cfq-iosched: use call_rcu() instead of doing grace period stall on queue exit
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16 #include "blk-cgroup.h"
17
18 /*
19  * tunables
20  */
21 /* max queue in one round of service */
22 static const int cfq_quantum = 4;
23 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
24 /* maximum backwards seek, in KiB */
25 static const int cfq_back_max = 16 * 1024;
26 /* penalty of a backwards seek */
27 static const int cfq_back_penalty = 2;
28 static const int cfq_slice_sync = HZ / 10;
29 static int cfq_slice_async = HZ / 25;
30 static const int cfq_slice_async_rq = 2;
31 static int cfq_slice_idle = HZ / 125;
32 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
33 static const int cfq_hist_divisor = 4;
34
35 /*
36  * offset from end of service tree
37  */
38 #define CFQ_IDLE_DELAY          (HZ / 5)
39
40 /*
41  * below this threshold, we consider thinktime immediate
42  */
43 #define CFQ_MIN_TT              (2)
44
45 /*
46  * Allow merged cfqqs to perform this amount of seeky I/O before
47  * deciding to break the queues up again.
48  */
49 #define CFQQ_COOP_TOUT          (HZ)
50
51 #define CFQ_SLICE_SCALE         (5)
52 #define CFQ_HW_QUEUE_MIN        (5)
53 #define CFQ_SERVICE_SHIFT       12
54
55 #define RQ_CIC(rq)              \
56         ((struct cfq_io_context *) (rq)->elevator_private)
57 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
58
59 static struct kmem_cache *cfq_pool;
60 static struct kmem_cache *cfq_ioc_pool;
61
62 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
63 static struct completion *ioc_gone;
64 static DEFINE_SPINLOCK(ioc_gone_lock);
65
66 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
67 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
68 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
69
70 #define sample_valid(samples)   ((samples) > 80)
71 #define rb_entry_cfqg(node)     rb_entry((node), struct cfq_group, rb_node)
72
73 /*
74  * Most of our rbtree usage is for sorting with min extraction, so
75  * if we cache the leftmost node we don't have to walk down the tree
76  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
77  * move this into the elevator for the rq sorting as well.
78  */
79 struct cfq_rb_root {
80         struct rb_root rb;
81         struct rb_node *left;
82         unsigned count;
83         u64 min_vdisktime;
84         struct rb_node *active;
85         unsigned total_weight;
86 };
87 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, 0, }
88
89 /*
90  * Per process-grouping structure
91  */
92 struct cfq_queue {
93         /* reference count */
94         atomic_t ref;
95         /* various state flags, see below */
96         unsigned int flags;
97         /* parent cfq_data */
98         struct cfq_data *cfqd;
99         /* service_tree member */
100         struct rb_node rb_node;
101         /* service_tree key */
102         unsigned long rb_key;
103         /* prio tree member */
104         struct rb_node p_node;
105         /* prio tree root we belong to, if any */
106         struct rb_root *p_root;
107         /* sorted list of pending requests */
108         struct rb_root sort_list;
109         /* if fifo isn't expired, next request to serve */
110         struct request *next_rq;
111         /* requests queued in sort_list */
112         int queued[2];
113         /* currently allocated requests */
114         int allocated[2];
115         /* fifo list of requests in sort_list */
116         struct list_head fifo;
117
118         /* time when queue got scheduled in to dispatch first request. */
119         unsigned long dispatch_start;
120         unsigned int allocated_slice;
121         /* time when first request from queue completed and slice started. */
122         unsigned long slice_start;
123         unsigned long slice_end;
124         long slice_resid;
125         unsigned int slice_dispatch;
126
127         /* pending metadata requests */
128         int meta_pending;
129         /* number of requests that are on the dispatch list or inside driver */
130         int dispatched;
131
132         /* io prio of this group */
133         unsigned short ioprio, org_ioprio;
134         unsigned short ioprio_class, org_ioprio_class;
135
136         unsigned int seek_samples;
137         u64 seek_total;
138         sector_t seek_mean;
139         sector_t last_request_pos;
140         unsigned long seeky_start;
141
142         pid_t pid;
143
144         struct cfq_rb_root *service_tree;
145         struct cfq_queue *new_cfqq;
146         struct cfq_group *cfqg;
147         struct cfq_group *orig_cfqg;
148         /* Sectors dispatched in current dispatch round */
149         unsigned long nr_sectors;
150 };
151
152 /*
153  * First index in the service_trees.
154  * IDLE is handled separately, so it has negative index
155  */
156 enum wl_prio_t {
157         BE_WORKLOAD = 0,
158         RT_WORKLOAD = 1,
159         IDLE_WORKLOAD = 2,
160 };
161
162 /*
163  * Second index in the service_trees.
164  */
165 enum wl_type_t {
166         ASYNC_WORKLOAD = 0,
167         SYNC_NOIDLE_WORKLOAD = 1,
168         SYNC_WORKLOAD = 2
169 };
170
171 /* This is per cgroup per device grouping structure */
172 struct cfq_group {
173         /* group service_tree member */
174         struct rb_node rb_node;
175
176         /* group service_tree key */
177         u64 vdisktime;
178         unsigned int weight;
179         bool on_st;
180
181         /* number of cfqq currently on this group */
182         int nr_cfqq;
183
184         /* Per group busy queus average. Useful for workload slice calc. */
185         unsigned int busy_queues_avg[2];
186         /*
187          * rr lists of queues with requests, onle rr for each priority class.
188          * Counts are embedded in the cfq_rb_root
189          */
190         struct cfq_rb_root service_trees[2][3];
191         struct cfq_rb_root service_tree_idle;
192
193         unsigned long saved_workload_slice;
194         enum wl_type_t saved_workload;
195         enum wl_prio_t saved_serving_prio;
196         struct blkio_group blkg;
197 #ifdef CONFIG_CFQ_GROUP_IOSCHED
198         struct hlist_node cfqd_node;
199         atomic_t ref;
200 #endif
201 };
202
203 /*
204  * Per block device queue structure
205  */
206 struct cfq_data {
207         struct request_queue *queue;
208         /* Root service tree for cfq_groups */
209         struct cfq_rb_root grp_service_tree;
210         struct cfq_group root_group;
211         /* Number of active cfq groups on group service tree */
212         int nr_groups;
213
214         /*
215          * The priority currently being served
216          */
217         enum wl_prio_t serving_prio;
218         enum wl_type_t serving_type;
219         unsigned long workload_expires;
220         struct cfq_group *serving_group;
221         bool noidle_tree_requires_idle;
222
223         /*
224          * Each priority tree is sorted by next_request position.  These
225          * trees are used when determining if two or more queues are
226          * interleaving requests (see cfq_close_cooperator).
227          */
228         struct rb_root prio_trees[CFQ_PRIO_LISTS];
229
230         unsigned int busy_queues;
231
232         int rq_in_driver[2];
233         int sync_flight;
234
235         /*
236          * queue-depth detection
237          */
238         int rq_queued;
239         int hw_tag;
240         /*
241          * hw_tag can be
242          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
243          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
244          *  0 => no NCQ
245          */
246         int hw_tag_est_depth;
247         unsigned int hw_tag_samples;
248
249         /*
250          * idle window management
251          */
252         struct timer_list idle_slice_timer;
253         struct work_struct unplug_work;
254
255         struct cfq_queue *active_queue;
256         struct cfq_io_context *active_cic;
257
258         /*
259          * async queue for each priority case
260          */
261         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
262         struct cfq_queue *async_idle_cfqq;
263
264         sector_t last_position;
265
266         /*
267          * tunables, see top of file
268          */
269         unsigned int cfq_quantum;
270         unsigned int cfq_fifo_expire[2];
271         unsigned int cfq_back_penalty;
272         unsigned int cfq_back_max;
273         unsigned int cfq_slice[2];
274         unsigned int cfq_slice_async_rq;
275         unsigned int cfq_slice_idle;
276         unsigned int cfq_latency;
277         unsigned int cfq_group_isolation;
278
279         struct list_head cic_list;
280
281         /*
282          * Fallback dummy cfqq for extreme OOM conditions
283          */
284         struct cfq_queue oom_cfqq;
285
286         unsigned long last_end_sync_rq;
287
288         /* List of cfq groups being managed on this device*/
289         struct hlist_head cfqg_list;
290         struct rcu_head rcu;
291 };
292
293 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
294
295 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
296                                             enum wl_prio_t prio,
297                                             enum wl_type_t type,
298                                             struct cfq_data *cfqd)
299 {
300         if (!cfqg)
301                 return NULL;
302
303         if (prio == IDLE_WORKLOAD)
304                 return &cfqg->service_tree_idle;
305
306         return &cfqg->service_trees[prio][type];
307 }
308
309 enum cfqq_state_flags {
310         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
311         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
312         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
313         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
314         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
315         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
316         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
317         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
318         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
319         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
320         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
321         CFQ_CFQQ_FLAG_wait_busy,        /* Waiting for next request */
322         CFQ_CFQQ_FLAG_wait_busy_done,   /* Got new request. Expire the queue */
323 };
324
325 #define CFQ_CFQQ_FNS(name)                                              \
326 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
327 {                                                                       \
328         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
329 }                                                                       \
330 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
331 {                                                                       \
332         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
333 }                                                                       \
334 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
335 {                                                                       \
336         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
337 }
338
339 CFQ_CFQQ_FNS(on_rr);
340 CFQ_CFQQ_FNS(wait_request);
341 CFQ_CFQQ_FNS(must_dispatch);
342 CFQ_CFQQ_FNS(must_alloc_slice);
343 CFQ_CFQQ_FNS(fifo_expire);
344 CFQ_CFQQ_FNS(idle_window);
345 CFQ_CFQQ_FNS(prio_changed);
346 CFQ_CFQQ_FNS(slice_new);
347 CFQ_CFQQ_FNS(sync);
348 CFQ_CFQQ_FNS(coop);
349 CFQ_CFQQ_FNS(deep);
350 CFQ_CFQQ_FNS(wait_busy);
351 CFQ_CFQQ_FNS(wait_busy_done);
352 #undef CFQ_CFQQ_FNS
353
354 #ifdef CONFIG_DEBUG_CFQ_IOSCHED
355 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
356         blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
357                         cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
358                         blkg_path(&(cfqq)->cfqg->blkg), ##args);
359
360 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)                          \
361         blk_add_trace_msg((cfqd)->queue, "%s " fmt,                     \
362                                 blkg_path(&(cfqg)->blkg), ##args);      \
363
364 #else
365 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
366         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
367 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...)          do {} while (0);
368 #endif
369 #define cfq_log(cfqd, fmt, args...)     \
370         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
371
372 /* Traverses through cfq group service trees */
373 #define for_each_cfqg_st(cfqg, i, j, st) \
374         for (i = 0; i <= IDLE_WORKLOAD; i++) \
375                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
376                         : &cfqg->service_tree_idle; \
377                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
378                         (i == IDLE_WORKLOAD && j == 0); \
379                         j++, st = i < IDLE_WORKLOAD ? \
380                         &cfqg->service_trees[i][j]: NULL) \
381
382
383 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
384 {
385         if (cfq_class_idle(cfqq))
386                 return IDLE_WORKLOAD;
387         if (cfq_class_rt(cfqq))
388                 return RT_WORKLOAD;
389         return BE_WORKLOAD;
390 }
391
392
393 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
394 {
395         if (!cfq_cfqq_sync(cfqq))
396                 return ASYNC_WORKLOAD;
397         if (!cfq_cfqq_idle_window(cfqq))
398                 return SYNC_NOIDLE_WORKLOAD;
399         return SYNC_WORKLOAD;
400 }
401
402 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
403                                         struct cfq_data *cfqd,
404                                         struct cfq_group *cfqg)
405 {
406         if (wl == IDLE_WORKLOAD)
407                 return cfqg->service_tree_idle.count;
408
409         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
410                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
411                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
412 }
413
414 static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
415                                         struct cfq_group *cfqg)
416 {
417         return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
418                 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
419 }
420
421 static void cfq_dispatch_insert(struct request_queue *, struct request *);
422 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
423                                        struct io_context *, gfp_t);
424 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
425                                                 struct io_context *);
426
427 static inline int rq_in_driver(struct cfq_data *cfqd)
428 {
429         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
430 }
431
432 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
433                                             bool is_sync)
434 {
435         return cic->cfqq[is_sync];
436 }
437
438 static inline void cic_set_cfqq(struct cfq_io_context *cic,
439                                 struct cfq_queue *cfqq, bool is_sync)
440 {
441         cic->cfqq[is_sync] = cfqq;
442 }
443
444 /*
445  * We regard a request as SYNC, if it's either a read or has the SYNC bit
446  * set (in which case it could also be direct WRITE).
447  */
448 static inline bool cfq_bio_sync(struct bio *bio)
449 {
450         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
451 }
452
453 /*
454  * scheduler run of queue, if there are requests pending and no one in the
455  * driver that will restart queueing
456  */
457 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
458 {
459         if (cfqd->busy_queues) {
460                 cfq_log(cfqd, "schedule dispatch");
461                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
462         }
463 }
464
465 static int cfq_queue_empty(struct request_queue *q)
466 {
467         struct cfq_data *cfqd = q->elevator->elevator_data;
468
469         return !cfqd->rq_queued;
470 }
471
472 /*
473  * Scale schedule slice based on io priority. Use the sync time slice only
474  * if a queue is marked sync and has sync io queued. A sync queue with async
475  * io only, should not get full sync slice length.
476  */
477 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
478                                  unsigned short prio)
479 {
480         const int base_slice = cfqd->cfq_slice[sync];
481
482         WARN_ON(prio >= IOPRIO_BE_NR);
483
484         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
485 }
486
487 static inline int
488 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
489 {
490         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
491 }
492
493 static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
494 {
495         u64 d = delta << CFQ_SERVICE_SHIFT;
496
497         d = d * BLKIO_WEIGHT_DEFAULT;
498         do_div(d, cfqg->weight);
499         return d;
500 }
501
502 static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
503 {
504         s64 delta = (s64)(vdisktime - min_vdisktime);
505         if (delta > 0)
506                 min_vdisktime = vdisktime;
507
508         return min_vdisktime;
509 }
510
511 static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
512 {
513         s64 delta = (s64)(vdisktime - min_vdisktime);
514         if (delta < 0)
515                 min_vdisktime = vdisktime;
516
517         return min_vdisktime;
518 }
519
520 static void update_min_vdisktime(struct cfq_rb_root *st)
521 {
522         u64 vdisktime = st->min_vdisktime;
523         struct cfq_group *cfqg;
524
525         if (st->active) {
526                 cfqg = rb_entry_cfqg(st->active);
527                 vdisktime = cfqg->vdisktime;
528         }
529
530         if (st->left) {
531                 cfqg = rb_entry_cfqg(st->left);
532                 vdisktime = min_vdisktime(vdisktime, cfqg->vdisktime);
533         }
534
535         st->min_vdisktime = max_vdisktime(st->min_vdisktime, vdisktime);
536 }
537
538 /*
539  * get averaged number of queues of RT/BE priority.
540  * average is updated, with a formula that gives more weight to higher numbers,
541  * to quickly follows sudden increases and decrease slowly
542  */
543
544 static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
545                                         struct cfq_group *cfqg, bool rt)
546 {
547         unsigned min_q, max_q;
548         unsigned mult  = cfq_hist_divisor - 1;
549         unsigned round = cfq_hist_divisor / 2;
550         unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
551
552         min_q = min(cfqg->busy_queues_avg[rt], busy);
553         max_q = max(cfqg->busy_queues_avg[rt], busy);
554         cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
555                 cfq_hist_divisor;
556         return cfqg->busy_queues_avg[rt];
557 }
558
559 static inline unsigned
560 cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
561 {
562         struct cfq_rb_root *st = &cfqd->grp_service_tree;
563
564         return cfq_target_latency * cfqg->weight / st->total_weight;
565 }
566
567 static inline void
568 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
569 {
570         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
571         if (cfqd->cfq_latency) {
572                 /*
573                  * interested queues (we consider only the ones with the same
574                  * priority class in the cfq group)
575                  */
576                 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
577                                                 cfq_class_rt(cfqq));
578                 unsigned sync_slice = cfqd->cfq_slice[1];
579                 unsigned expect_latency = sync_slice * iq;
580                 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
581
582                 if (expect_latency > group_slice) {
583                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
584                         /* scale low_slice according to IO priority
585                          * and sync vs async */
586                         unsigned low_slice =
587                                 min(slice, base_low_slice * slice / sync_slice);
588                         /* the adapted slice value is scaled to fit all iqs
589                          * into the target latency */
590                         slice = max(slice * group_slice / expect_latency,
591                                     low_slice);
592                 }
593         }
594         cfqq->slice_start = jiffies;
595         cfqq->slice_end = jiffies + slice;
596         cfqq->allocated_slice = slice;
597         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
598 }
599
600 /*
601  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
602  * isn't valid until the first request from the dispatch is activated
603  * and the slice time set.
604  */
605 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
606 {
607         if (cfq_cfqq_slice_new(cfqq))
608                 return 0;
609         if (time_before(jiffies, cfqq->slice_end))
610                 return 0;
611
612         return 1;
613 }
614
615 /*
616  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
617  * We choose the request that is closest to the head right now. Distance
618  * behind the head is penalized and only allowed to a certain extent.
619  */
620 static struct request *
621 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
622 {
623         sector_t s1, s2, d1 = 0, d2 = 0;
624         unsigned long back_max;
625 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
626 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
627         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
628
629         if (rq1 == NULL || rq1 == rq2)
630                 return rq2;
631         if (rq2 == NULL)
632                 return rq1;
633
634         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
635                 return rq1;
636         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
637                 return rq2;
638         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
639                 return rq1;
640         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
641                 return rq2;
642
643         s1 = blk_rq_pos(rq1);
644         s2 = blk_rq_pos(rq2);
645
646         /*
647          * by definition, 1KiB is 2 sectors
648          */
649         back_max = cfqd->cfq_back_max * 2;
650
651         /*
652          * Strict one way elevator _except_ in the case where we allow
653          * short backward seeks which are biased as twice the cost of a
654          * similar forward seek.
655          */
656         if (s1 >= last)
657                 d1 = s1 - last;
658         else if (s1 + back_max >= last)
659                 d1 = (last - s1) * cfqd->cfq_back_penalty;
660         else
661                 wrap |= CFQ_RQ1_WRAP;
662
663         if (s2 >= last)
664                 d2 = s2 - last;
665         else if (s2 + back_max >= last)
666                 d2 = (last - s2) * cfqd->cfq_back_penalty;
667         else
668                 wrap |= CFQ_RQ2_WRAP;
669
670         /* Found required data */
671
672         /*
673          * By doing switch() on the bit mask "wrap" we avoid having to
674          * check two variables for all permutations: --> faster!
675          */
676         switch (wrap) {
677         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
678                 if (d1 < d2)
679                         return rq1;
680                 else if (d2 < d1)
681                         return rq2;
682                 else {
683                         if (s1 >= s2)
684                                 return rq1;
685                         else
686                                 return rq2;
687                 }
688
689         case CFQ_RQ2_WRAP:
690                 return rq1;
691         case CFQ_RQ1_WRAP:
692                 return rq2;
693         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
694         default:
695                 /*
696                  * Since both rqs are wrapped,
697                  * start with the one that's further behind head
698                  * (--> only *one* back seek required),
699                  * since back seek takes more time than forward.
700                  */
701                 if (s1 <= s2)
702                         return rq1;
703                 else
704                         return rq2;
705         }
706 }
707
708 /*
709  * The below is leftmost cache rbtree addon
710  */
711 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
712 {
713         /* Service tree is empty */
714         if (!root->count)
715                 return NULL;
716
717         if (!root->left)
718                 root->left = rb_first(&root->rb);
719
720         if (root->left)
721                 return rb_entry(root->left, struct cfq_queue, rb_node);
722
723         return NULL;
724 }
725
726 static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
727 {
728         if (!root->left)
729                 root->left = rb_first(&root->rb);
730
731         if (root->left)
732                 return rb_entry_cfqg(root->left);
733
734         return NULL;
735 }
736
737 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
738 {
739         rb_erase(n, root);
740         RB_CLEAR_NODE(n);
741 }
742
743 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
744 {
745         if (root->left == n)
746                 root->left = NULL;
747         rb_erase_init(n, &root->rb);
748         --root->count;
749 }
750
751 /*
752  * would be nice to take fifo expire time into account as well
753  */
754 static struct request *
755 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
756                   struct request *last)
757 {
758         struct rb_node *rbnext = rb_next(&last->rb_node);
759         struct rb_node *rbprev = rb_prev(&last->rb_node);
760         struct request *next = NULL, *prev = NULL;
761
762         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
763
764         if (rbprev)
765                 prev = rb_entry_rq(rbprev);
766
767         if (rbnext)
768                 next = rb_entry_rq(rbnext);
769         else {
770                 rbnext = rb_first(&cfqq->sort_list);
771                 if (rbnext && rbnext != &last->rb_node)
772                         next = rb_entry_rq(rbnext);
773         }
774
775         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
776 }
777
778 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
779                                       struct cfq_queue *cfqq)
780 {
781         /*
782          * just an approximation, should be ok.
783          */
784         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
785                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
786 }
787
788 static inline s64
789 cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
790 {
791         return cfqg->vdisktime - st->min_vdisktime;
792 }
793
794 static void
795 __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
796 {
797         struct rb_node **node = &st->rb.rb_node;
798         struct rb_node *parent = NULL;
799         struct cfq_group *__cfqg;
800         s64 key = cfqg_key(st, cfqg);
801         int left = 1;
802
803         while (*node != NULL) {
804                 parent = *node;
805                 __cfqg = rb_entry_cfqg(parent);
806
807                 if (key < cfqg_key(st, __cfqg))
808                         node = &parent->rb_left;
809                 else {
810                         node = &parent->rb_right;
811                         left = 0;
812                 }
813         }
814
815         if (left)
816                 st->left = &cfqg->rb_node;
817
818         rb_link_node(&cfqg->rb_node, parent, node);
819         rb_insert_color(&cfqg->rb_node, &st->rb);
820 }
821
822 static void
823 cfq_group_service_tree_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
824 {
825         struct cfq_rb_root *st = &cfqd->grp_service_tree;
826         struct cfq_group *__cfqg;
827         struct rb_node *n;
828
829         cfqg->nr_cfqq++;
830         if (cfqg->on_st)
831                 return;
832
833         /*
834          * Currently put the group at the end. Later implement something
835          * so that groups get lesser vtime based on their weights, so that
836          * if group does not loose all if it was not continously backlogged.
837          */
838         n = rb_last(&st->rb);
839         if (n) {
840                 __cfqg = rb_entry_cfqg(n);
841                 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
842         } else
843                 cfqg->vdisktime = st->min_vdisktime;
844
845         __cfq_group_service_tree_add(st, cfqg);
846         cfqg->on_st = true;
847         cfqd->nr_groups++;
848         st->total_weight += cfqg->weight;
849 }
850
851 static void
852 cfq_group_service_tree_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
853 {
854         struct cfq_rb_root *st = &cfqd->grp_service_tree;
855
856         if (st->active == &cfqg->rb_node)
857                 st->active = NULL;
858
859         BUG_ON(cfqg->nr_cfqq < 1);
860         cfqg->nr_cfqq--;
861
862         /* If there are other cfq queues under this group, don't delete it */
863         if (cfqg->nr_cfqq)
864                 return;
865
866         cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
867         cfqg->on_st = false;
868         cfqd->nr_groups--;
869         st->total_weight -= cfqg->weight;
870         if (!RB_EMPTY_NODE(&cfqg->rb_node))
871                 cfq_rb_erase(&cfqg->rb_node, st);
872         cfqg->saved_workload_slice = 0;
873         blkiocg_update_blkio_group_dequeue_stats(&cfqg->blkg, 1);
874 }
875
876 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq)
877 {
878         unsigned int slice_used;
879
880         /*
881          * Queue got expired before even a single request completed or
882          * got expired immediately after first request completion.
883          */
884         if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
885                 /*
886                  * Also charge the seek time incurred to the group, otherwise
887                  * if there are mutiple queues in the group, each can dispatch
888                  * a single request on seeky media and cause lots of seek time
889                  * and group will never know it.
890                  */
891                 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
892                                         1);
893         } else {
894                 slice_used = jiffies - cfqq->slice_start;
895                 if (slice_used > cfqq->allocated_slice)
896                         slice_used = cfqq->allocated_slice;
897         }
898
899         cfq_log_cfqq(cfqq->cfqd, cfqq, "sl_used=%u sect=%lu", slice_used,
900                                 cfqq->nr_sectors);
901         return slice_used;
902 }
903
904 static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
905                                 struct cfq_queue *cfqq)
906 {
907         struct cfq_rb_root *st = &cfqd->grp_service_tree;
908         unsigned int used_sl, charge_sl;
909         int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
910                         - cfqg->service_tree_idle.count;
911
912         BUG_ON(nr_sync < 0);
913         used_sl = charge_sl = cfq_cfqq_slice_usage(cfqq);
914
915         if (!cfq_cfqq_sync(cfqq) && !nr_sync)
916                 charge_sl = cfqq->allocated_slice;
917
918         /* Can't update vdisktime while group is on service tree */
919         cfq_rb_erase(&cfqg->rb_node, st);
920         cfqg->vdisktime += cfq_scale_slice(charge_sl, cfqg);
921         __cfq_group_service_tree_add(st, cfqg);
922
923         /* This group is being expired. Save the context */
924         if (time_after(cfqd->workload_expires, jiffies)) {
925                 cfqg->saved_workload_slice = cfqd->workload_expires
926                                                 - jiffies;
927                 cfqg->saved_workload = cfqd->serving_type;
928                 cfqg->saved_serving_prio = cfqd->serving_prio;
929         } else
930                 cfqg->saved_workload_slice = 0;
931
932         cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
933                                         st->min_vdisktime);
934         blkiocg_update_blkio_group_stats(&cfqg->blkg, used_sl,
935                                                 cfqq->nr_sectors);
936 }
937
938 #ifdef CONFIG_CFQ_GROUP_IOSCHED
939 static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
940 {
941         if (blkg)
942                 return container_of(blkg, struct cfq_group, blkg);
943         return NULL;
944 }
945
946 void
947 cfq_update_blkio_group_weight(struct blkio_group *blkg, unsigned int weight)
948 {
949         cfqg_of_blkg(blkg)->weight = weight;
950 }
951
952 static struct cfq_group *
953 cfq_find_alloc_cfqg(struct cfq_data *cfqd, struct cgroup *cgroup, int create)
954 {
955         struct blkio_cgroup *blkcg = cgroup_to_blkio_cgroup(cgroup);
956         struct cfq_group *cfqg = NULL;
957         void *key = cfqd;
958         int i, j;
959         struct cfq_rb_root *st;
960         struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
961         unsigned int major, minor;
962
963         /* Do we need to take this reference */
964         if (!blkiocg_css_tryget(blkcg))
965                 return NULL;;
966
967         cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
968         if (cfqg || !create)
969                 goto done;
970
971         cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
972         if (!cfqg)
973                 goto done;
974
975         cfqg->weight = blkcg->weight;
976         for_each_cfqg_st(cfqg, i, j, st)
977                 *st = CFQ_RB_ROOT;
978         RB_CLEAR_NODE(&cfqg->rb_node);
979
980         /*
981          * Take the initial reference that will be released on destroy
982          * This can be thought of a joint reference by cgroup and
983          * elevator which will be dropped by either elevator exit
984          * or cgroup deletion path depending on who is exiting first.
985          */
986         atomic_set(&cfqg->ref, 1);
987
988         /* Add group onto cgroup list */
989         sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
990         blkiocg_add_blkio_group(blkcg, &cfqg->blkg, (void *)cfqd,
991                                         MKDEV(major, minor));
992
993         /* Add group on cfqd list */
994         hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
995
996 done:
997         blkiocg_css_put(blkcg);
998         return cfqg;
999 }
1000
1001 /*
1002  * Search for the cfq group current task belongs to. If create = 1, then also
1003  * create the cfq group if it does not exist. request_queue lock must be held.
1004  */
1005 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1006 {
1007         struct cgroup *cgroup;
1008         struct cfq_group *cfqg = NULL;
1009
1010         rcu_read_lock();
1011         cgroup = task_cgroup(current, blkio_subsys_id);
1012         cfqg = cfq_find_alloc_cfqg(cfqd, cgroup, create);
1013         if (!cfqg && create)
1014                 cfqg = &cfqd->root_group;
1015         rcu_read_unlock();
1016         return cfqg;
1017 }
1018
1019 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1020 {
1021         /* Currently, all async queues are mapped to root group */
1022         if (!cfq_cfqq_sync(cfqq))
1023                 cfqg = &cfqq->cfqd->root_group;
1024
1025         cfqq->cfqg = cfqg;
1026         /* cfqq reference on cfqg */
1027         atomic_inc(&cfqq->cfqg->ref);
1028 }
1029
1030 static void cfq_put_cfqg(struct cfq_group *cfqg)
1031 {
1032         struct cfq_rb_root *st;
1033         int i, j;
1034
1035         BUG_ON(atomic_read(&cfqg->ref) <= 0);
1036         if (!atomic_dec_and_test(&cfqg->ref))
1037                 return;
1038         for_each_cfqg_st(cfqg, i, j, st)
1039                 BUG_ON(!RB_EMPTY_ROOT(&st->rb) || st->active != NULL);
1040         kfree(cfqg);
1041 }
1042
1043 static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1044 {
1045         /* Something wrong if we are trying to remove same group twice */
1046         BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1047
1048         hlist_del_init(&cfqg->cfqd_node);
1049
1050         /*
1051          * Put the reference taken at the time of creation so that when all
1052          * queues are gone, group can be destroyed.
1053          */
1054         cfq_put_cfqg(cfqg);
1055 }
1056
1057 static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1058 {
1059         struct hlist_node *pos, *n;
1060         struct cfq_group *cfqg;
1061
1062         hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1063                 /*
1064                  * If cgroup removal path got to blk_group first and removed
1065                  * it from cgroup list, then it will take care of destroying
1066                  * cfqg also.
1067                  */
1068                 if (!blkiocg_del_blkio_group(&cfqg->blkg))
1069                         cfq_destroy_cfqg(cfqd, cfqg);
1070         }
1071 }
1072
1073 /*
1074  * Blk cgroup controller notification saying that blkio_group object is being
1075  * delinked as associated cgroup object is going away. That also means that
1076  * no new IO will come in this group. So get rid of this group as soon as
1077  * any pending IO in the group is finished.
1078  *
1079  * This function is called under rcu_read_lock(). key is the rcu protected
1080  * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1081  * read lock.
1082  *
1083  * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1084  * it should not be NULL as even if elevator was exiting, cgroup deltion
1085  * path got to it first.
1086  */
1087 void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
1088 {
1089         unsigned long  flags;
1090         struct cfq_data *cfqd = key;
1091
1092         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1093         cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1094         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1095 }
1096
1097 #else /* GROUP_IOSCHED */
1098 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
1099 {
1100         return &cfqd->root_group;
1101 }
1102 static inline void
1103 cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1104         cfqq->cfqg = cfqg;
1105 }
1106
1107 static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1108 static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1109
1110 #endif /* GROUP_IOSCHED */
1111
1112 /*
1113  * The cfqd->service_trees holds all pending cfq_queue's that have
1114  * requests waiting to be processed. It is sorted in the order that
1115  * we will service the queues.
1116  */
1117 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1118                                  bool add_front)
1119 {
1120         struct rb_node **p, *parent;
1121         struct cfq_queue *__cfqq;
1122         unsigned long rb_key;
1123         struct cfq_rb_root *service_tree;
1124         int left;
1125         int new_cfqq = 1;
1126         int group_changed = 0;
1127
1128 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1129         if (!cfqd->cfq_group_isolation
1130             && cfqq_type(cfqq) == SYNC_NOIDLE_WORKLOAD
1131             && cfqq->cfqg && cfqq->cfqg != &cfqd->root_group) {
1132                 /* Move this cfq to root group */
1133                 cfq_log_cfqq(cfqd, cfqq, "moving to root group");
1134                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1135                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1136                 cfqq->orig_cfqg = cfqq->cfqg;
1137                 cfqq->cfqg = &cfqd->root_group;
1138                 atomic_inc(&cfqd->root_group.ref);
1139                 group_changed = 1;
1140         } else if (!cfqd->cfq_group_isolation
1141                    && cfqq_type(cfqq) == SYNC_WORKLOAD && cfqq->orig_cfqg) {
1142                 /* cfqq is sequential now needs to go to its original group */
1143                 BUG_ON(cfqq->cfqg != &cfqd->root_group);
1144                 if (!RB_EMPTY_NODE(&cfqq->rb_node))
1145                         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1146                 cfq_put_cfqg(cfqq->cfqg);
1147                 cfqq->cfqg = cfqq->orig_cfqg;
1148                 cfqq->orig_cfqg = NULL;
1149                 group_changed = 1;
1150                 cfq_log_cfqq(cfqd, cfqq, "moved to origin group");
1151         }
1152 #endif
1153
1154         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
1155                                                 cfqq_type(cfqq), cfqd);
1156         if (cfq_class_idle(cfqq)) {
1157                 rb_key = CFQ_IDLE_DELAY;
1158                 parent = rb_last(&service_tree->rb);
1159                 if (parent && parent != &cfqq->rb_node) {
1160                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1161                         rb_key += __cfqq->rb_key;
1162                 } else
1163                         rb_key += jiffies;
1164         } else if (!add_front) {
1165                 /*
1166                  * Get our rb key offset. Subtract any residual slice
1167                  * value carried from last service. A negative resid
1168                  * count indicates slice overrun, and this should position
1169                  * the next service time further away in the tree.
1170                  */
1171                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
1172                 rb_key -= cfqq->slice_resid;
1173                 cfqq->slice_resid = 0;
1174         } else {
1175                 rb_key = -HZ;
1176                 __cfqq = cfq_rb_first(service_tree);
1177                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1178         }
1179
1180         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1181                 new_cfqq = 0;
1182                 /*
1183                  * same position, nothing more to do
1184                  */
1185                 if (rb_key == cfqq->rb_key &&
1186                     cfqq->service_tree == service_tree)
1187                         return;
1188
1189                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1190                 cfqq->service_tree = NULL;
1191         }
1192
1193         left = 1;
1194         parent = NULL;
1195         cfqq->service_tree = service_tree;
1196         p = &service_tree->rb.rb_node;
1197         while (*p) {
1198                 struct rb_node **n;
1199
1200                 parent = *p;
1201                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1202
1203                 /*
1204                  * sort by key, that represents service time.
1205                  */
1206                 if (time_before(rb_key, __cfqq->rb_key))
1207                         n = &(*p)->rb_left;
1208                 else {
1209                         n = &(*p)->rb_right;
1210                         left = 0;
1211                 }
1212
1213                 p = n;
1214         }
1215
1216         if (left)
1217                 service_tree->left = &cfqq->rb_node;
1218
1219         cfqq->rb_key = rb_key;
1220         rb_link_node(&cfqq->rb_node, parent, p);
1221         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1222         service_tree->count++;
1223         if ((add_front || !new_cfqq) && !group_changed)
1224                 return;
1225         cfq_group_service_tree_add(cfqd, cfqq->cfqg);
1226 }
1227
1228 static struct cfq_queue *
1229 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1230                      sector_t sector, struct rb_node **ret_parent,
1231                      struct rb_node ***rb_link)
1232 {
1233         struct rb_node **p, *parent;
1234         struct cfq_queue *cfqq = NULL;
1235
1236         parent = NULL;
1237         p = &root->rb_node;
1238         while (*p) {
1239                 struct rb_node **n;
1240
1241                 parent = *p;
1242                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1243
1244                 /*
1245                  * Sort strictly based on sector.  Smallest to the left,
1246                  * largest to the right.
1247                  */
1248                 if (sector > blk_rq_pos(cfqq->next_rq))
1249                         n = &(*p)->rb_right;
1250                 else if (sector < blk_rq_pos(cfqq->next_rq))
1251                         n = &(*p)->rb_left;
1252                 else
1253                         break;
1254                 p = n;
1255                 cfqq = NULL;
1256         }
1257
1258         *ret_parent = parent;
1259         if (rb_link)
1260                 *rb_link = p;
1261         return cfqq;
1262 }
1263
1264 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1265 {
1266         struct rb_node **p, *parent;
1267         struct cfq_queue *__cfqq;
1268
1269         if (cfqq->p_root) {
1270                 rb_erase(&cfqq->p_node, cfqq->p_root);
1271                 cfqq->p_root = NULL;
1272         }
1273
1274         if (cfq_class_idle(cfqq))
1275                 return;
1276         if (!cfqq->next_rq)
1277                 return;
1278
1279         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
1280         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1281                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
1282         if (!__cfqq) {
1283                 rb_link_node(&cfqq->p_node, parent, p);
1284                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1285         } else
1286                 cfqq->p_root = NULL;
1287 }
1288
1289 /*
1290  * Update cfqq's position in the service tree.
1291  */
1292 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1293 {
1294         /*
1295          * Resorting requires the cfqq to be on the RR list already.
1296          */
1297         if (cfq_cfqq_on_rr(cfqq)) {
1298                 cfq_service_tree_add(cfqd, cfqq, 0);
1299                 cfq_prio_tree_add(cfqd, cfqq);
1300         }
1301 }
1302
1303 /*
1304  * add to busy list of queues for service, trying to be fair in ordering
1305  * the pending list according to last request service
1306  */
1307 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1308 {
1309         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
1310         BUG_ON(cfq_cfqq_on_rr(cfqq));
1311         cfq_mark_cfqq_on_rr(cfqq);
1312         cfqd->busy_queues++;
1313
1314         cfq_resort_rr_list(cfqd, cfqq);
1315 }
1316
1317 /*
1318  * Called when the cfqq no longer has requests pending, remove it from
1319  * the service tree.
1320  */
1321 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1322 {
1323         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
1324         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1325         cfq_clear_cfqq_on_rr(cfqq);
1326
1327         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1328                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1329                 cfqq->service_tree = NULL;
1330         }
1331         if (cfqq->p_root) {
1332                 rb_erase(&cfqq->p_node, cfqq->p_root);
1333                 cfqq->p_root = NULL;
1334         }
1335
1336         cfq_group_service_tree_del(cfqd, cfqq->cfqg);
1337         BUG_ON(!cfqd->busy_queues);
1338         cfqd->busy_queues--;
1339 }
1340
1341 /*
1342  * rb tree support functions
1343  */
1344 static void cfq_del_rq_rb(struct request *rq)
1345 {
1346         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1347         const int sync = rq_is_sync(rq);
1348
1349         BUG_ON(!cfqq->queued[sync]);
1350         cfqq->queued[sync]--;
1351
1352         elv_rb_del(&cfqq->sort_list, rq);
1353
1354         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1355                 /*
1356                  * Queue will be deleted from service tree when we actually
1357                  * expire it later. Right now just remove it from prio tree
1358                  * as it is empty.
1359                  */
1360                 if (cfqq->p_root) {
1361                         rb_erase(&cfqq->p_node, cfqq->p_root);
1362                         cfqq->p_root = NULL;
1363                 }
1364         }
1365 }
1366
1367 static void cfq_add_rq_rb(struct request *rq)
1368 {
1369         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1370         struct cfq_data *cfqd = cfqq->cfqd;
1371         struct request *__alias, *prev;
1372
1373         cfqq->queued[rq_is_sync(rq)]++;
1374
1375         /*
1376          * looks a little odd, but the first insert might return an alias.
1377          * if that happens, put the alias on the dispatch list
1378          */
1379         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
1380                 cfq_dispatch_insert(cfqd->queue, __alias);
1381
1382         if (!cfq_cfqq_on_rr(cfqq))
1383                 cfq_add_cfqq_rr(cfqd, cfqq);
1384
1385         /*
1386          * check if this request is a better next-serve candidate
1387          */
1388         prev = cfqq->next_rq;
1389         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
1390
1391         /*
1392          * adjust priority tree position, if ->next_rq changes
1393          */
1394         if (prev != cfqq->next_rq)
1395                 cfq_prio_tree_add(cfqd, cfqq);
1396
1397         BUG_ON(!cfqq->next_rq);
1398 }
1399
1400 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1401 {
1402         elv_rb_del(&cfqq->sort_list, rq);
1403         cfqq->queued[rq_is_sync(rq)]--;
1404         cfq_add_rq_rb(rq);
1405 }
1406
1407 static struct request *
1408 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1409 {
1410         struct task_struct *tsk = current;
1411         struct cfq_io_context *cic;
1412         struct cfq_queue *cfqq;
1413
1414         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1415         if (!cic)
1416                 return NULL;
1417
1418         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1419         if (cfqq) {
1420                 sector_t sector = bio->bi_sector + bio_sectors(bio);
1421
1422                 return elv_rb_find(&cfqq->sort_list, sector);
1423         }
1424
1425         return NULL;
1426 }
1427
1428 static void cfq_activate_request(struct request_queue *q, struct request *rq)
1429 {
1430         struct cfq_data *cfqd = q->elevator->elevator_data;
1431
1432         cfqd->rq_in_driver[rq_is_sync(rq)]++;
1433         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
1434                                                 rq_in_driver(cfqd));
1435
1436         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1437 }
1438
1439 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1440 {
1441         struct cfq_data *cfqd = q->elevator->elevator_data;
1442         const int sync = rq_is_sync(rq);
1443
1444         WARN_ON(!cfqd->rq_in_driver[sync]);
1445         cfqd->rq_in_driver[sync]--;
1446         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
1447                                                 rq_in_driver(cfqd));
1448 }
1449
1450 static void cfq_remove_request(struct request *rq)
1451 {
1452         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1453
1454         if (cfqq->next_rq == rq)
1455                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1456
1457         list_del_init(&rq->queuelist);
1458         cfq_del_rq_rb(rq);
1459
1460         cfqq->cfqd->rq_queued--;
1461         if (rq_is_meta(rq)) {
1462                 WARN_ON(!cfqq->meta_pending);
1463                 cfqq->meta_pending--;
1464         }
1465 }
1466
1467 static int cfq_merge(struct request_queue *q, struct request **req,
1468                      struct bio *bio)
1469 {
1470         struct cfq_data *cfqd = q->elevator->elevator_data;
1471         struct request *__rq;
1472
1473         __rq = cfq_find_rq_fmerge(cfqd, bio);
1474         if (__rq && elv_rq_merge_ok(__rq, bio)) {
1475                 *req = __rq;
1476                 return ELEVATOR_FRONT_MERGE;
1477         }
1478
1479         return ELEVATOR_NO_MERGE;
1480 }
1481
1482 static void cfq_merged_request(struct request_queue *q, struct request *req,
1483                                int type)
1484 {
1485         if (type == ELEVATOR_FRONT_MERGE) {
1486                 struct cfq_queue *cfqq = RQ_CFQQ(req);
1487
1488                 cfq_reposition_rq_rb(cfqq, req);
1489         }
1490 }
1491
1492 static void
1493 cfq_merged_requests(struct request_queue *q, struct request *rq,
1494                     struct request *next)
1495 {
1496         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1497         /*
1498          * reposition in fifo if next is older than rq
1499          */
1500         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1501             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
1502                 list_move(&rq->queuelist, &next->queuelist);
1503                 rq_set_fifo_time(rq, rq_fifo_time(next));
1504         }
1505
1506         if (cfqq->next_rq == next)
1507                 cfqq->next_rq = rq;
1508         cfq_remove_request(next);
1509 }
1510
1511 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1512                            struct bio *bio)
1513 {
1514         struct cfq_data *cfqd = q->elevator->elevator_data;
1515         struct cfq_io_context *cic;
1516         struct cfq_queue *cfqq;
1517
1518         /* Deny merge if bio and rq don't belong to same cfq group */
1519         if ((RQ_CFQQ(rq))->cfqg != cfq_get_cfqg(cfqd, 0))
1520                 return false;
1521         /*
1522          * Disallow merge of a sync bio into an async request.
1523          */
1524         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1525                 return false;
1526
1527         /*
1528          * Lookup the cfqq that this bio will be queued with. Allow
1529          * merge only if rq is queued there.
1530          */
1531         cic = cfq_cic_lookup(cfqd, current->io_context);
1532         if (!cic)
1533                 return false;
1534
1535         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1536         return cfqq == RQ_CFQQ(rq);
1537 }
1538
1539 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1540                                    struct cfq_queue *cfqq)
1541 {
1542         if (cfqq) {
1543                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1544                 cfqq->slice_start = 0;
1545                 cfqq->dispatch_start = jiffies;
1546                 cfqq->allocated_slice = 0;
1547                 cfqq->slice_end = 0;
1548                 cfqq->slice_dispatch = 0;
1549                 cfqq->nr_sectors = 0;
1550
1551                 cfq_clear_cfqq_wait_request(cfqq);
1552                 cfq_clear_cfqq_must_dispatch(cfqq);
1553                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1554                 cfq_clear_cfqq_fifo_expire(cfqq);
1555                 cfq_mark_cfqq_slice_new(cfqq);
1556
1557                 del_timer(&cfqd->idle_slice_timer);
1558         }
1559
1560         cfqd->active_queue = cfqq;
1561 }
1562
1563 /*
1564  * current cfqq expired its slice (or was too idle), select new one
1565  */
1566 static void
1567 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1568                     bool timed_out)
1569 {
1570         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1571
1572         if (cfq_cfqq_wait_request(cfqq))
1573                 del_timer(&cfqd->idle_slice_timer);
1574
1575         cfq_clear_cfqq_wait_request(cfqq);
1576         cfq_clear_cfqq_wait_busy(cfqq);
1577         cfq_clear_cfqq_wait_busy_done(cfqq);
1578
1579         /*
1580          * store what was left of this slice, if the queue idled/timed out
1581          */
1582         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1583                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1584                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1585         }
1586
1587         cfq_group_served(cfqd, cfqq->cfqg, cfqq);
1588
1589         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1590                 cfq_del_cfqq_rr(cfqd, cfqq);
1591
1592         cfq_resort_rr_list(cfqd, cfqq);
1593
1594         if (cfqq == cfqd->active_queue)
1595                 cfqd->active_queue = NULL;
1596
1597         if (&cfqq->cfqg->rb_node == cfqd->grp_service_tree.active)
1598                 cfqd->grp_service_tree.active = NULL;
1599
1600         if (cfqd->active_cic) {
1601                 put_io_context(cfqd->active_cic->ioc);
1602                 cfqd->active_cic = NULL;
1603         }
1604 }
1605
1606 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1607 {
1608         struct cfq_queue *cfqq = cfqd->active_queue;
1609
1610         if (cfqq)
1611                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1612 }
1613
1614 /*
1615  * Get next queue for service. Unless we have a queue preemption,
1616  * we'll simply select the first cfqq in the service tree.
1617  */
1618 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1619 {
1620         struct cfq_rb_root *service_tree =
1621                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1622                                         cfqd->serving_type, cfqd);
1623
1624         if (!cfqd->rq_queued)
1625                 return NULL;
1626
1627         /* There is nothing to dispatch */
1628         if (!service_tree)
1629                 return NULL;
1630         if (RB_EMPTY_ROOT(&service_tree->rb))
1631                 return NULL;
1632         return cfq_rb_first(service_tree);
1633 }
1634
1635 static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1636 {
1637         struct cfq_group *cfqg;
1638         struct cfq_queue *cfqq;
1639         int i, j;
1640         struct cfq_rb_root *st;
1641
1642         if (!cfqd->rq_queued)
1643                 return NULL;
1644
1645         cfqg = cfq_get_next_cfqg(cfqd);
1646         if (!cfqg)
1647                 return NULL;
1648
1649         for_each_cfqg_st(cfqg, i, j, st)
1650                 if ((cfqq = cfq_rb_first(st)) != NULL)
1651                         return cfqq;
1652         return NULL;
1653 }
1654
1655 /*
1656  * Get and set a new active queue for service.
1657  */
1658 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1659                                               struct cfq_queue *cfqq)
1660 {
1661         if (!cfqq)
1662                 cfqq = cfq_get_next_queue(cfqd);
1663
1664         __cfq_set_active_queue(cfqd, cfqq);
1665         return cfqq;
1666 }
1667
1668 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1669                                           struct request *rq)
1670 {
1671         if (blk_rq_pos(rq) >= cfqd->last_position)
1672                 return blk_rq_pos(rq) - cfqd->last_position;
1673         else
1674                 return cfqd->last_position - blk_rq_pos(rq);
1675 }
1676
1677 #define CFQQ_SEEK_THR           8 * 1024
1678 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1679
1680 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1681                                struct request *rq)
1682 {
1683         sector_t sdist = cfqq->seek_mean;
1684
1685         if (!sample_valid(cfqq->seek_samples))
1686                 sdist = CFQQ_SEEK_THR;
1687
1688         return cfq_dist_from_last(cfqd, rq) <= sdist;
1689 }
1690
1691 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1692                                     struct cfq_queue *cur_cfqq)
1693 {
1694         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1695         struct rb_node *parent, *node;
1696         struct cfq_queue *__cfqq;
1697         sector_t sector = cfqd->last_position;
1698
1699         if (RB_EMPTY_ROOT(root))
1700                 return NULL;
1701
1702         /*
1703          * First, if we find a request starting at the end of the last
1704          * request, choose it.
1705          */
1706         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1707         if (__cfqq)
1708                 return __cfqq;
1709
1710         /*
1711          * If the exact sector wasn't found, the parent of the NULL leaf
1712          * will contain the closest sector.
1713          */
1714         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1715         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1716                 return __cfqq;
1717
1718         if (blk_rq_pos(__cfqq->next_rq) < sector)
1719                 node = rb_next(&__cfqq->p_node);
1720         else
1721                 node = rb_prev(&__cfqq->p_node);
1722         if (!node)
1723                 return NULL;
1724
1725         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1726         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1727                 return __cfqq;
1728
1729         return NULL;
1730 }
1731
1732 /*
1733  * cfqd - obvious
1734  * cur_cfqq - passed in so that we don't decide that the current queue is
1735  *            closely cooperating with itself.
1736  *
1737  * So, basically we're assuming that that cur_cfqq has dispatched at least
1738  * one request, and that cfqd->last_position reflects a position on the disk
1739  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1740  * assumption.
1741  */
1742 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1743                                               struct cfq_queue *cur_cfqq)
1744 {
1745         struct cfq_queue *cfqq;
1746
1747         if (!cfq_cfqq_sync(cur_cfqq))
1748                 return NULL;
1749         if (CFQQ_SEEKY(cur_cfqq))
1750                 return NULL;
1751
1752         /*
1753          * We should notice if some of the queues are cooperating, eg
1754          * working closely on the same area of the disk. In that case,
1755          * we can group them together and don't waste time idling.
1756          */
1757         cfqq = cfqq_close(cfqd, cur_cfqq);
1758         if (!cfqq)
1759                 return NULL;
1760
1761         /* If new queue belongs to different cfq_group, don't choose it */
1762         if (cur_cfqq->cfqg != cfqq->cfqg)
1763                 return NULL;
1764
1765         /*
1766          * It only makes sense to merge sync queues.
1767          */
1768         if (!cfq_cfqq_sync(cfqq))
1769                 return NULL;
1770         if (CFQQ_SEEKY(cfqq))
1771                 return NULL;
1772
1773         /*
1774          * Do not merge queues of different priority classes
1775          */
1776         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1777                 return NULL;
1778
1779         return cfqq;
1780 }
1781
1782 /*
1783  * Determine whether we should enforce idle window for this queue.
1784  */
1785
1786 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1787 {
1788         enum wl_prio_t prio = cfqq_prio(cfqq);
1789         struct cfq_rb_root *service_tree = cfqq->service_tree;
1790
1791         BUG_ON(!service_tree);
1792         BUG_ON(!service_tree->count);
1793
1794         /* We never do for idle class queues. */
1795         if (prio == IDLE_WORKLOAD)
1796                 return false;
1797
1798         /* We do for queues that were marked with idle window flag. */
1799         if (cfq_cfqq_idle_window(cfqq) &&
1800            !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
1801                 return true;
1802
1803         /*
1804          * Otherwise, we do only if they are the last ones
1805          * in their service tree.
1806          */
1807         return service_tree->count == 1;
1808 }
1809
1810 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1811 {
1812         struct cfq_queue *cfqq = cfqd->active_queue;
1813         struct cfq_io_context *cic;
1814         unsigned long sl;
1815
1816         /*
1817          * SSD device without seek penalty, disable idling. But only do so
1818          * for devices that support queuing, otherwise we still have a problem
1819          * with sync vs async workloads.
1820          */
1821         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1822                 return;
1823
1824         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1825         WARN_ON(cfq_cfqq_slice_new(cfqq));
1826
1827         /*
1828          * idle is disabled, either manually or by past process history
1829          */
1830         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1831                 return;
1832
1833         /*
1834          * still active requests from this queue, don't idle
1835          */
1836         if (cfqq->dispatched)
1837                 return;
1838
1839         /*
1840          * task has exited, don't wait
1841          */
1842         cic = cfqd->active_cic;
1843         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1844                 return;
1845
1846         /*
1847          * If our average think time is larger than the remaining time
1848          * slice, then don't idle. This avoids overrunning the allotted
1849          * time slice.
1850          */
1851         if (sample_valid(cic->ttime_samples) &&
1852             (cfqq->slice_end - jiffies < cic->ttime_mean))
1853                 return;
1854
1855         cfq_mark_cfqq_wait_request(cfqq);
1856
1857         sl = cfqd->cfq_slice_idle;
1858
1859         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1860         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1861 }
1862
1863 /*
1864  * Move request from internal lists to the request queue dispatch list.
1865  */
1866 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1867 {
1868         struct cfq_data *cfqd = q->elevator->elevator_data;
1869         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1870
1871         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1872
1873         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1874         cfq_remove_request(rq);
1875         cfqq->dispatched++;
1876         elv_dispatch_sort(q, rq);
1877
1878         if (cfq_cfqq_sync(cfqq))
1879                 cfqd->sync_flight++;
1880         cfqq->nr_sectors += blk_rq_sectors(rq);
1881 }
1882
1883 /*
1884  * return expired entry, or NULL to just start from scratch in rbtree
1885  */
1886 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1887 {
1888         struct request *rq = NULL;
1889
1890         if (cfq_cfqq_fifo_expire(cfqq))
1891                 return NULL;
1892
1893         cfq_mark_cfqq_fifo_expire(cfqq);
1894
1895         if (list_empty(&cfqq->fifo))
1896                 return NULL;
1897
1898         rq = rq_entry_fifo(cfqq->fifo.next);
1899         if (time_before(jiffies, rq_fifo_time(rq)))
1900                 rq = NULL;
1901
1902         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1903         return rq;
1904 }
1905
1906 static inline int
1907 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1908 {
1909         const int base_rq = cfqd->cfq_slice_async_rq;
1910
1911         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1912
1913         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1914 }
1915
1916 /*
1917  * Must be called with the queue_lock held.
1918  */
1919 static int cfqq_process_refs(struct cfq_queue *cfqq)
1920 {
1921         int process_refs, io_refs;
1922
1923         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1924         process_refs = atomic_read(&cfqq->ref) - io_refs;
1925         BUG_ON(process_refs < 0);
1926         return process_refs;
1927 }
1928
1929 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1930 {
1931         int process_refs, new_process_refs;
1932         struct cfq_queue *__cfqq;
1933
1934         /* Avoid a circular list and skip interim queue merges */
1935         while ((__cfqq = new_cfqq->new_cfqq)) {
1936                 if (__cfqq == cfqq)
1937                         return;
1938                 new_cfqq = __cfqq;
1939         }
1940
1941         process_refs = cfqq_process_refs(cfqq);
1942         /*
1943          * If the process for the cfqq has gone away, there is no
1944          * sense in merging the queues.
1945          */
1946         if (process_refs == 0)
1947                 return;
1948
1949         /*
1950          * Merge in the direction of the lesser amount of work.
1951          */
1952         new_process_refs = cfqq_process_refs(new_cfqq);
1953         if (new_process_refs >= process_refs) {
1954                 cfqq->new_cfqq = new_cfqq;
1955                 atomic_add(process_refs, &new_cfqq->ref);
1956         } else {
1957                 new_cfqq->new_cfqq = cfqq;
1958                 atomic_add(new_process_refs, &cfqq->ref);
1959         }
1960 }
1961
1962 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1963                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1964                                 bool prio_changed)
1965 {
1966         struct cfq_queue *queue;
1967         int i;
1968         bool key_valid = false;
1969         unsigned long lowest_key = 0;
1970         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1971
1972         if (prio_changed) {
1973                 /*
1974                  * When priorities switched, we prefer starting
1975                  * from SYNC_NOIDLE (first choice), or just SYNC
1976                  * over ASYNC
1977                  */
1978                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1979                         return cur_best;
1980                 cur_best = SYNC_WORKLOAD;
1981                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1982                         return cur_best;
1983
1984                 return ASYNC_WORKLOAD;
1985         }
1986
1987         for (i = 0; i < 3; ++i) {
1988                 /* otherwise, select the one with lowest rb_key */
1989                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1990                 if (queue &&
1991                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1992                         lowest_key = queue->rb_key;
1993                         cur_best = i;
1994                         key_valid = true;
1995                 }
1996         }
1997
1998         return cur_best;
1999 }
2000
2001 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
2002 {
2003         enum wl_prio_t previous_prio = cfqd->serving_prio;
2004         bool prio_changed;
2005         unsigned slice;
2006         unsigned count;
2007         struct cfq_rb_root *st;
2008         unsigned group_slice;
2009
2010         if (!cfqg) {
2011                 cfqd->serving_prio = IDLE_WORKLOAD;
2012                 cfqd->workload_expires = jiffies + 1;
2013                 return;
2014         }
2015
2016         /* Choose next priority. RT > BE > IDLE */
2017         if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
2018                 cfqd->serving_prio = RT_WORKLOAD;
2019         else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
2020                 cfqd->serving_prio = BE_WORKLOAD;
2021         else {
2022                 cfqd->serving_prio = IDLE_WORKLOAD;
2023                 cfqd->workload_expires = jiffies + 1;
2024                 return;
2025         }
2026
2027         /*
2028          * For RT and BE, we have to choose also the type
2029          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2030          * expiration time
2031          */
2032         prio_changed = (cfqd->serving_prio != previous_prio);
2033         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2034                                 cfqd);
2035         count = st->count;
2036
2037         /*
2038          * If priority didn't change, check workload expiration,
2039          * and that we still have other queues ready
2040          */
2041         if (!prio_changed && count &&
2042             !time_after(jiffies, cfqd->workload_expires))
2043                 return;
2044
2045         /* otherwise select new workload type */
2046         cfqd->serving_type =
2047                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
2048         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
2049                                 cfqd);
2050         count = st->count;
2051
2052         /*
2053          * the workload slice is computed as a fraction of target latency
2054          * proportional to the number of queues in that workload, over
2055          * all the queues in the same priority class
2056          */
2057         group_slice = cfq_group_slice(cfqd, cfqg);
2058
2059         slice = group_slice * count /
2060                 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2061                       cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
2062
2063         if (cfqd->serving_type == ASYNC_WORKLOAD) {
2064                 unsigned int tmp;
2065
2066                 /*
2067                  * Async queues are currently system wide. Just taking
2068                  * proportion of queues with-in same group will lead to higher
2069                  * async ratio system wide as generally root group is going
2070                  * to have higher weight. A more accurate thing would be to
2071                  * calculate system wide asnc/sync ratio.
2072                  */
2073                 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2074                 tmp = tmp/cfqd->busy_queues;
2075                 slice = min_t(unsigned, slice, tmp);
2076
2077                 /* async workload slice is scaled down according to
2078                  * the sync/async slice ratio. */
2079                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
2080         } else
2081                 /* sync workload slice is at least 2 * cfq_slice_idle */
2082                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2083
2084         slice = max_t(unsigned, slice, CFQ_MIN_TT);
2085         cfqd->workload_expires = jiffies + slice;
2086         cfqd->noidle_tree_requires_idle = false;
2087 }
2088
2089 static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2090 {
2091         struct cfq_rb_root *st = &cfqd->grp_service_tree;
2092         struct cfq_group *cfqg;
2093
2094         if (RB_EMPTY_ROOT(&st->rb))
2095                 return NULL;
2096         cfqg = cfq_rb_first_group(st);
2097         st->active = &cfqg->rb_node;
2098         update_min_vdisktime(st);
2099         return cfqg;
2100 }
2101
2102 static void cfq_choose_cfqg(struct cfq_data *cfqd)
2103 {
2104         struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2105
2106         cfqd->serving_group = cfqg;
2107
2108         /* Restore the workload type data */
2109         if (cfqg->saved_workload_slice) {
2110                 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2111                 cfqd->serving_type = cfqg->saved_workload;
2112                 cfqd->serving_prio = cfqg->saved_serving_prio;
2113         }
2114         choose_service_tree(cfqd, cfqg);
2115 }
2116
2117 /*
2118  * Select a queue for service. If we have a current active queue,
2119  * check whether to continue servicing it, or retrieve and set a new one.
2120  */
2121 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
2122 {
2123         struct cfq_queue *cfqq, *new_cfqq = NULL;
2124
2125         cfqq = cfqd->active_queue;
2126         if (!cfqq)
2127                 goto new_queue;
2128
2129         if (!cfqd->rq_queued)
2130                 return NULL;
2131         /*
2132          * The active queue has run out of time, expire it and select new.
2133          */
2134         if ((cfq_slice_used(cfqq) || cfq_cfqq_wait_busy_done(cfqq))
2135              && !cfq_cfqq_must_dispatch(cfqq))
2136                 goto expire;
2137
2138         /*
2139          * The active queue has requests and isn't expired, allow it to
2140          * dispatch.
2141          */
2142         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2143                 goto keep_queue;
2144
2145         /*
2146          * If another queue has a request waiting within our mean seek
2147          * distance, let it run.  The expire code will check for close
2148          * cooperators and put the close queue at the front of the service
2149          * tree.  If possible, merge the expiring queue with the new cfqq.
2150          */
2151         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
2152         if (new_cfqq) {
2153                 if (!cfqq->new_cfqq)
2154                         cfq_setup_merge(cfqq, new_cfqq);
2155                 goto expire;
2156         }
2157
2158         /*
2159          * No requests pending. If the active queue still has requests in
2160          * flight or is idling for a new request, allow either of these
2161          * conditions to happen (or time out) before selecting a new queue.
2162          */
2163         if (timer_pending(&cfqd->idle_slice_timer) ||
2164             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
2165                 cfqq = NULL;
2166                 goto keep_queue;
2167         }
2168
2169 expire:
2170         cfq_slice_expired(cfqd, 0);
2171 new_queue:
2172         /*
2173          * Current queue expired. Check if we have to switch to a new
2174          * service tree
2175          */
2176         if (!new_cfqq)
2177                 cfq_choose_cfqg(cfqd);
2178
2179         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
2180 keep_queue:
2181         return cfqq;
2182 }
2183
2184 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
2185 {
2186         int dispatched = 0;
2187
2188         while (cfqq->next_rq) {
2189                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2190                 dispatched++;
2191         }
2192
2193         BUG_ON(!list_empty(&cfqq->fifo));
2194
2195         /* By default cfqq is not expired if it is empty. Do it explicitly */
2196         __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
2197         return dispatched;
2198 }
2199
2200 /*
2201  * Drain our current requests. Used for barriers and when switching
2202  * io schedulers on-the-fly.
2203  */
2204 static int cfq_forced_dispatch(struct cfq_data *cfqd)
2205 {
2206         struct cfq_queue *cfqq;
2207         int dispatched = 0;
2208
2209         while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
2210                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
2211
2212         cfq_slice_expired(cfqd, 0);
2213         BUG_ON(cfqd->busy_queues);
2214
2215         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
2216         return dispatched;
2217 }
2218
2219 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2220 {
2221         unsigned int max_dispatch;
2222
2223         /*
2224          * Drain async requests before we start sync IO
2225          */
2226         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
2227                 return false;
2228
2229         /*
2230          * If this is an async queue and we have sync IO in flight, let it wait
2231          */
2232         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
2233                 return false;
2234
2235         max_dispatch = cfqd->cfq_quantum;
2236         if (cfq_class_idle(cfqq))
2237                 max_dispatch = 1;
2238
2239         /*
2240          * Does this cfqq already have too much IO in flight?
2241          */
2242         if (cfqq->dispatched >= max_dispatch) {
2243                 /*
2244                  * idle queue must always only have a single IO in flight
2245                  */
2246                 if (cfq_class_idle(cfqq))
2247                         return false;
2248
2249                 /*
2250                  * We have other queues, don't allow more IO from this one
2251                  */
2252                 if (cfqd->busy_queues > 1)
2253                         return false;
2254
2255                 /*
2256                  * Sole queue user, no limit
2257                  */
2258                 max_dispatch = -1;
2259         }
2260
2261         /*
2262          * Async queues must wait a bit before being allowed dispatch.
2263          * We also ramp up the dispatch depth gradually for async IO,
2264          * based on the last sync IO we serviced
2265          */
2266         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
2267                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
2268                 unsigned int depth;
2269
2270                 depth = last_sync / cfqd->cfq_slice[1];
2271                 if (!depth && !cfqq->dispatched)
2272                         depth = 1;
2273                 if (depth < max_dispatch)
2274                         max_dispatch = depth;
2275         }
2276
2277         /*
2278          * If we're below the current max, allow a dispatch
2279          */
2280         return cfqq->dispatched < max_dispatch;
2281 }
2282
2283 /*
2284  * Dispatch a request from cfqq, moving them to the request queue
2285  * dispatch list.
2286  */
2287 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2288 {
2289         struct request *rq;
2290
2291         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2292
2293         if (!cfq_may_dispatch(cfqd, cfqq))
2294                 return false;
2295
2296         /*
2297          * follow expired path, else get first next available
2298          */
2299         rq = cfq_check_fifo(cfqq);
2300         if (!rq)
2301                 rq = cfqq->next_rq;
2302
2303         /*
2304          * insert request into driver dispatch list
2305          */
2306         cfq_dispatch_insert(cfqd->queue, rq);
2307
2308         if (!cfqd->active_cic) {
2309                 struct cfq_io_context *cic = RQ_CIC(rq);
2310
2311                 atomic_long_inc(&cic->ioc->refcount);
2312                 cfqd->active_cic = cic;
2313         }
2314
2315         return true;
2316 }
2317
2318 /*
2319  * Find the cfqq that we need to service and move a request from that to the
2320  * dispatch list
2321  */
2322 static int cfq_dispatch_requests(struct request_queue *q, int force)
2323 {
2324         struct cfq_data *cfqd = q->elevator->elevator_data;
2325         struct cfq_queue *cfqq;
2326
2327         if (!cfqd->busy_queues)
2328                 return 0;
2329
2330         if (unlikely(force))
2331                 return cfq_forced_dispatch(cfqd);
2332
2333         cfqq = cfq_select_queue(cfqd);
2334         if (!cfqq)
2335                 return 0;
2336
2337         /*
2338          * Dispatch a request from this cfqq, if it is allowed
2339          */
2340         if (!cfq_dispatch_request(cfqd, cfqq))
2341                 return 0;
2342
2343         cfqq->slice_dispatch++;
2344         cfq_clear_cfqq_must_dispatch(cfqq);
2345
2346         /*
2347          * expire an async queue immediately if it has used up its slice. idle
2348          * queue always expire after 1 dispatch round.
2349          */
2350         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2351             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2352             cfq_class_idle(cfqq))) {
2353                 cfqq->slice_end = jiffies + 1;
2354                 cfq_slice_expired(cfqd, 0);
2355         }
2356
2357         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2358         return 1;
2359 }
2360
2361 /*
2362  * task holds one reference to the queue, dropped when task exits. each rq
2363  * in-flight on this queue also holds a reference, dropped when rq is freed.
2364  *
2365  * Each cfq queue took a reference on the parent group. Drop it now.
2366  * queue lock must be held here.
2367  */
2368 static void cfq_put_queue(struct cfq_queue *cfqq)
2369 {
2370         struct cfq_data *cfqd = cfqq->cfqd;
2371         struct cfq_group *cfqg;
2372
2373         BUG_ON(atomic_read(&cfqq->ref) <= 0);
2374
2375         if (!atomic_dec_and_test(&cfqq->ref))
2376                 return;
2377
2378         cfq_log_cfqq(cfqd, cfqq, "put_queue");
2379         BUG_ON(rb_first(&cfqq->sort_list));
2380         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
2381         cfqg = cfqq->cfqg;
2382
2383         if (unlikely(cfqd->active_queue == cfqq)) {
2384                 __cfq_slice_expired(cfqd, cfqq, 0);
2385                 cfq_schedule_dispatch(cfqd);
2386         }
2387
2388         BUG_ON(cfq_cfqq_on_rr(cfqq));
2389         kmem_cache_free(cfq_pool, cfqq);
2390         cfq_put_cfqg(cfqg);
2391         if (cfqq->orig_cfqg)
2392                 cfq_put_cfqg(cfqq->orig_cfqg);
2393 }
2394
2395 /*
2396  * Must always be called with the rcu_read_lock() held
2397  */
2398 static void
2399 __call_for_each_cic(struct io_context *ioc,
2400                     void (*func)(struct io_context *, struct cfq_io_context *))
2401 {
2402         struct cfq_io_context *cic;
2403         struct hlist_node *n;
2404
2405         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
2406                 func(ioc, cic);
2407 }
2408
2409 /*
2410  * Call func for each cic attached to this ioc.
2411  */
2412 static void
2413 call_for_each_cic(struct io_context *ioc,
2414                   void (*func)(struct io_context *, struct cfq_io_context *))
2415 {
2416         rcu_read_lock();
2417         __call_for_each_cic(ioc, func);
2418         rcu_read_unlock();
2419 }
2420
2421 static void cfq_cic_free_rcu(struct rcu_head *head)
2422 {
2423         struct cfq_io_context *cic;
2424
2425         cic = container_of(head, struct cfq_io_context, rcu_head);
2426
2427         kmem_cache_free(cfq_ioc_pool, cic);
2428         elv_ioc_count_dec(cfq_ioc_count);
2429
2430         if (ioc_gone) {
2431                 /*
2432                  * CFQ scheduler is exiting, grab exit lock and check
2433                  * the pending io context count. If it hits zero,
2434                  * complete ioc_gone and set it back to NULL
2435                  */
2436                 spin_lock(&ioc_gone_lock);
2437                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
2438                         complete(ioc_gone);
2439                         ioc_gone = NULL;
2440                 }
2441                 spin_unlock(&ioc_gone_lock);
2442         }
2443 }
2444
2445 static void cfq_cic_free(struct cfq_io_context *cic)
2446 {
2447         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
2448 }
2449
2450 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
2451 {
2452         unsigned long flags;
2453
2454         BUG_ON(!cic->dead_key);
2455
2456         spin_lock_irqsave(&ioc->lock, flags);
2457         radix_tree_delete(&ioc->radix_root, cic->dead_key);
2458         hlist_del_rcu(&cic->cic_list);
2459         spin_unlock_irqrestore(&ioc->lock, flags);
2460
2461         cfq_cic_free(cic);
2462 }
2463
2464 /*
2465  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2466  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2467  * and ->trim() which is called with the task lock held
2468  */
2469 static void cfq_free_io_context(struct io_context *ioc)
2470 {
2471         /*
2472          * ioc->refcount is zero here, or we are called from elv_unregister(),
2473          * so no more cic's are allowed to be linked into this ioc.  So it
2474          * should be ok to iterate over the known list, we will see all cic's
2475          * since no new ones are added.
2476          */
2477         __call_for_each_cic(ioc, cic_free_func);
2478 }
2479
2480 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2481 {
2482         struct cfq_queue *__cfqq, *next;
2483
2484         if (unlikely(cfqq == cfqd->active_queue)) {
2485                 __cfq_slice_expired(cfqd, cfqq, 0);
2486                 cfq_schedule_dispatch(cfqd);
2487         }
2488
2489         /*
2490          * If this queue was scheduled to merge with another queue, be
2491          * sure to drop the reference taken on that queue (and others in
2492          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
2493          */
2494         __cfqq = cfqq->new_cfqq;
2495         while (__cfqq) {
2496                 if (__cfqq == cfqq) {
2497                         WARN(1, "cfqq->new_cfqq loop detected\n");
2498                         break;
2499                 }
2500                 next = __cfqq->new_cfqq;
2501                 cfq_put_queue(__cfqq);
2502                 __cfqq = next;
2503         }
2504
2505         cfq_put_queue(cfqq);
2506 }
2507
2508 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
2509                                          struct cfq_io_context *cic)
2510 {
2511         struct io_context *ioc = cic->ioc;
2512
2513         list_del_init(&cic->queue_list);
2514
2515         /*
2516          * Make sure key == NULL is seen for dead queues
2517          */
2518         smp_wmb();
2519         cic->dead_key = (unsigned long) cic->key;
2520         cic->key = NULL;
2521
2522         if (ioc->ioc_data == cic)
2523                 rcu_assign_pointer(ioc->ioc_data, NULL);
2524
2525         if (cic->cfqq[BLK_RW_ASYNC]) {
2526                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2527                 cic->cfqq[BLK_RW_ASYNC] = NULL;
2528         }
2529
2530         if (cic->cfqq[BLK_RW_SYNC]) {
2531                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2532                 cic->cfqq[BLK_RW_SYNC] = NULL;
2533         }
2534 }
2535
2536 static void cfq_exit_single_io_context(struct io_context *ioc,
2537                                        struct cfq_io_context *cic)
2538 {
2539         struct cfq_data *cfqd = cic->key;
2540
2541         if (cfqd) {
2542                 struct request_queue *q = cfqd->queue;
2543                 unsigned long flags;
2544
2545                 spin_lock_irqsave(q->queue_lock, flags);
2546
2547                 /*
2548                  * Ensure we get a fresh copy of the ->key to prevent
2549                  * race between exiting task and queue
2550                  */
2551                 smp_read_barrier_depends();
2552                 if (cic->key)
2553                         __cfq_exit_single_io_context(cfqd, cic);
2554
2555                 spin_unlock_irqrestore(q->queue_lock, flags);
2556         }
2557 }
2558
2559 /*
2560  * The process that ioc belongs to has exited, we need to clean up
2561  * and put the internal structures we have that belongs to that process.
2562  */
2563 static void cfq_exit_io_context(struct io_context *ioc)
2564 {
2565         call_for_each_cic(ioc, cfq_exit_single_io_context);
2566 }
2567
2568 static struct cfq_io_context *
2569 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2570 {
2571         struct cfq_io_context *cic;
2572
2573         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2574                                                         cfqd->queue->node);
2575         if (cic) {
2576                 cic->last_end_request = jiffies;
2577                 INIT_LIST_HEAD(&cic->queue_list);
2578                 INIT_HLIST_NODE(&cic->cic_list);
2579                 cic->dtor = cfq_free_io_context;
2580                 cic->exit = cfq_exit_io_context;
2581                 elv_ioc_count_inc(cfq_ioc_count);
2582         }
2583
2584         return cic;
2585 }
2586
2587 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
2588 {
2589         struct task_struct *tsk = current;
2590         int ioprio_class;
2591
2592         if (!cfq_cfqq_prio_changed(cfqq))
2593                 return;
2594
2595         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
2596         switch (ioprio_class) {
2597         default:
2598                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2599         case IOPRIO_CLASS_NONE:
2600                 /*
2601                  * no prio set, inherit CPU scheduling settings
2602                  */
2603                 cfqq->ioprio = task_nice_ioprio(tsk);
2604                 cfqq->ioprio_class = task_nice_ioclass(tsk);
2605                 break;
2606         case IOPRIO_CLASS_RT:
2607                 cfqq->ioprio = task_ioprio(ioc);
2608                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2609                 break;
2610         case IOPRIO_CLASS_BE:
2611                 cfqq->ioprio = task_ioprio(ioc);
2612                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2613                 break;
2614         case IOPRIO_CLASS_IDLE:
2615                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2616                 cfqq->ioprio = 7;
2617                 cfq_clear_cfqq_idle_window(cfqq);
2618                 break;
2619         }
2620
2621         /*
2622          * keep track of original prio settings in case we have to temporarily
2623          * elevate the priority of this queue
2624          */
2625         cfqq->org_ioprio = cfqq->ioprio;
2626         cfqq->org_ioprio_class = cfqq->ioprio_class;
2627         cfq_clear_cfqq_prio_changed(cfqq);
2628 }
2629
2630 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2631 {
2632         struct cfq_data *cfqd = cic->key;
2633         struct cfq_queue *cfqq;
2634         unsigned long flags;
2635
2636         if (unlikely(!cfqd))
2637                 return;
2638
2639         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2640
2641         cfqq = cic->cfqq[BLK_RW_ASYNC];
2642         if (cfqq) {
2643                 struct cfq_queue *new_cfqq;
2644                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2645                                                 GFP_ATOMIC);
2646                 if (new_cfqq) {
2647                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2648                         cfq_put_queue(cfqq);
2649                 }
2650         }
2651
2652         cfqq = cic->cfqq[BLK_RW_SYNC];
2653         if (cfqq)
2654                 cfq_mark_cfqq_prio_changed(cfqq);
2655
2656         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2657 }
2658
2659 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2660 {
2661         call_for_each_cic(ioc, changed_ioprio);
2662         ioc->ioprio_changed = 0;
2663 }
2664
2665 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2666                           pid_t pid, bool is_sync)
2667 {
2668         RB_CLEAR_NODE(&cfqq->rb_node);
2669         RB_CLEAR_NODE(&cfqq->p_node);
2670         INIT_LIST_HEAD(&cfqq->fifo);
2671
2672         atomic_set(&cfqq->ref, 0);
2673         cfqq->cfqd = cfqd;
2674
2675         cfq_mark_cfqq_prio_changed(cfqq);
2676
2677         if (is_sync) {
2678                 if (!cfq_class_idle(cfqq))
2679                         cfq_mark_cfqq_idle_window(cfqq);
2680                 cfq_mark_cfqq_sync(cfqq);
2681         }
2682         cfqq->pid = pid;
2683 }
2684
2685 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2686 static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
2687 {
2688         struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
2689         struct cfq_data *cfqd = cic->key;
2690         unsigned long flags;
2691         struct request_queue *q;
2692
2693         if (unlikely(!cfqd))
2694                 return;
2695
2696         q = cfqd->queue;
2697
2698         spin_lock_irqsave(q->queue_lock, flags);
2699
2700         if (sync_cfqq) {
2701                 /*
2702                  * Drop reference to sync queue. A new sync queue will be
2703                  * assigned in new group upon arrival of a fresh request.
2704                  */
2705                 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2706                 cic_set_cfqq(cic, NULL, 1);
2707                 cfq_put_queue(sync_cfqq);
2708         }
2709
2710         spin_unlock_irqrestore(q->queue_lock, flags);
2711 }
2712
2713 static void cfq_ioc_set_cgroup(struct io_context *ioc)
2714 {
2715         call_for_each_cic(ioc, changed_cgroup);
2716         ioc->cgroup_changed = 0;
2717 }
2718 #endif  /* CONFIG_CFQ_GROUP_IOSCHED */
2719
2720 static struct cfq_queue *
2721 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2722                      struct io_context *ioc, gfp_t gfp_mask)
2723 {
2724         struct cfq_queue *cfqq, *new_cfqq = NULL;
2725         struct cfq_io_context *cic;
2726         struct cfq_group *cfqg;
2727
2728 retry:
2729         cfqg = cfq_get_cfqg(cfqd, 1);
2730         cic = cfq_cic_lookup(cfqd, ioc);
2731         /* cic always exists here */
2732         cfqq = cic_to_cfqq(cic, is_sync);
2733
2734         /*
2735          * Always try a new alloc if we fell back to the OOM cfqq
2736          * originally, since it should just be a temporary situation.
2737          */
2738         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2739                 cfqq = NULL;
2740                 if (new_cfqq) {
2741                         cfqq = new_cfqq;
2742                         new_cfqq = NULL;
2743                 } else if (gfp_mask & __GFP_WAIT) {
2744                         spin_unlock_irq(cfqd->queue->queue_lock);
2745                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2746                                         gfp_mask | __GFP_ZERO,
2747                                         cfqd->queue->node);
2748                         spin_lock_irq(cfqd->queue->queue_lock);
2749                         if (new_cfqq)
2750                                 goto retry;
2751                 } else {
2752                         cfqq = kmem_cache_alloc_node(cfq_pool,
2753                                         gfp_mask | __GFP_ZERO,
2754                                         cfqd->queue->node);
2755                 }
2756
2757                 if (cfqq) {
2758                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2759                         cfq_init_prio_data(cfqq, ioc);
2760                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2761                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2762                 } else
2763                         cfqq = &cfqd->oom_cfqq;
2764         }
2765
2766         if (new_cfqq)
2767                 kmem_cache_free(cfq_pool, new_cfqq);
2768
2769         return cfqq;
2770 }
2771
2772 static struct cfq_queue **
2773 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2774 {
2775         switch (ioprio_class) {
2776         case IOPRIO_CLASS_RT:
2777                 return &cfqd->async_cfqq[0][ioprio];
2778         case IOPRIO_CLASS_BE:
2779                 return &cfqd->async_cfqq[1][ioprio];
2780         case IOPRIO_CLASS_IDLE:
2781                 return &cfqd->async_idle_cfqq;
2782         default:
2783                 BUG();
2784         }
2785 }
2786
2787 static struct cfq_queue *
2788 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2789               gfp_t gfp_mask)
2790 {
2791         const int ioprio = task_ioprio(ioc);
2792         const int ioprio_class = task_ioprio_class(ioc);
2793         struct cfq_queue **async_cfqq = NULL;
2794         struct cfq_queue *cfqq = NULL;
2795
2796         if (!is_sync) {
2797                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2798                 cfqq = *async_cfqq;
2799         }
2800
2801         if (!cfqq)
2802                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2803
2804         /*
2805          * pin the queue now that it's allocated, scheduler exit will prune it
2806          */
2807         if (!is_sync && !(*async_cfqq)) {
2808                 atomic_inc(&cfqq->ref);
2809                 *async_cfqq = cfqq;
2810         }
2811
2812         atomic_inc(&cfqq->ref);
2813         return cfqq;
2814 }
2815
2816 /*
2817  * We drop cfq io contexts lazily, so we may find a dead one.
2818  */
2819 static void
2820 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2821                   struct cfq_io_context *cic)
2822 {
2823         unsigned long flags;
2824
2825         WARN_ON(!list_empty(&cic->queue_list));
2826
2827         spin_lock_irqsave(&ioc->lock, flags);
2828
2829         BUG_ON(ioc->ioc_data == cic);
2830
2831         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2832         hlist_del_rcu(&cic->cic_list);
2833         spin_unlock_irqrestore(&ioc->lock, flags);
2834
2835         cfq_cic_free(cic);
2836 }
2837
2838 static struct cfq_io_context *
2839 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2840 {
2841         struct cfq_io_context *cic;
2842         unsigned long flags;
2843         void *k;
2844
2845         if (unlikely(!ioc))
2846                 return NULL;
2847
2848         rcu_read_lock();
2849
2850         /*
2851          * we maintain a last-hit cache, to avoid browsing over the tree
2852          */
2853         cic = rcu_dereference(ioc->ioc_data);
2854         if (cic && cic->key == cfqd) {
2855                 rcu_read_unlock();
2856                 return cic;
2857         }
2858
2859         do {
2860                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2861                 rcu_read_unlock();
2862                 if (!cic)
2863                         break;
2864                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2865                 k = cic->key;
2866                 if (unlikely(!k)) {
2867                         cfq_drop_dead_cic(cfqd, ioc, cic);
2868                         rcu_read_lock();
2869                         continue;
2870                 }
2871
2872                 spin_lock_irqsave(&ioc->lock, flags);
2873                 rcu_assign_pointer(ioc->ioc_data, cic);
2874                 spin_unlock_irqrestore(&ioc->lock, flags);
2875                 break;
2876         } while (1);
2877
2878         return cic;
2879 }
2880
2881 /*
2882  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2883  * the process specific cfq io context when entered from the block layer.
2884  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2885  */
2886 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2887                         struct cfq_io_context *cic, gfp_t gfp_mask)
2888 {
2889         unsigned long flags;
2890         int ret;
2891
2892         ret = radix_tree_preload(gfp_mask);
2893         if (!ret) {
2894                 cic->ioc = ioc;
2895                 cic->key = cfqd;
2896
2897                 spin_lock_irqsave(&ioc->lock, flags);
2898                 ret = radix_tree_insert(&ioc->radix_root,
2899                                                 (unsigned long) cfqd, cic);
2900                 if (!ret)
2901                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2902                 spin_unlock_irqrestore(&ioc->lock, flags);
2903
2904                 radix_tree_preload_end();
2905
2906                 if (!ret) {
2907                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2908                         list_add(&cic->queue_list, &cfqd->cic_list);
2909                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2910                 }
2911         }
2912
2913         if (ret)
2914                 printk(KERN_ERR "cfq: cic link failed!\n");
2915
2916         return ret;
2917 }
2918
2919 /*
2920  * Setup general io context and cfq io context. There can be several cfq
2921  * io contexts per general io context, if this process is doing io to more
2922  * than one device managed by cfq.
2923  */
2924 static struct cfq_io_context *
2925 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2926 {
2927         struct io_context *ioc = NULL;
2928         struct cfq_io_context *cic;
2929
2930         might_sleep_if(gfp_mask & __GFP_WAIT);
2931
2932         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2933         if (!ioc)
2934                 return NULL;
2935
2936         cic = cfq_cic_lookup(cfqd, ioc);
2937         if (cic)
2938                 goto out;
2939
2940         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2941         if (cic == NULL)
2942                 goto err;
2943
2944         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2945                 goto err_free;
2946
2947 out:
2948         smp_read_barrier_depends();
2949         if (unlikely(ioc->ioprio_changed))
2950                 cfq_ioc_set_ioprio(ioc);
2951
2952 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2953         if (unlikely(ioc->cgroup_changed))
2954                 cfq_ioc_set_cgroup(ioc);
2955 #endif
2956         return cic;
2957 err_free:
2958         cfq_cic_free(cic);
2959 err:
2960         put_io_context(ioc);
2961         return NULL;
2962 }
2963
2964 static void
2965 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2966 {
2967         unsigned long elapsed = jiffies - cic->last_end_request;
2968         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2969
2970         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2971         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2972         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2973 }
2974
2975 static void
2976 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2977                        struct request *rq)
2978 {
2979         sector_t sdist;
2980         u64 total;
2981
2982         if (!cfqq->last_request_pos)
2983                 sdist = 0;
2984         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2985                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2986         else
2987                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2988
2989         /*
2990          * Don't allow the seek distance to get too large from the
2991          * odd fragment, pagein, etc
2992          */
2993         if (cfqq->seek_samples <= 60) /* second&third seek */
2994                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2995         else
2996                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2997
2998         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2999         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
3000         total = cfqq->seek_total + (cfqq->seek_samples/2);
3001         do_div(total, cfqq->seek_samples);
3002         cfqq->seek_mean = (sector_t)total;
3003
3004         /*
3005          * If this cfqq is shared between multiple processes, check to
3006          * make sure that those processes are still issuing I/Os within
3007          * the mean seek distance.  If not, it may be time to break the
3008          * queues apart again.
3009          */
3010         if (cfq_cfqq_coop(cfqq)) {
3011                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
3012                         cfqq->seeky_start = jiffies;
3013                 else if (!CFQQ_SEEKY(cfqq))
3014                         cfqq->seeky_start = 0;
3015         }
3016 }
3017
3018 /*
3019  * Disable idle window if the process thinks too long or seeks so much that
3020  * it doesn't matter
3021  */
3022 static void
3023 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3024                        struct cfq_io_context *cic)
3025 {
3026         int old_idle, enable_idle;
3027
3028         /*
3029          * Don't idle for async or idle io prio class
3030          */
3031         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
3032                 return;
3033
3034         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
3035
3036         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3037                 cfq_mark_cfqq_deep(cfqq);
3038
3039         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3040             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
3041              && CFQQ_SEEKY(cfqq)))
3042                 enable_idle = 0;
3043         else if (sample_valid(cic->ttime_samples)) {
3044                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
3045                         enable_idle = 0;
3046                 else
3047                         enable_idle = 1;
3048         }
3049
3050         if (old_idle != enable_idle) {
3051                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3052                 if (enable_idle)
3053                         cfq_mark_cfqq_idle_window(cfqq);
3054                 else
3055                         cfq_clear_cfqq_idle_window(cfqq);
3056         }
3057 }
3058
3059 /*
3060  * Check if new_cfqq should preempt the currently active queue. Return 0 for
3061  * no or if we aren't sure, a 1 will cause a preempt.
3062  */
3063 static bool
3064 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
3065                    struct request *rq)
3066 {
3067         struct cfq_queue *cfqq;
3068
3069         cfqq = cfqd->active_queue;
3070         if (!cfqq)
3071                 return false;
3072
3073         if (cfq_class_idle(new_cfqq))
3074                 return false;
3075
3076         if (cfq_class_idle(cfqq))
3077                 return true;
3078
3079         /*
3080          * if the new request is sync, but the currently running queue is
3081          * not, let the sync request have priority.
3082          */
3083         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
3084                 return true;
3085
3086         if (new_cfqq->cfqg != cfqq->cfqg)
3087                 return false;
3088
3089         if (cfq_slice_used(cfqq))
3090                 return true;
3091
3092         /* Allow preemption only if we are idling on sync-noidle tree */
3093         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3094             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3095             new_cfqq->service_tree->count == 2 &&
3096             RB_EMPTY_ROOT(&cfqq->sort_list))
3097                 return true;
3098
3099         /*
3100          * So both queues are sync. Let the new request get disk time if
3101          * it's a metadata request and the current queue is doing regular IO.
3102          */
3103         if (rq_is_meta(rq) && !cfqq->meta_pending)
3104                 return true;
3105
3106         /*
3107          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3108          */
3109         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
3110                 return true;
3111
3112         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
3113                 return false;
3114
3115         /*
3116          * if this request is as-good as one we would expect from the
3117          * current cfqq, let it preempt
3118          */
3119         if (cfq_rq_close(cfqd, cfqq, rq))
3120                 return true;
3121
3122         return false;
3123 }
3124
3125 /*
3126  * cfqq preempts the active queue. if we allowed preempt with no slice left,
3127  * let it have half of its nominal slice.
3128  */
3129 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3130 {
3131         cfq_log_cfqq(cfqd, cfqq, "preempt");
3132         cfq_slice_expired(cfqd, 1);
3133
3134         /*
3135          * Put the new queue at the front of the of the current list,
3136          * so we know that it will be selected next.
3137          */
3138         BUG_ON(!cfq_cfqq_on_rr(cfqq));
3139
3140         cfq_service_tree_add(cfqd, cfqq, 1);
3141
3142         cfqq->slice_end = 0;
3143         cfq_mark_cfqq_slice_new(cfqq);
3144 }
3145
3146 /*
3147  * Called when a new fs request (rq) is added (to cfqq). Check if there's
3148  * something we should do about it
3149  */
3150 static void
3151 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3152                 struct request *rq)
3153 {
3154         struct cfq_io_context *cic = RQ_CIC(rq);
3155
3156         cfqd->rq_queued++;
3157         if (rq_is_meta(rq))
3158                 cfqq->meta_pending++;
3159
3160         cfq_update_io_thinktime(cfqd, cic);
3161         cfq_update_io_seektime(cfqd, cfqq, rq);
3162         cfq_update_idle_window(cfqd, cfqq, cic);
3163
3164         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
3165
3166         if (cfqq == cfqd->active_queue) {
3167                 if (cfq_cfqq_wait_busy(cfqq)) {
3168                         cfq_clear_cfqq_wait_busy(cfqq);
3169                         cfq_mark_cfqq_wait_busy_done(cfqq);
3170                 }
3171                 /*
3172                  * Remember that we saw a request from this process, but
3173                  * don't start queuing just yet. Otherwise we risk seeing lots
3174                  * of tiny requests, because we disrupt the normal plugging
3175                  * and merging. If the request is already larger than a single
3176                  * page, let it rip immediately. For that case we assume that
3177                  * merging is already done. Ditto for a busy system that
3178                  * has other work pending, don't risk delaying until the
3179                  * idle timer unplug to continue working.
3180                  */
3181                 if (cfq_cfqq_wait_request(cfqq)) {
3182                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3183                             cfqd->busy_queues > 1) {
3184                                 del_timer(&cfqd->idle_slice_timer);
3185                                 __blk_run_queue(cfqd->queue);
3186                         } else
3187                                 cfq_mark_cfqq_must_dispatch(cfqq);
3188                 }
3189         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
3190                 /*
3191                  * not the active queue - expire current slice if it is
3192                  * idle and has expired it's mean thinktime or this new queue
3193                  * has some old slice time left and is of higher priority or
3194                  * this new queue is RT and the current one is BE
3195                  */
3196                 cfq_preempt_queue(cfqd, cfqq);
3197                 __blk_run_queue(cfqd->queue);
3198         }
3199 }
3200
3201 static void cfq_insert_request(struct request_queue *q, struct request *rq)
3202 {
3203         struct cfq_data *cfqd = q->elevator->elevator_data;
3204         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3205
3206         cfq_log_cfqq(cfqd, cfqq, "insert_request");
3207         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
3208
3209         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
3210         list_add_tail(&rq->queuelist, &cfqq->fifo);
3211         cfq_add_rq_rb(rq);
3212
3213         cfq_rq_enqueued(cfqd, cfqq, rq);
3214 }
3215
3216 /*
3217  * Update hw_tag based on peak queue depth over 50 samples under
3218  * sufficient load.
3219  */
3220 static void cfq_update_hw_tag(struct cfq_data *cfqd)
3221 {
3222         struct cfq_queue *cfqq = cfqd->active_queue;
3223
3224         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
3225                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
3226
3227         if (cfqd->hw_tag == 1)
3228                 return;
3229
3230         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
3231             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
3232                 return;
3233
3234         /*
3235          * If active queue hasn't enough requests and can idle, cfq might not
3236          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3237          * case
3238          */
3239         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3240             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
3241             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
3242                 return;
3243
3244         if (cfqd->hw_tag_samples++ < 50)
3245                 return;
3246
3247         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
3248                 cfqd->hw_tag = 1;
3249         else
3250                 cfqd->hw_tag = 0;
3251 }
3252
3253 static void cfq_completed_request(struct request_queue *q, struct request *rq)
3254 {
3255         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3256         struct cfq_data *cfqd = cfqq->cfqd;
3257         const int sync = rq_is_sync(rq);
3258         unsigned long now;
3259
3260         now = jiffies;
3261         cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d", !!rq_noidle(rq));
3262
3263         cfq_update_hw_tag(cfqd);
3264
3265         WARN_ON(!cfqd->rq_in_driver[sync]);
3266         WARN_ON(!cfqq->dispatched);
3267         cfqd->rq_in_driver[sync]--;
3268         cfqq->dispatched--;
3269
3270         if (cfq_cfqq_sync(cfqq))
3271                 cfqd->sync_flight--;
3272
3273         if (sync) {
3274                 RQ_CIC(rq)->last_end_request = now;
3275                 cfqd->last_end_sync_rq = now;
3276         }
3277
3278         /*
3279          * If this is the active queue, check if it needs to be expired,
3280          * or if we want to idle in case it has no pending requests.
3281          */
3282         if (cfqd->active_queue == cfqq) {
3283                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3284
3285                 if (cfq_cfqq_slice_new(cfqq)) {
3286                         cfq_set_prio_slice(cfqd, cfqq);
3287                         cfq_clear_cfqq_slice_new(cfqq);
3288                 }
3289
3290                 /*
3291                  * If this queue consumed its slice and this is last queue
3292                  * in the group, wait for next request before we expire
3293                  * the queue
3294                  */
3295                 if (cfq_slice_used(cfqq) && cfqq->cfqg->nr_cfqq == 1) {
3296                         cfqq->slice_end = jiffies + cfqd->cfq_slice_idle;
3297                         cfq_mark_cfqq_wait_busy(cfqq);
3298                 }
3299
3300                 /*
3301                  * Idling is not enabled on:
3302                  * - expired queues
3303                  * - idle-priority queues
3304                  * - async queues
3305                  * - queues with still some requests queued
3306                  * - when there is a close cooperator
3307                  */
3308                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
3309                         cfq_slice_expired(cfqd, 1);
3310                 else if (sync && cfqq_empty &&
3311                          !cfq_close_cooperator(cfqd, cfqq)) {
3312                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
3313                         /*
3314                          * Idling is enabled for SYNC_WORKLOAD.
3315                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3316                          * only if we processed at least one !rq_noidle request
3317                          */
3318                         if (cfqd->serving_type == SYNC_WORKLOAD
3319                             || cfqd->noidle_tree_requires_idle
3320                             || cfqq->cfqg->nr_cfqq == 1)
3321                                 cfq_arm_slice_timer(cfqd);
3322                 }
3323         }
3324
3325         if (!rq_in_driver(cfqd))
3326                 cfq_schedule_dispatch(cfqd);
3327 }
3328
3329 /*
3330  * we temporarily boost lower priority queues if they are holding fs exclusive
3331  * resources. they are boosted to normal prio (CLASS_BE/4)
3332  */
3333 static void cfq_prio_boost(struct cfq_queue *cfqq)
3334 {
3335         if (has_fs_excl()) {
3336                 /*
3337                  * boost idle prio on transactions that would lock out other
3338                  * users of the filesystem
3339                  */
3340                 if (cfq_class_idle(cfqq))
3341                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
3342                 if (cfqq->ioprio > IOPRIO_NORM)
3343                         cfqq->ioprio = IOPRIO_NORM;
3344         } else {
3345                 /*
3346                  * unboost the queue (if needed)
3347                  */
3348                 cfqq->ioprio_class = cfqq->org_ioprio_class;
3349                 cfqq->ioprio = cfqq->org_ioprio;
3350         }
3351 }
3352
3353 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
3354 {
3355         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3356                 cfq_mark_cfqq_must_alloc_slice(cfqq);
3357                 return ELV_MQUEUE_MUST;
3358         }
3359
3360         return ELV_MQUEUE_MAY;
3361 }
3362
3363 static int cfq_may_queue(struct request_queue *q, int rw)
3364 {
3365         struct cfq_data *cfqd = q->elevator->elevator_data;
3366         struct task_struct *tsk = current;
3367         struct cfq_io_context *cic;
3368         struct cfq_queue *cfqq;
3369
3370         /*
3371          * don't force setup of a queue from here, as a call to may_queue
3372          * does not necessarily imply that a request actually will be queued.
3373          * so just lookup a possibly existing queue, or return 'may queue'
3374          * if that fails
3375          */
3376         cic = cfq_cic_lookup(cfqd, tsk->io_context);
3377         if (!cic)
3378                 return ELV_MQUEUE_MAY;
3379
3380         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
3381         if (cfqq) {
3382                 cfq_init_prio_data(cfqq, cic->ioc);
3383                 cfq_prio_boost(cfqq);
3384
3385                 return __cfq_may_queue(cfqq);
3386         }
3387
3388         return ELV_MQUEUE_MAY;
3389 }
3390
3391 /*
3392  * queue lock held here
3393  */
3394 static void cfq_put_request(struct request *rq)
3395 {
3396         struct cfq_queue *cfqq = RQ_CFQQ(rq);
3397
3398         if (cfqq) {
3399                 const int rw = rq_data_dir(rq);
3400
3401                 BUG_ON(!cfqq->allocated[rw]);
3402                 cfqq->allocated[rw]--;
3403
3404                 put_io_context(RQ_CIC(rq)->ioc);
3405
3406                 rq->elevator_private = NULL;
3407                 rq->elevator_private2 = NULL;
3408
3409                 cfq_put_queue(cfqq);
3410         }
3411 }
3412
3413 static struct cfq_queue *
3414 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3415                 struct cfq_queue *cfqq)
3416 {
3417         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3418         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
3419         cfq_mark_cfqq_coop(cfqq->new_cfqq);
3420         cfq_put_queue(cfqq);
3421         return cic_to_cfqq(cic, 1);
3422 }
3423
3424 static int should_split_cfqq(struct cfq_queue *cfqq)
3425 {
3426         if (cfqq->seeky_start &&
3427             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
3428                 return 1;
3429         return 0;
3430 }
3431
3432 /*
3433  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3434  * was the last process referring to said cfqq.
3435  */
3436 static struct cfq_queue *
3437 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3438 {
3439         if (cfqq_process_refs(cfqq) == 1) {
3440                 cfqq->seeky_start = 0;
3441                 cfqq->pid = current->pid;
3442                 cfq_clear_cfqq_coop(cfqq);
3443                 return cfqq;
3444         }
3445
3446         cic_set_cfqq(cic, NULL, 1);
3447         cfq_put_queue(cfqq);
3448         return NULL;
3449 }
3450 /*
3451  * Allocate cfq data structures associated with this request.
3452  */
3453 static int
3454 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
3455 {
3456         struct cfq_data *cfqd = q->elevator->elevator_data;
3457         struct cfq_io_context *cic;
3458         const int rw = rq_data_dir(rq);
3459         const bool is_sync = rq_is_sync(rq);
3460         struct cfq_queue *cfqq;
3461         unsigned long flags;
3462
3463         might_sleep_if(gfp_mask & __GFP_WAIT);
3464
3465         cic = cfq_get_io_context(cfqd, gfp_mask);
3466
3467         spin_lock_irqsave(q->queue_lock, flags);
3468
3469         if (!cic)
3470                 goto queue_fail;
3471
3472 new_queue:
3473         cfqq = cic_to_cfqq(cic, is_sync);
3474         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
3475                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
3476                 cic_set_cfqq(cic, cfqq, is_sync);
3477         } else {
3478                 /*
3479                  * If the queue was seeky for too long, break it apart.
3480                  */
3481                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
3482                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3483                         cfqq = split_cfqq(cic, cfqq);
3484                         if (!cfqq)
3485                                 goto new_queue;
3486                 }
3487
3488                 /*
3489                  * Check to see if this queue is scheduled to merge with
3490                  * another, closely cooperating queue.  The merging of
3491                  * queues happens here as it must be done in process context.
3492                  * The reference on new_cfqq was taken in merge_cfqqs.
3493                  */
3494                 if (cfqq->new_cfqq)
3495                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
3496         }
3497
3498         cfqq->allocated[rw]++;
3499         atomic_inc(&cfqq->ref);
3500
3501         spin_unlock_irqrestore(q->queue_lock, flags);
3502
3503         rq->elevator_private = cic;
3504         rq->elevator_private2 = cfqq;
3505         return 0;
3506
3507 queue_fail:
3508         if (cic)
3509                 put_io_context(cic->ioc);
3510
3511         cfq_schedule_dispatch(cfqd);
3512         spin_unlock_irqrestore(q->queue_lock, flags);
3513         cfq_log(cfqd, "set_request fail");
3514         return 1;
3515 }
3516
3517 static void cfq_kick_queue(struct work_struct *work)
3518 {
3519         struct cfq_data *cfqd =
3520                 container_of(work, struct cfq_data, unplug_work);
3521         struct request_queue *q = cfqd->queue;
3522
3523         spin_lock_irq(q->queue_lock);
3524         __blk_run_queue(cfqd->queue);
3525         spin_unlock_irq(q->queue_lock);
3526 }
3527
3528 /*
3529  * Timer running if the active_queue is currently idling inside its time slice
3530  */
3531 static void cfq_idle_slice_timer(unsigned long data)
3532 {
3533         struct cfq_data *cfqd = (struct cfq_data *) data;
3534         struct cfq_queue *cfqq;
3535         unsigned long flags;
3536         int timed_out = 1;
3537
3538         cfq_log(cfqd, "idle timer fired");
3539
3540         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3541
3542         cfqq = cfqd->active_queue;
3543         if (cfqq) {
3544                 timed_out = 0;
3545
3546                 /*
3547                  * We saw a request before the queue expired, let it through
3548                  */
3549                 if (cfq_cfqq_must_dispatch(cfqq))
3550                         goto out_kick;
3551
3552                 /*
3553                  * expired
3554                  */
3555                 if (cfq_slice_used(cfqq))
3556                         goto expire;
3557
3558                 /*
3559                  * only expire and reinvoke request handler, if there are
3560                  * other queues with pending requests
3561                  */
3562                 if (!cfqd->busy_queues)
3563                         goto out_cont;
3564
3565                 /*
3566                  * not expired and it has a request pending, let it dispatch
3567                  */
3568                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3569                         goto out_kick;
3570
3571                 /*
3572                  * Queue depth flag is reset only when the idle didn't succeed
3573                  */
3574                 cfq_clear_cfqq_deep(cfqq);
3575         }
3576 expire:
3577         cfq_slice_expired(cfqd, timed_out);
3578 out_kick:
3579         cfq_schedule_dispatch(cfqd);
3580 out_cont:
3581         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3582 }
3583
3584 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3585 {
3586         del_timer_sync(&cfqd->idle_slice_timer);
3587         cancel_work_sync(&cfqd->unplug_work);
3588 }
3589
3590 static void cfq_put_async_queues(struct cfq_data *cfqd)
3591 {
3592         int i;
3593
3594         for (i = 0; i < IOPRIO_BE_NR; i++) {
3595                 if (cfqd->async_cfqq[0][i])
3596                         cfq_put_queue(cfqd->async_cfqq[0][i]);
3597                 if (cfqd->async_cfqq[1][i])
3598                         cfq_put_queue(cfqd->async_cfqq[1][i]);
3599         }
3600
3601         if (cfqd->async_idle_cfqq)
3602                 cfq_put_queue(cfqd->async_idle_cfqq);
3603 }
3604
3605 static void cfq_cfqd_free(struct rcu_head *head)
3606 {
3607         kfree(container_of(head, struct cfq_data, rcu));
3608 }
3609
3610 static void cfq_exit_queue(struct elevator_queue *e)
3611 {
3612         struct cfq_data *cfqd = e->elevator_data;
3613         struct request_queue *q = cfqd->queue;
3614
3615         cfq_shutdown_timer_wq(cfqd);
3616
3617         spin_lock_irq(q->queue_lock);
3618
3619         if (cfqd->active_queue)
3620                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
3621
3622         while (!list_empty(&cfqd->cic_list)) {
3623                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3624                                                         struct cfq_io_context,
3625                                                         queue_list);
3626
3627                 __cfq_exit_single_io_context(cfqd, cic);
3628         }
3629
3630         cfq_put_async_queues(cfqd);
3631         cfq_release_cfq_groups(cfqd);
3632         blkiocg_del_blkio_group(&cfqd->root_group.blkg);
3633
3634         spin_unlock_irq(q->queue_lock);
3635
3636         cfq_shutdown_timer_wq(cfqd);
3637
3638         /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3639         call_rcu(&cfqd->rcu, cfq_cfqd_free);
3640 }
3641
3642 static void *cfq_init_queue(struct request_queue *q)
3643 {
3644         struct cfq_data *cfqd;
3645         int i, j;
3646         struct cfq_group *cfqg;
3647         struct cfq_rb_root *st;
3648
3649         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
3650         if (!cfqd)
3651                 return NULL;
3652
3653         /* Init root service tree */
3654         cfqd->grp_service_tree = CFQ_RB_ROOT;
3655
3656         /* Init root group */
3657         cfqg = &cfqd->root_group;
3658         for_each_cfqg_st(cfqg, i, j, st)
3659                 *st = CFQ_RB_ROOT;
3660         RB_CLEAR_NODE(&cfqg->rb_node);
3661
3662         /* Give preference to root group over other groups */
3663         cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3664
3665 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3666         /*
3667          * Take a reference to root group which we never drop. This is just
3668          * to make sure that cfq_put_cfqg() does not try to kfree root group
3669          */
3670         atomic_set(&cfqg->ref, 1);
3671         blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg, (void *)cfqd,
3672                                         0);
3673 #endif
3674         /*
3675          * Not strictly needed (since RB_ROOT just clears the node and we
3676          * zeroed cfqd on alloc), but better be safe in case someone decides
3677          * to add magic to the rb code
3678          */
3679         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3680                 cfqd->prio_trees[i] = RB_ROOT;
3681
3682         /*
3683          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3684          * Grab a permanent reference to it, so that the normal code flow
3685          * will not attempt to free it.
3686          */
3687         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3688         atomic_inc(&cfqd->oom_cfqq.ref);
3689         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3690
3691         INIT_LIST_HEAD(&cfqd->cic_list);
3692
3693         cfqd->queue = q;
3694
3695         init_timer(&cfqd->idle_slice_timer);
3696         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3697         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3698
3699         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3700
3701         cfqd->cfq_quantum = cfq_quantum;
3702         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3703         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3704         cfqd->cfq_back_max = cfq_back_max;
3705         cfqd->cfq_back_penalty = cfq_back_penalty;
3706         cfqd->cfq_slice[0] = cfq_slice_async;
3707         cfqd->cfq_slice[1] = cfq_slice_sync;
3708         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3709         cfqd->cfq_slice_idle = cfq_slice_idle;
3710         cfqd->cfq_latency = 1;
3711         cfqd->cfq_group_isolation = 0;
3712         cfqd->hw_tag = -1;
3713         cfqd->last_end_sync_rq = jiffies;
3714         INIT_RCU_HEAD(&cfqd->rcu);
3715         return cfqd;
3716 }
3717
3718 static void cfq_slab_kill(void)
3719 {
3720         /*
3721          * Caller already ensured that pending RCU callbacks are completed,
3722          * so we should have no busy allocations at this point.
3723          */
3724         if (cfq_pool)
3725                 kmem_cache_destroy(cfq_pool);
3726         if (cfq_ioc_pool)
3727                 kmem_cache_destroy(cfq_ioc_pool);
3728 }
3729
3730 static int __init cfq_slab_setup(void)
3731 {
3732         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3733         if (!cfq_pool)
3734                 goto fail;
3735
3736         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3737         if (!cfq_ioc_pool)
3738                 goto fail;
3739
3740         return 0;
3741 fail:
3742         cfq_slab_kill();
3743         return -ENOMEM;
3744 }
3745
3746 /*
3747  * sysfs parts below -->
3748  */
3749 static ssize_t
3750 cfq_var_show(unsigned int var, char *page)
3751 {
3752         return sprintf(page, "%d\n", var);
3753 }
3754
3755 static ssize_t
3756 cfq_var_store(unsigned int *var, const char *page, size_t count)
3757 {
3758         char *p = (char *) page;
3759
3760         *var = simple_strtoul(p, &p, 10);
3761         return count;
3762 }
3763
3764 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3765 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3766 {                                                                       \
3767         struct cfq_data *cfqd = e->elevator_data;                       \
3768         unsigned int __data = __VAR;                                    \
3769         if (__CONV)                                                     \
3770                 __data = jiffies_to_msecs(__data);                      \
3771         return cfq_var_show(__data, (page));                            \
3772 }
3773 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3774 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3775 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3776 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3777 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3778 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3779 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3780 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3781 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3782 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3783 SHOW_FUNCTION(cfq_group_isolation_show, cfqd->cfq_group_isolation, 0);
3784 #undef SHOW_FUNCTION
3785
3786 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3787 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3788 {                                                                       \
3789         struct cfq_data *cfqd = e->elevator_data;                       \
3790         unsigned int __data;                                            \
3791         int ret = cfq_var_store(&__data, (page), count);                \
3792         if (__data < (MIN))                                             \
3793                 __data = (MIN);                                         \
3794         else if (__data > (MAX))                                        \
3795                 __data = (MAX);                                         \
3796         if (__CONV)                                                     \
3797                 *(__PTR) = msecs_to_jiffies(__data);                    \
3798         else                                                            \
3799                 *(__PTR) = __data;                                      \
3800         return ret;                                                     \
3801 }
3802 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3803 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3804                 UINT_MAX, 1);
3805 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3806                 UINT_MAX, 1);
3807 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3808 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3809                 UINT_MAX, 0);
3810 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3811 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3812 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3813 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3814                 UINT_MAX, 0);
3815 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3816 STORE_FUNCTION(cfq_group_isolation_store, &cfqd->cfq_group_isolation, 0, 1, 0);
3817 #undef STORE_FUNCTION
3818
3819 #define CFQ_ATTR(name) \
3820         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3821
3822 static struct elv_fs_entry cfq_attrs[] = {
3823         CFQ_ATTR(quantum),
3824         CFQ_ATTR(fifo_expire_sync),
3825         CFQ_ATTR(fifo_expire_async),
3826         CFQ_ATTR(back_seek_max),
3827         CFQ_ATTR(back_seek_penalty),
3828         CFQ_ATTR(slice_sync),
3829         CFQ_ATTR(slice_async),
3830         CFQ_ATTR(slice_async_rq),
3831         CFQ_ATTR(slice_idle),
3832         CFQ_ATTR(low_latency),
3833         CFQ_ATTR(group_isolation),
3834         __ATTR_NULL
3835 };
3836
3837 static struct elevator_type iosched_cfq = {
3838         .ops = {
3839                 .elevator_merge_fn =            cfq_merge,
3840                 .elevator_merged_fn =           cfq_merged_request,
3841                 .elevator_merge_req_fn =        cfq_merged_requests,
3842                 .elevator_allow_merge_fn =      cfq_allow_merge,
3843                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3844                 .elevator_add_req_fn =          cfq_insert_request,
3845                 .elevator_activate_req_fn =     cfq_activate_request,
3846                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3847                 .elevator_queue_empty_fn =      cfq_queue_empty,
3848                 .elevator_completed_req_fn =    cfq_completed_request,
3849                 .elevator_former_req_fn =       elv_rb_former_request,
3850                 .elevator_latter_req_fn =       elv_rb_latter_request,
3851                 .elevator_set_req_fn =          cfq_set_request,
3852                 .elevator_put_req_fn =          cfq_put_request,
3853                 .elevator_may_queue_fn =        cfq_may_queue,
3854                 .elevator_init_fn =             cfq_init_queue,
3855                 .elevator_exit_fn =             cfq_exit_queue,
3856                 .trim =                         cfq_free_io_context,
3857         },
3858         .elevator_attrs =       cfq_attrs,
3859         .elevator_name =        "cfq",
3860         .elevator_owner =       THIS_MODULE,
3861 };
3862
3863 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3864 static struct blkio_policy_type blkio_policy_cfq = {
3865         .ops = {
3866                 .blkio_unlink_group_fn =        cfq_unlink_blkio_group,
3867                 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
3868         },
3869 };
3870 #else
3871 static struct blkio_policy_type blkio_policy_cfq;
3872 #endif
3873
3874 static int __init cfq_init(void)
3875 {
3876         /*
3877          * could be 0 on HZ < 1000 setups
3878          */
3879         if (!cfq_slice_async)
3880                 cfq_slice_async = 1;
3881         if (!cfq_slice_idle)
3882                 cfq_slice_idle = 1;
3883
3884         if (cfq_slab_setup())
3885                 return -ENOMEM;
3886
3887         elv_register(&iosched_cfq);
3888         blkio_policy_register(&blkio_policy_cfq);
3889
3890         return 0;
3891 }
3892
3893 static void __exit cfq_exit(void)
3894 {
3895         DECLARE_COMPLETION_ONSTACK(all_gone);
3896         blkio_policy_unregister(&blkio_policy_cfq);
3897         elv_unregister(&iosched_cfq);
3898         ioc_gone = &all_gone;
3899         /* ioc_gone's update must be visible before reading ioc_count */
3900         smp_wmb();
3901
3902         /*
3903          * this also protects us from entering cfq_slab_kill() with
3904          * pending RCU callbacks
3905          */
3906         if (elv_ioc_count_read(cfq_ioc_count))
3907                 wait_for_completion(&all_gone);
3908         cfq_slab_kill();
3909 }
3910
3911 module_init(cfq_init);
3912 module_exit(cfq_exit);
3913
3914 MODULE_AUTHOR("Jens Axboe");
3915 MODULE_LICENSE("GPL");
3916 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");