cfq: fix the log message after dispatched a request
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples)   ((samples) > 80)
60
61 /*
62  * Most of our rbtree usage is for sorting with min extraction, so
63  * if we cache the leftmost node we don't have to walk down the tree
64  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65  * move this into the elevator for the rq sorting as well.
66  */
67 struct cfq_rb_root {
68         struct rb_root rb;
69         struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74  * Per process-grouping structure
75  */
76 struct cfq_queue {
77         /* reference count */
78         atomic_t ref;
79         /* various state flags, see below */
80         unsigned int flags;
81         /* parent cfq_data */
82         struct cfq_data *cfqd;
83         /* service_tree member */
84         struct rb_node rb_node;
85         /* service_tree key */
86         unsigned long rb_key;
87         /* prio tree member */
88         struct rb_node p_node;
89         /* prio tree root we belong to, if any */
90         struct rb_root *p_root;
91         /* sorted list of pending requests */
92         struct rb_root sort_list;
93         /* if fifo isn't expired, next request to serve */
94         struct request *next_rq;
95         /* requests queued in sort_list */
96         int queued[2];
97         /* currently allocated requests */
98         int allocated[2];
99         /* fifo list of requests in sort_list */
100         struct list_head fifo;
101
102         unsigned long slice_end;
103         long slice_resid;
104         unsigned int slice_dispatch;
105
106         /* pending metadata requests */
107         int meta_pending;
108         /* number of requests that are on the dispatch list or inside driver */
109         int dispatched;
110
111         /* io prio of this group */
112         unsigned short ioprio, org_ioprio;
113         unsigned short ioprio_class, org_ioprio_class;
114
115         pid_t pid;
116 };
117
118 /*
119  * Per block device queue structure
120  */
121 struct cfq_data {
122         struct request_queue *queue;
123
124         /*
125          * rr list of queues with requests and the count of them
126          */
127         struct cfq_rb_root service_tree;
128
129         /*
130          * Each priority tree is sorted by next_request position.  These
131          * trees are used when determining if two or more queues are
132          * interleaving requests (see cfq_close_cooperator).
133          */
134         struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136         unsigned int busy_queues;
137
138         int rq_in_driver[2];
139         int sync_flight;
140
141         /*
142          * queue-depth detection
143          */
144         int rq_queued;
145         int hw_tag;
146         int hw_tag_samples;
147         int rq_in_driver_peak;
148
149         /*
150          * idle window management
151          */
152         struct timer_list idle_slice_timer;
153         struct work_struct unplug_work;
154
155         struct cfq_queue *active_queue;
156         struct cfq_io_context *active_cic;
157
158         /*
159          * async queue for each priority case
160          */
161         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162         struct cfq_queue *async_idle_cfqq;
163
164         sector_t last_position;
165
166         /*
167          * tunables, see top of file
168          */
169         unsigned int cfq_quantum;
170         unsigned int cfq_fifo_expire[2];
171         unsigned int cfq_back_penalty;
172         unsigned int cfq_back_max;
173         unsigned int cfq_slice[2];
174         unsigned int cfq_slice_async_rq;
175         unsigned int cfq_slice_idle;
176
177         struct list_head cic_list;
178
179         /*
180          * Fallback dummy cfqq for extreme OOM conditions
181          */
182         struct cfq_queue oom_cfqq;
183 };
184
185 enum cfqq_state_flags {
186         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
187         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
188         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
189         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
190         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
191         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
192         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
193         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
194         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
195         CFQ_CFQQ_FLAG_coop,             /* has done a coop jump of the queue */
196 };
197
198 #define CFQ_CFQQ_FNS(name)                                              \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
200 {                                                                       \
201         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
202 }                                                                       \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
204 {                                                                       \
205         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
206 }                                                                       \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
208 {                                                                       \
209         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
210 }
211
212 CFQ_CFQQ_FNS(on_rr);
213 CFQ_CFQQ_FNS(wait_request);
214 CFQ_CFQQ_FNS(must_dispatch);
215 CFQ_CFQQ_FNS(must_alloc_slice);
216 CFQ_CFQQ_FNS(fifo_expire);
217 CFQ_CFQQ_FNS(idle_window);
218 CFQ_CFQQ_FNS(prio_changed);
219 CFQ_CFQQ_FNS(slice_new);
220 CFQ_CFQQ_FNS(sync);
221 CFQ_CFQQ_FNS(coop);
222 #undef CFQ_CFQQ_FNS
223
224 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
225         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
226 #define cfq_log(cfqd, fmt, args...)     \
227         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
228
229 static void cfq_dispatch_insert(struct request_queue *, struct request *);
230 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
231                                        struct io_context *, gfp_t);
232 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
233                                                 struct io_context *);
234
235 static inline int rq_in_driver(struct cfq_data *cfqd)
236 {
237         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
238 }
239
240 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
241                                             int is_sync)
242 {
243         return cic->cfqq[!!is_sync];
244 }
245
246 static inline void cic_set_cfqq(struct cfq_io_context *cic,
247                                 struct cfq_queue *cfqq, int is_sync)
248 {
249         cic->cfqq[!!is_sync] = cfqq;
250 }
251
252 /*
253  * We regard a request as SYNC, if it's either a read or has the SYNC bit
254  * set (in which case it could also be direct WRITE).
255  */
256 static inline int cfq_bio_sync(struct bio *bio)
257 {
258         if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
259                 return 1;
260
261         return 0;
262 }
263
264 /*
265  * scheduler run of queue, if there are requests pending and no one in the
266  * driver that will restart queueing
267  */
268 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
269 {
270         if (cfqd->busy_queues) {
271                 cfq_log(cfqd, "schedule dispatch");
272                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
273         }
274 }
275
276 static int cfq_queue_empty(struct request_queue *q)
277 {
278         struct cfq_data *cfqd = q->elevator->elevator_data;
279
280         return !cfqd->busy_queues;
281 }
282
283 /*
284  * Scale schedule slice based on io priority. Use the sync time slice only
285  * if a queue is marked sync and has sync io queued. A sync queue with async
286  * io only, should not get full sync slice length.
287  */
288 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
289                                  unsigned short prio)
290 {
291         const int base_slice = cfqd->cfq_slice[sync];
292
293         WARN_ON(prio >= IOPRIO_BE_NR);
294
295         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
296 }
297
298 static inline int
299 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
300 {
301         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
302 }
303
304 static inline void
305 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
306 {
307         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
308         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
309 }
310
311 /*
312  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
313  * isn't valid until the first request from the dispatch is activated
314  * and the slice time set.
315  */
316 static inline int cfq_slice_used(struct cfq_queue *cfqq)
317 {
318         if (cfq_cfqq_slice_new(cfqq))
319                 return 0;
320         if (time_before(jiffies, cfqq->slice_end))
321                 return 0;
322
323         return 1;
324 }
325
326 /*
327  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
328  * We choose the request that is closest to the head right now. Distance
329  * behind the head is penalized and only allowed to a certain extent.
330  */
331 static struct request *
332 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
333 {
334         sector_t last, s1, s2, d1 = 0, d2 = 0;
335         unsigned long back_max;
336 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
337 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
338         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
339
340         if (rq1 == NULL || rq1 == rq2)
341                 return rq2;
342         if (rq2 == NULL)
343                 return rq1;
344
345         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
346                 return rq1;
347         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
348                 return rq2;
349         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
350                 return rq1;
351         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
352                 return rq2;
353
354         s1 = blk_rq_pos(rq1);
355         s2 = blk_rq_pos(rq2);
356
357         last = cfqd->last_position;
358
359         /*
360          * by definition, 1KiB is 2 sectors
361          */
362         back_max = cfqd->cfq_back_max * 2;
363
364         /*
365          * Strict one way elevator _except_ in the case where we allow
366          * short backward seeks which are biased as twice the cost of a
367          * similar forward seek.
368          */
369         if (s1 >= last)
370                 d1 = s1 - last;
371         else if (s1 + back_max >= last)
372                 d1 = (last - s1) * cfqd->cfq_back_penalty;
373         else
374                 wrap |= CFQ_RQ1_WRAP;
375
376         if (s2 >= last)
377                 d2 = s2 - last;
378         else if (s2 + back_max >= last)
379                 d2 = (last - s2) * cfqd->cfq_back_penalty;
380         else
381                 wrap |= CFQ_RQ2_WRAP;
382
383         /* Found required data */
384
385         /*
386          * By doing switch() on the bit mask "wrap" we avoid having to
387          * check two variables for all permutations: --> faster!
388          */
389         switch (wrap) {
390         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
391                 if (d1 < d2)
392                         return rq1;
393                 else if (d2 < d1)
394                         return rq2;
395                 else {
396                         if (s1 >= s2)
397                                 return rq1;
398                         else
399                                 return rq2;
400                 }
401
402         case CFQ_RQ2_WRAP:
403                 return rq1;
404         case CFQ_RQ1_WRAP:
405                 return rq2;
406         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
407         default:
408                 /*
409                  * Since both rqs are wrapped,
410                  * start with the one that's further behind head
411                  * (--> only *one* back seek required),
412                  * since back seek takes more time than forward.
413                  */
414                 if (s1 <= s2)
415                         return rq1;
416                 else
417                         return rq2;
418         }
419 }
420
421 /*
422  * The below is leftmost cache rbtree addon
423  */
424 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
425 {
426         if (!root->left)
427                 root->left = rb_first(&root->rb);
428
429         if (root->left)
430                 return rb_entry(root->left, struct cfq_queue, rb_node);
431
432         return NULL;
433 }
434
435 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
436 {
437         rb_erase(n, root);
438         RB_CLEAR_NODE(n);
439 }
440
441 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
442 {
443         if (root->left == n)
444                 root->left = NULL;
445         rb_erase_init(n, &root->rb);
446 }
447
448 /*
449  * would be nice to take fifo expire time into account as well
450  */
451 static struct request *
452 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
453                   struct request *last)
454 {
455         struct rb_node *rbnext = rb_next(&last->rb_node);
456         struct rb_node *rbprev = rb_prev(&last->rb_node);
457         struct request *next = NULL, *prev = NULL;
458
459         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
460
461         if (rbprev)
462                 prev = rb_entry_rq(rbprev);
463
464         if (rbnext)
465                 next = rb_entry_rq(rbnext);
466         else {
467                 rbnext = rb_first(&cfqq->sort_list);
468                 if (rbnext && rbnext != &last->rb_node)
469                         next = rb_entry_rq(rbnext);
470         }
471
472         return cfq_choose_req(cfqd, next, prev);
473 }
474
475 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
476                                       struct cfq_queue *cfqq)
477 {
478         /*
479          * just an approximation, should be ok.
480          */
481         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
482                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
483 }
484
485 /*
486  * The cfqd->service_tree holds all pending cfq_queue's that have
487  * requests waiting to be processed. It is sorted in the order that
488  * we will service the queues.
489  */
490 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
491                                  int add_front)
492 {
493         struct rb_node **p, *parent;
494         struct cfq_queue *__cfqq;
495         unsigned long rb_key;
496         int left;
497
498         if (cfq_class_idle(cfqq)) {
499                 rb_key = CFQ_IDLE_DELAY;
500                 parent = rb_last(&cfqd->service_tree.rb);
501                 if (parent && parent != &cfqq->rb_node) {
502                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
503                         rb_key += __cfqq->rb_key;
504                 } else
505                         rb_key += jiffies;
506         } else if (!add_front) {
507                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
508                 rb_key += cfqq->slice_resid;
509                 cfqq->slice_resid = 0;
510         } else
511                 rb_key = 0;
512
513         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
514                 /*
515                  * same position, nothing more to do
516                  */
517                 if (rb_key == cfqq->rb_key)
518                         return;
519
520                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
521         }
522
523         left = 1;
524         parent = NULL;
525         p = &cfqd->service_tree.rb.rb_node;
526         while (*p) {
527                 struct rb_node **n;
528
529                 parent = *p;
530                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
531
532                 /*
533                  * sort RT queues first, we always want to give
534                  * preference to them. IDLE queues goes to the back.
535                  * after that, sort on the next service time.
536                  */
537                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
538                         n = &(*p)->rb_left;
539                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
540                         n = &(*p)->rb_right;
541                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
542                         n = &(*p)->rb_left;
543                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
544                         n = &(*p)->rb_right;
545                 else if (rb_key < __cfqq->rb_key)
546                         n = &(*p)->rb_left;
547                 else
548                         n = &(*p)->rb_right;
549
550                 if (n == &(*p)->rb_right)
551                         left = 0;
552
553                 p = n;
554         }
555
556         if (left)
557                 cfqd->service_tree.left = &cfqq->rb_node;
558
559         cfqq->rb_key = rb_key;
560         rb_link_node(&cfqq->rb_node, parent, p);
561         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
562 }
563
564 static struct cfq_queue *
565 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
566                      sector_t sector, struct rb_node **ret_parent,
567                      struct rb_node ***rb_link)
568 {
569         struct rb_node **p, *parent;
570         struct cfq_queue *cfqq = NULL;
571
572         parent = NULL;
573         p = &root->rb_node;
574         while (*p) {
575                 struct rb_node **n;
576
577                 parent = *p;
578                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
579
580                 /*
581                  * Sort strictly based on sector.  Smallest to the left,
582                  * largest to the right.
583                  */
584                 if (sector > blk_rq_pos(cfqq->next_rq))
585                         n = &(*p)->rb_right;
586                 else if (sector < blk_rq_pos(cfqq->next_rq))
587                         n = &(*p)->rb_left;
588                 else
589                         break;
590                 p = n;
591                 cfqq = NULL;
592         }
593
594         *ret_parent = parent;
595         if (rb_link)
596                 *rb_link = p;
597         return cfqq;
598 }
599
600 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
601 {
602         struct rb_node **p, *parent;
603         struct cfq_queue *__cfqq;
604
605         if (cfqq->p_root) {
606                 rb_erase(&cfqq->p_node, cfqq->p_root);
607                 cfqq->p_root = NULL;
608         }
609
610         if (cfq_class_idle(cfqq))
611                 return;
612         if (!cfqq->next_rq)
613                 return;
614
615         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
616         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
617                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
618         if (!__cfqq) {
619                 rb_link_node(&cfqq->p_node, parent, p);
620                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
621         } else
622                 cfqq->p_root = NULL;
623 }
624
625 /*
626  * Update cfqq's position in the service tree.
627  */
628 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
629 {
630         /*
631          * Resorting requires the cfqq to be on the RR list already.
632          */
633         if (cfq_cfqq_on_rr(cfqq)) {
634                 cfq_service_tree_add(cfqd, cfqq, 0);
635                 cfq_prio_tree_add(cfqd, cfqq);
636         }
637 }
638
639 /*
640  * add to busy list of queues for service, trying to be fair in ordering
641  * the pending list according to last request service
642  */
643 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
644 {
645         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
646         BUG_ON(cfq_cfqq_on_rr(cfqq));
647         cfq_mark_cfqq_on_rr(cfqq);
648         cfqd->busy_queues++;
649
650         cfq_resort_rr_list(cfqd, cfqq);
651 }
652
653 /*
654  * Called when the cfqq no longer has requests pending, remove it from
655  * the service tree.
656  */
657 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
658 {
659         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
660         BUG_ON(!cfq_cfqq_on_rr(cfqq));
661         cfq_clear_cfqq_on_rr(cfqq);
662
663         if (!RB_EMPTY_NODE(&cfqq->rb_node))
664                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
665         if (cfqq->p_root) {
666                 rb_erase(&cfqq->p_node, cfqq->p_root);
667                 cfqq->p_root = NULL;
668         }
669
670         BUG_ON(!cfqd->busy_queues);
671         cfqd->busy_queues--;
672 }
673
674 /*
675  * rb tree support functions
676  */
677 static void cfq_del_rq_rb(struct request *rq)
678 {
679         struct cfq_queue *cfqq = RQ_CFQQ(rq);
680         struct cfq_data *cfqd = cfqq->cfqd;
681         const int sync = rq_is_sync(rq);
682
683         BUG_ON(!cfqq->queued[sync]);
684         cfqq->queued[sync]--;
685
686         elv_rb_del(&cfqq->sort_list, rq);
687
688         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
689                 cfq_del_cfqq_rr(cfqd, cfqq);
690 }
691
692 static void cfq_add_rq_rb(struct request *rq)
693 {
694         struct cfq_queue *cfqq = RQ_CFQQ(rq);
695         struct cfq_data *cfqd = cfqq->cfqd;
696         struct request *__alias, *prev;
697
698         cfqq->queued[rq_is_sync(rq)]++;
699
700         /*
701          * looks a little odd, but the first insert might return an alias.
702          * if that happens, put the alias on the dispatch list
703          */
704         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
705                 cfq_dispatch_insert(cfqd->queue, __alias);
706
707         if (!cfq_cfqq_on_rr(cfqq))
708                 cfq_add_cfqq_rr(cfqd, cfqq);
709
710         /*
711          * check if this request is a better next-serve candidate
712          */
713         prev = cfqq->next_rq;
714         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
715
716         /*
717          * adjust priority tree position, if ->next_rq changes
718          */
719         if (prev != cfqq->next_rq)
720                 cfq_prio_tree_add(cfqd, cfqq);
721
722         BUG_ON(!cfqq->next_rq);
723 }
724
725 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
726 {
727         elv_rb_del(&cfqq->sort_list, rq);
728         cfqq->queued[rq_is_sync(rq)]--;
729         cfq_add_rq_rb(rq);
730 }
731
732 static struct request *
733 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
734 {
735         struct task_struct *tsk = current;
736         struct cfq_io_context *cic;
737         struct cfq_queue *cfqq;
738
739         cic = cfq_cic_lookup(cfqd, tsk->io_context);
740         if (!cic)
741                 return NULL;
742
743         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
744         if (cfqq) {
745                 sector_t sector = bio->bi_sector + bio_sectors(bio);
746
747                 return elv_rb_find(&cfqq->sort_list, sector);
748         }
749
750         return NULL;
751 }
752
753 static void cfq_activate_request(struct request_queue *q, struct request *rq)
754 {
755         struct cfq_data *cfqd = q->elevator->elevator_data;
756
757         cfqd->rq_in_driver[rq_is_sync(rq)]++;
758         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
759                                                 rq_in_driver(cfqd));
760
761         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
762 }
763
764 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
765 {
766         struct cfq_data *cfqd = q->elevator->elevator_data;
767         const int sync = rq_is_sync(rq);
768
769         WARN_ON(!cfqd->rq_in_driver[sync]);
770         cfqd->rq_in_driver[sync]--;
771         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
772                                                 rq_in_driver(cfqd));
773 }
774
775 static void cfq_remove_request(struct request *rq)
776 {
777         struct cfq_queue *cfqq = RQ_CFQQ(rq);
778
779         if (cfqq->next_rq == rq)
780                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
781
782         list_del_init(&rq->queuelist);
783         cfq_del_rq_rb(rq);
784
785         cfqq->cfqd->rq_queued--;
786         if (rq_is_meta(rq)) {
787                 WARN_ON(!cfqq->meta_pending);
788                 cfqq->meta_pending--;
789         }
790 }
791
792 static int cfq_merge(struct request_queue *q, struct request **req,
793                      struct bio *bio)
794 {
795         struct cfq_data *cfqd = q->elevator->elevator_data;
796         struct request *__rq;
797
798         __rq = cfq_find_rq_fmerge(cfqd, bio);
799         if (__rq && elv_rq_merge_ok(__rq, bio)) {
800                 *req = __rq;
801                 return ELEVATOR_FRONT_MERGE;
802         }
803
804         return ELEVATOR_NO_MERGE;
805 }
806
807 static void cfq_merged_request(struct request_queue *q, struct request *req,
808                                int type)
809 {
810         if (type == ELEVATOR_FRONT_MERGE) {
811                 struct cfq_queue *cfqq = RQ_CFQQ(req);
812
813                 cfq_reposition_rq_rb(cfqq, req);
814         }
815 }
816
817 static void
818 cfq_merged_requests(struct request_queue *q, struct request *rq,
819                     struct request *next)
820 {
821         /*
822          * reposition in fifo if next is older than rq
823          */
824         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
825             time_before(next->start_time, rq->start_time))
826                 list_move(&rq->queuelist, &next->queuelist);
827
828         cfq_remove_request(next);
829 }
830
831 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
832                            struct bio *bio)
833 {
834         struct cfq_data *cfqd = q->elevator->elevator_data;
835         struct cfq_io_context *cic;
836         struct cfq_queue *cfqq;
837
838         /*
839          * Disallow merge of a sync bio into an async request.
840          */
841         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
842                 return 0;
843
844         /*
845          * Lookup the cfqq that this bio will be queued with. Allow
846          * merge only if rq is queued there.
847          */
848         cic = cfq_cic_lookup(cfqd, current->io_context);
849         if (!cic)
850                 return 0;
851
852         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
853         if (cfqq == RQ_CFQQ(rq))
854                 return 1;
855
856         return 0;
857 }
858
859 static void __cfq_set_active_queue(struct cfq_data *cfqd,
860                                    struct cfq_queue *cfqq)
861 {
862         if (cfqq) {
863                 cfq_log_cfqq(cfqd, cfqq, "set_active");
864                 cfqq->slice_end = 0;
865                 cfqq->slice_dispatch = 0;
866
867                 cfq_clear_cfqq_wait_request(cfqq);
868                 cfq_clear_cfqq_must_dispatch(cfqq);
869                 cfq_clear_cfqq_must_alloc_slice(cfqq);
870                 cfq_clear_cfqq_fifo_expire(cfqq);
871                 cfq_mark_cfqq_slice_new(cfqq);
872
873                 del_timer(&cfqd->idle_slice_timer);
874         }
875
876         cfqd->active_queue = cfqq;
877 }
878
879 /*
880  * current cfqq expired its slice (or was too idle), select new one
881  */
882 static void
883 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
884                     int timed_out)
885 {
886         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
887
888         if (cfq_cfqq_wait_request(cfqq))
889                 del_timer(&cfqd->idle_slice_timer);
890
891         cfq_clear_cfqq_wait_request(cfqq);
892
893         /*
894          * store what was left of this slice, if the queue idled/timed out
895          */
896         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
897                 cfqq->slice_resid = cfqq->slice_end - jiffies;
898                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
899         }
900
901         cfq_resort_rr_list(cfqd, cfqq);
902
903         if (cfqq == cfqd->active_queue)
904                 cfqd->active_queue = NULL;
905
906         if (cfqd->active_cic) {
907                 put_io_context(cfqd->active_cic->ioc);
908                 cfqd->active_cic = NULL;
909         }
910 }
911
912 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
913 {
914         struct cfq_queue *cfqq = cfqd->active_queue;
915
916         if (cfqq)
917                 __cfq_slice_expired(cfqd, cfqq, timed_out);
918 }
919
920 /*
921  * Get next queue for service. Unless we have a queue preemption,
922  * we'll simply select the first cfqq in the service tree.
923  */
924 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
925 {
926         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
927                 return NULL;
928
929         return cfq_rb_first(&cfqd->service_tree);
930 }
931
932 /*
933  * Get and set a new active queue for service.
934  */
935 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
936                                               struct cfq_queue *cfqq)
937 {
938         if (!cfqq) {
939                 cfqq = cfq_get_next_queue(cfqd);
940                 if (cfqq)
941                         cfq_clear_cfqq_coop(cfqq);
942         }
943
944         __cfq_set_active_queue(cfqd, cfqq);
945         return cfqq;
946 }
947
948 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
949                                           struct request *rq)
950 {
951         if (blk_rq_pos(rq) >= cfqd->last_position)
952                 return blk_rq_pos(rq) - cfqd->last_position;
953         else
954                 return cfqd->last_position - blk_rq_pos(rq);
955 }
956
957 #define CIC_SEEK_THR    8 * 1024
958 #define CIC_SEEKY(cic)  ((cic)->seek_mean > CIC_SEEK_THR)
959
960 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
961 {
962         struct cfq_io_context *cic = cfqd->active_cic;
963         sector_t sdist = cic->seek_mean;
964
965         if (!sample_valid(cic->seek_samples))
966                 sdist = CIC_SEEK_THR;
967
968         return cfq_dist_from_last(cfqd, rq) <= sdist;
969 }
970
971 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
972                                     struct cfq_queue *cur_cfqq)
973 {
974         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
975         struct rb_node *parent, *node;
976         struct cfq_queue *__cfqq;
977         sector_t sector = cfqd->last_position;
978
979         if (RB_EMPTY_ROOT(root))
980                 return NULL;
981
982         /*
983          * First, if we find a request starting at the end of the last
984          * request, choose it.
985          */
986         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
987         if (__cfqq)
988                 return __cfqq;
989
990         /*
991          * If the exact sector wasn't found, the parent of the NULL leaf
992          * will contain the closest sector.
993          */
994         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
995         if (cfq_rq_close(cfqd, __cfqq->next_rq))
996                 return __cfqq;
997
998         if (blk_rq_pos(__cfqq->next_rq) < sector)
999                 node = rb_next(&__cfqq->p_node);
1000         else
1001                 node = rb_prev(&__cfqq->p_node);
1002         if (!node)
1003                 return NULL;
1004
1005         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1006         if (cfq_rq_close(cfqd, __cfqq->next_rq))
1007                 return __cfqq;
1008
1009         return NULL;
1010 }
1011
1012 /*
1013  * cfqd - obvious
1014  * cur_cfqq - passed in so that we don't decide that the current queue is
1015  *            closely cooperating with itself.
1016  *
1017  * So, basically we're assuming that that cur_cfqq has dispatched at least
1018  * one request, and that cfqd->last_position reflects a position on the disk
1019  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1020  * assumption.
1021  */
1022 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1023                                               struct cfq_queue *cur_cfqq,
1024                                               int probe)
1025 {
1026         struct cfq_queue *cfqq;
1027
1028         /*
1029          * A valid cfq_io_context is necessary to compare requests against
1030          * the seek_mean of the current cfqq.
1031          */
1032         if (!cfqd->active_cic)
1033                 return NULL;
1034
1035         /*
1036          * We should notice if some of the queues are cooperating, eg
1037          * working closely on the same area of the disk. In that case,
1038          * we can group them together and don't waste time idling.
1039          */
1040         cfqq = cfqq_close(cfqd, cur_cfqq);
1041         if (!cfqq)
1042                 return NULL;
1043
1044         if (cfq_cfqq_coop(cfqq))
1045                 return NULL;
1046
1047         if (!probe)
1048                 cfq_mark_cfqq_coop(cfqq);
1049         return cfqq;
1050 }
1051
1052 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1053 {
1054         struct cfq_queue *cfqq = cfqd->active_queue;
1055         struct cfq_io_context *cic;
1056         unsigned long sl;
1057
1058         /*
1059          * SSD device without seek penalty, disable idling. But only do so
1060          * for devices that support queuing, otherwise we still have a problem
1061          * with sync vs async workloads.
1062          */
1063         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1064                 return;
1065
1066         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1067         WARN_ON(cfq_cfqq_slice_new(cfqq));
1068
1069         /*
1070          * idle is disabled, either manually or by past process history
1071          */
1072         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1073                 return;
1074
1075         /*
1076          * still requests with the driver, don't idle
1077          */
1078         if (rq_in_driver(cfqd))
1079                 return;
1080
1081         /*
1082          * task has exited, don't wait
1083          */
1084         cic = cfqd->active_cic;
1085         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1086                 return;
1087
1088         cfq_mark_cfqq_wait_request(cfqq);
1089
1090         /*
1091          * we don't want to idle for seeks, but we do want to allow
1092          * fair distribution of slice time for a process doing back-to-back
1093          * seeks. so allow a little bit of time for him to submit a new rq
1094          */
1095         sl = cfqd->cfq_slice_idle;
1096         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1097                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1098
1099         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1100         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1101 }
1102
1103 /*
1104  * Move request from internal lists to the request queue dispatch list.
1105  */
1106 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1107 {
1108         struct cfq_data *cfqd = q->elevator->elevator_data;
1109         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1110
1111         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1112
1113         cfq_remove_request(rq);
1114         cfqq->dispatched++;
1115         elv_dispatch_sort(q, rq);
1116
1117         if (cfq_cfqq_sync(cfqq))
1118                 cfqd->sync_flight++;
1119 }
1120
1121 /*
1122  * return expired entry, or NULL to just start from scratch in rbtree
1123  */
1124 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1125 {
1126         struct cfq_data *cfqd = cfqq->cfqd;
1127         struct request *rq;
1128         int fifo;
1129
1130         if (cfq_cfqq_fifo_expire(cfqq))
1131                 return NULL;
1132
1133         cfq_mark_cfqq_fifo_expire(cfqq);
1134
1135         if (list_empty(&cfqq->fifo))
1136                 return NULL;
1137
1138         fifo = cfq_cfqq_sync(cfqq);
1139         rq = rq_entry_fifo(cfqq->fifo.next);
1140
1141         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1142                 rq = NULL;
1143
1144         cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1145         return rq;
1146 }
1147
1148 static inline int
1149 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1150 {
1151         const int base_rq = cfqd->cfq_slice_async_rq;
1152
1153         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1154
1155         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1156 }
1157
1158 /*
1159  * Select a queue for service. If we have a current active queue,
1160  * check whether to continue servicing it, or retrieve and set a new one.
1161  */
1162 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1163 {
1164         struct cfq_queue *cfqq, *new_cfqq = NULL;
1165
1166         cfqq = cfqd->active_queue;
1167         if (!cfqq)
1168                 goto new_queue;
1169
1170         /*
1171          * The active queue has run out of time, expire it and select new.
1172          */
1173         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1174                 goto expire;
1175
1176         /*
1177          * The active queue has requests and isn't expired, allow it to
1178          * dispatch.
1179          */
1180         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1181                 goto keep_queue;
1182
1183         /*
1184          * If another queue has a request waiting within our mean seek
1185          * distance, let it run.  The expire code will check for close
1186          * cooperators and put the close queue at the front of the service
1187          * tree.
1188          */
1189         new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1190         if (new_cfqq)
1191                 goto expire;
1192
1193         /*
1194          * No requests pending. If the active queue still has requests in
1195          * flight or is idling for a new request, allow either of these
1196          * conditions to happen (or time out) before selecting a new queue.
1197          */
1198         if (timer_pending(&cfqd->idle_slice_timer) ||
1199             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1200                 cfqq = NULL;
1201                 goto keep_queue;
1202         }
1203
1204 expire:
1205         cfq_slice_expired(cfqd, 0);
1206 new_queue:
1207         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1208 keep_queue:
1209         return cfqq;
1210 }
1211
1212 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1213 {
1214         int dispatched = 0;
1215
1216         while (cfqq->next_rq) {
1217                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1218                 dispatched++;
1219         }
1220
1221         BUG_ON(!list_empty(&cfqq->fifo));
1222         return dispatched;
1223 }
1224
1225 /*
1226  * Drain our current requests. Used for barriers and when switching
1227  * io schedulers on-the-fly.
1228  */
1229 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1230 {
1231         struct cfq_queue *cfqq;
1232         int dispatched = 0;
1233
1234         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1235                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1236
1237         cfq_slice_expired(cfqd, 0);
1238
1239         BUG_ON(cfqd->busy_queues);
1240
1241         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1242         return dispatched;
1243 }
1244
1245 /*
1246  * Dispatch a request from cfqq, moving them to the request queue
1247  * dispatch list.
1248  */
1249 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1250 {
1251         struct request *rq;
1252
1253         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1254
1255         /*
1256          * follow expired path, else get first next available
1257          */
1258         rq = cfq_check_fifo(cfqq);
1259         if (!rq)
1260                 rq = cfqq->next_rq;
1261
1262         /*
1263          * insert request into driver dispatch list
1264          */
1265         cfq_dispatch_insert(cfqd->queue, rq);
1266
1267         if (!cfqd->active_cic) {
1268                 struct cfq_io_context *cic = RQ_CIC(rq);
1269
1270                 atomic_long_inc(&cic->ioc->refcount);
1271                 cfqd->active_cic = cic;
1272         }
1273 }
1274
1275 /*
1276  * Find the cfqq that we need to service and move a request from that to the
1277  * dispatch list
1278  */
1279 static int cfq_dispatch_requests(struct request_queue *q, int force)
1280 {
1281         struct cfq_data *cfqd = q->elevator->elevator_data;
1282         struct cfq_queue *cfqq;
1283         unsigned int max_dispatch;
1284
1285         if (!cfqd->busy_queues)
1286                 return 0;
1287
1288         if (unlikely(force))
1289                 return cfq_forced_dispatch(cfqd);
1290
1291         cfqq = cfq_select_queue(cfqd);
1292         if (!cfqq)
1293                 return 0;
1294
1295         /*
1296          * Drain async requests before we start sync IO
1297          */
1298         if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1299                 return 0;
1300
1301         /*
1302          * If this is an async queue and we have sync IO in flight, let it wait
1303          */
1304         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1305                 return 0;
1306
1307         max_dispatch = cfqd->cfq_quantum;
1308         if (cfq_class_idle(cfqq))
1309                 max_dispatch = 1;
1310
1311         /*
1312          * Does this cfqq already have too much IO in flight?
1313          */
1314         if (cfqq->dispatched >= max_dispatch) {
1315                 /*
1316                  * idle queue must always only have a single IO in flight
1317                  */
1318                 if (cfq_class_idle(cfqq))
1319                         return 0;
1320
1321                 /*
1322                  * We have other queues, don't allow more IO from this one
1323                  */
1324                 if (cfqd->busy_queues > 1)
1325                         return 0;
1326
1327                 /*
1328                  * we are the only queue, allow up to 4 times of 'quantum'
1329                  */
1330                 if (cfqq->dispatched >= 4 * max_dispatch)
1331                         return 0;
1332         }
1333
1334         /*
1335          * Dispatch a request from this cfqq
1336          */
1337         cfq_dispatch_request(cfqd, cfqq);
1338         cfqq->slice_dispatch++;
1339         cfq_clear_cfqq_must_dispatch(cfqq);
1340
1341         /*
1342          * expire an async queue immediately if it has used up its slice. idle
1343          * queue always expire after 1 dispatch round.
1344          */
1345         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1346             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1347             cfq_class_idle(cfqq))) {
1348                 cfqq->slice_end = jiffies + 1;
1349                 cfq_slice_expired(cfqd, 0);
1350         }
1351
1352         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1353         return 1;
1354 }
1355
1356 /*
1357  * task holds one reference to the queue, dropped when task exits. each rq
1358  * in-flight on this queue also holds a reference, dropped when rq is freed.
1359  *
1360  * queue lock must be held here.
1361  */
1362 static void cfq_put_queue(struct cfq_queue *cfqq)
1363 {
1364         struct cfq_data *cfqd = cfqq->cfqd;
1365
1366         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1367
1368         if (!atomic_dec_and_test(&cfqq->ref))
1369                 return;
1370
1371         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1372         BUG_ON(rb_first(&cfqq->sort_list));
1373         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1374         BUG_ON(cfq_cfqq_on_rr(cfqq));
1375
1376         if (unlikely(cfqd->active_queue == cfqq)) {
1377                 __cfq_slice_expired(cfqd, cfqq, 0);
1378                 cfq_schedule_dispatch(cfqd);
1379         }
1380
1381         kmem_cache_free(cfq_pool, cfqq);
1382 }
1383
1384 /*
1385  * Must always be called with the rcu_read_lock() held
1386  */
1387 static void
1388 __call_for_each_cic(struct io_context *ioc,
1389                     void (*func)(struct io_context *, struct cfq_io_context *))
1390 {
1391         struct cfq_io_context *cic;
1392         struct hlist_node *n;
1393
1394         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1395                 func(ioc, cic);
1396 }
1397
1398 /*
1399  * Call func for each cic attached to this ioc.
1400  */
1401 static void
1402 call_for_each_cic(struct io_context *ioc,
1403                   void (*func)(struct io_context *, struct cfq_io_context *))
1404 {
1405         rcu_read_lock();
1406         __call_for_each_cic(ioc, func);
1407         rcu_read_unlock();
1408 }
1409
1410 static void cfq_cic_free_rcu(struct rcu_head *head)
1411 {
1412         struct cfq_io_context *cic;
1413
1414         cic = container_of(head, struct cfq_io_context, rcu_head);
1415
1416         kmem_cache_free(cfq_ioc_pool, cic);
1417         elv_ioc_count_dec(ioc_count);
1418
1419         if (ioc_gone) {
1420                 /*
1421                  * CFQ scheduler is exiting, grab exit lock and check
1422                  * the pending io context count. If it hits zero,
1423                  * complete ioc_gone and set it back to NULL
1424                  */
1425                 spin_lock(&ioc_gone_lock);
1426                 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1427                         complete(ioc_gone);
1428                         ioc_gone = NULL;
1429                 }
1430                 spin_unlock(&ioc_gone_lock);
1431         }
1432 }
1433
1434 static void cfq_cic_free(struct cfq_io_context *cic)
1435 {
1436         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1437 }
1438
1439 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1440 {
1441         unsigned long flags;
1442
1443         BUG_ON(!cic->dead_key);
1444
1445         spin_lock_irqsave(&ioc->lock, flags);
1446         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1447         hlist_del_rcu(&cic->cic_list);
1448         spin_unlock_irqrestore(&ioc->lock, flags);
1449
1450         cfq_cic_free(cic);
1451 }
1452
1453 /*
1454  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1455  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1456  * and ->trim() which is called with the task lock held
1457  */
1458 static void cfq_free_io_context(struct io_context *ioc)
1459 {
1460         /*
1461          * ioc->refcount is zero here, or we are called from elv_unregister(),
1462          * so no more cic's are allowed to be linked into this ioc.  So it
1463          * should be ok to iterate over the known list, we will see all cic's
1464          * since no new ones are added.
1465          */
1466         __call_for_each_cic(ioc, cic_free_func);
1467 }
1468
1469 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1470 {
1471         if (unlikely(cfqq == cfqd->active_queue)) {
1472                 __cfq_slice_expired(cfqd, cfqq, 0);
1473                 cfq_schedule_dispatch(cfqd);
1474         }
1475
1476         cfq_put_queue(cfqq);
1477 }
1478
1479 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1480                                          struct cfq_io_context *cic)
1481 {
1482         struct io_context *ioc = cic->ioc;
1483
1484         list_del_init(&cic->queue_list);
1485
1486         /*
1487          * Make sure key == NULL is seen for dead queues
1488          */
1489         smp_wmb();
1490         cic->dead_key = (unsigned long) cic->key;
1491         cic->key = NULL;
1492
1493         if (ioc->ioc_data == cic)
1494                 rcu_assign_pointer(ioc->ioc_data, NULL);
1495
1496         if (cic->cfqq[BLK_RW_ASYNC]) {
1497                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1498                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1499         }
1500
1501         if (cic->cfqq[BLK_RW_SYNC]) {
1502                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1503                 cic->cfqq[BLK_RW_SYNC] = NULL;
1504         }
1505 }
1506
1507 static void cfq_exit_single_io_context(struct io_context *ioc,
1508                                        struct cfq_io_context *cic)
1509 {
1510         struct cfq_data *cfqd = cic->key;
1511
1512         if (cfqd) {
1513                 struct request_queue *q = cfqd->queue;
1514                 unsigned long flags;
1515
1516                 spin_lock_irqsave(q->queue_lock, flags);
1517
1518                 /*
1519                  * Ensure we get a fresh copy of the ->key to prevent
1520                  * race between exiting task and queue
1521                  */
1522                 smp_read_barrier_depends();
1523                 if (cic->key)
1524                         __cfq_exit_single_io_context(cfqd, cic);
1525
1526                 spin_unlock_irqrestore(q->queue_lock, flags);
1527         }
1528 }
1529
1530 /*
1531  * The process that ioc belongs to has exited, we need to clean up
1532  * and put the internal structures we have that belongs to that process.
1533  */
1534 static void cfq_exit_io_context(struct io_context *ioc)
1535 {
1536         call_for_each_cic(ioc, cfq_exit_single_io_context);
1537 }
1538
1539 static struct cfq_io_context *
1540 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1541 {
1542         struct cfq_io_context *cic;
1543
1544         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1545                                                         cfqd->queue->node);
1546         if (cic) {
1547                 cic->last_end_request = jiffies;
1548                 INIT_LIST_HEAD(&cic->queue_list);
1549                 INIT_HLIST_NODE(&cic->cic_list);
1550                 cic->dtor = cfq_free_io_context;
1551                 cic->exit = cfq_exit_io_context;
1552                 elv_ioc_count_inc(ioc_count);
1553         }
1554
1555         return cic;
1556 }
1557
1558 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1559 {
1560         struct task_struct *tsk = current;
1561         int ioprio_class;
1562
1563         if (!cfq_cfqq_prio_changed(cfqq))
1564                 return;
1565
1566         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1567         switch (ioprio_class) {
1568         default:
1569                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1570         case IOPRIO_CLASS_NONE:
1571                 /*
1572                  * no prio set, inherit CPU scheduling settings
1573                  */
1574                 cfqq->ioprio = task_nice_ioprio(tsk);
1575                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1576                 break;
1577         case IOPRIO_CLASS_RT:
1578                 cfqq->ioprio = task_ioprio(ioc);
1579                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1580                 break;
1581         case IOPRIO_CLASS_BE:
1582                 cfqq->ioprio = task_ioprio(ioc);
1583                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1584                 break;
1585         case IOPRIO_CLASS_IDLE:
1586                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1587                 cfqq->ioprio = 7;
1588                 cfq_clear_cfqq_idle_window(cfqq);
1589                 break;
1590         }
1591
1592         /*
1593          * keep track of original prio settings in case we have to temporarily
1594          * elevate the priority of this queue
1595          */
1596         cfqq->org_ioprio = cfqq->ioprio;
1597         cfqq->org_ioprio_class = cfqq->ioprio_class;
1598         cfq_clear_cfqq_prio_changed(cfqq);
1599 }
1600
1601 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1602 {
1603         struct cfq_data *cfqd = cic->key;
1604         struct cfq_queue *cfqq;
1605         unsigned long flags;
1606
1607         if (unlikely(!cfqd))
1608                 return;
1609
1610         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1611
1612         cfqq = cic->cfqq[BLK_RW_ASYNC];
1613         if (cfqq) {
1614                 struct cfq_queue *new_cfqq;
1615                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1616                                                 GFP_ATOMIC);
1617                 if (new_cfqq) {
1618                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1619                         cfq_put_queue(cfqq);
1620                 }
1621         }
1622
1623         cfqq = cic->cfqq[BLK_RW_SYNC];
1624         if (cfqq)
1625                 cfq_mark_cfqq_prio_changed(cfqq);
1626
1627         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1628 }
1629
1630 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1631 {
1632         call_for_each_cic(ioc, changed_ioprio);
1633         ioc->ioprio_changed = 0;
1634 }
1635
1636 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1637                           pid_t pid, int is_sync)
1638 {
1639         RB_CLEAR_NODE(&cfqq->rb_node);
1640         RB_CLEAR_NODE(&cfqq->p_node);
1641         INIT_LIST_HEAD(&cfqq->fifo);
1642
1643         atomic_set(&cfqq->ref, 0);
1644         cfqq->cfqd = cfqd;
1645
1646         cfq_mark_cfqq_prio_changed(cfqq);
1647
1648         if (is_sync) {
1649                 if (!cfq_class_idle(cfqq))
1650                         cfq_mark_cfqq_idle_window(cfqq);
1651                 cfq_mark_cfqq_sync(cfqq);
1652         }
1653         cfqq->pid = pid;
1654 }
1655
1656 static struct cfq_queue *
1657 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1658                      struct io_context *ioc, gfp_t gfp_mask)
1659 {
1660         struct cfq_queue *cfqq, *new_cfqq = NULL;
1661         struct cfq_io_context *cic;
1662
1663 retry:
1664         cic = cfq_cic_lookup(cfqd, ioc);
1665         /* cic always exists here */
1666         cfqq = cic_to_cfqq(cic, is_sync);
1667
1668         /*
1669          * Always try a new alloc if we fell back to the OOM cfqq
1670          * originally, since it should just be a temporary situation.
1671          */
1672         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1673                 cfqq = NULL;
1674                 if (new_cfqq) {
1675                         cfqq = new_cfqq;
1676                         new_cfqq = NULL;
1677                 } else if (gfp_mask & __GFP_WAIT) {
1678                         spin_unlock_irq(cfqd->queue->queue_lock);
1679                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1680                                         gfp_mask | __GFP_ZERO,
1681                                         cfqd->queue->node);
1682                         spin_lock_irq(cfqd->queue->queue_lock);
1683                         if (new_cfqq)
1684                                 goto retry;
1685                 } else {
1686                         cfqq = kmem_cache_alloc_node(cfq_pool,
1687                                         gfp_mask | __GFP_ZERO,
1688                                         cfqd->queue->node);
1689                 }
1690
1691                 if (cfqq) {
1692                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1693                         cfq_init_prio_data(cfqq, ioc);
1694                         cfq_log_cfqq(cfqd, cfqq, "alloced");
1695                 } else
1696                         cfqq = &cfqd->oom_cfqq;
1697         }
1698
1699         if (new_cfqq)
1700                 kmem_cache_free(cfq_pool, new_cfqq);
1701
1702         return cfqq;
1703 }
1704
1705 static struct cfq_queue **
1706 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1707 {
1708         switch (ioprio_class) {
1709         case IOPRIO_CLASS_RT:
1710                 return &cfqd->async_cfqq[0][ioprio];
1711         case IOPRIO_CLASS_BE:
1712                 return &cfqd->async_cfqq[1][ioprio];
1713         case IOPRIO_CLASS_IDLE:
1714                 return &cfqd->async_idle_cfqq;
1715         default:
1716                 BUG();
1717         }
1718 }
1719
1720 static struct cfq_queue *
1721 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1722               gfp_t gfp_mask)
1723 {
1724         const int ioprio = task_ioprio(ioc);
1725         const int ioprio_class = task_ioprio_class(ioc);
1726         struct cfq_queue **async_cfqq = NULL;
1727         struct cfq_queue *cfqq = NULL;
1728
1729         if (!is_sync) {
1730                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1731                 cfqq = *async_cfqq;
1732         }
1733
1734         if (!cfqq)
1735                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1736
1737         /*
1738          * pin the queue now that it's allocated, scheduler exit will prune it
1739          */
1740         if (!is_sync && !(*async_cfqq)) {
1741                 atomic_inc(&cfqq->ref);
1742                 *async_cfqq = cfqq;
1743         }
1744
1745         atomic_inc(&cfqq->ref);
1746         return cfqq;
1747 }
1748
1749 /*
1750  * We drop cfq io contexts lazily, so we may find a dead one.
1751  */
1752 static void
1753 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1754                   struct cfq_io_context *cic)
1755 {
1756         unsigned long flags;
1757
1758         WARN_ON(!list_empty(&cic->queue_list));
1759
1760         spin_lock_irqsave(&ioc->lock, flags);
1761
1762         BUG_ON(ioc->ioc_data == cic);
1763
1764         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1765         hlist_del_rcu(&cic->cic_list);
1766         spin_unlock_irqrestore(&ioc->lock, flags);
1767
1768         cfq_cic_free(cic);
1769 }
1770
1771 static struct cfq_io_context *
1772 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1773 {
1774         struct cfq_io_context *cic;
1775         unsigned long flags;
1776         void *k;
1777
1778         if (unlikely(!ioc))
1779                 return NULL;
1780
1781         rcu_read_lock();
1782
1783         /*
1784          * we maintain a last-hit cache, to avoid browsing over the tree
1785          */
1786         cic = rcu_dereference(ioc->ioc_data);
1787         if (cic && cic->key == cfqd) {
1788                 rcu_read_unlock();
1789                 return cic;
1790         }
1791
1792         do {
1793                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1794                 rcu_read_unlock();
1795                 if (!cic)
1796                         break;
1797                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1798                 k = cic->key;
1799                 if (unlikely(!k)) {
1800                         cfq_drop_dead_cic(cfqd, ioc, cic);
1801                         rcu_read_lock();
1802                         continue;
1803                 }
1804
1805                 spin_lock_irqsave(&ioc->lock, flags);
1806                 rcu_assign_pointer(ioc->ioc_data, cic);
1807                 spin_unlock_irqrestore(&ioc->lock, flags);
1808                 break;
1809         } while (1);
1810
1811         return cic;
1812 }
1813
1814 /*
1815  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1816  * the process specific cfq io context when entered from the block layer.
1817  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1818  */
1819 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1820                         struct cfq_io_context *cic, gfp_t gfp_mask)
1821 {
1822         unsigned long flags;
1823         int ret;
1824
1825         ret = radix_tree_preload(gfp_mask);
1826         if (!ret) {
1827                 cic->ioc = ioc;
1828                 cic->key = cfqd;
1829
1830                 spin_lock_irqsave(&ioc->lock, flags);
1831                 ret = radix_tree_insert(&ioc->radix_root,
1832                                                 (unsigned long) cfqd, cic);
1833                 if (!ret)
1834                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1835                 spin_unlock_irqrestore(&ioc->lock, flags);
1836
1837                 radix_tree_preload_end();
1838
1839                 if (!ret) {
1840                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1841                         list_add(&cic->queue_list, &cfqd->cic_list);
1842                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1843                 }
1844         }
1845
1846         if (ret)
1847                 printk(KERN_ERR "cfq: cic link failed!\n");
1848
1849         return ret;
1850 }
1851
1852 /*
1853  * Setup general io context and cfq io context. There can be several cfq
1854  * io contexts per general io context, if this process is doing io to more
1855  * than one device managed by cfq.
1856  */
1857 static struct cfq_io_context *
1858 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1859 {
1860         struct io_context *ioc = NULL;
1861         struct cfq_io_context *cic;
1862
1863         might_sleep_if(gfp_mask & __GFP_WAIT);
1864
1865         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1866         if (!ioc)
1867                 return NULL;
1868
1869         cic = cfq_cic_lookup(cfqd, ioc);
1870         if (cic)
1871                 goto out;
1872
1873         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1874         if (cic == NULL)
1875                 goto err;
1876
1877         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1878                 goto err_free;
1879
1880 out:
1881         smp_read_barrier_depends();
1882         if (unlikely(ioc->ioprio_changed))
1883                 cfq_ioc_set_ioprio(ioc);
1884
1885         return cic;
1886 err_free:
1887         cfq_cic_free(cic);
1888 err:
1889         put_io_context(ioc);
1890         return NULL;
1891 }
1892
1893 static void
1894 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1895 {
1896         unsigned long elapsed = jiffies - cic->last_end_request;
1897         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1898
1899         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1900         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1901         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1902 }
1903
1904 static void
1905 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1906                        struct request *rq)
1907 {
1908         sector_t sdist;
1909         u64 total;
1910
1911         if (!cic->last_request_pos)
1912                 sdist = 0;
1913         else if (cic->last_request_pos < blk_rq_pos(rq))
1914                 sdist = blk_rq_pos(rq) - cic->last_request_pos;
1915         else
1916                 sdist = cic->last_request_pos - blk_rq_pos(rq);
1917
1918         /*
1919          * Don't allow the seek distance to get too large from the
1920          * odd fragment, pagein, etc
1921          */
1922         if (cic->seek_samples <= 60) /* second&third seek */
1923                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1924         else
1925                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1926
1927         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1928         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1929         total = cic->seek_total + (cic->seek_samples/2);
1930         do_div(total, cic->seek_samples);
1931         cic->seek_mean = (sector_t)total;
1932 }
1933
1934 /*
1935  * Disable idle window if the process thinks too long or seeks so much that
1936  * it doesn't matter
1937  */
1938 static void
1939 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1940                        struct cfq_io_context *cic)
1941 {
1942         int old_idle, enable_idle;
1943
1944         /*
1945          * Don't idle for async or idle io prio class
1946          */
1947         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1948                 return;
1949
1950         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1951
1952         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1953             (cfqd->hw_tag && CIC_SEEKY(cic)))
1954                 enable_idle = 0;
1955         else if (sample_valid(cic->ttime_samples)) {
1956                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1957                         enable_idle = 0;
1958                 else
1959                         enable_idle = 1;
1960         }
1961
1962         if (old_idle != enable_idle) {
1963                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1964                 if (enable_idle)
1965                         cfq_mark_cfqq_idle_window(cfqq);
1966                 else
1967                         cfq_clear_cfqq_idle_window(cfqq);
1968         }
1969 }
1970
1971 /*
1972  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1973  * no or if we aren't sure, a 1 will cause a preempt.
1974  */
1975 static int
1976 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1977                    struct request *rq)
1978 {
1979         struct cfq_queue *cfqq;
1980
1981         cfqq = cfqd->active_queue;
1982         if (!cfqq)
1983                 return 0;
1984
1985         if (cfq_slice_used(cfqq))
1986                 return 1;
1987
1988         if (cfq_class_idle(new_cfqq))
1989                 return 0;
1990
1991         if (cfq_class_idle(cfqq))
1992                 return 1;
1993
1994         /*
1995          * if the new request is sync, but the currently running queue is
1996          * not, let the sync request have priority.
1997          */
1998         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1999                 return 1;
2000
2001         /*
2002          * So both queues are sync. Let the new request get disk time if
2003          * it's a metadata request and the current queue is doing regular IO.
2004          */
2005         if (rq_is_meta(rq) && !cfqq->meta_pending)
2006                 return 1;
2007
2008         /*
2009          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2010          */
2011         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2012                 return 1;
2013
2014         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2015                 return 0;
2016
2017         /*
2018          * if this request is as-good as one we would expect from the
2019          * current cfqq, let it preempt
2020          */
2021         if (cfq_rq_close(cfqd, rq))
2022                 return 1;
2023
2024         return 0;
2025 }
2026
2027 /*
2028  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2029  * let it have half of its nominal slice.
2030  */
2031 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2032 {
2033         cfq_log_cfqq(cfqd, cfqq, "preempt");
2034         cfq_slice_expired(cfqd, 1);
2035
2036         /*
2037          * Put the new queue at the front of the of the current list,
2038          * so we know that it will be selected next.
2039          */
2040         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2041
2042         cfq_service_tree_add(cfqd, cfqq, 1);
2043
2044         cfqq->slice_end = 0;
2045         cfq_mark_cfqq_slice_new(cfqq);
2046 }
2047
2048 /*
2049  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2050  * something we should do about it
2051  */
2052 static void
2053 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2054                 struct request *rq)
2055 {
2056         struct cfq_io_context *cic = RQ_CIC(rq);
2057
2058         cfqd->rq_queued++;
2059         if (rq_is_meta(rq))
2060                 cfqq->meta_pending++;
2061
2062         cfq_update_io_thinktime(cfqd, cic);
2063         cfq_update_io_seektime(cfqd, cic, rq);
2064         cfq_update_idle_window(cfqd, cfqq, cic);
2065
2066         cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2067
2068         if (cfqq == cfqd->active_queue) {
2069                 /*
2070                  * Remember that we saw a request from this process, but
2071                  * don't start queuing just yet. Otherwise we risk seeing lots
2072                  * of tiny requests, because we disrupt the normal plugging
2073                  * and merging. If the request is already larger than a single
2074                  * page, let it rip immediately. For that case we assume that
2075                  * merging is already done. Ditto for a busy system that
2076                  * has other work pending, don't risk delaying until the
2077                  * idle timer unplug to continue working.
2078                  */
2079                 if (cfq_cfqq_wait_request(cfqq)) {
2080                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2081                             cfqd->busy_queues > 1) {
2082                                 del_timer(&cfqd->idle_slice_timer);
2083                         __blk_run_queue(cfqd->queue);
2084                         }
2085                         cfq_mark_cfqq_must_dispatch(cfqq);
2086                 }
2087         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2088                 /*
2089                  * not the active queue - expire current slice if it is
2090                  * idle and has expired it's mean thinktime or this new queue
2091                  * has some old slice time left and is of higher priority or
2092                  * this new queue is RT and the current one is BE
2093                  */
2094                 cfq_preempt_queue(cfqd, cfqq);
2095                 __blk_run_queue(cfqd->queue);
2096         }
2097 }
2098
2099 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2100 {
2101         struct cfq_data *cfqd = q->elevator->elevator_data;
2102         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2103
2104         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2105         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2106
2107         cfq_add_rq_rb(rq);
2108
2109         list_add_tail(&rq->queuelist, &cfqq->fifo);
2110
2111         cfq_rq_enqueued(cfqd, cfqq, rq);
2112 }
2113
2114 /*
2115  * Update hw_tag based on peak queue depth over 50 samples under
2116  * sufficient load.
2117  */
2118 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2119 {
2120         if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2121                 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2122
2123         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2124             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2125                 return;
2126
2127         if (cfqd->hw_tag_samples++ < 50)
2128                 return;
2129
2130         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2131                 cfqd->hw_tag = 1;
2132         else
2133                 cfqd->hw_tag = 0;
2134
2135         cfqd->hw_tag_samples = 0;
2136         cfqd->rq_in_driver_peak = 0;
2137 }
2138
2139 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2140 {
2141         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2142         struct cfq_data *cfqd = cfqq->cfqd;
2143         const int sync = rq_is_sync(rq);
2144         unsigned long now;
2145
2146         now = jiffies;
2147         cfq_log_cfqq(cfqd, cfqq, "complete");
2148
2149         cfq_update_hw_tag(cfqd);
2150
2151         WARN_ON(!cfqd->rq_in_driver[sync]);
2152         WARN_ON(!cfqq->dispatched);
2153         cfqd->rq_in_driver[sync]--;
2154         cfqq->dispatched--;
2155
2156         if (cfq_cfqq_sync(cfqq))
2157                 cfqd->sync_flight--;
2158
2159         if (sync)
2160                 RQ_CIC(rq)->last_end_request = now;
2161
2162         /*
2163          * If this is the active queue, check if it needs to be expired,
2164          * or if we want to idle in case it has no pending requests.
2165          */
2166         if (cfqd->active_queue == cfqq) {
2167                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2168
2169                 if (cfq_cfqq_slice_new(cfqq)) {
2170                         cfq_set_prio_slice(cfqd, cfqq);
2171                         cfq_clear_cfqq_slice_new(cfqq);
2172                 }
2173                 /*
2174                  * If there are no requests waiting in this queue, and
2175                  * there are other queues ready to issue requests, AND
2176                  * those other queues are issuing requests within our
2177                  * mean seek distance, give them a chance to run instead
2178                  * of idling.
2179                  */
2180                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2181                         cfq_slice_expired(cfqd, 1);
2182                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2183                          sync && !rq_noidle(rq))
2184                         cfq_arm_slice_timer(cfqd);
2185         }
2186
2187         if (!rq_in_driver(cfqd))
2188                 cfq_schedule_dispatch(cfqd);
2189 }
2190
2191 /*
2192  * we temporarily boost lower priority queues if they are holding fs exclusive
2193  * resources. they are boosted to normal prio (CLASS_BE/4)
2194  */
2195 static void cfq_prio_boost(struct cfq_queue *cfqq)
2196 {
2197         if (has_fs_excl()) {
2198                 /*
2199                  * boost idle prio on transactions that would lock out other
2200                  * users of the filesystem
2201                  */
2202                 if (cfq_class_idle(cfqq))
2203                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2204                 if (cfqq->ioprio > IOPRIO_NORM)
2205                         cfqq->ioprio = IOPRIO_NORM;
2206         } else {
2207                 /*
2208                  * check if we need to unboost the queue
2209                  */
2210                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2211                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2212                 if (cfqq->ioprio != cfqq->org_ioprio)
2213                         cfqq->ioprio = cfqq->org_ioprio;
2214         }
2215 }
2216
2217 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2218 {
2219         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2220                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2221                 return ELV_MQUEUE_MUST;
2222         }
2223
2224         return ELV_MQUEUE_MAY;
2225 }
2226
2227 static int cfq_may_queue(struct request_queue *q, int rw)
2228 {
2229         struct cfq_data *cfqd = q->elevator->elevator_data;
2230         struct task_struct *tsk = current;
2231         struct cfq_io_context *cic;
2232         struct cfq_queue *cfqq;
2233
2234         /*
2235          * don't force setup of a queue from here, as a call to may_queue
2236          * does not necessarily imply that a request actually will be queued.
2237          * so just lookup a possibly existing queue, or return 'may queue'
2238          * if that fails
2239          */
2240         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2241         if (!cic)
2242                 return ELV_MQUEUE_MAY;
2243
2244         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2245         if (cfqq) {
2246                 cfq_init_prio_data(cfqq, cic->ioc);
2247                 cfq_prio_boost(cfqq);
2248
2249                 return __cfq_may_queue(cfqq);
2250         }
2251
2252         return ELV_MQUEUE_MAY;
2253 }
2254
2255 /*
2256  * queue lock held here
2257  */
2258 static void cfq_put_request(struct request *rq)
2259 {
2260         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2261
2262         if (cfqq) {
2263                 const int rw = rq_data_dir(rq);
2264
2265                 BUG_ON(!cfqq->allocated[rw]);
2266                 cfqq->allocated[rw]--;
2267
2268                 put_io_context(RQ_CIC(rq)->ioc);
2269
2270                 rq->elevator_private = NULL;
2271                 rq->elevator_private2 = NULL;
2272
2273                 cfq_put_queue(cfqq);
2274         }
2275 }
2276
2277 /*
2278  * Allocate cfq data structures associated with this request.
2279  */
2280 static int
2281 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2282 {
2283         struct cfq_data *cfqd = q->elevator->elevator_data;
2284         struct cfq_io_context *cic;
2285         const int rw = rq_data_dir(rq);
2286         const int is_sync = rq_is_sync(rq);
2287         struct cfq_queue *cfqq;
2288         unsigned long flags;
2289
2290         might_sleep_if(gfp_mask & __GFP_WAIT);
2291
2292         cic = cfq_get_io_context(cfqd, gfp_mask);
2293
2294         spin_lock_irqsave(q->queue_lock, flags);
2295
2296         if (!cic)
2297                 goto queue_fail;
2298
2299         cfqq = cic_to_cfqq(cic, is_sync);
2300         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2301                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2302                 cic_set_cfqq(cic, cfqq, is_sync);
2303         }
2304
2305         cfqq->allocated[rw]++;
2306         atomic_inc(&cfqq->ref);
2307
2308         spin_unlock_irqrestore(q->queue_lock, flags);
2309
2310         rq->elevator_private = cic;
2311         rq->elevator_private2 = cfqq;
2312         return 0;
2313
2314 queue_fail:
2315         if (cic)
2316                 put_io_context(cic->ioc);
2317
2318         cfq_schedule_dispatch(cfqd);
2319         spin_unlock_irqrestore(q->queue_lock, flags);
2320         cfq_log(cfqd, "set_request fail");
2321         return 1;
2322 }
2323
2324 static void cfq_kick_queue(struct work_struct *work)
2325 {
2326         struct cfq_data *cfqd =
2327                 container_of(work, struct cfq_data, unplug_work);
2328         struct request_queue *q = cfqd->queue;
2329
2330         spin_lock_irq(q->queue_lock);
2331         __blk_run_queue(cfqd->queue);
2332         spin_unlock_irq(q->queue_lock);
2333 }
2334
2335 /*
2336  * Timer running if the active_queue is currently idling inside its time slice
2337  */
2338 static void cfq_idle_slice_timer(unsigned long data)
2339 {
2340         struct cfq_data *cfqd = (struct cfq_data *) data;
2341         struct cfq_queue *cfqq;
2342         unsigned long flags;
2343         int timed_out = 1;
2344
2345         cfq_log(cfqd, "idle timer fired");
2346
2347         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2348
2349         cfqq = cfqd->active_queue;
2350         if (cfqq) {
2351                 timed_out = 0;
2352
2353                 /*
2354                  * We saw a request before the queue expired, let it through
2355                  */
2356                 if (cfq_cfqq_must_dispatch(cfqq))
2357                         goto out_kick;
2358
2359                 /*
2360                  * expired
2361                  */
2362                 if (cfq_slice_used(cfqq))
2363                         goto expire;
2364
2365                 /*
2366                  * only expire and reinvoke request handler, if there are
2367                  * other queues with pending requests
2368                  */
2369                 if (!cfqd->busy_queues)
2370                         goto out_cont;
2371
2372                 /*
2373                  * not expired and it has a request pending, let it dispatch
2374                  */
2375                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2376                         goto out_kick;
2377         }
2378 expire:
2379         cfq_slice_expired(cfqd, timed_out);
2380 out_kick:
2381         cfq_schedule_dispatch(cfqd);
2382 out_cont:
2383         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2384 }
2385
2386 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2387 {
2388         del_timer_sync(&cfqd->idle_slice_timer);
2389         cancel_work_sync(&cfqd->unplug_work);
2390 }
2391
2392 static void cfq_put_async_queues(struct cfq_data *cfqd)
2393 {
2394         int i;
2395
2396         for (i = 0; i < IOPRIO_BE_NR; i++) {
2397                 if (cfqd->async_cfqq[0][i])
2398                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2399                 if (cfqd->async_cfqq[1][i])
2400                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2401         }
2402
2403         if (cfqd->async_idle_cfqq)
2404                 cfq_put_queue(cfqd->async_idle_cfqq);
2405 }
2406
2407 static void cfq_exit_queue(struct elevator_queue *e)
2408 {
2409         struct cfq_data *cfqd = e->elevator_data;
2410         struct request_queue *q = cfqd->queue;
2411
2412         cfq_shutdown_timer_wq(cfqd);
2413
2414         spin_lock_irq(q->queue_lock);
2415
2416         if (cfqd->active_queue)
2417                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2418
2419         while (!list_empty(&cfqd->cic_list)) {
2420                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2421                                                         struct cfq_io_context,
2422                                                         queue_list);
2423
2424                 __cfq_exit_single_io_context(cfqd, cic);
2425         }
2426
2427         cfq_put_async_queues(cfqd);
2428
2429         spin_unlock_irq(q->queue_lock);
2430
2431         cfq_shutdown_timer_wq(cfqd);
2432
2433         kfree(cfqd);
2434 }
2435
2436 static void *cfq_init_queue(struct request_queue *q)
2437 {
2438         struct cfq_data *cfqd;
2439         int i;
2440
2441         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2442         if (!cfqd)
2443                 return NULL;
2444
2445         cfqd->service_tree = CFQ_RB_ROOT;
2446
2447         /*
2448          * Not strictly needed (since RB_ROOT just clears the node and we
2449          * zeroed cfqd on alloc), but better be safe in case someone decides
2450          * to add magic to the rb code
2451          */
2452         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2453                 cfqd->prio_trees[i] = RB_ROOT;
2454
2455         /*
2456          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2457          * Grab a permanent reference to it, so that the normal code flow
2458          * will not attempt to free it.
2459          */
2460         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2461         atomic_inc(&cfqd->oom_cfqq.ref);
2462
2463         INIT_LIST_HEAD(&cfqd->cic_list);
2464
2465         cfqd->queue = q;
2466
2467         init_timer(&cfqd->idle_slice_timer);
2468         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2469         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2470
2471         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2472
2473         cfqd->cfq_quantum = cfq_quantum;
2474         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2475         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2476         cfqd->cfq_back_max = cfq_back_max;
2477         cfqd->cfq_back_penalty = cfq_back_penalty;
2478         cfqd->cfq_slice[0] = cfq_slice_async;
2479         cfqd->cfq_slice[1] = cfq_slice_sync;
2480         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2481         cfqd->cfq_slice_idle = cfq_slice_idle;
2482         cfqd->hw_tag = 1;
2483
2484         return cfqd;
2485 }
2486
2487 static void cfq_slab_kill(void)
2488 {
2489         /*
2490          * Caller already ensured that pending RCU callbacks are completed,
2491          * so we should have no busy allocations at this point.
2492          */
2493         if (cfq_pool)
2494                 kmem_cache_destroy(cfq_pool);
2495         if (cfq_ioc_pool)
2496                 kmem_cache_destroy(cfq_ioc_pool);
2497 }
2498
2499 static int __init cfq_slab_setup(void)
2500 {
2501         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2502         if (!cfq_pool)
2503                 goto fail;
2504
2505         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2506         if (!cfq_ioc_pool)
2507                 goto fail;
2508
2509         return 0;
2510 fail:
2511         cfq_slab_kill();
2512         return -ENOMEM;
2513 }
2514
2515 /*
2516  * sysfs parts below -->
2517  */
2518 static ssize_t
2519 cfq_var_show(unsigned int var, char *page)
2520 {
2521         return sprintf(page, "%d\n", var);
2522 }
2523
2524 static ssize_t
2525 cfq_var_store(unsigned int *var, const char *page, size_t count)
2526 {
2527         char *p = (char *) page;
2528
2529         *var = simple_strtoul(p, &p, 10);
2530         return count;
2531 }
2532
2533 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2534 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2535 {                                                                       \
2536         struct cfq_data *cfqd = e->elevator_data;                       \
2537         unsigned int __data = __VAR;                                    \
2538         if (__CONV)                                                     \
2539                 __data = jiffies_to_msecs(__data);                      \
2540         return cfq_var_show(__data, (page));                            \
2541 }
2542 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2543 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2544 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2545 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2546 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2547 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2548 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2549 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2550 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2551 #undef SHOW_FUNCTION
2552
2553 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2554 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2555 {                                                                       \
2556         struct cfq_data *cfqd = e->elevator_data;                       \
2557         unsigned int __data;                                            \
2558         int ret = cfq_var_store(&__data, (page), count);                \
2559         if (__data < (MIN))                                             \
2560                 __data = (MIN);                                         \
2561         else if (__data > (MAX))                                        \
2562                 __data = (MAX);                                         \
2563         if (__CONV)                                                     \
2564                 *(__PTR) = msecs_to_jiffies(__data);                    \
2565         else                                                            \
2566                 *(__PTR) = __data;                                      \
2567         return ret;                                                     \
2568 }
2569 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2570 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2571                 UINT_MAX, 1);
2572 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2573                 UINT_MAX, 1);
2574 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2575 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2576                 UINT_MAX, 0);
2577 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2578 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2579 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2580 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2581                 UINT_MAX, 0);
2582 #undef STORE_FUNCTION
2583
2584 #define CFQ_ATTR(name) \
2585         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2586
2587 static struct elv_fs_entry cfq_attrs[] = {
2588         CFQ_ATTR(quantum),
2589         CFQ_ATTR(fifo_expire_sync),
2590         CFQ_ATTR(fifo_expire_async),
2591         CFQ_ATTR(back_seek_max),
2592         CFQ_ATTR(back_seek_penalty),
2593         CFQ_ATTR(slice_sync),
2594         CFQ_ATTR(slice_async),
2595         CFQ_ATTR(slice_async_rq),
2596         CFQ_ATTR(slice_idle),
2597         __ATTR_NULL
2598 };
2599
2600 static struct elevator_type iosched_cfq = {
2601         .ops = {
2602                 .elevator_merge_fn =            cfq_merge,
2603                 .elevator_merged_fn =           cfq_merged_request,
2604                 .elevator_merge_req_fn =        cfq_merged_requests,
2605                 .elevator_allow_merge_fn =      cfq_allow_merge,
2606                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2607                 .elevator_add_req_fn =          cfq_insert_request,
2608                 .elevator_activate_req_fn =     cfq_activate_request,
2609                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2610                 .elevator_queue_empty_fn =      cfq_queue_empty,
2611                 .elevator_completed_req_fn =    cfq_completed_request,
2612                 .elevator_former_req_fn =       elv_rb_former_request,
2613                 .elevator_latter_req_fn =       elv_rb_latter_request,
2614                 .elevator_set_req_fn =          cfq_set_request,
2615                 .elevator_put_req_fn =          cfq_put_request,
2616                 .elevator_may_queue_fn =        cfq_may_queue,
2617                 .elevator_init_fn =             cfq_init_queue,
2618                 .elevator_exit_fn =             cfq_exit_queue,
2619                 .trim =                         cfq_free_io_context,
2620         },
2621         .elevator_attrs =       cfq_attrs,
2622         .elevator_name =        "cfq",
2623         .elevator_owner =       THIS_MODULE,
2624 };
2625
2626 static int __init cfq_init(void)
2627 {
2628         /*
2629          * could be 0 on HZ < 1000 setups
2630          */
2631         if (!cfq_slice_async)
2632                 cfq_slice_async = 1;
2633         if (!cfq_slice_idle)
2634                 cfq_slice_idle = 1;
2635
2636         if (cfq_slab_setup())
2637                 return -ENOMEM;
2638
2639         elv_register(&iosched_cfq);
2640
2641         return 0;
2642 }
2643
2644 static void __exit cfq_exit(void)
2645 {
2646         DECLARE_COMPLETION_ONSTACK(all_gone);
2647         elv_unregister(&iosched_cfq);
2648         ioc_gone = &all_gone;
2649         /* ioc_gone's update must be visible before reading ioc_count */
2650         smp_wmb();
2651
2652         /*
2653          * this also protects us from entering cfq_slab_kill() with
2654          * pending RCU callbacks
2655          */
2656         if (elv_ioc_count_read(ioc_count))
2657                 wait_for_completion(&all_gone);
2658         cfq_slab_kill();
2659 }
2660
2661 module_init(cfq_init);
2662 module_exit(cfq_exit);
2663
2664 MODULE_AUTHOR("Jens Axboe");
2665 MODULE_LICENSE("GPL");
2666 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");