cfq-iosched: Get rid of cfqq wait_busy_done flag
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 /*
46  * Allow merged cfqqs to perform this amount of seeky I/O before
47  * deciding to break the queues up again.
48  */
49 #define CFQQ_COOP_TOUT          (HZ)
50
51 #define CFQ_SLICE_SCALE         (5)
52 #define CFQ_HW_QUEUE_MIN        (5)
53 #define CFQ_SERVICE_SHIFT       12
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples)   ((samples) > 80)
71 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74  * Most of our rbtree usage is for sorting with min extraction, so
75  * if we cache the leftmost node we don't have to walk down the tree
76  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77  * move this into the elevator for the rq sorting as well.
78  */
79 struct cfq_rb_root {
80         struct rb_root rb;
81         struct rb_node *left;
82         unsigned count;
83         u64 min_vdisktime;
84         struct rb_node *active;
85         unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         /* time when queue got scheduled in to dispatch first request. */
119         unsigned long dispatch_start;
120         unsigned int allocated_slice;
121         /* time when first request from queue completed and slice started. */
122         unsigned long slice_start;
123         unsigned long slice_end;
124         long slice_resid;
125         unsigned int slice_dispatch;
126
127         /* pending metadata requests */
128         int meta_pending;
129         /* number of requests that are on the dispatch list or inside driver */
130         int dispatched;
131
132         /* io prio of this group */
133         unsigned short ioprio, org_ioprio;
134         unsigned short ioprio_class, org_ioprio_class;
135
136         unsigned int seek_samples;
137         u64 seek_total;
138         sector_t seek_mean;
139         sector_t last_request_pos;
140         unsigned long seeky_start;
141
142         pid_t pid;
143
144         struct cfq_rb_root *service_tree;
145         struct cfq_queue *new_cfqq;
146         struct cfq_group *cfqg;
147         struct cfq_group *orig_cfqg;
148         /* Sectors dispatched in current dispatch round */
149         unsigned long nr_sectors;
150 };
151
152 /*
153  * First index in the service_trees.
154  * IDLE is handled separately, so it has negative index
155  */
156 enum wl_prio_t {
157         BE_WORKLOAD = 0,
158         RT_WORKLOAD = 1,
159         IDLE_WORKLOAD = 2,
160 };
161
162 /*
163  * Second index in the service_trees.
164  */
165 enum wl_type_t {
166         ASYNC_WORKLOAD = 0,
167         SYNC_NOIDLE_WORKLOAD = 1,
168         SYNC_WORKLOAD = 2
169 };
170
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173         /* group service_tree member */
174         struct rb_node rb_node;
175
176         /* group service_tree key */
177         u64 vdisktime;
178         unsigned int weight;
179         bool on_st;
180
181         /* number of cfqq currently on this group */
182         int nr_cfqq;
183
184         /* Per group busy queus average. Useful for workload slice calc. */
185         unsigned int busy_queues_avg[2];
186         /*
187          * rr lists of queues with requests, onle rr for each priority class.
188          * Counts are embedded in the cfq_rb_root
189          */
190         struct cfq_rb_root service_trees[2][3];
191         struct cfq_rb_root service_tree_idle;
192
193         unsigned long saved_workload_slice;
194         enum wl_type_t saved_workload;
195         enum wl_prio_t saved_serving_prio;
196         struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198         struct hlist_node cfqd_node;
199         atomic_t ref;
200 #endif
201 };
202
203 /*
204  * Per block device queue structure
205  */
206 struct cfq_data {
207         struct request_queue *queue;
208         /* Root service tree for cfq_groups */
209         struct cfq_rb_root grp_service_tree;
210         struct cfq_group root_group;
211         /* Number of active cfq groups on group service tree */
212         int nr_groups;
213
214         /*
215          * The priority currently being served
216          */
217         enum wl_prio_t serving_prio;
218         enum wl_type_t serving_type;
219         unsigned long workload_expires;
220         struct cfq_group *serving_group;
221         bool noidle_tree_requires_idle;
222
223         /*
224          * Each priority tree is sorted by next_request position.  These
225          * trees are used when determining if two or more queues are
226          * interleaving requests (see cfq_close_cooperator).
227          */
228         struct rb_root prio_trees[CFQ_PRIO_LISTS];
229
230         unsigned int busy_queues;
231
232         int rq_in_driver[2];
233         int sync_flight;
234
235         /*
236          * queue-depth detection
237          */
238         int rq_queued;
239         int hw_tag;
240         /*
241          * hw_tag can be
242          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244          *  0 => no NCQ
245          */
246         int hw_tag_est_depth;
247         unsigned int hw_tag_samples;
248
249         /*
250          * idle window management
251          */
252         struct timer_list idle_slice_timer;
253         struct work_struct unplug_work;
254
255         struct cfq_queue *active_queue;
256         struct cfq_io_context *active_cic;
257
258         /*
259          * async queue for each priority case
260          */
261         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262         struct cfq_queue *async_idle_cfqq;
263
264         sector_t last_position;
265
266         /*
267          * tunables, see top of file
268          */
269         unsigned int cfq_quantum;
270         unsigned int cfq_fifo_expire[2];
271         unsigned int cfq_back_penalty;
272         unsigned int cfq_back_max;
273         unsigned int cfq_slice[2];
274         unsigned int cfq_slice_async_rq;
275         unsigned int cfq_slice_idle;
276         unsigned int cfq_latency;
277         unsigned int cfq_group_isolation;
278
279         struct list_head cic_list;
280
281         /*
282          * Fallback dummy cfqq for extreme OOM conditions
283          */
284         struct cfq_queue oom_cfqq;
285
286         unsigned long last_delayed_sync;
287
288         /* List of cfq groups being managed on this device*/
289         struct hlist_head cfqg_list;
290         struct rcu_head rcu;
291 };
292
293 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294
295 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
296                                             enum wl_prio_t prio,
297                                             enum wl_type_t type,
298                                             struct cfq_data *cfqd)
299 {
300         if (!cfqg)
301                 return NULL;
302
303         if (prio == IDLE_WORKLOAD)
304                 return &cfqg->service_tree_idle;
305
306         return &cfqg->service_trees[prio][type];
307 }
308
309 enum cfqq_state_flags {
310         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
311         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
312         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
313         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
314         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
315         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
316         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
317         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
318         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
319         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
320         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
321         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
322 };
323
324 #define CFQ_CFQQ_FNS(name)                                              \
325 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
326 {                                                                       \
327         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
328 }                                                                       \
329 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
330 {                                                                       \
331         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
332 }                                                                       \
333 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
334 {                                                                       \
335         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
336 }
337
338 CFQ_CFQQ_FNS(on_rr);
339 CFQ_CFQQ_FNS(wait_request);
340 CFQ_CFQQ_FNS(must_dispatch);
341 CFQ_CFQQ_FNS(must_alloc_slice);
342 CFQ_CFQQ_FNS(fifo_expire);
343 CFQ_CFQQ_FNS(idle_window);
344 CFQ_CFQQ_FNS(prio_changed);
345 CFQ_CFQQ_FNS(slice_new);
346 CFQ_CFQQ_FNS(sync);
347 CFQ_CFQQ_FNS(coop);
348 CFQ_CFQQ_FNS(deep);
349 CFQ_CFQQ_FNS(wait_busy);
350 #undef CFQ_CFQQ_FNS
351
352 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
353 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
354         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
355                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
356                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
357
358 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
359         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
360                                 blkg_path(&(cfqg)->blkg), ##args);      \
361
362 #else
363 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
364         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
365 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
366 #endif
367 #define cfq_log(cfqd, fmt, args...)     \
368         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
369
370 /* Traverses through cfq group service trees */
371 #define for_each_cfqg_st(cfqg, i, j, st) \
372         for (i = 0; i <= IDLE_WORKLOAD; i++) \
373                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
374                         : &cfqg->service_tree_idle; \
375                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
376                         (i == IDLE_WORKLOAD && j == 0); \
377                         j++, st = i < IDLE_WORKLOAD ? \
378                         &cfqg->service_trees[i][j]: NULL) \
379
380
381 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
382 {
383         if (cfq_class_idle(cfqq))
384                 return IDLE_WORKLOAD;
385         if (cfq_class_rt(cfqq))
386                 return RT_WORKLOAD;
387         return BE_WORKLOAD;
388 }
389
390
391 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
392 {
393         if (!cfq_cfqq_sync(cfqq))
394                 return ASYNC_WORKLOAD;
395         if (!cfq_cfqq_idle_window(cfqq))
396                 return SYNC_NOIDLE_WORKLOAD;
397         return SYNC_WORKLOAD;
398 }
399
400 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
401                                         struct cfq_data *cfqd,
402                                         struct cfq_group *cfqg)
403 {
404         if (wl == IDLE_WORKLOAD)
405                 return cfqg->service_tree_idle.count;
406
407         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
408                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
409                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
410 }
411
412 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
413                                         struct cfq_group *cfqg)
414 {
415         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
416                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
417 }
418
419 static void cfq_dispatch_insert(struct request_queue *, struct request *);
420 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
421                                        struct io_context *, gfp_t);
422 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
423                                                 struct io_context *);
424
425 static inline int rq_in_driver(struct cfq_data *cfqd)
426 {
427         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
428 }
429
430 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
431                                             bool is_sync)
432 {
433         return cic->cfqq[is_sync];
434 }
435
436 static inline void cic_set_cfqq(struct cfq_io_context *cic,
437                                 struct cfq_queue *cfqq, bool is_sync)
438 {
439         cic->cfqq[is_sync] = cfqq;
440 }
441
442 /*
443  * We regard a request as SYNC, if it's either a read or has the SYNC bit
444  * set (in which case it could also be direct WRITE).
445  */
446 static inline bool cfq_bio_sync(struct bio *bio)
447 {
448         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
449 }
450
451 /*
452  * scheduler run of queue, if there are requests pending and no one in the
453  * driver that will restart queueing
454  */
455 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
456 {
457         if (cfqd->busy_queues) {
458                 cfq_log(cfqd, "schedule dispatch");
459                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
460         }
461 }
462
463 static int cfq_queue_empty(struct request_queue *q)
464 {
465         struct cfq_data *cfqd = q->elevator->elevator_data;
466
467         return !cfqd->rq_queued;
468 }
469
470 /*
471  * Scale schedule slice based on io priority. Use the sync time slice only
472  * if a queue is marked sync and has sync io queued. A sync queue with async
473  * io only, should not get full sync slice length.
474  */
475 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
476                                  unsigned short prio)
477 {
478         const int base_slice = cfqd->cfq_slice[sync];
479
480         WARN_ON(prio >= IOPRIO_BE_NR);
481
482         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
483 }
484
485 static inline int
486 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
487 {
488         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
489 }
490
491 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
492 {
493         u64 d = delta << CFQ_SERVICE_SHIFT;
494
495         d = d * BLKIO_WEIGHT_DEFAULT;
496         do_div(d, cfqg->weight);
497         return d;
498 }
499
500 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
501 {
502         s64 delta = (s64)(vdisktime - min_vdisktime);
503         if (delta > 0)
504                 min_vdisktime = vdisktime;
505
506         return min_vdisktime;
507 }
508
509 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
510 {
511         s64 delta = (s64)(vdisktime - min_vdisktime);
512         if (delta < 0)
513                 min_vdisktime = vdisktime;
514
515         return min_vdisktime;
516 }
517
518 static void update_min_vdisktime(struct cfq_rb_root *st)
519 {
520         u64 vdisktime = st->min_vdisktime;
521         struct cfq_group *cfqg;
522
523         if (st->active) {
524                 cfqg = rb_entry_cfqg(st->active);
525                 vdisktime = cfqg->vdisktime;
526         }
527
528         if (st->left) {
529                 cfqg = rb_entry_cfqg(st->left);
530                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
531         }
532
533         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
534 }
535
536 /*
537  * get averaged number of queues of RT/BE priority.
538  * average is updated, with a formula that gives more weight to higher numbers,
539  * to quickly follows sudden increases and decrease slowly
540  */
541
542 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
543                                         struct cfq_group *cfqg, bool rt)
544 {
545         unsigned min_q, max_q;
546         unsigned mult  = cfq_hist_divisor - 1;
547         unsigned round = cfq_hist_divisor / 2;
548         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
549
550         min_q = min(cfqg->busy_queues_avg[rt], busy);
551         max_q = max(cfqg->busy_queues_avg[rt], busy);
552         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
553                 cfq_hist_divisor;
554         return cfqg->busy_queues_avg[rt];
555 }
556
557 static inline unsigned
558 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
559 {
560         struct cfq_rb_root *st = &cfqd->grp_service_tree;
561
562         return cfq_target_latency * cfqg->weight / st->total_weight;
563 }
564
565 static inline void
566 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
567 {
568         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
569         if (cfqd->cfq_latency) {
570                 /*
571                  * interested queues (we consider only the ones with the same
572                  * priority class in the cfq group)
573                  */
574                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
575                                                 cfq_class_rt(cfqq));
576                 unsigned sync_slice = cfqd->cfq_slice[1];
577                 unsigned expect_latency = sync_slice * iq;
578                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
579
580                 if (expect_latency > group_slice) {
581                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
582                         /* scale low_slice according to IO priority
583                          * and sync vs async */
584                         unsigned low_slice =
585                                 min(slice, base_low_slice * slice / sync_slice);
586                         /* the adapted slice value is scaled to fit all iqs
587                          * into the target latency */
588                         slice = max(slice * group_slice / expect_latency,
589                                     low_slice);
590                 }
591         }
592         cfqq->slice_start = jiffies;
593         cfqq->slice_end = jiffies + slice;
594         cfqq->allocated_slice = slice;
595         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
596 }
597
598 /*
599  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
600  * isn't valid until the first request from the dispatch is activated
601  * and the slice time set.
602  */
603 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
604 {
605         if (cfq_cfqq_slice_new(cfqq))
606                 return 0;
607         if (time_before(jiffies, cfqq->slice_end))
608                 return 0;
609
610         return 1;
611 }
612
613 /*
614  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
615  * We choose the request that is closest to the head right now. Distance
616  * behind the head is penalized and only allowed to a certain extent.
617  */
618 static struct request *
619 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
620 {
621         sector_t s1, s2, d1 = 0, d2 = 0;
622         unsigned long back_max;
623 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
624 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
625         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
626
627         if (rq1 == NULL || rq1 == rq2)
628                 return rq2;
629         if (rq2 == NULL)
630                 return rq1;
631
632         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
633                 return rq1;
634         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
635                 return rq2;
636         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
637                 return rq1;
638         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
639                 return rq2;
640
641         s1 = blk_rq_pos(rq1);
642         s2 = blk_rq_pos(rq2);
643
644         /*
645          * by definition, 1KiB is 2 sectors
646          */
647         back_max = cfqd->cfq_back_max * 2;
648
649         /*
650          * Strict one way elevator _except_ in the case where we allow
651          * short backward seeks which are biased as twice the cost of a
652          * similar forward seek.
653          */
654         if (s1 >= last)
655                 d1 = s1 - last;
656         else if (s1 + back_max >= last)
657                 d1 = (last - s1) * cfqd->cfq_back_penalty;
658         else
659                 wrap |= CFQ_RQ1_WRAP;
660
661         if (s2 >= last)
662                 d2 = s2 - last;
663         else if (s2 + back_max >= last)
664                 d2 = (last - s2) * cfqd->cfq_back_penalty;
665         else
666                 wrap |= CFQ_RQ2_WRAP;
667
668         /* Found required data */
669
670         /*
671          * By doing switch() on the bit mask "wrap" we avoid having to
672          * check two variables for all permutations: --> faster!
673          */
674         switch (wrap) {
675         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
676                 if (d1 < d2)
677                         return rq1;
678                 else if (d2 < d1)
679                         return rq2;
680                 else {
681                         if (s1 >= s2)
682                                 return rq1;
683                         else
684                                 return rq2;
685                 }
686
687         case CFQ_RQ2_WRAP:
688                 return rq1;
689         case CFQ_RQ1_WRAP:
690                 return rq2;
691         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
692         default:
693                 /*
694                  * Since both rqs are wrapped,
695                  * start with the one that's further behind head
696                  * (--> only *one* back seek required),
697                  * since back seek takes more time than forward.
698                  */
699                 if (s1 <= s2)
700                         return rq1;
701                 else
702                         return rq2;
703         }
704 }
705
706 /*
707  * The below is leftmost cache rbtree addon
708  */
709 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
710 {
711         /* Service tree is empty */
712         if (!root->count)
713                 return NULL;
714
715         if (!root->left)
716                 root->left = rb_first(&root->rb);
717
718         if (root->left)
719                 return rb_entry(root->left, struct cfq_queue, rb_node);
720
721         return NULL;
722 }
723
724 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
725 {
726         if (!root->left)
727                 root->left = rb_first(&root->rb);
728
729         if (root->left)
730                 return rb_entry_cfqg(root->left);
731
732         return NULL;
733 }
734
735 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
736 {
737         rb_erase(n, root);
738         RB_CLEAR_NODE(n);
739 }
740
741 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
742 {
743         if (root->left == n)
744                 root->left = NULL;
745         rb_erase_init(n, &root->rb);
746         --root->count;
747 }
748
749 /*
750  * would be nice to take fifo expire time into account as well
751  */
752 static struct request *
753 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
754                   struct request *last)
755 {
756         struct rb_node *rbnext = rb_next(&last->rb_node);
757         struct rb_node *rbprev = rb_prev(&last->rb_node);
758         struct request *next = NULL, *prev = NULL;
759
760         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
761
762         if (rbprev)
763                 prev = rb_entry_rq(rbprev);
764
765         if (rbnext)
766                 next = rb_entry_rq(rbnext);
767         else {
768                 rbnext = rb_first(&cfqq->sort_list);
769                 if (rbnext && rbnext != &last->rb_node)
770                         next = rb_entry_rq(rbnext);
771         }
772
773         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
774 }
775
776 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
777                                       struct cfq_queue *cfqq)
778 {
779         /*
780          * just an approximation, should be ok.
781          */
782         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
783                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
784 }
785
786 static inline s64
787 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
788 {
789         return cfqg->vdisktime - st->min_vdisktime;
790 }
791
792 static void
793 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
794 {
795         struct rb_node **node = &st->rb.rb_node;
796         struct rb_node *parent = NULL;
797         struct cfq_group *__cfqg;
798         s64 key = cfqg_key(st, cfqg);
799         int left = 1;
800
801         while (*node != NULL) {
802                 parent = *node;
803                 __cfqg = rb_entry_cfqg(parent);
804
805                 if (key < cfqg_key(st, __cfqg))
806                         node = &parent->rb_left;
807                 else {
808                         node = &parent->rb_right;
809                         left = 0;
810                 }
811         }
812
813         if (left)
814                 st->left = &cfqg->rb_node;
815
816         rb_link_node(&cfqg->rb_node, parent, node);
817         rb_insert_color(&cfqg->rb_node, &st->rb);
818 }
819
820 static void
821 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
822 {
823         struct cfq_rb_root *st = &cfqd->grp_service_tree;
824         struct cfq_group *__cfqg;
825         struct rb_node *n;
826
827         cfqg->nr_cfqq++;
828         if (cfqg->on_st)
829                 return;
830
831         /*
832          * Currently put the group at the end. Later implement something
833          * so that groups get lesser vtime based on their weights, so that
834          * if group does not loose all if it was not continously backlogged.
835          */
836         n = rb_last(&st->rb);
837         if (n) {
838                 __cfqg = rb_entry_cfqg(n);
839                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
840         } else
841                 cfqg->vdisktime = st->min_vdisktime;
842
843         __cfq_group_service_tree_add(st, cfqg);
844         cfqg->on_st = true;
845         cfqd->nr_groups++;
846         st->total_weight += cfqg->weight;
847 }
848
849 static void
850 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
851 {
852         struct cfq_rb_root *st = &cfqd->grp_service_tree;
853
854         if (st->active == &cfqg->rb_node)
855                 st->active = NULL;
856
857         BUG_ON(cfqg->nr_cfqq < 1);
858         cfqg->nr_cfqq--;
859
860         /* If there are other cfq queues under this group, don't delete it */
861         if (cfqg->nr_cfqq)
862                 return;
863
864         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
865         cfqg->on_st = false;
866         cfqd->nr_groups--;
867         st->total_weight -= cfqg->weight;
868         if (!RB_EMPTY_NODE(&cfqg->rb_node))
869                 cfq_rb_erase(&cfqg->rb_node, st);
870         cfqg->saved_workload_slice = 0;
871         blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
872 }
873
874 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
875 {
876         unsigned int slice_used;
877
878         /*
879          * Queue got expired before even a single request completed or
880          * got expired immediately after first request completion.
881          */
882         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
883                 /*
884                  * Also charge the seek time incurred to the group, otherwise
885                  * if there are mutiple queues in the group, each can dispatch
886                  * a single request on seeky media and cause lots of seek time
887                  * and group will never know it.
888                  */
889                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
890                                         1);
891         } else {
892                 slice_used = jiffies - cfqq->slice_start;
893                 if (slice_used > cfqq->allocated_slice)
894                         slice_used = cfqq->allocated_slice;
895         }
896
897         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
898                                 cfqq->nr_sectors);
899         return slice_used;
900 }
901
902 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
903                                 struct cfq_queue *cfqq)
904 {
905         struct cfq_rb_root *st = &cfqd->grp_service_tree;
906         unsigned int used_sl, charge_sl;
907         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
908                         - cfqg->service_tree_idle.count;
909
910         BUG_ON(nr_sync < 0);
911         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
912
913         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
914                 charge_sl = cfqq->allocated_slice;
915
916         /* Can't update vdisktime while group is on service tree */
917         cfq_rb_erase(&cfqg->rb_node, st);
918         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
919         __cfq_group_service_tree_add(st, cfqg);
920
921         /* This group is being expired. Save the context */
922         if (time_after(cfqd->workload_expires, jiffies)) {
923                 cfqg->saved_workload_slice = cfqd->workload_expires
924                                                 - jiffies;
925                 cfqg->saved_workload = cfqd->serving_type;
926                 cfqg->saved_serving_prio = cfqd->serving_prio;
927         } else
928                 cfqg->saved_workload_slice = 0;
929
930         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
931                                         st->min_vdisktime);
932         blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
933                                                 cfqq->nr_sectors);
934 }
935
936 #ifdef CONFIG_CFQ_GROUP_IOSCHED
937 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
938 {
939         if (blkg)
940                 return container_of(blkg, struct cfq_group, blkg);
941         return NULL;
942 }
943
944 void
945 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
946 {
947         cfqg_of_blkg(blkg)->weight = weight;
948 }
949
950 static struct cfq_group *
951 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
952 {
953         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
954         struct cfq_group *cfqg = NULL;
955         void *key = cfqd;
956         int i, j;
957         struct cfq_rb_root *st;
958         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
959         unsigned int major, minor;
960
961         /* Do we need to take this reference */
962         if (!blkiocg_css_tryget(blkcg))
963                 return NULL;;
964
965         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
966         if (cfqg || !create)
967                 goto done;
968
969         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
970         if (!cfqg)
971                 goto done;
972
973         cfqg->weight = blkcg->weight;
974         for_each_cfqg_st(cfqg, i, j, st)
975                 *st = CFQ_RB_ROOT;
976         RB_CLEAR_NODE(&cfqg->rb_node);
977
978         /*
979          * Take the initial reference that will be released on destroy
980          * This can be thought of a joint reference by cgroup and
981          * elevator which will be dropped by either elevator exit
982          * or cgroup deletion path depending on who is exiting first.
983          */
984         atomic_set(&cfqg->ref, 1);
985
986         /* Add group onto cgroup list */
987         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
988         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
989                                         MKDEV(major, minor));
990
991         /* Add group on cfqd list */
992         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
993
994 done:
995         blkiocg_css_put(blkcg);
996         return cfqg;
997 }
998
999 /*
1000  * Search for the cfq group current task belongs to. If create = 1, then also
1001  * create the cfq group if it does not exist. request_queue lock must be held.
1002  */
1003 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1004 {
1005         struct cgroup *cgroup;
1006         struct cfq_group *cfqg = NULL;
1007
1008         rcu_read_lock();
1009         cgroup = task_cgroup(current, blkio_subsys_id);
1010         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1011         if (!cfqg && create)
1012                 cfqg = &cfqd->root_group;
1013         rcu_read_unlock();
1014         return cfqg;
1015 }
1016
1017 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1018 {
1019         /* Currently, all async queues are mapped to root group */
1020         if (!cfq_cfqq_sync(cfqq))
1021                 cfqg = &cfqq->cfqd->root_group;
1022
1023         cfqq->cfqg = cfqg;
1024         /* cfqq reference on cfqg */
1025         atomic_inc(&cfqq->cfqg->ref);
1026 }
1027
1028 static void cfq_put_cfqg(struct cfq_group *cfqg)
1029 {
1030         struct cfq_rb_root *st;
1031         int i, j;
1032
1033         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1034         if (!atomic_dec_and_test(&cfqg->ref))
1035                 return;
1036         for_each_cfqg_st(cfqg, i, j, st)
1037                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1038         kfree(cfqg);
1039 }
1040
1041 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1042 {
1043         /* Something wrong if we are trying to remove same group twice */
1044         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1045
1046         hlist_del_init(&cfqg->cfqd_node);
1047
1048         /*
1049          * Put the reference taken at the time of creation so that when all
1050          * queues are gone, group can be destroyed.
1051          */
1052         cfq_put_cfqg(cfqg);
1053 }
1054
1055 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1056 {
1057         struct hlist_node *pos, *n;
1058         struct cfq_group *cfqg;
1059
1060         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1061                 /*
1062                  * If cgroup removal path got to blk_group first and removed
1063                  * it from cgroup list, then it will take care of destroying
1064                  * cfqg also.
1065                  */
1066                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1067                         cfq_destroy_cfqg(cfqd, cfqg);
1068         }
1069 }
1070
1071 /*
1072  * Blk cgroup controller notification saying that blkio_group object is being
1073  * delinked as associated cgroup object is going away. That also means that
1074  * no new IO will come in this group. So get rid of this group as soon as
1075  * any pending IO in the group is finished.
1076  *
1077  * This function is called under rcu_read_lock(). key is the rcu protected
1078  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1079  * read lock.
1080  *
1081  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1082  * it should not be NULL as even if elevator was exiting, cgroup deltion
1083  * path got to it first.
1084  */
1085 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1086 {
1087         unsigned long  flags;
1088         struct cfq_data *cfqd = key;
1089
1090         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1091         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1092         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1093 }
1094
1095 #else /* GROUP_IOSCHED */
1096 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1097 {
1098         return &cfqd->root_group;
1099 }
1100 static inline void
1101 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1102         cfqq->cfqg = cfqg;
1103 }
1104
1105 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1106 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1107
1108 #endif /* GROUP_IOSCHED */
1109
1110 /*
1111  * The cfqd->service_trees holds all pending cfq_queue's that have
1112  * requests waiting to be processed. It is sorted in the order that
1113  * we will service the queues.
1114  */
1115 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1116                                  bool add_front)
1117 {
1118         struct rb_node **p, *parent;
1119         struct cfq_queue *__cfqq;
1120         unsigned long rb_key;
1121         struct cfq_rb_root *service_tree;
1122         int left;
1123         int new_cfqq = 1;
1124         int group_changed = 0;
1125
1126 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1127         if (!cfqd->cfq_group_isolation
1128             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1129             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1130                 /* Move this cfq to root group */
1131                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1132                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1133                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1134                 cfqq->orig_cfqg = cfqq->cfqg;
1135                 cfqq->cfqg = &cfqd->root_group;
1136                 atomic_inc(&cfqd->root_group.ref);
1137                 group_changed = 1;
1138         } else if (!cfqd->cfq_group_isolation
1139                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1140                 /* cfqq is sequential now needs to go to its original group */
1141                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1142                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1143                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1144                 cfq_put_cfqg(cfqq->cfqg);
1145                 cfqq->cfqg = cfqq->orig_cfqg;
1146                 cfqq->orig_cfqg = NULL;
1147                 group_changed = 1;
1148                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1149         }
1150 #endif
1151
1152         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1153                                                 cfqq_type(cfqq), cfqd);
1154         if (cfq_class_idle(cfqq)) {
1155                 rb_key = CFQ_IDLE_DELAY;
1156                 parent = rb_last(&service_tree->rb);
1157                 if (parent && parent != &cfqq->rb_node) {
1158                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1159                         rb_key += __cfqq->rb_key;
1160                 } else
1161                         rb_key += jiffies;
1162         } else if (!add_front) {
1163                 /*
1164                  * Get our rb key offset. Subtract any residual slice
1165                  * value carried from last service. A negative resid
1166                  * count indicates slice overrun, and this should position
1167                  * the next service time further away in the tree.
1168                  */
1169                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1170                 rb_key -= cfqq->slice_resid;
1171                 cfqq->slice_resid = 0;
1172         } else {
1173                 rb_key = -HZ;
1174                 __cfqq = cfq_rb_first(service_tree);
1175                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1176         }
1177
1178         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1179                 new_cfqq = 0;
1180                 /*
1181                  * same position, nothing more to do
1182                  */
1183                 if (rb_key == cfqq->rb_key &&
1184                     cfqq->service_tree == service_tree)
1185                         return;
1186
1187                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1188                 cfqq->service_tree = NULL;
1189         }
1190
1191         left = 1;
1192         parent = NULL;
1193         cfqq->service_tree = service_tree;
1194         p = &service_tree->rb.rb_node;
1195         while (*p) {
1196                 struct rb_node **n;
1197
1198                 parent = *p;
1199                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1200
1201                 /*
1202                  * sort by key, that represents service time.
1203                  */
1204                 if (time_before(rb_key, __cfqq->rb_key))
1205                         n = &(*p)->rb_left;
1206                 else {
1207                         n = &(*p)->rb_right;
1208                         left = 0;
1209                 }
1210
1211                 p = n;
1212         }
1213
1214         if (left)
1215                 service_tree->left = &cfqq->rb_node;
1216
1217         cfqq->rb_key = rb_key;
1218         rb_link_node(&cfqq->rb_node, parent, p);
1219         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1220         service_tree->count++;
1221         if ((add_front || !new_cfqq) && !group_changed)
1222                 return;
1223         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1224 }
1225
1226 static struct cfq_queue *
1227 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1228                      sector_t sector, struct rb_node **ret_parent,
1229                      struct rb_node ***rb_link)
1230 {
1231         struct rb_node **p, *parent;
1232         struct cfq_queue *cfqq = NULL;
1233
1234         parent = NULL;
1235         p = &root->rb_node;
1236         while (*p) {
1237                 struct rb_node **n;
1238
1239                 parent = *p;
1240                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1241
1242                 /*
1243                  * Sort strictly based on sector.  Smallest to the left,
1244                  * largest to the right.
1245                  */
1246                 if (sector > blk_rq_pos(cfqq->next_rq))
1247                         n = &(*p)->rb_right;
1248                 else if (sector < blk_rq_pos(cfqq->next_rq))
1249                         n = &(*p)->rb_left;
1250                 else
1251                         break;
1252                 p = n;
1253                 cfqq = NULL;
1254         }
1255
1256         *ret_parent = parent;
1257         if (rb_link)
1258                 *rb_link = p;
1259         return cfqq;
1260 }
1261
1262 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1263 {
1264         struct rb_node **p, *parent;
1265         struct cfq_queue *__cfqq;
1266
1267         if (cfqq->p_root) {
1268                 rb_erase(&cfqq->p_node, cfqq->p_root);
1269                 cfqq->p_root = NULL;
1270         }
1271
1272         if (cfq_class_idle(cfqq))
1273                 return;
1274         if (!cfqq->next_rq)
1275                 return;
1276
1277         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1278         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1279                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1280         if (!__cfqq) {
1281                 rb_link_node(&cfqq->p_node, parent, p);
1282                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1283         } else
1284                 cfqq->p_root = NULL;
1285 }
1286
1287 /*
1288  * Update cfqq's position in the service tree.
1289  */
1290 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1291 {
1292         /*
1293          * Resorting requires the cfqq to be on the RR list already.
1294          */
1295         if (cfq_cfqq_on_rr(cfqq)) {
1296                 cfq_service_tree_add(cfqd, cfqq, 0);
1297                 cfq_prio_tree_add(cfqd, cfqq);
1298         }
1299 }
1300
1301 /*
1302  * add to busy list of queues for service, trying to be fair in ordering
1303  * the pending list according to last request service
1304  */
1305 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1306 {
1307         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1308         BUG_ON(cfq_cfqq_on_rr(cfqq));
1309         cfq_mark_cfqq_on_rr(cfqq);
1310         cfqd->busy_queues++;
1311
1312         cfq_resort_rr_list(cfqd, cfqq);
1313 }
1314
1315 /*
1316  * Called when the cfqq no longer has requests pending, remove it from
1317  * the service tree.
1318  */
1319 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1320 {
1321         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1322         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1323         cfq_clear_cfqq_on_rr(cfqq);
1324
1325         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1326                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1327                 cfqq->service_tree = NULL;
1328         }
1329         if (cfqq->p_root) {
1330                 rb_erase(&cfqq->p_node, cfqq->p_root);
1331                 cfqq->p_root = NULL;
1332         }
1333
1334         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1335         BUG_ON(!cfqd->busy_queues);
1336         cfqd->busy_queues--;
1337 }
1338
1339 /*
1340  * rb tree support functions
1341  */
1342 static void cfq_del_rq_rb(struct request *rq)
1343 {
1344         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1345         const int sync = rq_is_sync(rq);
1346
1347         BUG_ON(!cfqq->queued[sync]);
1348         cfqq->queued[sync]--;
1349
1350         elv_rb_del(&cfqq->sort_list, rq);
1351
1352         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1353                 /*
1354                  * Queue will be deleted from service tree when we actually
1355                  * expire it later. Right now just remove it from prio tree
1356                  * as it is empty.
1357                  */
1358                 if (cfqq->p_root) {
1359                         rb_erase(&cfqq->p_node, cfqq->p_root);
1360                         cfqq->p_root = NULL;
1361                 }
1362         }
1363 }
1364
1365 static void cfq_add_rq_rb(struct request *rq)
1366 {
1367         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1368         struct cfq_data *cfqd = cfqq->cfqd;
1369         struct request *__alias, *prev;
1370
1371         cfqq->queued[rq_is_sync(rq)]++;
1372
1373         /*
1374          * looks a little odd, but the first insert might return an alias.
1375          * if that happens, put the alias on the dispatch list
1376          */
1377         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1378                 cfq_dispatch_insert(cfqd->queue, __alias);
1379
1380         if (!cfq_cfqq_on_rr(cfqq))
1381                 cfq_add_cfqq_rr(cfqd, cfqq);
1382
1383         /*
1384          * check if this request is a better next-serve candidate
1385          */
1386         prev = cfqq->next_rq;
1387         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1388
1389         /*
1390          * adjust priority tree position, if ->next_rq changes
1391          */
1392         if (prev != cfqq->next_rq)
1393                 cfq_prio_tree_add(cfqd, cfqq);
1394
1395         BUG_ON(!cfqq->next_rq);
1396 }
1397
1398 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1399 {
1400         elv_rb_del(&cfqq->sort_list, rq);
1401         cfqq->queued[rq_is_sync(rq)]--;
1402         cfq_add_rq_rb(rq);
1403 }
1404
1405 static struct request *
1406 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1407 {
1408         struct task_struct *tsk = current;
1409         struct cfq_io_context *cic;
1410         struct cfq_queue *cfqq;
1411
1412         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1413         if (!cic)
1414                 return NULL;
1415
1416         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1417         if (cfqq) {
1418                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1419
1420                 return elv_rb_find(&cfqq->sort_list, sector);
1421         }
1422
1423         return NULL;
1424 }
1425
1426 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1427 {
1428         struct cfq_data *cfqd = q->elevator->elevator_data;
1429
1430         cfqd->rq_in_driver[rq_is_sync(rq)]++;
1431         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1432                                                 rq_in_driver(cfqd));
1433
1434         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1435 }
1436
1437 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1438 {
1439         struct cfq_data *cfqd = q->elevator->elevator_data;
1440         const int sync = rq_is_sync(rq);
1441
1442         WARN_ON(!cfqd->rq_in_driver[sync]);
1443         cfqd->rq_in_driver[sync]--;
1444         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1445                                                 rq_in_driver(cfqd));
1446 }
1447
1448 static void cfq_remove_request(struct request *rq)
1449 {
1450         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1451
1452         if (cfqq->next_rq == rq)
1453                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1454
1455         list_del_init(&rq->queuelist);
1456         cfq_del_rq_rb(rq);
1457
1458         cfqq->cfqd->rq_queued--;
1459         if (rq_is_meta(rq)) {
1460                 WARN_ON(!cfqq->meta_pending);
1461                 cfqq->meta_pending--;
1462         }
1463 }
1464
1465 static int cfq_merge(struct request_queue *q, struct request **req,
1466                      struct bio *bio)
1467 {
1468         struct cfq_data *cfqd = q->elevator->elevator_data;
1469         struct request *__rq;
1470
1471         __rq = cfq_find_rq_fmerge(cfqd, bio);
1472         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1473                 *req = __rq;
1474                 return ELEVATOR_FRONT_MERGE;
1475         }
1476
1477         return ELEVATOR_NO_MERGE;
1478 }
1479
1480 static void cfq_merged_request(struct request_queue *q, struct request *req,
1481                                int type)
1482 {
1483         if (type == ELEVATOR_FRONT_MERGE) {
1484                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1485
1486                 cfq_reposition_rq_rb(cfqq, req);
1487         }
1488 }
1489
1490 static void
1491 cfq_merged_requests(struct request_queue *q, struct request *rq,
1492                     struct request *next)
1493 {
1494         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1495         /*
1496          * reposition in fifo if next is older than rq
1497          */
1498         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1499             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1500                 list_move(&rq->queuelist, &next->queuelist);
1501                 rq_set_fifo_time(rq, rq_fifo_time(next));
1502         }
1503
1504         if (cfqq->next_rq == next)
1505                 cfqq->next_rq = rq;
1506         cfq_remove_request(next);
1507 }
1508
1509 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1510                            struct bio *bio)
1511 {
1512         struct cfq_data *cfqd = q->elevator->elevator_data;
1513         struct cfq_io_context *cic;
1514         struct cfq_queue *cfqq;
1515
1516         /* Deny merge if bio and rq don't belong to same cfq group */
1517         if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1518                 return false;
1519         /*
1520          * Disallow merge of a sync bio into an async request.
1521          */
1522         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1523                 return false;
1524
1525         /*
1526          * Lookup the cfqq that this bio will be queued with. Allow
1527          * merge only if rq is queued there.
1528          */
1529         cic = cfq_cic_lookup(cfqd, current->io_context);
1530         if (!cic)
1531                 return false;
1532
1533         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1534         return cfqq == RQ_CFQQ(rq);
1535 }
1536
1537 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1538                                    struct cfq_queue *cfqq)
1539 {
1540         if (cfqq) {
1541                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1542                 cfqq->slice_start = 0;
1543                 cfqq->dispatch_start = jiffies;
1544                 cfqq->allocated_slice = 0;
1545                 cfqq->slice_end = 0;
1546                 cfqq->slice_dispatch = 0;
1547                 cfqq->nr_sectors = 0;
1548
1549                 cfq_clear_cfqq_wait_request(cfqq);
1550                 cfq_clear_cfqq_must_dispatch(cfqq);
1551                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1552                 cfq_clear_cfqq_fifo_expire(cfqq);
1553                 cfq_mark_cfqq_slice_new(cfqq);
1554
1555                 del_timer(&cfqd->idle_slice_timer);
1556         }
1557
1558         cfqd->active_queue = cfqq;
1559 }
1560
1561 /*
1562  * current cfqq expired its slice (or was too idle), select new one
1563  */
1564 static void
1565 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1566                     bool timed_out)
1567 {
1568         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1569
1570         if (cfq_cfqq_wait_request(cfqq))
1571                 del_timer(&cfqd->idle_slice_timer);
1572
1573         cfq_clear_cfqq_wait_request(cfqq);
1574         cfq_clear_cfqq_wait_busy(cfqq);
1575
1576         /*
1577          * store what was left of this slice, if the queue idled/timed out
1578          */
1579         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1580                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1581                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1582         }
1583
1584         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1585
1586         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1587                 cfq_del_cfqq_rr(cfqd, cfqq);
1588
1589         cfq_resort_rr_list(cfqd, cfqq);
1590
1591         if (cfqq == cfqd->active_queue)
1592                 cfqd->active_queue = NULL;
1593
1594         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1595                 cfqd->grp_service_tree.active = NULL;
1596
1597         if (cfqd->active_cic) {
1598                 put_io_context(cfqd->active_cic->ioc);
1599                 cfqd->active_cic = NULL;
1600         }
1601 }
1602
1603 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1604 {
1605         struct cfq_queue *cfqq = cfqd->active_queue;
1606
1607         if (cfqq)
1608                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1609 }
1610
1611 /*
1612  * Get next queue for service. Unless we have a queue preemption,
1613  * we'll simply select the first cfqq in the service tree.
1614  */
1615 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1616 {
1617         struct cfq_rb_root *service_tree =
1618                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1619                                         cfqd->serving_type, cfqd);
1620
1621         if (!cfqd->rq_queued)
1622                 return NULL;
1623
1624         /* There is nothing to dispatch */
1625         if (!service_tree)
1626                 return NULL;
1627         if (RB_EMPTY_ROOT(&service_tree->rb))
1628                 return NULL;
1629         return cfq_rb_first(service_tree);
1630 }
1631
1632 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1633 {
1634         struct cfq_group *cfqg;
1635         struct cfq_queue *cfqq;
1636         int i, j;
1637         struct cfq_rb_root *st;
1638
1639         if (!cfqd->rq_queued)
1640                 return NULL;
1641
1642         cfqg = cfq_get_next_cfqg(cfqd);
1643         if (!cfqg)
1644                 return NULL;
1645
1646         for_each_cfqg_st(cfqg, i, j, st)
1647                 if ((cfqq = cfq_rb_first(st)) != NULL)
1648                         return cfqq;
1649         return NULL;
1650 }
1651
1652 /*
1653  * Get and set a new active queue for service.
1654  */
1655 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1656                                               struct cfq_queue *cfqq)
1657 {
1658         if (!cfqq)
1659                 cfqq = cfq_get_next_queue(cfqd);
1660
1661         __cfq_set_active_queue(cfqd, cfqq);
1662         return cfqq;
1663 }
1664
1665 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1666                                           struct request *rq)
1667 {
1668         if (blk_rq_pos(rq) >= cfqd->last_position)
1669                 return blk_rq_pos(rq) - cfqd->last_position;
1670         else
1671                 return cfqd->last_position - blk_rq_pos(rq);
1672 }
1673
1674 #define CFQQ_SEEK_THR           8 * 1024
1675 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1676
1677 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1678                                struct request *rq)
1679 {
1680         sector_t sdist = cfqq->seek_mean;
1681
1682         if (!sample_valid(cfqq->seek_samples))
1683                 sdist = CFQQ_SEEK_THR;
1684
1685         return cfq_dist_from_last(cfqd, rq) <= sdist;
1686 }
1687
1688 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1689                                     struct cfq_queue *cur_cfqq)
1690 {
1691         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1692         struct rb_node *parent, *node;
1693         struct cfq_queue *__cfqq;
1694         sector_t sector = cfqd->last_position;
1695
1696         if (RB_EMPTY_ROOT(root))
1697                 return NULL;
1698
1699         /*
1700          * First, if we find a request starting at the end of the last
1701          * request, choose it.
1702          */
1703         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1704         if (__cfqq)
1705                 return __cfqq;
1706
1707         /*
1708          * If the exact sector wasn't found, the parent of the NULL leaf
1709          * will contain the closest sector.
1710          */
1711         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1712         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1713                 return __cfqq;
1714
1715         if (blk_rq_pos(__cfqq->next_rq) < sector)
1716                 node = rb_next(&__cfqq->p_node);
1717         else
1718                 node = rb_prev(&__cfqq->p_node);
1719         if (!node)
1720                 return NULL;
1721
1722         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1723         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1724                 return __cfqq;
1725
1726         return NULL;
1727 }
1728
1729 /*
1730  * cfqd - obvious
1731  * cur_cfqq - passed in so that we don't decide that the current queue is
1732  *            closely cooperating with itself.
1733  *
1734  * So, basically we're assuming that that cur_cfqq has dispatched at least
1735  * one request, and that cfqd->last_position reflects a position on the disk
1736  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1737  * assumption.
1738  */
1739 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1740                                               struct cfq_queue *cur_cfqq)
1741 {
1742         struct cfq_queue *cfqq;
1743
1744         if (!cfq_cfqq_sync(cur_cfqq))
1745                 return NULL;
1746         if (CFQQ_SEEKY(cur_cfqq))
1747                 return NULL;
1748
1749         /*
1750          * Don't search priority tree if it's the only queue in the group.
1751          */
1752         if (cur_cfqq->cfqg->nr_cfqq == 1)
1753                 return NULL;
1754
1755         /*
1756          * We should notice if some of the queues are cooperating, eg
1757          * working closely on the same area of the disk. In that case,
1758          * we can group them together and don't waste time idling.
1759          */
1760         cfqq = cfqq_close(cfqd, cur_cfqq);
1761         if (!cfqq)
1762                 return NULL;
1763
1764         /* If new queue belongs to different cfq_group, don't choose it */
1765         if (cur_cfqq->cfqg != cfqq->cfqg)
1766                 return NULL;
1767
1768         /*
1769          * It only makes sense to merge sync queues.
1770          */
1771         if (!cfq_cfqq_sync(cfqq))
1772                 return NULL;
1773         if (CFQQ_SEEKY(cfqq))
1774                 return NULL;
1775
1776         /*
1777          * Do not merge queues of different priority classes
1778          */
1779         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1780                 return NULL;
1781
1782         return cfqq;
1783 }
1784
1785 /*
1786  * Determine whether we should enforce idle window for this queue.
1787  */
1788
1789 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1790 {
1791         enum wl_prio_t prio = cfqq_prio(cfqq);
1792         struct cfq_rb_root *service_tree = cfqq->service_tree;
1793
1794         BUG_ON(!service_tree);
1795         BUG_ON(!service_tree->count);
1796
1797         /* We never do for idle class queues. */
1798         if (prio == IDLE_WORKLOAD)
1799                 return false;
1800
1801         /* We do for queues that were marked with idle window flag. */
1802         if (cfq_cfqq_idle_window(cfqq) &&
1803            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1804                 return true;
1805
1806         /*
1807          * Otherwise, we do only if they are the last ones
1808          * in their service tree.
1809          */
1810         return service_tree->count == 1;
1811 }
1812
1813 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1814 {
1815         struct cfq_queue *cfqq = cfqd->active_queue;
1816         struct cfq_io_context *cic;
1817         unsigned long sl;
1818
1819         /*
1820          * SSD device without seek penalty, disable idling. But only do so
1821          * for devices that support queuing, otherwise we still have a problem
1822          * with sync vs async workloads.
1823          */
1824         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1825                 return;
1826
1827         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1828         WARN_ON(cfq_cfqq_slice_new(cfqq));
1829
1830         /*
1831          * idle is disabled, either manually or by past process history
1832          */
1833         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1834                 return;
1835
1836         /*
1837          * still active requests from this queue, don't idle
1838          */
1839         if (cfqq->dispatched)
1840                 return;
1841
1842         /*
1843          * task has exited, don't wait
1844          */
1845         cic = cfqd->active_cic;
1846         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1847                 return;
1848
1849         /*
1850          * If our average think time is larger than the remaining time
1851          * slice, then don't idle. This avoids overrunning the allotted
1852          * time slice.
1853          */
1854         if (sample_valid(cic->ttime_samples) &&
1855             (cfqq->slice_end - jiffies < cic->ttime_mean))
1856                 return;
1857
1858         cfq_mark_cfqq_wait_request(cfqq);
1859
1860         sl = cfqd->cfq_slice_idle;
1861
1862         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1863         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1864 }
1865
1866 /*
1867  * Move request from internal lists to the request queue dispatch list.
1868  */
1869 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1870 {
1871         struct cfq_data *cfqd = q->elevator->elevator_data;
1872         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1873
1874         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1875
1876         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1877         cfq_remove_request(rq);
1878         cfqq->dispatched++;
1879         elv_dispatch_sort(q, rq);
1880
1881         if (cfq_cfqq_sync(cfqq))
1882                 cfqd->sync_flight++;
1883         cfqq->nr_sectors += blk_rq_sectors(rq);
1884 }
1885
1886 /*
1887  * return expired entry, or NULL to just start from scratch in rbtree
1888  */
1889 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1890 {
1891         struct request *rq = NULL;
1892
1893         if (cfq_cfqq_fifo_expire(cfqq))
1894                 return NULL;
1895
1896         cfq_mark_cfqq_fifo_expire(cfqq);
1897
1898         if (list_empty(&cfqq->fifo))
1899                 return NULL;
1900
1901         rq = rq_entry_fifo(cfqq->fifo.next);
1902         if (time_before(jiffies, rq_fifo_time(rq)))
1903                 rq = NULL;
1904
1905         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1906         return rq;
1907 }
1908
1909 static inline int
1910 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1911 {
1912         const int base_rq = cfqd->cfq_slice_async_rq;
1913
1914         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1915
1916         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1917 }
1918
1919 /*
1920  * Must be called with the queue_lock held.
1921  */
1922 static int cfqq_process_refs(struct cfq_queue *cfqq)
1923 {
1924         int process_refs, io_refs;
1925
1926         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1927         process_refs = atomic_read(&cfqq->ref) - io_refs;
1928         BUG_ON(process_refs < 0);
1929         return process_refs;
1930 }
1931
1932 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1933 {
1934         int process_refs, new_process_refs;
1935         struct cfq_queue *__cfqq;
1936
1937         /* Avoid a circular list and skip interim queue merges */
1938         while ((__cfqq = new_cfqq->new_cfqq)) {
1939                 if (__cfqq == cfqq)
1940                         return;
1941                 new_cfqq = __cfqq;
1942         }
1943
1944         process_refs = cfqq_process_refs(cfqq);
1945         /*
1946          * If the process for the cfqq has gone away, there is no
1947          * sense in merging the queues.
1948          */
1949         if (process_refs == 0)
1950                 return;
1951
1952         /*
1953          * Merge in the direction of the lesser amount of work.
1954          */
1955         new_process_refs = cfqq_process_refs(new_cfqq);
1956         if (new_process_refs >= process_refs) {
1957                 cfqq->new_cfqq = new_cfqq;
1958                 atomic_add(process_refs, &new_cfqq->ref);
1959         } else {
1960                 new_cfqq->new_cfqq = cfqq;
1961                 atomic_add(new_process_refs, &cfqq->ref);
1962         }
1963 }
1964
1965 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1966                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1967                                 bool prio_changed)
1968 {
1969         struct cfq_queue *queue;
1970         int i;
1971         bool key_valid = false;
1972         unsigned long lowest_key = 0;
1973         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1974
1975         if (prio_changed) {
1976                 /*
1977                  * When priorities switched, we prefer starting
1978                  * from SYNC_NOIDLE (first choice), or just SYNC
1979                  * over ASYNC
1980                  */
1981                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1982                         return cur_best;
1983                 cur_best = SYNC_WORKLOAD;
1984                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1985                         return cur_best;
1986
1987                 return ASYNC_WORKLOAD;
1988         }
1989
1990         for (i = 0; i < 3; ++i) {
1991                 /* otherwise, select the one with lowest rb_key */
1992                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1993                 if (queue &&
1994                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1995                         lowest_key = queue->rb_key;
1996                         cur_best = i;
1997                         key_valid = true;
1998                 }
1999         }
2000
2001         return cur_best;
2002 }
2003
2004 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2005 {
2006         enum wl_prio_t previous_prio = cfqd->serving_prio;
2007         bool prio_changed;
2008         unsigned slice;
2009         unsigned count;
2010         struct cfq_rb_root *st;
2011         unsigned group_slice;
2012
2013         if (!cfqg) {
2014                 cfqd->serving_prio = IDLE_WORKLOAD;
2015                 cfqd->workload_expires = jiffies + 1;
2016                 return;
2017         }
2018
2019         /* Choose next priority. RT > BE > IDLE */
2020         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2021                 cfqd->serving_prio = RT_WORKLOAD;
2022         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2023                 cfqd->serving_prio = BE_WORKLOAD;
2024         else {
2025                 cfqd->serving_prio = IDLE_WORKLOAD;
2026                 cfqd->workload_expires = jiffies + 1;
2027                 return;
2028         }
2029
2030         /*
2031          * For RT and BE, we have to choose also the type
2032          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2033          * expiration time
2034          */
2035         prio_changed = (cfqd->serving_prio != previous_prio);
2036         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2037                                 cfqd);
2038         count = st->count;
2039
2040         /*
2041          * If priority didn't change, check workload expiration,
2042          * and that we still have other queues ready
2043          */
2044         if (!prio_changed && count &&
2045             !time_after(jiffies, cfqd->workload_expires))
2046                 return;
2047
2048         /* otherwise select new workload type */
2049         cfqd->serving_type =
2050                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2051         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2052                                 cfqd);
2053         count = st->count;
2054
2055         /*
2056          * the workload slice is computed as a fraction of target latency
2057          * proportional to the number of queues in that workload, over
2058          * all the queues in the same priority class
2059          */
2060         group_slice = cfq_group_slice(cfqd, cfqg);
2061
2062         slice = group_slice * count /
2063                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2064                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2065
2066         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2067                 unsigned int tmp;
2068
2069                 /*
2070                  * Async queues are currently system wide. Just taking
2071                  * proportion of queues with-in same group will lead to higher
2072                  * async ratio system wide as generally root group is going
2073                  * to have higher weight. A more accurate thing would be to
2074                  * calculate system wide asnc/sync ratio.
2075                  */
2076                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2077                 tmp = tmp/cfqd->busy_queues;
2078                 slice = min_t(unsigned, slice, tmp);
2079
2080                 /* async workload slice is scaled down according to
2081                  * the sync/async slice ratio. */
2082                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2083         } else
2084                 /* sync workload slice is at least 2 * cfq_slice_idle */
2085                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2086
2087         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2088         cfqd->workload_expires = jiffies + slice;
2089         cfqd->noidle_tree_requires_idle = false;
2090 }
2091
2092 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2093 {
2094         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2095         struct cfq_group *cfqg;
2096
2097         if (RB_EMPTY_ROOT(&st->rb))
2098                 return NULL;
2099         cfqg = cfq_rb_first_group(st);
2100         st->active = &cfqg->rb_node;
2101         update_min_vdisktime(st);
2102         return cfqg;
2103 }
2104
2105 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2106 {
2107         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2108
2109         cfqd->serving_group = cfqg;
2110
2111         /* Restore the workload type data */
2112         if (cfqg->saved_workload_slice) {
2113                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2114                 cfqd->serving_type = cfqg->saved_workload;
2115                 cfqd->serving_prio = cfqg->saved_serving_prio;
2116         }
2117         choose_service_tree(cfqd, cfqg);
2118 }
2119
2120 /*
2121  * Select a queue for service. If we have a current active queue,
2122  * check whether to continue servicing it, or retrieve and set a new one.
2123  */
2124 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2125 {
2126         struct cfq_queue *cfqq, *new_cfqq = NULL;
2127
2128         cfqq = cfqd->active_queue;
2129         if (!cfqq)
2130                 goto new_queue;
2131
2132         if (!cfqd->rq_queued)
2133                 return NULL;
2134
2135         /*
2136          * We were waiting for group to get backlogged. Expire the queue
2137          */
2138         if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2139                 goto expire;
2140
2141         /*
2142          * The active queue has run out of time, expire it and select new.
2143          */
2144         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
2145                 goto expire;
2146
2147         /*
2148          * The active queue has requests and isn't expired, allow it to
2149          * dispatch.
2150          */
2151         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2152                 goto keep_queue;
2153
2154         /*
2155          * If another queue has a request waiting within our mean seek
2156          * distance, let it run.  The expire code will check for close
2157          * cooperators and put the close queue at the front of the service
2158          * tree.  If possible, merge the expiring queue with the new cfqq.
2159          */
2160         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2161         if (new_cfqq) {
2162                 if (!cfqq->new_cfqq)
2163                         cfq_setup_merge(cfqq, new_cfqq);
2164                 goto expire;
2165         }
2166
2167         /*
2168          * No requests pending. If the active queue still has requests in
2169          * flight or is idling for a new request, allow either of these
2170          * conditions to happen (or time out) before selecting a new queue.
2171          */
2172         if (timer_pending(&cfqd->idle_slice_timer) ||
2173             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2174                 cfqq = NULL;
2175                 goto keep_queue;
2176         }
2177
2178 expire:
2179         cfq_slice_expired(cfqd, 0);
2180 new_queue:
2181         /*
2182          * Current queue expired. Check if we have to switch to a new
2183          * service tree
2184          */
2185         if (!new_cfqq)
2186                 cfq_choose_cfqg(cfqd);
2187
2188         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2189 keep_queue:
2190         return cfqq;
2191 }
2192
2193 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2194 {
2195         int dispatched = 0;
2196
2197         while (cfqq->next_rq) {
2198                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2199                 dispatched++;
2200         }
2201
2202         BUG_ON(!list_empty(&cfqq->fifo));
2203
2204         /* By default cfqq is not expired if it is empty. Do it explicitly */
2205         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2206         return dispatched;
2207 }
2208
2209 /*
2210  * Drain our current requests. Used for barriers and when switching
2211  * io schedulers on-the-fly.
2212  */
2213 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2214 {
2215         struct cfq_queue *cfqq;
2216         int dispatched = 0;
2217
2218         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2219                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2220
2221         cfq_slice_expired(cfqd, 0);
2222         BUG_ON(cfqd->busy_queues);
2223
2224         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2225         return dispatched;
2226 }
2227
2228 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2229 {
2230         unsigned int max_dispatch;
2231
2232         /*
2233          * Drain async requests before we start sync IO
2234          */
2235         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2236                 return false;
2237
2238         /*
2239          * If this is an async queue and we have sync IO in flight, let it wait
2240          */
2241         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2242                 return false;
2243
2244         max_dispatch = cfqd->cfq_quantum;
2245         if (cfq_class_idle(cfqq))
2246                 max_dispatch = 1;
2247
2248         /*
2249          * Does this cfqq already have too much IO in flight?
2250          */
2251         if (cfqq->dispatched >= max_dispatch) {
2252                 /*
2253                  * idle queue must always only have a single IO in flight
2254                  */
2255                 if (cfq_class_idle(cfqq))
2256                         return false;
2257
2258                 /*
2259                  * We have other queues, don't allow more IO from this one
2260                  */
2261                 if (cfqd->busy_queues > 1)
2262                         return false;
2263
2264                 /*
2265                  * Sole queue user, no limit
2266                  */
2267                 max_dispatch = -1;
2268         }
2269
2270         /*
2271          * Async queues must wait a bit before being allowed dispatch.
2272          * We also ramp up the dispatch depth gradually for async IO,
2273          * based on the last sync IO we serviced
2274          */
2275         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2276                 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
2277                 unsigned int depth;
2278
2279                 depth = last_sync / cfqd->cfq_slice[1];
2280                 if (!depth && !cfqq->dispatched)
2281                         depth = 1;
2282                 if (depth < max_dispatch)
2283                         max_dispatch = depth;
2284         }
2285
2286         /*
2287          * If we're below the current max, allow a dispatch
2288          */
2289         return cfqq->dispatched < max_dispatch;
2290 }
2291
2292 /*
2293  * Dispatch a request from cfqq, moving them to the request queue
2294  * dispatch list.
2295  */
2296 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2297 {
2298         struct request *rq;
2299
2300         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2301
2302         if (!cfq_may_dispatch(cfqd, cfqq))
2303                 return false;
2304
2305         /*
2306          * follow expired path, else get first next available
2307          */
2308         rq = cfq_check_fifo(cfqq);
2309         if (!rq)
2310                 rq = cfqq->next_rq;
2311
2312         /*
2313          * insert request into driver dispatch list
2314          */
2315         cfq_dispatch_insert(cfqd->queue, rq);
2316
2317         if (!cfqd->active_cic) {
2318                 struct cfq_io_context *cic = RQ_CIC(rq);
2319
2320                 atomic_long_inc(&cic->ioc->refcount);
2321                 cfqd->active_cic = cic;
2322         }
2323
2324         return true;
2325 }
2326
2327 /*
2328  * Find the cfqq that we need to service and move a request from that to the
2329  * dispatch list
2330  */
2331 static int cfq_dispatch_requests(struct request_queue *q, int force)
2332 {
2333         struct cfq_data *cfqd = q->elevator->elevator_data;
2334         struct cfq_queue *cfqq;
2335
2336         if (!cfqd->busy_queues)
2337                 return 0;
2338
2339         if (unlikely(force))
2340                 return cfq_forced_dispatch(cfqd);
2341
2342         cfqq = cfq_select_queue(cfqd);
2343         if (!cfqq)
2344                 return 0;
2345
2346         /*
2347          * Dispatch a request from this cfqq, if it is allowed
2348          */
2349         if (!cfq_dispatch_request(cfqd, cfqq))
2350                 return 0;
2351
2352         cfqq->slice_dispatch++;
2353         cfq_clear_cfqq_must_dispatch(cfqq);
2354
2355         /*
2356          * expire an async queue immediately if it has used up its slice. idle
2357          * queue always expire after 1 dispatch round.
2358          */
2359         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2360             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2361             cfq_class_idle(cfqq))) {
2362                 cfqq->slice_end = jiffies + 1;
2363                 cfq_slice_expired(cfqd, 0);
2364         }
2365
2366         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2367         return 1;
2368 }
2369
2370 /*
2371  * task holds one reference to the queue, dropped when task exits. each rq
2372  * in-flight on this queue also holds a reference, dropped when rq is freed.
2373  *
2374  * Each cfq queue took a reference on the parent group. Drop it now.
2375  * queue lock must be held here.
2376  */
2377 static void cfq_put_queue(struct cfq_queue *cfqq)
2378 {
2379         struct cfq_data *cfqd = cfqq->cfqd;
2380         struct cfq_group *cfqg, *orig_cfqg;
2381
2382         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2383
2384         if (!atomic_dec_and_test(&cfqq->ref))
2385                 return;
2386
2387         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2388         BUG_ON(rb_first(&cfqq->sort_list));
2389         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2390         cfqg = cfqq->cfqg;
2391         orig_cfqg = cfqq->orig_cfqg;
2392
2393         if (unlikely(cfqd->active_queue == cfqq)) {
2394                 __cfq_slice_expired(cfqd, cfqq, 0);
2395                 cfq_schedule_dispatch(cfqd);
2396         }
2397
2398         BUG_ON(cfq_cfqq_on_rr(cfqq));
2399         kmem_cache_free(cfq_pool, cfqq);
2400         cfq_put_cfqg(cfqg);
2401         if (orig_cfqg)
2402                 cfq_put_cfqg(orig_cfqg);
2403 }
2404
2405 /*
2406  * Must always be called with the rcu_read_lock() held
2407  */
2408 static void
2409 __call_for_each_cic(struct io_context *ioc,
2410                     void (*func)(struct io_context *, struct cfq_io_context *))
2411 {
2412         struct cfq_io_context *cic;
2413         struct hlist_node *n;
2414
2415         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2416                 func(ioc, cic);
2417 }
2418
2419 /*
2420  * Call func for each cic attached to this ioc.
2421  */
2422 static void
2423 call_for_each_cic(struct io_context *ioc,
2424                   void (*func)(struct io_context *, struct cfq_io_context *))
2425 {
2426         rcu_read_lock();
2427         __call_for_each_cic(ioc, func);
2428         rcu_read_unlock();
2429 }
2430
2431 static void cfq_cic_free_rcu(struct rcu_head *head)
2432 {
2433         struct cfq_io_context *cic;
2434
2435         cic = container_of(head, struct cfq_io_context, rcu_head);
2436
2437         kmem_cache_free(cfq_ioc_pool, cic);
2438         elv_ioc_count_dec(cfq_ioc_count);
2439
2440         if (ioc_gone) {
2441                 /*
2442                  * CFQ scheduler is exiting, grab exit lock and check
2443                  * the pending io context count. If it hits zero,
2444                  * complete ioc_gone and set it back to NULL
2445                  */
2446                 spin_lock(&ioc_gone_lock);
2447                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2448                         complete(ioc_gone);
2449                         ioc_gone = NULL;
2450                 }
2451                 spin_unlock(&ioc_gone_lock);
2452         }
2453 }
2454
2455 static void cfq_cic_free(struct cfq_io_context *cic)
2456 {
2457         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2458 }
2459
2460 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2461 {
2462         unsigned long flags;
2463
2464         BUG_ON(!cic->dead_key);
2465
2466         spin_lock_irqsave(&ioc->lock, flags);
2467         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2468         hlist_del_rcu(&cic->cic_list);
2469         spin_unlock_irqrestore(&ioc->lock, flags);
2470
2471         cfq_cic_free(cic);
2472 }
2473
2474 /*
2475  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2476  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2477  * and ->trim() which is called with the task lock held
2478  */
2479 static void cfq_free_io_context(struct io_context *ioc)
2480 {
2481         /*
2482          * ioc->refcount is zero here, or we are called from elv_unregister(),
2483          * so no more cic's are allowed to be linked into this ioc.  So it
2484          * should be ok to iterate over the known list, we will see all cic's
2485          * since no new ones are added.
2486          */
2487         __call_for_each_cic(ioc, cic_free_func);
2488 }
2489
2490 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2491 {
2492         struct cfq_queue *__cfqq, *next;
2493
2494         if (unlikely(cfqq == cfqd->active_queue)) {
2495                 __cfq_slice_expired(cfqd, cfqq, 0);
2496                 cfq_schedule_dispatch(cfqd);
2497         }
2498
2499         /*
2500          * If this queue was scheduled to merge with another queue, be
2501          * sure to drop the reference taken on that queue (and others in
2502          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2503          */
2504         __cfqq = cfqq->new_cfqq;
2505         while (__cfqq) {
2506                 if (__cfqq == cfqq) {
2507                         WARN(1, "cfqq->new_cfqq loop detected\n");
2508                         break;
2509                 }
2510                 next = __cfqq->new_cfqq;
2511                 cfq_put_queue(__cfqq);
2512                 __cfqq = next;
2513         }
2514
2515         cfq_put_queue(cfqq);
2516 }
2517
2518 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2519                                          struct cfq_io_context *cic)
2520 {
2521         struct io_context *ioc = cic->ioc;
2522
2523         list_del_init(&cic->queue_list);
2524
2525         /*
2526          * Make sure key == NULL is seen for dead queues
2527          */
2528         smp_wmb();
2529         cic->dead_key = (unsigned long) cic->key;
2530         cic->key = NULL;
2531
2532         if (ioc->ioc_data == cic)
2533                 rcu_assign_pointer(ioc->ioc_data, NULL);
2534
2535         if (cic->cfqq[BLK_RW_ASYNC]) {
2536                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2537                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2538         }
2539
2540         if (cic->cfqq[BLK_RW_SYNC]) {
2541                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2542                 cic->cfqq[BLK_RW_SYNC] = NULL;
2543         }
2544 }
2545
2546 static void cfq_exit_single_io_context(struct io_context *ioc,
2547                                        struct cfq_io_context *cic)
2548 {
2549         struct cfq_data *cfqd = cic->key;
2550
2551         if (cfqd) {
2552                 struct request_queue *q = cfqd->queue;
2553                 unsigned long flags;
2554
2555                 spin_lock_irqsave(q->queue_lock, flags);
2556
2557                 /*
2558                  * Ensure we get a fresh copy of the ->key to prevent
2559                  * race between exiting task and queue
2560                  */
2561                 smp_read_barrier_depends();
2562                 if (cic->key)
2563                         __cfq_exit_single_io_context(cfqd, cic);
2564
2565                 spin_unlock_irqrestore(q->queue_lock, flags);
2566         }
2567 }
2568
2569 /*
2570  * The process that ioc belongs to has exited, we need to clean up
2571  * and put the internal structures we have that belongs to that process.
2572  */
2573 static void cfq_exit_io_context(struct io_context *ioc)
2574 {
2575         call_for_each_cic(ioc, cfq_exit_single_io_context);
2576 }
2577
2578 static struct cfq_io_context *
2579 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2580 {
2581         struct cfq_io_context *cic;
2582
2583         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2584                                                         cfqd->queue->node);
2585         if (cic) {
2586                 cic->last_end_request = jiffies;
2587                 INIT_LIST_HEAD(&cic->queue_list);
2588                 INIT_HLIST_NODE(&cic->cic_list);
2589                 cic->dtor = cfq_free_io_context;
2590                 cic->exit = cfq_exit_io_context;
2591                 elv_ioc_count_inc(cfq_ioc_count);
2592         }
2593
2594         return cic;
2595 }
2596
2597 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2598 {
2599         struct task_struct *tsk = current;
2600         int ioprio_class;
2601
2602         if (!cfq_cfqq_prio_changed(cfqq))
2603                 return;
2604
2605         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2606         switch (ioprio_class) {
2607         default:
2608                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2609         case IOPRIO_CLASS_NONE:
2610                 /*
2611                  * no prio set, inherit CPU scheduling settings
2612                  */
2613                 cfqq->ioprio = task_nice_ioprio(tsk);
2614                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2615                 break;
2616         case IOPRIO_CLASS_RT:
2617                 cfqq->ioprio = task_ioprio(ioc);
2618                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2619                 break;
2620         case IOPRIO_CLASS_BE:
2621                 cfqq->ioprio = task_ioprio(ioc);
2622                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2623                 break;
2624         case IOPRIO_CLASS_IDLE:
2625                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2626                 cfqq->ioprio = 7;
2627                 cfq_clear_cfqq_idle_window(cfqq);
2628                 break;
2629         }
2630
2631         /*
2632          * keep track of original prio settings in case we have to temporarily
2633          * elevate the priority of this queue
2634          */
2635         cfqq->org_ioprio = cfqq->ioprio;
2636         cfqq->org_ioprio_class = cfqq->ioprio_class;
2637         cfq_clear_cfqq_prio_changed(cfqq);
2638 }
2639
2640 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2641 {
2642         struct cfq_data *cfqd = cic->key;
2643         struct cfq_queue *cfqq;
2644         unsigned long flags;
2645
2646         if (unlikely(!cfqd))
2647                 return;
2648
2649         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2650
2651         cfqq = cic->cfqq[BLK_RW_ASYNC];
2652         if (cfqq) {
2653                 struct cfq_queue *new_cfqq;
2654                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2655                                                 GFP_ATOMIC);
2656                 if (new_cfqq) {
2657                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2658                         cfq_put_queue(cfqq);
2659                 }
2660         }
2661
2662         cfqq = cic->cfqq[BLK_RW_SYNC];
2663         if (cfqq)
2664                 cfq_mark_cfqq_prio_changed(cfqq);
2665
2666         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2667 }
2668
2669 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2670 {
2671         call_for_each_cic(ioc, changed_ioprio);
2672         ioc->ioprio_changed = 0;
2673 }
2674
2675 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2676                           pid_t pid, bool is_sync)
2677 {
2678         RB_CLEAR_NODE(&cfqq->rb_node);
2679         RB_CLEAR_NODE(&cfqq->p_node);
2680         INIT_LIST_HEAD(&cfqq->fifo);
2681
2682         atomic_set(&cfqq->ref, 0);
2683         cfqq->cfqd = cfqd;
2684
2685         cfq_mark_cfqq_prio_changed(cfqq);
2686
2687         if (is_sync) {
2688                 if (!cfq_class_idle(cfqq))
2689                         cfq_mark_cfqq_idle_window(cfqq);
2690                 cfq_mark_cfqq_sync(cfqq);
2691         }
2692         cfqq->pid = pid;
2693 }
2694
2695 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2696 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2697 {
2698         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2699         struct cfq_data *cfqd = cic->key;
2700         unsigned long flags;
2701         struct request_queue *q;
2702
2703         if (unlikely(!cfqd))
2704                 return;
2705
2706         q = cfqd->queue;
2707
2708         spin_lock_irqsave(q->queue_lock, flags);
2709
2710         if (sync_cfqq) {
2711                 /*
2712                  * Drop reference to sync queue. A new sync queue will be
2713                  * assigned in new group upon arrival of a fresh request.
2714                  */
2715                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2716                 cic_set_cfqq(cic, NULL, 1);
2717                 cfq_put_queue(sync_cfqq);
2718         }
2719
2720         spin_unlock_irqrestore(q->queue_lock, flags);
2721 }
2722
2723 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2724 {
2725         call_for_each_cic(ioc, changed_cgroup);
2726         ioc->cgroup_changed = 0;
2727 }
2728 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2729
2730 static struct cfq_queue *
2731 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2732                      struct io_context *ioc, gfp_t gfp_mask)
2733 {
2734         struct cfq_queue *cfqq, *new_cfqq = NULL;
2735         struct cfq_io_context *cic;
2736         struct cfq_group *cfqg;
2737
2738 retry:
2739         cfqg = cfq_get_cfqg(cfqd, 1);
2740         cic = cfq_cic_lookup(cfqd, ioc);
2741         /* cic always exists here */
2742         cfqq = cic_to_cfqq(cic, is_sync);
2743
2744         /*
2745          * Always try a new alloc if we fell back to the OOM cfqq
2746          * originally, since it should just be a temporary situation.
2747          */
2748         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2749                 cfqq = NULL;
2750                 if (new_cfqq) {
2751                         cfqq = new_cfqq;
2752                         new_cfqq = NULL;
2753                 } else if (gfp_mask & __GFP_WAIT) {
2754                         spin_unlock_irq(cfqd->queue->queue_lock);
2755                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2756                                         gfp_mask | __GFP_ZERO,
2757                                         cfqd->queue->node);
2758                         spin_lock_irq(cfqd->queue->queue_lock);
2759                         if (new_cfqq)
2760                                 goto retry;
2761                 } else {
2762                         cfqq = kmem_cache_alloc_node(cfq_pool,
2763                                         gfp_mask | __GFP_ZERO,
2764                                         cfqd->queue->node);
2765                 }
2766
2767                 if (cfqq) {
2768                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2769                         cfq_init_prio_data(cfqq, ioc);
2770                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2771                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2772                 } else
2773                         cfqq = &cfqd->oom_cfqq;
2774         }
2775
2776         if (new_cfqq)
2777                 kmem_cache_free(cfq_pool, new_cfqq);
2778
2779         return cfqq;
2780 }
2781
2782 static struct cfq_queue **
2783 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2784 {
2785         switch (ioprio_class) {
2786         case IOPRIO_CLASS_RT:
2787                 return &cfqd->async_cfqq[0][ioprio];
2788         case IOPRIO_CLASS_BE:
2789                 return &cfqd->async_cfqq[1][ioprio];
2790         case IOPRIO_CLASS_IDLE:
2791                 return &cfqd->async_idle_cfqq;
2792         default:
2793                 BUG();
2794         }
2795 }
2796
2797 static struct cfq_queue *
2798 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2799               gfp_t gfp_mask)
2800 {
2801         const int ioprio = task_ioprio(ioc);
2802         const int ioprio_class = task_ioprio_class(ioc);
2803         struct cfq_queue **async_cfqq = NULL;
2804         struct cfq_queue *cfqq = NULL;
2805
2806         if (!is_sync) {
2807                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2808                 cfqq = *async_cfqq;
2809         }
2810
2811         if (!cfqq)
2812                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2813
2814         /*
2815          * pin the queue now that it's allocated, scheduler exit will prune it
2816          */
2817         if (!is_sync && !(*async_cfqq)) {
2818                 atomic_inc(&cfqq->ref);
2819                 *async_cfqq = cfqq;
2820         }
2821
2822         atomic_inc(&cfqq->ref);
2823         return cfqq;
2824 }
2825
2826 /*
2827  * We drop cfq io contexts lazily, so we may find a dead one.
2828  */
2829 static void
2830 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2831                   struct cfq_io_context *cic)
2832 {
2833         unsigned long flags;
2834
2835         WARN_ON(!list_empty(&cic->queue_list));
2836
2837         spin_lock_irqsave(&ioc->lock, flags);
2838
2839         BUG_ON(ioc->ioc_data == cic);
2840
2841         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2842         hlist_del_rcu(&cic->cic_list);
2843         spin_unlock_irqrestore(&ioc->lock, flags);
2844
2845         cfq_cic_free(cic);
2846 }
2847
2848 static struct cfq_io_context *
2849 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2850 {
2851         struct cfq_io_context *cic;
2852         unsigned long flags;
2853         void *k;
2854
2855         if (unlikely(!ioc))
2856                 return NULL;
2857
2858         rcu_read_lock();
2859
2860         /*
2861          * we maintain a last-hit cache, to avoid browsing over the tree
2862          */
2863         cic = rcu_dereference(ioc->ioc_data);
2864         if (cic && cic->key == cfqd) {
2865                 rcu_read_unlock();
2866                 return cic;
2867         }
2868
2869         do {
2870                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2871                 rcu_read_unlock();
2872                 if (!cic)
2873                         break;
2874                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2875                 k = cic->key;
2876                 if (unlikely(!k)) {
2877                         cfq_drop_dead_cic(cfqd, ioc, cic);
2878                         rcu_read_lock();
2879                         continue;
2880                 }
2881
2882                 spin_lock_irqsave(&ioc->lock, flags);
2883                 rcu_assign_pointer(ioc->ioc_data, cic);
2884                 spin_unlock_irqrestore(&ioc->lock, flags);
2885                 break;
2886         } while (1);
2887
2888         return cic;
2889 }
2890
2891 /*
2892  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2893  * the process specific cfq io context when entered from the block layer.
2894  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2895  */
2896 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2897                         struct cfq_io_context *cic, gfp_t gfp_mask)
2898 {
2899         unsigned long flags;
2900         int ret;
2901
2902         ret = radix_tree_preload(gfp_mask);
2903         if (!ret) {
2904                 cic->ioc = ioc;
2905                 cic->key = cfqd;
2906
2907                 spin_lock_irqsave(&ioc->lock, flags);
2908                 ret = radix_tree_insert(&ioc->radix_root,
2909                                                 (unsigned long) cfqd, cic);
2910                 if (!ret)
2911                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2912                 spin_unlock_irqrestore(&ioc->lock, flags);
2913
2914                 radix_tree_preload_end();
2915
2916                 if (!ret) {
2917                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2918                         list_add(&cic->queue_list, &cfqd->cic_list);
2919                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2920                 }
2921         }
2922
2923         if (ret)
2924                 printk(KERN_ERR "cfq: cic link failed!\n");
2925
2926         return ret;
2927 }
2928
2929 /*
2930  * Setup general io context and cfq io context. There can be several cfq
2931  * io contexts per general io context, if this process is doing io to more
2932  * than one device managed by cfq.
2933  */
2934 static struct cfq_io_context *
2935 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2936 {
2937         struct io_context *ioc = NULL;
2938         struct cfq_io_context *cic;
2939
2940         might_sleep_if(gfp_mask & __GFP_WAIT);
2941
2942         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2943         if (!ioc)
2944                 return NULL;
2945
2946         cic = cfq_cic_lookup(cfqd, ioc);
2947         if (cic)
2948                 goto out;
2949
2950         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2951         if (cic == NULL)
2952                 goto err;
2953
2954         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2955                 goto err_free;
2956
2957 out:
2958         smp_read_barrier_depends();
2959         if (unlikely(ioc->ioprio_changed))
2960                 cfq_ioc_set_ioprio(ioc);
2961
2962 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2963         if (unlikely(ioc->cgroup_changed))
2964                 cfq_ioc_set_cgroup(ioc);
2965 #endif
2966         return cic;
2967 err_free:
2968         cfq_cic_free(cic);
2969 err:
2970         put_io_context(ioc);
2971         return NULL;
2972 }
2973
2974 static void
2975 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2976 {
2977         unsigned long elapsed = jiffies - cic->last_end_request;
2978         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2979
2980         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2981         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2982         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2983 }
2984
2985 static void
2986 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2987                        struct request *rq)
2988 {
2989         sector_t sdist;
2990         u64 total;
2991
2992         if (!cfqq->last_request_pos)
2993                 sdist = 0;
2994         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2995                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2996         else
2997                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2998
2999         /*
3000          * Don't allow the seek distance to get too large from the
3001          * odd fragment, pagein, etc
3002          */
3003         if (cfqq->seek_samples <= 60) /* second&third seek */
3004                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
3005         else
3006                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
3007
3008         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
3009         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3010         total = cfqq->seek_total + (cfqq->seek_samples/2);
3011         do_div(total, cfqq->seek_samples);
3012         cfqq->seek_mean = (sector_t)total;
3013
3014         /*
3015          * If this cfqq is shared between multiple processes, check to
3016          * make sure that those processes are still issuing I/Os within
3017          * the mean seek distance.  If not, it may be time to break the
3018          * queues apart again.
3019          */
3020         if (cfq_cfqq_coop(cfqq)) {
3021                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3022                         cfqq->seeky_start = jiffies;
3023                 else if (!CFQQ_SEEKY(cfqq))
3024                         cfqq->seeky_start = 0;
3025         }
3026 }
3027
3028 /*
3029  * Disable idle window if the process thinks too long or seeks so much that
3030  * it doesn't matter
3031  */
3032 static void
3033 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3034                        struct cfq_io_context *cic)
3035 {
3036         int old_idle, enable_idle;
3037
3038         /*
3039          * Don't idle for async or idle io prio class
3040          */
3041         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3042                 return;
3043
3044         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3045
3046         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3047                 cfq_mark_cfqq_deep(cfqq);
3048
3049         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3050             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3051              && CFQQ_SEEKY(cfqq)))
3052                 enable_idle = 0;
3053         else if (sample_valid(cic->ttime_samples)) {
3054                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3055                         enable_idle = 0;
3056                 else
3057                         enable_idle = 1;
3058         }
3059
3060         if (old_idle != enable_idle) {
3061                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3062                 if (enable_idle)
3063                         cfq_mark_cfqq_idle_window(cfqq);
3064                 else
3065                         cfq_clear_cfqq_idle_window(cfqq);
3066         }
3067 }
3068
3069 /*
3070  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3071  * no or if we aren't sure, a 1 will cause a preempt.
3072  */
3073 static bool
3074 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3075                    struct request *rq)
3076 {
3077         struct cfq_queue *cfqq;
3078
3079         cfqq = cfqd->active_queue;
3080         if (!cfqq)
3081                 return false;
3082
3083         if (cfq_class_idle(new_cfqq))
3084                 return false;
3085
3086         if (cfq_class_idle(cfqq))
3087                 return true;
3088
3089         /*
3090          * if the new request is sync, but the currently running queue is
3091          * not, let the sync request have priority.
3092          */
3093         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3094                 return true;
3095
3096         if (new_cfqq->cfqg != cfqq->cfqg)
3097                 return false;
3098
3099         if (cfq_slice_used(cfqq))
3100                 return true;
3101
3102         /* Allow preemption only if we are idling on sync-noidle tree */
3103         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3104             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3105             new_cfqq->service_tree->count == 2 &&
3106             RB_EMPTY_ROOT(&cfqq->sort_list))
3107                 return true;
3108
3109         /*
3110          * So both queues are sync. Let the new request get disk time if
3111          * it's a metadata request and the current queue is doing regular IO.
3112          */
3113         if (rq_is_meta(rq) && !cfqq->meta_pending)
3114                 return true;
3115
3116         /*
3117          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3118          */
3119         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3120                 return true;
3121
3122         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3123                 return false;
3124
3125         /*
3126          * if this request is as-good as one we would expect from the
3127          * current cfqq, let it preempt
3128          */
3129         if (cfq_rq_close(cfqd, cfqq, rq))
3130                 return true;
3131
3132         return false;
3133 }
3134
3135 /*
3136  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3137  * let it have half of its nominal slice.
3138  */
3139 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3140 {
3141         cfq_log_cfqq(cfqd, cfqq, "preempt");
3142         cfq_slice_expired(cfqd, 1);
3143
3144         /*
3145          * Put the new queue at the front of the of the current list,
3146          * so we know that it will be selected next.
3147          */
3148         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3149
3150         cfq_service_tree_add(cfqd, cfqq, 1);
3151
3152         cfqq->slice_end = 0;
3153         cfq_mark_cfqq_slice_new(cfqq);
3154 }
3155
3156 /*
3157  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3158  * something we should do about it
3159  */
3160 static void
3161 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3162                 struct request *rq)
3163 {
3164         struct cfq_io_context *cic = RQ_CIC(rq);
3165
3166         cfqd->rq_queued++;
3167         if (rq_is_meta(rq))
3168                 cfqq->meta_pending++;
3169
3170         cfq_update_io_thinktime(cfqd, cic);
3171         cfq_update_io_seektime(cfqd, cfqq, rq);
3172         cfq_update_idle_window(cfqd, cfqq, cic);
3173
3174         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3175
3176         if (cfqq == cfqd->active_queue) {
3177                 /*
3178                  * Remember that we saw a request from this process, but
3179                  * don't start queuing just yet. Otherwise we risk seeing lots
3180                  * of tiny requests, because we disrupt the normal plugging
3181                  * and merging. If the request is already larger than a single
3182                  * page, let it rip immediately. For that case we assume that
3183                  * merging is already done. Ditto for a busy system that
3184                  * has other work pending, don't risk delaying until the
3185                  * idle timer unplug to continue working.
3186                  */
3187                 if (cfq_cfqq_wait_request(cfqq)) {
3188                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3189                             cfqd->busy_queues > 1) {
3190                                 del_timer(&cfqd->idle_slice_timer);
3191                                 __blk_run_queue(cfqd->queue);
3192                         } else
3193                                 cfq_mark_cfqq_must_dispatch(cfqq);
3194                 }
3195         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3196                 /*
3197                  * not the active queue - expire current slice if it is
3198                  * idle and has expired it's mean thinktime or this new queue
3199                  * has some old slice time left and is of higher priority or
3200                  * this new queue is RT and the current one is BE
3201                  */
3202                 cfq_preempt_queue(cfqd, cfqq);
3203                 __blk_run_queue(cfqd->queue);
3204         }
3205 }
3206
3207 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3208 {
3209         struct cfq_data *cfqd = q->elevator->elevator_data;
3210         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3211
3212         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3213         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3214
3215         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3216         list_add_tail(&rq->queuelist, &cfqq->fifo);
3217         cfq_add_rq_rb(rq);
3218
3219         cfq_rq_enqueued(cfqd, cfqq, rq);
3220 }
3221
3222 /*
3223  * Update hw_tag based on peak queue depth over 50 samples under
3224  * sufficient load.
3225  */
3226 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3227 {
3228         struct cfq_queue *cfqq = cfqd->active_queue;
3229
3230         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3231                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3232
3233         if (cfqd->hw_tag == 1)
3234                 return;
3235
3236         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3237             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3238                 return;
3239
3240         /*
3241          * If active queue hasn't enough requests and can idle, cfq might not
3242          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3243          * case
3244          */
3245         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3246             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3247             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3248                 return;
3249
3250         if (cfqd->hw_tag_samples++ < 50)
3251                 return;
3252
3253         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3254                 cfqd->hw_tag = 1;
3255         else
3256                 cfqd->hw_tag = 0;
3257 }
3258
3259 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3260 {
3261         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3262         struct cfq_data *cfqd = cfqq->cfqd;
3263         const int sync = rq_is_sync(rq);
3264         unsigned long now;
3265
3266         now = jiffies;
3267         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3268
3269         cfq_update_hw_tag(cfqd);
3270
3271         WARN_ON(!cfqd->rq_in_driver[sync]);
3272         WARN_ON(!cfqq->dispatched);
3273         cfqd->rq_in_driver[sync]--;
3274         cfqq->dispatched--;
3275
3276         if (cfq_cfqq_sync(cfqq))
3277                 cfqd->sync_flight--;
3278
3279         if (sync) {
3280                 RQ_CIC(rq)->last_end_request = now;
3281                 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3282                         cfqd->last_delayed_sync = now;
3283         }
3284
3285         /*
3286          * If this is the active queue, check if it needs to be expired,
3287          * or if we want to idle in case it has no pending requests.
3288          */
3289         if (cfqd->active_queue == cfqq) {
3290                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3291
3292                 if (cfq_cfqq_slice_new(cfqq)) {
3293                         cfq_set_prio_slice(cfqd, cfqq);
3294                         cfq_clear_cfqq_slice_new(cfqq);
3295                 }
3296
3297                 /*
3298                  * If this queue consumed its slice and this is last queue
3299                  * in the group, wait for next request before we expire
3300                  * the queue
3301                  */
3302                 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3303                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3304                         cfq_mark_cfqq_wait_busy(cfqq);
3305                 }
3306
3307                 /*
3308                  * Idling is not enabled on:
3309                  * - expired queues
3310                  * - idle-priority queues
3311                  * - async queues
3312                  * - queues with still some requests queued
3313                  * - when there is a close cooperator
3314                  */
3315                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3316                         cfq_slice_expired(cfqd, 1);
3317                 else if (sync && cfqq_empty &&
3318                          !cfq_close_cooperator(cfqd, cfqq)) {
3319                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3320                         /*
3321                          * Idling is enabled for SYNC_WORKLOAD.
3322                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3323                          * only if we processed at least one !rq_noidle request
3324                          */
3325                         if (cfqd->serving_type == SYNC_WORKLOAD
3326                             || cfqd->noidle_tree_requires_idle
3327                             || cfqq->cfqg->nr_cfqq == 1)
3328                                 cfq_arm_slice_timer(cfqd);
3329                 }
3330         }
3331
3332         if (!rq_in_driver(cfqd))
3333                 cfq_schedule_dispatch(cfqd);
3334 }
3335
3336 /*
3337  * we temporarily boost lower priority queues if they are holding fs exclusive
3338  * resources. they are boosted to normal prio (CLASS_BE/4)
3339  */
3340 static void cfq_prio_boost(struct cfq_queue *cfqq)
3341 {
3342         if (has_fs_excl()) {
3343                 /*
3344                  * boost idle prio on transactions that would lock out other
3345                  * users of the filesystem
3346                  */
3347                 if (cfq_class_idle(cfqq))
3348                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3349                 if (cfqq->ioprio > IOPRIO_NORM)
3350                         cfqq->ioprio = IOPRIO_NORM;
3351         } else {
3352                 /*
3353                  * unboost the queue (if needed)
3354                  */
3355                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3356                 cfqq->ioprio = cfqq->org_ioprio;
3357         }
3358 }
3359
3360 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3361 {
3362         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3363                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3364                 return ELV_MQUEUE_MUST;
3365         }
3366
3367         return ELV_MQUEUE_MAY;
3368 }
3369
3370 static int cfq_may_queue(struct request_queue *q, int rw)
3371 {
3372         struct cfq_data *cfqd = q->elevator->elevator_data;
3373         struct task_struct *tsk = current;
3374         struct cfq_io_context *cic;
3375         struct cfq_queue *cfqq;
3376
3377         /*
3378          * don't force setup of a queue from here, as a call to may_queue
3379          * does not necessarily imply that a request actually will be queued.
3380          * so just lookup a possibly existing queue, or return 'may queue'
3381          * if that fails
3382          */
3383         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3384         if (!cic)
3385                 return ELV_MQUEUE_MAY;
3386
3387         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3388         if (cfqq) {
3389                 cfq_init_prio_data(cfqq, cic->ioc);
3390                 cfq_prio_boost(cfqq);
3391
3392                 return __cfq_may_queue(cfqq);
3393         }
3394
3395         return ELV_MQUEUE_MAY;
3396 }
3397
3398 /*
3399  * queue lock held here
3400  */
3401 static void cfq_put_request(struct request *rq)
3402 {
3403         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3404
3405         if (cfqq) {
3406                 const int rw = rq_data_dir(rq);
3407
3408                 BUG_ON(!cfqq->allocated[rw]);
3409                 cfqq->allocated[rw]--;
3410
3411                 put_io_context(RQ_CIC(rq)->ioc);
3412
3413                 rq->elevator_private = NULL;
3414                 rq->elevator_private2 = NULL;
3415
3416                 cfq_put_queue(cfqq);
3417         }
3418 }
3419
3420 static struct cfq_queue *
3421 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3422                 struct cfq_queue *cfqq)
3423 {
3424         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3425         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3426         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3427         cfq_put_queue(cfqq);
3428         return cic_to_cfqq(cic, 1);
3429 }
3430
3431 static int should_split_cfqq(struct cfq_queue *cfqq)
3432 {
3433         if (cfqq->seeky_start &&
3434             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3435                 return 1;
3436         return 0;
3437 }
3438
3439 /*
3440  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3441  * was the last process referring to said cfqq.
3442  */
3443 static struct cfq_queue *
3444 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3445 {
3446         if (cfqq_process_refs(cfqq) == 1) {
3447                 cfqq->seeky_start = 0;
3448                 cfqq->pid = current->pid;
3449                 cfq_clear_cfqq_coop(cfqq);
3450                 return cfqq;
3451         }
3452
3453         cic_set_cfqq(cic, NULL, 1);
3454         cfq_put_queue(cfqq);
3455         return NULL;
3456 }
3457 /*
3458  * Allocate cfq data structures associated with this request.
3459  */
3460 static int
3461 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3462 {
3463         struct cfq_data *cfqd = q->elevator->elevator_data;
3464         struct cfq_io_context *cic;
3465         const int rw = rq_data_dir(rq);
3466         const bool is_sync = rq_is_sync(rq);
3467         struct cfq_queue *cfqq;
3468         unsigned long flags;
3469
3470         might_sleep_if(gfp_mask & __GFP_WAIT);
3471
3472         cic = cfq_get_io_context(cfqd, gfp_mask);
3473
3474         spin_lock_irqsave(q->queue_lock, flags);
3475
3476         if (!cic)
3477                 goto queue_fail;
3478
3479 new_queue:
3480         cfqq = cic_to_cfqq(cic, is_sync);
3481         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3482                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3483                 cic_set_cfqq(cic, cfqq, is_sync);
3484         } else {
3485                 /*
3486                  * If the queue was seeky for too long, break it apart.
3487                  */
3488                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3489                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3490                         cfqq = split_cfqq(cic, cfqq);
3491                         if (!cfqq)
3492                                 goto new_queue;
3493                 }
3494
3495                 /*
3496                  * Check to see if this queue is scheduled to merge with
3497                  * another, closely cooperating queue.  The merging of
3498                  * queues happens here as it must be done in process context.
3499                  * The reference on new_cfqq was taken in merge_cfqqs.
3500                  */
3501                 if (cfqq->new_cfqq)
3502                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3503         }
3504
3505         cfqq->allocated[rw]++;
3506         atomic_inc(&cfqq->ref);
3507
3508         spin_unlock_irqrestore(q->queue_lock, flags);
3509
3510         rq->elevator_private = cic;
3511         rq->elevator_private2 = cfqq;
3512         return 0;
3513
3514 queue_fail:
3515         if (cic)
3516                 put_io_context(cic->ioc);
3517
3518         cfq_schedule_dispatch(cfqd);
3519         spin_unlock_irqrestore(q->queue_lock, flags);
3520         cfq_log(cfqd, "set_request fail");
3521         return 1;
3522 }
3523
3524 static void cfq_kick_queue(struct work_struct *work)
3525 {
3526         struct cfq_data *cfqd =
3527                 container_of(work, struct cfq_data, unplug_work);
3528         struct request_queue *q = cfqd->queue;
3529
3530         spin_lock_irq(q->queue_lock);
3531         __blk_run_queue(cfqd->queue);
3532         spin_unlock_irq(q->queue_lock);
3533 }
3534
3535 /*
3536  * Timer running if the active_queue is currently idling inside its time slice
3537  */
3538 static void cfq_idle_slice_timer(unsigned long data)
3539 {
3540         struct cfq_data *cfqd = (struct cfq_data *) data;
3541         struct cfq_queue *cfqq;
3542         unsigned long flags;
3543         int timed_out = 1;
3544
3545         cfq_log(cfqd, "idle timer fired");
3546
3547         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3548
3549         cfqq = cfqd->active_queue;
3550         if (cfqq) {
3551                 timed_out = 0;
3552
3553                 /*
3554                  * We saw a request before the queue expired, let it through
3555                  */
3556                 if (cfq_cfqq_must_dispatch(cfqq))
3557                         goto out_kick;
3558
3559                 /*
3560                  * expired
3561                  */
3562                 if (cfq_slice_used(cfqq))
3563                         goto expire;
3564
3565                 /*
3566                  * only expire and reinvoke request handler, if there are
3567                  * other queues with pending requests
3568                  */
3569                 if (!cfqd->busy_queues)
3570                         goto out_cont;
3571
3572                 /*
3573                  * not expired and it has a request pending, let it dispatch
3574                  */
3575                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3576                         goto out_kick;
3577
3578                 /*
3579                  * Queue depth flag is reset only when the idle didn't succeed
3580                  */
3581                 cfq_clear_cfqq_deep(cfqq);
3582         }
3583 expire:
3584         cfq_slice_expired(cfqd, timed_out);
3585 out_kick:
3586         cfq_schedule_dispatch(cfqd);
3587 out_cont:
3588         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3589 }
3590
3591 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3592 {
3593         del_timer_sync(&cfqd->idle_slice_timer);
3594         cancel_work_sync(&cfqd->unplug_work);
3595 }
3596
3597 static void cfq_put_async_queues(struct cfq_data *cfqd)
3598 {
3599         int i;
3600
3601         for (i = 0; i < IOPRIO_BE_NR; i++) {
3602                 if (cfqd->async_cfqq[0][i])
3603                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3604                 if (cfqd->async_cfqq[1][i])
3605                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3606         }
3607
3608         if (cfqd->async_idle_cfqq)
3609                 cfq_put_queue(cfqd->async_idle_cfqq);
3610 }
3611
3612 static void cfq_cfqd_free(struct rcu_head *head)
3613 {
3614         kfree(container_of(head, struct cfq_data, rcu));
3615 }
3616
3617 static void cfq_exit_queue(struct elevator_queue *e)
3618 {
3619         struct cfq_data *cfqd = e->elevator_data;
3620         struct request_queue *q = cfqd->queue;
3621
3622         cfq_shutdown_timer_wq(cfqd);
3623
3624         spin_lock_irq(q->queue_lock);
3625
3626         if (cfqd->active_queue)
3627                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3628
3629         while (!list_empty(&cfqd->cic_list)) {
3630                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3631                                                         struct cfq_io_context,
3632                                                         queue_list);
3633
3634                 __cfq_exit_single_io_context(cfqd, cic);
3635         }
3636
3637         cfq_put_async_queues(cfqd);
3638         cfq_release_cfq_groups(cfqd);
3639         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3640
3641         spin_unlock_irq(q->queue_lock);
3642
3643         cfq_shutdown_timer_wq(cfqd);
3644
3645         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3646         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3647 }
3648
3649 static void *cfq_init_queue(struct request_queue *q)
3650 {
3651         struct cfq_data *cfqd;
3652         int i, j;
3653         struct cfq_group *cfqg;
3654         struct cfq_rb_root *st;
3655
3656         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3657         if (!cfqd)
3658                 return NULL;
3659
3660         /* Init root service tree */
3661         cfqd->grp_service_tree = CFQ_RB_ROOT;
3662
3663         /* Init root group */
3664         cfqg = &cfqd->root_group;
3665         for_each_cfqg_st(cfqg, i, j, st)
3666                 *st = CFQ_RB_ROOT;
3667         RB_CLEAR_NODE(&cfqg->rb_node);
3668
3669         /* Give preference to root group over other groups */
3670         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3671
3672 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3673         /*
3674          * Take a reference to root group which we never drop. This is just
3675          * to make sure that cfq_put_cfqg() does not try to kfree root group
3676          */
3677         atomic_set(&cfqg->ref, 1);
3678         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3679                                         0);
3680 #endif
3681         /*
3682          * Not strictly needed (since RB_ROOT just clears the node and we
3683          * zeroed cfqd on alloc), but better be safe in case someone decides
3684          * to add magic to the rb code
3685          */
3686         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3687                 cfqd->prio_trees[i] = RB_ROOT;
3688
3689         /*
3690          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3691          * Grab a permanent reference to it, so that the normal code flow
3692          * will not attempt to free it.
3693          */
3694         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3695         atomic_inc(&cfqd->oom_cfqq.ref);
3696         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3697
3698         INIT_LIST_HEAD(&cfqd->cic_list);
3699
3700         cfqd->queue = q;
3701
3702         init_timer(&cfqd->idle_slice_timer);
3703         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3704         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3705
3706         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3707
3708         cfqd->cfq_quantum = cfq_quantum;
3709         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3710         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3711         cfqd->cfq_back_max = cfq_back_max;
3712         cfqd->cfq_back_penalty = cfq_back_penalty;
3713         cfqd->cfq_slice[0] = cfq_slice_async;
3714         cfqd->cfq_slice[1] = cfq_slice_sync;
3715         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3716         cfqd->cfq_slice_idle = cfq_slice_idle;
3717         cfqd->cfq_latency = 1;
3718         cfqd->cfq_group_isolation = 0;
3719         cfqd->hw_tag = -1;
3720         cfqd->last_delayed_sync = jiffies - HZ;
3721         INIT_RCU_HEAD(&cfqd->rcu);
3722         return cfqd;
3723 }
3724
3725 static void cfq_slab_kill(void)
3726 {
3727         /*
3728          * Caller already ensured that pending RCU callbacks are completed,
3729          * so we should have no busy allocations at this point.
3730          */
3731         if (cfq_pool)
3732                 kmem_cache_destroy(cfq_pool);
3733         if (cfq_ioc_pool)
3734                 kmem_cache_destroy(cfq_ioc_pool);
3735 }
3736
3737 static int __init cfq_slab_setup(void)
3738 {
3739         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3740         if (!cfq_pool)
3741                 goto fail;
3742
3743         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3744         if (!cfq_ioc_pool)
3745                 goto fail;
3746
3747         return 0;
3748 fail:
3749         cfq_slab_kill();
3750         return -ENOMEM;
3751 }
3752
3753 /*
3754  * sysfs parts below -->
3755  */
3756 static ssize_t
3757 cfq_var_show(unsigned int var, char *page)
3758 {
3759         return sprintf(page, "%d\n", var);
3760 }
3761
3762 static ssize_t
3763 cfq_var_store(unsigned int *var, const char *page, size_t count)
3764 {
3765         char *p = (char *) page;
3766
3767         *var = simple_strtoul(p, &p, 10);
3768         return count;
3769 }
3770
3771 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3772 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3773 {                                                                       \
3774         struct cfq_data *cfqd = e->elevator_data;                       \
3775         unsigned int __data = __VAR;                                    \
3776         if (__CONV)                                                     \
3777                 __data = jiffies_to_msecs(__data);                      \
3778         return cfq_var_show(__data, (page));                            \
3779 }
3780 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3781 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3782 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3783 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3784 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3785 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3786 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3787 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3788 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3789 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3790 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3791 #undef SHOW_FUNCTION
3792
3793 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3794 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3795 {                                                                       \
3796         struct cfq_data *cfqd = e->elevator_data;                       \
3797         unsigned int __data;                                            \
3798         int ret = cfq_var_store(&__data, (page), count);                \
3799         if (__data < (MIN))                                             \
3800                 __data = (MIN);                                         \
3801         else if (__data > (MAX))                                        \
3802                 __data = (MAX);                                         \
3803         if (__CONV)                                                     \
3804                 *(__PTR) = msecs_to_jiffies(__data);                    \
3805         else                                                            \
3806                 *(__PTR) = __data;                                      \
3807         return ret;                                                     \
3808 }
3809 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3810 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3811                 UINT_MAX, 1);
3812 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3813                 UINT_MAX, 1);
3814 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3815 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3816                 UINT_MAX, 0);
3817 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3818 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3819 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3820 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3821                 UINT_MAX, 0);
3822 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3823 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3824 #undef STORE_FUNCTION
3825
3826 #define CFQ_ATTR(name) \
3827         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3828
3829 static struct elv_fs_entry cfq_attrs[] = {
3830         CFQ_ATTR(quantum),
3831         CFQ_ATTR(fifo_expire_sync),
3832         CFQ_ATTR(fifo_expire_async),
3833         CFQ_ATTR(back_seek_max),
3834         CFQ_ATTR(back_seek_penalty),
3835         CFQ_ATTR(slice_sync),
3836         CFQ_ATTR(slice_async),
3837         CFQ_ATTR(slice_async_rq),
3838         CFQ_ATTR(slice_idle),
3839         CFQ_ATTR(low_latency),
3840         CFQ_ATTR(group_isolation),
3841         __ATTR_NULL
3842 };
3843
3844 static struct elevator_type iosched_cfq = {
3845         .ops = {
3846                 .elevator_merge_fn =            cfq_merge,
3847                 .elevator_merged_fn =           cfq_merged_request,
3848                 .elevator_merge_req_fn =        cfq_merged_requests,
3849                 .elevator_allow_merge_fn =      cfq_allow_merge,
3850                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3851                 .elevator_add_req_fn =          cfq_insert_request,
3852                 .elevator_activate_req_fn =     cfq_activate_request,
3853                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3854                 .elevator_queue_empty_fn =      cfq_queue_empty,
3855                 .elevator_completed_req_fn =    cfq_completed_request,
3856                 .elevator_former_req_fn =       elv_rb_former_request,
3857                 .elevator_latter_req_fn =       elv_rb_latter_request,
3858                 .elevator_set_req_fn =          cfq_set_request,
3859                 .elevator_put_req_fn =          cfq_put_request,
3860                 .elevator_may_queue_fn =        cfq_may_queue,
3861                 .elevator_init_fn =             cfq_init_queue,
3862                 .elevator_exit_fn =             cfq_exit_queue,
3863                 .trim =                         cfq_free_io_context,
3864         },
3865         .elevator_attrs =       cfq_attrs,
3866         .elevator_name =        "cfq",
3867         .elevator_owner =       THIS_MODULE,
3868 };
3869
3870 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3871 static struct blkio_policy_type blkio_policy_cfq = {
3872         .ops = {
3873                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3874                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3875         },
3876 };
3877 #else
3878 static struct blkio_policy_type blkio_policy_cfq;
3879 #endif
3880
3881 static int __init cfq_init(void)
3882 {
3883         /*
3884          * could be 0 on HZ < 1000 setups
3885          */
3886         if (!cfq_slice_async)
3887                 cfq_slice_async = 1;
3888         if (!cfq_slice_idle)
3889                 cfq_slice_idle = 1;
3890
3891         if (cfq_slab_setup())
3892                 return -ENOMEM;
3893
3894         elv_register(&iosched_cfq);
3895         blkio_policy_register(&blkio_policy_cfq);
3896
3897         return 0;
3898 }
3899
3900 static void __exit cfq_exit(void)
3901 {
3902         DECLARE_COMPLETION_ONSTACK(all_gone);
3903         blkio_policy_unregister(&blkio_policy_cfq);
3904         elv_unregister(&iosched_cfq);
3905         ioc_gone = &all_gone;
3906         /* ioc_gone's update must be visible before reading ioc_count */
3907         smp_wmb();
3908
3909         /*
3910          * this also protects us from entering cfq_slab_kill() with
3911          * pending RCU callbacks
3912          */
3913         if (elv_ioc_count_read(cfq_ioc_count))
3914                 wait_for_completion(&all_gone);
3915         cfq_slab_kill();
3916 }
3917
3918 module_init(cfq_init);
3919 module_exit(cfq_exit);
3920
3921 MODULE_AUTHOR("Jens Axboe");
3922 MODULE_LICENSE("GPL");
3923 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");