cfq-iosched: kill two unused cfqq flags
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define ASYNC                   (0)
60 #define SYNC                    (1)
61
62 #define sample_valid(samples)   ((samples) > 80)
63
64 /*
65  * Most of our rbtree usage is for sorting with min extraction, so
66  * if we cache the leftmost node we don't have to walk down the tree
67  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
68  * move this into the elevator for the rq sorting as well.
69  */
70 struct cfq_rb_root {
71         struct rb_root rb;
72         struct rb_node *left;
73 };
74 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
75
76 /*
77  * Per block device queue structure
78  */
79 struct cfq_data {
80         struct request_queue *queue;
81
82         /*
83          * rr list of queues with requests and the count of them
84          */
85         struct cfq_rb_root service_tree;
86         unsigned int busy_queues;
87         /*
88          * Used to track any pending rt requests so we can pre-empt current
89          * non-RT cfqq in service when this value is non-zero.
90          */
91         unsigned int busy_rt_queues;
92
93         int rq_in_driver;
94         int sync_flight;
95
96         /*
97          * queue-depth detection
98          */
99         int rq_queued;
100         int hw_tag;
101         int hw_tag_samples;
102         int rq_in_driver_peak;
103
104         /*
105          * idle window management
106          */
107         struct timer_list idle_slice_timer;
108         struct work_struct unplug_work;
109
110         struct cfq_queue *active_queue;
111         struct cfq_io_context *active_cic;
112
113         /*
114          * async queue for each priority case
115          */
116         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
117         struct cfq_queue *async_idle_cfqq;
118
119         sector_t last_position;
120         unsigned long last_end_request;
121
122         /*
123          * tunables, see top of file
124          */
125         unsigned int cfq_quantum;
126         unsigned int cfq_fifo_expire[2];
127         unsigned int cfq_back_penalty;
128         unsigned int cfq_back_max;
129         unsigned int cfq_slice[2];
130         unsigned int cfq_slice_async_rq;
131         unsigned int cfq_slice_idle;
132
133         struct list_head cic_list;
134 };
135
136 /*
137  * Per process-grouping structure
138  */
139 struct cfq_queue {
140         /* reference count */
141         atomic_t ref;
142         /* various state flags, see below */
143         unsigned int flags;
144         /* parent cfq_data */
145         struct cfq_data *cfqd;
146         /* service_tree member */
147         struct rb_node rb_node;
148         /* service_tree key */
149         unsigned long rb_key;
150         /* sorted list of pending requests */
151         struct rb_root sort_list;
152         /* if fifo isn't expired, next request to serve */
153         struct request *next_rq;
154         /* requests queued in sort_list */
155         int queued[2];
156         /* currently allocated requests */
157         int allocated[2];
158         /* fifo list of requests in sort_list */
159         struct list_head fifo;
160
161         unsigned long slice_end;
162         long slice_resid;
163         unsigned int slice_dispatch;
164
165         /* pending metadata requests */
166         int meta_pending;
167         /* number of requests that are on the dispatch list or inside driver */
168         int dispatched;
169
170         /* io prio of this group */
171         unsigned short ioprio, org_ioprio;
172         unsigned short ioprio_class, org_ioprio_class;
173
174         pid_t pid;
175 };
176
177 enum cfqq_state_flags {
178         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
179         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
180         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
181         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
182         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
183         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
184         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
185         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
186         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
187 };
188
189 #define CFQ_CFQQ_FNS(name)                                              \
190 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
191 {                                                                       \
192         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
193 }                                                                       \
194 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
195 {                                                                       \
196         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
197 }                                                                       \
198 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
199 {                                                                       \
200         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
201 }
202
203 CFQ_CFQQ_FNS(on_rr);
204 CFQ_CFQQ_FNS(wait_request);
205 CFQ_CFQQ_FNS(must_alloc);
206 CFQ_CFQQ_FNS(must_alloc_slice);
207 CFQ_CFQQ_FNS(fifo_expire);
208 CFQ_CFQQ_FNS(idle_window);
209 CFQ_CFQQ_FNS(prio_changed);
210 CFQ_CFQQ_FNS(slice_new);
211 CFQ_CFQQ_FNS(sync);
212 #undef CFQ_CFQQ_FNS
213
214 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
215         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
216 #define cfq_log(cfqd, fmt, args...)     \
217         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
218
219 static void cfq_dispatch_insert(struct request_queue *, struct request *);
220 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
221                                        struct io_context *, gfp_t);
222 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
223                                                 struct io_context *);
224
225 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
226                                             int is_sync)
227 {
228         return cic->cfqq[!!is_sync];
229 }
230
231 static inline void cic_set_cfqq(struct cfq_io_context *cic,
232                                 struct cfq_queue *cfqq, int is_sync)
233 {
234         cic->cfqq[!!is_sync] = cfqq;
235 }
236
237 /*
238  * We regard a request as SYNC, if it's either a read or has the SYNC bit
239  * set (in which case it could also be direct WRITE).
240  */
241 static inline int cfq_bio_sync(struct bio *bio)
242 {
243         if (bio_data_dir(bio) == READ || bio_sync(bio))
244                 return 1;
245
246         return 0;
247 }
248
249 /*
250  * scheduler run of queue, if there are requests pending and no one in the
251  * driver that will restart queueing
252  */
253 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
254 {
255         if (cfqd->busy_queues) {
256                 cfq_log(cfqd, "schedule dispatch");
257                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
258         }
259 }
260
261 static int cfq_queue_empty(struct request_queue *q)
262 {
263         struct cfq_data *cfqd = q->elevator->elevator_data;
264
265         return !cfqd->busy_queues;
266 }
267
268 /*
269  * Scale schedule slice based on io priority. Use the sync time slice only
270  * if a queue is marked sync and has sync io queued. A sync queue with async
271  * io only, should not get full sync slice length.
272  */
273 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
274                                  unsigned short prio)
275 {
276         const int base_slice = cfqd->cfq_slice[sync];
277
278         WARN_ON(prio >= IOPRIO_BE_NR);
279
280         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
281 }
282
283 static inline int
284 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
285 {
286         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
287 }
288
289 static inline void
290 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
291 {
292         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
293         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
294 }
295
296 /*
297  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
298  * isn't valid until the first request from the dispatch is activated
299  * and the slice time set.
300  */
301 static inline int cfq_slice_used(struct cfq_queue *cfqq)
302 {
303         if (cfq_cfqq_slice_new(cfqq))
304                 return 0;
305         if (time_before(jiffies, cfqq->slice_end))
306                 return 0;
307
308         return 1;
309 }
310
311 /*
312  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
313  * We choose the request that is closest to the head right now. Distance
314  * behind the head is penalized and only allowed to a certain extent.
315  */
316 static struct request *
317 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
318 {
319         sector_t last, s1, s2, d1 = 0, d2 = 0;
320         unsigned long back_max;
321 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
322 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
323         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
324
325         if (rq1 == NULL || rq1 == rq2)
326                 return rq2;
327         if (rq2 == NULL)
328                 return rq1;
329
330         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
331                 return rq1;
332         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
333                 return rq2;
334         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
335                 return rq1;
336         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
337                 return rq2;
338
339         s1 = rq1->sector;
340         s2 = rq2->sector;
341
342         last = cfqd->last_position;
343
344         /*
345          * by definition, 1KiB is 2 sectors
346          */
347         back_max = cfqd->cfq_back_max * 2;
348
349         /*
350          * Strict one way elevator _except_ in the case where we allow
351          * short backward seeks which are biased as twice the cost of a
352          * similar forward seek.
353          */
354         if (s1 >= last)
355                 d1 = s1 - last;
356         else if (s1 + back_max >= last)
357                 d1 = (last - s1) * cfqd->cfq_back_penalty;
358         else
359                 wrap |= CFQ_RQ1_WRAP;
360
361         if (s2 >= last)
362                 d2 = s2 - last;
363         else if (s2 + back_max >= last)
364                 d2 = (last - s2) * cfqd->cfq_back_penalty;
365         else
366                 wrap |= CFQ_RQ2_WRAP;
367
368         /* Found required data */
369
370         /*
371          * By doing switch() on the bit mask "wrap" we avoid having to
372          * check two variables for all permutations: --> faster!
373          */
374         switch (wrap) {
375         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
376                 if (d1 < d2)
377                         return rq1;
378                 else if (d2 < d1)
379                         return rq2;
380                 else {
381                         if (s1 >= s2)
382                                 return rq1;
383                         else
384                                 return rq2;
385                 }
386
387         case CFQ_RQ2_WRAP:
388                 return rq1;
389         case CFQ_RQ1_WRAP:
390                 return rq2;
391         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
392         default:
393                 /*
394                  * Since both rqs are wrapped,
395                  * start with the one that's further behind head
396                  * (--> only *one* back seek required),
397                  * since back seek takes more time than forward.
398                  */
399                 if (s1 <= s2)
400                         return rq1;
401                 else
402                         return rq2;
403         }
404 }
405
406 /*
407  * The below is leftmost cache rbtree addon
408  */
409 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
410 {
411         if (!root->left)
412                 root->left = rb_first(&root->rb);
413
414         if (root->left)
415                 return rb_entry(root->left, struct cfq_queue, rb_node);
416
417         return NULL;
418 }
419
420 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
421 {
422         if (root->left == n)
423                 root->left = NULL;
424
425         rb_erase(n, &root->rb);
426         RB_CLEAR_NODE(n);
427 }
428
429 /*
430  * would be nice to take fifo expire time into account as well
431  */
432 static struct request *
433 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
434                   struct request *last)
435 {
436         struct rb_node *rbnext = rb_next(&last->rb_node);
437         struct rb_node *rbprev = rb_prev(&last->rb_node);
438         struct request *next = NULL, *prev = NULL;
439
440         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
441
442         if (rbprev)
443                 prev = rb_entry_rq(rbprev);
444
445         if (rbnext)
446                 next = rb_entry_rq(rbnext);
447         else {
448                 rbnext = rb_first(&cfqq->sort_list);
449                 if (rbnext && rbnext != &last->rb_node)
450                         next = rb_entry_rq(rbnext);
451         }
452
453         return cfq_choose_req(cfqd, next, prev);
454 }
455
456 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
457                                       struct cfq_queue *cfqq)
458 {
459         /*
460          * just an approximation, should be ok.
461          */
462         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
463                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
464 }
465
466 /*
467  * The cfqd->service_tree holds all pending cfq_queue's that have
468  * requests waiting to be processed. It is sorted in the order that
469  * we will service the queues.
470  */
471 static void cfq_service_tree_add(struct cfq_data *cfqd,
472                                     struct cfq_queue *cfqq, int add_front)
473 {
474         struct rb_node **p, *parent;
475         struct cfq_queue *__cfqq;
476         unsigned long rb_key;
477         int left;
478
479         if (cfq_class_idle(cfqq)) {
480                 rb_key = CFQ_IDLE_DELAY;
481                 parent = rb_last(&cfqd->service_tree.rb);
482                 if (parent && parent != &cfqq->rb_node) {
483                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
484                         rb_key += __cfqq->rb_key;
485                 } else
486                         rb_key += jiffies;
487         } else if (!add_front) {
488                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
489                 rb_key += cfqq->slice_resid;
490                 cfqq->slice_resid = 0;
491         } else
492                 rb_key = 0;
493
494         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
495                 /*
496                  * same position, nothing more to do
497                  */
498                 if (rb_key == cfqq->rb_key)
499                         return;
500
501                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
502         }
503
504         left = 1;
505         parent = NULL;
506         p = &cfqd->service_tree.rb.rb_node;
507         while (*p) {
508                 struct rb_node **n;
509
510                 parent = *p;
511                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
512
513                 /*
514                  * sort RT queues first, we always want to give
515                  * preference to them. IDLE queues goes to the back.
516                  * after that, sort on the next service time.
517                  */
518                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
519                         n = &(*p)->rb_left;
520                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
521                         n = &(*p)->rb_right;
522                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
523                         n = &(*p)->rb_left;
524                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
525                         n = &(*p)->rb_right;
526                 else if (rb_key < __cfqq->rb_key)
527                         n = &(*p)->rb_left;
528                 else
529                         n = &(*p)->rb_right;
530
531                 if (n == &(*p)->rb_right)
532                         left = 0;
533
534                 p = n;
535         }
536
537         if (left)
538                 cfqd->service_tree.left = &cfqq->rb_node;
539
540         cfqq->rb_key = rb_key;
541         rb_link_node(&cfqq->rb_node, parent, p);
542         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
543 }
544
545 /*
546  * Update cfqq's position in the service tree.
547  */
548 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
549 {
550         /*
551          * Resorting requires the cfqq to be on the RR list already.
552          */
553         if (cfq_cfqq_on_rr(cfqq))
554                 cfq_service_tree_add(cfqd, cfqq, 0);
555 }
556
557 /*
558  * add to busy list of queues for service, trying to be fair in ordering
559  * the pending list according to last request service
560  */
561 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
562 {
563         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
564         BUG_ON(cfq_cfqq_on_rr(cfqq));
565         cfq_mark_cfqq_on_rr(cfqq);
566         cfqd->busy_queues++;
567         if (cfq_class_rt(cfqq))
568                 cfqd->busy_rt_queues++;
569
570         cfq_resort_rr_list(cfqd, cfqq);
571 }
572
573 /*
574  * Called when the cfqq no longer has requests pending, remove it from
575  * the service tree.
576  */
577 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
578 {
579         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
580         BUG_ON(!cfq_cfqq_on_rr(cfqq));
581         cfq_clear_cfqq_on_rr(cfqq);
582
583         if (!RB_EMPTY_NODE(&cfqq->rb_node))
584                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
585
586         BUG_ON(!cfqd->busy_queues);
587         cfqd->busy_queues--;
588         if (cfq_class_rt(cfqq))
589                 cfqd->busy_rt_queues--;
590 }
591
592 /*
593  * rb tree support functions
594  */
595 static void cfq_del_rq_rb(struct request *rq)
596 {
597         struct cfq_queue *cfqq = RQ_CFQQ(rq);
598         struct cfq_data *cfqd = cfqq->cfqd;
599         const int sync = rq_is_sync(rq);
600
601         BUG_ON(!cfqq->queued[sync]);
602         cfqq->queued[sync]--;
603
604         elv_rb_del(&cfqq->sort_list, rq);
605
606         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
607                 cfq_del_cfqq_rr(cfqd, cfqq);
608 }
609
610 static void cfq_add_rq_rb(struct request *rq)
611 {
612         struct cfq_queue *cfqq = RQ_CFQQ(rq);
613         struct cfq_data *cfqd = cfqq->cfqd;
614         struct request *__alias;
615
616         cfqq->queued[rq_is_sync(rq)]++;
617
618         /*
619          * looks a little odd, but the first insert might return an alias.
620          * if that happens, put the alias on the dispatch list
621          */
622         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
623                 cfq_dispatch_insert(cfqd->queue, __alias);
624
625         if (!cfq_cfqq_on_rr(cfqq))
626                 cfq_add_cfqq_rr(cfqd, cfqq);
627
628         /*
629          * check if this request is a better next-serve candidate
630          */
631         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
632         BUG_ON(!cfqq->next_rq);
633 }
634
635 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
636 {
637         elv_rb_del(&cfqq->sort_list, rq);
638         cfqq->queued[rq_is_sync(rq)]--;
639         cfq_add_rq_rb(rq);
640 }
641
642 static struct request *
643 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
644 {
645         struct task_struct *tsk = current;
646         struct cfq_io_context *cic;
647         struct cfq_queue *cfqq;
648
649         cic = cfq_cic_lookup(cfqd, tsk->io_context);
650         if (!cic)
651                 return NULL;
652
653         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
654         if (cfqq) {
655                 sector_t sector = bio->bi_sector + bio_sectors(bio);
656
657                 return elv_rb_find(&cfqq->sort_list, sector);
658         }
659
660         return NULL;
661 }
662
663 static void cfq_activate_request(struct request_queue *q, struct request *rq)
664 {
665         struct cfq_data *cfqd = q->elevator->elevator_data;
666
667         cfqd->rq_in_driver++;
668         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
669                                                 cfqd->rq_in_driver);
670
671         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
672 }
673
674 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
675 {
676         struct cfq_data *cfqd = q->elevator->elevator_data;
677
678         WARN_ON(!cfqd->rq_in_driver);
679         cfqd->rq_in_driver--;
680         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
681                                                 cfqd->rq_in_driver);
682 }
683
684 static void cfq_remove_request(struct request *rq)
685 {
686         struct cfq_queue *cfqq = RQ_CFQQ(rq);
687
688         if (cfqq->next_rq == rq)
689                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
690
691         list_del_init(&rq->queuelist);
692         cfq_del_rq_rb(rq);
693
694         cfqq->cfqd->rq_queued--;
695         if (rq_is_meta(rq)) {
696                 WARN_ON(!cfqq->meta_pending);
697                 cfqq->meta_pending--;
698         }
699 }
700
701 static int cfq_merge(struct request_queue *q, struct request **req,
702                      struct bio *bio)
703 {
704         struct cfq_data *cfqd = q->elevator->elevator_data;
705         struct request *__rq;
706
707         __rq = cfq_find_rq_fmerge(cfqd, bio);
708         if (__rq && elv_rq_merge_ok(__rq, bio)) {
709                 *req = __rq;
710                 return ELEVATOR_FRONT_MERGE;
711         }
712
713         return ELEVATOR_NO_MERGE;
714 }
715
716 static void cfq_merged_request(struct request_queue *q, struct request *req,
717                                int type)
718 {
719         if (type == ELEVATOR_FRONT_MERGE) {
720                 struct cfq_queue *cfqq = RQ_CFQQ(req);
721
722                 cfq_reposition_rq_rb(cfqq, req);
723         }
724 }
725
726 static void
727 cfq_merged_requests(struct request_queue *q, struct request *rq,
728                     struct request *next)
729 {
730         /*
731          * reposition in fifo if next is older than rq
732          */
733         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
734             time_before(next->start_time, rq->start_time))
735                 list_move(&rq->queuelist, &next->queuelist);
736
737         cfq_remove_request(next);
738 }
739
740 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
741                            struct bio *bio)
742 {
743         struct cfq_data *cfqd = q->elevator->elevator_data;
744         struct cfq_io_context *cic;
745         struct cfq_queue *cfqq;
746
747         /*
748          * Disallow merge of a sync bio into an async request.
749          */
750         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
751                 return 0;
752
753         /*
754          * Lookup the cfqq that this bio will be queued with. Allow
755          * merge only if rq is queued there.
756          */
757         cic = cfq_cic_lookup(cfqd, current->io_context);
758         if (!cic)
759                 return 0;
760
761         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
762         if (cfqq == RQ_CFQQ(rq))
763                 return 1;
764
765         return 0;
766 }
767
768 static void __cfq_set_active_queue(struct cfq_data *cfqd,
769                                    struct cfq_queue *cfqq)
770 {
771         if (cfqq) {
772                 cfq_log_cfqq(cfqd, cfqq, "set_active");
773                 cfqq->slice_end = 0;
774                 cfqq->slice_dispatch = 0;
775
776                 cfq_clear_cfqq_wait_request(cfqq);
777                 cfq_clear_cfqq_must_alloc_slice(cfqq);
778                 cfq_clear_cfqq_fifo_expire(cfqq);
779                 cfq_mark_cfqq_slice_new(cfqq);
780
781                 del_timer(&cfqd->idle_slice_timer);
782         }
783
784         cfqd->active_queue = cfqq;
785 }
786
787 /*
788  * current cfqq expired its slice (or was too idle), select new one
789  */
790 static void
791 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
792                     int timed_out)
793 {
794         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
795
796         if (cfq_cfqq_wait_request(cfqq))
797                 del_timer(&cfqd->idle_slice_timer);
798
799         cfq_clear_cfqq_wait_request(cfqq);
800
801         /*
802          * store what was left of this slice, if the queue idled/timed out
803          */
804         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
805                 cfqq->slice_resid = cfqq->slice_end - jiffies;
806                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
807         }
808
809         cfq_resort_rr_list(cfqd, cfqq);
810
811         if (cfqq == cfqd->active_queue)
812                 cfqd->active_queue = NULL;
813
814         if (cfqd->active_cic) {
815                 put_io_context(cfqd->active_cic->ioc);
816                 cfqd->active_cic = NULL;
817         }
818 }
819
820 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
821 {
822         struct cfq_queue *cfqq = cfqd->active_queue;
823
824         if (cfqq)
825                 __cfq_slice_expired(cfqd, cfqq, timed_out);
826 }
827
828 /*
829  * Get next queue for service. Unless we have a queue preemption,
830  * we'll simply select the first cfqq in the service tree.
831  */
832 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
833 {
834         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
835                 return NULL;
836
837         return cfq_rb_first(&cfqd->service_tree);
838 }
839
840 /*
841  * Get and set a new active queue for service.
842  */
843 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
844 {
845         struct cfq_queue *cfqq;
846
847         cfqq = cfq_get_next_queue(cfqd);
848         __cfq_set_active_queue(cfqd, cfqq);
849         return cfqq;
850 }
851
852 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
853                                           struct request *rq)
854 {
855         if (rq->sector >= cfqd->last_position)
856                 return rq->sector - cfqd->last_position;
857         else
858                 return cfqd->last_position - rq->sector;
859 }
860
861 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
862 {
863         struct cfq_io_context *cic = cfqd->active_cic;
864
865         if (!sample_valid(cic->seek_samples))
866                 return 0;
867
868         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
869 }
870
871 static int cfq_close_cooperator(struct cfq_data *cfq_data,
872                                 struct cfq_queue *cfqq)
873 {
874         /*
875          * We should notice if some of the queues are cooperating, eg
876          * working closely on the same area of the disk. In that case,
877          * we can group them together and don't waste time idling.
878          */
879         return 0;
880 }
881
882 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
883
884 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
885 {
886         struct cfq_queue *cfqq = cfqd->active_queue;
887         struct cfq_io_context *cic;
888         unsigned long sl;
889
890         /*
891          * SSD device without seek penalty, disable idling. But only do so
892          * for devices that support queuing, otherwise we still have a problem
893          * with sync vs async workloads.
894          */
895         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
896                 return;
897
898         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
899         WARN_ON(cfq_cfqq_slice_new(cfqq));
900
901         /*
902          * idle is disabled, either manually or by past process history
903          */
904         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
905                 return;
906
907         /*
908          * still requests with the driver, don't idle
909          */
910         if (cfqd->rq_in_driver)
911                 return;
912
913         /*
914          * task has exited, don't wait
915          */
916         cic = cfqd->active_cic;
917         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
918                 return;
919
920         /*
921          * See if this prio level has a good candidate
922          */
923         if (cfq_close_cooperator(cfqd, cfqq) &&
924             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
925                 return;
926
927         cfq_mark_cfqq_wait_request(cfqq);
928
929         /*
930          * we don't want to idle for seeks, but we do want to allow
931          * fair distribution of slice time for a process doing back-to-back
932          * seeks. so allow a little bit of time for him to submit a new rq
933          */
934         sl = cfqd->cfq_slice_idle;
935         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
936                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
937
938         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
939         cfq_log(cfqd, "arm_idle: %lu", sl);
940 }
941
942 /*
943  * Move request from internal lists to the request queue dispatch list.
944  */
945 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
946 {
947         struct cfq_data *cfqd = q->elevator->elevator_data;
948         struct cfq_queue *cfqq = RQ_CFQQ(rq);
949
950         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
951
952         cfq_remove_request(rq);
953         cfqq->dispatched++;
954         elv_dispatch_sort(q, rq);
955
956         if (cfq_cfqq_sync(cfqq))
957                 cfqd->sync_flight++;
958 }
959
960 /*
961  * return expired entry, or NULL to just start from scratch in rbtree
962  */
963 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
964 {
965         struct cfq_data *cfqd = cfqq->cfqd;
966         struct request *rq;
967         int fifo;
968
969         if (cfq_cfqq_fifo_expire(cfqq))
970                 return NULL;
971
972         cfq_mark_cfqq_fifo_expire(cfqq);
973
974         if (list_empty(&cfqq->fifo))
975                 return NULL;
976
977         fifo = cfq_cfqq_sync(cfqq);
978         rq = rq_entry_fifo(cfqq->fifo.next);
979
980         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
981                 rq = NULL;
982
983         cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
984         return rq;
985 }
986
987 static inline int
988 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
989 {
990         const int base_rq = cfqd->cfq_slice_async_rq;
991
992         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
993
994         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
995 }
996
997 /*
998  * Select a queue for service. If we have a current active queue,
999  * check whether to continue servicing it, or retrieve and set a new one.
1000  */
1001 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1002 {
1003         struct cfq_queue *cfqq;
1004
1005         cfqq = cfqd->active_queue;
1006         if (!cfqq)
1007                 goto new_queue;
1008
1009         /*
1010          * The active queue has run out of time, expire it and select new.
1011          */
1012         if (cfq_slice_used(cfqq))
1013                 goto expire;
1014
1015         /*
1016          * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1017          * cfqq.
1018          */
1019         if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1020                 /*
1021                  * We simulate this as cfqq timed out so that it gets to bank
1022                  * the remaining of its time slice.
1023                  */
1024                 cfq_log_cfqq(cfqd, cfqq, "preempt");
1025                 cfq_slice_expired(cfqd, 1);
1026                 goto new_queue;
1027         }
1028
1029         /*
1030          * The active queue has requests and isn't expired, allow it to
1031          * dispatch.
1032          */
1033         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1034                 goto keep_queue;
1035
1036         /*
1037          * No requests pending. If the active queue still has requests in
1038          * flight or is idling for a new request, allow either of these
1039          * conditions to happen (or time out) before selecting a new queue.
1040          */
1041         if (timer_pending(&cfqd->idle_slice_timer) ||
1042             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1043                 cfqq = NULL;
1044                 goto keep_queue;
1045         }
1046
1047 expire:
1048         cfq_slice_expired(cfqd, 0);
1049 new_queue:
1050         cfqq = cfq_set_active_queue(cfqd);
1051 keep_queue:
1052         return cfqq;
1053 }
1054
1055 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1056 {
1057         int dispatched = 0;
1058
1059         while (cfqq->next_rq) {
1060                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1061                 dispatched++;
1062         }
1063
1064         BUG_ON(!list_empty(&cfqq->fifo));
1065         return dispatched;
1066 }
1067
1068 /*
1069  * Drain our current requests. Used for barriers and when switching
1070  * io schedulers on-the-fly.
1071  */
1072 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1073 {
1074         struct cfq_queue *cfqq;
1075         int dispatched = 0;
1076
1077         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1078                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1079
1080         cfq_slice_expired(cfqd, 0);
1081
1082         BUG_ON(cfqd->busy_queues);
1083
1084         cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1085         return dispatched;
1086 }
1087
1088 /*
1089  * Dispatch a request from cfqq, moving them to the request queue
1090  * dispatch list.
1091  */
1092 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1093 {
1094         struct request *rq;
1095
1096         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1097
1098         /*
1099          * follow expired path, else get first next available
1100          */
1101         rq = cfq_check_fifo(cfqq);
1102         if (!rq)
1103                 rq = cfqq->next_rq;
1104
1105         /*
1106          * insert request into driver dispatch list
1107          */
1108         cfq_dispatch_insert(cfqd->queue, rq);
1109
1110         if (!cfqd->active_cic) {
1111                 struct cfq_io_context *cic = RQ_CIC(rq);
1112
1113                 atomic_inc(&cic->ioc->refcount);
1114                 cfqd->active_cic = cic;
1115         }
1116 }
1117
1118 /*
1119  * Find the cfqq that we need to service and move a request from that to the
1120  * dispatch list
1121  */
1122 static int cfq_dispatch_requests(struct request_queue *q, int force)
1123 {
1124         struct cfq_data *cfqd = q->elevator->elevator_data;
1125         struct cfq_queue *cfqq;
1126         unsigned int max_dispatch;
1127
1128         if (!cfqd->busy_queues)
1129                 return 0;
1130
1131         if (unlikely(force))
1132                 return cfq_forced_dispatch(cfqd);
1133
1134         cfqq = cfq_select_queue(cfqd);
1135         if (!cfqq)
1136                 return 0;
1137
1138         /*
1139          * If this is an async queue and we have sync IO in flight, let it wait
1140          */
1141         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1142                 return 0;
1143
1144         max_dispatch = cfqd->cfq_quantum;
1145         if (cfq_class_idle(cfqq))
1146                 max_dispatch = 1;
1147
1148         /*
1149          * Does this cfqq already have too much IO in flight?
1150          */
1151         if (cfqq->dispatched >= max_dispatch) {
1152                 /*
1153                  * idle queue must always only have a single IO in flight
1154                  */
1155                 if (cfq_class_idle(cfqq))
1156                         return 0;
1157
1158                 /*
1159                  * We have other queues, don't allow more IO from this one
1160                  */
1161                 if (cfqd->busy_queues > 1)
1162                         return 0;
1163
1164                 /*
1165                  * we are the only queue, allow up to 4 times of 'quantum'
1166                  */
1167                 if (cfqq->dispatched >= 4 * max_dispatch)
1168                         return 0;
1169         }
1170
1171         /*
1172          * Dispatch a request from this cfqq
1173          */
1174         cfq_dispatch_request(cfqd, cfqq);
1175         cfqq->slice_dispatch++;
1176
1177         /*
1178          * expire an async queue immediately if it has used up its slice. idle
1179          * queue always expire after 1 dispatch round.
1180          */
1181         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1182             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1183             cfq_class_idle(cfqq))) {
1184                 cfqq->slice_end = jiffies + 1;
1185                 cfq_slice_expired(cfqd, 0);
1186         }
1187
1188         cfq_log(cfqd, "dispatched a request");
1189         return 1;
1190 }
1191
1192 /*
1193  * task holds one reference to the queue, dropped when task exits. each rq
1194  * in-flight on this queue also holds a reference, dropped when rq is freed.
1195  *
1196  * queue lock must be held here.
1197  */
1198 static void cfq_put_queue(struct cfq_queue *cfqq)
1199 {
1200         struct cfq_data *cfqd = cfqq->cfqd;
1201
1202         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1203
1204         if (!atomic_dec_and_test(&cfqq->ref))
1205                 return;
1206
1207         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1208         BUG_ON(rb_first(&cfqq->sort_list));
1209         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1210         BUG_ON(cfq_cfqq_on_rr(cfqq));
1211
1212         if (unlikely(cfqd->active_queue == cfqq)) {
1213                 __cfq_slice_expired(cfqd, cfqq, 0);
1214                 cfq_schedule_dispatch(cfqd);
1215         }
1216
1217         kmem_cache_free(cfq_pool, cfqq);
1218 }
1219
1220 /*
1221  * Must always be called with the rcu_read_lock() held
1222  */
1223 static void
1224 __call_for_each_cic(struct io_context *ioc,
1225                     void (*func)(struct io_context *, struct cfq_io_context *))
1226 {
1227         struct cfq_io_context *cic;
1228         struct hlist_node *n;
1229
1230         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1231                 func(ioc, cic);
1232 }
1233
1234 /*
1235  * Call func for each cic attached to this ioc.
1236  */
1237 static void
1238 call_for_each_cic(struct io_context *ioc,
1239                   void (*func)(struct io_context *, struct cfq_io_context *))
1240 {
1241         rcu_read_lock();
1242         __call_for_each_cic(ioc, func);
1243         rcu_read_unlock();
1244 }
1245
1246 static void cfq_cic_free_rcu(struct rcu_head *head)
1247 {
1248         struct cfq_io_context *cic;
1249
1250         cic = container_of(head, struct cfq_io_context, rcu_head);
1251
1252         kmem_cache_free(cfq_ioc_pool, cic);
1253         elv_ioc_count_dec(ioc_count);
1254
1255         if (ioc_gone) {
1256                 /*
1257                  * CFQ scheduler is exiting, grab exit lock and check
1258                  * the pending io context count. If it hits zero,
1259                  * complete ioc_gone and set it back to NULL
1260                  */
1261                 spin_lock(&ioc_gone_lock);
1262                 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1263                         complete(ioc_gone);
1264                         ioc_gone = NULL;
1265                 }
1266                 spin_unlock(&ioc_gone_lock);
1267         }
1268 }
1269
1270 static void cfq_cic_free(struct cfq_io_context *cic)
1271 {
1272         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1273 }
1274
1275 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1276 {
1277         unsigned long flags;
1278
1279         BUG_ON(!cic->dead_key);
1280
1281         spin_lock_irqsave(&ioc->lock, flags);
1282         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1283         hlist_del_rcu(&cic->cic_list);
1284         spin_unlock_irqrestore(&ioc->lock, flags);
1285
1286         cfq_cic_free(cic);
1287 }
1288
1289 /*
1290  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1291  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1292  * and ->trim() which is called with the task lock held
1293  */
1294 static void cfq_free_io_context(struct io_context *ioc)
1295 {
1296         /*
1297          * ioc->refcount is zero here, or we are called from elv_unregister(),
1298          * so no more cic's are allowed to be linked into this ioc.  So it
1299          * should be ok to iterate over the known list, we will see all cic's
1300          * since no new ones are added.
1301          */
1302         __call_for_each_cic(ioc, cic_free_func);
1303 }
1304
1305 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1306 {
1307         if (unlikely(cfqq == cfqd->active_queue)) {
1308                 __cfq_slice_expired(cfqd, cfqq, 0);
1309                 cfq_schedule_dispatch(cfqd);
1310         }
1311
1312         cfq_put_queue(cfqq);
1313 }
1314
1315 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1316                                          struct cfq_io_context *cic)
1317 {
1318         struct io_context *ioc = cic->ioc;
1319
1320         list_del_init(&cic->queue_list);
1321
1322         /*
1323          * Make sure key == NULL is seen for dead queues
1324          */
1325         smp_wmb();
1326         cic->dead_key = (unsigned long) cic->key;
1327         cic->key = NULL;
1328
1329         if (ioc->ioc_data == cic)
1330                 rcu_assign_pointer(ioc->ioc_data, NULL);
1331
1332         if (cic->cfqq[ASYNC]) {
1333                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1334                 cic->cfqq[ASYNC] = NULL;
1335         }
1336
1337         if (cic->cfqq[SYNC]) {
1338                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1339                 cic->cfqq[SYNC] = NULL;
1340         }
1341 }
1342
1343 static void cfq_exit_single_io_context(struct io_context *ioc,
1344                                        struct cfq_io_context *cic)
1345 {
1346         struct cfq_data *cfqd = cic->key;
1347
1348         if (cfqd) {
1349                 struct request_queue *q = cfqd->queue;
1350                 unsigned long flags;
1351
1352                 spin_lock_irqsave(q->queue_lock, flags);
1353
1354                 /*
1355                  * Ensure we get a fresh copy of the ->key to prevent
1356                  * race between exiting task and queue
1357                  */
1358                 smp_read_barrier_depends();
1359                 if (cic->key)
1360                         __cfq_exit_single_io_context(cfqd, cic);
1361
1362                 spin_unlock_irqrestore(q->queue_lock, flags);
1363         }
1364 }
1365
1366 /*
1367  * The process that ioc belongs to has exited, we need to clean up
1368  * and put the internal structures we have that belongs to that process.
1369  */
1370 static void cfq_exit_io_context(struct io_context *ioc)
1371 {
1372         call_for_each_cic(ioc, cfq_exit_single_io_context);
1373 }
1374
1375 static struct cfq_io_context *
1376 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1377 {
1378         struct cfq_io_context *cic;
1379
1380         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1381                                                         cfqd->queue->node);
1382         if (cic) {
1383                 cic->last_end_request = jiffies;
1384                 INIT_LIST_HEAD(&cic->queue_list);
1385                 INIT_HLIST_NODE(&cic->cic_list);
1386                 cic->dtor = cfq_free_io_context;
1387                 cic->exit = cfq_exit_io_context;
1388                 elv_ioc_count_inc(ioc_count);
1389         }
1390
1391         return cic;
1392 }
1393
1394 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1395 {
1396         struct task_struct *tsk = current;
1397         int ioprio_class;
1398
1399         if (!cfq_cfqq_prio_changed(cfqq))
1400                 return;
1401
1402         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1403         switch (ioprio_class) {
1404         default:
1405                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1406         case IOPRIO_CLASS_NONE:
1407                 /*
1408                  * no prio set, inherit CPU scheduling settings
1409                  */
1410                 cfqq->ioprio = task_nice_ioprio(tsk);
1411                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1412                 break;
1413         case IOPRIO_CLASS_RT:
1414                 cfqq->ioprio = task_ioprio(ioc);
1415                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1416                 break;
1417         case IOPRIO_CLASS_BE:
1418                 cfqq->ioprio = task_ioprio(ioc);
1419                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1420                 break;
1421         case IOPRIO_CLASS_IDLE:
1422                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1423                 cfqq->ioprio = 7;
1424                 cfq_clear_cfqq_idle_window(cfqq);
1425                 break;
1426         }
1427
1428         /*
1429          * keep track of original prio settings in case we have to temporarily
1430          * elevate the priority of this queue
1431          */
1432         cfqq->org_ioprio = cfqq->ioprio;
1433         cfqq->org_ioprio_class = cfqq->ioprio_class;
1434         cfq_clear_cfqq_prio_changed(cfqq);
1435 }
1436
1437 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1438 {
1439         struct cfq_data *cfqd = cic->key;
1440         struct cfq_queue *cfqq;
1441         unsigned long flags;
1442
1443         if (unlikely(!cfqd))
1444                 return;
1445
1446         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1447
1448         cfqq = cic->cfqq[ASYNC];
1449         if (cfqq) {
1450                 struct cfq_queue *new_cfqq;
1451                 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1452                 if (new_cfqq) {
1453                         cic->cfqq[ASYNC] = new_cfqq;
1454                         cfq_put_queue(cfqq);
1455                 }
1456         }
1457
1458         cfqq = cic->cfqq[SYNC];
1459         if (cfqq)
1460                 cfq_mark_cfqq_prio_changed(cfqq);
1461
1462         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1463 }
1464
1465 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1466 {
1467         call_for_each_cic(ioc, changed_ioprio);
1468         ioc->ioprio_changed = 0;
1469 }
1470
1471 static struct cfq_queue *
1472 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1473                      struct io_context *ioc, gfp_t gfp_mask)
1474 {
1475         struct cfq_queue *cfqq, *new_cfqq = NULL;
1476         struct cfq_io_context *cic;
1477
1478 retry:
1479         cic = cfq_cic_lookup(cfqd, ioc);
1480         /* cic always exists here */
1481         cfqq = cic_to_cfqq(cic, is_sync);
1482
1483         if (!cfqq) {
1484                 if (new_cfqq) {
1485                         cfqq = new_cfqq;
1486                         new_cfqq = NULL;
1487                 } else if (gfp_mask & __GFP_WAIT) {
1488                         /*
1489                          * Inform the allocator of the fact that we will
1490                          * just repeat this allocation if it fails, to allow
1491                          * the allocator to do whatever it needs to attempt to
1492                          * free memory.
1493                          */
1494                         spin_unlock_irq(cfqd->queue->queue_lock);
1495                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1496                                         gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1497                                         cfqd->queue->node);
1498                         spin_lock_irq(cfqd->queue->queue_lock);
1499                         goto retry;
1500                 } else {
1501                         cfqq = kmem_cache_alloc_node(cfq_pool,
1502                                         gfp_mask | __GFP_ZERO,
1503                                         cfqd->queue->node);
1504                         if (!cfqq)
1505                                 goto out;
1506                 }
1507
1508                 RB_CLEAR_NODE(&cfqq->rb_node);
1509                 INIT_LIST_HEAD(&cfqq->fifo);
1510
1511                 atomic_set(&cfqq->ref, 0);
1512                 cfqq->cfqd = cfqd;
1513
1514                 cfq_mark_cfqq_prio_changed(cfqq);
1515
1516                 cfq_init_prio_data(cfqq, ioc);
1517
1518                 if (is_sync) {
1519                         if (!cfq_class_idle(cfqq))
1520                                 cfq_mark_cfqq_idle_window(cfqq);
1521                         cfq_mark_cfqq_sync(cfqq);
1522                 }
1523                 cfqq->pid = current->pid;
1524                 cfq_log_cfqq(cfqd, cfqq, "alloced");
1525         }
1526
1527         if (new_cfqq)
1528                 kmem_cache_free(cfq_pool, new_cfqq);
1529
1530 out:
1531         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1532         return cfqq;
1533 }
1534
1535 static struct cfq_queue **
1536 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1537 {
1538         switch (ioprio_class) {
1539         case IOPRIO_CLASS_RT:
1540                 return &cfqd->async_cfqq[0][ioprio];
1541         case IOPRIO_CLASS_BE:
1542                 return &cfqd->async_cfqq[1][ioprio];
1543         case IOPRIO_CLASS_IDLE:
1544                 return &cfqd->async_idle_cfqq;
1545         default:
1546                 BUG();
1547         }
1548 }
1549
1550 static struct cfq_queue *
1551 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1552               gfp_t gfp_mask)
1553 {
1554         const int ioprio = task_ioprio(ioc);
1555         const int ioprio_class = task_ioprio_class(ioc);
1556         struct cfq_queue **async_cfqq = NULL;
1557         struct cfq_queue *cfqq = NULL;
1558
1559         if (!is_sync) {
1560                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1561                 cfqq = *async_cfqq;
1562         }
1563
1564         if (!cfqq) {
1565                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1566                 if (!cfqq)
1567                         return NULL;
1568         }
1569
1570         /*
1571          * pin the queue now that it's allocated, scheduler exit will prune it
1572          */
1573         if (!is_sync && !(*async_cfqq)) {
1574                 atomic_inc(&cfqq->ref);
1575                 *async_cfqq = cfqq;
1576         }
1577
1578         atomic_inc(&cfqq->ref);
1579         return cfqq;
1580 }
1581
1582 /*
1583  * We drop cfq io contexts lazily, so we may find a dead one.
1584  */
1585 static void
1586 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1587                   struct cfq_io_context *cic)
1588 {
1589         unsigned long flags;
1590
1591         WARN_ON(!list_empty(&cic->queue_list));
1592
1593         spin_lock_irqsave(&ioc->lock, flags);
1594
1595         BUG_ON(ioc->ioc_data == cic);
1596
1597         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1598         hlist_del_rcu(&cic->cic_list);
1599         spin_unlock_irqrestore(&ioc->lock, flags);
1600
1601         cfq_cic_free(cic);
1602 }
1603
1604 static struct cfq_io_context *
1605 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1606 {
1607         struct cfq_io_context *cic;
1608         unsigned long flags;
1609         void *k;
1610
1611         if (unlikely(!ioc))
1612                 return NULL;
1613
1614         rcu_read_lock();
1615
1616         /*
1617          * we maintain a last-hit cache, to avoid browsing over the tree
1618          */
1619         cic = rcu_dereference(ioc->ioc_data);
1620         if (cic && cic->key == cfqd) {
1621                 rcu_read_unlock();
1622                 return cic;
1623         }
1624
1625         do {
1626                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1627                 rcu_read_unlock();
1628                 if (!cic)
1629                         break;
1630                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1631                 k = cic->key;
1632                 if (unlikely(!k)) {
1633                         cfq_drop_dead_cic(cfqd, ioc, cic);
1634                         rcu_read_lock();
1635                         continue;
1636                 }
1637
1638                 spin_lock_irqsave(&ioc->lock, flags);
1639                 rcu_assign_pointer(ioc->ioc_data, cic);
1640                 spin_unlock_irqrestore(&ioc->lock, flags);
1641                 break;
1642         } while (1);
1643
1644         return cic;
1645 }
1646
1647 /*
1648  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1649  * the process specific cfq io context when entered from the block layer.
1650  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1651  */
1652 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1653                         struct cfq_io_context *cic, gfp_t gfp_mask)
1654 {
1655         unsigned long flags;
1656         int ret;
1657
1658         ret = radix_tree_preload(gfp_mask);
1659         if (!ret) {
1660                 cic->ioc = ioc;
1661                 cic->key = cfqd;
1662
1663                 spin_lock_irqsave(&ioc->lock, flags);
1664                 ret = radix_tree_insert(&ioc->radix_root,
1665                                                 (unsigned long) cfqd, cic);
1666                 if (!ret)
1667                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1668                 spin_unlock_irqrestore(&ioc->lock, flags);
1669
1670                 radix_tree_preload_end();
1671
1672                 if (!ret) {
1673                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1674                         list_add(&cic->queue_list, &cfqd->cic_list);
1675                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1676                 }
1677         }
1678
1679         if (ret)
1680                 printk(KERN_ERR "cfq: cic link failed!\n");
1681
1682         return ret;
1683 }
1684
1685 /*
1686  * Setup general io context and cfq io context. There can be several cfq
1687  * io contexts per general io context, if this process is doing io to more
1688  * than one device managed by cfq.
1689  */
1690 static struct cfq_io_context *
1691 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1692 {
1693         struct io_context *ioc = NULL;
1694         struct cfq_io_context *cic;
1695
1696         might_sleep_if(gfp_mask & __GFP_WAIT);
1697
1698         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1699         if (!ioc)
1700                 return NULL;
1701
1702         cic = cfq_cic_lookup(cfqd, ioc);
1703         if (cic)
1704                 goto out;
1705
1706         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1707         if (cic == NULL)
1708                 goto err;
1709
1710         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1711                 goto err_free;
1712
1713 out:
1714         smp_read_barrier_depends();
1715         if (unlikely(ioc->ioprio_changed))
1716                 cfq_ioc_set_ioprio(ioc);
1717
1718         return cic;
1719 err_free:
1720         cfq_cic_free(cic);
1721 err:
1722         put_io_context(ioc);
1723         return NULL;
1724 }
1725
1726 static void
1727 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1728 {
1729         unsigned long elapsed = jiffies - cic->last_end_request;
1730         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1731
1732         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1733         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1734         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1735 }
1736
1737 static void
1738 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1739                        struct request *rq)
1740 {
1741         sector_t sdist;
1742         u64 total;
1743
1744         if (cic->last_request_pos < rq->sector)
1745                 sdist = rq->sector - cic->last_request_pos;
1746         else
1747                 sdist = cic->last_request_pos - rq->sector;
1748
1749         /*
1750          * Don't allow the seek distance to get too large from the
1751          * odd fragment, pagein, etc
1752          */
1753         if (cic->seek_samples <= 60) /* second&third seek */
1754                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1755         else
1756                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1757
1758         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1759         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1760         total = cic->seek_total + (cic->seek_samples/2);
1761         do_div(total, cic->seek_samples);
1762         cic->seek_mean = (sector_t)total;
1763 }
1764
1765 /*
1766  * Disable idle window if the process thinks too long or seeks so much that
1767  * it doesn't matter
1768  */
1769 static void
1770 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1771                        struct cfq_io_context *cic)
1772 {
1773         int old_idle, enable_idle;
1774
1775         /*
1776          * Don't idle for async or idle io prio class
1777          */
1778         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1779                 return;
1780
1781         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1782
1783         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1784             (cfqd->hw_tag && CIC_SEEKY(cic)))
1785                 enable_idle = 0;
1786         else if (sample_valid(cic->ttime_samples)) {
1787                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1788                         enable_idle = 0;
1789                 else
1790                         enable_idle = 1;
1791         }
1792
1793         if (old_idle != enable_idle) {
1794                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1795                 if (enable_idle)
1796                         cfq_mark_cfqq_idle_window(cfqq);
1797                 else
1798                         cfq_clear_cfqq_idle_window(cfqq);
1799         }
1800 }
1801
1802 /*
1803  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1804  * no or if we aren't sure, a 1 will cause a preempt.
1805  */
1806 static int
1807 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1808                    struct request *rq)
1809 {
1810         struct cfq_queue *cfqq;
1811
1812         cfqq = cfqd->active_queue;
1813         if (!cfqq)
1814                 return 0;
1815
1816         if (cfq_slice_used(cfqq))
1817                 return 1;
1818
1819         if (cfq_class_idle(new_cfqq))
1820                 return 0;
1821
1822         if (cfq_class_idle(cfqq))
1823                 return 1;
1824
1825         /*
1826          * if the new request is sync, but the currently running queue is
1827          * not, let the sync request have priority.
1828          */
1829         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1830                 return 1;
1831
1832         /*
1833          * So both queues are sync. Let the new request get disk time if
1834          * it's a metadata request and the current queue is doing regular IO.
1835          */
1836         if (rq_is_meta(rq) && !cfqq->meta_pending)
1837                 return 1;
1838
1839         /*
1840          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
1841          */
1842         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
1843                 return 1;
1844
1845         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1846                 return 0;
1847
1848         /*
1849          * if this request is as-good as one we would expect from the
1850          * current cfqq, let it preempt
1851          */
1852         if (cfq_rq_close(cfqd, rq))
1853                 return 1;
1854
1855         return 0;
1856 }
1857
1858 /*
1859  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1860  * let it have half of its nominal slice.
1861  */
1862 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1863 {
1864         cfq_log_cfqq(cfqd, cfqq, "preempt");
1865         cfq_slice_expired(cfqd, 1);
1866
1867         /*
1868          * Put the new queue at the front of the of the current list,
1869          * so we know that it will be selected next.
1870          */
1871         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1872
1873         cfq_service_tree_add(cfqd, cfqq, 1);
1874
1875         cfqq->slice_end = 0;
1876         cfq_mark_cfqq_slice_new(cfqq);
1877 }
1878
1879 /*
1880  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1881  * something we should do about it
1882  */
1883 static void
1884 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1885                 struct request *rq)
1886 {
1887         struct cfq_io_context *cic = RQ_CIC(rq);
1888
1889         cfqd->rq_queued++;
1890         if (rq_is_meta(rq))
1891                 cfqq->meta_pending++;
1892
1893         cfq_update_io_thinktime(cfqd, cic);
1894         cfq_update_io_seektime(cfqd, cic, rq);
1895         cfq_update_idle_window(cfqd, cfqq, cic);
1896
1897         cic->last_request_pos = rq->sector + rq->nr_sectors;
1898
1899         if (cfqq == cfqd->active_queue) {
1900                 /*
1901                  * if we are waiting for a request for this queue, let it rip
1902                  * immediately and flag that we must not expire this queue
1903                  * just now
1904                  */
1905                 if (cfq_cfqq_wait_request(cfqq)) {
1906                         del_timer(&cfqd->idle_slice_timer);
1907                         blk_start_queueing(cfqd->queue);
1908                 }
1909         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1910                 /*
1911                  * not the active queue - expire current slice if it is
1912                  * idle and has expired it's mean thinktime or this new queue
1913                  * has some old slice time left and is of higher priority or
1914                  * this new queue is RT and the current one is BE
1915                  */
1916                 cfq_preempt_queue(cfqd, cfqq);
1917                 blk_start_queueing(cfqd->queue);
1918         }
1919 }
1920
1921 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1922 {
1923         struct cfq_data *cfqd = q->elevator->elevator_data;
1924         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1925
1926         cfq_log_cfqq(cfqd, cfqq, "insert_request");
1927         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1928
1929         cfq_add_rq_rb(rq);
1930
1931         list_add_tail(&rq->queuelist, &cfqq->fifo);
1932
1933         cfq_rq_enqueued(cfqd, cfqq, rq);
1934 }
1935
1936 /*
1937  * Update hw_tag based on peak queue depth over 50 samples under
1938  * sufficient load.
1939  */
1940 static void cfq_update_hw_tag(struct cfq_data *cfqd)
1941 {
1942         if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
1943                 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
1944
1945         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
1946             cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
1947                 return;
1948
1949         if (cfqd->hw_tag_samples++ < 50)
1950                 return;
1951
1952         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
1953                 cfqd->hw_tag = 1;
1954         else
1955                 cfqd->hw_tag = 0;
1956
1957         cfqd->hw_tag_samples = 0;
1958         cfqd->rq_in_driver_peak = 0;
1959 }
1960
1961 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1962 {
1963         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1964         struct cfq_data *cfqd = cfqq->cfqd;
1965         const int sync = rq_is_sync(rq);
1966         unsigned long now;
1967
1968         now = jiffies;
1969         cfq_log_cfqq(cfqd, cfqq, "complete");
1970
1971         cfq_update_hw_tag(cfqd);
1972
1973         WARN_ON(!cfqd->rq_in_driver);
1974         WARN_ON(!cfqq->dispatched);
1975         cfqd->rq_in_driver--;
1976         cfqq->dispatched--;
1977
1978         if (cfq_cfqq_sync(cfqq))
1979                 cfqd->sync_flight--;
1980
1981         if (!cfq_class_idle(cfqq))
1982                 cfqd->last_end_request = now;
1983
1984         if (sync)
1985                 RQ_CIC(rq)->last_end_request = now;
1986
1987         /*
1988          * If this is the active queue, check if it needs to be expired,
1989          * or if we want to idle in case it has no pending requests.
1990          */
1991         if (cfqd->active_queue == cfqq) {
1992                 if (cfq_cfqq_slice_new(cfqq)) {
1993                         cfq_set_prio_slice(cfqd, cfqq);
1994                         cfq_clear_cfqq_slice_new(cfqq);
1995                 }
1996                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
1997                         cfq_slice_expired(cfqd, 1);
1998                 else if (sync && !rq_noidle(rq) &&
1999                          RB_EMPTY_ROOT(&cfqq->sort_list)) {
2000                         cfq_arm_slice_timer(cfqd);
2001                 }
2002         }
2003
2004         if (!cfqd->rq_in_driver)
2005                 cfq_schedule_dispatch(cfqd);
2006 }
2007
2008 /*
2009  * we temporarily boost lower priority queues if they are holding fs exclusive
2010  * resources. they are boosted to normal prio (CLASS_BE/4)
2011  */
2012 static void cfq_prio_boost(struct cfq_queue *cfqq)
2013 {
2014         if (has_fs_excl()) {
2015                 /*
2016                  * boost idle prio on transactions that would lock out other
2017                  * users of the filesystem
2018                  */
2019                 if (cfq_class_idle(cfqq))
2020                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2021                 if (cfqq->ioprio > IOPRIO_NORM)
2022                         cfqq->ioprio = IOPRIO_NORM;
2023         } else {
2024                 /*
2025                  * check if we need to unboost the queue
2026                  */
2027                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2028                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2029                 if (cfqq->ioprio != cfqq->org_ioprio)
2030                         cfqq->ioprio = cfqq->org_ioprio;
2031         }
2032 }
2033
2034 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2035 {
2036         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2037             !cfq_cfqq_must_alloc_slice(cfqq)) {
2038                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2039                 return ELV_MQUEUE_MUST;
2040         }
2041
2042         return ELV_MQUEUE_MAY;
2043 }
2044
2045 static int cfq_may_queue(struct request_queue *q, int rw)
2046 {
2047         struct cfq_data *cfqd = q->elevator->elevator_data;
2048         struct task_struct *tsk = current;
2049         struct cfq_io_context *cic;
2050         struct cfq_queue *cfqq;
2051
2052         /*
2053          * don't force setup of a queue from here, as a call to may_queue
2054          * does not necessarily imply that a request actually will be queued.
2055          * so just lookup a possibly existing queue, or return 'may queue'
2056          * if that fails
2057          */
2058         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2059         if (!cic)
2060                 return ELV_MQUEUE_MAY;
2061
2062         cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
2063         if (cfqq) {
2064                 cfq_init_prio_data(cfqq, cic->ioc);
2065                 cfq_prio_boost(cfqq);
2066
2067                 return __cfq_may_queue(cfqq);
2068         }
2069
2070         return ELV_MQUEUE_MAY;
2071 }
2072
2073 /*
2074  * queue lock held here
2075  */
2076 static void cfq_put_request(struct request *rq)
2077 {
2078         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2079
2080         if (cfqq) {
2081                 const int rw = rq_data_dir(rq);
2082
2083                 BUG_ON(!cfqq->allocated[rw]);
2084                 cfqq->allocated[rw]--;
2085
2086                 put_io_context(RQ_CIC(rq)->ioc);
2087
2088                 rq->elevator_private = NULL;
2089                 rq->elevator_private2 = NULL;
2090
2091                 cfq_put_queue(cfqq);
2092         }
2093 }
2094
2095 /*
2096  * Allocate cfq data structures associated with this request.
2097  */
2098 static int
2099 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2100 {
2101         struct cfq_data *cfqd = q->elevator->elevator_data;
2102         struct cfq_io_context *cic;
2103         const int rw = rq_data_dir(rq);
2104         const int is_sync = rq_is_sync(rq);
2105         struct cfq_queue *cfqq;
2106         unsigned long flags;
2107
2108         might_sleep_if(gfp_mask & __GFP_WAIT);
2109
2110         cic = cfq_get_io_context(cfqd, gfp_mask);
2111
2112         spin_lock_irqsave(q->queue_lock, flags);
2113
2114         if (!cic)
2115                 goto queue_fail;
2116
2117         cfqq = cic_to_cfqq(cic, is_sync);
2118         if (!cfqq) {
2119                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2120
2121                 if (!cfqq)
2122                         goto queue_fail;
2123
2124                 cic_set_cfqq(cic, cfqq, is_sync);
2125         }
2126
2127         cfqq->allocated[rw]++;
2128         cfq_clear_cfqq_must_alloc(cfqq);
2129         atomic_inc(&cfqq->ref);
2130
2131         spin_unlock_irqrestore(q->queue_lock, flags);
2132
2133         rq->elevator_private = cic;
2134         rq->elevator_private2 = cfqq;
2135         return 0;
2136
2137 queue_fail:
2138         if (cic)
2139                 put_io_context(cic->ioc);
2140
2141         cfq_schedule_dispatch(cfqd);
2142         spin_unlock_irqrestore(q->queue_lock, flags);
2143         cfq_log(cfqd, "set_request fail");
2144         return 1;
2145 }
2146
2147 static void cfq_kick_queue(struct work_struct *work)
2148 {
2149         struct cfq_data *cfqd =
2150                 container_of(work, struct cfq_data, unplug_work);
2151         struct request_queue *q = cfqd->queue;
2152         unsigned long flags;
2153
2154         spin_lock_irqsave(q->queue_lock, flags);
2155         blk_start_queueing(q);
2156         spin_unlock_irqrestore(q->queue_lock, flags);
2157 }
2158
2159 /*
2160  * Timer running if the active_queue is currently idling inside its time slice
2161  */
2162 static void cfq_idle_slice_timer(unsigned long data)
2163 {
2164         struct cfq_data *cfqd = (struct cfq_data *) data;
2165         struct cfq_queue *cfqq;
2166         unsigned long flags;
2167         int timed_out = 1;
2168
2169         cfq_log(cfqd, "idle timer fired");
2170
2171         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2172
2173         cfqq = cfqd->active_queue;
2174         if (cfqq) {
2175                 timed_out = 0;
2176
2177                 /*
2178                  * expired
2179                  */
2180                 if (cfq_slice_used(cfqq))
2181                         goto expire;
2182
2183                 /*
2184                  * only expire and reinvoke request handler, if there are
2185                  * other queues with pending requests
2186                  */
2187                 if (!cfqd->busy_queues)
2188                         goto out_cont;
2189
2190                 /*
2191                  * not expired and it has a request pending, let it dispatch
2192                  */
2193                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2194                         goto out_kick;
2195         }
2196 expire:
2197         cfq_slice_expired(cfqd, timed_out);
2198 out_kick:
2199         cfq_schedule_dispatch(cfqd);
2200 out_cont:
2201         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2202 }
2203
2204 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2205 {
2206         del_timer_sync(&cfqd->idle_slice_timer);
2207         cancel_work_sync(&cfqd->unplug_work);
2208 }
2209
2210 static void cfq_put_async_queues(struct cfq_data *cfqd)
2211 {
2212         int i;
2213
2214         for (i = 0; i < IOPRIO_BE_NR; i++) {
2215                 if (cfqd->async_cfqq[0][i])
2216                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2217                 if (cfqd->async_cfqq[1][i])
2218                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2219         }
2220
2221         if (cfqd->async_idle_cfqq)
2222                 cfq_put_queue(cfqd->async_idle_cfqq);
2223 }
2224
2225 static void cfq_exit_queue(struct elevator_queue *e)
2226 {
2227         struct cfq_data *cfqd = e->elevator_data;
2228         struct request_queue *q = cfqd->queue;
2229
2230         cfq_shutdown_timer_wq(cfqd);
2231
2232         spin_lock_irq(q->queue_lock);
2233
2234         if (cfqd->active_queue)
2235                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2236
2237         while (!list_empty(&cfqd->cic_list)) {
2238                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2239                                                         struct cfq_io_context,
2240                                                         queue_list);
2241
2242                 __cfq_exit_single_io_context(cfqd, cic);
2243         }
2244
2245         cfq_put_async_queues(cfqd);
2246
2247         spin_unlock_irq(q->queue_lock);
2248
2249         cfq_shutdown_timer_wq(cfqd);
2250
2251         kfree(cfqd);
2252 }
2253
2254 static void *cfq_init_queue(struct request_queue *q)
2255 {
2256         struct cfq_data *cfqd;
2257
2258         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2259         if (!cfqd)
2260                 return NULL;
2261
2262         cfqd->service_tree = CFQ_RB_ROOT;
2263         INIT_LIST_HEAD(&cfqd->cic_list);
2264
2265         cfqd->queue = q;
2266
2267         init_timer(&cfqd->idle_slice_timer);
2268         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2269         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2270
2271         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2272
2273         cfqd->last_end_request = jiffies;
2274         cfqd->cfq_quantum = cfq_quantum;
2275         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2276         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2277         cfqd->cfq_back_max = cfq_back_max;
2278         cfqd->cfq_back_penalty = cfq_back_penalty;
2279         cfqd->cfq_slice[0] = cfq_slice_async;
2280         cfqd->cfq_slice[1] = cfq_slice_sync;
2281         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2282         cfqd->cfq_slice_idle = cfq_slice_idle;
2283         cfqd->hw_tag = 1;
2284
2285         return cfqd;
2286 }
2287
2288 static void cfq_slab_kill(void)
2289 {
2290         /*
2291          * Caller already ensured that pending RCU callbacks are completed,
2292          * so we should have no busy allocations at this point.
2293          */
2294         if (cfq_pool)
2295                 kmem_cache_destroy(cfq_pool);
2296         if (cfq_ioc_pool)
2297                 kmem_cache_destroy(cfq_ioc_pool);
2298 }
2299
2300 static int __init cfq_slab_setup(void)
2301 {
2302         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2303         if (!cfq_pool)
2304                 goto fail;
2305
2306         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2307         if (!cfq_ioc_pool)
2308                 goto fail;
2309
2310         return 0;
2311 fail:
2312         cfq_slab_kill();
2313         return -ENOMEM;
2314 }
2315
2316 /*
2317  * sysfs parts below -->
2318  */
2319 static ssize_t
2320 cfq_var_show(unsigned int var, char *page)
2321 {
2322         return sprintf(page, "%d\n", var);
2323 }
2324
2325 static ssize_t
2326 cfq_var_store(unsigned int *var, const char *page, size_t count)
2327 {
2328         char *p = (char *) page;
2329
2330         *var = simple_strtoul(p, &p, 10);
2331         return count;
2332 }
2333
2334 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2335 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2336 {                                                                       \
2337         struct cfq_data *cfqd = e->elevator_data;                       \
2338         unsigned int __data = __VAR;                                    \
2339         if (__CONV)                                                     \
2340                 __data = jiffies_to_msecs(__data);                      \
2341         return cfq_var_show(__data, (page));                            \
2342 }
2343 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2344 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2345 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2346 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2347 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2348 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2349 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2350 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2351 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2352 #undef SHOW_FUNCTION
2353
2354 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2355 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2356 {                                                                       \
2357         struct cfq_data *cfqd = e->elevator_data;                       \
2358         unsigned int __data;                                            \
2359         int ret = cfq_var_store(&__data, (page), count);                \
2360         if (__data < (MIN))                                             \
2361                 __data = (MIN);                                         \
2362         else if (__data > (MAX))                                        \
2363                 __data = (MAX);                                         \
2364         if (__CONV)                                                     \
2365                 *(__PTR) = msecs_to_jiffies(__data);                    \
2366         else                                                            \
2367                 *(__PTR) = __data;                                      \
2368         return ret;                                                     \
2369 }
2370 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2371 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2372                 UINT_MAX, 1);
2373 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2374                 UINT_MAX, 1);
2375 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2376 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2377                 UINT_MAX, 0);
2378 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2379 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2380 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2381 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2382                 UINT_MAX, 0);
2383 #undef STORE_FUNCTION
2384
2385 #define CFQ_ATTR(name) \
2386         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2387
2388 static struct elv_fs_entry cfq_attrs[] = {
2389         CFQ_ATTR(quantum),
2390         CFQ_ATTR(fifo_expire_sync),
2391         CFQ_ATTR(fifo_expire_async),
2392         CFQ_ATTR(back_seek_max),
2393         CFQ_ATTR(back_seek_penalty),
2394         CFQ_ATTR(slice_sync),
2395         CFQ_ATTR(slice_async),
2396         CFQ_ATTR(slice_async_rq),
2397         CFQ_ATTR(slice_idle),
2398         __ATTR_NULL
2399 };
2400
2401 static struct elevator_type iosched_cfq = {
2402         .ops = {
2403                 .elevator_merge_fn =            cfq_merge,
2404                 .elevator_merged_fn =           cfq_merged_request,
2405                 .elevator_merge_req_fn =        cfq_merged_requests,
2406                 .elevator_allow_merge_fn =      cfq_allow_merge,
2407                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2408                 .elevator_add_req_fn =          cfq_insert_request,
2409                 .elevator_activate_req_fn =     cfq_activate_request,
2410                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2411                 .elevator_queue_empty_fn =      cfq_queue_empty,
2412                 .elevator_completed_req_fn =    cfq_completed_request,
2413                 .elevator_former_req_fn =       elv_rb_former_request,
2414                 .elevator_latter_req_fn =       elv_rb_latter_request,
2415                 .elevator_set_req_fn =          cfq_set_request,
2416                 .elevator_put_req_fn =          cfq_put_request,
2417                 .elevator_may_queue_fn =        cfq_may_queue,
2418                 .elevator_init_fn =             cfq_init_queue,
2419                 .elevator_exit_fn =             cfq_exit_queue,
2420                 .trim =                         cfq_free_io_context,
2421         },
2422         .elevator_attrs =       cfq_attrs,
2423         .elevator_name =        "cfq",
2424         .elevator_owner =       THIS_MODULE,
2425 };
2426
2427 static int __init cfq_init(void)
2428 {
2429         /*
2430          * could be 0 on HZ < 1000 setups
2431          */
2432         if (!cfq_slice_async)
2433                 cfq_slice_async = 1;
2434         if (!cfq_slice_idle)
2435                 cfq_slice_idle = 1;
2436
2437         if (cfq_slab_setup())
2438                 return -ENOMEM;
2439
2440         elv_register(&iosched_cfq);
2441
2442         return 0;
2443 }
2444
2445 static void __exit cfq_exit(void)
2446 {
2447         DECLARE_COMPLETION_ONSTACK(all_gone);
2448         elv_unregister(&iosched_cfq);
2449         ioc_gone = &all_gone;
2450         /* ioc_gone's update must be visible before reading ioc_count */
2451         smp_wmb();
2452
2453         /*
2454          * this also protects us from entering cfq_slab_kill() with
2455          * pending RCU callbacks
2456          */
2457         if (elv_ioc_count_read(ioc_count))
2458                 wait_for_completion(&all_gone);
2459         cfq_slab_kill();
2460 }
2461
2462 module_init(cfq_init);
2463 module_exit(cfq_exit);
2464
2465 MODULE_AUTHOR("Jens Axboe");
2466 MODULE_LICENSE("GPL");
2467 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");