cfq-iosched: enable idling for last queue on priority class
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
31 static const int cfq_hist_divisor = 4;
32
33 /*
34  * offset from end of service tree
35  */
36 #define CFQ_IDLE_DELAY          (HZ / 5)
37
38 /*
39  * below this threshold, we consider thinktime immediate
40  */
41 #define CFQ_MIN_TT              (2)
42
43 /*
44  * Allow merged cfqqs to perform this amount of seeky I/O before
45  * deciding to break the queues up again.
46  */
47 #define CFQQ_COOP_TOUT          (HZ)
48
49 #define CFQ_SLICE_SCALE         (5)
50 #define CFQ_HW_QUEUE_MIN        (5)
51
52 #define RQ_CIC(rq)              \
53         ((struct cfq_io_context *) (rq)->elevator_private)
54 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
55
56 static struct kmem_cache *cfq_pool;
57 static struct kmem_cache *cfq_ioc_pool;
58
59 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
60 static struct completion *ioc_gone;
61 static DEFINE_SPINLOCK(ioc_gone_lock);
62
63 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
67 #define sample_valid(samples)   ((samples) > 80)
68
69 /*
70  * Most of our rbtree usage is for sorting with min extraction, so
71  * if we cache the leftmost node we don't have to walk down the tree
72  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73  * move this into the elevator for the rq sorting as well.
74  */
75 struct cfq_rb_root {
76         struct rb_root rb;
77         struct rb_node *left;
78         unsigned count;
79 };
80 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
81
82 /*
83  * Per process-grouping structure
84  */
85 struct cfq_queue {
86         /* reference count */
87         atomic_t ref;
88         /* various state flags, see below */
89         unsigned int flags;
90         /* parent cfq_data */
91         struct cfq_data *cfqd;
92         /* service_tree member */
93         struct rb_node rb_node;
94         /* service_tree key */
95         unsigned long rb_key;
96         /* prio tree member */
97         struct rb_node p_node;
98         /* prio tree root we belong to, if any */
99         struct rb_root *p_root;
100         /* sorted list of pending requests */
101         struct rb_root sort_list;
102         /* if fifo isn't expired, next request to serve */
103         struct request *next_rq;
104         /* requests queued in sort_list */
105         int queued[2];
106         /* currently allocated requests */
107         int allocated[2];
108         /* fifo list of requests in sort_list */
109         struct list_head fifo;
110
111         unsigned long slice_end;
112         long slice_resid;
113         unsigned int slice_dispatch;
114
115         /* pending metadata requests */
116         int meta_pending;
117         /* number of requests that are on the dispatch list or inside driver */
118         int dispatched;
119
120         /* io prio of this group */
121         unsigned short ioprio, org_ioprio;
122         unsigned short ioprio_class, org_ioprio_class;
123
124         unsigned int seek_samples;
125         u64 seek_total;
126         sector_t seek_mean;
127         sector_t last_request_pos;
128         unsigned long seeky_start;
129
130         pid_t pid;
131
132         struct cfq_rb_root *service_tree;
133         struct cfq_queue *new_cfqq;
134 };
135
136 /*
137  * Index in the service_trees.
138  * IDLE is handled separately, so it has negative index
139  */
140 enum wl_prio_t {
141         IDLE_WORKLOAD = -1,
142         BE_WORKLOAD = 0,
143         RT_WORKLOAD = 1
144 };
145
146 /*
147  * Per block device queue structure
148  */
149 struct cfq_data {
150         struct request_queue *queue;
151
152         /*
153          * rr lists of queues with requests, onle rr for each priority class.
154          * Counts are embedded in the cfq_rb_root
155          */
156         struct cfq_rb_root service_trees[2];
157         struct cfq_rb_root service_tree_idle;
158         /*
159          * The priority currently being served
160          */
161         enum wl_prio_t serving_prio;
162
163         /*
164          * Each priority tree is sorted by next_request position.  These
165          * trees are used when determining if two or more queues are
166          * interleaving requests (see cfq_close_cooperator).
167          */
168         struct rb_root prio_trees[CFQ_PRIO_LISTS];
169
170         unsigned int busy_queues;
171         unsigned int busy_queues_avg[2];
172
173         int rq_in_driver[2];
174         int sync_flight;
175
176         /*
177          * queue-depth detection
178          */
179         int rq_queued;
180         int hw_tag;
181         int hw_tag_samples;
182         int rq_in_driver_peak;
183
184         /*
185          * idle window management
186          */
187         struct timer_list idle_slice_timer;
188         struct work_struct unplug_work;
189
190         struct cfq_queue *active_queue;
191         struct cfq_io_context *active_cic;
192
193         /*
194          * async queue for each priority case
195          */
196         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
197         struct cfq_queue *async_idle_cfqq;
198
199         sector_t last_position;
200
201         /*
202          * tunables, see top of file
203          */
204         unsigned int cfq_quantum;
205         unsigned int cfq_fifo_expire[2];
206         unsigned int cfq_back_penalty;
207         unsigned int cfq_back_max;
208         unsigned int cfq_slice[2];
209         unsigned int cfq_slice_async_rq;
210         unsigned int cfq_slice_idle;
211         unsigned int cfq_latency;
212
213         struct list_head cic_list;
214
215         /*
216          * Fallback dummy cfqq for extreme OOM conditions
217          */
218         struct cfq_queue oom_cfqq;
219
220         unsigned long last_end_sync_rq;
221 };
222
223 static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
224                                             struct cfq_data *cfqd)
225 {
226         if (prio == IDLE_WORKLOAD)
227                 return &cfqd->service_tree_idle;
228
229         return &cfqd->service_trees[prio];
230 }
231
232 enum cfqq_state_flags {
233         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
234         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
235         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
236         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
237         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
238         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
239         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
240         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
241         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
242         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
243 };
244
245 #define CFQ_CFQQ_FNS(name)                                              \
246 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
247 {                                                                       \
248         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
249 }                                                                       \
250 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
251 {                                                                       \
252         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
253 }                                                                       \
254 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
255 {                                                                       \
256         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
257 }
258
259 CFQ_CFQQ_FNS(on_rr);
260 CFQ_CFQQ_FNS(wait_request);
261 CFQ_CFQQ_FNS(must_dispatch);
262 CFQ_CFQQ_FNS(must_alloc_slice);
263 CFQ_CFQQ_FNS(fifo_expire);
264 CFQ_CFQQ_FNS(idle_window);
265 CFQ_CFQQ_FNS(prio_changed);
266 CFQ_CFQQ_FNS(slice_new);
267 CFQ_CFQQ_FNS(sync);
268 CFQ_CFQQ_FNS(coop);
269 #undef CFQ_CFQQ_FNS
270
271 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
272         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
273 #define cfq_log(cfqd, fmt, args...)     \
274         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
275
276 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
277 {
278         if (cfq_class_idle(cfqq))
279                 return IDLE_WORKLOAD;
280         if (cfq_class_rt(cfqq))
281                 return RT_WORKLOAD;
282         return BE_WORKLOAD;
283 }
284
285 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
286 {
287         if (wl == IDLE_WORKLOAD)
288                 return cfqd->service_tree_idle.count;
289
290         return cfqd->service_trees[wl].count;
291 }
292
293 static void cfq_dispatch_insert(struct request_queue *, struct request *);
294 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
295                                        struct io_context *, gfp_t);
296 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
297                                                 struct io_context *);
298
299 static inline int rq_in_driver(struct cfq_data *cfqd)
300 {
301         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
302 }
303
304 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
305                                             bool is_sync)
306 {
307         return cic->cfqq[is_sync];
308 }
309
310 static inline void cic_set_cfqq(struct cfq_io_context *cic,
311                                 struct cfq_queue *cfqq, bool is_sync)
312 {
313         cic->cfqq[is_sync] = cfqq;
314 }
315
316 /*
317  * We regard a request as SYNC, if it's either a read or has the SYNC bit
318  * set (in which case it could also be direct WRITE).
319  */
320 static inline bool cfq_bio_sync(struct bio *bio)
321 {
322         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
323 }
324
325 /*
326  * scheduler run of queue, if there are requests pending and no one in the
327  * driver that will restart queueing
328  */
329 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
330 {
331         if (cfqd->busy_queues) {
332                 cfq_log(cfqd, "schedule dispatch");
333                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
334         }
335 }
336
337 static int cfq_queue_empty(struct request_queue *q)
338 {
339         struct cfq_data *cfqd = q->elevator->elevator_data;
340
341         return !cfqd->busy_queues;
342 }
343
344 /*
345  * Scale schedule slice based on io priority. Use the sync time slice only
346  * if a queue is marked sync and has sync io queued. A sync queue with async
347  * io only, should not get full sync slice length.
348  */
349 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
350                                  unsigned short prio)
351 {
352         const int base_slice = cfqd->cfq_slice[sync];
353
354         WARN_ON(prio >= IOPRIO_BE_NR);
355
356         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
357 }
358
359 static inline int
360 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
361 {
362         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
363 }
364
365 /*
366  * get averaged number of queues of RT/BE priority.
367  * average is updated, with a formula that gives more weight to higher numbers,
368  * to quickly follows sudden increases and decrease slowly
369  */
370
371 static inline unsigned
372 cfq_get_avg_queues(struct cfq_data *cfqd, bool rt) {
373         unsigned min_q, max_q;
374         unsigned mult  = cfq_hist_divisor - 1;
375         unsigned round = cfq_hist_divisor / 2;
376         unsigned busy = cfq_busy_queues_wl(rt, cfqd);
377
378         min_q = min(cfqd->busy_queues_avg[rt], busy);
379         max_q = max(cfqd->busy_queues_avg[rt], busy);
380         cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
381                 cfq_hist_divisor;
382         return cfqd->busy_queues_avg[rt];
383 }
384
385 static inline void
386 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
387 {
388         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
389         if (cfqd->cfq_latency) {
390                 /* interested queues (we consider only the ones with the same
391                  * priority class) */
392                 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
393                 unsigned sync_slice = cfqd->cfq_slice[1];
394                 unsigned expect_latency = sync_slice * iq;
395                 if (expect_latency > cfq_target_latency) {
396                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
397                         /* scale low_slice according to IO priority
398                          * and sync vs async */
399                         unsigned low_slice =
400                                 min(slice, base_low_slice * slice / sync_slice);
401                         /* the adapted slice value is scaled to fit all iqs
402                          * into the target latency */
403                         slice = max(slice * cfq_target_latency / expect_latency,
404                                     low_slice);
405                 }
406         }
407         cfqq->slice_end = jiffies + slice;
408         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
409 }
410
411 /*
412  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
413  * isn't valid until the first request from the dispatch is activated
414  * and the slice time set.
415  */
416 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
417 {
418         if (cfq_cfqq_slice_new(cfqq))
419                 return 0;
420         if (time_before(jiffies, cfqq->slice_end))
421                 return 0;
422
423         return 1;
424 }
425
426 /*
427  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
428  * We choose the request that is closest to the head right now. Distance
429  * behind the head is penalized and only allowed to a certain extent.
430  */
431 static struct request *
432 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
433 {
434         sector_t last, s1, s2, d1 = 0, d2 = 0;
435         unsigned long back_max;
436 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
437 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
438         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
439
440         if (rq1 == NULL || rq1 == rq2)
441                 return rq2;
442         if (rq2 == NULL)
443                 return rq1;
444
445         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
446                 return rq1;
447         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
448                 return rq2;
449         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
450                 return rq1;
451         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
452                 return rq2;
453
454         s1 = blk_rq_pos(rq1);
455         s2 = blk_rq_pos(rq2);
456
457         last = cfqd->last_position;
458
459         /*
460          * by definition, 1KiB is 2 sectors
461          */
462         back_max = cfqd->cfq_back_max * 2;
463
464         /*
465          * Strict one way elevator _except_ in the case where we allow
466          * short backward seeks which are biased as twice the cost of a
467          * similar forward seek.
468          */
469         if (s1 >= last)
470                 d1 = s1 - last;
471         else if (s1 + back_max >= last)
472                 d1 = (last - s1) * cfqd->cfq_back_penalty;
473         else
474                 wrap |= CFQ_RQ1_WRAP;
475
476         if (s2 >= last)
477                 d2 = s2 - last;
478         else if (s2 + back_max >= last)
479                 d2 = (last - s2) * cfqd->cfq_back_penalty;
480         else
481                 wrap |= CFQ_RQ2_WRAP;
482
483         /* Found required data */
484
485         /*
486          * By doing switch() on the bit mask "wrap" we avoid having to
487          * check two variables for all permutations: --> faster!
488          */
489         switch (wrap) {
490         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
491                 if (d1 < d2)
492                         return rq1;
493                 else if (d2 < d1)
494                         return rq2;
495                 else {
496                         if (s1 >= s2)
497                                 return rq1;
498                         else
499                                 return rq2;
500                 }
501
502         case CFQ_RQ2_WRAP:
503                 return rq1;
504         case CFQ_RQ1_WRAP:
505                 return rq2;
506         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
507         default:
508                 /*
509                  * Since both rqs are wrapped,
510                  * start with the one that's further behind head
511                  * (--> only *one* back seek required),
512                  * since back seek takes more time than forward.
513                  */
514                 if (s1 <= s2)
515                         return rq1;
516                 else
517                         return rq2;
518         }
519 }
520
521 /*
522  * The below is leftmost cache rbtree addon
523  */
524 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
525 {
526         if (!root->left)
527                 root->left = rb_first(&root->rb);
528
529         if (root->left)
530                 return rb_entry(root->left, struct cfq_queue, rb_node);
531
532         return NULL;
533 }
534
535 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
536 {
537         rb_erase(n, root);
538         RB_CLEAR_NODE(n);
539 }
540
541 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
542 {
543         if (root->left == n)
544                 root->left = NULL;
545         rb_erase_init(n, &root->rb);
546         --root->count;
547 }
548
549 /*
550  * would be nice to take fifo expire time into account as well
551  */
552 static struct request *
553 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
554                   struct request *last)
555 {
556         struct rb_node *rbnext = rb_next(&last->rb_node);
557         struct rb_node *rbprev = rb_prev(&last->rb_node);
558         struct request *next = NULL, *prev = NULL;
559
560         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
561
562         if (rbprev)
563                 prev = rb_entry_rq(rbprev);
564
565         if (rbnext)
566                 next = rb_entry_rq(rbnext);
567         else {
568                 rbnext = rb_first(&cfqq->sort_list);
569                 if (rbnext && rbnext != &last->rb_node)
570                         next = rb_entry_rq(rbnext);
571         }
572
573         return cfq_choose_req(cfqd, next, prev);
574 }
575
576 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
577                                       struct cfq_queue *cfqq)
578 {
579         /*
580          * just an approximation, should be ok.
581          */
582         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
583                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
584 }
585
586 /*
587  * The cfqd->service_trees holds all pending cfq_queue's that have
588  * requests waiting to be processed. It is sorted in the order that
589  * we will service the queues.
590  */
591 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
592                                  bool add_front)
593 {
594         struct rb_node **p, *parent;
595         struct cfq_queue *__cfqq;
596         unsigned long rb_key;
597         struct cfq_rb_root *service_tree;
598         int left;
599
600         service_tree = service_tree_for(cfqq_prio(cfqq), cfqd);
601         if (cfq_class_idle(cfqq)) {
602                 rb_key = CFQ_IDLE_DELAY;
603                 parent = rb_last(&service_tree->rb);
604                 if (parent && parent != &cfqq->rb_node) {
605                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
606                         rb_key += __cfqq->rb_key;
607                 } else
608                         rb_key += jiffies;
609         } else if (!add_front) {
610                 /*
611                  * Get our rb key offset. Subtract any residual slice
612                  * value carried from last service. A negative resid
613                  * count indicates slice overrun, and this should position
614                  * the next service time further away in the tree.
615                  */
616                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
617                 rb_key -= cfqq->slice_resid;
618                 cfqq->slice_resid = 0;
619         } else {
620                 rb_key = -HZ;
621                 __cfqq = cfq_rb_first(service_tree);
622                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
623         }
624
625         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
626                 /*
627                  * same position, nothing more to do
628                  */
629                 if (rb_key == cfqq->rb_key &&
630                     cfqq->service_tree == service_tree)
631                         return;
632
633                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
634                 cfqq->service_tree = NULL;
635         }
636
637         left = 1;
638         parent = NULL;
639         cfqq->service_tree = service_tree;
640         p = &service_tree->rb.rb_node;
641         while (*p) {
642                 struct rb_node **n;
643
644                 parent = *p;
645                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
646
647                 /*
648                  * sort by key, that represents service time.
649                  */
650                 if (time_before(rb_key, __cfqq->rb_key))
651                         n = &(*p)->rb_left;
652                 else {
653                         n = &(*p)->rb_right;
654                         left = 0;
655                 }
656
657                 p = n;
658         }
659
660         if (left)
661                 service_tree->left = &cfqq->rb_node;
662
663         cfqq->rb_key = rb_key;
664         rb_link_node(&cfqq->rb_node, parent, p);
665         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
666         service_tree->count++;
667 }
668
669 static struct cfq_queue *
670 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
671                      sector_t sector, struct rb_node **ret_parent,
672                      struct rb_node ***rb_link)
673 {
674         struct rb_node **p, *parent;
675         struct cfq_queue *cfqq = NULL;
676
677         parent = NULL;
678         p = &root->rb_node;
679         while (*p) {
680                 struct rb_node **n;
681
682                 parent = *p;
683                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
684
685                 /*
686                  * Sort strictly based on sector.  Smallest to the left,
687                  * largest to the right.
688                  */
689                 if (sector > blk_rq_pos(cfqq->next_rq))
690                         n = &(*p)->rb_right;
691                 else if (sector < blk_rq_pos(cfqq->next_rq))
692                         n = &(*p)->rb_left;
693                 else
694                         break;
695                 p = n;
696                 cfqq = NULL;
697         }
698
699         *ret_parent = parent;
700         if (rb_link)
701                 *rb_link = p;
702         return cfqq;
703 }
704
705 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
706 {
707         struct rb_node **p, *parent;
708         struct cfq_queue *__cfqq;
709
710         if (cfqq->p_root) {
711                 rb_erase(&cfqq->p_node, cfqq->p_root);
712                 cfqq->p_root = NULL;
713         }
714
715         if (cfq_class_idle(cfqq))
716                 return;
717         if (!cfqq->next_rq)
718                 return;
719
720         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
721         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
722                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
723         if (!__cfqq) {
724                 rb_link_node(&cfqq->p_node, parent, p);
725                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
726         } else
727                 cfqq->p_root = NULL;
728 }
729
730 /*
731  * Update cfqq's position in the service tree.
732  */
733 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
734 {
735         /*
736          * Resorting requires the cfqq to be on the RR list already.
737          */
738         if (cfq_cfqq_on_rr(cfqq)) {
739                 cfq_service_tree_add(cfqd, cfqq, 0);
740                 cfq_prio_tree_add(cfqd, cfqq);
741         }
742 }
743
744 /*
745  * add to busy list of queues for service, trying to be fair in ordering
746  * the pending list according to last request service
747  */
748 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
749 {
750         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
751         BUG_ON(cfq_cfqq_on_rr(cfqq));
752         cfq_mark_cfqq_on_rr(cfqq);
753         cfqd->busy_queues++;
754
755         cfq_resort_rr_list(cfqd, cfqq);
756 }
757
758 /*
759  * Called when the cfqq no longer has requests pending, remove it from
760  * the service tree.
761  */
762 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
763 {
764         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
765         BUG_ON(!cfq_cfqq_on_rr(cfqq));
766         cfq_clear_cfqq_on_rr(cfqq);
767
768         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
769                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
770                 cfqq->service_tree = NULL;
771         }
772         if (cfqq->p_root) {
773                 rb_erase(&cfqq->p_node, cfqq->p_root);
774                 cfqq->p_root = NULL;
775         }
776
777         BUG_ON(!cfqd->busy_queues);
778         cfqd->busy_queues--;
779 }
780
781 /*
782  * rb tree support functions
783  */
784 static void cfq_del_rq_rb(struct request *rq)
785 {
786         struct cfq_queue *cfqq = RQ_CFQQ(rq);
787         struct cfq_data *cfqd = cfqq->cfqd;
788         const int sync = rq_is_sync(rq);
789
790         BUG_ON(!cfqq->queued[sync]);
791         cfqq->queued[sync]--;
792
793         elv_rb_del(&cfqq->sort_list, rq);
794
795         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
796                 cfq_del_cfqq_rr(cfqd, cfqq);
797 }
798
799 static void cfq_add_rq_rb(struct request *rq)
800 {
801         struct cfq_queue *cfqq = RQ_CFQQ(rq);
802         struct cfq_data *cfqd = cfqq->cfqd;
803         struct request *__alias, *prev;
804
805         cfqq->queued[rq_is_sync(rq)]++;
806
807         /*
808          * looks a little odd, but the first insert might return an alias.
809          * if that happens, put the alias on the dispatch list
810          */
811         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
812                 cfq_dispatch_insert(cfqd->queue, __alias);
813
814         if (!cfq_cfqq_on_rr(cfqq))
815                 cfq_add_cfqq_rr(cfqd, cfqq);
816
817         /*
818          * check if this request is a better next-serve candidate
819          */
820         prev = cfqq->next_rq;
821         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
822
823         /*
824          * adjust priority tree position, if ->next_rq changes
825          */
826         if (prev != cfqq->next_rq)
827                 cfq_prio_tree_add(cfqd, cfqq);
828
829         BUG_ON(!cfqq->next_rq);
830 }
831
832 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
833 {
834         elv_rb_del(&cfqq->sort_list, rq);
835         cfqq->queued[rq_is_sync(rq)]--;
836         cfq_add_rq_rb(rq);
837 }
838
839 static struct request *
840 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
841 {
842         struct task_struct *tsk = current;
843         struct cfq_io_context *cic;
844         struct cfq_queue *cfqq;
845
846         cic = cfq_cic_lookup(cfqd, tsk->io_context);
847         if (!cic)
848                 return NULL;
849
850         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
851         if (cfqq) {
852                 sector_t sector = bio->bi_sector + bio_sectors(bio);
853
854                 return elv_rb_find(&cfqq->sort_list, sector);
855         }
856
857         return NULL;
858 }
859
860 static void cfq_activate_request(struct request_queue *q, struct request *rq)
861 {
862         struct cfq_data *cfqd = q->elevator->elevator_data;
863
864         cfqd->rq_in_driver[rq_is_sync(rq)]++;
865         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
866                                                 rq_in_driver(cfqd));
867
868         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
869 }
870
871 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
872 {
873         struct cfq_data *cfqd = q->elevator->elevator_data;
874         const int sync = rq_is_sync(rq);
875
876         WARN_ON(!cfqd->rq_in_driver[sync]);
877         cfqd->rq_in_driver[sync]--;
878         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
879                                                 rq_in_driver(cfqd));
880 }
881
882 static void cfq_remove_request(struct request *rq)
883 {
884         struct cfq_queue *cfqq = RQ_CFQQ(rq);
885
886         if (cfqq->next_rq == rq)
887                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
888
889         list_del_init(&rq->queuelist);
890         cfq_del_rq_rb(rq);
891
892         cfqq->cfqd->rq_queued--;
893         if (rq_is_meta(rq)) {
894                 WARN_ON(!cfqq->meta_pending);
895                 cfqq->meta_pending--;
896         }
897 }
898
899 static int cfq_merge(struct request_queue *q, struct request **req,
900                      struct bio *bio)
901 {
902         struct cfq_data *cfqd = q->elevator->elevator_data;
903         struct request *__rq;
904
905         __rq = cfq_find_rq_fmerge(cfqd, bio);
906         if (__rq && elv_rq_merge_ok(__rq, bio)) {
907                 *req = __rq;
908                 return ELEVATOR_FRONT_MERGE;
909         }
910
911         return ELEVATOR_NO_MERGE;
912 }
913
914 static void cfq_merged_request(struct request_queue *q, struct request *req,
915                                int type)
916 {
917         if (type == ELEVATOR_FRONT_MERGE) {
918                 struct cfq_queue *cfqq = RQ_CFQQ(req);
919
920                 cfq_reposition_rq_rb(cfqq, req);
921         }
922 }
923
924 static void
925 cfq_merged_requests(struct request_queue *q, struct request *rq,
926                     struct request *next)
927 {
928         /*
929          * reposition in fifo if next is older than rq
930          */
931         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
932             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
933                 list_move(&rq->queuelist, &next->queuelist);
934                 rq_set_fifo_time(rq, rq_fifo_time(next));
935         }
936
937         cfq_remove_request(next);
938 }
939
940 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
941                            struct bio *bio)
942 {
943         struct cfq_data *cfqd = q->elevator->elevator_data;
944         struct cfq_io_context *cic;
945         struct cfq_queue *cfqq;
946
947         /*
948          * Disallow merge of a sync bio into an async request.
949          */
950         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
951                 return false;
952
953         /*
954          * Lookup the cfqq that this bio will be queued with. Allow
955          * merge only if rq is queued there.
956          */
957         cic = cfq_cic_lookup(cfqd, current->io_context);
958         if (!cic)
959                 return false;
960
961         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
962         return cfqq == RQ_CFQQ(rq);
963 }
964
965 static void __cfq_set_active_queue(struct cfq_data *cfqd,
966                                    struct cfq_queue *cfqq)
967 {
968         if (cfqq) {
969                 cfq_log_cfqq(cfqd, cfqq, "set_active");
970                 cfqq->slice_end = 0;
971                 cfqq->slice_dispatch = 0;
972
973                 cfq_clear_cfqq_wait_request(cfqq);
974                 cfq_clear_cfqq_must_dispatch(cfqq);
975                 cfq_clear_cfqq_must_alloc_slice(cfqq);
976                 cfq_clear_cfqq_fifo_expire(cfqq);
977                 cfq_mark_cfqq_slice_new(cfqq);
978
979                 del_timer(&cfqd->idle_slice_timer);
980         }
981
982         cfqd->active_queue = cfqq;
983 }
984
985 /*
986  * current cfqq expired its slice (or was too idle), select new one
987  */
988 static void
989 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
990                     bool timed_out)
991 {
992         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
993
994         if (cfq_cfqq_wait_request(cfqq))
995                 del_timer(&cfqd->idle_slice_timer);
996
997         cfq_clear_cfqq_wait_request(cfqq);
998
999         /*
1000          * store what was left of this slice, if the queue idled/timed out
1001          */
1002         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1003                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1004                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1005         }
1006
1007         cfq_resort_rr_list(cfqd, cfqq);
1008
1009         if (cfqq == cfqd->active_queue)
1010                 cfqd->active_queue = NULL;
1011
1012         if (cfqd->active_cic) {
1013                 put_io_context(cfqd->active_cic->ioc);
1014                 cfqd->active_cic = NULL;
1015         }
1016 }
1017
1018 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1019 {
1020         struct cfq_queue *cfqq = cfqd->active_queue;
1021
1022         if (cfqq)
1023                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1024 }
1025
1026 /*
1027  * Get next queue for service. Unless we have a queue preemption,
1028  * we'll simply select the first cfqq in the service tree.
1029  */
1030 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1031 {
1032         struct cfq_rb_root *service_tree =
1033                 service_tree_for(cfqd->serving_prio, cfqd);
1034
1035         if (RB_EMPTY_ROOT(&service_tree->rb))
1036                 return NULL;
1037         return cfq_rb_first(service_tree);
1038 }
1039
1040 /*
1041  * Get and set a new active queue for service.
1042  */
1043 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1044                                               struct cfq_queue *cfqq)
1045 {
1046         if (!cfqq)
1047                 cfqq = cfq_get_next_queue(cfqd);
1048
1049         __cfq_set_active_queue(cfqd, cfqq);
1050         return cfqq;
1051 }
1052
1053 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1054                                           struct request *rq)
1055 {
1056         if (blk_rq_pos(rq) >= cfqd->last_position)
1057                 return blk_rq_pos(rq) - cfqd->last_position;
1058         else
1059                 return cfqd->last_position - blk_rq_pos(rq);
1060 }
1061
1062 #define CFQQ_SEEK_THR           8 * 1024
1063 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1064
1065 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1066                                struct request *rq)
1067 {
1068         sector_t sdist = cfqq->seek_mean;
1069
1070         if (!sample_valid(cfqq->seek_samples))
1071                 sdist = CFQQ_SEEK_THR;
1072
1073         return cfq_dist_from_last(cfqd, rq) <= sdist;
1074 }
1075
1076 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1077                                     struct cfq_queue *cur_cfqq)
1078 {
1079         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1080         struct rb_node *parent, *node;
1081         struct cfq_queue *__cfqq;
1082         sector_t sector = cfqd->last_position;
1083
1084         if (RB_EMPTY_ROOT(root))
1085                 return NULL;
1086
1087         /*
1088          * First, if we find a request starting at the end of the last
1089          * request, choose it.
1090          */
1091         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1092         if (__cfqq)
1093                 return __cfqq;
1094
1095         /*
1096          * If the exact sector wasn't found, the parent of the NULL leaf
1097          * will contain the closest sector.
1098          */
1099         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1100         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1101                 return __cfqq;
1102
1103         if (blk_rq_pos(__cfqq->next_rq) < sector)
1104                 node = rb_next(&__cfqq->p_node);
1105         else
1106                 node = rb_prev(&__cfqq->p_node);
1107         if (!node)
1108                 return NULL;
1109
1110         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1111         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1112                 return __cfqq;
1113
1114         return NULL;
1115 }
1116
1117 /*
1118  * cfqd - obvious
1119  * cur_cfqq - passed in so that we don't decide that the current queue is
1120  *            closely cooperating with itself.
1121  *
1122  * So, basically we're assuming that that cur_cfqq has dispatched at least
1123  * one request, and that cfqd->last_position reflects a position on the disk
1124  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1125  * assumption.
1126  */
1127 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1128                                               struct cfq_queue *cur_cfqq)
1129 {
1130         struct cfq_queue *cfqq;
1131
1132         if (!cfq_cfqq_sync(cur_cfqq))
1133                 return NULL;
1134         if (CFQQ_SEEKY(cur_cfqq))
1135                 return NULL;
1136
1137         /*
1138          * We should notice if some of the queues are cooperating, eg
1139          * working closely on the same area of the disk. In that case,
1140          * we can group them together and don't waste time idling.
1141          */
1142         cfqq = cfqq_close(cfqd, cur_cfqq);
1143         if (!cfqq)
1144                 return NULL;
1145
1146         /*
1147          * It only makes sense to merge sync queues.
1148          */
1149         if (!cfq_cfqq_sync(cfqq))
1150                 return NULL;
1151         if (CFQQ_SEEKY(cfqq))
1152                 return NULL;
1153
1154         /*
1155          * Do not merge queues of different priority classes
1156          */
1157         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1158                 return NULL;
1159
1160         return cfqq;
1161 }
1162
1163 /*
1164  * Determine whether we should enforce idle window for this queue.
1165  */
1166
1167 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1168 {
1169         enum wl_prio_t prio = cfqq_prio(cfqq);
1170         struct cfq_rb_root *service_tree;
1171
1172         /* We never do for idle class queues. */
1173         if (prio == IDLE_WORKLOAD)
1174                 return false;
1175
1176         /* We do for queues that were marked with idle window flag. */
1177         if (cfq_cfqq_idle_window(cfqq))
1178                 return true;
1179
1180         /*
1181          * Otherwise, we do only if they are the last ones
1182          * in their service tree.
1183          */
1184         service_tree = service_tree_for(prio, cfqd);
1185         if (service_tree->count == 0)
1186                 return true;
1187
1188         return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1189 }
1190
1191 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1192 {
1193         struct cfq_queue *cfqq = cfqd->active_queue;
1194         struct cfq_io_context *cic;
1195         unsigned long sl;
1196
1197         /*
1198          * SSD device without seek penalty, disable idling. But only do so
1199          * for devices that support queuing, otherwise we still have a problem
1200          * with sync vs async workloads.
1201          */
1202         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1203                 return;
1204
1205         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1206         WARN_ON(cfq_cfqq_slice_new(cfqq));
1207
1208         /*
1209          * idle is disabled, either manually or by past process history
1210          */
1211         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1212                 return;
1213
1214         /*
1215          * still requests with the driver, don't idle
1216          */
1217         if (rq_in_driver(cfqd))
1218                 return;
1219
1220         /*
1221          * task has exited, don't wait
1222          */
1223         cic = cfqd->active_cic;
1224         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1225                 return;
1226
1227         /*
1228          * If our average think time is larger than the remaining time
1229          * slice, then don't idle. This avoids overrunning the allotted
1230          * time slice.
1231          */
1232         if (sample_valid(cic->ttime_samples) &&
1233             (cfqq->slice_end - jiffies < cic->ttime_mean))
1234                 return;
1235
1236         cfq_mark_cfqq_wait_request(cfqq);
1237
1238         /*
1239          * we don't want to idle for seeks, but we do want to allow
1240          * fair distribution of slice time for a process doing back-to-back
1241          * seeks. so allow a little bit of time for him to submit a new rq
1242          */
1243         sl = cfqd->cfq_slice_idle;
1244         if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
1245                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1246
1247         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1248         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1249 }
1250
1251 /*
1252  * Move request from internal lists to the request queue dispatch list.
1253  */
1254 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1255 {
1256         struct cfq_data *cfqd = q->elevator->elevator_data;
1257         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1258
1259         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1260
1261         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1262         cfq_remove_request(rq);
1263         cfqq->dispatched++;
1264         elv_dispatch_sort(q, rq);
1265
1266         if (cfq_cfqq_sync(cfqq))
1267                 cfqd->sync_flight++;
1268 }
1269
1270 /*
1271  * return expired entry, or NULL to just start from scratch in rbtree
1272  */
1273 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1274 {
1275         struct request *rq = NULL;
1276
1277         if (cfq_cfqq_fifo_expire(cfqq))
1278                 return NULL;
1279
1280         cfq_mark_cfqq_fifo_expire(cfqq);
1281
1282         if (list_empty(&cfqq->fifo))
1283                 return NULL;
1284
1285         rq = rq_entry_fifo(cfqq->fifo.next);
1286         if (time_before(jiffies, rq_fifo_time(rq)))
1287                 rq = NULL;
1288
1289         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1290         return rq;
1291 }
1292
1293 static inline int
1294 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1295 {
1296         const int base_rq = cfqd->cfq_slice_async_rq;
1297
1298         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1299
1300         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1301 }
1302
1303 /*
1304  * Must be called with the queue_lock held.
1305  */
1306 static int cfqq_process_refs(struct cfq_queue *cfqq)
1307 {
1308         int process_refs, io_refs;
1309
1310         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1311         process_refs = atomic_read(&cfqq->ref) - io_refs;
1312         BUG_ON(process_refs < 0);
1313         return process_refs;
1314 }
1315
1316 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1317 {
1318         int process_refs, new_process_refs;
1319         struct cfq_queue *__cfqq;
1320
1321         /* Avoid a circular list and skip interim queue merges */
1322         while ((__cfqq = new_cfqq->new_cfqq)) {
1323                 if (__cfqq == cfqq)
1324                         return;
1325                 new_cfqq = __cfqq;
1326         }
1327
1328         process_refs = cfqq_process_refs(cfqq);
1329         /*
1330          * If the process for the cfqq has gone away, there is no
1331          * sense in merging the queues.
1332          */
1333         if (process_refs == 0)
1334                 return;
1335
1336         /*
1337          * Merge in the direction of the lesser amount of work.
1338          */
1339         new_process_refs = cfqq_process_refs(new_cfqq);
1340         if (new_process_refs >= process_refs) {
1341                 cfqq->new_cfqq = new_cfqq;
1342                 atomic_add(process_refs, &new_cfqq->ref);
1343         } else {
1344                 new_cfqq->new_cfqq = cfqq;
1345                 atomic_add(new_process_refs, &cfqq->ref);
1346         }
1347 }
1348
1349 /*
1350  * Select a queue for service. If we have a current active queue,
1351  * check whether to continue servicing it, or retrieve and set a new one.
1352  */
1353 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1354 {
1355         struct cfq_queue *cfqq, *new_cfqq = NULL;
1356
1357         cfqq = cfqd->active_queue;
1358         if (!cfqq)
1359                 goto new_queue;
1360
1361         /*
1362          * The active queue has run out of time, expire it and select new.
1363          */
1364         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1365                 goto expire;
1366
1367         /*
1368          * The active queue has requests and isn't expired, allow it to
1369          * dispatch.
1370          */
1371         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1372                 goto keep_queue;
1373
1374         /*
1375          * If another queue has a request waiting within our mean seek
1376          * distance, let it run.  The expire code will check for close
1377          * cooperators and put the close queue at the front of the service
1378          * tree.  If possible, merge the expiring queue with the new cfqq.
1379          */
1380         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1381         if (new_cfqq) {
1382                 if (!cfqq->new_cfqq)
1383                         cfq_setup_merge(cfqq, new_cfqq);
1384                 goto expire;
1385         }
1386
1387         /*
1388          * No requests pending. If the active queue still has requests in
1389          * flight or is idling for a new request, allow either of these
1390          * conditions to happen (or time out) before selecting a new queue.
1391          */
1392         if (timer_pending(&cfqd->idle_slice_timer) ||
1393             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1394                 cfqq = NULL;
1395                 goto keep_queue;
1396         }
1397
1398 expire:
1399         cfq_slice_expired(cfqd, 0);
1400 new_queue:
1401         if (!new_cfqq) {
1402                 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1403                         cfqd->serving_prio = RT_WORKLOAD;
1404                 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1405                         cfqd->serving_prio = BE_WORKLOAD;
1406                 else
1407                         cfqd->serving_prio = IDLE_WORKLOAD;
1408         }
1409         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1410 keep_queue:
1411         return cfqq;
1412 }
1413
1414 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1415 {
1416         int dispatched = 0;
1417
1418         while (cfqq->next_rq) {
1419                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1420                 dispatched++;
1421         }
1422
1423         BUG_ON(!list_empty(&cfqq->fifo));
1424         return dispatched;
1425 }
1426
1427 /*
1428  * Drain our current requests. Used for barriers and when switching
1429  * io schedulers on-the-fly.
1430  */
1431 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1432 {
1433         struct cfq_queue *cfqq;
1434         int dispatched = 0;
1435         int i;
1436         for (i = 0; i < 2; ++i)
1437                 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i])) != NULL)
1438                         dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1439
1440         while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
1441                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1442
1443         cfq_slice_expired(cfqd, 0);
1444
1445         BUG_ON(cfqd->busy_queues);
1446
1447         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1448         return dispatched;
1449 }
1450
1451 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1452 {
1453         unsigned int max_dispatch;
1454
1455         /*
1456          * Drain async requests before we start sync IO
1457          */
1458         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1459                 return false;
1460
1461         /*
1462          * If this is an async queue and we have sync IO in flight, let it wait
1463          */
1464         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1465                 return false;
1466
1467         max_dispatch = cfqd->cfq_quantum;
1468         if (cfq_class_idle(cfqq))
1469                 max_dispatch = 1;
1470
1471         /*
1472          * Does this cfqq already have too much IO in flight?
1473          */
1474         if (cfqq->dispatched >= max_dispatch) {
1475                 /*
1476                  * idle queue must always only have a single IO in flight
1477                  */
1478                 if (cfq_class_idle(cfqq))
1479                         return false;
1480
1481                 /*
1482                  * We have other queues, don't allow more IO from this one
1483                  */
1484                 if (cfqd->busy_queues > 1)
1485                         return false;
1486
1487                 /*
1488                  * Sole queue user, allow bigger slice
1489                  */
1490                 max_dispatch *= 4;
1491         }
1492
1493         /*
1494          * Async queues must wait a bit before being allowed dispatch.
1495          * We also ramp up the dispatch depth gradually for async IO,
1496          * based on the last sync IO we serviced
1497          */
1498         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1499                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1500                 unsigned int depth;
1501
1502                 depth = last_sync / cfqd->cfq_slice[1];
1503                 if (!depth && !cfqq->dispatched)
1504                         depth = 1;
1505                 if (depth < max_dispatch)
1506                         max_dispatch = depth;
1507         }
1508
1509         /*
1510          * If we're below the current max, allow a dispatch
1511          */
1512         return cfqq->dispatched < max_dispatch;
1513 }
1514
1515 /*
1516  * Dispatch a request from cfqq, moving them to the request queue
1517  * dispatch list.
1518  */
1519 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1520 {
1521         struct request *rq;
1522
1523         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1524
1525         if (!cfq_may_dispatch(cfqd, cfqq))
1526                 return false;
1527
1528         /*
1529          * follow expired path, else get first next available
1530          */
1531         rq = cfq_check_fifo(cfqq);
1532         if (!rq)
1533                 rq = cfqq->next_rq;
1534
1535         /*
1536          * insert request into driver dispatch list
1537          */
1538         cfq_dispatch_insert(cfqd->queue, rq);
1539
1540         if (!cfqd->active_cic) {
1541                 struct cfq_io_context *cic = RQ_CIC(rq);
1542
1543                 atomic_long_inc(&cic->ioc->refcount);
1544                 cfqd->active_cic = cic;
1545         }
1546
1547         return true;
1548 }
1549
1550 /*
1551  * Find the cfqq that we need to service and move a request from that to the
1552  * dispatch list
1553  */
1554 static int cfq_dispatch_requests(struct request_queue *q, int force)
1555 {
1556         struct cfq_data *cfqd = q->elevator->elevator_data;
1557         struct cfq_queue *cfqq;
1558
1559         if (!cfqd->busy_queues)
1560                 return 0;
1561
1562         if (unlikely(force))
1563                 return cfq_forced_dispatch(cfqd);
1564
1565         cfqq = cfq_select_queue(cfqd);
1566         if (!cfqq)
1567                 return 0;
1568
1569         /*
1570          * Dispatch a request from this cfqq, if it is allowed
1571          */
1572         if (!cfq_dispatch_request(cfqd, cfqq))
1573                 return 0;
1574
1575         cfqq->slice_dispatch++;
1576         cfq_clear_cfqq_must_dispatch(cfqq);
1577
1578         /*
1579          * expire an async queue immediately if it has used up its slice. idle
1580          * queue always expire after 1 dispatch round.
1581          */
1582         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1583             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1584             cfq_class_idle(cfqq))) {
1585                 cfqq->slice_end = jiffies + 1;
1586                 cfq_slice_expired(cfqd, 0);
1587         }
1588
1589         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1590         return 1;
1591 }
1592
1593 /*
1594  * task holds one reference to the queue, dropped when task exits. each rq
1595  * in-flight on this queue also holds a reference, dropped when rq is freed.
1596  *
1597  * queue lock must be held here.
1598  */
1599 static void cfq_put_queue(struct cfq_queue *cfqq)
1600 {
1601         struct cfq_data *cfqd = cfqq->cfqd;
1602
1603         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1604
1605         if (!atomic_dec_and_test(&cfqq->ref))
1606                 return;
1607
1608         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1609         BUG_ON(rb_first(&cfqq->sort_list));
1610         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1611         BUG_ON(cfq_cfqq_on_rr(cfqq));
1612
1613         if (unlikely(cfqd->active_queue == cfqq)) {
1614                 __cfq_slice_expired(cfqd, cfqq, 0);
1615                 cfq_schedule_dispatch(cfqd);
1616         }
1617
1618         kmem_cache_free(cfq_pool, cfqq);
1619 }
1620
1621 /*
1622  * Must always be called with the rcu_read_lock() held
1623  */
1624 static void
1625 __call_for_each_cic(struct io_context *ioc,
1626                     void (*func)(struct io_context *, struct cfq_io_context *))
1627 {
1628         struct cfq_io_context *cic;
1629         struct hlist_node *n;
1630
1631         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1632                 func(ioc, cic);
1633 }
1634
1635 /*
1636  * Call func for each cic attached to this ioc.
1637  */
1638 static void
1639 call_for_each_cic(struct io_context *ioc,
1640                   void (*func)(struct io_context *, struct cfq_io_context *))
1641 {
1642         rcu_read_lock();
1643         __call_for_each_cic(ioc, func);
1644         rcu_read_unlock();
1645 }
1646
1647 static void cfq_cic_free_rcu(struct rcu_head *head)
1648 {
1649         struct cfq_io_context *cic;
1650
1651         cic = container_of(head, struct cfq_io_context, rcu_head);
1652
1653         kmem_cache_free(cfq_ioc_pool, cic);
1654         elv_ioc_count_dec(cfq_ioc_count);
1655
1656         if (ioc_gone) {
1657                 /*
1658                  * CFQ scheduler is exiting, grab exit lock and check
1659                  * the pending io context count. If it hits zero,
1660                  * complete ioc_gone and set it back to NULL
1661                  */
1662                 spin_lock(&ioc_gone_lock);
1663                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1664                         complete(ioc_gone);
1665                         ioc_gone = NULL;
1666                 }
1667                 spin_unlock(&ioc_gone_lock);
1668         }
1669 }
1670
1671 static void cfq_cic_free(struct cfq_io_context *cic)
1672 {
1673         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1674 }
1675
1676 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1677 {
1678         unsigned long flags;
1679
1680         BUG_ON(!cic->dead_key);
1681
1682         spin_lock_irqsave(&ioc->lock, flags);
1683         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1684         hlist_del_rcu(&cic->cic_list);
1685         spin_unlock_irqrestore(&ioc->lock, flags);
1686
1687         cfq_cic_free(cic);
1688 }
1689
1690 /*
1691  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1692  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1693  * and ->trim() which is called with the task lock held
1694  */
1695 static void cfq_free_io_context(struct io_context *ioc)
1696 {
1697         /*
1698          * ioc->refcount is zero here, or we are called from elv_unregister(),
1699          * so no more cic's are allowed to be linked into this ioc.  So it
1700          * should be ok to iterate over the known list, we will see all cic's
1701          * since no new ones are added.
1702          */
1703         __call_for_each_cic(ioc, cic_free_func);
1704 }
1705
1706 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1707 {
1708         struct cfq_queue *__cfqq, *next;
1709
1710         if (unlikely(cfqq == cfqd->active_queue)) {
1711                 __cfq_slice_expired(cfqd, cfqq, 0);
1712                 cfq_schedule_dispatch(cfqd);
1713         }
1714
1715         /*
1716          * If this queue was scheduled to merge with another queue, be
1717          * sure to drop the reference taken on that queue (and others in
1718          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
1719          */
1720         __cfqq = cfqq->new_cfqq;
1721         while (__cfqq) {
1722                 if (__cfqq == cfqq) {
1723                         WARN(1, "cfqq->new_cfqq loop detected\n");
1724                         break;
1725                 }
1726                 next = __cfqq->new_cfqq;
1727                 cfq_put_queue(__cfqq);
1728                 __cfqq = next;
1729         }
1730
1731         cfq_put_queue(cfqq);
1732 }
1733
1734 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1735                                          struct cfq_io_context *cic)
1736 {
1737         struct io_context *ioc = cic->ioc;
1738
1739         list_del_init(&cic->queue_list);
1740
1741         /*
1742          * Make sure key == NULL is seen for dead queues
1743          */
1744         smp_wmb();
1745         cic->dead_key = (unsigned long) cic->key;
1746         cic->key = NULL;
1747
1748         if (ioc->ioc_data == cic)
1749                 rcu_assign_pointer(ioc->ioc_data, NULL);
1750
1751         if (cic->cfqq[BLK_RW_ASYNC]) {
1752                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1753                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1754         }
1755
1756         if (cic->cfqq[BLK_RW_SYNC]) {
1757                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1758                 cic->cfqq[BLK_RW_SYNC] = NULL;
1759         }
1760 }
1761
1762 static void cfq_exit_single_io_context(struct io_context *ioc,
1763                                        struct cfq_io_context *cic)
1764 {
1765         struct cfq_data *cfqd = cic->key;
1766
1767         if (cfqd) {
1768                 struct request_queue *q = cfqd->queue;
1769                 unsigned long flags;
1770
1771                 spin_lock_irqsave(q->queue_lock, flags);
1772
1773                 /*
1774                  * Ensure we get a fresh copy of the ->key to prevent
1775                  * race between exiting task and queue
1776                  */
1777                 smp_read_barrier_depends();
1778                 if (cic->key)
1779                         __cfq_exit_single_io_context(cfqd, cic);
1780
1781                 spin_unlock_irqrestore(q->queue_lock, flags);
1782         }
1783 }
1784
1785 /*
1786  * The process that ioc belongs to has exited, we need to clean up
1787  * and put the internal structures we have that belongs to that process.
1788  */
1789 static void cfq_exit_io_context(struct io_context *ioc)
1790 {
1791         call_for_each_cic(ioc, cfq_exit_single_io_context);
1792 }
1793
1794 static struct cfq_io_context *
1795 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1796 {
1797         struct cfq_io_context *cic;
1798
1799         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1800                                                         cfqd->queue->node);
1801         if (cic) {
1802                 cic->last_end_request = jiffies;
1803                 INIT_LIST_HEAD(&cic->queue_list);
1804                 INIT_HLIST_NODE(&cic->cic_list);
1805                 cic->dtor = cfq_free_io_context;
1806                 cic->exit = cfq_exit_io_context;
1807                 elv_ioc_count_inc(cfq_ioc_count);
1808         }
1809
1810         return cic;
1811 }
1812
1813 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1814 {
1815         struct task_struct *tsk = current;
1816         int ioprio_class;
1817
1818         if (!cfq_cfqq_prio_changed(cfqq))
1819                 return;
1820
1821         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1822         switch (ioprio_class) {
1823         default:
1824                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1825         case IOPRIO_CLASS_NONE:
1826                 /*
1827                  * no prio set, inherit CPU scheduling settings
1828                  */
1829                 cfqq->ioprio = task_nice_ioprio(tsk);
1830                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1831                 break;
1832         case IOPRIO_CLASS_RT:
1833                 cfqq->ioprio = task_ioprio(ioc);
1834                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1835                 break;
1836         case IOPRIO_CLASS_BE:
1837                 cfqq->ioprio = task_ioprio(ioc);
1838                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1839                 break;
1840         case IOPRIO_CLASS_IDLE:
1841                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1842                 cfqq->ioprio = 7;
1843                 cfq_clear_cfqq_idle_window(cfqq);
1844                 break;
1845         }
1846
1847         /*
1848          * keep track of original prio settings in case we have to temporarily
1849          * elevate the priority of this queue
1850          */
1851         cfqq->org_ioprio = cfqq->ioprio;
1852         cfqq->org_ioprio_class = cfqq->ioprio_class;
1853         cfq_clear_cfqq_prio_changed(cfqq);
1854 }
1855
1856 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1857 {
1858         struct cfq_data *cfqd = cic->key;
1859         struct cfq_queue *cfqq;
1860         unsigned long flags;
1861
1862         if (unlikely(!cfqd))
1863                 return;
1864
1865         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1866
1867         cfqq = cic->cfqq[BLK_RW_ASYNC];
1868         if (cfqq) {
1869                 struct cfq_queue *new_cfqq;
1870                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1871                                                 GFP_ATOMIC);
1872                 if (new_cfqq) {
1873                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1874                         cfq_put_queue(cfqq);
1875                 }
1876         }
1877
1878         cfqq = cic->cfqq[BLK_RW_SYNC];
1879         if (cfqq)
1880                 cfq_mark_cfqq_prio_changed(cfqq);
1881
1882         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1883 }
1884
1885 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1886 {
1887         call_for_each_cic(ioc, changed_ioprio);
1888         ioc->ioprio_changed = 0;
1889 }
1890
1891 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1892                           pid_t pid, bool is_sync)
1893 {
1894         RB_CLEAR_NODE(&cfqq->rb_node);
1895         RB_CLEAR_NODE(&cfqq->p_node);
1896         INIT_LIST_HEAD(&cfqq->fifo);
1897
1898         atomic_set(&cfqq->ref, 0);
1899         cfqq->cfqd = cfqd;
1900
1901         cfq_mark_cfqq_prio_changed(cfqq);
1902
1903         if (is_sync) {
1904                 if (!cfq_class_idle(cfqq))
1905                         cfq_mark_cfqq_idle_window(cfqq);
1906                 cfq_mark_cfqq_sync(cfqq);
1907         }
1908         cfqq->pid = pid;
1909 }
1910
1911 static struct cfq_queue *
1912 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
1913                      struct io_context *ioc, gfp_t gfp_mask)
1914 {
1915         struct cfq_queue *cfqq, *new_cfqq = NULL;
1916         struct cfq_io_context *cic;
1917
1918 retry:
1919         cic = cfq_cic_lookup(cfqd, ioc);
1920         /* cic always exists here */
1921         cfqq = cic_to_cfqq(cic, is_sync);
1922
1923         /*
1924          * Always try a new alloc if we fell back to the OOM cfqq
1925          * originally, since it should just be a temporary situation.
1926          */
1927         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1928                 cfqq = NULL;
1929                 if (new_cfqq) {
1930                         cfqq = new_cfqq;
1931                         new_cfqq = NULL;
1932                 } else if (gfp_mask & __GFP_WAIT) {
1933                         spin_unlock_irq(cfqd->queue->queue_lock);
1934                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1935                                         gfp_mask | __GFP_ZERO,
1936                                         cfqd->queue->node);
1937                         spin_lock_irq(cfqd->queue->queue_lock);
1938                         if (new_cfqq)
1939                                 goto retry;
1940                 } else {
1941                         cfqq = kmem_cache_alloc_node(cfq_pool,
1942                                         gfp_mask | __GFP_ZERO,
1943                                         cfqd->queue->node);
1944                 }
1945
1946                 if (cfqq) {
1947                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1948                         cfq_init_prio_data(cfqq, ioc);
1949                         cfq_log_cfqq(cfqd, cfqq, "alloced");
1950                 } else
1951                         cfqq = &cfqd->oom_cfqq;
1952         }
1953
1954         if (new_cfqq)
1955                 kmem_cache_free(cfq_pool, new_cfqq);
1956
1957         return cfqq;
1958 }
1959
1960 static struct cfq_queue **
1961 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1962 {
1963         switch (ioprio_class) {
1964         case IOPRIO_CLASS_RT:
1965                 return &cfqd->async_cfqq[0][ioprio];
1966         case IOPRIO_CLASS_BE:
1967                 return &cfqd->async_cfqq[1][ioprio];
1968         case IOPRIO_CLASS_IDLE:
1969                 return &cfqd->async_idle_cfqq;
1970         default:
1971                 BUG();
1972         }
1973 }
1974
1975 static struct cfq_queue *
1976 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
1977               gfp_t gfp_mask)
1978 {
1979         const int ioprio = task_ioprio(ioc);
1980         const int ioprio_class = task_ioprio_class(ioc);
1981         struct cfq_queue **async_cfqq = NULL;
1982         struct cfq_queue *cfqq = NULL;
1983
1984         if (!is_sync) {
1985                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1986                 cfqq = *async_cfqq;
1987         }
1988
1989         if (!cfqq)
1990                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1991
1992         /*
1993          * pin the queue now that it's allocated, scheduler exit will prune it
1994          */
1995         if (!is_sync && !(*async_cfqq)) {
1996                 atomic_inc(&cfqq->ref);
1997                 *async_cfqq = cfqq;
1998         }
1999
2000         atomic_inc(&cfqq->ref);
2001         return cfqq;
2002 }
2003
2004 /*
2005  * We drop cfq io contexts lazily, so we may find a dead one.
2006  */
2007 static void
2008 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2009                   struct cfq_io_context *cic)
2010 {
2011         unsigned long flags;
2012
2013         WARN_ON(!list_empty(&cic->queue_list));
2014
2015         spin_lock_irqsave(&ioc->lock, flags);
2016
2017         BUG_ON(ioc->ioc_data == cic);
2018
2019         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2020         hlist_del_rcu(&cic->cic_list);
2021         spin_unlock_irqrestore(&ioc->lock, flags);
2022
2023         cfq_cic_free(cic);
2024 }
2025
2026 static struct cfq_io_context *
2027 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2028 {
2029         struct cfq_io_context *cic;
2030         unsigned long flags;
2031         void *k;
2032
2033         if (unlikely(!ioc))
2034                 return NULL;
2035
2036         rcu_read_lock();
2037
2038         /*
2039          * we maintain a last-hit cache, to avoid browsing over the tree
2040          */
2041         cic = rcu_dereference(ioc->ioc_data);
2042         if (cic && cic->key == cfqd) {
2043                 rcu_read_unlock();
2044                 return cic;
2045         }
2046
2047         do {
2048                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2049                 rcu_read_unlock();
2050                 if (!cic)
2051                         break;
2052                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2053                 k = cic->key;
2054                 if (unlikely(!k)) {
2055                         cfq_drop_dead_cic(cfqd, ioc, cic);
2056                         rcu_read_lock();
2057                         continue;
2058                 }
2059
2060                 spin_lock_irqsave(&ioc->lock, flags);
2061                 rcu_assign_pointer(ioc->ioc_data, cic);
2062                 spin_unlock_irqrestore(&ioc->lock, flags);
2063                 break;
2064         } while (1);
2065
2066         return cic;
2067 }
2068
2069 /*
2070  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2071  * the process specific cfq io context when entered from the block layer.
2072  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2073  */
2074 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2075                         struct cfq_io_context *cic, gfp_t gfp_mask)
2076 {
2077         unsigned long flags;
2078         int ret;
2079
2080         ret = radix_tree_preload(gfp_mask);
2081         if (!ret) {
2082                 cic->ioc = ioc;
2083                 cic->key = cfqd;
2084
2085                 spin_lock_irqsave(&ioc->lock, flags);
2086                 ret = radix_tree_insert(&ioc->radix_root,
2087                                                 (unsigned long) cfqd, cic);
2088                 if (!ret)
2089                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2090                 spin_unlock_irqrestore(&ioc->lock, flags);
2091
2092                 radix_tree_preload_end();
2093
2094                 if (!ret) {
2095                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2096                         list_add(&cic->queue_list, &cfqd->cic_list);
2097                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2098                 }
2099         }
2100
2101         if (ret)
2102                 printk(KERN_ERR "cfq: cic link failed!\n");
2103
2104         return ret;
2105 }
2106
2107 /*
2108  * Setup general io context and cfq io context. There can be several cfq
2109  * io contexts per general io context, if this process is doing io to more
2110  * than one device managed by cfq.
2111  */
2112 static struct cfq_io_context *
2113 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2114 {
2115         struct io_context *ioc = NULL;
2116         struct cfq_io_context *cic;
2117
2118         might_sleep_if(gfp_mask & __GFP_WAIT);
2119
2120         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2121         if (!ioc)
2122                 return NULL;
2123
2124         cic = cfq_cic_lookup(cfqd, ioc);
2125         if (cic)
2126                 goto out;
2127
2128         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2129         if (cic == NULL)
2130                 goto err;
2131
2132         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2133                 goto err_free;
2134
2135 out:
2136         smp_read_barrier_depends();
2137         if (unlikely(ioc->ioprio_changed))
2138                 cfq_ioc_set_ioprio(ioc);
2139
2140         return cic;
2141 err_free:
2142         cfq_cic_free(cic);
2143 err:
2144         put_io_context(ioc);
2145         return NULL;
2146 }
2147
2148 static void
2149 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2150 {
2151         unsigned long elapsed = jiffies - cic->last_end_request;
2152         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2153
2154         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2155         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2156         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2157 }
2158
2159 static void
2160 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2161                        struct request *rq)
2162 {
2163         sector_t sdist;
2164         u64 total;
2165
2166         if (!cfqq->last_request_pos)
2167                 sdist = 0;
2168         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2169                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2170         else
2171                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2172
2173         /*
2174          * Don't allow the seek distance to get too large from the
2175          * odd fragment, pagein, etc
2176          */
2177         if (cfqq->seek_samples <= 60) /* second&third seek */
2178                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2179         else
2180                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2181
2182         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2183         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2184         total = cfqq->seek_total + (cfqq->seek_samples/2);
2185         do_div(total, cfqq->seek_samples);
2186         cfqq->seek_mean = (sector_t)total;
2187
2188         /*
2189          * If this cfqq is shared between multiple processes, check to
2190          * make sure that those processes are still issuing I/Os within
2191          * the mean seek distance.  If not, it may be time to break the
2192          * queues apart again.
2193          */
2194         if (cfq_cfqq_coop(cfqq)) {
2195                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2196                         cfqq->seeky_start = jiffies;
2197                 else if (!CFQQ_SEEKY(cfqq))
2198                         cfqq->seeky_start = 0;
2199         }
2200 }
2201
2202 /*
2203  * Disable idle window if the process thinks too long or seeks so much that
2204  * it doesn't matter
2205  */
2206 static void
2207 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2208                        struct cfq_io_context *cic)
2209 {
2210         int old_idle, enable_idle;
2211
2212         /*
2213          * Don't idle for async or idle io prio class
2214          */
2215         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2216                 return;
2217
2218         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2219
2220         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2221             (!cfqd->cfq_latency && cfqd->hw_tag && CFQQ_SEEKY(cfqq)))
2222                 enable_idle = 0;
2223         else if (sample_valid(cic->ttime_samples)) {
2224                 unsigned int slice_idle = cfqd->cfq_slice_idle;
2225                 if (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq))
2226                         slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2227                 if (cic->ttime_mean > slice_idle)
2228                         enable_idle = 0;
2229                 else
2230                         enable_idle = 1;
2231         }
2232
2233         if (old_idle != enable_idle) {
2234                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2235                 if (enable_idle)
2236                         cfq_mark_cfqq_idle_window(cfqq);
2237                 else
2238                         cfq_clear_cfqq_idle_window(cfqq);
2239         }
2240 }
2241
2242 /*
2243  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2244  * no or if we aren't sure, a 1 will cause a preempt.
2245  */
2246 static bool
2247 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2248                    struct request *rq)
2249 {
2250         struct cfq_queue *cfqq;
2251
2252         cfqq = cfqd->active_queue;
2253         if (!cfqq)
2254                 return false;
2255
2256         if (cfq_slice_used(cfqq))
2257                 return true;
2258
2259         if (cfq_class_idle(new_cfqq))
2260                 return false;
2261
2262         if (cfq_class_idle(cfqq))
2263                 return true;
2264
2265         /*
2266          * if the new request is sync, but the currently running queue is
2267          * not, let the sync request have priority.
2268          */
2269         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2270                 return true;
2271
2272         /*
2273          * So both queues are sync. Let the new request get disk time if
2274          * it's a metadata request and the current queue is doing regular IO.
2275          */
2276         if (rq_is_meta(rq) && !cfqq->meta_pending)
2277                 return false;
2278
2279         /*
2280          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2281          */
2282         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2283                 return true;
2284
2285         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2286                 return false;
2287
2288         /*
2289          * if this request is as-good as one we would expect from the
2290          * current cfqq, let it preempt
2291          */
2292         if (cfq_rq_close(cfqd, cfqq, rq))
2293                 return true;
2294
2295         return false;
2296 }
2297
2298 /*
2299  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2300  * let it have half of its nominal slice.
2301  */
2302 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2303 {
2304         cfq_log_cfqq(cfqd, cfqq, "preempt");
2305         cfq_slice_expired(cfqd, 1);
2306
2307         /*
2308          * Put the new queue at the front of the of the current list,
2309          * so we know that it will be selected next.
2310          */
2311         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2312
2313         cfq_service_tree_add(cfqd, cfqq, 1);
2314
2315         cfqq->slice_end = 0;
2316         cfq_mark_cfqq_slice_new(cfqq);
2317 }
2318
2319 /*
2320  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2321  * something we should do about it
2322  */
2323 static void
2324 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2325                 struct request *rq)
2326 {
2327         struct cfq_io_context *cic = RQ_CIC(rq);
2328
2329         cfqd->rq_queued++;
2330         if (rq_is_meta(rq))
2331                 cfqq->meta_pending++;
2332
2333         cfq_update_io_thinktime(cfqd, cic);
2334         cfq_update_io_seektime(cfqd, cfqq, rq);
2335         cfq_update_idle_window(cfqd, cfqq, cic);
2336
2337         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2338
2339         if (cfqq == cfqd->active_queue) {
2340                 /*
2341                  * Remember that we saw a request from this process, but
2342                  * don't start queuing just yet. Otherwise we risk seeing lots
2343                  * of tiny requests, because we disrupt the normal plugging
2344                  * and merging. If the request is already larger than a single
2345                  * page, let it rip immediately. For that case we assume that
2346                  * merging is already done. Ditto for a busy system that
2347                  * has other work pending, don't risk delaying until the
2348                  * idle timer unplug to continue working.
2349                  */
2350                 if (cfq_cfqq_wait_request(cfqq)) {
2351                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2352                             cfqd->busy_queues > 1) {
2353                                 del_timer(&cfqd->idle_slice_timer);
2354                         __blk_run_queue(cfqd->queue);
2355                         }
2356                         cfq_mark_cfqq_must_dispatch(cfqq);
2357                 }
2358         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2359                 /*
2360                  * not the active queue - expire current slice if it is
2361                  * idle and has expired it's mean thinktime or this new queue
2362                  * has some old slice time left and is of higher priority or
2363                  * this new queue is RT and the current one is BE
2364                  */
2365                 cfq_preempt_queue(cfqd, cfqq);
2366                 __blk_run_queue(cfqd->queue);
2367         }
2368 }
2369
2370 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2371 {
2372         struct cfq_data *cfqd = q->elevator->elevator_data;
2373         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2374
2375         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2376         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2377
2378         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2379         list_add_tail(&rq->queuelist, &cfqq->fifo);
2380         cfq_add_rq_rb(rq);
2381
2382         cfq_rq_enqueued(cfqd, cfqq, rq);
2383 }
2384
2385 /*
2386  * Update hw_tag based on peak queue depth over 50 samples under
2387  * sufficient load.
2388  */
2389 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2390 {
2391         struct cfq_queue *cfqq = cfqd->active_queue;
2392
2393         if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2394                 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2395
2396         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2397             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2398                 return;
2399
2400         /*
2401          * If active queue hasn't enough requests and can idle, cfq might not
2402          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2403          * case
2404          */
2405         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2406             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2407             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2408                 return;
2409
2410         if (cfqd->hw_tag_samples++ < 50)
2411                 return;
2412
2413         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2414                 cfqd->hw_tag = 1;
2415         else
2416                 cfqd->hw_tag = 0;
2417
2418         cfqd->hw_tag_samples = 0;
2419         cfqd->rq_in_driver_peak = 0;
2420 }
2421
2422 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2423 {
2424         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2425         struct cfq_data *cfqd = cfqq->cfqd;
2426         const int sync = rq_is_sync(rq);
2427         unsigned long now;
2428
2429         now = jiffies;
2430         cfq_log_cfqq(cfqd, cfqq, "complete");
2431
2432         cfq_update_hw_tag(cfqd);
2433
2434         WARN_ON(!cfqd->rq_in_driver[sync]);
2435         WARN_ON(!cfqq->dispatched);
2436         cfqd->rq_in_driver[sync]--;
2437         cfqq->dispatched--;
2438
2439         if (cfq_cfqq_sync(cfqq))
2440                 cfqd->sync_flight--;
2441
2442         if (sync) {
2443                 RQ_CIC(rq)->last_end_request = now;
2444                 cfqd->last_end_sync_rq = now;
2445         }
2446
2447         /*
2448          * If this is the active queue, check if it needs to be expired,
2449          * or if we want to idle in case it has no pending requests.
2450          */
2451         if (cfqd->active_queue == cfqq) {
2452                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2453
2454                 if (cfq_cfqq_slice_new(cfqq)) {
2455                         cfq_set_prio_slice(cfqd, cfqq);
2456                         cfq_clear_cfqq_slice_new(cfqq);
2457                 }
2458                 /*
2459                  * If there are no requests waiting in this queue, and
2460                  * there are other queues ready to issue requests, AND
2461                  * those other queues are issuing requests within our
2462                  * mean seek distance, give them a chance to run instead
2463                  * of idling.
2464                  */
2465                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2466                         cfq_slice_expired(cfqd, 1);
2467                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
2468                          sync && !rq_noidle(rq))
2469                         cfq_arm_slice_timer(cfqd);
2470         }
2471
2472         if (!rq_in_driver(cfqd))
2473                 cfq_schedule_dispatch(cfqd);
2474 }
2475
2476 /*
2477  * we temporarily boost lower priority queues if they are holding fs exclusive
2478  * resources. they are boosted to normal prio (CLASS_BE/4)
2479  */
2480 static void cfq_prio_boost(struct cfq_queue *cfqq)
2481 {
2482         if (has_fs_excl()) {
2483                 /*
2484                  * boost idle prio on transactions that would lock out other
2485                  * users of the filesystem
2486                  */
2487                 if (cfq_class_idle(cfqq))
2488                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2489                 if (cfqq->ioprio > IOPRIO_NORM)
2490                         cfqq->ioprio = IOPRIO_NORM;
2491         } else {
2492                 /*
2493                  * check if we need to unboost the queue
2494                  */
2495                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2496                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2497                 if (cfqq->ioprio != cfqq->org_ioprio)
2498                         cfqq->ioprio = cfqq->org_ioprio;
2499         }
2500 }
2501
2502 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2503 {
2504         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2505                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2506                 return ELV_MQUEUE_MUST;
2507         }
2508
2509         return ELV_MQUEUE_MAY;
2510 }
2511
2512 static int cfq_may_queue(struct request_queue *q, int rw)
2513 {
2514         struct cfq_data *cfqd = q->elevator->elevator_data;
2515         struct task_struct *tsk = current;
2516         struct cfq_io_context *cic;
2517         struct cfq_queue *cfqq;
2518
2519         /*
2520          * don't force setup of a queue from here, as a call to may_queue
2521          * does not necessarily imply that a request actually will be queued.
2522          * so just lookup a possibly existing queue, or return 'may queue'
2523          * if that fails
2524          */
2525         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2526         if (!cic)
2527                 return ELV_MQUEUE_MAY;
2528
2529         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2530         if (cfqq) {
2531                 cfq_init_prio_data(cfqq, cic->ioc);
2532                 cfq_prio_boost(cfqq);
2533
2534                 return __cfq_may_queue(cfqq);
2535         }
2536
2537         return ELV_MQUEUE_MAY;
2538 }
2539
2540 /*
2541  * queue lock held here
2542  */
2543 static void cfq_put_request(struct request *rq)
2544 {
2545         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2546
2547         if (cfqq) {
2548                 const int rw = rq_data_dir(rq);
2549
2550                 BUG_ON(!cfqq->allocated[rw]);
2551                 cfqq->allocated[rw]--;
2552
2553                 put_io_context(RQ_CIC(rq)->ioc);
2554
2555                 rq->elevator_private = NULL;
2556                 rq->elevator_private2 = NULL;
2557
2558                 cfq_put_queue(cfqq);
2559         }
2560 }
2561
2562 static struct cfq_queue *
2563 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2564                 struct cfq_queue *cfqq)
2565 {
2566         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2567         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2568         cfq_mark_cfqq_coop(cfqq->new_cfqq);
2569         cfq_put_queue(cfqq);
2570         return cic_to_cfqq(cic, 1);
2571 }
2572
2573 static int should_split_cfqq(struct cfq_queue *cfqq)
2574 {
2575         if (cfqq->seeky_start &&
2576             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2577                 return 1;
2578         return 0;
2579 }
2580
2581 /*
2582  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2583  * was the last process referring to said cfqq.
2584  */
2585 static struct cfq_queue *
2586 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2587 {
2588         if (cfqq_process_refs(cfqq) == 1) {
2589                 cfqq->seeky_start = 0;
2590                 cfqq->pid = current->pid;
2591                 cfq_clear_cfqq_coop(cfqq);
2592                 return cfqq;
2593         }
2594
2595         cic_set_cfqq(cic, NULL, 1);
2596         cfq_put_queue(cfqq);
2597         return NULL;
2598 }
2599 /*
2600  * Allocate cfq data structures associated with this request.
2601  */
2602 static int
2603 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2604 {
2605         struct cfq_data *cfqd = q->elevator->elevator_data;
2606         struct cfq_io_context *cic;
2607         const int rw = rq_data_dir(rq);
2608         const bool is_sync = rq_is_sync(rq);
2609         struct cfq_queue *cfqq;
2610         unsigned long flags;
2611
2612         might_sleep_if(gfp_mask & __GFP_WAIT);
2613
2614         cic = cfq_get_io_context(cfqd, gfp_mask);
2615
2616         spin_lock_irqsave(q->queue_lock, flags);
2617
2618         if (!cic)
2619                 goto queue_fail;
2620
2621 new_queue:
2622         cfqq = cic_to_cfqq(cic, is_sync);
2623         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2624                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2625                 cic_set_cfqq(cic, cfqq, is_sync);
2626         } else {
2627                 /*
2628                  * If the queue was seeky for too long, break it apart.
2629                  */
2630                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2631                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2632                         cfqq = split_cfqq(cic, cfqq);
2633                         if (!cfqq)
2634                                 goto new_queue;
2635                 }
2636
2637                 /*
2638                  * Check to see if this queue is scheduled to merge with
2639                  * another, closely cooperating queue.  The merging of
2640                  * queues happens here as it must be done in process context.
2641                  * The reference on new_cfqq was taken in merge_cfqqs.
2642                  */
2643                 if (cfqq->new_cfqq)
2644                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2645         }
2646
2647         cfqq->allocated[rw]++;
2648         atomic_inc(&cfqq->ref);
2649
2650         spin_unlock_irqrestore(q->queue_lock, flags);
2651
2652         rq->elevator_private = cic;
2653         rq->elevator_private2 = cfqq;
2654         return 0;
2655
2656 queue_fail:
2657         if (cic)
2658                 put_io_context(cic->ioc);
2659
2660         cfq_schedule_dispatch(cfqd);
2661         spin_unlock_irqrestore(q->queue_lock, flags);
2662         cfq_log(cfqd, "set_request fail");
2663         return 1;
2664 }
2665
2666 static void cfq_kick_queue(struct work_struct *work)
2667 {
2668         struct cfq_data *cfqd =
2669                 container_of(work, struct cfq_data, unplug_work);
2670         struct request_queue *q = cfqd->queue;
2671
2672         spin_lock_irq(q->queue_lock);
2673         __blk_run_queue(cfqd->queue);
2674         spin_unlock_irq(q->queue_lock);
2675 }
2676
2677 /*
2678  * Timer running if the active_queue is currently idling inside its time slice
2679  */
2680 static void cfq_idle_slice_timer(unsigned long data)
2681 {
2682         struct cfq_data *cfqd = (struct cfq_data *) data;
2683         struct cfq_queue *cfqq;
2684         unsigned long flags;
2685         int timed_out = 1;
2686
2687         cfq_log(cfqd, "idle timer fired");
2688
2689         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2690
2691         cfqq = cfqd->active_queue;
2692         if (cfqq) {
2693                 timed_out = 0;
2694
2695                 /*
2696                  * We saw a request before the queue expired, let it through
2697                  */
2698                 if (cfq_cfqq_must_dispatch(cfqq))
2699                         goto out_kick;
2700
2701                 /*
2702                  * expired
2703                  */
2704                 if (cfq_slice_used(cfqq))
2705                         goto expire;
2706
2707                 /*
2708                  * only expire and reinvoke request handler, if there are
2709                  * other queues with pending requests
2710                  */
2711                 if (!cfqd->busy_queues)
2712                         goto out_cont;
2713
2714                 /*
2715                  * not expired and it has a request pending, let it dispatch
2716                  */
2717                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2718                         goto out_kick;
2719         }
2720 expire:
2721         cfq_slice_expired(cfqd, timed_out);
2722 out_kick:
2723         cfq_schedule_dispatch(cfqd);
2724 out_cont:
2725         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2726 }
2727
2728 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2729 {
2730         del_timer_sync(&cfqd->idle_slice_timer);
2731         cancel_work_sync(&cfqd->unplug_work);
2732 }
2733
2734 static void cfq_put_async_queues(struct cfq_data *cfqd)
2735 {
2736         int i;
2737
2738         for (i = 0; i < IOPRIO_BE_NR; i++) {
2739                 if (cfqd->async_cfqq[0][i])
2740                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2741                 if (cfqd->async_cfqq[1][i])
2742                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2743         }
2744
2745         if (cfqd->async_idle_cfqq)
2746                 cfq_put_queue(cfqd->async_idle_cfqq);
2747 }
2748
2749 static void cfq_exit_queue(struct elevator_queue *e)
2750 {
2751         struct cfq_data *cfqd = e->elevator_data;
2752         struct request_queue *q = cfqd->queue;
2753
2754         cfq_shutdown_timer_wq(cfqd);
2755
2756         spin_lock_irq(q->queue_lock);
2757
2758         if (cfqd->active_queue)
2759                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2760
2761         while (!list_empty(&cfqd->cic_list)) {
2762                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2763                                                         struct cfq_io_context,
2764                                                         queue_list);
2765
2766                 __cfq_exit_single_io_context(cfqd, cic);
2767         }
2768
2769         cfq_put_async_queues(cfqd);
2770
2771         spin_unlock_irq(q->queue_lock);
2772
2773         cfq_shutdown_timer_wq(cfqd);
2774
2775         kfree(cfqd);
2776 }
2777
2778 static void *cfq_init_queue(struct request_queue *q)
2779 {
2780         struct cfq_data *cfqd;
2781         int i;
2782
2783         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2784         if (!cfqd)
2785                 return NULL;
2786
2787         for (i = 0; i < 2; ++i)
2788                 cfqd->service_trees[i] = CFQ_RB_ROOT;
2789         cfqd->service_tree_idle = CFQ_RB_ROOT;
2790
2791         /*
2792          * Not strictly needed (since RB_ROOT just clears the node and we
2793          * zeroed cfqd on alloc), but better be safe in case someone decides
2794          * to add magic to the rb code
2795          */
2796         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2797                 cfqd->prio_trees[i] = RB_ROOT;
2798
2799         /*
2800          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2801          * Grab a permanent reference to it, so that the normal code flow
2802          * will not attempt to free it.
2803          */
2804         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2805         atomic_inc(&cfqd->oom_cfqq.ref);
2806
2807         INIT_LIST_HEAD(&cfqd->cic_list);
2808
2809         cfqd->queue = q;
2810
2811         init_timer(&cfqd->idle_slice_timer);
2812         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2813         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2814
2815         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2816
2817         cfqd->cfq_quantum = cfq_quantum;
2818         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2819         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2820         cfqd->cfq_back_max = cfq_back_max;
2821         cfqd->cfq_back_penalty = cfq_back_penalty;
2822         cfqd->cfq_slice[0] = cfq_slice_async;
2823         cfqd->cfq_slice[1] = cfq_slice_sync;
2824         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2825         cfqd->cfq_slice_idle = cfq_slice_idle;
2826         cfqd->cfq_latency = 1;
2827         cfqd->hw_tag = 1;
2828         cfqd->last_end_sync_rq = jiffies;
2829         return cfqd;
2830 }
2831
2832 static void cfq_slab_kill(void)
2833 {
2834         /*
2835          * Caller already ensured that pending RCU callbacks are completed,
2836          * so we should have no busy allocations at this point.
2837          */
2838         if (cfq_pool)
2839                 kmem_cache_destroy(cfq_pool);
2840         if (cfq_ioc_pool)
2841                 kmem_cache_destroy(cfq_ioc_pool);
2842 }
2843
2844 static int __init cfq_slab_setup(void)
2845 {
2846         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2847         if (!cfq_pool)
2848                 goto fail;
2849
2850         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2851         if (!cfq_ioc_pool)
2852                 goto fail;
2853
2854         return 0;
2855 fail:
2856         cfq_slab_kill();
2857         return -ENOMEM;
2858 }
2859
2860 /*
2861  * sysfs parts below -->
2862  */
2863 static ssize_t
2864 cfq_var_show(unsigned int var, char *page)
2865 {
2866         return sprintf(page, "%d\n", var);
2867 }
2868
2869 static ssize_t
2870 cfq_var_store(unsigned int *var, const char *page, size_t count)
2871 {
2872         char *p = (char *) page;
2873
2874         *var = simple_strtoul(p, &p, 10);
2875         return count;
2876 }
2877
2878 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2879 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2880 {                                                                       \
2881         struct cfq_data *cfqd = e->elevator_data;                       \
2882         unsigned int __data = __VAR;                                    \
2883         if (__CONV)                                                     \
2884                 __data = jiffies_to_msecs(__data);                      \
2885         return cfq_var_show(__data, (page));                            \
2886 }
2887 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2888 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2889 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2890 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2891 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2892 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2893 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2894 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2895 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2896 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
2897 #undef SHOW_FUNCTION
2898
2899 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2900 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2901 {                                                                       \
2902         struct cfq_data *cfqd = e->elevator_data;                       \
2903         unsigned int __data;                                            \
2904         int ret = cfq_var_store(&__data, (page), count);                \
2905         if (__data < (MIN))                                             \
2906                 __data = (MIN);                                         \
2907         else if (__data > (MAX))                                        \
2908                 __data = (MAX);                                         \
2909         if (__CONV)                                                     \
2910                 *(__PTR) = msecs_to_jiffies(__data);                    \
2911         else                                                            \
2912                 *(__PTR) = __data;                                      \
2913         return ret;                                                     \
2914 }
2915 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2916 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2917                 UINT_MAX, 1);
2918 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2919                 UINT_MAX, 1);
2920 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2921 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2922                 UINT_MAX, 0);
2923 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2924 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2925 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2926 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2927                 UINT_MAX, 0);
2928 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
2929 #undef STORE_FUNCTION
2930
2931 #define CFQ_ATTR(name) \
2932         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2933
2934 static struct elv_fs_entry cfq_attrs[] = {
2935         CFQ_ATTR(quantum),
2936         CFQ_ATTR(fifo_expire_sync),
2937         CFQ_ATTR(fifo_expire_async),
2938         CFQ_ATTR(back_seek_max),
2939         CFQ_ATTR(back_seek_penalty),
2940         CFQ_ATTR(slice_sync),
2941         CFQ_ATTR(slice_async),
2942         CFQ_ATTR(slice_async_rq),
2943         CFQ_ATTR(slice_idle),
2944         CFQ_ATTR(low_latency),
2945         __ATTR_NULL
2946 };
2947
2948 static struct elevator_type iosched_cfq = {
2949         .ops = {
2950                 .elevator_merge_fn =            cfq_merge,
2951                 .elevator_merged_fn =           cfq_merged_request,
2952                 .elevator_merge_req_fn =        cfq_merged_requests,
2953                 .elevator_allow_merge_fn =      cfq_allow_merge,
2954                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2955                 .elevator_add_req_fn =          cfq_insert_request,
2956                 .elevator_activate_req_fn =     cfq_activate_request,
2957                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2958                 .elevator_queue_empty_fn =      cfq_queue_empty,
2959                 .elevator_completed_req_fn =    cfq_completed_request,
2960                 .elevator_former_req_fn =       elv_rb_former_request,
2961                 .elevator_latter_req_fn =       elv_rb_latter_request,
2962                 .elevator_set_req_fn =          cfq_set_request,
2963                 .elevator_put_req_fn =          cfq_put_request,
2964                 .elevator_may_queue_fn =        cfq_may_queue,
2965                 .elevator_init_fn =             cfq_init_queue,
2966                 .elevator_exit_fn =             cfq_exit_queue,
2967                 .trim =                         cfq_free_io_context,
2968         },
2969         .elevator_attrs =       cfq_attrs,
2970         .elevator_name =        "cfq",
2971         .elevator_owner =       THIS_MODULE,
2972 };
2973
2974 static int __init cfq_init(void)
2975 {
2976         /*
2977          * could be 0 on HZ < 1000 setups
2978          */
2979         if (!cfq_slice_async)
2980                 cfq_slice_async = 1;
2981         if (!cfq_slice_idle)
2982                 cfq_slice_idle = 1;
2983
2984         if (cfq_slab_setup())
2985                 return -ENOMEM;
2986
2987         elv_register(&iosched_cfq);
2988
2989         return 0;
2990 }
2991
2992 static void __exit cfq_exit(void)
2993 {
2994         DECLARE_COMPLETION_ONSTACK(all_gone);
2995         elv_unregister(&iosched_cfq);
2996         ioc_gone = &all_gone;
2997         /* ioc_gone's update must be visible before reading ioc_count */
2998         smp_wmb();
2999
3000         /*
3001          * this also protects us from entering cfq_slab_kill() with
3002          * pending RCU callbacks
3003          */
3004         if (elv_ioc_count_read(cfq_ioc_count))
3005                 wait_for_completion(&all_gone);
3006         cfq_slab_kill();
3007 }
3008
3009 module_init(cfq_init);
3010 module_exit(cfq_exit);
3011
3012 MODULE_AUTHOR("Jens Axboe");
3013 MODULE_LICENSE("GPL");
3014 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");