cfq-iosched: properly protect ioc_gone and ioc count
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14
15 /*
16  * tunables
17  */
18 /* max queue in one round of service */
19 static const int cfq_quantum = 4;
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 /* maximum backwards seek, in KiB */
22 static const int cfq_back_max = 16 * 1024;
23 /* penalty of a backwards seek */
24 static const int cfq_back_penalty = 2;
25 static const int cfq_slice_sync = HZ / 10;
26 static int cfq_slice_async = HZ / 25;
27 static const int cfq_slice_async_rq = 2;
28 static int cfq_slice_idle = HZ / 125;
29
30 /*
31  * offset from end of service tree
32  */
33 #define CFQ_IDLE_DELAY          (HZ / 5)
34
35 /*
36  * below this threshold, we consider thinktime immediate
37  */
38 #define CFQ_MIN_TT              (2)
39
40 #define CFQ_SLICE_SCALE         (5)
41
42 #define RQ_CIC(rq)              \
43         ((struct cfq_io_context *) (rq)->elevator_private)
44 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
45
46 static struct kmem_cache *cfq_pool;
47 static struct kmem_cache *cfq_ioc_pool;
48
49 static DEFINE_PER_CPU(unsigned long, ioc_count);
50 static struct completion *ioc_gone;
51 static DEFINE_SPINLOCK(ioc_gone_lock);
52
53 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
54 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
55 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
56
57 #define ASYNC                   (0)
58 #define SYNC                    (1)
59
60 #define sample_valid(samples)   ((samples) > 80)
61
62 /*
63  * Most of our rbtree usage is for sorting with min extraction, so
64  * if we cache the leftmost node we don't have to walk down the tree
65  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
66  * move this into the elevator for the rq sorting as well.
67  */
68 struct cfq_rb_root {
69         struct rb_root rb;
70         struct rb_node *left;
71 };
72 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
73
74 /*
75  * Per block device queue structure
76  */
77 struct cfq_data {
78         struct request_queue *queue;
79
80         /*
81          * rr list of queues with requests and the count of them
82          */
83         struct cfq_rb_root service_tree;
84         unsigned int busy_queues;
85
86         int rq_in_driver;
87         int sync_flight;
88         int hw_tag;
89
90         /*
91          * idle window management
92          */
93         struct timer_list idle_slice_timer;
94         struct work_struct unplug_work;
95
96         struct cfq_queue *active_queue;
97         struct cfq_io_context *active_cic;
98
99         /*
100          * async queue for each priority case
101          */
102         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
103         struct cfq_queue *async_idle_cfqq;
104
105         sector_t last_position;
106         unsigned long last_end_request;
107
108         /*
109          * tunables, see top of file
110          */
111         unsigned int cfq_quantum;
112         unsigned int cfq_fifo_expire[2];
113         unsigned int cfq_back_penalty;
114         unsigned int cfq_back_max;
115         unsigned int cfq_slice[2];
116         unsigned int cfq_slice_async_rq;
117         unsigned int cfq_slice_idle;
118
119         struct list_head cic_list;
120 };
121
122 /*
123  * Per process-grouping structure
124  */
125 struct cfq_queue {
126         /* reference count */
127         atomic_t ref;
128         /* various state flags, see below */
129         unsigned int flags;
130         /* parent cfq_data */
131         struct cfq_data *cfqd;
132         /* service_tree member */
133         struct rb_node rb_node;
134         /* service_tree key */
135         unsigned long rb_key;
136         /* sorted list of pending requests */
137         struct rb_root sort_list;
138         /* if fifo isn't expired, next request to serve */
139         struct request *next_rq;
140         /* requests queued in sort_list */
141         int queued[2];
142         /* currently allocated requests */
143         int allocated[2];
144         /* fifo list of requests in sort_list */
145         struct list_head fifo;
146
147         unsigned long slice_end;
148         long slice_resid;
149
150         /* pending metadata requests */
151         int meta_pending;
152         /* number of requests that are on the dispatch list or inside driver */
153         int dispatched;
154
155         /* io prio of this group */
156         unsigned short ioprio, org_ioprio;
157         unsigned short ioprio_class, org_ioprio_class;
158
159 };
160
161 enum cfqq_state_flags {
162         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
163         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
164         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
165         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
166         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
167         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
168         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
169         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
170         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
171         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
172         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
173 };
174
175 #define CFQ_CFQQ_FNS(name)                                              \
176 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
177 {                                                                       \
178         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
179 }                                                                       \
180 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
181 {                                                                       \
182         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
183 }                                                                       \
184 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
185 {                                                                       \
186         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
187 }
188
189 CFQ_CFQQ_FNS(on_rr);
190 CFQ_CFQQ_FNS(wait_request);
191 CFQ_CFQQ_FNS(must_alloc);
192 CFQ_CFQQ_FNS(must_alloc_slice);
193 CFQ_CFQQ_FNS(must_dispatch);
194 CFQ_CFQQ_FNS(fifo_expire);
195 CFQ_CFQQ_FNS(idle_window);
196 CFQ_CFQQ_FNS(prio_changed);
197 CFQ_CFQQ_FNS(queue_new);
198 CFQ_CFQQ_FNS(slice_new);
199 CFQ_CFQQ_FNS(sync);
200 #undef CFQ_CFQQ_FNS
201
202 static void cfq_dispatch_insert(struct request_queue *, struct request *);
203 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
204                                        struct io_context *, gfp_t);
205 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
206                                                 struct io_context *);
207
208 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
209                                             int is_sync)
210 {
211         return cic->cfqq[!!is_sync];
212 }
213
214 static inline void cic_set_cfqq(struct cfq_io_context *cic,
215                                 struct cfq_queue *cfqq, int is_sync)
216 {
217         cic->cfqq[!!is_sync] = cfqq;
218 }
219
220 /*
221  * We regard a request as SYNC, if it's either a read or has the SYNC bit
222  * set (in which case it could also be direct WRITE).
223  */
224 static inline int cfq_bio_sync(struct bio *bio)
225 {
226         if (bio_data_dir(bio) == READ || bio_sync(bio))
227                 return 1;
228
229         return 0;
230 }
231
232 /*
233  * scheduler run of queue, if there are requests pending and no one in the
234  * driver that will restart queueing
235  */
236 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
237 {
238         if (cfqd->busy_queues)
239                 kblockd_schedule_work(&cfqd->unplug_work);
240 }
241
242 static int cfq_queue_empty(struct request_queue *q)
243 {
244         struct cfq_data *cfqd = q->elevator->elevator_data;
245
246         return !cfqd->busy_queues;
247 }
248
249 /*
250  * Scale schedule slice based on io priority. Use the sync time slice only
251  * if a queue is marked sync and has sync io queued. A sync queue with async
252  * io only, should not get full sync slice length.
253  */
254 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
255                                  unsigned short prio)
256 {
257         const int base_slice = cfqd->cfq_slice[sync];
258
259         WARN_ON(prio >= IOPRIO_BE_NR);
260
261         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
262 }
263
264 static inline int
265 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
266 {
267         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
268 }
269
270 static inline void
271 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
272 {
273         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
274 }
275
276 /*
277  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
278  * isn't valid until the first request from the dispatch is activated
279  * and the slice time set.
280  */
281 static inline int cfq_slice_used(struct cfq_queue *cfqq)
282 {
283         if (cfq_cfqq_slice_new(cfqq))
284                 return 0;
285         if (time_before(jiffies, cfqq->slice_end))
286                 return 0;
287
288         return 1;
289 }
290
291 /*
292  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
293  * We choose the request that is closest to the head right now. Distance
294  * behind the head is penalized and only allowed to a certain extent.
295  */
296 static struct request *
297 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
298 {
299         sector_t last, s1, s2, d1 = 0, d2 = 0;
300         unsigned long back_max;
301 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
302 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
303         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
304
305         if (rq1 == NULL || rq1 == rq2)
306                 return rq2;
307         if (rq2 == NULL)
308                 return rq1;
309
310         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
311                 return rq1;
312         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
313                 return rq2;
314         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
315                 return rq1;
316         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
317                 return rq2;
318
319         s1 = rq1->sector;
320         s2 = rq2->sector;
321
322         last = cfqd->last_position;
323
324         /*
325          * by definition, 1KiB is 2 sectors
326          */
327         back_max = cfqd->cfq_back_max * 2;
328
329         /*
330          * Strict one way elevator _except_ in the case where we allow
331          * short backward seeks which are biased as twice the cost of a
332          * similar forward seek.
333          */
334         if (s1 >= last)
335                 d1 = s1 - last;
336         else if (s1 + back_max >= last)
337                 d1 = (last - s1) * cfqd->cfq_back_penalty;
338         else
339                 wrap |= CFQ_RQ1_WRAP;
340
341         if (s2 >= last)
342                 d2 = s2 - last;
343         else if (s2 + back_max >= last)
344                 d2 = (last - s2) * cfqd->cfq_back_penalty;
345         else
346                 wrap |= CFQ_RQ2_WRAP;
347
348         /* Found required data */
349
350         /*
351          * By doing switch() on the bit mask "wrap" we avoid having to
352          * check two variables for all permutations: --> faster!
353          */
354         switch (wrap) {
355         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
356                 if (d1 < d2)
357                         return rq1;
358                 else if (d2 < d1)
359                         return rq2;
360                 else {
361                         if (s1 >= s2)
362                                 return rq1;
363                         else
364                                 return rq2;
365                 }
366
367         case CFQ_RQ2_WRAP:
368                 return rq1;
369         case CFQ_RQ1_WRAP:
370                 return rq2;
371         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
372         default:
373                 /*
374                  * Since both rqs are wrapped,
375                  * start with the one that's further behind head
376                  * (--> only *one* back seek required),
377                  * since back seek takes more time than forward.
378                  */
379                 if (s1 <= s2)
380                         return rq1;
381                 else
382                         return rq2;
383         }
384 }
385
386 /*
387  * The below is leftmost cache rbtree addon
388  */
389 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
390 {
391         if (!root->left)
392                 root->left = rb_first(&root->rb);
393
394         if (root->left)
395                 return rb_entry(root->left, struct cfq_queue, rb_node);
396
397         return NULL;
398 }
399
400 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
401 {
402         if (root->left == n)
403                 root->left = NULL;
404
405         rb_erase(n, &root->rb);
406         RB_CLEAR_NODE(n);
407 }
408
409 /*
410  * would be nice to take fifo expire time into account as well
411  */
412 static struct request *
413 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
414                   struct request *last)
415 {
416         struct rb_node *rbnext = rb_next(&last->rb_node);
417         struct rb_node *rbprev = rb_prev(&last->rb_node);
418         struct request *next = NULL, *prev = NULL;
419
420         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
421
422         if (rbprev)
423                 prev = rb_entry_rq(rbprev);
424
425         if (rbnext)
426                 next = rb_entry_rq(rbnext);
427         else {
428                 rbnext = rb_first(&cfqq->sort_list);
429                 if (rbnext && rbnext != &last->rb_node)
430                         next = rb_entry_rq(rbnext);
431         }
432
433         return cfq_choose_req(cfqd, next, prev);
434 }
435
436 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
437                                       struct cfq_queue *cfqq)
438 {
439         /*
440          * just an approximation, should be ok.
441          */
442         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
443                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
444 }
445
446 /*
447  * The cfqd->service_tree holds all pending cfq_queue's that have
448  * requests waiting to be processed. It is sorted in the order that
449  * we will service the queues.
450  */
451 static void cfq_service_tree_add(struct cfq_data *cfqd,
452                                     struct cfq_queue *cfqq, int add_front)
453 {
454         struct rb_node **p, *parent;
455         struct cfq_queue *__cfqq;
456         unsigned long rb_key;
457         int left;
458
459         if (cfq_class_idle(cfqq)) {
460                 rb_key = CFQ_IDLE_DELAY;
461                 parent = rb_last(&cfqd->service_tree.rb);
462                 if (parent && parent != &cfqq->rb_node) {
463                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
464                         rb_key += __cfqq->rb_key;
465                 } else
466                         rb_key += jiffies;
467         } else if (!add_front) {
468                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
469                 rb_key += cfqq->slice_resid;
470                 cfqq->slice_resid = 0;
471         } else
472                 rb_key = 0;
473
474         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
475                 /*
476                  * same position, nothing more to do
477                  */
478                 if (rb_key == cfqq->rb_key)
479                         return;
480
481                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
482         }
483
484         left = 1;
485         parent = NULL;
486         p = &cfqd->service_tree.rb.rb_node;
487         while (*p) {
488                 struct rb_node **n;
489
490                 parent = *p;
491                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
492
493                 /*
494                  * sort RT queues first, we always want to give
495                  * preference to them. IDLE queues goes to the back.
496                  * after that, sort on the next service time.
497                  */
498                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
499                         n = &(*p)->rb_left;
500                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
501                         n = &(*p)->rb_right;
502                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
503                         n = &(*p)->rb_left;
504                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
505                         n = &(*p)->rb_right;
506                 else if (rb_key < __cfqq->rb_key)
507                         n = &(*p)->rb_left;
508                 else
509                         n = &(*p)->rb_right;
510
511                 if (n == &(*p)->rb_right)
512                         left = 0;
513
514                 p = n;
515         }
516
517         if (left)
518                 cfqd->service_tree.left = &cfqq->rb_node;
519
520         cfqq->rb_key = rb_key;
521         rb_link_node(&cfqq->rb_node, parent, p);
522         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
523 }
524
525 /*
526  * Update cfqq's position in the service tree.
527  */
528 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529 {
530         /*
531          * Resorting requires the cfqq to be on the RR list already.
532          */
533         if (cfq_cfqq_on_rr(cfqq))
534                 cfq_service_tree_add(cfqd, cfqq, 0);
535 }
536
537 /*
538  * add to busy list of queues for service, trying to be fair in ordering
539  * the pending list according to last request service
540  */
541 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
542 {
543         BUG_ON(cfq_cfqq_on_rr(cfqq));
544         cfq_mark_cfqq_on_rr(cfqq);
545         cfqd->busy_queues++;
546
547         cfq_resort_rr_list(cfqd, cfqq);
548 }
549
550 /*
551  * Called when the cfqq no longer has requests pending, remove it from
552  * the service tree.
553  */
554 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
555 {
556         BUG_ON(!cfq_cfqq_on_rr(cfqq));
557         cfq_clear_cfqq_on_rr(cfqq);
558
559         if (!RB_EMPTY_NODE(&cfqq->rb_node))
560                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
561
562         BUG_ON(!cfqd->busy_queues);
563         cfqd->busy_queues--;
564 }
565
566 /*
567  * rb tree support functions
568  */
569 static void cfq_del_rq_rb(struct request *rq)
570 {
571         struct cfq_queue *cfqq = RQ_CFQQ(rq);
572         struct cfq_data *cfqd = cfqq->cfqd;
573         const int sync = rq_is_sync(rq);
574
575         BUG_ON(!cfqq->queued[sync]);
576         cfqq->queued[sync]--;
577
578         elv_rb_del(&cfqq->sort_list, rq);
579
580         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
581                 cfq_del_cfqq_rr(cfqd, cfqq);
582 }
583
584 static void cfq_add_rq_rb(struct request *rq)
585 {
586         struct cfq_queue *cfqq = RQ_CFQQ(rq);
587         struct cfq_data *cfqd = cfqq->cfqd;
588         struct request *__alias;
589
590         cfqq->queued[rq_is_sync(rq)]++;
591
592         /*
593          * looks a little odd, but the first insert might return an alias.
594          * if that happens, put the alias on the dispatch list
595          */
596         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
597                 cfq_dispatch_insert(cfqd->queue, __alias);
598
599         if (!cfq_cfqq_on_rr(cfqq))
600                 cfq_add_cfqq_rr(cfqd, cfqq);
601
602         /*
603          * check if this request is a better next-serve candidate
604          */
605         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
606         BUG_ON(!cfqq->next_rq);
607 }
608
609 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
610 {
611         elv_rb_del(&cfqq->sort_list, rq);
612         cfqq->queued[rq_is_sync(rq)]--;
613         cfq_add_rq_rb(rq);
614 }
615
616 static struct request *
617 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
618 {
619         struct task_struct *tsk = current;
620         struct cfq_io_context *cic;
621         struct cfq_queue *cfqq;
622
623         cic = cfq_cic_lookup(cfqd, tsk->io_context);
624         if (!cic)
625                 return NULL;
626
627         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
628         if (cfqq) {
629                 sector_t sector = bio->bi_sector + bio_sectors(bio);
630
631                 return elv_rb_find(&cfqq->sort_list, sector);
632         }
633
634         return NULL;
635 }
636
637 static void cfq_activate_request(struct request_queue *q, struct request *rq)
638 {
639         struct cfq_data *cfqd = q->elevator->elevator_data;
640
641         cfqd->rq_in_driver++;
642
643         /*
644          * If the depth is larger 1, it really could be queueing. But lets
645          * make the mark a little higher - idling could still be good for
646          * low queueing, and a low queueing number could also just indicate
647          * a SCSI mid layer like behaviour where limit+1 is often seen.
648          */
649         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
650                 cfqd->hw_tag = 1;
651
652         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
653 }
654
655 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
656 {
657         struct cfq_data *cfqd = q->elevator->elevator_data;
658
659         WARN_ON(!cfqd->rq_in_driver);
660         cfqd->rq_in_driver--;
661 }
662
663 static void cfq_remove_request(struct request *rq)
664 {
665         struct cfq_queue *cfqq = RQ_CFQQ(rq);
666
667         if (cfqq->next_rq == rq)
668                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
669
670         list_del_init(&rq->queuelist);
671         cfq_del_rq_rb(rq);
672
673         if (rq_is_meta(rq)) {
674                 WARN_ON(!cfqq->meta_pending);
675                 cfqq->meta_pending--;
676         }
677 }
678
679 static int cfq_merge(struct request_queue *q, struct request **req,
680                      struct bio *bio)
681 {
682         struct cfq_data *cfqd = q->elevator->elevator_data;
683         struct request *__rq;
684
685         __rq = cfq_find_rq_fmerge(cfqd, bio);
686         if (__rq && elv_rq_merge_ok(__rq, bio)) {
687                 *req = __rq;
688                 return ELEVATOR_FRONT_MERGE;
689         }
690
691         return ELEVATOR_NO_MERGE;
692 }
693
694 static void cfq_merged_request(struct request_queue *q, struct request *req,
695                                int type)
696 {
697         if (type == ELEVATOR_FRONT_MERGE) {
698                 struct cfq_queue *cfqq = RQ_CFQQ(req);
699
700                 cfq_reposition_rq_rb(cfqq, req);
701         }
702 }
703
704 static void
705 cfq_merged_requests(struct request_queue *q, struct request *rq,
706                     struct request *next)
707 {
708         /*
709          * reposition in fifo if next is older than rq
710          */
711         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
712             time_before(next->start_time, rq->start_time))
713                 list_move(&rq->queuelist, &next->queuelist);
714
715         cfq_remove_request(next);
716 }
717
718 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
719                            struct bio *bio)
720 {
721         struct cfq_data *cfqd = q->elevator->elevator_data;
722         struct cfq_io_context *cic;
723         struct cfq_queue *cfqq;
724
725         /*
726          * Disallow merge of a sync bio into an async request.
727          */
728         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
729                 return 0;
730
731         /*
732          * Lookup the cfqq that this bio will be queued with. Allow
733          * merge only if rq is queued there.
734          */
735         cic = cfq_cic_lookup(cfqd, current->io_context);
736         if (!cic)
737                 return 0;
738
739         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
740         if (cfqq == RQ_CFQQ(rq))
741                 return 1;
742
743         return 0;
744 }
745
746 static void __cfq_set_active_queue(struct cfq_data *cfqd,
747                                    struct cfq_queue *cfqq)
748 {
749         if (cfqq) {
750                 cfqq->slice_end = 0;
751                 cfq_clear_cfqq_must_alloc_slice(cfqq);
752                 cfq_clear_cfqq_fifo_expire(cfqq);
753                 cfq_mark_cfqq_slice_new(cfqq);
754                 cfq_clear_cfqq_queue_new(cfqq);
755         }
756
757         cfqd->active_queue = cfqq;
758 }
759
760 /*
761  * current cfqq expired its slice (or was too idle), select new one
762  */
763 static void
764 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
765                     int timed_out)
766 {
767         if (cfq_cfqq_wait_request(cfqq))
768                 del_timer(&cfqd->idle_slice_timer);
769
770         cfq_clear_cfqq_must_dispatch(cfqq);
771         cfq_clear_cfqq_wait_request(cfqq);
772
773         /*
774          * store what was left of this slice, if the queue idled/timed out
775          */
776         if (timed_out && !cfq_cfqq_slice_new(cfqq))
777                 cfqq->slice_resid = cfqq->slice_end - jiffies;
778
779         cfq_resort_rr_list(cfqd, cfqq);
780
781         if (cfqq == cfqd->active_queue)
782                 cfqd->active_queue = NULL;
783
784         if (cfqd->active_cic) {
785                 put_io_context(cfqd->active_cic->ioc);
786                 cfqd->active_cic = NULL;
787         }
788 }
789
790 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
791 {
792         struct cfq_queue *cfqq = cfqd->active_queue;
793
794         if (cfqq)
795                 __cfq_slice_expired(cfqd, cfqq, timed_out);
796 }
797
798 /*
799  * Get next queue for service. Unless we have a queue preemption,
800  * we'll simply select the first cfqq in the service tree.
801  */
802 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
803 {
804         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
805                 return NULL;
806
807         return cfq_rb_first(&cfqd->service_tree);
808 }
809
810 /*
811  * Get and set a new active queue for service.
812  */
813 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
814 {
815         struct cfq_queue *cfqq;
816
817         cfqq = cfq_get_next_queue(cfqd);
818         __cfq_set_active_queue(cfqd, cfqq);
819         return cfqq;
820 }
821
822 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
823                                           struct request *rq)
824 {
825         if (rq->sector >= cfqd->last_position)
826                 return rq->sector - cfqd->last_position;
827         else
828                 return cfqd->last_position - rq->sector;
829 }
830
831 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
832 {
833         struct cfq_io_context *cic = cfqd->active_cic;
834
835         if (!sample_valid(cic->seek_samples))
836                 return 0;
837
838         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
839 }
840
841 static int cfq_close_cooperator(struct cfq_data *cfq_data,
842                                 struct cfq_queue *cfqq)
843 {
844         /*
845          * We should notice if some of the queues are cooperating, eg
846          * working closely on the same area of the disk. In that case,
847          * we can group them together and don't waste time idling.
848          */
849         return 0;
850 }
851
852 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
853
854 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
855 {
856         struct cfq_queue *cfqq = cfqd->active_queue;
857         struct cfq_io_context *cic;
858         unsigned long sl;
859
860         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
861         WARN_ON(cfq_cfqq_slice_new(cfqq));
862
863         /*
864          * idle is disabled, either manually or by past process history
865          */
866         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
867                 return;
868
869         /*
870          * task has exited, don't wait
871          */
872         cic = cfqd->active_cic;
873         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
874                 return;
875
876         /*
877          * See if this prio level has a good candidate
878          */
879         if (cfq_close_cooperator(cfqd, cfqq) &&
880             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
881                 return;
882
883         cfq_mark_cfqq_must_dispatch(cfqq);
884         cfq_mark_cfqq_wait_request(cfqq);
885
886         /*
887          * we don't want to idle for seeks, but we do want to allow
888          * fair distribution of slice time for a process doing back-to-back
889          * seeks. so allow a little bit of time for him to submit a new rq
890          */
891         sl = cfqd->cfq_slice_idle;
892         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
893                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
894
895         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
896 }
897
898 /*
899  * Move request from internal lists to the request queue dispatch list.
900  */
901 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
902 {
903         struct cfq_data *cfqd = q->elevator->elevator_data;
904         struct cfq_queue *cfqq = RQ_CFQQ(rq);
905
906         cfq_remove_request(rq);
907         cfqq->dispatched++;
908         elv_dispatch_sort(q, rq);
909
910         if (cfq_cfqq_sync(cfqq))
911                 cfqd->sync_flight++;
912 }
913
914 /*
915  * return expired entry, or NULL to just start from scratch in rbtree
916  */
917 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
918 {
919         struct cfq_data *cfqd = cfqq->cfqd;
920         struct request *rq;
921         int fifo;
922
923         if (cfq_cfqq_fifo_expire(cfqq))
924                 return NULL;
925
926         cfq_mark_cfqq_fifo_expire(cfqq);
927
928         if (list_empty(&cfqq->fifo))
929                 return NULL;
930
931         fifo = cfq_cfqq_sync(cfqq);
932         rq = rq_entry_fifo(cfqq->fifo.next);
933
934         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
935                 return NULL;
936
937         return rq;
938 }
939
940 static inline int
941 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
942 {
943         const int base_rq = cfqd->cfq_slice_async_rq;
944
945         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
946
947         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
948 }
949
950 /*
951  * Select a queue for service. If we have a current active queue,
952  * check whether to continue servicing it, or retrieve and set a new one.
953  */
954 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
955 {
956         struct cfq_queue *cfqq;
957
958         cfqq = cfqd->active_queue;
959         if (!cfqq)
960                 goto new_queue;
961
962         /*
963          * The active queue has run out of time, expire it and select new.
964          */
965         if (cfq_slice_used(cfqq))
966                 goto expire;
967
968         /*
969          * The active queue has requests and isn't expired, allow it to
970          * dispatch.
971          */
972         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
973                 goto keep_queue;
974
975         /*
976          * No requests pending. If the active queue still has requests in
977          * flight or is idling for a new request, allow either of these
978          * conditions to happen (or time out) before selecting a new queue.
979          */
980         if (timer_pending(&cfqd->idle_slice_timer) ||
981             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
982                 cfqq = NULL;
983                 goto keep_queue;
984         }
985
986 expire:
987         cfq_slice_expired(cfqd, 0);
988 new_queue:
989         cfqq = cfq_set_active_queue(cfqd);
990 keep_queue:
991         return cfqq;
992 }
993
994 /*
995  * Dispatch some requests from cfqq, moving them to the request queue
996  * dispatch list.
997  */
998 static int
999 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1000                         int max_dispatch)
1001 {
1002         int dispatched = 0;
1003
1004         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1005
1006         do {
1007                 struct request *rq;
1008
1009                 /*
1010                  * follow expired path, else get first next available
1011                  */
1012                 rq = cfq_check_fifo(cfqq);
1013                 if (rq == NULL)
1014                         rq = cfqq->next_rq;
1015
1016                 /*
1017                  * finally, insert request into driver dispatch list
1018                  */
1019                 cfq_dispatch_insert(cfqd->queue, rq);
1020
1021                 dispatched++;
1022
1023                 if (!cfqd->active_cic) {
1024                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1025                         cfqd->active_cic = RQ_CIC(rq);
1026                 }
1027
1028                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1029                         break;
1030
1031         } while (dispatched < max_dispatch);
1032
1033         /*
1034          * expire an async queue immediately if it has used up its slice. idle
1035          * queue always expire after 1 dispatch round.
1036          */
1037         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1038             dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1039             cfq_class_idle(cfqq))) {
1040                 cfqq->slice_end = jiffies + 1;
1041                 cfq_slice_expired(cfqd, 0);
1042         }
1043
1044         return dispatched;
1045 }
1046
1047 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1048 {
1049         int dispatched = 0;
1050
1051         while (cfqq->next_rq) {
1052                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1053                 dispatched++;
1054         }
1055
1056         BUG_ON(!list_empty(&cfqq->fifo));
1057         return dispatched;
1058 }
1059
1060 /*
1061  * Drain our current requests. Used for barriers and when switching
1062  * io schedulers on-the-fly.
1063  */
1064 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1065 {
1066         struct cfq_queue *cfqq;
1067         int dispatched = 0;
1068
1069         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1070                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1071
1072         cfq_slice_expired(cfqd, 0);
1073
1074         BUG_ON(cfqd->busy_queues);
1075
1076         return dispatched;
1077 }
1078
1079 static int cfq_dispatch_requests(struct request_queue *q, int force)
1080 {
1081         struct cfq_data *cfqd = q->elevator->elevator_data;
1082         struct cfq_queue *cfqq;
1083         int dispatched;
1084
1085         if (!cfqd->busy_queues)
1086                 return 0;
1087
1088         if (unlikely(force))
1089                 return cfq_forced_dispatch(cfqd);
1090
1091         dispatched = 0;
1092         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1093                 int max_dispatch;
1094
1095                 max_dispatch = cfqd->cfq_quantum;
1096                 if (cfq_class_idle(cfqq))
1097                         max_dispatch = 1;
1098
1099                 if (cfqq->dispatched >= max_dispatch) {
1100                         if (cfqd->busy_queues > 1)
1101                                 break;
1102                         if (cfqq->dispatched >= 4 * max_dispatch)
1103                                 break;
1104                 }
1105
1106                 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1107                         break;
1108
1109                 cfq_clear_cfqq_must_dispatch(cfqq);
1110                 cfq_clear_cfqq_wait_request(cfqq);
1111                 del_timer(&cfqd->idle_slice_timer);
1112
1113                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1114         }
1115
1116         return dispatched;
1117 }
1118
1119 /*
1120  * task holds one reference to the queue, dropped when task exits. each rq
1121  * in-flight on this queue also holds a reference, dropped when rq is freed.
1122  *
1123  * queue lock must be held here.
1124  */
1125 static void cfq_put_queue(struct cfq_queue *cfqq)
1126 {
1127         struct cfq_data *cfqd = cfqq->cfqd;
1128
1129         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1130
1131         if (!atomic_dec_and_test(&cfqq->ref))
1132                 return;
1133
1134         BUG_ON(rb_first(&cfqq->sort_list));
1135         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1136         BUG_ON(cfq_cfqq_on_rr(cfqq));
1137
1138         if (unlikely(cfqd->active_queue == cfqq)) {
1139                 __cfq_slice_expired(cfqd, cfqq, 0);
1140                 cfq_schedule_dispatch(cfqd);
1141         }
1142
1143         kmem_cache_free(cfq_pool, cfqq);
1144 }
1145
1146 /*
1147  * Must always be called with the rcu_read_lock() held
1148  */
1149 static void
1150 __call_for_each_cic(struct io_context *ioc,
1151                     void (*func)(struct io_context *, struct cfq_io_context *))
1152 {
1153         struct cfq_io_context *cic;
1154         struct hlist_node *n;
1155
1156         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1157                 func(ioc, cic);
1158 }
1159
1160 /*
1161  * Call func for each cic attached to this ioc.
1162  */
1163 static void
1164 call_for_each_cic(struct io_context *ioc,
1165                   void (*func)(struct io_context *, struct cfq_io_context *))
1166 {
1167         rcu_read_lock();
1168         __call_for_each_cic(ioc, func);
1169         rcu_read_unlock();
1170 }
1171
1172 static void cfq_cic_free_rcu(struct rcu_head *head)
1173 {
1174         struct cfq_io_context *cic;
1175
1176         cic = container_of(head, struct cfq_io_context, rcu_head);
1177
1178         kmem_cache_free(cfq_ioc_pool, cic);
1179         elv_ioc_count_dec(ioc_count);
1180
1181         if (ioc_gone) {
1182                 /*
1183                  * CFQ scheduler is exiting, grab exit lock and check
1184                  * the pending io context count. If it hits zero,
1185                  * complete ioc_gone and set it back to NULL
1186                  */
1187                 spin_lock(&ioc_gone_lock);
1188                 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1189                         complete(ioc_gone);
1190                         ioc_gone = NULL;
1191                 }
1192                 spin_unlock(&ioc_gone_lock);
1193         }
1194 }
1195
1196 static void cfq_cic_free(struct cfq_io_context *cic)
1197 {
1198         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1199 }
1200
1201 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1202 {
1203         unsigned long flags;
1204
1205         BUG_ON(!cic->dead_key);
1206
1207         spin_lock_irqsave(&ioc->lock, flags);
1208         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1209         hlist_del_rcu(&cic->cic_list);
1210         spin_unlock_irqrestore(&ioc->lock, flags);
1211
1212         cfq_cic_free(cic);
1213 }
1214
1215 /*
1216  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1217  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1218  * and ->trim() which is called with the task lock held
1219  */
1220 static void cfq_free_io_context(struct io_context *ioc)
1221 {
1222         /*
1223          * ioc->refcount is zero here, or we are called from elv_unregister(),
1224          * so no more cic's are allowed to be linked into this ioc.  So it
1225          * should be ok to iterate over the known list, we will see all cic's
1226          * since no new ones are added.
1227          */
1228         __call_for_each_cic(ioc, cic_free_func);
1229 }
1230
1231 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1232 {
1233         if (unlikely(cfqq == cfqd->active_queue)) {
1234                 __cfq_slice_expired(cfqd, cfqq, 0);
1235                 cfq_schedule_dispatch(cfqd);
1236         }
1237
1238         cfq_put_queue(cfqq);
1239 }
1240
1241 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1242                                          struct cfq_io_context *cic)
1243 {
1244         struct io_context *ioc = cic->ioc;
1245
1246         list_del_init(&cic->queue_list);
1247
1248         /*
1249          * Make sure key == NULL is seen for dead queues
1250          */
1251         smp_wmb();
1252         cic->dead_key = (unsigned long) cic->key;
1253         cic->key = NULL;
1254
1255         if (ioc->ioc_data == cic)
1256                 rcu_assign_pointer(ioc->ioc_data, NULL);
1257
1258         if (cic->cfqq[ASYNC]) {
1259                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1260                 cic->cfqq[ASYNC] = NULL;
1261         }
1262
1263         if (cic->cfqq[SYNC]) {
1264                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1265                 cic->cfqq[SYNC] = NULL;
1266         }
1267 }
1268
1269 static void cfq_exit_single_io_context(struct io_context *ioc,
1270                                        struct cfq_io_context *cic)
1271 {
1272         struct cfq_data *cfqd = cic->key;
1273
1274         if (cfqd) {
1275                 struct request_queue *q = cfqd->queue;
1276                 unsigned long flags;
1277
1278                 spin_lock_irqsave(q->queue_lock, flags);
1279                 __cfq_exit_single_io_context(cfqd, cic);
1280                 spin_unlock_irqrestore(q->queue_lock, flags);
1281         }
1282 }
1283
1284 /*
1285  * The process that ioc belongs to has exited, we need to clean up
1286  * and put the internal structures we have that belongs to that process.
1287  */
1288 static void cfq_exit_io_context(struct io_context *ioc)
1289 {
1290         call_for_each_cic(ioc, cfq_exit_single_io_context);
1291 }
1292
1293 static struct cfq_io_context *
1294 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1295 {
1296         struct cfq_io_context *cic;
1297
1298         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1299                                                         cfqd->queue->node);
1300         if (cic) {
1301                 cic->last_end_request = jiffies;
1302                 INIT_LIST_HEAD(&cic->queue_list);
1303                 INIT_HLIST_NODE(&cic->cic_list);
1304                 cic->dtor = cfq_free_io_context;
1305                 cic->exit = cfq_exit_io_context;
1306                 elv_ioc_count_inc(ioc_count);
1307         }
1308
1309         return cic;
1310 }
1311
1312 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1313 {
1314         struct task_struct *tsk = current;
1315         int ioprio_class;
1316
1317         if (!cfq_cfqq_prio_changed(cfqq))
1318                 return;
1319
1320         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1321         switch (ioprio_class) {
1322         default:
1323                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1324         case IOPRIO_CLASS_NONE:
1325                 /*
1326                  * no prio set, inherit CPU scheduling settings
1327                  */
1328                 cfqq->ioprio = task_nice_ioprio(tsk);
1329                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1330                 break;
1331         case IOPRIO_CLASS_RT:
1332                 cfqq->ioprio = task_ioprio(ioc);
1333                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1334                 break;
1335         case IOPRIO_CLASS_BE:
1336                 cfqq->ioprio = task_ioprio(ioc);
1337                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1338                 break;
1339         case IOPRIO_CLASS_IDLE:
1340                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1341                 cfqq->ioprio = 7;
1342                 cfq_clear_cfqq_idle_window(cfqq);
1343                 break;
1344         }
1345
1346         /*
1347          * keep track of original prio settings in case we have to temporarily
1348          * elevate the priority of this queue
1349          */
1350         cfqq->org_ioprio = cfqq->ioprio;
1351         cfqq->org_ioprio_class = cfqq->ioprio_class;
1352         cfq_clear_cfqq_prio_changed(cfqq);
1353 }
1354
1355 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1356 {
1357         struct cfq_data *cfqd = cic->key;
1358         struct cfq_queue *cfqq;
1359         unsigned long flags;
1360
1361         if (unlikely(!cfqd))
1362                 return;
1363
1364         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1365
1366         cfqq = cic->cfqq[ASYNC];
1367         if (cfqq) {
1368                 struct cfq_queue *new_cfqq;
1369                 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1370                 if (new_cfqq) {
1371                         cic->cfqq[ASYNC] = new_cfqq;
1372                         cfq_put_queue(cfqq);
1373                 }
1374         }
1375
1376         cfqq = cic->cfqq[SYNC];
1377         if (cfqq)
1378                 cfq_mark_cfqq_prio_changed(cfqq);
1379
1380         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1381 }
1382
1383 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1384 {
1385         call_for_each_cic(ioc, changed_ioprio);
1386         ioc->ioprio_changed = 0;
1387 }
1388
1389 static struct cfq_queue *
1390 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1391                      struct io_context *ioc, gfp_t gfp_mask)
1392 {
1393         struct cfq_queue *cfqq, *new_cfqq = NULL;
1394         struct cfq_io_context *cic;
1395
1396 retry:
1397         cic = cfq_cic_lookup(cfqd, ioc);
1398         /* cic always exists here */
1399         cfqq = cic_to_cfqq(cic, is_sync);
1400
1401         if (!cfqq) {
1402                 if (new_cfqq) {
1403                         cfqq = new_cfqq;
1404                         new_cfqq = NULL;
1405                 } else if (gfp_mask & __GFP_WAIT) {
1406                         /*
1407                          * Inform the allocator of the fact that we will
1408                          * just repeat this allocation if it fails, to allow
1409                          * the allocator to do whatever it needs to attempt to
1410                          * free memory.
1411                          */
1412                         spin_unlock_irq(cfqd->queue->queue_lock);
1413                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1414                                         gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1415                                         cfqd->queue->node);
1416                         spin_lock_irq(cfqd->queue->queue_lock);
1417                         goto retry;
1418                 } else {
1419                         cfqq = kmem_cache_alloc_node(cfq_pool,
1420                                         gfp_mask | __GFP_ZERO,
1421                                         cfqd->queue->node);
1422                         if (!cfqq)
1423                                 goto out;
1424                 }
1425
1426                 RB_CLEAR_NODE(&cfqq->rb_node);
1427                 INIT_LIST_HEAD(&cfqq->fifo);
1428
1429                 atomic_set(&cfqq->ref, 0);
1430                 cfqq->cfqd = cfqd;
1431
1432                 cfq_mark_cfqq_prio_changed(cfqq);
1433                 cfq_mark_cfqq_queue_new(cfqq);
1434
1435                 cfq_init_prio_data(cfqq, ioc);
1436
1437                 if (is_sync) {
1438                         if (!cfq_class_idle(cfqq))
1439                                 cfq_mark_cfqq_idle_window(cfqq);
1440                         cfq_mark_cfqq_sync(cfqq);
1441                 }
1442         }
1443
1444         if (new_cfqq)
1445                 kmem_cache_free(cfq_pool, new_cfqq);
1446
1447 out:
1448         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1449         return cfqq;
1450 }
1451
1452 static struct cfq_queue **
1453 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1454 {
1455         switch (ioprio_class) {
1456         case IOPRIO_CLASS_RT:
1457                 return &cfqd->async_cfqq[0][ioprio];
1458         case IOPRIO_CLASS_BE:
1459                 return &cfqd->async_cfqq[1][ioprio];
1460         case IOPRIO_CLASS_IDLE:
1461                 return &cfqd->async_idle_cfqq;
1462         default:
1463                 BUG();
1464         }
1465 }
1466
1467 static struct cfq_queue *
1468 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1469               gfp_t gfp_mask)
1470 {
1471         const int ioprio = task_ioprio(ioc);
1472         const int ioprio_class = task_ioprio_class(ioc);
1473         struct cfq_queue **async_cfqq = NULL;
1474         struct cfq_queue *cfqq = NULL;
1475
1476         if (!is_sync) {
1477                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1478                 cfqq = *async_cfqq;
1479         }
1480
1481         if (!cfqq) {
1482                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1483                 if (!cfqq)
1484                         return NULL;
1485         }
1486
1487         /*
1488          * pin the queue now that it's allocated, scheduler exit will prune it
1489          */
1490         if (!is_sync && !(*async_cfqq)) {
1491                 atomic_inc(&cfqq->ref);
1492                 *async_cfqq = cfqq;
1493         }
1494
1495         atomic_inc(&cfqq->ref);
1496         return cfqq;
1497 }
1498
1499 /*
1500  * We drop cfq io contexts lazily, so we may find a dead one.
1501  */
1502 static void
1503 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1504                   struct cfq_io_context *cic)
1505 {
1506         unsigned long flags;
1507
1508         WARN_ON(!list_empty(&cic->queue_list));
1509
1510         spin_lock_irqsave(&ioc->lock, flags);
1511
1512         BUG_ON(ioc->ioc_data == cic);
1513
1514         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1515         hlist_del_rcu(&cic->cic_list);
1516         spin_unlock_irqrestore(&ioc->lock, flags);
1517
1518         cfq_cic_free(cic);
1519 }
1520
1521 static struct cfq_io_context *
1522 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1523 {
1524         struct cfq_io_context *cic;
1525         unsigned long flags;
1526         void *k;
1527
1528         if (unlikely(!ioc))
1529                 return NULL;
1530
1531         rcu_read_lock();
1532
1533         /*
1534          * we maintain a last-hit cache, to avoid browsing over the tree
1535          */
1536         cic = rcu_dereference(ioc->ioc_data);
1537         if (cic && cic->key == cfqd) {
1538                 rcu_read_unlock();
1539                 return cic;
1540         }
1541
1542         do {
1543                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1544                 rcu_read_unlock();
1545                 if (!cic)
1546                         break;
1547                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1548                 k = cic->key;
1549                 if (unlikely(!k)) {
1550                         cfq_drop_dead_cic(cfqd, ioc, cic);
1551                         rcu_read_lock();
1552                         continue;
1553                 }
1554
1555                 spin_lock_irqsave(&ioc->lock, flags);
1556                 rcu_assign_pointer(ioc->ioc_data, cic);
1557                 spin_unlock_irqrestore(&ioc->lock, flags);
1558                 break;
1559         } while (1);
1560
1561         return cic;
1562 }
1563
1564 /*
1565  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1566  * the process specific cfq io context when entered from the block layer.
1567  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1568  */
1569 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1570                         struct cfq_io_context *cic, gfp_t gfp_mask)
1571 {
1572         unsigned long flags;
1573         int ret;
1574
1575         ret = radix_tree_preload(gfp_mask);
1576         if (!ret) {
1577                 cic->ioc = ioc;
1578                 cic->key = cfqd;
1579
1580                 spin_lock_irqsave(&ioc->lock, flags);
1581                 ret = radix_tree_insert(&ioc->radix_root,
1582                                                 (unsigned long) cfqd, cic);
1583                 if (!ret)
1584                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1585                 spin_unlock_irqrestore(&ioc->lock, flags);
1586
1587                 radix_tree_preload_end();
1588
1589                 if (!ret) {
1590                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1591                         list_add(&cic->queue_list, &cfqd->cic_list);
1592                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1593                 }
1594         }
1595
1596         if (ret)
1597                 printk(KERN_ERR "cfq: cic link failed!\n");
1598
1599         return ret;
1600 }
1601
1602 /*
1603  * Setup general io context and cfq io context. There can be several cfq
1604  * io contexts per general io context, if this process is doing io to more
1605  * than one device managed by cfq.
1606  */
1607 static struct cfq_io_context *
1608 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1609 {
1610         struct io_context *ioc = NULL;
1611         struct cfq_io_context *cic;
1612
1613         might_sleep_if(gfp_mask & __GFP_WAIT);
1614
1615         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1616         if (!ioc)
1617                 return NULL;
1618
1619         cic = cfq_cic_lookup(cfqd, ioc);
1620         if (cic)
1621                 goto out;
1622
1623         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1624         if (cic == NULL)
1625                 goto err;
1626
1627         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1628                 goto err_free;
1629
1630 out:
1631         smp_read_barrier_depends();
1632         if (unlikely(ioc->ioprio_changed))
1633                 cfq_ioc_set_ioprio(ioc);
1634
1635         return cic;
1636 err_free:
1637         cfq_cic_free(cic);
1638 err:
1639         put_io_context(ioc);
1640         return NULL;
1641 }
1642
1643 static void
1644 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1645 {
1646         unsigned long elapsed = jiffies - cic->last_end_request;
1647         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1648
1649         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1650         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1651         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1652 }
1653
1654 static void
1655 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1656                        struct request *rq)
1657 {
1658         sector_t sdist;
1659         u64 total;
1660
1661         if (cic->last_request_pos < rq->sector)
1662                 sdist = rq->sector - cic->last_request_pos;
1663         else
1664                 sdist = cic->last_request_pos - rq->sector;
1665
1666         /*
1667          * Don't allow the seek distance to get too large from the
1668          * odd fragment, pagein, etc
1669          */
1670         if (cic->seek_samples <= 60) /* second&third seek */
1671                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1672         else
1673                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1674
1675         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1676         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1677         total = cic->seek_total + (cic->seek_samples/2);
1678         do_div(total, cic->seek_samples);
1679         cic->seek_mean = (sector_t)total;
1680 }
1681
1682 /*
1683  * Disable idle window if the process thinks too long or seeks so much that
1684  * it doesn't matter
1685  */
1686 static void
1687 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1688                        struct cfq_io_context *cic)
1689 {
1690         int enable_idle;
1691
1692         /*
1693          * Don't idle for async or idle io prio class
1694          */
1695         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1696                 return;
1697
1698         enable_idle = cfq_cfqq_idle_window(cfqq);
1699
1700         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1701             (cfqd->hw_tag && CIC_SEEKY(cic)))
1702                 enable_idle = 0;
1703         else if (sample_valid(cic->ttime_samples)) {
1704                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1705                         enable_idle = 0;
1706                 else
1707                         enable_idle = 1;
1708         }
1709
1710         if (enable_idle)
1711                 cfq_mark_cfqq_idle_window(cfqq);
1712         else
1713                 cfq_clear_cfqq_idle_window(cfqq);
1714 }
1715
1716 /*
1717  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1718  * no or if we aren't sure, a 1 will cause a preempt.
1719  */
1720 static int
1721 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1722                    struct request *rq)
1723 {
1724         struct cfq_queue *cfqq;
1725
1726         cfqq = cfqd->active_queue;
1727         if (!cfqq)
1728                 return 0;
1729
1730         if (cfq_slice_used(cfqq))
1731                 return 1;
1732
1733         if (cfq_class_idle(new_cfqq))
1734                 return 0;
1735
1736         if (cfq_class_idle(cfqq))
1737                 return 1;
1738
1739         /*
1740          * if the new request is sync, but the currently running queue is
1741          * not, let the sync request have priority.
1742          */
1743         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1744                 return 1;
1745
1746         /*
1747          * So both queues are sync. Let the new request get disk time if
1748          * it's a metadata request and the current queue is doing regular IO.
1749          */
1750         if (rq_is_meta(rq) && !cfqq->meta_pending)
1751                 return 1;
1752
1753         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1754                 return 0;
1755
1756         /*
1757          * if this request is as-good as one we would expect from the
1758          * current cfqq, let it preempt
1759          */
1760         if (cfq_rq_close(cfqd, rq))
1761                 return 1;
1762
1763         return 0;
1764 }
1765
1766 /*
1767  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1768  * let it have half of its nominal slice.
1769  */
1770 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1771 {
1772         cfq_slice_expired(cfqd, 1);
1773
1774         /*
1775          * Put the new queue at the front of the of the current list,
1776          * so we know that it will be selected next.
1777          */
1778         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1779
1780         cfq_service_tree_add(cfqd, cfqq, 1);
1781
1782         cfqq->slice_end = 0;
1783         cfq_mark_cfqq_slice_new(cfqq);
1784 }
1785
1786 /*
1787  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1788  * something we should do about it
1789  */
1790 static void
1791 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1792                 struct request *rq)
1793 {
1794         struct cfq_io_context *cic = RQ_CIC(rq);
1795
1796         if (rq_is_meta(rq))
1797                 cfqq->meta_pending++;
1798
1799         cfq_update_io_thinktime(cfqd, cic);
1800         cfq_update_io_seektime(cfqd, cic, rq);
1801         cfq_update_idle_window(cfqd, cfqq, cic);
1802
1803         cic->last_request_pos = rq->sector + rq->nr_sectors;
1804
1805         if (cfqq == cfqd->active_queue) {
1806                 /*
1807                  * if we are waiting for a request for this queue, let it rip
1808                  * immediately and flag that we must not expire this queue
1809                  * just now
1810                  */
1811                 if (cfq_cfqq_wait_request(cfqq)) {
1812                         cfq_mark_cfqq_must_dispatch(cfqq);
1813                         del_timer(&cfqd->idle_slice_timer);
1814                         blk_start_queueing(cfqd->queue);
1815                 }
1816         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1817                 /*
1818                  * not the active queue - expire current slice if it is
1819                  * idle and has expired it's mean thinktime or this new queue
1820                  * has some old slice time left and is of higher priority
1821                  */
1822                 cfq_preempt_queue(cfqd, cfqq);
1823                 cfq_mark_cfqq_must_dispatch(cfqq);
1824                 blk_start_queueing(cfqd->queue);
1825         }
1826 }
1827
1828 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1829 {
1830         struct cfq_data *cfqd = q->elevator->elevator_data;
1831         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1832
1833         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1834
1835         cfq_add_rq_rb(rq);
1836
1837         list_add_tail(&rq->queuelist, &cfqq->fifo);
1838
1839         cfq_rq_enqueued(cfqd, cfqq, rq);
1840 }
1841
1842 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1843 {
1844         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1845         struct cfq_data *cfqd = cfqq->cfqd;
1846         const int sync = rq_is_sync(rq);
1847         unsigned long now;
1848
1849         now = jiffies;
1850
1851         WARN_ON(!cfqd->rq_in_driver);
1852         WARN_ON(!cfqq->dispatched);
1853         cfqd->rq_in_driver--;
1854         cfqq->dispatched--;
1855
1856         if (cfq_cfqq_sync(cfqq))
1857                 cfqd->sync_flight--;
1858
1859         if (!cfq_class_idle(cfqq))
1860                 cfqd->last_end_request = now;
1861
1862         if (sync)
1863                 RQ_CIC(rq)->last_end_request = now;
1864
1865         /*
1866          * If this is the active queue, check if it needs to be expired,
1867          * or if we want to idle in case it has no pending requests.
1868          */
1869         if (cfqd->active_queue == cfqq) {
1870                 if (cfq_cfqq_slice_new(cfqq)) {
1871                         cfq_set_prio_slice(cfqd, cfqq);
1872                         cfq_clear_cfqq_slice_new(cfqq);
1873                 }
1874                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1875                         cfq_slice_expired(cfqd, 1);
1876                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1877                         cfq_arm_slice_timer(cfqd);
1878         }
1879
1880         if (!cfqd->rq_in_driver)
1881                 cfq_schedule_dispatch(cfqd);
1882 }
1883
1884 /*
1885  * we temporarily boost lower priority queues if they are holding fs exclusive
1886  * resources. they are boosted to normal prio (CLASS_BE/4)
1887  */
1888 static void cfq_prio_boost(struct cfq_queue *cfqq)
1889 {
1890         if (has_fs_excl()) {
1891                 /*
1892                  * boost idle prio on transactions that would lock out other
1893                  * users of the filesystem
1894                  */
1895                 if (cfq_class_idle(cfqq))
1896                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1897                 if (cfqq->ioprio > IOPRIO_NORM)
1898                         cfqq->ioprio = IOPRIO_NORM;
1899         } else {
1900                 /*
1901                  * check if we need to unboost the queue
1902                  */
1903                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1904                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1905                 if (cfqq->ioprio != cfqq->org_ioprio)
1906                         cfqq->ioprio = cfqq->org_ioprio;
1907         }
1908 }
1909
1910 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1911 {
1912         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1913             !cfq_cfqq_must_alloc_slice(cfqq)) {
1914                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1915                 return ELV_MQUEUE_MUST;
1916         }
1917
1918         return ELV_MQUEUE_MAY;
1919 }
1920
1921 static int cfq_may_queue(struct request_queue *q, int rw)
1922 {
1923         struct cfq_data *cfqd = q->elevator->elevator_data;
1924         struct task_struct *tsk = current;
1925         struct cfq_io_context *cic;
1926         struct cfq_queue *cfqq;
1927
1928         /*
1929          * don't force setup of a queue from here, as a call to may_queue
1930          * does not necessarily imply that a request actually will be queued.
1931          * so just lookup a possibly existing queue, or return 'may queue'
1932          * if that fails
1933          */
1934         cic = cfq_cic_lookup(cfqd, tsk->io_context);
1935         if (!cic)
1936                 return ELV_MQUEUE_MAY;
1937
1938         cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1939         if (cfqq) {
1940                 cfq_init_prio_data(cfqq, cic->ioc);
1941                 cfq_prio_boost(cfqq);
1942
1943                 return __cfq_may_queue(cfqq);
1944         }
1945
1946         return ELV_MQUEUE_MAY;
1947 }
1948
1949 /*
1950  * queue lock held here
1951  */
1952 static void cfq_put_request(struct request *rq)
1953 {
1954         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1955
1956         if (cfqq) {
1957                 const int rw = rq_data_dir(rq);
1958
1959                 BUG_ON(!cfqq->allocated[rw]);
1960                 cfqq->allocated[rw]--;
1961
1962                 put_io_context(RQ_CIC(rq)->ioc);
1963
1964                 rq->elevator_private = NULL;
1965                 rq->elevator_private2 = NULL;
1966
1967                 cfq_put_queue(cfqq);
1968         }
1969 }
1970
1971 /*
1972  * Allocate cfq data structures associated with this request.
1973  */
1974 static int
1975 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1976 {
1977         struct cfq_data *cfqd = q->elevator->elevator_data;
1978         struct cfq_io_context *cic;
1979         const int rw = rq_data_dir(rq);
1980         const int is_sync = rq_is_sync(rq);
1981         struct cfq_queue *cfqq;
1982         unsigned long flags;
1983
1984         might_sleep_if(gfp_mask & __GFP_WAIT);
1985
1986         cic = cfq_get_io_context(cfqd, gfp_mask);
1987
1988         spin_lock_irqsave(q->queue_lock, flags);
1989
1990         if (!cic)
1991                 goto queue_fail;
1992
1993         cfqq = cic_to_cfqq(cic, is_sync);
1994         if (!cfqq) {
1995                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
1996
1997                 if (!cfqq)
1998                         goto queue_fail;
1999
2000                 cic_set_cfqq(cic, cfqq, is_sync);
2001         }
2002
2003         cfqq->allocated[rw]++;
2004         cfq_clear_cfqq_must_alloc(cfqq);
2005         atomic_inc(&cfqq->ref);
2006
2007         spin_unlock_irqrestore(q->queue_lock, flags);
2008
2009         rq->elevator_private = cic;
2010         rq->elevator_private2 = cfqq;
2011         return 0;
2012
2013 queue_fail:
2014         if (cic)
2015                 put_io_context(cic->ioc);
2016
2017         cfq_schedule_dispatch(cfqd);
2018         spin_unlock_irqrestore(q->queue_lock, flags);
2019         return 1;
2020 }
2021
2022 static void cfq_kick_queue(struct work_struct *work)
2023 {
2024         struct cfq_data *cfqd =
2025                 container_of(work, struct cfq_data, unplug_work);
2026         struct request_queue *q = cfqd->queue;
2027         unsigned long flags;
2028
2029         spin_lock_irqsave(q->queue_lock, flags);
2030         blk_start_queueing(q);
2031         spin_unlock_irqrestore(q->queue_lock, flags);
2032 }
2033
2034 /*
2035  * Timer running if the active_queue is currently idling inside its time slice
2036  */
2037 static void cfq_idle_slice_timer(unsigned long data)
2038 {
2039         struct cfq_data *cfqd = (struct cfq_data *) data;
2040         struct cfq_queue *cfqq;
2041         unsigned long flags;
2042         int timed_out = 1;
2043
2044         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2045
2046         cfqq = cfqd->active_queue;
2047         if (cfqq) {
2048                 timed_out = 0;
2049
2050                 /*
2051                  * expired
2052                  */
2053                 if (cfq_slice_used(cfqq))
2054                         goto expire;
2055
2056                 /*
2057                  * only expire and reinvoke request handler, if there are
2058                  * other queues with pending requests
2059                  */
2060                 if (!cfqd->busy_queues)
2061                         goto out_cont;
2062
2063                 /*
2064                  * not expired and it has a request pending, let it dispatch
2065                  */
2066                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2067                         cfq_mark_cfqq_must_dispatch(cfqq);
2068                         goto out_kick;
2069                 }
2070         }
2071 expire:
2072         cfq_slice_expired(cfqd, timed_out);
2073 out_kick:
2074         cfq_schedule_dispatch(cfqd);
2075 out_cont:
2076         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2077 }
2078
2079 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2080 {
2081         del_timer_sync(&cfqd->idle_slice_timer);
2082         kblockd_flush_work(&cfqd->unplug_work);
2083 }
2084
2085 static void cfq_put_async_queues(struct cfq_data *cfqd)
2086 {
2087         int i;
2088
2089         for (i = 0; i < IOPRIO_BE_NR; i++) {
2090                 if (cfqd->async_cfqq[0][i])
2091                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2092                 if (cfqd->async_cfqq[1][i])
2093                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2094         }
2095
2096         if (cfqd->async_idle_cfqq)
2097                 cfq_put_queue(cfqd->async_idle_cfqq);
2098 }
2099
2100 static void cfq_exit_queue(elevator_t *e)
2101 {
2102         struct cfq_data *cfqd = e->elevator_data;
2103         struct request_queue *q = cfqd->queue;
2104
2105         cfq_shutdown_timer_wq(cfqd);
2106
2107         spin_lock_irq(q->queue_lock);
2108
2109         if (cfqd->active_queue)
2110                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2111
2112         while (!list_empty(&cfqd->cic_list)) {
2113                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2114                                                         struct cfq_io_context,
2115                                                         queue_list);
2116
2117                 __cfq_exit_single_io_context(cfqd, cic);
2118         }
2119
2120         cfq_put_async_queues(cfqd);
2121
2122         spin_unlock_irq(q->queue_lock);
2123
2124         cfq_shutdown_timer_wq(cfqd);
2125
2126         kfree(cfqd);
2127 }
2128
2129 static void *cfq_init_queue(struct request_queue *q)
2130 {
2131         struct cfq_data *cfqd;
2132
2133         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2134         if (!cfqd)
2135                 return NULL;
2136
2137         cfqd->service_tree = CFQ_RB_ROOT;
2138         INIT_LIST_HEAD(&cfqd->cic_list);
2139
2140         cfqd->queue = q;
2141
2142         init_timer(&cfqd->idle_slice_timer);
2143         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2144         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2145
2146         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2147
2148         cfqd->last_end_request = jiffies;
2149         cfqd->cfq_quantum = cfq_quantum;
2150         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2151         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2152         cfqd->cfq_back_max = cfq_back_max;
2153         cfqd->cfq_back_penalty = cfq_back_penalty;
2154         cfqd->cfq_slice[0] = cfq_slice_async;
2155         cfqd->cfq_slice[1] = cfq_slice_sync;
2156         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2157         cfqd->cfq_slice_idle = cfq_slice_idle;
2158
2159         return cfqd;
2160 }
2161
2162 static void cfq_slab_kill(void)
2163 {
2164         /*
2165          * Caller already ensured that pending RCU callbacks are completed,
2166          * so we should have no busy allocations at this point.
2167          */
2168         if (cfq_pool)
2169                 kmem_cache_destroy(cfq_pool);
2170         if (cfq_ioc_pool)
2171                 kmem_cache_destroy(cfq_ioc_pool);
2172 }
2173
2174 static int __init cfq_slab_setup(void)
2175 {
2176         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2177         if (!cfq_pool)
2178                 goto fail;
2179
2180         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2181         if (!cfq_ioc_pool)
2182                 goto fail;
2183
2184         return 0;
2185 fail:
2186         cfq_slab_kill();
2187         return -ENOMEM;
2188 }
2189
2190 /*
2191  * sysfs parts below -->
2192  */
2193 static ssize_t
2194 cfq_var_show(unsigned int var, char *page)
2195 {
2196         return sprintf(page, "%d\n", var);
2197 }
2198
2199 static ssize_t
2200 cfq_var_store(unsigned int *var, const char *page, size_t count)
2201 {
2202         char *p = (char *) page;
2203
2204         *var = simple_strtoul(p, &p, 10);
2205         return count;
2206 }
2207
2208 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2209 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2210 {                                                                       \
2211         struct cfq_data *cfqd = e->elevator_data;                       \
2212         unsigned int __data = __VAR;                                    \
2213         if (__CONV)                                                     \
2214                 __data = jiffies_to_msecs(__data);                      \
2215         return cfq_var_show(__data, (page));                            \
2216 }
2217 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2218 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2219 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2220 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2221 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2222 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2223 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2224 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2225 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2226 #undef SHOW_FUNCTION
2227
2228 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2229 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2230 {                                                                       \
2231         struct cfq_data *cfqd = e->elevator_data;                       \
2232         unsigned int __data;                                            \
2233         int ret = cfq_var_store(&__data, (page), count);                \
2234         if (__data < (MIN))                                             \
2235                 __data = (MIN);                                         \
2236         else if (__data > (MAX))                                        \
2237                 __data = (MAX);                                         \
2238         if (__CONV)                                                     \
2239                 *(__PTR) = msecs_to_jiffies(__data);                    \
2240         else                                                            \
2241                 *(__PTR) = __data;                                      \
2242         return ret;                                                     \
2243 }
2244 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2245 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2246                 UINT_MAX, 1);
2247 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2248                 UINT_MAX, 1);
2249 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2250 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2251                 UINT_MAX, 0);
2252 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2253 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2254 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2255 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2256                 UINT_MAX, 0);
2257 #undef STORE_FUNCTION
2258
2259 #define CFQ_ATTR(name) \
2260         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2261
2262 static struct elv_fs_entry cfq_attrs[] = {
2263         CFQ_ATTR(quantum),
2264         CFQ_ATTR(fifo_expire_sync),
2265         CFQ_ATTR(fifo_expire_async),
2266         CFQ_ATTR(back_seek_max),
2267         CFQ_ATTR(back_seek_penalty),
2268         CFQ_ATTR(slice_sync),
2269         CFQ_ATTR(slice_async),
2270         CFQ_ATTR(slice_async_rq),
2271         CFQ_ATTR(slice_idle),
2272         __ATTR_NULL
2273 };
2274
2275 static struct elevator_type iosched_cfq = {
2276         .ops = {
2277                 .elevator_merge_fn =            cfq_merge,
2278                 .elevator_merged_fn =           cfq_merged_request,
2279                 .elevator_merge_req_fn =        cfq_merged_requests,
2280                 .elevator_allow_merge_fn =      cfq_allow_merge,
2281                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2282                 .elevator_add_req_fn =          cfq_insert_request,
2283                 .elevator_activate_req_fn =     cfq_activate_request,
2284                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2285                 .elevator_queue_empty_fn =      cfq_queue_empty,
2286                 .elevator_completed_req_fn =    cfq_completed_request,
2287                 .elevator_former_req_fn =       elv_rb_former_request,
2288                 .elevator_latter_req_fn =       elv_rb_latter_request,
2289                 .elevator_set_req_fn =          cfq_set_request,
2290                 .elevator_put_req_fn =          cfq_put_request,
2291                 .elevator_may_queue_fn =        cfq_may_queue,
2292                 .elevator_init_fn =             cfq_init_queue,
2293                 .elevator_exit_fn =             cfq_exit_queue,
2294                 .trim =                         cfq_free_io_context,
2295         },
2296         .elevator_attrs =       cfq_attrs,
2297         .elevator_name =        "cfq",
2298         .elevator_owner =       THIS_MODULE,
2299 };
2300
2301 static int __init cfq_init(void)
2302 {
2303         /*
2304          * could be 0 on HZ < 1000 setups
2305          */
2306         if (!cfq_slice_async)
2307                 cfq_slice_async = 1;
2308         if (!cfq_slice_idle)
2309                 cfq_slice_idle = 1;
2310
2311         if (cfq_slab_setup())
2312                 return -ENOMEM;
2313
2314         elv_register(&iosched_cfq);
2315
2316         return 0;
2317 }
2318
2319 static void __exit cfq_exit(void)
2320 {
2321         DECLARE_COMPLETION_ONSTACK(all_gone);
2322         elv_unregister(&iosched_cfq);
2323         ioc_gone = &all_gone;
2324         /* ioc_gone's update must be visible before reading ioc_count */
2325         smp_wmb();
2326
2327         /*
2328          * this also protects us from entering cfq_slab_kill() with
2329          * pending RCU callbacks
2330          */
2331         if (elv_ioc_count_read(ioc_count))
2332                 wait_for_completion(&all_gone);
2333         cfq_slab_kill();
2334 }
2335
2336 module_init(cfq_init);
2337 module_exit(cfq_exit);
2338
2339 MODULE_AUTHOR("Jens Axboe");
2340 MODULE_LICENSE("GPL");
2341 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");