SYNC_NOIDLE (first choice), or just SYNC
1406                  * over ASYNC
1407                  */
1408                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1409                         return cur_best;
1410                 cur_best = SYNC_WORKLOAD;
1411                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1412                         return cur_best;
1413
1414                 return ASYNC_WORKLOAD;
1415         }
1416
1417         for (i = 0; i < 3; ++i) {
1418                 /* otherwise, select the one with lowest rb_key */
1419                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1420                 if (queue &&
1421                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1422                         lowest_key = queue->rb_key;
1423                         cur_best = i;
1424                         key_valid = true;
1425                 }
1426         }
1427
1428         return cur_best;
1429 }
1430
1431 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1432 {
1433         enum wl_prio_t previous_prio = cfqd->serving_prio;
1434         bool prio_changed;
1435         unsigned slice;
1436         unsigned count;
1437         struct cfq_rb_root *st;
1438
1439         /* Choose next priority. RT > BE > IDLE */
1440         if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1441                 cfqd->serving_prio = RT_WORKLOAD;
1442         else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1443                 cfqd->serving_prio = BE_WORKLOAD;
1444         else {
1445                 cfqd->serving_prio = IDLE_WORKLOAD;
1446                 cfqd->workload_expires = jiffies + 1;
1447                 return;
1448         }
1449
1450         /*
1451          * For RT and BE, we have to choose also the type
1452          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1453          * expiration time
1454          */
1455         prio_changed = (cfqd->serving_prio != previous_prio);
1456         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1457                                 cfqd);
1458         count = st->count;
1459
1460         /*
1461          * If priority didn't change, check workload expiration,
1462          * and that we still have other queues ready
1463          */
1464         if (!prio_changed && count &&
1465             !time_after(jiffies, cfqd->workload_expires))
1466                 return;
1467
1468         /* otherwise select new workload type */
1469         cfqd->serving_type =
1470                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1471         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1472                                 cfqd);
1473         count = st->count;
1474
1475         /*
1476          * the workload slice is computed as a fraction of target latency
1477          * proportional to the number of queues in that workload, over
1478          * all the queues in the same priority class
1479          */
1480         slice = cfq_target_latency * count /
1481                 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1482                       cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1483
1484         if (cfqd->serving_type == ASYNC_WORKLOAD)
1485                 /* async workload slice is scaled down according to
1486                  * the sync/async slice ratio. */
1487                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1488         else
1489                 /* sync workload slice is at least 2 * cfq_slice_idle */
1490                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1491
1492         slice = max_t(unsigned, slice, CFQ_MIN_TT);
1493         cfqd->workload_expires = jiffies + slice;
1494         cfqd->noidle_tree_requires_idle = false;
1495 }
1496
1497 static void cfq_choose_cfqg(struct cfq_data *cfqd)
1498 {
1499         cfqd->serving_group = &cfqd->root_group;
1500         choose_service_tree(cfqd, &cfqd->root_group);
1501 }
1502
1503 /*
1504  * Select a queue for service. If we have a current active queue,
1505  * check whether to continue servicing it, or retrieve and set a new one.
1506  */
1507 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1508 {
1509         struct cfq_queue *cfqq, *new_cfqq = NULL;
1510
1511         cfqq = cfqd->active_queue;
1512         if (!cfqq)
1513                 goto new_queue;
1514
1515         /*
1516          * The active queue has run out of time, expire it and select new.
1517          */
1518         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1519                 goto expire;
1520
1521         /*
1522          * The active queue has requests and isn't expired, allow it to
1523          * dispatch.
1524          */
1525         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1526                 goto keep_queue;
1527
1528         /*
1529          * If another queue has a request waiting within our mean seek
1530          * distance, let it run.  The expire code will check for close
1531          * cooperators and put the close queue at the front of the service
1532          * tree.  If possible, merge the expiring queue with the new cfqq.
1533          */
1534         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1535         if (new_cfqq) {
1536                 if (!cfqq->new_cfqq)
1537                         cfq_setup_merge(cfqq, new_cfqq);
1538                 goto expire;
1539         }
1540
1541         /*
1542          * No requests pending. If the active queue still has requests in
1543          * flight or is idling for a new request, allow either of these
1544          * conditions to happen (or time out) before selecting a new queue.
1545          */
1546         if (timer_pending(&cfqd->idle_slice_timer) ||
1547             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1548                 cfqq = NULL;
1549                 goto keep_queue;
1550         }
1551
1552 expire:
1553         cfq_slice_expired(cfqd, 0);
1554 new_queue:
1555         /*
1556          * Current queue expired. Check if we have to switch to a new
1557          * service tree
1558          */
1559         if (!new_cfqq)
1560                 cfq_choose_cfqg(cfqd);
1561
1562         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1563 keep_queue:
1564         return cfqq;
1565 }
1566
1567 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1568 {
1569         int dispatched = 0;
1570
1571         while (cfqq->next_rq) {
1572                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1573                 dispatched++;
1574         }
1575
1576         BUG_ON(!list_empty(&cfqq->fifo));
1577         return dispatched;
1578 }
1579
1580 /*
1581  * Drain our current requests. Used for barriers and when switching
1582  * io schedulers on-the-fly.
1583  */
1584 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1585 {
1586         struct cfq_queue *cfqq;
1587         int dispatched = 0;
1588         int i, j;
1589         struct cfq_group *cfqg = &cfqd->root_group;
1590
1591         for (i = 0; i < 2; ++i)
1592                 for (j = 0; j < 3; ++j)
1593                         while ((cfqq = cfq_rb_first(&cfqg->service_trees[i][j]))
1594                                 != NULL)
1595                                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1596
1597         while ((cfqq = cfq_rb_first(&cfqg->service_tree_idle)) != NULL)
1598                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1599
1600         cfq_slice_expired(cfqd, 0);
1601
1602         BUG_ON(cfqd->busy_queues);
1603
1604         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1605         return dispatched;
1606 }
1607
1608 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1609 {
1610         unsigned int max_dispatch;
1611
1612         /*
1613          * Drain async requests before we start sync IO
1614          */
1615         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1616                 return false;
1617
1618         /*
1619          * If this is an async queue and we have sync IO in flight, let it wait
1620          */
1621         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1622                 return false;
1623
1624         max_dispatch = cfqd->cfq_quantum;
1625         if (cfq_class_idle(cfqq))
1626                 max_dispatch = 1;
1627
1628         /*
1629          * Does this cfqq already have too much IO in flight?
1630          */
1631         if (cfqq->dispatched >= max_dispatch) {
1632                 /*
1633                  * idle queue must always only have a single IO in flight
1634                  */
1635                 if (cfq_class_idle(cfqq))
1636                         return false;
1637
1638                 /*
1639                  * We have other queues, don't allow more IO from this one
1640                  */
1641                 if (cfqd->busy_queues > 1)
1642                         return false;
1643
1644                 /*
1645                  * Sole queue user, no limit
1646                  */
1647                 max_dispatch = -1;
1648         }
1649
1650         /*
1651          * Async queues must wait a bit before being allowed dispatch.
1652          * We also ramp up the dispatch depth gradually for async IO,
1653          * based on the last sync IO we serviced
1654          */
1655         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1656                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1657                 unsigned int depth;
1658
1659                 depth = last_sync / cfqd->cfq_slice[1];
1660                 if (!depth && !cfqq->dispatched)
1661                         depth = 1;
1662                 if (depth < max_dispatch)
1663                         max_dispatch = depth;
1664         }
1665
1666         /*
1667          * If we're below the current max, allow a dispatch
1668          */
1669         return cfqq->dispatched < max_dispatch;
1670 }
1671
1672 /*
1673  * Dispatch a request from cfqq, moving them to the request queue
1674  * dispatch list.
1675  */
1676 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1677 {
1678         struct request *rq;
1679
1680         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1681
1682         if (!cfq_may_dispatch(cfqd, cfqq))
1683                 return false;
1684
1685         /*
1686          * follow expired path, else get first next available
1687          */
1688         rq = cfq_check_fifo(cfqq);
1689         if (!rq)
1690                 rq = cfqq->next_rq;
1691
1692         /*
1693          * insert request into driver dispatch list
1694          */
1695         cfq_dispatch_insert(cfqd->queue, rq);
1696
1697         if (!cfqd->active_cic) {
1698                 struct cfq_io_context *cic = RQ_CIC(rq);
1699
1700                 atomic_long_inc(&cic->ioc->refcount);
1701                 cfqd->active_cic = cic;
1702         }
1703
1704         return true;
1705 }
1706
1707 /*
1708  * Find the cfqq that we need to service and move a request from that to the
1709  * dispatch list
1710  */
1711 static int cfq_dispatch_requests(struct request_queue *q, int force)
1712 {
1713         struct cfq_data *cfqd = q->elevator->elevator_data;
1714         struct cfq_queue *cfqq;
1715
1716         if (!cfqd->busy_queues)
1717                 return 0;
1718
1719         if (unlikely(force))
1720                 return cfq_forced_dispatch(cfqd);
1721
1722         cfqq = cfq_select_queue(cfqd);
1723         if (!cfqq)
1724                 return 0;
1725
1726         /*
1727          * Dispatch a request from this cfqq, if it is allowed
1728          */
1729         if (!cfq_dispatch_request(cfqd, cfqq))
1730                 return 0;
1731
1732         cfqq->slice_dispatch++;
1733         cfq_clear_cfqq_must_dispatch(cfqq);
1734
1735         /*
1736          * expire an async queue immediately if it has used up its slice. idle
1737          * queue always expire after 1 dispatch round.
1738          */
1739         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1740             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1741             cfq_class_idle(cfqq))) {
1742                 cfqq->slice_end = jiffies + 1;
1743                 cfq_slice_expired(cfqd, 0);
1744         }
1745
1746         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1747         return 1;
1748 }
1749
1750 /*
1751  * task holds one reference to the queue, dropped when task exits. each rq
1752  * in-flight on this queue also holds a reference, dropped when rq is freed.
1753  *
1754  * queue lock must be held here.
1755  */
1756 static void cfq_put_queue(struct cfq_queue *cfqq)
1757 {
1758         struct cfq_data *cfqd = cfqq->cfqd;
1759
1760         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1761
1762         if (!atomic_dec_and_test(&cfqq->ref))
1763                 return;
1764
1765         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1766         BUG_ON(rb_first(&cfqq->sort_list));
1767         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1768         BUG_ON(cfq_cfqq_on_rr(cfqq));
1769
1770         if (unlikely(cfqd->active_queue == cfqq)) {
1771                 __cfq_slice_expired(cfqd, cfqq, 0);
1772                 cfq_schedule_dispatch(cfqd);
1773         }
1774
1775         kmem_cache_free(cfq_pool, cfqq);
1776 }
1777
1778 /*
1779  * Must always be called with the rcu_read_lock() held
1780  */
1781 static void
1782 __call_for_each_cic(struct io_context *ioc,
1783                     void (*func)(struct io_context *, struct cfq_io_context *))
1784 {
1785         struct cfq_io_context *cic;
1786         struct hlist_node *n;
1787
1788         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1789                 func(ioc, cic);
1790 }
1791
1792 /*
1793  * Call func for each cic attached to this ioc.
1794  */
1795 static void
1796 call_for_each_cic(struct io_context *ioc,
1797                   void (*func)(struct io_context *, struct cfq_io_context *))
1798 {
1799         rcu_read_lock();
1800         __call_for_each_cic(ioc, func);
1801         rcu_read_unlock();
1802 }
1803
1804 static void cfq_cic_free_rcu(struct rcu_head *head)
1805 {
1806         struct cfq_io_context *cic;
1807
1808         cic = container_of(head, struct cfq_io_context, rcu_head);
1809
1810         kmem_cache_free(cfq_ioc_pool, cic);
1811         elv_ioc_count_dec(cfq_ioc_count);
1812
1813         if (ioc_gone) {
1814                 /*
1815                  * CFQ scheduler is exiting, grab exit lock and check
1816                  * the pending io context count. If it hits zero,
1817                  * complete ioc_gone and set it back to NULL
1818                  */
1819                 spin_lock(&ioc_gone_lock);
1820                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1821                         complete(ioc_gone);
1822                         ioc_gone = NULL;
1823                 }
1824                 spin_unlock(&ioc_gone_lock);
1825         }
1826 }
1827
1828 static void cfq_cic_free(struct cfq_io_context *cic)
1829 {
1830         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1831 }
1832
1833 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1834 {
1835         unsigned long flags;
1836
1837         BUG_ON(!cic->dead_key);
1838
1839         spin_lock_irqsave(&ioc->lock, flags);
1840         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1841         hlist_del_rcu(&cic->cic_list);
1842         spin_unlock_irqrestore(&ioc->lock, flags);
1843
1844         cfq_cic_free(cic);
1845 }
1846
1847 /*
1848  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1849  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1850  * and ->trim() which is called with the task lock held
1851  */
1852 static void cfq_free_io_context(struct io_context *ioc)
1853 {
1854         /*
1855          * ioc->refcount is zero here, or we are called from elv_unregister(),
1856          * so no more cic's are allowed to be linked into this ioc.  So it
1857          * should be ok to iterate over the known list, we will see all cic's
1858          * since no new ones are added.
1859          */
1860         __call_for_each_cic(ioc, cic_free_func);
1861 }
1862
1863 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1864 {
1865         struct cfq_queue *__cfqq, *next;
1866
1867         if (unlikely(cfqq == cfqd->active_queue)) {
1868                 __cfq_slice_expired(cfqd, cfqq, 0);
1869                 cfq_schedule_dispatch(cfqd);
1870         }
1871
1872         /*
1873          * If this queue was scheduled to merge with another queue, be
1874          * sure to drop the reference taken on that queue (and others in
1875          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
1876          */
1877         __cfqq = cfqq->new_cfqq;
1878         while (__cfqq) {
1879                 if (__cfqq == cfqq) {
1880                         WARN(1, "cfqq->new_cfqq loop detected\n");
1881                         break;
1882                 }
1883                 next = __cfqq->new_cfqq;
1884                 cfq_put_queue(__cfqq);
1885                 __cfqq = next;
1886         }
1887
1888         cfq_put_queue(cfqq);
1889 }
1890
1891 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1892                                          struct cfq_io_context *cic)
1893 {
1894         struct io_context *ioc = cic->ioc;
1895
1896         list_del_init(&cic->queue_list);
1897
1898         /*
1899          * Make sure key == NULL is seen for dead queues
1900          */
1901         smp_wmb();
1902         cic->dead_key = (unsigned long) cic->key;
1903         cic->key = NULL;
1904
1905         if (ioc->ioc_data == cic)
1906                 rcu_assign_pointer(ioc->ioc_data, NULL);
1907
1908         if (cic->cfqq[BLK_RW_ASYNC]) {
1909                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1910                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1911         }
1912
1913         if (cic->cfqq[BLK_RW_SYNC]) {
1914                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1915                 cic->cfqq[BLK_RW_SYNC] = NULL;
1916         }
1917 }
1918
1919 static void cfq_exit_single_io_context(struct io_context *ioc,
1920                                        struct cfq_io_context *cic)
1921 {
1922         struct cfq_data *cfqd = cic->key;
1923
1924         if (cfqd) {
1925                 struct request_queue *q = cfqd->queue;
1926                 unsigned long flags;
1927
1928                 spin_lock_irqsave(q->queue_lock, flags);
1929
1930                 /*
1931                  * Ensure we get a fresh copy of the ->key to prevent
1932                  * race between exiting task and queue
1933                  */
1934                 smp_read_barrier_depends();
1935                 if (cic->key)
1936                         __cfq_exit_single_io_context(cfqd, cic);
1937
1938                 spin_unlock_irqrestore(q->queue_lock, flags);
1939         }
1940 }
1941
1942 /*
1943  * The process that ioc belongs to has exited, we need to clean up
1944  * and put the internal structures we have that belongs to that process.
1945  */
1946 static void cfq_exit_io_context(struct io_context *ioc)
1947 {
1948         call_for_each_cic(ioc, cfq_exit_single_io_context);
1949 }
1950
1951 static struct cfq_io_context *
1952 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1953 {
1954         struct cfq_io_context *cic;
1955
1956         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1957                                                         cfqd->queue->node);
1958         if (cic) {
1959                 cic->last_end_request = jiffies;
1960                 INIT_LIST_HEAD(&cic->queue_list);
1961                 INIT_HLIST_NODE(&cic->cic_list);
1962                 cic->dtor = cfq_free_io_context;
1963                 cic->exit = cfq_exit_io_context;
1964                 elv_ioc_count_inc(cfq_ioc_count);
1965         }
1966
1967         return cic;
1968 }
1969
1970 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1971 {
1972         struct task_struct *tsk = current;
1973         int ioprio_class;
1974
1975         if (!cfq_cfqq_prio_changed(cfqq))
1976                 return;
1977
1978         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1979         switch (ioprio_class) {
1980         default:
1981                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1982         case IOPRIO_CLASS_NONE:
1983                 /*
1984                  * no prio set, inherit CPU scheduling settings
1985                  */
1986                 cfqq->ioprio = task_nice_ioprio(tsk);
1987                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1988                 break;
1989         case IOPRIO_CLASS_RT:
1990                 cfqq->ioprio = task_ioprio(ioc);
1991                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1992                 break;
1993         case IOPRIO_CLASS_BE:
1994                 cfqq->ioprio = task_ioprio(ioc);
1995                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1996                 break;
1997         case IOPRIO_CLASS_IDLE:
1998                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1999                 cfqq->ioprio = 7;
2000                 cfq_clear_cfqq_idle_window(cfqq);
2001                 break;
2002         }
2003
2004         /*
2005          * keep track of original prio settings in case we have to temporarily
2006          * elevate the priority of this queue
2007          */
2008         cfqq->org_ioprio = cfqq->ioprio;
2009         cfqq->org_ioprio_class = cfqq->ioprio_class;
2010         cfq_clear_cfqq_prio_changed(cfqq);
2011 }
2012
2013 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2014 {
2015         struct cfq_data *cfqd = cic->key;
2016         struct cfq_queue *cfqq;
2017         unsigned long flags;
2018
2019         if (unlikely(!cfqd))
2020                 return;
2021
2022         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2023
2024         cfqq = cic->cfqq[BLK_RW_ASYNC];
2025         if (cfqq) {
2026                 struct cfq_queue *new_cfqq;
2027                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2028                                                 GFP_ATOMIC);
2029                 if (new_cfqq) {
2030                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2031                         cfq_put_queue(cfqq);
2032                 }
2033         }
2034
2035         cfqq = cic->cfqq[BLK_RW_SYNC];
2036         if (cfqq)
2037                 cfq_mark_cfqq_prio_changed(cfqq);
2038
2039         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2040 }
2041
2042 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2043 {
2044         call_for_each_cic(ioc, changed_ioprio);
2045         ioc->ioprio_changed = 0;
2046 }
2047
2048 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2049                           pid_t pid, bool is_sync)
2050 {
2051         RB_CLEAR_NODE(&cfqq->rb_node);
2052         RB_CLEAR_NODE(&cfqq->p_node);
2053         INIT_LIST_HEAD(&cfqq->fifo);
2054
2055         atomic_set(&cfqq->ref, 0);
2056         cfqq->cfqd = cfqd;
2057
2058         cfq_mark_cfqq_prio_changed(cfqq);
2059
2060         if (is_sync) {
2061                 if (!cfq_class_idle(cfqq))
2062                         cfq_mark_cfqq_idle_window(cfqq);
2063                 cfq_mark_cfqq_sync(cfqq);
2064         }
2065         cfqq->pid = pid;
2066 }
2067
2068 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2069 {
2070         cfqq->cfqg = cfqg;
2071 }
2072
2073 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2074 {
2075         return &cfqd->root_group;
2076 }
2077
2078 static struct cfq_queue *
2079 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2080                      struct io_context *ioc, gfp_t gfp_mask)
2081 {
2082         struct cfq_queue *cfqq, *new_cfqq = NULL;
2083         struct cfq_io_context *cic;
2084         struct cfq_group *cfqg;
2085
2086 retry:
2087         cfqg = cfq_get_cfqg(cfqd, 1);
2088         cic = cfq_cic_lookup(cfqd, ioc);
2089         /* cic always exists here */
2090         cfqq = cic_to_cfqq(cic, is_sync);
2091
2092         /*
2093          * Always try a new alloc if we fell back to the OOM cfqq
2094          * originally, since it should just be a temporary situation.
2095          */
2096         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2097                 cfqq = NULL;
2098                 if (new_cfqq) {
2099                         cfqq = new_cfqq;
2100                         new_cfqq = NULL;
2101                 } else if (gfp_mask & __GFP_WAIT) {
2102                         spin_unlock_irq(cfqd->queue->queue_lock);
2103                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2104                                         gfp_mask | __GFP_ZERO,
2105                                         cfqd->queue->node);
2106                         spin_lock_irq(cfqd->queue->queue_lock);
2107                         if (new_cfqq)
2108                                 goto retry;
2109                 } else {
2110                         cfqq = kmem_cache_alloc_node(cfq_pool,
2111                                         gfp_mask | __GFP_ZERO,
2112                                         cfqd->queue->node);
2113                 }
2114
2115                 if (cfqq) {
2116                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2117                         cfq_init_prio_data(cfqq, ioc);
2118                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2119                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2120                 } else
2121                         cfqq = &cfqd->oom_cfqq;
2122         }
2123
2124         if (new_cfqq)
2125                 kmem_cache_free(cfq_pool, new_cfqq);
2126
2127         return cfqq;
2128 }
2129
2130 static struct cfq_queue **
2131 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2132 {
2133         switch (ioprio_class) {
2134         case IOPRIO_CLASS_RT:
2135                 return &cfqd->async_cfqq[0][ioprio];
2136         case IOPRIO_CLASS_BE:
2137                 return &cfqd->async_cfqq[1][ioprio];
2138         case IOPRIO_CLASS_IDLE:
2139                 return &cfqd->async_idle_cfqq;
2140         default:
2141                 BUG();
2142         }
2143 }
2144
2145 static struct cfq_queue *
2146 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2147               gfp_t gfp_mask)
2148 {
2149         const int ioprio = task_ioprio(ioc);
2150         const int ioprio_class = task_ioprio_class(ioc);
2151         struct cfq_queue **async_cfqq = NULL;
2152         struct cfq_queue *cfqq = NULL;
2153
2154         if (!is_sync) {
2155                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2156                 cfqq = *async_cfqq;
2157         }
2158
2159         if (!cfqq)
2160                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2161
2162         /*
2163          * pin the queue now that it's allocated, scheduler exit will prune it
2164          */
2165         if (!is_sync && !(*async_cfqq)) {
2166                 atomic_inc(&cfqq->ref);
2167                 *async_cfqq = cfqq;
2168         }
2169
2170         atomic_inc(&cfqq->ref);
2171         return cfqq;
2172 }
2173
2174 /*
2175  * We drop cfq io contexts lazily, so we may find a dead one.
2176  */
2177 static void
2178 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2179                   struct cfq_io_context *cic)
2180 {
2181         unsigned long flags;
2182
2183         WARN_ON(!list_empty(&cic->queue_list));
2184
2185         spin_lock_irqsave(&ioc->lock, flags);
2186
2187         BUG_ON(ioc->ioc_data == cic);
2188
2189         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2190         hlist_del_rcu(&cic->cic_list);
2191         spin_unlock_irqrestore(&ioc->lock, flags);
2192
2193         cfq_cic_free(cic);
2194 }
2195
2196 static struct cfq_io_context *
2197 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2198 {
2199         struct cfq_io_context *cic;
2200         unsigned long flags;
2201         void *k;
2202
2203         if (unlikely(!ioc))
2204                 return NULL;
2205
2206         rcu_read_lock();
2207
2208         /*
2209          * we maintain a last-hit cache, to avoid browsing over the tree
2210          */
2211         cic = rcu_dereference(ioc->ioc_data);
2212         if (cic && cic->key == cfqd) {
2213                 rcu_read_unlock();
2214                 return cic;
2215         }
2216
2217         do {
2218                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2219                 rcu_read_unlock();
2220                 if (!cic)
2221                         break;
2222                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2223                 k = cic->key;
2224                 if (unlikely(!k)) {
2225                         cfq_drop_dead_cic(cfqd, ioc, cic);
2226                         rcu_read_lock();
2227                         continue;
2228                 }
2229
2230                 spin_lock_irqsave(&ioc->lock, flags);
2231                 rcu_assign_pointer(ioc->ioc_data, cic);
2232                 spin_unlock_irqrestore(&ioc->lock, flags);
2233                 break;
2234         } while (1);
2235
2236         return cic;
2237 }
2238
2239 /*
2240  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2241  * the process specific cfq io context when entered from the block layer.
2242  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2243  */
2244 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2245                         struct cfq_io_context *cic, gfp_t gfp_mask)
2246 {
2247         unsigned long flags;
2248         int ret;
2249
2250         ret = radix_tree_preload(gfp_mask);
2251         if (!ret) {
2252                 cic->ioc = ioc;
2253                 cic->key = cfqd;
2254
2255                 spin_lock_irqsave(&ioc->lock, flags);
2256                 ret = radix_tree_insert(&ioc->radix_root,
2257                                                 (unsigned long) cfqd, cic);
2258                 if (!ret)
2259                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2260                 spin_unlock_irqrestore(&ioc->lock, flags);
2261
2262                 radix_tree_preload_end();
2263
2264                 if (!ret) {
2265                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2266                         list_add(&cic->queue_list, &cfqd->cic_list);
2267                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2268                 }
2269         }
2270
2271         if (ret)
2272                 printk(KERN_ERR "cfq: cic link failed!\n");
2273
2274         return ret;
2275 }
2276
2277 /*
2278  * Setup general io context and cfq io context. There can be several cfq
2279  * io contexts per general io context, if this process is doing io to more
2280  * than one device managed by cfq.
2281  */
2282 static struct cfq_io_context *
2283 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2284 {
2285         struct io_context *ioc = NULL;
2286         struct cfq_io_context *cic;
2287
2288         might_sleep_if(gfp_mask & __GFP_WAIT);
2289
2290         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2291         if (!ioc)
2292                 return NULL;
2293
2294         cic = cfq_cic_lookup(cfqd, ioc);
2295         if (cic)
2296                 goto out;
2297
2298         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2299         if (cic == NULL)
2300                 goto err;
2301
2302         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2303                 goto err_free;
2304
2305 out:
2306         smp_read_barrier_depends();
2307         if (unlikely(ioc->ioprio_changed))
2308                 cfq_ioc_set_ioprio(ioc);
2309
2310         return cic;
2311 err_free:
2312         cfq_cic_free(cic);
2313 err:
2314         put_io_context(ioc);
2315         return NULL;
2316 }
2317
2318 static void
2319 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2320 {
2321         unsigned long elapsed = jiffies - cic->last_end_request;
2322         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2323
2324         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2325         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2326         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2327 }
2328
2329 static void
2330 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2331                        struct request *rq)
2332 {
2333         sector_t sdist;
2334         u64 total;
2335
2336         if (!cfqq->last_request_pos)
2337                 sdist = 0;
2338         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2339                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2340         else
2341                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2342
2343         /*
2344          * Don't allow the seek distance to get too large from the
2345          * odd fragment, pagein, etc
2346          */
2347         if (cfqq->seek_samples <= 60) /* second&third seek */
2348                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2349         else
2350                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2351
2352         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2353         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2354         total = cfqq->seek_total + (cfqq->seek_samples/2);
2355         do_div(total, cfqq->seek_samples);
2356         cfqq->seek_mean = (sector_t)total;
2357
2358         /*
2359          * If this cfqq is shared between multiple processes, check to
2360          * make sure that those processes are still issuing I/Os within
2361          * the mean seek distance.  If not, it may be time to break the
2362          * queues apart again.
2363          */
2364         if (cfq_cfqq_coop(cfqq)) {
2365                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2366                         cfqq->seeky_start = jiffies;
2367                 else if (!CFQQ_SEEKY(cfqq))
2368                         cfqq->seeky_start = 0;
2369         }
2370 }
2371
2372 /*
2373  * Disable idle window if the process thinks too long or seeks so much that
2374  * it doesn't matter
2375  */
2376 static void
2377 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2378                        struct cfq_io_context *cic)
2379 {
2380         int old_idle, enable_idle;
2381
2382         /*
2383          * Don't idle for async or idle io prio class
2384          */
2385         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2386                 return;
2387
2388         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2389
2390         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2391                 cfq_mark_cfqq_deep(cfqq);
2392
2393         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2394             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2395              && CFQQ_SEEKY(cfqq)))
2396                 enable_idle = 0;
2397         else if (sample_valid(cic->ttime_samples)) {
2398                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2399                         enable_idle = 0;
2400                 else
2401                         enable_idle = 1;
2402         }
2403
2404         if (old_idle != enable_idle) {
2405                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2406                 if (enable_idle)
2407                         cfq_mark_cfqq_idle_window(cfqq);
2408                 else
2409                         cfq_clear_cfqq_idle_window(cfqq);
2410         }
2411 }
2412
2413 /*
2414  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2415  * no or if we aren't sure, a 1 will cause a preempt.
2416  */
2417 static bool
2418 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2419                    struct request *rq)
2420 {
2421         struct cfq_queue *cfqq;
2422
2423         cfqq = cfqd->active_queue;
2424         if (!cfqq)
2425                 return false;
2426
2427         if (cfq_slice_used(cfqq))
2428                 return true;
2429
2430         if (cfq_class_idle(new_cfqq))
2431                 return false;
2432
2433         if (cfq_class_idle(cfqq))
2434                 return true;
2435
2436         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2437             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2438             new_cfqq->service_tree->count == 1)
2439                 return true;
2440
2441         /*
2442          * if the new request is sync, but the currently running queue is
2443          * not, let the sync request have priority.
2444          */
2445         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2446                 return true;
2447
2448         /*
2449          * So both queues are sync. Let the new request get disk time if
2450          * it's a metadata request and the current queue is doing regular IO.
2451          */
2452         if (rq_is_meta(rq) && !cfqq->meta_pending)
2453                 return true;
2454
2455         /*
2456          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2457          */
2458         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2459                 return true;
2460
2461         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2462                 return false;
2463
2464         /*
2465          * if this request is as-good as one we would expect from the
2466          * current cfqq, let it preempt
2467          */
2468         if (cfq_rq_close(cfqd, cfqq, rq))
2469                 return true;
2470
2471         return false;
2472 }
2473
2474 /*
2475  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2476  * let it have half of its nominal slice.
2477  */
2478 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2479 {
2480         cfq_log_cfqq(cfqd, cfqq, "preempt");
2481         cfq_slice_expired(cfqd, 1);
2482
2483         /*
2484          * Put the new queue at the front of the of the current list,
2485          * so we know that it will be selected next.
2486          */
2487         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2488
2489         cfq_service_tree_add(cfqd, cfqq, 1);
2490
2491         cfqq->slice_end = 0;
2492         cfq_mark_cfqq_slice_new(cfqq);
2493 }
2494
2495 /*
2496  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2497  * something we should do about it
2498  */
2499 static void
2500 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2501                 struct request *rq)
2502 {
2503         struct cfq_io_context *cic = RQ_CIC(rq);
2504
2505         cfqd->rq_queued++;
2506         if (rq_is_meta(rq))
2507                 cfqq->meta_pending++;
2508
2509         cfq_update_io_thinktime(cfqd, cic);
2510         cfq_update_io_seektime(cfqd, cfqq, rq);
2511         cfq_update_idle_window(cfqd, cfqq, cic);
2512
2513         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2514
2515         if (cfqq == cfqd->active_queue) {
2516                 /*
2517                  * Remember that we saw a request from this process, but
2518                  * don't start queuing just yet. Otherwise we risk seeing lots
2519                  * of tiny requests, because we disrupt the normal plugging
2520                  * and merging. If the request is already larger than a single
2521                  * page, let it rip immediately. For that case we assume that
2522                  * merging is already done. Ditto for a busy system that
2523                  * has other work pending, don't risk delaying until the
2524                  * idle timer unplug to continue working.
2525                  */
2526                 if (cfq_cfqq_wait_request(cfqq)) {
2527                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2528                             cfqd->busy_queues > 1) {
2529                                 del_timer(&cfqd->idle_slice_timer);
2530                                 __blk_run_queue(cfqd->queue);
2531                         } else
2532                                 cfq_mark_cfqq_must_dispatch(cfqq);
2533                 }
2534         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2535                 /*
2536                  * not the active queue - expire current slice if it is
2537                  * idle and has expired it's mean thinktime or this new queue
2538                  * has some old slice time left and is of higher priority or
2539                  * this new queue is RT and the current one is BE
2540                  */
2541                 cfq_preempt_queue(cfqd, cfqq);
2542                 __blk_run_queue(cfqd->queue);
2543         }
2544 }
2545
2546 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2547 {
2548         struct cfq_data *cfqd = q->elevator->elevator_data;
2549         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2550
2551         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2552         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2553
2554         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2555         list_add_tail(&rq->queuelist, &cfqq->fifo);
2556         cfq_add_rq_rb(rq);
2557
2558         cfq_rq_enqueued(cfqd, cfqq, rq);
2559 }
2560
2561 /*
2562  * Update hw_tag based on peak queue depth over 50 samples under
2563  * sufficient load.
2564  */
2565 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2566 {
2567         struct cfq_queue *cfqq = cfqd->active_queue;
2568
2569         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2570                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2571
2572         if (cfqd->hw_tag == 1)
2573                 return;
2574
2575         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2576             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2577                 return;
2578
2579         /*
2580          * If active queue hasn't enough requests and can idle, cfq might not
2581          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2582          * case
2583          */
2584         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2585             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2586             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2587                 return;
2588
2589         if (cfqd->hw_tag_samples++ < 50)
2590                 return;
2591
2592         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2593                 cfqd->hw_tag = 1;
2594         else
2595                 cfqd->hw_tag = 0;
2596 }
2597
2598 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2599 {
2600         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2601         struct cfq_data *cfqd = cfqq->cfqd;
2602         const int sync = rq_is_sync(rq);
2603         unsigned long now;
2604
2605         now = jiffies;
2606         cfq_log_cfqq(cfqd, cfqq, "complete");
2607
2608         cfq_update_hw_tag(cfqd);
2609
2610         WARN_ON(!cfqd->rq_in_driver[sync]);
2611         WARN_ON(!cfqq->dispatched);
2612         cfqd->rq_in_driver[sync]--;
2613         cfqq->dispatched--;
2614
2615         if (cfq_cfqq_sync(cfqq))
2616                 cfqd->sync_flight--;
2617
2618         if (sync) {
2619                 RQ_CIC(rq)->last_end_request = now;
2620                 cfqd->last_end_sync_rq = now;
2621         }
2622
2623         /*
2624          * If this is the active queue, check if it needs to be expired,
2625          * or if we want to idle in case it has no pending requests.
2626          */
2627         if (cfqd->active_queue == cfqq) {
2628                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2629
2630                 if (cfq_cfqq_slice_new(cfqq)) {
2631                         cfq_set_prio_slice(cfqd, cfqq);
2632                         cfq_clear_cfqq_slice_new(cfqq);
2633                 }
2634                 /*
2635                  * Idling is not enabled on:
2636                  * - expired queues
2637                  * - idle-priority queues
2638                  * - async queues
2639                  * - queues with still some requests queued
2640                  * - when there is a close cooperator
2641                  */
2642                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2643                         cfq_slice_expired(cfqd, 1);
2644                 else if (sync && cfqq_empty &&
2645                          !cfq_close_cooperator(cfqd, cfqq)) {
2646                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2647                         /*
2648                          * Idling is enabled for SYNC_WORKLOAD.
2649                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2650                          * only if we processed at least one !rq_noidle request
2651                          */
2652                         if (cfqd->serving_type == SYNC_WORKLOAD
2653                             || cfqd->noidle_tree_requires_idle)
2654                                 cfq_arm_slice_timer(cfqd);
2655                 }
2656         }
2657
2658         if (!rq_in_driver(cfqd))
2659                 cfq_schedule_dispatch(cfqd);
2660 }
2661
2662 /*
2663  * we temporarily boost lower priority queues if they are holding fs exclusive
2664  * resources. they are boosted to normal prio (CLASS_BE/4)
2665  */
2666 static void cfq_prio_boost(struct cfq_queue *cfqq)
2667 {
2668         if (has_fs_excl()) {
2669                 /*
2670                  * boost idle prio on transactions that would lock out other
2671                  * users of the filesystem
2672                  */
2673                 if (cfq_class_idle(cfqq))
2674                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2675                 if (cfqq->ioprio > IOPRIO_NORM)
2676                         cfqq->ioprio = IOPRIO_NORM;
2677         } else {
2678                 /*
2679                  * unboost the queue (if needed)
2680                  */
2681                 cfqq->ioprio_class = cfqq->org_ioprio_class;
2682                 cfqq->ioprio = cfqq->org_ioprio;
2683         }
2684 }
2685
2686 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2687 {
2688         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2689                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2690                 return ELV_MQUEUE_MUST;
2691         }
2692
2693         return ELV_MQUEUE_MAY;
2694 }
2695
2696 static int cfq_may_queue(struct request_queue *q, int rw)
2697 {
2698         struct cfq_data *cfqd = q->elevator->elevator_data;
2699         struct task_struct *tsk = current;
2700         struct cfq_io_context *cic;
2701         struct cfq_queue *cfqq;
2702
2703         /*
2704          * don't force setup of a queue from here, as a call to may_queue
2705          * does not necessarily imply that a request actually will be queued.
2706          * so just lookup a possibly existing queue, or return 'may queue'
2707          * if that fails
2708          */
2709         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2710         if (!cic)
2711                 return ELV_MQUEUE_MAY;
2712
2713         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2714         if (cfqq) {
2715                 cfq_init_prio_data(cfqq, cic->ioc);
2716                 cfq_prio_boost(cfqq);
2717
2718                 return __cfq_may_queue(cfqq);
2719         }
2720
2721         return ELV_MQUEUE_MAY;
2722 }
2723
2724 /*
2725  * queue lock held here
2726  */
2727 static void cfq_put_request(struct request *rq)
2728 {
2729         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2730
2731         if (cfqq) {
2732                 const int rw = rq_data_dir(rq);
2733
2734                 BUG_ON(!cfqq->allocated[rw]);
2735                 cfqq->allocated[rw]--;
2736
2737                 put_io_context(RQ_CIC(rq)->ioc);
2738
2739                 rq->elevator_private = NULL;
2740                 rq->elevator_private2 = NULL;
2741
2742                 cfq_put_queue(cfqq);
2743         }
2744 }
2745
2746 static struct cfq_queue *
2747 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2748                 struct cfq_queue *cfqq)
2749 {
2750         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2751         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2752         cfq_mark_cfqq_coop(cfqq->new_cfqq);
2753         cfq_put_queue(cfqq);
2754         return cic_to_cfqq(cic, 1);
2755 }
2756
2757 static int should_split_cfqq(struct cfq_queue *cfqq)
2758 {
2759         if (cfqq->seeky_start &&
2760             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2761                 return 1;
2762         return 0;
2763 }
2764
2765 /*
2766  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2767  * was the last process referring to said cfqq.
2768  */
2769 static struct cfq_queue *
2770 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2771 {
2772         if (cfqq_process_refs(cfqq) == 1) {
2773                 cfqq->seeky_start = 0;
2774                 cfqq->pid = current->pid;
2775                 cfq_clear_cfqq_coop(cfqq);
2776                 return cfqq;
2777         }
2778
2779         cic_set_cfqq(cic, NULL, 1);
2780         cfq_put_queue(cfqq);
2781         return NULL;
2782 }
2783 /*
2784  * Allocate cfq data structures associated with this request.
2785  */
2786 static int
2787 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2788 {
2789         struct cfq_data *cfqd = q->elevator->elevator_data;
2790         struct cfq_io_context *cic;
2791         const int rw = rq_data_dir(rq);
2792         const bool is_sync = rq_is_sync(rq);
2793         struct cfq_queue *cfqq;
2794         unsigned long flags;
2795
2796         might_sleep_if(gfp_mask & __GFP_WAIT);
2797
2798         cic = cfq_get_io_context(cfqd, gfp_mask);
2799
2800         spin_lock_irqsave(q->queue_lock, flags);
2801
2802         if (!cic)
2803                 goto queue_fail;
2804
2805 new_queue:
2806         cfqq = cic_to_cfqq(cic, is_sync);
2807         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2808                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2809                 cic_set_cfqq(cic, cfqq, is_sync);
2810         } else {
2811                 /*
2812                  * If the queue was seeky for too long, break it apart.
2813                  */
2814                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2815                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2816                         cfqq = split_cfqq(cic, cfqq);
2817                         if (!cfqq)
2818                                 goto new_queue;
2819                 }
2820
2821                 /*
2822                  * Check to see if this queue is scheduled to merge with
2823                  * another, closely cooperating queue.  The merging of
2824                  * queues happens here as it must be done in process context.
2825                  * The reference on new_cfqq was taken in merge_cfqqs.
2826                  */
2827                 if (cfqq->new_cfqq)
2828                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2829         }
2830
2831         cfqq->allocated[rw]++;
2832         atomic_inc(&cfqq->ref);
2833
2834         spin_unlock_irqrestore(q->queue_lock, flags);
2835
2836         rq->elevator_private = cic;
2837         rq->elevator_private2 = cfqq;
2838         return 0;
2839
2840 queue_fail:
2841         if (cic)
2842                 put_io_context(cic->ioc);
2843
2844         cfq_schedule_dispatch(cfqd);
2845         spin_unlock_irqrestore(q->queue_lock, flags);
2846         cfq_log(cfqd, "set_request fail");
2847         return 1;
2848 }
2849
2850 static void cfq_kick_queue(struct work_struct *work)
2851 {
2852         struct cfq_data *cfqd =
2853                 container_of(work, struct cfq_data, unplug_work);
2854         struct request_queue *q = cfqd->queue;
2855
2856         spin_lock_irq(q->queue_lock);
2857         __blk_run_queue(cfqd->queue);
2858         spin_unlock_irq(q->queue_lock);
2859 }
2860
2861 /*
2862  * Timer running if the active_queue is currently idling inside its time slice
2863  */
2864 static void cfq_idle_slice_timer(unsigned long data)
2865 {
2866         struct cfq_data *cfqd = (struct cfq_data *) data;
2867         struct cfq_queue *cfqq;
2868         unsigned long flags;
2869         int timed_out = 1;
2870
2871         cfq_log(cfqd, "idle timer fired");
2872
2873         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2874
2875         cfqq = cfqd->active_queue;
2876         if (cfqq) {
2877                 timed_out = 0;
2878
2879                 /*
2880                  * We saw a request before the queue expired, let it through
2881                  */
2882                 if (cfq_cfqq_must_dispatch(cfqq))
2883                         goto out_kick;
2884
2885                 /*
2886                  * expired
2887                  */
2888                 if (cfq_slice_used(cfqq))
2889                         goto expire;
2890
2891                 /*
2892                  * only expire and reinvoke request handler, if there are
2893                  * other queues with pending requests
2894                  */
2895                 if (!cfqd->busy_queues)
2896                         goto out_cont;
2897
2898                 /*
2899                  * not expired and it has a request pending, let it dispatch
2900                  */
2901                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2902                         goto out_kick;
2903
2904                 /*
2905                  * Queue depth flag is reset only when the idle didn't succeed
2906                  */
2907                 cfq_clear_cfqq_deep(cfqq);
2908         }
2909 expire:
2910         cfq_slice_expired(cfqd, timed_out);
2911 out_kick:
2912         cfq_schedule_dispatch(cfqd);
2913 out_cont:
2914         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2915 }
2916
2917 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2918 {
2919         del_timer_sync(&cfqd->idle_slice_timer);
2920         cancel_work_sync(&cfqd->unplug_work);
2921 }
2922
2923 static void cfq_put_async_queues(struct cfq_data *cfqd)
2924 {
2925         int i;
2926
2927         for (i = 0; i < IOPRIO_BE_NR; i++) {
2928                 if (cfqd->async_cfqq[0][i])
2929                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2930                 if (cfqd->async_cfqq[1][i])
2931                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2932         }
2933
2934         if (cfqd->async_idle_cfqq)
2935                 cfq_put_queue(cfqd->async_idle_cfqq);
2936 }
2937
2938 static void cfq_exit_queue(struct elevator_queue *e)
2939 {
2940         struct cfq_data *cfqd = e->elevator_data;
2941         struct request_queue *q = cfqd->queue;
2942
2943         cfq_shutdown_timer_wq(cfqd);
2944
2945         spin_lock_irq(q->queue_lock);
2946
2947         if (cfqd->active_queue)
2948                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2949
2950         while (!list_empty(&cfqd->cic_list)) {
2951                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2952                                                         struct cfq_io_context,
2953                                                         queue_list);
2954
2955                 __cfq_exit_single_io_context(cfqd, cic);
2956         }
2957
2958         cfq_put_async_queues(cfqd);
2959
2960         spin_unlock_irq(q->queue_lock);
2961
2962         cfq_shutdown_timer_wq(cfqd);
2963
2964         kfree(cfqd);
2965 }
2966
2967 static void *cfq_init_queue(struct request_queue *q)
2968 {
2969         struct cfq_data *cfqd;
2970         int i, j;
2971         struct cfq_group *cfqg;
2972
2973         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2974         if (!cfqd)
2975                 return NULL;
2976
2977         /* Init root group */
2978         cfqg = &cfqd->root_group;
2979
2980         for (i = 0; i < 2; ++i)
2981                 for (j = 0; j < 3; ++j)
2982                         cfqg->service_trees[i][j] = CFQ_RB_ROOT;
2983         cfqg->service_tree_idle = CFQ_RB_ROOT;
2984
2985         /*
2986          * Not strictly needed (since RB_ROOT just clears the node and we
2987          * zeroed cfqd on alloc), but better be safe in case someone decides
2988          * to add magic to the rb code
2989          */
2990         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2991                 cfqd->prio_trees[i] = RB_ROOT;
2992
2993         /*
2994          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2995          * Grab a permanent reference to it, so that the normal code flow
2996          * will not attempt to free it.
2997          */
2998         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2999         atomic_inc(&cfqd->oom_cfqq.ref);
3000         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3001
3002         INIT_LIST_HEAD(&cfqd->cic_list);
3003
3004         cfqd->queue = q;
3005
3006         init_timer(&cfqd->idle_slice_timer);
3007         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3008         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3009
3010         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3011
3012         cfqd->cfq_quantum = cfq_quantum;
3013         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3014         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3015         cfqd->cfq_back_max = cfq_back_max;
3016         cfqd->cfq_back_penalty = cfq_back_penalty;
3017         cfqd->cfq_slice[0] = cfq_slice_async;
3018         cfqd->cfq_slice[1] = cfq_slice_sync;
3019         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3020         cfqd->cfq_slice_idle = cfq_slice_idle;
3021         cfqd->cfq_latency = 1;
3022         cfqd->hw_tag = -1;
3023         cfqd->last_end_sync_rq = jiffies;
3024         return cfqd;
3025 }
3026
3027 static void cfq_slab_kill(void)
3028 {
3029         /*
3030          * Caller already ensured that pending RCU callbacks are completed,
3031          * so we should have no busy allocations at this point.
3032          */
3033         if (cfq_pool)
3034                 kmem_cache_destroy(cfq_pool);
3035         if (cfq_ioc_pool)
3036                 kmem_cache_destroy(cfq_ioc_pool);
3037 }
3038
3039 static int __init cfq_slab_setup(void)
3040 {
3041         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3042         if (!cfq_pool)
3043                 goto fail;
3044
3045         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3046         if (!cfq_ioc_pool)
3047                 goto fail;
3048
3049         return 0;
3050 fail:
3051         cfq_slab_kill();
3052         return -ENOMEM;
3053 }
3054
3055 /*
3056  * sysfs parts below -->
3057  */
3058 static ssize_t
3059 cfq_var_show(unsigned int var, char *page)
3060 {
3061         return sprintf(page, "%d\n", var);
3062 }
3063
3064 static ssize_t
3065 cfq_var_store(unsigned int *var, const char *page, size_t count)
3066 {
3067         char *p = (char *) page;
3068
3069         *var = simple_strtoul(p, &p, 10);
3070         return count;
3071 }
3072
3073 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3074 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3075 {                                                                       \
3076         struct cfq_data *cfqd = e->elevator_data;                       \
3077         unsigned int __data = __VAR;                                    \
3078         if (__CONV)                                                     \
3079                 __data = jiffies_to_msecs(__data);                      \
3080         return cfq_var_show(__data, (page));                            \
3081 }
3082 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3083 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3084 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3085 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3086 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3087 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3088 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3089 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3090 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3091 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3092 #undef SHOW_FUNCTION
3093
3094 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3095 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3096 {                                                                       \
3097         struct cfq_data *cfqd = e->elevator_data;                       \
3098         unsigned int __data;                                            \
3099         int ret = cfq_var_store(&__data, (page), count);                \
3100         if (__data < (MIN))                                             \
3101                 __data = (MIN);                                         \
3102         else if (__data > (MAX))                                        \
3103                 __data = (MAX);                                         \
3104         if (__CONV)                                                     \
3105                 *(__PTR) = msecs_to_jiffies(__data);                    \
3106         else                                                            \
3107                 *(__PTR) = __data;                                      \
3108         return ret;                                                     \
3109 }
3110 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3111 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3112                 UINT_MAX, 1);
3113 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3114                 UINT_MAX, 1);
3115 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3116 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3117                 UINT_MAX, 0);
3118 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3119 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3120 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3121 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3122                 UINT_MAX, 0);
3123 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3124 #undef STORE_FUNCTION
3125
3126 #define CFQ_ATTR(name) \
3127         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3128
3129 static struct elv_fs_entry cfq_attrs[] = {
3130         CFQ_ATTR(quantum),
3131         CFQ_ATTR(fifo_expire_sync),
3132         CFQ_ATTR(fifo_expire_async),
3133         CFQ_ATTR(back_seek_max),
3134         CFQ_ATTR(back_seek_penalty),
3135         CFQ_ATTR(slice_sync),
3136         CFQ_ATTR(slice_async),
3137         CFQ_ATTR(slice_async_rq),
3138         CFQ_ATTR(slice_idle),
3139         CFQ_ATTR(low_latency),
3140         __ATTR_NULL
3141 };
3142
3143 static struct elevator_type iosched_cfq = {
3144         .ops = {
3145                 .elevator_merge_fn =            cfq_merge,
3146                 .elevator_merged_fn =           cfq_merged_request,
3147                 .elevator_merge_req_fn =        cfq_merged_requests,
3148                 .elevator_allow_merge_fn =      cfq_allow_merge,
3149                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3150                 .elevator_add_req_fn =          cfq_insert_request,
3151                 .elevator_activate_req_fn =     cfq_activate_request,
3152                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3153                 .elevator_queue_empty_fn =      cfq_queue_empty,
3154                 .elevator_completed_req_fn =    cfq_completed_request,
3155                 .elevator_former_req_fn =       elv_rb_former_request,
3156                 .elevator_latter_req_fn =       elv_rb_latter_request,
3157                 .elevator_set_req_fn =          cfq_set_request,
3158                 .elevator_put_req_fn =          cfq_put_request,
3159                 .elevator_may_queue_fn =        cfq_may_queue,
3160                 .elevator_init_fn =             cfq_init_queue,
3161                 .elevator_exit_fn =             cfq_exit_queue,
3162                 .trim =                         cfq_free_io_context,
3163         },
3164         .elevator_attrs =       cfq_attrs,
3165         .elevator_name =        "cfq",
3166         .elevator_owner =       THIS_MODULE,
3167 };
3168
3169 static int __init cfq_init(void)
3170 {
3171         /*
3172          * could be 0 on HZ < 1000 setups
3173          */
3174         if (!cfq_slice_async)
3175                 cfq_slice_async = 1;
3176         if (!cfq_slice_idle)
3177                 cfq_slice_idle = 1;
3178
3179         if (cfq_slab_setup())
3180                 return -ENOMEM;
3181
3182         elv_register(&iosched_cfq);
3183
3184         return 0;
3185 }
3186
3187 static void __exit cfq_exit(void)
3188 {
3189         DECLARE_COMPLETION_ONSTACK(all_gone);
3190         elv_unregister(&iosched_cfq);
3191         ioc_gone = &all_gone;
3192         /* ioc_gone's update must be visible before reading ioc_count */
3193         smp_wmb();
3194
3195         /*
3196          * this also protects us from entering cfq_slab_kill() with
3197          * pending RCU callbacks
3198          */
3199         if (elv_ioc_count_read(cfq_ioc_count))
3200                 wait_for_completion(&all_gone);
3201         cfq_slab_kill();
3202 }
3203
3204 module_init(cfq_init);
3205 module_exit(cfq_exit);
3206
3207 MODULE_AUTHOR("Jens Axboe");
3208 MODULE_LICENSE("GPL");
3209 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");