cfq-iosched: reimplement priorities using different service trees
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
31 static const int cfq_hist_divisor = 4;
32
33 /*
34  * offset from end of service tree
35  */
36 #define CFQ_IDLE_DELAY          (HZ / 5)
37
38 /*
39  * below this threshold, we consider thinktime immediate
40  */
41 #define CFQ_MIN_TT              (2)
42
43 /*
44  * Allow merged cfqqs to perform this amount of seeky I/O before
45  * deciding to break the queues up again.
46  */
47 #define CFQQ_COOP_TOUT          (HZ)
48
49 #define CFQ_SLICE_SCALE         (5)
50 #define CFQ_HW_QUEUE_MIN        (5)
51
52 #define RQ_CIC(rq)              \
53         ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
55
56 static struct kmem_cache *cfq_pool;
57 static struct kmem_cache *cfq_ioc_pool;
58
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60 static struct completion *ioc_gone;
61 static DEFINE_SPINLOCK(ioc_gone_lock);
62
63 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples)   ((samples) > 80)
68
69 /*
70  * Most of our rbtree usage is for sorting with min extraction, so
71  * if we cache the leftmost node we don't have to walk down the tree
72  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73  * move this into the elevator for the rq sorting as well.
74  */
75 struct cfq_rb_root {
76         struct rb_root rb;
77         struct rb_node *left;
78         unsigned count;
79 };
80 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
81
82 /*
83  * Per process-grouping structure
84  */
85 struct cfq_queue {
86         /* reference count */
87         atomic_t ref;
88         /* various state flags, see below */
89         unsigned int flags;
90         /* parent cfq_data */
91         struct cfq_data *cfqd;
92         /* service_tree member */
93         struct rb_node rb_node;
94         /* service_tree key */
95         unsigned long rb_key;
96         /* prio tree member */
97         struct rb_node p_node;
98         /* prio tree root we belong to, if any */
99         struct rb_root *p_root;
100         /* sorted list of pending requests */
101         struct rb_root sort_list;
102         /* if fifo isn't expired, next request to serve */
103         struct request *next_rq;
104         /* requests queued in sort_list */
105         int queued[2];
106         /* currently allocated requests */
107         int allocated[2];
108         /* fifo list of requests in sort_list */
109         struct list_head fifo;
110
111         unsigned long slice_end;
112         long slice_resid;
113         unsigned int slice_dispatch;
114
115         /* pending metadata requests */
116         int meta_pending;
117         /* number of requests that are on the dispatch list or inside driver */
118         int dispatched;
119
120         /* io prio of this group */
121         unsigned short ioprio, org_ioprio;
122         unsigned short ioprio_class, org_ioprio_class;
123
124         unsigned int seek_samples;
125         u64 seek_total;
126         sector_t seek_mean;
127         sector_t last_request_pos;
128         unsigned long seeky_start;
129
130         pid_t pid;
131
132         struct cfq_rb_root *service_tree;
133         struct cfq_queue *new_cfqq;
134 };
135
136 /*
137  * Index in the service_trees.
138  * IDLE is handled separately, so it has negative index
139  */
140 enum wl_prio_t {
141         IDLE_WORKLOAD = -1,
142         BE_WORKLOAD = 0,
143         RT_WORKLOAD = 1
144 };
145
146 /*
147  * Per block device queue structure
148  */
149 struct cfq_data {
150         struct request_queue *queue;
151
152         /*
153          * rr lists of queues with requests, onle rr for each priority class.
154          * Counts are embedded in the cfq_rb_root
155          */
156         struct cfq_rb_root service_trees[2];
157         struct cfq_rb_root service_tree_idle;
158         /*
159          * The priority currently being served
160          */
161         enum wl_prio_t serving_prio;
162
163         /*
164          * Each priority tree is sorted by next_request position.  These
165          * trees are used when determining if two or more queues are
166          * interleaving requests (see cfq_close_cooperator).
167          */
168         struct rb_root prio_trees[CFQ_PRIO_LISTS];
169
170         unsigned int busy_queues;
171         unsigned int busy_queues_avg[2];
172
173         int rq_in_driver[2];
174         int sync_flight;
175
176         /*
177          * queue-depth detection
178          */
179         int rq_queued;
180         int hw_tag;
181         int hw_tag_samples;
182         int rq_in_driver_peak;
183
184         /*
185          * idle window management
186          */
187         struct timer_list idle_slice_timer;
188         struct work_struct unplug_work;
189
190         struct cfq_queue *active_queue;
191         struct cfq_io_context *active_cic;
192
193         /*
194          * async queue for each priority case
195          */
196         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
197         struct cfq_queue *async_idle_cfqq;
198
199         sector_t last_position;
200
201         /*
202          * tunables, see top of file
203          */
204         unsigned int cfq_quantum;
205         unsigned int cfq_fifo_expire[2];
206         unsigned int cfq_back_penalty;
207         unsigned int cfq_back_max;
208         unsigned int cfq_slice[2];
209         unsigned int cfq_slice_async_rq;
210         unsigned int cfq_slice_idle;
211         unsigned int cfq_latency;
212
213         struct list_head cic_list;
214
215         /*
216          * Fallback dummy cfqq for extreme OOM conditions
217          */
218         struct cfq_queue oom_cfqq;
219
220         unsigned long last_end_sync_rq;
221 };
222
223 static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
224                                             struct cfq_data *cfqd)
225 {
226         if (prio == IDLE_WORKLOAD)
227                 return &cfqd->service_tree_idle;
228
229         return &cfqd->service_trees[prio];
230 }
231
232 enum cfqq_state_flags {
233         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
234         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
235         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
236         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
237         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
238         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
239         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
240         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
241         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
242         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
243 };
244
245 #define CFQ_CFQQ_FNS(name)                                              \
246 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
247 {                                                                       \
248         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
249 }                                                                       \
250 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
251 {                                                                       \
252         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
253 }                                                                       \
254 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
255 {                                                                       \
256         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
257 }
258
259 CFQ_CFQQ_FNS(on_rr);
260 CFQ_CFQQ_FNS(wait_request);
261 CFQ_CFQQ_FNS(must_dispatch);
262 CFQ_CFQQ_FNS(must_alloc_slice);
263 CFQ_CFQQ_FNS(fifo_expire);
264 CFQ_CFQQ_FNS(idle_window);
265 CFQ_CFQQ_FNS(prio_changed);
266 CFQ_CFQQ_FNS(slice_new);
267 CFQ_CFQQ_FNS(sync);
268 CFQ_CFQQ_FNS(coop);
269 #undef CFQ_CFQQ_FNS
270
271 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
272         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
273 #define cfq_log(cfqd, fmt, args...)     \
274         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
275
276 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
277 {
278         if (cfq_class_idle(cfqq))
279                 return IDLE_WORKLOAD;
280         if (cfq_class_rt(cfqq))
281                 return RT_WORKLOAD;
282         return BE_WORKLOAD;
283 }
284
285 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
286 {
287         if (wl == IDLE_WORKLOAD)
288                 return cfqd->service_tree_idle.count;
289
290         return cfqd->service_trees[wl].count;
291 }
292
293 static void cfq_dispatch_insert(struct request_queue *, struct request *);
294 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
295                                        struct io_context *, gfp_t);
296 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
297                                                 struct io_context *);
298
299 static inline int rq_in_driver(struct cfq_data *cfqd)
300 {
301         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
302 }
303
304 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
305                                             bool is_sync)
306 {
307         return cic->cfqq[is_sync];
308 }
309
310 static inline void cic_set_cfqq(struct cfq_io_context *cic,
311                                 struct cfq_queue *cfqq, bool is_sync)
312 {
313         cic->cfqq[is_sync] = cfqq;
314 }
315
316 /*
317  * We regard a request as SYNC, if it's either a read or has the SYNC bit
318  * set (in which case it could also be direct WRITE).
319  */
320 static inline bool cfq_bio_sync(struct bio *bio)
321 {
322         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
323 }
324
325 /*
326  * scheduler run of queue, if there are requests pending and no one in the
327  * driver that will restart queueing
328  */
329 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
330 {
331         if (cfqd->busy_queues) {
332                 cfq_log(cfqd, "schedule dispatch");
333                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
334         }
335 }
336
337 static int cfq_queue_empty(struct request_queue *q)
338 {
339         struct cfq_data *cfqd = q->elevator->elevator_data;
340
341         return !cfqd->busy_queues;
342 }
343
344 /*
345  * Scale schedule slice based on io priority. Use the sync time slice only
346  * if a queue is marked sync and has sync io queued. A sync queue with async
347  * io only, should not get full sync slice length.
348  */
349 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
350                                  unsigned short prio)
351 {
352         const int base_slice = cfqd->cfq_slice[sync];
353
354         WARN_ON(prio >= IOPRIO_BE_NR);
355
356         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
357 }
358
359 static inline int
360 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
361 {
362         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
363 }
364
365 /*
366  * get averaged number of queues of RT/BE priority.
367  * average is updated, with a formula that gives more weight to higher numbers,
368  * to quickly follows sudden increases and decrease slowly
369  */
370
371 static inline unsigned
372 cfq_get_avg_queues(struct cfq_data *cfqd, bool rt) {
373         unsigned min_q, max_q;
374         unsigned mult  = cfq_hist_divisor - 1;
375         unsigned round = cfq_hist_divisor / 2;
376         unsigned busy = cfq_busy_queues_wl(rt, cfqd);
377
378         min_q = min(cfqd->busy_queues_avg[rt], busy);
379         max_q = max(cfqd->busy_queues_avg[rt], busy);
380         cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
381                 cfq_hist_divisor;
382         return cfqd->busy_queues_avg[rt];
383 }
384
385 static inline void
386 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
387 {
388         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
389         if (cfqd->cfq_latency) {
390                 /* interested queues (we consider only the ones with the same
391                  * priority class) */
392                 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
393                 unsigned sync_slice = cfqd->cfq_slice[1];
394                 unsigned expect_latency = sync_slice * iq;
395                 if (expect_latency > cfq_target_latency) {
396                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
397                         /* scale low_slice according to IO priority
398                          * and sync vs async */
399                         unsigned low_slice =
400                                 min(slice, base_low_slice * slice / sync_slice);
401                         /* the adapted slice value is scaled to fit all iqs
402                          * into the target latency */
403                         slice = max(slice * cfq_target_latency / expect_latency,
404                                     low_slice);
405                 }
406         }
407         cfqq->slice_end = jiffies + slice;
408         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
409 }
410
411 /*
412  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
413  * isn't valid until the first request from the dispatch is activated
414  * and the slice time set.
415  */
416 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
417 {
418         if (cfq_cfqq_slice_new(cfqq))
419                 return 0;
420         if (time_before(jiffies, cfqq->slice_end))
421                 return 0;
422
423         return 1;
424 }
425
426 /*
427  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
428  * We choose the request that is closest to the head right now. Distance
429  * behind the head is penalized and only allowed to a certain extent.
430  */
431 static struct request *
432 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
433 {
434         sector_t last, s1, s2, d1 = 0, d2 = 0;
435         unsigned long back_max;
436 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
437 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
438         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
439
440         if (rq1 == NULL || rq1 == rq2)
441                 return rq2;
442         if (rq2 == NULL)
443                 return rq1;
444
445         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
446                 return rq1;
447         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
448                 return rq2;
449         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
450                 return rq1;
451         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
452                 return rq2;
453
454         s1 = blk_rq_pos(rq1);
455         s2 = blk_rq_pos(rq2);
456
457         last = cfqd->last_position;
458
459         /*
460          * by definition, 1KiB is 2 sectors
461          */
462         back_max = cfqd->cfq_back_max * 2;
463
464         /*
465          * Strict one way elevator _except_ in the case where we allow
466          * short backward seeks which are biased as twice the cost of a
467          * similar forward seek.
468          */
469         if (s1 >= last)
470                 d1 = s1 - last;
471         else if (s1 + back_max >= last)
472                 d1 = (last - s1) * cfqd->cfq_back_penalty;
473         else
474                 wrap |= CFQ_RQ1_WRAP;
475
476         if (s2 >= last)
477                 d2 = s2 - last;
478         else if (s2 + back_max >= last)
479                 d2 = (last - s2) * cfqd->cfq_back_penalty;
480         else
481                 wrap |= CFQ_RQ2_WRAP;
482
483         /* Found required data */
484
485         /*
486          * By doing switch() on the bit mask "wrap" we avoid having to
487          * check two variables for all permutations: --> faster!
488          */
489         switch (wrap) {
490         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
491                 if (d1 < d2)
492                         return rq1;
493                 else if (d2 < d1)
494                         return rq2;
495                 else {
496                         if (s1 >= s2)
497                                 return rq1;
498                         else
499                                 return rq2;
500                 }
501
502         case CFQ_RQ2_WRAP:
503                 return rq1;
504         case CFQ_RQ1_WRAP:
505                 return rq2;
506         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
507         default:
508                 /*
509                  * Since both rqs are wrapped,
510                  * start with the one that's further behind head
511                  * (--> only *one* back seek required),
512                  * since back seek takes more time than forward.
513                  */
514                 if (s1 <= s2)
515                         return rq1;
516                 else
517                         return rq2;
518         }
519 }
520
521 /*
522  * The below is leftmost cache rbtree addon
523  */
524 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
525 {
526         if (!root->left)
527                 root->left = rb_first(&root->rb);
528
529         if (root->left)
530                 return rb_entry(root->left, struct cfq_queue, rb_node);
531
532         return NULL;
533 }
534
535 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
536 {
537         rb_erase(n, root);
538         RB_CLEAR_NODE(n);
539 }
540
541 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
542 {
543         if (root->left == n)
544                 root->left = NULL;
545         rb_erase_init(n, &root->rb);
546         --root->count;
547 }
548
549 /*
550  * would be nice to take fifo expire time into account as well
551  */
552 static struct request *
553 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
554                   struct request *last)
555 {
556         struct rb_node *rbnext = rb_next(&last->rb_node);
557         struct rb_node *rbprev = rb_prev(&last->rb_node);
558         struct request *next = NULL, *prev = NULL;
559
560         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
561
562         if (rbprev)
563                 prev = rb_entry_rq(rbprev);
564
565         if (rbnext)
566                 next = rb_entry_rq(rbnext);
567         else {
568                 rbnext = rb_first(&cfqq->sort_list);
569                 if (rbnext && rbnext != &last->rb_node)
570                         next = rb_entry_rq(rbnext);
571         }
572
573         return cfq_choose_req(cfqd, next, prev);
574 }
575
576 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
577                                       struct cfq_queue *cfqq)
578 {
579         /*
580          * just an approximation, should be ok.
581          */
582         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
583                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
584 }
585
586 /*
587  * The cfqd->service_trees holds all pending cfq_queue's that have
588  * requests waiting to be processed. It is sorted in the order that
589  * we will service the queues.
590  */
591 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
592                                  bool add_front)
593 {
594         struct rb_node **p, *parent;
595         struct cfq_queue *__cfqq;
596         unsigned long rb_key;
597         struct cfq_rb_root *service_tree;
598         int left;
599
600         service_tree = service_tree_for(cfqq_prio(cfqq), cfqd);
601         if (cfq_class_idle(cfqq)) {
602                 rb_key = CFQ_IDLE_DELAY;
603                 parent = rb_last(&service_tree->rb);
604                 if (parent && parent != &cfqq->rb_node) {
605                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
606                         rb_key += __cfqq->rb_key;
607                 } else
608                         rb_key += jiffies;
609         } else if (!add_front) {
610                 /*
611                  * Get our rb key offset. Subtract any residual slice
612                  * value carried from last service. A negative resid
613                  * count indicates slice overrun, and this should position
614                  * the next service time further away in the tree.
615                  */
616                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
617                 rb_key -= cfqq->slice_resid;
618                 cfqq->slice_resid = 0;
619         } else {
620                 rb_key = -HZ;
621                 __cfqq = cfq_rb_first(service_tree);
622                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
623         }
624
625         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
626                 /*
627                  * same position, nothing more to do
628                  */
629                 if (rb_key == cfqq->rb_key &&
630                     cfqq->service_tree == service_tree)
631                         return;
632
633                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
634                 cfqq->service_tree = NULL;
635         }
636
637         left = 1;
638         parent = NULL;
639         cfqq->service_tree = service_tree;
640         p = &service_tree->rb.rb_node;
641         while (*p) {
642                 struct rb_node **n;
643
644                 parent = *p;
645                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
646
647                 /*
648                  * sort by key, that represents service time.
649                  */
650                 if (time_before(rb_key, __cfqq->rb_key))
651                         n = &(*p)->rb_left;
652                 else {
653                         n = &(*p)->rb_right;
654                         left = 0;
655                 }
656
657                 p = n;
658         }
659
660         if (left)
661                 service_tree->left = &cfqq->rb_node;
662
663         cfqq->rb_key = rb_key;
664         rb_link_node(&cfqq->rb_node, parent, p);
665         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
666         service_tree->count++;
667 }
668
669 static struct cfq_queue *
670 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
671                      sector_t sector, struct rb_node **ret_parent,
672                      struct rb_node ***rb_link)
673 {
674         struct rb_node **p, *parent;
675         struct cfq_queue *cfqq = NULL;
676
677         parent = NULL;
678         p = &root->rb_node;
679         while (*p) {
680                 struct rb_node **n;
681
682                 parent = *p;
683                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
684
685                 /*
686                  * Sort strictly based on sector.  Smallest to the left,
687                  * largest to the right.
688                  */
689                 if (sector > blk_rq_pos(cfqq->next_rq))
690                         n = &(*p)->rb_right;
691                 else if (sector < blk_rq_pos(cfqq->next_rq))
692                         n = &(*p)->rb_left;
693                 else
694                         break;
695                 p = n;
696                 cfqq = NULL;
697         }
698
699         *ret_parent = parent;
700         if (rb_link)
701                 *rb_link = p;
702         return cfqq;
703 }
704
705 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
706 {
707         struct rb_node **p, *parent;
708         struct cfq_queue *__cfqq;
709
710         if (cfqq->p_root) {
711                 rb_erase(&cfqq->p_node, cfqq->p_root);
712                 cfqq->p_root = NULL;
713         }
714
715         if (cfq_class_idle(cfqq))
716                 return;
717         if (!cfqq->next_rq)
718                 return;
719
720         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
721         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
722                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
723         if (!__cfqq) {
724                 rb_link_node(&cfqq->p_node, parent, p);
725                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
726         } else
727                 cfqq->p_root = NULL;
728 }
729
730 /*
731  * Update cfqq's position in the service tree.
732  */
733 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
734 {
735         /*
736          * Resorting requires the cfqq to be on the RR list already.
737          */
738         if (cfq_cfqq_on_rr(cfqq)) {
739                 cfq_service_tree_add(cfqd, cfqq, 0);
740                 cfq_prio_tree_add(cfqd, cfqq);
741         }
742 }
743
744 /*
745  * add to busy list of queues for service, trying to be fair in ordering
746  * the pending list according to last request service
747  */
748 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
749 {
750         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
751         BUG_ON(cfq_cfqq_on_rr(cfqq));
752         cfq_mark_cfqq_on_rr(cfqq);
753         cfqd->busy_queues++;
754
755         cfq_resort_rr_list(cfqd, cfqq);
756 }
757
758 /*
759  * Called when the cfqq no longer has requests pending, remove it from
760  * the service tree.
761  */
762 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
763 {
764         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
765         BUG_ON(!cfq_cfqq_on_rr(cfqq));
766         cfq_clear_cfqq_on_rr(cfqq);
767
768         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
769                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
770                 cfqq->service_tree = NULL;
771         }
772         if (cfqq->p_root) {
773                 rb_erase(&cfqq->p_node, cfqq->p_root);
774                 cfqq->p_root = NULL;
775         }
776
777         BUG_ON(!cfqd->busy_queues);
778         cfqd->busy_queues--;
779 }
780
781 /*
782  * rb tree support functions
783  */
784 static void cfq_del_rq_rb(struct request *rq)
785 {
786         struct cfq_queue *cfqq = RQ_CFQQ(rq);
787         struct cfq_data *cfqd = cfqq->cfqd;
788         const int sync = rq_is_sync(rq);
789
790         BUG_ON(!cfqq->queued[sync]);
791         cfqq->queued[sync]--;
792
793         elv_rb_del(&cfqq->sort_list, rq);
794
795         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
796                 cfq_del_cfqq_rr(cfqd, cfqq);
797 }
798
799 static void cfq_add_rq_rb(struct request *rq)
800 {
801         struct cfq_queue *cfqq = RQ_CFQQ(rq);
802         struct cfq_data *cfqd = cfqq->cfqd;
803         struct request *__alias, *prev;
804
805         cfqq->queued[rq_is_sync(rq)]++;
806
807         /*
808          * looks a little odd, but the first insert might return an alias.
809          * if that happens, put the alias on the dispatch list
810          */
811         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
812                 cfq_dispatch_insert(cfqd->queue, __alias);
813
814         if (!cfq_cfqq_on_rr(cfqq))
815                 cfq_add_cfqq_rr(cfqd, cfqq);
816
817         /*
818          * check if this request is a better next-serve candidate
819          */
820         prev = cfqq->next_rq;
821         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
822
823         /*
824          * adjust priority tree position, if ->next_rq changes
825          */
826         if (prev != cfqq->next_rq)
827                 cfq_prio_tree_add(cfqd, cfqq);
828
829         BUG_ON(!cfqq->next_rq);
830 }
831
832 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
833 {
834         elv_rb_del(&cfqq->sort_list, rq);
835         cfqq->queued[rq_is_sync(rq)]--;
836         cfq_add_rq_rb(rq);
837 }
838
839 static struct request *
840 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
841 {
842         struct task_struct *tsk = current;
843         struct cfq_io_context *cic;
844         struct cfq_queue *cfqq;
845
846         cic = cfq_cic_lookup(cfqd, tsk->io_context);
847         if (!cic)
848                 return NULL;
849
850         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
851         if (cfqq) {
852                 sector_t sector = bio->bi_sector + bio_sectors(bio);
853
854                 return elv_rb_find(&cfqq->sort_list, sector);
855         }
856
857         return NULL;
858 }
859
860 static void cfq_activate_request(struct request_queue *q, struct request *rq)
861 {
862         struct cfq_data *cfqd = q->elevator->elevator_data;
863
864         cfqd->rq_in_driver[rq_is_sync(rq)]++;
865         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
866                                                 rq_in_driver(cfqd));
867
868         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
869 }
870
871 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
872 {
873         struct cfq_data *cfqd = q->elevator->elevator_data;
874         const int sync = rq_is_sync(rq);
875
876         WARN_ON(!cfqd->rq_in_driver[sync]);
877         cfqd->rq_in_driver[sync]--;
878         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
879                                                 rq_in_driver(cfqd));
880 }
881
882 static void cfq_remove_request(struct request *rq)
883 {
884         struct cfq_queue *cfqq = RQ_CFQQ(rq);
885
886         if (cfqq->next_rq == rq)
887                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
888
889         list_del_init(&rq->queuelist);
890         cfq_del_rq_rb(rq);
891
892         cfqq->cfqd->rq_queued--;
893         if (rq_is_meta(rq)) {
894                 WARN_ON(!cfqq->meta_pending);
895                 cfqq->meta_pending--;
896         }
897 }
898
899 static int cfq_merge(struct request_queue *q, struct request **req,
900                      struct bio *bio)
901 {
902         struct cfq_data *cfqd = q->elevator->elevator_data;
903         struct request *__rq;
904
905         __rq = cfq_find_rq_fmerge(cfqd, bio);
906         if (__rq && elv_rq_merge_ok(__rq, bio)) {
907                 *req = __rq;
908                 return ELEVATOR_FRONT_MERGE;
909         }
910
911         return ELEVATOR_NO_MERGE;
912 }
913
914 static void cfq_merged_request(struct request_queue *q, struct request *req,
915                                int type)
916 {
917         if (type == ELEVATOR_FRONT_MERGE) {
918                 struct cfq_queue *cfqq = RQ_CFQQ(req);
919
920                 cfq_reposition_rq_rb(cfqq, req);
921         }
922 }
923
924 static void
925 cfq_merged_requests(struct request_queue *q, struct request *rq,
926                     struct request *next)
927 {
928         /*
929          * reposition in fifo if next is older than rq
930          */
931         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
932             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
933                 list_move(&rq->queuelist, &next->queuelist);
934                 rq_set_fifo_time(rq, rq_fifo_time(next));
935         }
936
937         cfq_remove_request(next);
938 }
939
940 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
941                            struct bio *bio)
942 {
943         struct cfq_data *cfqd = q->elevator->elevator_data;
944         struct cfq_io_context *cic;
945         struct cfq_queue *cfqq;
946
947         /*
948          * Disallow merge of a sync bio into an async request.
949          */
950         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
951                 return false;
952
953         /*
954          * Lookup the cfqq that this bio will be queued with. Allow
955          * merge only if rq is queued there.
956          */
957         cic = cfq_cic_lookup(cfqd, current->io_context);
958         if (!cic)
959                 return false;
960
961         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
962         return cfqq == RQ_CFQQ(rq);
963 }
964
965 static void __cfq_set_active_queue(struct cfq_data *cfqd,
966                                    struct cfq_queue *cfqq)
967 {
968         if (cfqq) {
969                 cfq_log_cfqq(cfqd, cfqq, "set_active");
970                 cfqq->slice_end = 0;
971                 cfqq->slice_dispatch = 0;
972
973                 cfq_clear_cfqq_wait_request(cfqq);
974                 cfq_clear_cfqq_must_dispatch(cfqq);
975                 cfq_clear_cfqq_must_alloc_slice(cfqq);
976                 cfq_clear_cfqq_fifo_expire(cfqq);
977                 cfq_mark_cfqq_slice_new(cfqq);
978
979                 del_timer(&cfqd->idle_slice_timer);
980         }
981
982         cfqd->active_queue = cfqq;
983 }
984
985 /*
986  * current cfqq expired its slice (or was too idle), select new one
987  */
988 static void
989 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
990                     bool timed_out)
991 {
992         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
993
994         if (cfq_cfqq_wait_request(cfqq))
995                 del_timer(&cfqd->idle_slice_timer);
996
997         cfq_clear_cfqq_wait_request(cfqq);
998
999         /*
1000          * store what was left of this slice, if the queue idled/timed out
1001          */
1002         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1003                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1004                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1005         }
1006
1007         cfq_resort_rr_list(cfqd, cfqq);
1008
1009         if (cfqq == cfqd->active_queue)
1010                 cfqd->active_queue = NULL;
1011
1012         if (cfqd->active_cic) {
1013                 put_io_context(cfqd->active_cic->ioc);
1014                 cfqd->active_cic = NULL;
1015         }
1016 }
1017
1018 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1019 {
1020         struct cfq_queue *cfqq = cfqd->active_queue;
1021
1022         if (cfqq)
1023                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1024 }
1025
1026 /*
1027  * Get next queue for service. Unless we have a queue preemption,
1028  * we'll simply select the first cfqq in the service tree.
1029  */
1030 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1031 {
1032         struct cfq_rb_root *service_tree =
1033                 service_tree_for(cfqd->serving_prio, cfqd);
1034
1035         if (RB_EMPTY_ROOT(&service_tree->rb))
1036                 return NULL;
1037         return cfq_rb_first(service_tree);
1038 }
1039
1040 /*
1041  * Get and set a new active queue for service.
1042  */
1043 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1044                                               struct cfq_queue *cfqq)
1045 {
1046         if (!cfqq)
1047                 cfqq = cfq_get_next_queue(cfqd);
1048
1049         __cfq_set_active_queue(cfqd, cfqq);
1050         return cfqq;
1051 }
1052
1053 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1054                                           struct request *rq)
1055 {
1056         if (blk_rq_pos(rq) >= cfqd->last_position)
1057                 return blk_rq_pos(rq) - cfqd->last_position;
1058         else
1059                 return cfqd->last_position - blk_rq_pos(rq);
1060 }
1061
1062 #define CFQQ_SEEK_THR           8 * 1024
1063 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1064
1065 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1066                                struct request *rq)
1067 {
1068         sector_t sdist = cfqq->seek_mean;
1069
1070         if (!sample_valid(cfqq->seek_samples))
1071                 sdist = CFQQ_SEEK_THR;
1072
1073         return cfq_dist_from_last(cfqd, rq) <= sdist;
1074 }
1075
1076 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1077                                     struct cfq_queue *cur_cfqq)
1078 {
1079         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1080         struct rb_node *parent, *node;
1081         struct cfq_queue *__cfqq;
1082         sector_t sector = cfqd->last_position;
1083
1084         if (RB_EMPTY_ROOT(root))
1085                 return NULL;
1086
1087         /*
1088          * First, if we find a request starting at the end of the last
1089          * request, choose it.
1090          */
1091         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1092         if (__cfqq)
1093                 return __cfqq;
1094
1095         /*
1096          * If the exact sector wasn't found, the parent of the NULL leaf
1097          * will contain the closest sector.
1098          */
1099         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1100         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1101                 return __cfqq;
1102
1103         if (blk_rq_pos(__cfqq->next_rq) < sector)
1104                 node = rb_next(&__cfqq->p_node);
1105         else
1106                 node = rb_prev(&__cfqq->p_node);
1107         if (!node)
1108                 return NULL;
1109
1110         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1111         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1112                 return __cfqq;
1113
1114         return NULL;
1115 }
1116
1117 /*
1118  * cfqd - obvious
1119  * cur_cfqq - passed in so that we don't decide that the current queue is
1120  *            closely cooperating with itself.
1121  *
1122  * So, basically we're assuming that that cur_cfqq has dispatched at least
1123  * one request, and that cfqd->last_position reflects a position on the disk
1124  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1125  * assumption.
1126  */
1127 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1128                                               struct cfq_queue *cur_cfqq)
1129 {
1130         struct cfq_queue *cfqq;
1131
1132         if (!cfq_cfqq_sync(cur_cfqq))
1133                 return NULL;
1134         if (CFQQ_SEEKY(cur_cfqq))
1135                 return NULL;
1136
1137         /*
1138          * We should notice if some of the queues are cooperating, eg
1139          * working closely on the same area of the disk. In that case,
1140          * we can group them together and don't waste time idling.
1141          */
1142         cfqq = cfqq_close(cfqd, cur_cfqq);
1143         if (!cfqq)
1144                 return NULL;
1145
1146         /*
1147          * It only makes sense to merge sync queues.
1148          */
1149         if (!cfq_cfqq_sync(cfqq))
1150                 return NULL;
1151         if (CFQQ_SEEKY(cfqq))
1152                 return NULL;
1153
1154         /*
1155          * Do not merge queues of different priority classes
1156          */
1157         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1158                 return NULL;
1159
1160         return cfqq;
1161 }
1162
1163 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1164 {
1165         struct cfq_queue *cfqq = cfqd->active_queue;
1166         struct cfq_io_context *cic;
1167         unsigned long sl;
1168
1169         /*
1170          * SSD device without seek penalty, disable idling. But only do so
1171          * for devices that support queuing, otherwise we still have a problem
1172          * with sync vs async workloads.
1173          */
1174         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1175                 return;
1176
1177         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1178         WARN_ON(cfq_cfqq_slice_new(cfqq));
1179
1180         /*
1181          * idle is disabled, either manually or by past process history
1182          */
1183         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1184                 return;
1185
1186         /*
1187          * still requests with the driver, don't idle
1188          */
1189         if (rq_in_driver(cfqd))
1190                 return;
1191
1192         /*
1193          * task has exited, don't wait
1194          */
1195         cic = cfqd->active_cic;
1196         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1197                 return;
1198
1199         /*
1200          * If our average think time is larger than the remaining time
1201          * slice, then don't idle. This avoids overrunning the allotted
1202          * time slice.
1203          */
1204         if (sample_valid(cic->ttime_samples) &&
1205             (cfqq->slice_end - jiffies < cic->ttime_mean))
1206                 return;
1207
1208         cfq_mark_cfqq_wait_request(cfqq);
1209
1210         /*
1211          * we don't want to idle for seeks, but we do want to allow
1212          * fair distribution of slice time for a process doing back-to-back
1213          * seeks. so allow a little bit of time for him to submit a new rq
1214          */
1215         sl = cfqd->cfq_slice_idle;
1216         if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
1217                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1218
1219         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1220         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1221 }
1222
1223 /*
1224  * Move request from internal lists to the request queue dispatch list.
1225  */
1226 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1227 {
1228         struct cfq_data *cfqd = q->elevator->elevator_data;
1229         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1230
1231         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1232
1233         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1234         cfq_remove_request(rq);
1235         cfqq->dispatched++;
1236         elv_dispatch_sort(q, rq);
1237
1238         if (cfq_cfqq_sync(cfqq))
1239                 cfqd->sync_flight++;
1240 }
1241
1242 /*
1243  * return expired entry, or NULL to just start from scratch in rbtree
1244  */
1245 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1246 {
1247         struct request *rq = NULL;
1248
1249         if (cfq_cfqq_fifo_expire(cfqq))
1250                 return NULL;
1251
1252         cfq_mark_cfqq_fifo_expire(cfqq);
1253
1254         if (list_empty(&cfqq->fifo))
1255                 return NULL;
1256
1257         rq = rq_entry_fifo(cfqq->fifo.next);
1258         if (time_before(jiffies, rq_fifo_time(rq)))
1259                 rq = NULL;
1260
1261         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1262         return rq;
1263 }
1264
1265 static inline int
1266 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1267 {
1268         const int base_rq = cfqd->cfq_slice_async_rq;
1269
1270         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1271
1272         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1273 }
1274
1275 /*
1276  * Must be called with the queue_lock held.
1277  */
1278 static int cfqq_process_refs(struct cfq_queue *cfqq)
1279 {
1280         int process_refs, io_refs;
1281
1282         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1283         process_refs = atomic_read(&cfqq->ref) - io_refs;
1284         BUG_ON(process_refs < 0);
1285         return process_refs;
1286 }
1287
1288 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1289 {
1290         int process_refs, new_process_refs;
1291         struct cfq_queue *__cfqq;
1292
1293         /* Avoid a circular list and skip interim queue merges */
1294         while ((__cfqq = new_cfqq->new_cfqq)) {
1295                 if (__cfqq == cfqq)
1296                         return;
1297                 new_cfqq = __cfqq;
1298         }
1299
1300         process_refs = cfqq_process_refs(cfqq);
1301         /*
1302          * If the process for the cfqq has gone away, there is no
1303          * sense in merging the queues.
1304          */
1305         if (process_refs == 0)
1306                 return;
1307
1308         /*
1309          * Merge in the direction of the lesser amount of work.
1310          */
1311         new_process_refs = cfqq_process_refs(new_cfqq);
1312         if (new_process_refs >= process_refs) {
1313                 cfqq->new_cfqq = new_cfqq;
1314                 atomic_add(process_refs, &new_cfqq->ref);
1315         } else {
1316                 new_cfqq->new_cfqq = cfqq;
1317                 atomic_add(new_process_refs, &cfqq->ref);
1318         }
1319 }
1320
1321 /*
1322  * Select a queue for service. If we have a current active queue,
1323  * check whether to continue servicing it, or retrieve and set a new one.
1324  */
1325 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1326 {
1327         struct cfq_queue *cfqq, *new_cfqq = NULL;
1328
1329         cfqq = cfqd->active_queue;
1330         if (!cfqq)
1331                 goto new_queue;
1332
1333         /*
1334          * The active queue has run out of time, expire it and select new.
1335          */
1336         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1337                 goto expire;
1338
1339         /*
1340          * The active queue has requests and isn't expired, allow it to
1341          * dispatch.
1342          */
1343         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1344                 goto keep_queue;
1345
1346         /*
1347          * If another queue has a request waiting within our mean seek
1348          * distance, let it run.  The expire code will check for close
1349          * cooperators and put the close queue at the front of the service
1350          * tree.  If possible, merge the expiring queue with the new cfqq.
1351          */
1352         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1353         if (new_cfqq) {
1354                 if (!cfqq->new_cfqq)
1355                         cfq_setup_merge(cfqq, new_cfqq);
1356                 goto expire;
1357         }
1358
1359         /*
1360          * No requests pending. If the active queue still has requests in
1361          * flight or is idling for a new request, allow either of these
1362          * conditions to happen (or time out) before selecting a new queue.
1363          */
1364         if (timer_pending(&cfqd->idle_slice_timer) ||
1365             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1366                 cfqq = NULL;
1367                 goto keep_queue;
1368         }
1369
1370 expire:
1371         cfq_slice_expired(cfqd, 0);
1372 new_queue:
1373         if (!new_cfqq) {
1374                 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1375                         cfqd->serving_prio = RT_WORKLOAD;
1376                 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1377                         cfqd->serving_prio = BE_WORKLOAD;
1378                 else
1379                         cfqd->serving_prio = IDLE_WORKLOAD;
1380         }
1381         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1382 keep_queue:
1383         return cfqq;
1384 }
1385
1386 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1387 {
1388         int dispatched = 0;
1389
1390         while (cfqq->next_rq) {
1391                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1392                 dispatched++;
1393         }
1394
1395         BUG_ON(!list_empty(&cfqq->fifo));
1396         return dispatched;
1397 }
1398
1399 /*
1400  * Drain our current requests. Used for barriers and when switching
1401  * io schedulers on-the-fly.
1402  */
1403 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1404 {
1405         struct cfq_queue *cfqq;
1406         int dispatched = 0;
1407         int i;
1408         for (i = 0; i < 2; ++i)
1409                 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i])) != NULL)
1410                         dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1411
1412         while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1413                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1414
1415         cfq_slice_expired(cfqd, 0);
1416
1417         BUG_ON(cfqd->busy_queues);
1418
1419         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1420         return dispatched;
1421 }
1422
1423 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1424 {
1425         unsigned int max_dispatch;
1426
1427         /*
1428          * Drain async requests before we start sync IO
1429          */
1430         if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1431                 return false;
1432
1433         /*
1434          * If this is an async queue and we have sync IO in flight, let it wait
1435          */
1436         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1437                 return false;
1438
1439         max_dispatch = cfqd->cfq_quantum;
1440         if (cfq_class_idle(cfqq))
1441                 max_dispatch = 1;
1442
1443         /*
1444          * Does this cfqq already have too much IO in flight?
1445          */
1446         if (cfqq->dispatched >= max_dispatch) {
1447                 /*
1448                  * idle queue must always only have a single IO in flight
1449                  */
1450                 if (cfq_class_idle(cfqq))
1451                         return false;
1452
1453                 /*
1454                  * We have other queues, don't allow more IO from this one
1455                  */
1456                 if (cfqd->busy_queues > 1)
1457                         return false;
1458
1459                 /*
1460                  * Sole queue user, allow bigger slice
1461                  */
1462                 max_dispatch *= 4;
1463         }
1464
1465         /*
1466          * Async queues must wait a bit before being allowed dispatch.
1467          * We also ramp up the dispatch depth gradually for async IO,
1468          * based on the last sync IO we serviced
1469          */
1470         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1471                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1472                 unsigned int depth;
1473
1474                 depth = last_sync / cfqd->cfq_slice[1];
1475                 if (!depth && !cfqq->dispatched)
1476                         depth = 1;
1477                 if (depth < max_dispatch)
1478                         max_dispatch = depth;
1479         }
1480
1481         /*
1482          * If we're below the current max, allow a dispatch
1483          */
1484         return cfqq->dispatched < max_dispatch;
1485 }
1486
1487 /*
1488  * Dispatch a request from cfqq, moving them to the request queue
1489  * dispatch list.
1490  */
1491 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1492 {
1493         struct request *rq;
1494
1495         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1496
1497         if (!cfq_may_dispatch(cfqd, cfqq))
1498                 return false;
1499
1500         /*
1501          * follow expired path, else get first next available
1502          */
1503         rq = cfq_check_fifo(cfqq);
1504         if (!rq)
1505                 rq = cfqq->next_rq;
1506
1507         /*
1508          * insert request into driver dispatch list
1509          */
1510         cfq_dispatch_insert(cfqd->queue, rq);
1511
1512         if (!cfqd->active_cic) {
1513                 struct cfq_io_context *cic = RQ_CIC(rq);
1514
1515                 atomic_long_inc(&cic->ioc->refcount);
1516                 cfqd->active_cic = cic;
1517         }
1518
1519         return true;
1520 }
1521
1522 /*
1523  * Find the cfqq that we need to service and move a request from that to the
1524  * dispatch list
1525  */
1526 static int cfq_dispatch_requests(struct request_queue *q, int force)
1527 {
1528         struct cfq_data *cfqd = q->elevator->elevator_data;
1529         struct cfq_queue *cfqq;
1530
1531         if (!cfqd->busy_queues)
1532                 return 0;
1533
1534         if (unlikely(force))
1535                 return cfq_forced_dispatch(cfqd);
1536
1537         cfqq = cfq_select_queue(cfqd);
1538         if (!cfqq)
1539                 return 0;
1540
1541         /*
1542          * Dispatch a request from this cfqq, if it is allowed
1543          */
1544         if (!cfq_dispatch_request(cfqd, cfqq))
1545                 return 0;
1546
1547         cfqq->slice_dispatch++;
1548         cfq_clear_cfqq_must_dispatch(cfqq);
1549
1550         /*
1551          * expire an async queue immediately if it has used up its slice. idle
1552          * queue always expire after 1 dispatch round.
1553          */
1554         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1555             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1556             cfq_class_idle(cfqq))) {
1557                 cfqq->slice_end = jiffies + 1;
1558                 cfq_slice_expired(cfqd, 0);
1559         }
1560
1561         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1562         return 1;
1563 }
1564
1565 /*
1566  * task holds one reference to the queue, dropped when task exits. each rq
1567  * in-flight on this queue also holds a reference, dropped when rq is freed.
1568  *
1569  * queue lock must be held here.
1570  */
1571 static void cfq_put_queue(struct cfq_queue *cfqq)
1572 {
1573         struct cfq_data *cfqd = cfqq->cfqd;
1574
1575         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1576
1577         if (!atomic_dec_and_test(&cfqq->ref))
1578                 return;
1579
1580         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1581         BUG_ON(rb_first(&cfqq->sort_list));
1582         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1583         BUG_ON(cfq_cfqq_on_rr(cfqq));
1584
1585         if (unlikely(cfqd->active_queue == cfqq)) {
1586                 __cfq_slice_expired(cfqd, cfqq, 0);
1587                 cfq_schedule_dispatch(cfqd);
1588         }
1589
1590         kmem_cache_free(cfq_pool, cfqq);
1591 }
1592
1593 /*
1594  * Must always be called with the rcu_read_lock() held
1595  */
1596 static void
1597 __call_for_each_cic(struct io_context *ioc,
1598                     void (*func)(struct io_context *, struct cfq_io_context *))
1599 {
1600         struct cfq_io_context *cic;
1601         struct hlist_node *n;
1602
1603         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1604                 func(ioc, cic);
1605 }
1606
1607 /*
1608  * Call func for each cic attached to this ioc.
1609  */
1610 static void
1611 call_for_each_cic(struct io_context *ioc,
1612                   void (*func)(struct io_context *, struct cfq_io_context *))
1613 {
1614         rcu_read_lock();
1615         __call_for_each_cic(ioc, func);
1616         rcu_read_unlock();
1617 }
1618
1619 static void cfq_cic_free_rcu(struct rcu_head *head)
1620 {
1621         struct cfq_io_context *cic;
1622
1623         cic = container_of(head, struct cfq_io_context, rcu_head);
1624
1625         kmem_cache_free(cfq_ioc_pool, cic);
1626         elv_ioc_count_dec(cfq_ioc_count);
1627
1628         if (ioc_gone) {
1629                 /*
1630                  * CFQ scheduler is exiting, grab exit lock and check
1631                  * the pending io context count. If it hits zero,
1632                  * complete ioc_gone and set it back to NULL
1633                  */
1634                 spin_lock(&ioc_gone_lock);
1635                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1636                         complete(ioc_gone);
1637                         ioc_gone = NULL;
1638                 }
1639                 spin_unlock(&ioc_gone_lock);
1640         }
1641 }
1642
1643 static void cfq_cic_free(struct cfq_io_context *cic)
1644 {
1645         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1646 }
1647
1648 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1649 {
1650         unsigned long flags;
1651
1652         BUG_ON(!cic->dead_key);
1653
1654         spin_lock_irqsave(&ioc->lock, flags);
1655         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1656         hlist_del_rcu(&cic->cic_list);
1657         spin_unlock_irqrestore(&ioc->lock, flags);
1658
1659         cfq_cic_free(cic);
1660 }
1661
1662 /*
1663  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1664  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1665  * and ->trim() which is called with the task lock held
1666  */
1667 static void cfq_free_io_context(struct io_context *ioc)
1668 {
1669         /*
1670          * ioc->refcount is zero here, or we are called from elv_unregister(),
1671          * so no more cic's are allowed to be linked into this ioc.  So it
1672          * should be ok to iterate over the known list, we will see all cic's
1673          * since no new ones are added.
1674          */
1675         __call_for_each_cic(ioc, cic_free_func);
1676 }
1677
1678 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1679 {
1680         struct cfq_queue *__cfqq, *next;
1681
1682         if (unlikely(cfqq == cfqd->active_queue)) {
1683                 __cfq_slice_expired(cfqd, cfqq, 0);
1684                 cfq_schedule_dispatch(cfqd);
1685         }
1686
1687         /*
1688          * If this queue was scheduled to merge with another queue, be
1689          * sure to drop the reference taken on that queue (and others in
1690          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
1691          */
1692         __cfqq = cfqq->new_cfqq;
1693         while (__cfqq) {
1694                 if (__cfqq == cfqq) {
1695                         WARN(1, "cfqq->new_cfqq loop detected\n");
1696                         break;
1697                 }
1698                 next = __cfqq->new_cfqq;
1699                 cfq_put_queue(__cfqq);
1700                 __cfqq = next;
1701         }
1702
1703         cfq_put_queue(cfqq);
1704 }
1705
1706 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1707                                          struct cfq_io_context *cic)
1708 {
1709         struct io_context *ioc = cic->ioc;
1710
1711         list_del_init(&cic->queue_list);
1712
1713         /*
1714          * Make sure key == NULL is seen for dead queues
1715          */
1716         smp_wmb();
1717         cic->dead_key = (unsigned long) cic->key;
1718         cic->key = NULL;
1719
1720         if (ioc->ioc_data == cic)
1721                 rcu_assign_pointer(ioc->ioc_data, NULL);
1722
1723         if (cic->cfqq[BLK_RW_ASYNC]) {
1724                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1725                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1726         }
1727
1728         if (cic->cfqq[BLK_RW_SYNC]) {
1729                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1730                 cic->cfqq[BLK_RW_SYNC] = NULL;
1731         }
1732 }
1733
1734 static void cfq_exit_single_io_context(struct io_context *ioc,
1735                                        struct cfq_io_context *cic)
1736 {
1737         struct cfq_data *cfqd = cic->key;
1738
1739         if (cfqd) {
1740                 struct request_queue *q = cfqd->queue;
1741                 unsigned long flags;
1742
1743                 spin_lock_irqsave(q->queue_lock, flags);
1744
1745                 /*
1746                  * Ensure we get a fresh copy of the ->key to prevent
1747                  * race between exiting task and queue
1748                  */
1749                 smp_read_barrier_depends();
1750                 if (cic->key)
1751                         __cfq_exit_single_io_context(cfqd, cic);
1752
1753                 spin_unlock_irqrestore(q->queue_lock, flags);
1754         }
1755 }
1756
1757 /*
1758  * The process that ioc belongs to has exited, we need to clean up
1759  * and put the internal structures we have that belongs to that process.
1760  */
1761 static void cfq_exit_io_context(struct io_context *ioc)
1762 {
1763         call_for_each_cic(ioc, cfq_exit_single_io_context);
1764 }
1765
1766 static struct cfq_io_context *
1767 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1768 {
1769         struct cfq_io_context *cic;
1770
1771         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1772                                                         cfqd->queue->node);
1773         if (cic) {
1774                 cic->last_end_request = jiffies;
1775                 INIT_LIST_HEAD(&cic->queue_list);
1776                 INIT_HLIST_NODE(&cic->cic_list);
1777                 cic->dtor = cfq_free_io_context;
1778                 cic->exit = cfq_exit_io_context;
1779                 elv_ioc_count_inc(cfq_ioc_count);
1780         }
1781
1782         return cic;
1783 }
1784
1785 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1786 {
1787         struct task_struct *tsk = current;
1788         int ioprio_class;
1789
1790         if (!cfq_cfqq_prio_changed(cfqq))
1791                 return;
1792
1793         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1794         switch (ioprio_class) {
1795         default:
1796                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1797         case IOPRIO_CLASS_NONE:
1798                 /*
1799                  * no prio set, inherit CPU scheduling settings
1800                  */
1801                 cfqq->ioprio = task_nice_ioprio(tsk);
1802                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1803                 break;
1804         case IOPRIO_CLASS_RT:
1805                 cfqq->ioprio = task_ioprio(ioc);
1806                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1807                 break;
1808         case IOPRIO_CLASS_BE:
1809                 cfqq->ioprio = task_ioprio(ioc);
1810                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1811                 break;
1812         case IOPRIO_CLASS_IDLE:
1813                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1814                 cfqq->ioprio = 7;
1815                 cfq_clear_cfqq_idle_window(cfqq);
1816                 break;
1817         }
1818
1819         /*
1820          * keep track of original prio settings in case we have to temporarily
1821          * elevate the priority of this queue
1822          */
1823         cfqq->org_ioprio = cfqq->ioprio;
1824         cfqq->org_ioprio_class = cfqq->ioprio_class;
1825         cfq_clear_cfqq_prio_changed(cfqq);
1826 }
1827
1828 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1829 {
1830         struct cfq_data *cfqd = cic->key;
1831         struct cfq_queue *cfqq;
1832         unsigned long flags;
1833
1834         if (unlikely(!cfqd))
1835                 return;
1836
1837         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1838
1839         cfqq = cic->cfqq[BLK_RW_ASYNC];
1840         if (cfqq) {
1841                 struct cfq_queue *new_cfqq;
1842                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1843                                                 GFP_ATOMIC);
1844                 if (new_cfqq) {
1845                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1846                         cfq_put_queue(cfqq);
1847                 }
1848         }
1849
1850         cfqq = cic->cfqq[BLK_RW_SYNC];
1851         if (cfqq)
1852                 cfq_mark_cfqq_prio_changed(cfqq);
1853
1854         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1855 }
1856
1857 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1858 {
1859         call_for_each_cic(ioc, changed_ioprio);
1860         ioc->ioprio_changed = 0;
1861 }
1862
1863 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1864                           pid_t pid, bool is_sync)
1865 {
1866         RB_CLEAR_NODE(&cfqq->rb_node);
1867         RB_CLEAR_NODE(&cfqq->p_node);
1868         INIT_LIST_HEAD(&cfqq->fifo);
1869
1870         atomic_set(&cfqq->ref, 0);
1871         cfqq->cfqd = cfqd;
1872
1873         cfq_mark_cfqq_prio_changed(cfqq);
1874
1875         if (is_sync) {
1876                 if (!cfq_class_idle(cfqq))
1877                         cfq_mark_cfqq_idle_window(cfqq);
1878                 cfq_mark_cfqq_sync(cfqq);
1879         }
1880         cfqq->pid = pid;
1881 }
1882
1883 static struct cfq_queue *
1884 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1885                      struct io_context *ioc, gfp_t gfp_mask)
1886 {
1887         struct cfq_queue *cfqq, *new_cfqq = NULL;
1888         struct cfq_io_context *cic;
1889
1890 retry:
1891         cic = cfq_cic_lookup(cfqd, ioc);
1892         /* cic always exists here */
1893         cfqq = cic_to_cfqq(cic, is_sync);
1894
1895         /*
1896          * Always try a new alloc if we fell back to the OOM cfqq
1897          * originally, since it should just be a temporary situation.
1898          */
1899         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1900                 cfqq = NULL;
1901                 if (new_cfqq) {
1902                         cfqq = new_cfqq;
1903                         new_cfqq = NULL;
1904                 } else if (gfp_mask & __GFP_WAIT) {
1905                         spin_unlock_irq(cfqd->queue->queue_lock);
1906                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1907                                         gfp_mask | __GFP_ZERO,
1908                                         cfqd->queue->node);
1909                         spin_lock_irq(cfqd->queue->queue_lock);
1910                         if (new_cfqq)
1911                                 goto retry;
1912                 } else {
1913                         cfqq = kmem_cache_alloc_node(cfq_pool,
1914                                         gfp_mask | __GFP_ZERO,
1915                                         cfqd->queue->node);
1916                 }
1917
1918                 if (cfqq) {
1919                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1920                         cfq_init_prio_data(cfqq, ioc);
1921                         cfq_log_cfqq(cfqd, cfqq, "alloced");
1922                 } else
1923                         cfqq = &cfqd->oom_cfqq;
1924         }
1925
1926         if (new_cfqq)
1927                 kmem_cache_free(cfq_pool, new_cfqq);
1928
1929         return cfqq;
1930 }
1931
1932 static struct cfq_queue **
1933 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1934 {
1935         switch (ioprio_class) {
1936         case IOPRIO_CLASS_RT:
1937                 return &cfqd->async_cfqq[0][ioprio];
1938         case IOPRIO_CLASS_BE:
1939                 return &cfqd->async_cfqq[1][ioprio];
1940         case IOPRIO_CLASS_IDLE:
1941                 return &cfqd->async_idle_cfqq;
1942         default:
1943                 BUG();
1944         }
1945 }
1946
1947 static struct cfq_queue *
1948 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1949               gfp_t gfp_mask)
1950 {
1951         const int ioprio = task_ioprio(ioc);
1952         const int ioprio_class = task_ioprio_class(ioc);
1953         struct cfq_queue **async_cfqq = NULL;
1954         struct cfq_queue *cfqq = NULL;
1955
1956         if (!is_sync) {
1957                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1958                 cfqq = *async_cfqq;
1959         }
1960
1961         if (!cfqq)
1962                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1963
1964         /*
1965          * pin the queue now that it's allocated, scheduler exit will prune it
1966          */
1967         if (!is_sync && !(*async_cfqq)) {
1968                 atomic_inc(&cfqq->ref);
1969                 *async_cfqq = cfqq;
1970         }
1971
1972         atomic_inc(&cfqq->ref);
1973         return cfqq;
1974 }
1975
1976 /*
1977  * We drop cfq io contexts lazily, so we may find a dead one.
1978  */
1979 static void
1980 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1981                   struct cfq_io_context *cic)
1982 {
1983         unsigned long flags;
1984
1985         WARN_ON(!list_empty(&cic->queue_list));
1986
1987         spin_lock_irqsave(&ioc->lock, flags);
1988
1989         BUG_ON(ioc->ioc_data == cic);
1990
1991         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1992         hlist_del_rcu(&cic->cic_list);
1993         spin_unlock_irqrestore(&ioc->lock, flags);
1994
1995         cfq_cic_free(cic);
1996 }
1997
1998 static struct cfq_io_context *
1999 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2000 {
2001         struct cfq_io_context *cic;
2002         unsigned long flags;
2003         void *k;
2004
2005         if (unlikely(!ioc))
2006                 return NULL;
2007
2008         rcu_read_lock();
2009
2010         /*
2011          * we maintain a last-hit cache, to avoid browsing over the tree
2012          */
2013         cic = rcu_dereference(ioc->ioc_data);
2014         if (cic && cic->key == cfqd) {
2015                 rcu_read_unlock();
2016                 return cic;
2017         }
2018
2019         do {
2020                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2021                 rcu_read_unlock();
2022                 if (!cic)
2023                         break;
2024                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2025                 k = cic->key;
2026                 if (unlikely(!k)) {
2027                         cfq_drop_dead_cic(cfqd, ioc, cic);
2028                         rcu_read_lock();
2029                         continue;
2030                 }
2031
2032                 spin_lock_irqsave(&ioc->lock, flags);
2033                 rcu_assign_pointer(ioc->ioc_data, cic);
2034                 spin_unlock_irqrestore(&ioc->lock, flags);
2035                 break;
2036         } while (1);
2037
2038         return cic;
2039 }
2040
2041 /*
2042  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2043  * the process specific cfq io context when entered from the block layer.
2044  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2045  */
2046 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2047                         struct cfq_io_context *cic, gfp_t gfp_mask)
2048 {
2049         unsigned long flags;
2050         int ret;
2051
2052         ret = radix_tree_preload(gfp_mask);
2053         if (!ret) {
2054                 cic->ioc = ioc;
2055                 cic->key = cfqd;
2056
2057                 spin_lock_irqsave(&ioc->lock, flags);
2058                 ret = radix_tree_insert(&ioc->radix_root,
2059                                                 (unsigned long) cfqd, cic);
2060                 if (!ret)
2061                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2062                 spin_unlock_irqrestore(&ioc->lock, flags);
2063
2064                 radix_tree_preload_end();
2065
2066                 if (!ret) {
2067                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2068                         list_add(&cic->queue_list, &cfqd->cic_list);
2069                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2070                 }
2071         }
2072
2073         if (ret)
2074                 printk(KERN_ERR "cfq: cic link failed!\n");
2075
2076         return ret;
2077 }
2078
2079 /*
2080  * Setup general io context and cfq io context. There can be several cfq
2081  * io contexts per general io context, if this process is doing io to more
2082  * than one device managed by cfq.
2083  */
2084 static struct cfq_io_context *
2085 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2086 {
2087         struct io_context *ioc = NULL;
2088         struct cfq_io_context *cic;
2089
2090         might_sleep_if(gfp_mask & __GFP_WAIT);
2091
2092         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2093         if (!ioc)
2094                 return NULL;
2095
2096         cic = cfq_cic_lookup(cfqd, ioc);
2097         if (cic)
2098                 goto out;
2099
2100         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2101         if (cic == NULL)
2102                 goto err;
2103
2104         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2105                 goto err_free;
2106
2107 out:
2108         smp_read_barrier_depends();
2109         if (unlikely(ioc->ioprio_changed))
2110                 cfq_ioc_set_ioprio(ioc);
2111
2112         return cic;
2113 err_free:
2114         cfq_cic_free(cic);
2115 err:
2116         put_io_context(ioc);
2117         return NULL;
2118 }
2119
2120 static void
2121 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2122 {
2123         unsigned long elapsed = jiffies - cic->last_end_request;
2124         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2125
2126         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2127         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2128         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2129 }
2130
2131 static void
2132 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2133                        struct request *rq)
2134 {
2135         sector_t sdist;
2136         u64 total;
2137
2138         if (!cfqq->last_request_pos)
2139                 sdist = 0;
2140         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2141                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2142         else
2143                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2144
2145         /*
2146          * Don't allow the seek distance to get too large from the
2147          * odd fragment, pagein, etc
2148          */
2149         if (cfqq->seek_samples <= 60) /* second&third seek */
2150                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2151         else
2152                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2153
2154         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2155         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2156         total = cfqq->seek_total + (cfqq->seek_samples/2);
2157         do_div(total, cfqq->seek_samples);
2158         cfqq->seek_mean = (sector_t)total;
2159
2160         /*
2161          * If this cfqq is shared between multiple processes, check to
2162          * make sure that those processes are still issuing I/Os within
2163          * the mean seek distance.  If not, it may be time to break the
2164          * queues apart again.
2165          */
2166         if (cfq_cfqq_coop(cfqq)) {
2167                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2168                         cfqq->seeky_start = jiffies;
2169                 else if (!CFQQ_SEEKY(cfqq))
2170                         cfqq->seeky_start = 0;
2171         }
2172 }
2173
2174 /*
2175  * Disable idle window if the process thinks too long or seeks so much that
2176  * it doesn't matter
2177  */
2178 static void
2179 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2180                        struct cfq_io_context *cic)
2181 {
2182         int old_idle, enable_idle;
2183
2184         /*
2185          * Don't idle for async or idle io prio class
2186          */
2187         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2188                 return;
2189
2190         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2191
2192         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2193             (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
2194                 enable_idle = 0;
2195         else if (sample_valid(cic->ttime_samples)) {
2196                 unsigned int slice_idle = cfqd->cfq_slice_idle;
2197                 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
2198                         slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2199                 if (cic->ttime_mean > slice_idle)
2200                         enable_idle = 0;
2201                 else
2202                         enable_idle = 1;
2203         }
2204
2205         if (old_idle != enable_idle) {
2206                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2207                 if (enable_idle)
2208                         cfq_mark_cfqq_idle_window(cfqq);
2209                 else
2210                         cfq_clear_cfqq_idle_window(cfqq);
2211         }
2212 }
2213
2214 /*
2215  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2216  * no or if we aren't sure, a 1 will cause a preempt.
2217  */
2218 static bool
2219 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2220                    struct request *rq)
2221 {
2222         struct cfq_queue *cfqq;
2223
2224         cfqq = cfqd->active_queue;
2225         if (!cfqq)
2226                 return false;
2227
2228         if (cfq_slice_used(cfqq))
2229                 return true;
2230
2231         if (cfq_class_idle(new_cfqq))
2232                 return false;
2233
2234         if (cfq_class_idle(cfqq))
2235                 return true;
2236
2237         /*
2238          * if the new request is sync, but the currently running queue is
2239          * not, let the sync request have priority.
2240          */
2241         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2242                 return true;
2243
2244         /*
2245          * So both queues are sync. Let the new request get disk time if
2246          * it's a metadata request and the current queue is doing regular IO.
2247          */
2248         if (rq_is_meta(rq) && !cfqq->meta_pending)
2249                 return false;
2250
2251         /*
2252          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2253          */
2254         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2255                 return true;
2256
2257         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2258                 return false;
2259
2260         /*
2261          * if this request is as-good as one we would expect from the
2262          * current cfqq, let it preempt
2263          */
2264         if (cfq_rq_close(cfqd, cfqq, rq))
2265                 return true;
2266
2267         return false;
2268 }
2269
2270 /*
2271  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2272  * let it have half of its nominal slice.
2273  */
2274 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2275 {
2276         cfq_log_cfqq(cfqd, cfqq, "preempt");
2277         cfq_slice_expired(cfqd, 1);
2278
2279         /*
2280          * Put the new queue at the front of the of the current list,
2281          * so we know that it will be selected next.
2282          */
2283         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2284
2285         cfq_service_tree_add(cfqd, cfqq, 1);
2286
2287         cfqq->slice_end = 0;
2288         cfq_mark_cfqq_slice_new(cfqq);
2289 }
2290
2291 /*
2292  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2293  * something we should do about it
2294  */
2295 static void
2296 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2297                 struct request *rq)
2298 {
2299         struct cfq_io_context *cic = RQ_CIC(rq);
2300
2301         cfqd->rq_queued++;
2302         if (rq_is_meta(rq))
2303                 cfqq->meta_pending++;
2304
2305         cfq_update_io_thinktime(cfqd, cic);
2306         cfq_update_io_seektime(cfqd, cfqq, rq);
2307         cfq_update_idle_window(cfqd, cfqq, cic);
2308
2309         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2310
2311         if (cfqq == cfqd->active_queue) {
2312                 /*
2313                  * Remember that we saw a request from this process, but
2314                  * don't start queuing just yet. Otherwise we risk seeing lots
2315                  * of tiny requests, because we disrupt the normal plugging
2316                  * and merging. If the request is already larger than a single
2317                  * page, let it rip immediately. For that case we assume that
2318                  * merging is already done. Ditto for a busy system that
2319                  * has other work pending, don't risk delaying until the
2320                  * idle timer unplug to continue working.
2321                  */
2322                 if (cfq_cfqq_wait_request(cfqq)) {
2323                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2324                             cfqd->busy_queues > 1) {
2325                                 del_timer(&cfqd->idle_slice_timer);
2326                         __blk_run_queue(cfqd->queue);
2327                         }
2328                         cfq_mark_cfqq_must_dispatch(cfqq);
2329                 }
2330         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2331                 /*
2332                  * not the active queue - expire current slice if it is
2333                  * idle and has expired it's mean thinktime or this new queue
2334                  * has some old slice time left and is of higher priority or
2335                  * this new queue is RT and the current one is BE
2336                  */
2337                 cfq_preempt_queue(cfqd, cfqq);
2338                 __blk_run_queue(cfqd->queue);
2339         }
2340 }
2341
2342 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2343 {
2344         struct cfq_data *cfqd = q->elevator->elevator_data;
2345         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2346
2347         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2348         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2349
2350         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2351         list_add_tail(&rq->queuelist, &cfqq->fifo);
2352         cfq_add_rq_rb(rq);
2353
2354         cfq_rq_enqueued(cfqd, cfqq, rq);
2355 }
2356
2357 /*
2358  * Update hw_tag based on peak queue depth over 50 samples under
2359  * sufficient load.
2360  */
2361 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2362 {
2363         struct cfq_queue *cfqq = cfqd->active_queue;
2364
2365         if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2366                 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2367
2368         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2369             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2370                 return;
2371
2372         /*
2373          * If active queue hasn't enough requests and can idle, cfq might not
2374          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2375          * case
2376          */
2377         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2378             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2379             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2380                 return;
2381
2382         if (cfqd->hw_tag_samples++ < 50)
2383                 return;
2384
2385         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2386                 cfqd->hw_tag = 1;
2387         else
2388                 cfqd->hw_tag = 0;
2389
2390         cfqd->hw_tag_samples = 0;
2391         cfqd->rq_in_driver_peak = 0;
2392 }
2393
2394 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2395 {
2396         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2397         struct cfq_data *cfqd = cfqq->cfqd;
2398         const int sync = rq_is_sync(rq);
2399         unsigned long now;
2400
2401         now = jiffies;
2402         cfq_log_cfqq(cfqd, cfqq, "complete");
2403
2404         cfq_update_hw_tag(cfqd);
2405
2406         WARN_ON(!cfqd->rq_in_driver[sync]);
2407         WARN_ON(!cfqq->dispatched);
2408         cfqd->rq_in_driver[sync]--;
2409         cfqq->dispatched--;
2410
2411         if (cfq_cfqq_sync(cfqq))
2412                 cfqd->sync_flight--;
2413
2414         if (sync) {
2415                 RQ_CIC(rq)->last_end_request = now;
2416                 cfqd->last_end_sync_rq = now;
2417         }
2418
2419         /*
2420          * If this is the active queue, check if it needs to be expired,
2421          * or if we want to idle in case it has no pending requests.
2422          */
2423         if (cfqd->active_queue == cfqq) {
2424                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2425
2426                 if (cfq_cfqq_slice_new(cfqq)) {
2427                         cfq_set_prio_slice(cfqd, cfqq);
2428                         cfq_clear_cfqq_slice_new(cfqq);
2429                 }
2430                 /*
2431                  * If there are no requests waiting in this queue, and
2432                  * there are other queues ready to issue requests, AND
2433                  * those other queues are issuing requests within our
2434                  * mean seek distance, give them a chance to run instead
2435                  * of idling.
2436                  */
2437                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2438                         cfq_slice_expired(cfqd, 1);
2439                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2440                          sync && !rq_noidle(rq))
2441                         cfq_arm_slice_timer(cfqd);
2442         }
2443
2444         if (!rq_in_driver(cfqd))
2445                 cfq_schedule_dispatch(cfqd);
2446 }
2447
2448 /*
2449  * we temporarily boost lower priority queues if they are holding fs exclusive
2450  * resources. they are boosted to normal prio (CLASS_BE/4)
2451  */
2452 static void cfq_prio_boost(struct cfq_queue *cfqq)
2453 {
2454         if (has_fs_excl()) {
2455                 /*
2456                  * boost idle prio on transactions that would lock out other
2457                  * users of the filesystem
2458                  */
2459                 if (cfq_class_idle(cfqq))
2460                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2461                 if (cfqq->ioprio > IOPRIO_NORM)
2462                         cfqq->ioprio = IOPRIO_NORM;
2463         } else {
2464                 /*
2465                  * check if we need to unboost the queue
2466                  */
2467                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2468                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2469                 if (cfqq->ioprio != cfqq->org_ioprio)
2470                         cfqq->ioprio = cfqq->org_ioprio;
2471         }
2472 }
2473
2474 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2475 {
2476         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2477                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2478                 return ELV_MQUEUE_MUST;
2479         }
2480
2481         return ELV_MQUEUE_MAY;
2482 }
2483
2484 static int cfq_may_queue(struct request_queue *q, int rw)
2485 {
2486         struct cfq_data *cfqd = q->elevator->elevator_data;
2487         struct task_struct *tsk = current;
2488         struct cfq_io_context *cic;
2489         struct cfq_queue *cfqq;
2490
2491         /*
2492          * don't force setup of a queue from here, as a call to may_queue
2493          * does not necessarily imply that a request actually will be queued.
2494          * so just lookup a possibly existing queue, or return 'may queue'
2495          * if that fails
2496          */
2497         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2498         if (!cic)
2499                 return ELV_MQUEUE_MAY;
2500
2501         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2502         if (cfqq) {
2503                 cfq_init_prio_data(cfqq, cic->ioc);
2504                 cfq_prio_boost(cfqq);
2505
2506                 return __cfq_may_queue(cfqq);
2507         }
2508
2509         return ELV_MQUEUE_MAY;
2510 }
2511
2512 /*
2513  * queue lock held here
2514  */
2515 static void cfq_put_request(struct request *rq)
2516 {
2517         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2518
2519         if (cfqq) {
2520                 const int rw = rq_data_dir(rq);
2521
2522                 BUG_ON(!cfqq->allocated[rw]);
2523                 cfqq->allocated[rw]--;
2524
2525                 put_io_context(RQ_CIC(rq)->ioc);
2526
2527                 rq->elevator_private = NULL;
2528                 rq->elevator_private2 = NULL;
2529
2530                 cfq_put_queue(cfqq);
2531         }
2532 }
2533
2534 static struct cfq_queue *
2535 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2536                 struct cfq_queue *cfqq)
2537 {
2538         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2539         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2540         cfq_mark_cfqq_coop(cfqq->new_cfqq);
2541         cfq_put_queue(cfqq);
2542         return cic_to_cfqq(cic, 1);
2543 }
2544
2545 static int should_split_cfqq(struct cfq_queue *cfqq)
2546 {
2547         if (cfqq->seeky_start &&
2548             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2549                 return 1;
2550         return 0;
2551 }
2552
2553 /*
2554  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2555  * was the last process referring to said cfqq.
2556  */
2557 static struct cfq_queue *
2558 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2559 {
2560         if (cfqq_process_refs(cfqq) == 1) {
2561                 cfqq->seeky_start = 0;
2562                 cfqq->pid = current->pid;
2563                 cfq_clear_cfqq_coop(cfqq);
2564                 return cfqq;
2565         }
2566
2567         cic_set_cfqq(cic, NULL, 1);
2568         cfq_put_queue(cfqq);
2569         return NULL;
2570 }
2571 /*
2572  * Allocate cfq data structures associated with this request.
2573  */
2574 static int
2575 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2576 {
2577         struct cfq_data *cfqd = q->elevator->elevator_data;
2578         struct cfq_io_context *cic;
2579         const int rw = rq_data_dir(rq);
2580         const bool is_sync = rq_is_sync(rq);
2581         struct cfq_queue *cfqq;
2582         unsigned long flags;
2583
2584         might_sleep_if(gfp_mask & __GFP_WAIT);
2585
2586         cic = cfq_get_io_context(cfqd, gfp_mask);
2587
2588         spin_lock_irqsave(q->queue_lock, flags);
2589
2590         if (!cic)
2591                 goto queue_fail;
2592
2593 new_queue:
2594         cfqq = cic_to_cfqq(cic, is_sync);
2595         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2596                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2597                 cic_set_cfqq(cic, cfqq, is_sync);
2598         } else {
2599                 /*
2600                  * If the queue was seeky for too long, break it apart.
2601                  */
2602                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2603                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2604                         cfqq = split_cfqq(cic, cfqq);
2605                         if (!cfqq)
2606                                 goto new_queue;
2607                 }
2608
2609                 /*
2610                  * Check to see if this queue is scheduled to merge with
2611                  * another, closely cooperating queue.  The merging of
2612                  * queues happens here as it must be done in process context.
2613                  * The reference on new_cfqq was taken in merge_cfqqs.
2614                  */
2615                 if (cfqq->new_cfqq)
2616                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2617         }
2618
2619         cfqq->allocated[rw]++;
2620         atomic_inc(&cfqq->ref);
2621
2622         spin_unlock_irqrestore(q->queue_lock, flags);
2623
2624         rq->elevator_private = cic;
2625         rq->elevator_private2 = cfqq;
2626         return 0;
2627
2628 queue_fail:
2629         if (cic)
2630                 put_io_context(cic->ioc);
2631
2632         cfq_schedule_dispatch(cfqd);
2633         spin_unlock_irqrestore(q->queue_lock, flags);
2634         cfq_log(cfqd, "set_request fail");
2635         return 1;
2636 }
2637
2638 static void cfq_kick_queue(struct work_struct *work)
2639 {
2640         struct cfq_data *cfqd =
2641                 container_of(work, struct cfq_data, unplug_work);
2642         struct request_queue *q = cfqd->queue;
2643
2644         spin_lock_irq(q->queue_lock);
2645         __blk_run_queue(cfqd->queue);
2646         spin_unlock_irq(q->queue_lock);
2647 }
2648
2649 /*
2650  * Timer running if the active_queue is currently idling inside its time slice
2651  */
2652 static void cfq_idle_slice_timer(unsigned long data)
2653 {
2654         struct cfq_data *cfqd = (struct cfq_data *) data;
2655         struct cfq_queue *cfqq;
2656         unsigned long flags;
2657         int timed_out = 1;
2658
2659         cfq_log(cfqd, "idle timer fired");
2660
2661         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2662
2663         cfqq = cfqd->active_queue;
2664         if (cfqq) {
2665                 timed_out = 0;
2666
2667                 /*
2668                  * We saw a request before the queue expired, let it through
2669                  */
2670                 if (cfq_cfqq_must_dispatch(cfqq))
2671                         goto out_kick;
2672
2673                 /*
2674                  * expired
2675                  */
2676                 if (cfq_slice_used(cfqq))
2677                         goto expire;
2678
2679                 /*
2680                  * only expire and reinvoke request handler, if there are
2681                  * other queues with pending requests
2682                  */
2683                 if (!cfqd->busy_queues)
2684                         goto out_cont;
2685
2686                 /*
2687                  * not expired and it has a request pending, let it dispatch
2688                  */
2689                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2690                         goto out_kick;
2691         }
2692 expire:
2693         cfq_slice_expired(cfqd, timed_out);
2694 out_kick:
2695         cfq_schedule_dispatch(cfqd);
2696 out_cont:
2697         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2698 }
2699
2700 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2701 {
2702         del_timer_sync(&cfqd->idle_slice_timer);
2703         cancel_work_sync(&cfqd->unplug_work);
2704 }
2705
2706 static void cfq_put_async_queues(struct cfq_data *cfqd)
2707 {
2708         int i;
2709
2710         for (i = 0; i < IOPRIO_BE_NR; i++) {
2711                 if (cfqd->async_cfqq[0][i])
2712                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2713                 if (cfqd->async_cfqq[1][i])
2714                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2715         }
2716
2717         if (cfqd->async_idle_cfqq)
2718                 cfq_put_queue(cfqd->async_idle_cfqq);
2719 }
2720
2721 static void cfq_exit_queue(struct elevator_queue *e)
2722 {
2723         struct cfq_data *cfqd = e->elevator_data;
2724         struct request_queue *q = cfqd->queue;
2725
2726         cfq_shutdown_timer_wq(cfqd);
2727
2728         spin_lock_irq(q->queue_lock);
2729
2730         if (cfqd->active_queue)
2731                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2732
2733         while (!list_empty(&cfqd->cic_list)) {
2734                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2735                                                         struct cfq_io_context,
2736                                                         queue_list);
2737
2738                 __cfq_exit_single_io_context(cfqd, cic);
2739         }
2740
2741         cfq_put_async_queues(cfqd);
2742
2743         spin_unlock_irq(q->queue_lock);
2744
2745         cfq_shutdown_timer_wq(cfqd);
2746
2747         kfree(cfqd);
2748 }
2749
2750 static void *cfq_init_queue(struct request_queue *q)
2751 {
2752         struct cfq_data *cfqd;
2753         int i;
2754
2755         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2756         if (!cfqd)
2757                 return NULL;
2758
2759         for (i = 0; i < 2; ++i)
2760                 cfqd->service_trees[i] = CFQ_RB_ROOT;
2761         cfqd->service_tree_idle = CFQ_RB_ROOT;
2762
2763         /*
2764          * Not strictly needed (since RB_ROOT just clears the node and we
2765          * zeroed cfqd on alloc), but better be safe in case someone decides
2766          * to add magic to the rb code
2767          */
2768         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2769                 cfqd->prio_trees[i] = RB_ROOT;
2770
2771         /*
2772          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2773          * Grab a permanent reference to it, so that the normal code flow
2774          * will not attempt to free it.
2775          */
2776         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2777         atomic_inc(&cfqd->oom_cfqq.ref);
2778
2779         INIT_LIST_HEAD(&cfqd->cic_list);
2780
2781         cfqd->queue = q;
2782
2783         init_timer(&cfqd->idle_slice_timer);
2784         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2785         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2786
2787         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2788
2789         cfqd->cfq_quantum = cfq_quantum;
2790         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2791         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2792         cfqd->cfq_back_max = cfq_back_max;
2793         cfqd->cfq_back_penalty = cfq_back_penalty;
2794         cfqd->cfq_slice[0] = cfq_slice_async;
2795         cfqd->cfq_slice[1] = cfq_slice_sync;
2796         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2797         cfqd->cfq_slice_idle = cfq_slice_idle;
2798         cfqd->cfq_latency = 1;
2799         cfqd->hw_tag = 1;
2800         cfqd->last_end_sync_rq = jiffies;
2801         return cfqd;
2802 }
2803
2804 static void cfq_slab_kill(void)
2805 {
2806         /*
2807          * Caller already ensured that pending RCU callbacks are completed,
2808          * so we should have no busy allocations at this point.
2809          */
2810         if (cfq_pool)
2811                 kmem_cache_destroy(cfq_pool);
2812         if (cfq_ioc_pool)
2813                 kmem_cache_destroy(cfq_ioc_pool);
2814 }
2815
2816 static int __init cfq_slab_setup(void)
2817 {
2818         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2819         if (!cfq_pool)
2820                 goto fail;
2821
2822         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2823         if (!cfq_ioc_pool)
2824                 goto fail;
2825
2826         return 0;
2827 fail:
2828         cfq_slab_kill();
2829         return -ENOMEM;
2830 }
2831
2832 /*
2833  * sysfs parts below -->
2834  */
2835 static ssize_t
2836 cfq_var_show(unsigned int var, char *page)
2837 {
2838         return sprintf(page, "%d\n", var);
2839 }
2840
2841 static ssize_t
2842 cfq_var_store(unsigned int *var, const char *page, size_t count)
2843 {
2844         char *p = (char *) page;
2845
2846         *var = simple_strtoul(p, &p, 10);
2847         return count;
2848 }
2849
2850 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2851 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2852 {                                                                       \
2853         struct cfq_data *cfqd = e->elevator_data;                       \
2854         unsigned int __data = __VAR;                                    \
2855         if (__CONV)                                                     \
2856                 __data = jiffies_to_msecs(__data);                      \
2857         return cfq_var_show(__data, (page));                            \
2858 }
2859 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2860 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2861 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2862 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2863 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2864 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2865 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2866 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2867 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2868 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2869 #undef SHOW_FUNCTION
2870
2871 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2872 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2873 {                                                                       \
2874         struct cfq_data *cfqd = e->elevator_data;                       \
2875         unsigned int __data;                                            \
2876         int ret = cfq_var_store(&__data, (page), count);                \
2877         if (__data < (MIN))                                             \
2878                 __data = (MIN);                                         \
2879         else if (__data > (MAX))                                        \
2880                 __data = (MAX);                                         \
2881         if (__CONV)                                                     \
2882                 *(__PTR) = msecs_to_jiffies(__data);                    \
2883         else                                                            \
2884                 *(__PTR) = __data;                                      \
2885         return ret;                                                     \
2886 }
2887 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2888 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2889                 UINT_MAX, 1);
2890 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2891                 UINT_MAX, 1);
2892 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2893 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2894                 UINT_MAX, 0);
2895 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2896 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2897 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2898 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2899                 UINT_MAX, 0);
2900 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2901 #undef STORE_FUNCTION
2902
2903 #define CFQ_ATTR(name) \
2904         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2905
2906 static struct elv_fs_entry cfq_attrs[] = {
2907         CFQ_ATTR(quantum),
2908         CFQ_ATTR(fifo_expire_sync),
2909         CFQ_ATTR(fifo_expire_async),
2910         CFQ_ATTR(back_seek_max),
2911         CFQ_ATTR(back_seek_penalty),
2912         CFQ_ATTR(slice_sync),
2913         CFQ_ATTR(slice_async),
2914         CFQ_ATTR(slice_async_rq),
2915         CFQ_ATTR(slice_idle),
2916         CFQ_ATTR(low_latency),
2917         __ATTR_NULL
2918 };
2919
2920 static struct elevator_type iosched_cfq = {
2921         .ops = {
2922                 .elevator_merge_fn =            cfq_merge,
2923                 .elevator_merged_fn =           cfq_merged_request,
2924                 .elevator_merge_req_fn =        cfq_merged_requests,
2925                 .elevator_allow_merge_fn =      cfq_allow_merge,
2926                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2927                 .elevator_add_req_fn =          cfq_insert_request,
2928                 .elevator_activate_req_fn =     cfq_activate_request,
2929                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2930                 .elevator_queue_empty_fn =      cfq_queue_empty,
2931                 .elevator_completed_req_fn =    cfq_completed_request,
2932                 .elevator_former_req_fn =       elv_rb_former_request,
2933                 .elevator_latter_req_fn =       elv_rb_latter_request,
2934                 .elevator_set_req_fn =          cfq_set_request,
2935                 .elevator_put_req_fn =          cfq_put_request,
2936                 .elevator_may_queue_fn =        cfq_may_queue,
2937                 .elevator_init_fn =             cfq_init_queue,
2938                 .elevator_exit_fn =             cfq_exit_queue,
2939                 .trim =                         cfq_free_io_context,
2940         },
2941         .elevator_attrs =       cfq_attrs,
2942         .elevator_name =        "cfq",
2943         .elevator_owner =       THIS_MODULE,
2944 };
2945
2946 static int __init cfq_init(void)
2947 {
2948         /*
2949          * could be 0 on HZ < 1000 setups
2950          */
2951         if (!cfq_slice_async)
2952                 cfq_slice_async = 1;
2953         if (!cfq_slice_idle)
2954                 cfq_slice_idle = 1;
2955
2956         if (cfq_slab_setup())
2957                 return -ENOMEM;
2958
2959         elv_register(&iosched_cfq);
2960
2961         return 0;
2962 }
2963
2964 static void __exit cfq_exit(void)
2965 {
2966         DECLARE_COMPLETION_ONSTACK(all_gone);
2967         elv_unregister(&iosched_cfq);
2968         ioc_gone = &all_gone;
2969         /* ioc_gone's update must be visible before reading ioc_count */
2970         smp_wmb();
2971
2972         /*
2973          * this also protects us from entering cfq_slab_kill() with
2974          * pending RCU callbacks
2975          */
2976         if (elv_ioc_count_read(cfq_ioc_count))
2977                 wait_for_completion(&all_gone);
2978         cfq_slab_kill();
2979 }
2980
2981 module_init(cfq_init);
2982 module_exit(cfq_exit);
2983
2984 MODULE_AUTHOR("Jens Axboe");
2985 MODULE_LICENSE("GPL");
2986 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");