cfq-iosched: slice offset should take ioprio into account
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/hash.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15
16 /*
17  * tunables
18  */
19 static const int cfq_quantum = 4;               /* max queue in one round of service */
20 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
21 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
22 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
23
24 static const int cfq_slice_sync = HZ / 10;
25 static int cfq_slice_async = HZ / 25;
26 static const int cfq_slice_async_rq = 2;
27 static int cfq_slice_idle = HZ / 125;
28
29 /*
30  * grace period before allowing idle class to get disk access
31  */
32 #define CFQ_IDLE_GRACE          (HZ / 10)
33
34 /*
35  * below this threshold, we consider thinktime immediate
36  */
37 #define CFQ_MIN_TT              (2)
38
39 #define CFQ_SLICE_SCALE         (5)
40
41 #define CFQ_KEY_ASYNC           (0)
42
43 /*
44  * for the hash of cfqq inside the cfqd
45  */
46 #define CFQ_QHASH_SHIFT         6
47 #define CFQ_QHASH_ENTRIES       (1 << CFQ_QHASH_SHIFT)
48 #define list_entry_qhash(entry) hlist_entry((entry), struct cfq_queue, cfq_hash)
49
50 #define list_entry_cfqq(ptr)    list_entry((ptr), struct cfq_queue, cfq_list)
51
52 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
53 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
54
55 static struct kmem_cache *cfq_pool;
56 static struct kmem_cache *cfq_ioc_pool;
57
58 static DEFINE_PER_CPU(unsigned long, ioc_count);
59 static struct completion *ioc_gone;
60
61 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
62 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
63 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
64
65 #define ASYNC                   (0)
66 #define SYNC                    (1)
67
68 #define cfq_cfqq_sync(cfqq)     ((cfqq)->key != CFQ_KEY_ASYNC)
69
70 #define sample_valid(samples)   ((samples) > 80)
71
72 /*
73  * Most of our rbtree usage is for sorting with min extraction, so
74  * if we cache the leftmost node we don't have to walk down the tree
75  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76  * move this into the elevator for the rq sorting as well.
77  */
78 struct cfq_rb_root {
79         struct rb_root rb;
80         struct rb_node *left;
81 };
82 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
83
84 /*
85  * Per block device queue structure
86  */
87 struct cfq_data {
88         request_queue_t *queue;
89
90         /*
91          * rr list of queues with requests and the count of them
92          */
93         struct cfq_rb_root service_tree;
94         struct list_head cur_rr;
95         unsigned int busy_queues;
96
97         /*
98          * cfqq lookup hash
99          */
100         struct hlist_head *cfq_hash;
101
102         int rq_in_driver;
103         int hw_tag;
104
105         /*
106          * idle window management
107          */
108         struct timer_list idle_slice_timer;
109         struct work_struct unplug_work;
110
111         struct cfq_queue *active_queue;
112         struct cfq_io_context *active_cic;
113         unsigned int dispatch_slice;
114
115         struct timer_list idle_class_timer;
116
117         sector_t last_position;
118         unsigned long last_end_request;
119
120         /*
121          * tunables, see top of file
122          */
123         unsigned int cfq_quantum;
124         unsigned int cfq_fifo_expire[2];
125         unsigned int cfq_back_penalty;
126         unsigned int cfq_back_max;
127         unsigned int cfq_slice[2];
128         unsigned int cfq_slice_async_rq;
129         unsigned int cfq_slice_idle;
130
131         struct list_head cic_list;
132
133         sector_t new_seek_mean;
134         u64 new_seek_total;
135 };
136
137 /*
138  * Per process-grouping structure
139  */
140 struct cfq_queue {
141         /* reference count */
142         atomic_t ref;
143         /* parent cfq_data */
144         struct cfq_data *cfqd;
145         /* cfqq lookup hash */
146         struct hlist_node cfq_hash;
147         /* hash key */
148         unsigned int key;
149         /* member of the rr/busy/cur/idle cfqd list */
150         struct list_head cfq_list;
151         /* service_tree member */
152         struct rb_node rb_node;
153         /* service_tree key */
154         unsigned long rb_key;
155         /* sorted list of pending requests */
156         struct rb_root sort_list;
157         /* if fifo isn't expired, next request to serve */
158         struct request *next_rq;
159         /* requests queued in sort_list */
160         int queued[2];
161         /* currently allocated requests */
162         int allocated[2];
163         /* pending metadata requests */
164         int meta_pending;
165         /* fifo list of requests in sort_list */
166         struct list_head fifo;
167
168         unsigned long slice_end;
169         long slice_resid;
170
171         /* number of requests that are on the dispatch list or inside driver */
172         int dispatched;
173
174         /* io prio of this group */
175         unsigned short ioprio, org_ioprio;
176         unsigned short ioprio_class, org_ioprio_class;
177
178         /* various state flags, see below */
179         unsigned int flags;
180
181         sector_t last_request_pos;
182 };
183
184 enum cfqq_state_flags {
185         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
186         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
187         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
188         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
189         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
190         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
191         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
192         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
193         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
194         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
195 };
196
197 #define CFQ_CFQQ_FNS(name)                                              \
198 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
199 {                                                                       \
200         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
201 }                                                                       \
202 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
203 {                                                                       \
204         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
205 }                                                                       \
206 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
207 {                                                                       \
208         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
209 }
210
211 CFQ_CFQQ_FNS(on_rr);
212 CFQ_CFQQ_FNS(wait_request);
213 CFQ_CFQQ_FNS(must_alloc);
214 CFQ_CFQQ_FNS(must_alloc_slice);
215 CFQ_CFQQ_FNS(must_dispatch);
216 CFQ_CFQQ_FNS(fifo_expire);
217 CFQ_CFQQ_FNS(idle_window);
218 CFQ_CFQQ_FNS(prio_changed);
219 CFQ_CFQQ_FNS(queue_new);
220 CFQ_CFQQ_FNS(slice_new);
221 #undef CFQ_CFQQ_FNS
222
223 static struct cfq_queue *cfq_find_cfq_hash(struct cfq_data *, unsigned int, unsigned short);
224 static void cfq_dispatch_insert(request_queue_t *, struct request *);
225 static struct cfq_queue *cfq_get_queue(struct cfq_data *, unsigned int, struct task_struct *, gfp_t);
226
227 /*
228  * scheduler run of queue, if there are requests pending and no one in the
229  * driver that will restart queueing
230  */
231 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
232 {
233         if (cfqd->busy_queues)
234                 kblockd_schedule_work(&cfqd->unplug_work);
235 }
236
237 static int cfq_queue_empty(request_queue_t *q)
238 {
239         struct cfq_data *cfqd = q->elevator->elevator_data;
240
241         return !cfqd->busy_queues;
242 }
243
244 static inline pid_t cfq_queue_pid(struct task_struct *task, int rw, int is_sync)
245 {
246         /*
247          * Use the per-process queue, for read requests and syncronous writes
248          */
249         if (!(rw & REQ_RW) || is_sync)
250                 return task->pid;
251
252         return CFQ_KEY_ASYNC;
253 }
254
255 /*
256  * Scale schedule slice based on io priority. Use the sync time slice only
257  * if a queue is marked sync and has sync io queued. A sync queue with async
258  * io only, should not get full sync slice length.
259  */
260 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
261                                  unsigned short prio)
262 {
263         const int base_slice = cfqd->cfq_slice[sync];
264
265         WARN_ON(prio >= IOPRIO_BE_NR);
266
267         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
268 }
269
270 static inline int
271 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
272 {
273         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
274 }
275
276 static inline void
277 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
278 {
279         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
280 }
281
282 /*
283  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
284  * isn't valid until the first request from the dispatch is activated
285  * and the slice time set.
286  */
287 static inline int cfq_slice_used(struct cfq_queue *cfqq)
288 {
289         if (cfq_cfqq_slice_new(cfqq))
290                 return 0;
291         if (time_before(jiffies, cfqq->slice_end))
292                 return 0;
293
294         return 1;
295 }
296
297 /*
298  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
299  * We choose the request that is closest to the head right now. Distance
300  * behind the head is penalized and only allowed to a certain extent.
301  */
302 static struct request *
303 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
304 {
305         sector_t last, s1, s2, d1 = 0, d2 = 0;
306         unsigned long back_max;
307 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
308 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
309         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
310
311         if (rq1 == NULL || rq1 == rq2)
312                 return rq2;
313         if (rq2 == NULL)
314                 return rq1;
315
316         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
317                 return rq1;
318         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
319                 return rq2;
320         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
321                 return rq1;
322         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
323                 return rq2;
324
325         s1 = rq1->sector;
326         s2 = rq2->sector;
327
328         last = cfqd->last_position;
329
330         /*
331          * by definition, 1KiB is 2 sectors
332          */
333         back_max = cfqd->cfq_back_max * 2;
334
335         /*
336          * Strict one way elevator _except_ in the case where we allow
337          * short backward seeks which are biased as twice the cost of a
338          * similar forward seek.
339          */
340         if (s1 >= last)
341                 d1 = s1 - last;
342         else if (s1 + back_max >= last)
343                 d1 = (last - s1) * cfqd->cfq_back_penalty;
344         else
345                 wrap |= CFQ_RQ1_WRAP;
346
347         if (s2 >= last)
348                 d2 = s2 - last;
349         else if (s2 + back_max >= last)
350                 d2 = (last - s2) * cfqd->cfq_back_penalty;
351         else
352                 wrap |= CFQ_RQ2_WRAP;
353
354         /* Found required data */
355
356         /*
357          * By doing switch() on the bit mask "wrap" we avoid having to
358          * check two variables for all permutations: --> faster!
359          */
360         switch (wrap) {
361         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
362                 if (d1 < d2)
363                         return rq1;
364                 else if (d2 < d1)
365                         return rq2;
366                 else {
367                         if (s1 >= s2)
368                                 return rq1;
369                         else
370                                 return rq2;
371                 }
372
373         case CFQ_RQ2_WRAP:
374                 return rq1;
375         case CFQ_RQ1_WRAP:
376                 return rq2;
377         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
378         default:
379                 /*
380                  * Since both rqs are wrapped,
381                  * start with the one that's further behind head
382                  * (--> only *one* back seek required),
383                  * since back seek takes more time than forward.
384                  */
385                 if (s1 <= s2)
386                         return rq1;
387                 else
388                         return rq2;
389         }
390 }
391
392 /*
393  * The below is leftmost cache rbtree addon
394  */
395 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
396 {
397         if (!root->left)
398                 root->left = rb_first(&root->rb);
399
400         return root->left;
401 }
402
403 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
404 {
405         if (root->left == n)
406                 root->left = NULL;
407
408         rb_erase(n, &root->rb);
409         RB_CLEAR_NODE(n);
410 }
411
412 /*
413  * would be nice to take fifo expire time into account as well
414  */
415 static struct request *
416 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
417                   struct request *last)
418 {
419         struct rb_node *rbnext = rb_next(&last->rb_node);
420         struct rb_node *rbprev = rb_prev(&last->rb_node);
421         struct request *next = NULL, *prev = NULL;
422
423         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
424
425         if (rbprev)
426                 prev = rb_entry_rq(rbprev);
427
428         if (rbnext)
429                 next = rb_entry_rq(rbnext);
430         else {
431                 rbnext = rb_first(&cfqq->sort_list);
432                 if (rbnext && rbnext != &last->rb_node)
433                         next = rb_entry_rq(rbnext);
434         }
435
436         return cfq_choose_req(cfqd, next, prev);
437 }
438
439 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
440                                       struct cfq_queue *cfqq)
441 {
442         /*
443          * just an approximation, should be ok.
444          */
445         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
446                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
447 }
448
449 /*
450  * The cfqd->service_tree holds all pending cfq_queue's that have
451  * requests waiting to be processed. It is sorted in the order that
452  * we will service the queues.
453  */
454 static void cfq_service_tree_add(struct cfq_data *cfqd,
455                                     struct cfq_queue *cfqq)
456 {
457         struct rb_node **p = &cfqd->service_tree.rb.rb_node;
458         struct rb_node *parent = NULL;
459         unsigned long rb_key;
460         int left;
461
462         rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
463         rb_key += cfqq->slice_resid;
464         cfqq->slice_resid = 0;
465
466         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
467                 /*
468                  * same position, nothing more to do
469                  */
470                 if (rb_key == cfqq->rb_key)
471                         return;
472
473                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
474         }
475
476         left = 1;
477         while (*p) {
478                 struct cfq_queue *__cfqq;
479                 struct rb_node **n;
480
481                 parent = *p;
482                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
483
484                 /*
485                  * sort RT queues first, we always want to give
486                  * preference to them. IDLE queues goes to the back.
487                  * after that, sort on the next service time.
488                  */
489                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
490                         n = &(*p)->rb_left;
491                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
492                         n = &(*p)->rb_right;
493                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
494                         n = &(*p)->rb_left;
495                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
496                         n = &(*p)->rb_right;
497                 else if (rb_key < __cfqq->rb_key)
498                         n = &(*p)->rb_left;
499                 else
500                         n = &(*p)->rb_right;
501
502                 if (n == &(*p)->rb_right)
503                         left = 0;
504
505                 p = n;
506         }
507
508         if (left)
509                 cfqd->service_tree.left = &cfqq->rb_node;
510
511         cfqq->rb_key = rb_key;
512         rb_link_node(&cfqq->rb_node, parent, p);
513         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
514 }
515
516 /*
517  * Update cfqq's position in the service tree.
518  */
519 static void cfq_resort_rr_list(struct cfq_queue *cfqq, int preempted)
520 {
521         /*
522          * Resorting requires the cfqq to be on the RR list already.
523          */
524         if (cfq_cfqq_on_rr(cfqq))
525                 cfq_service_tree_add(cfqq->cfqd, cfqq);
526 }
527
528 /*
529  * add to busy list of queues for service, trying to be fair in ordering
530  * the pending list according to last request service
531  */
532 static inline void
533 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
534 {
535         BUG_ON(cfq_cfqq_on_rr(cfqq));
536         cfq_mark_cfqq_on_rr(cfqq);
537         cfqd->busy_queues++;
538
539         cfq_resort_rr_list(cfqq, 0);
540 }
541
542 /*
543  * Called when the cfqq no longer has requests pending, remove it from
544  * the service tree.
545  */
546 static inline void
547 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
548 {
549         BUG_ON(!cfq_cfqq_on_rr(cfqq));
550         cfq_clear_cfqq_on_rr(cfqq);
551         list_del_init(&cfqq->cfq_list);
552
553         if (!RB_EMPTY_NODE(&cfqq->rb_node))
554                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
555
556         BUG_ON(!cfqd->busy_queues);
557         cfqd->busy_queues--;
558 }
559
560 /*
561  * rb tree support functions
562  */
563 static inline void cfq_del_rq_rb(struct request *rq)
564 {
565         struct cfq_queue *cfqq = RQ_CFQQ(rq);
566         struct cfq_data *cfqd = cfqq->cfqd;
567         const int sync = rq_is_sync(rq);
568
569         BUG_ON(!cfqq->queued[sync]);
570         cfqq->queued[sync]--;
571
572         elv_rb_del(&cfqq->sort_list, rq);
573
574         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
575                 cfq_del_cfqq_rr(cfqd, cfqq);
576 }
577
578 static void cfq_add_rq_rb(struct request *rq)
579 {
580         struct cfq_queue *cfqq = RQ_CFQQ(rq);
581         struct cfq_data *cfqd = cfqq->cfqd;
582         struct request *__alias;
583
584         cfqq->queued[rq_is_sync(rq)]++;
585
586         /*
587          * looks a little odd, but the first insert might return an alias.
588          * if that happens, put the alias on the dispatch list
589          */
590         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
591                 cfq_dispatch_insert(cfqd->queue, __alias);
592
593         if (!cfq_cfqq_on_rr(cfqq))
594                 cfq_add_cfqq_rr(cfqd, cfqq);
595
596         /*
597          * check if this request is a better next-serve candidate
598          */
599         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
600         BUG_ON(!cfqq->next_rq);
601 }
602
603 static inline void
604 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
605 {
606         elv_rb_del(&cfqq->sort_list, rq);
607         cfqq->queued[rq_is_sync(rq)]--;
608         cfq_add_rq_rb(rq);
609 }
610
611 static struct request *
612 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
613 {
614         struct task_struct *tsk = current;
615         pid_t key = cfq_queue_pid(tsk, bio_data_dir(bio), bio_sync(bio));
616         struct cfq_queue *cfqq;
617
618         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
619         if (cfqq) {
620                 sector_t sector = bio->bi_sector + bio_sectors(bio);
621
622                 return elv_rb_find(&cfqq->sort_list, sector);
623         }
624
625         return NULL;
626 }
627
628 static void cfq_activate_request(request_queue_t *q, struct request *rq)
629 {
630         struct cfq_data *cfqd = q->elevator->elevator_data;
631
632         cfqd->rq_in_driver++;
633
634         /*
635          * If the depth is larger 1, it really could be queueing. But lets
636          * make the mark a little higher - idling could still be good for
637          * low queueing, and a low queueing number could also just indicate
638          * a SCSI mid layer like behaviour where limit+1 is often seen.
639          */
640         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
641                 cfqd->hw_tag = 1;
642
643         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
644 }
645
646 static void cfq_deactivate_request(request_queue_t *q, struct request *rq)
647 {
648         struct cfq_data *cfqd = q->elevator->elevator_data;
649
650         WARN_ON(!cfqd->rq_in_driver);
651         cfqd->rq_in_driver--;
652 }
653
654 static void cfq_remove_request(struct request *rq)
655 {
656         struct cfq_queue *cfqq = RQ_CFQQ(rq);
657
658         if (cfqq->next_rq == rq)
659                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
660
661         list_del_init(&rq->queuelist);
662         cfq_del_rq_rb(rq);
663
664         if (rq_is_meta(rq)) {
665                 WARN_ON(!cfqq->meta_pending);
666                 cfqq->meta_pending--;
667         }
668 }
669
670 static int cfq_merge(request_queue_t *q, struct request **req, struct bio *bio)
671 {
672         struct cfq_data *cfqd = q->elevator->elevator_data;
673         struct request *__rq;
674
675         __rq = cfq_find_rq_fmerge(cfqd, bio);
676         if (__rq && elv_rq_merge_ok(__rq, bio)) {
677                 *req = __rq;
678                 return ELEVATOR_FRONT_MERGE;
679         }
680
681         return ELEVATOR_NO_MERGE;
682 }
683
684 static void cfq_merged_request(request_queue_t *q, struct request *req,
685                                int type)
686 {
687         if (type == ELEVATOR_FRONT_MERGE) {
688                 struct cfq_queue *cfqq = RQ_CFQQ(req);
689
690                 cfq_reposition_rq_rb(cfqq, req);
691         }
692 }
693
694 static void
695 cfq_merged_requests(request_queue_t *q, struct request *rq,
696                     struct request *next)
697 {
698         /*
699          * reposition in fifo if next is older than rq
700          */
701         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
702             time_before(next->start_time, rq->start_time))
703                 list_move(&rq->queuelist, &next->queuelist);
704
705         cfq_remove_request(next);
706 }
707
708 static int cfq_allow_merge(request_queue_t *q, struct request *rq,
709                            struct bio *bio)
710 {
711         struct cfq_data *cfqd = q->elevator->elevator_data;
712         const int rw = bio_data_dir(bio);
713         struct cfq_queue *cfqq;
714         pid_t key;
715
716         /*
717          * Disallow merge of a sync bio into an async request.
718          */
719         if ((bio_data_dir(bio) == READ || bio_sync(bio)) && !rq_is_sync(rq))
720                 return 0;
721
722         /*
723          * Lookup the cfqq that this bio will be queued with. Allow
724          * merge only if rq is queued there.
725          */
726         key = cfq_queue_pid(current, rw, bio_sync(bio));
727         cfqq = cfq_find_cfq_hash(cfqd, key, current->ioprio);
728
729         if (cfqq == RQ_CFQQ(rq))
730                 return 1;
731
732         return 0;
733 }
734
735 static inline void
736 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
737 {
738         if (cfqq) {
739                 /*
740                  * stop potential idle class queues waiting service
741                  */
742                 del_timer(&cfqd->idle_class_timer);
743
744                 cfqq->slice_end = 0;
745                 cfq_clear_cfqq_must_alloc_slice(cfqq);
746                 cfq_clear_cfqq_fifo_expire(cfqq);
747                 cfq_mark_cfqq_slice_new(cfqq);
748                 cfq_clear_cfqq_queue_new(cfqq);
749         }
750
751         cfqd->active_queue = cfqq;
752 }
753
754 /*
755  * current cfqq expired its slice (or was too idle), select new one
756  */
757 static void
758 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
759                     int preempted, int timed_out)
760 {
761         if (cfq_cfqq_wait_request(cfqq))
762                 del_timer(&cfqd->idle_slice_timer);
763
764         cfq_clear_cfqq_must_dispatch(cfqq);
765         cfq_clear_cfqq_wait_request(cfqq);
766
767         /*
768          * store what was left of this slice, if the queue idled out
769          * or was preempted
770          */
771         if (timed_out && !cfq_cfqq_slice_new(cfqq))
772                 cfqq->slice_resid = cfqq->slice_end - jiffies;
773
774         cfq_resort_rr_list(cfqq, preempted);
775
776         if (cfqq == cfqd->active_queue)
777                 cfqd->active_queue = NULL;
778
779         if (cfqd->active_cic) {
780                 put_io_context(cfqd->active_cic->ioc);
781                 cfqd->active_cic = NULL;
782         }
783
784         cfqd->dispatch_slice = 0;
785 }
786
787 static inline void cfq_slice_expired(struct cfq_data *cfqd, int preempted,
788                                      int timed_out)
789 {
790         struct cfq_queue *cfqq = cfqd->active_queue;
791
792         if (cfqq)
793                 __cfq_slice_expired(cfqd, cfqq, preempted, timed_out);
794 }
795
796 /*
797  * Get next queue for service. Unless we have a queue preemption,
798  * we'll simply select the first cfqq in the service tree.
799  */
800 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
801 {
802         struct cfq_queue *cfqq = NULL;
803
804         if (!list_empty(&cfqd->cur_rr)) {
805                 /*
806                  * if current list is non-empty, grab first entry.
807                  */
808                 cfqq = list_entry_cfqq(cfqd->cur_rr.next);
809         } else if (!RB_EMPTY_ROOT(&cfqd->service_tree.rb)) {
810                 struct rb_node *n = cfq_rb_first(&cfqd->service_tree);
811
812                 cfqq = rb_entry(n, struct cfq_queue, rb_node);
813                 if (cfq_class_idle(cfqq)) {
814                         unsigned long end;
815
816                         /*
817                          * if we have idle queues and no rt or be queues had
818                          * pending requests, either allow immediate service if
819                          * the grace period has passed or arm the idle grace
820                          * timer
821                          */
822                         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
823                         if (time_before(jiffies, end)) {
824                                 mod_timer(&cfqd->idle_class_timer, end);
825                                 cfqq = NULL;
826                         }
827                 }
828         }
829
830         return cfqq;
831 }
832
833 /*
834  * Get and set a new active queue for service.
835  */
836 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
837 {
838         struct cfq_queue *cfqq;
839
840         cfqq = cfq_get_next_queue(cfqd);
841         __cfq_set_active_queue(cfqd, cfqq);
842         return cfqq;
843 }
844
845 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
846                                           struct request *rq)
847 {
848         if (rq->sector >= cfqd->last_position)
849                 return rq->sector - cfqd->last_position;
850         else
851                 return cfqd->last_position - rq->sector;
852 }
853
854 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
855 {
856         struct cfq_io_context *cic = cfqd->active_cic;
857
858         if (!sample_valid(cic->seek_samples))
859                 return 0;
860
861         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
862 }
863
864 static int cfq_close_cooperator(struct cfq_data *cfq_data,
865                                 struct cfq_queue *cfqq)
866 {
867         /*
868          * We should notice if some of the queues are cooperating, eg
869          * working closely on the same area of the disk. In that case,
870          * we can group them together and don't waste time idling.
871          */
872         return 0;
873 }
874
875 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
876
877 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
878 {
879         struct cfq_queue *cfqq = cfqd->active_queue;
880         struct cfq_io_context *cic;
881         unsigned long sl;
882
883         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
884         WARN_ON(cfq_cfqq_slice_new(cfqq));
885
886         /*
887          * idle is disabled, either manually or by past process history
888          */
889         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
890                 return;
891
892         /*
893          * task has exited, don't wait
894          */
895         cic = cfqd->active_cic;
896         if (!cic || !cic->ioc->task)
897                 return;
898
899         /*
900          * See if this prio level has a good candidate
901          */
902         if (cfq_close_cooperator(cfqd, cfqq) &&
903             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
904                 return;
905
906         cfq_mark_cfqq_must_dispatch(cfqq);
907         cfq_mark_cfqq_wait_request(cfqq);
908
909         /*
910          * we don't want to idle for seeks, but we do want to allow
911          * fair distribution of slice time for a process doing back-to-back
912          * seeks. so allow a little bit of time for him to submit a new rq
913          */
914         sl = cfqd->cfq_slice_idle;
915         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
916                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
917
918         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
919 }
920
921 /*
922  * Move request from internal lists to the request queue dispatch list.
923  */
924 static void cfq_dispatch_insert(request_queue_t *q, struct request *rq)
925 {
926         struct cfq_queue *cfqq = RQ_CFQQ(rq);
927
928         cfq_remove_request(rq);
929         cfqq->dispatched++;
930         elv_dispatch_sort(q, rq);
931 }
932
933 /*
934  * return expired entry, or NULL to just start from scratch in rbtree
935  */
936 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
937 {
938         struct cfq_data *cfqd = cfqq->cfqd;
939         struct request *rq;
940         int fifo;
941
942         if (cfq_cfqq_fifo_expire(cfqq))
943                 return NULL;
944
945         cfq_mark_cfqq_fifo_expire(cfqq);
946
947         if (list_empty(&cfqq->fifo))
948                 return NULL;
949
950         fifo = cfq_cfqq_sync(cfqq);
951         rq = rq_entry_fifo(cfqq->fifo.next);
952
953         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
954                 return NULL;
955
956         return rq;
957 }
958
959 static inline int
960 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
961 {
962         const int base_rq = cfqd->cfq_slice_async_rq;
963
964         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
965
966         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
967 }
968
969 /*
970  * Select a queue for service. If we have a current active queue,
971  * check whether to continue servicing it, or retrieve and set a new one.
972  */
973 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
974 {
975         struct cfq_queue *cfqq;
976
977         cfqq = cfqd->active_queue;
978         if (!cfqq)
979                 goto new_queue;
980
981         /*
982          * The active queue has run out of time, expire it and select new.
983          */
984         if (cfq_slice_used(cfqq))
985                 goto expire;
986
987         /*
988          * The active queue has requests and isn't expired, allow it to
989          * dispatch.
990          */
991         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
992                 goto keep_queue;
993
994         /*
995          * No requests pending. If the active queue still has requests in
996          * flight or is idling for a new request, allow either of these
997          * conditions to happen (or time out) before selecting a new queue.
998          */
999         if (cfqq->dispatched || timer_pending(&cfqd->idle_slice_timer)) {
1000                 cfqq = NULL;
1001                 goto keep_queue;
1002         }
1003
1004 expire:
1005         cfq_slice_expired(cfqd, 0, 0);
1006 new_queue:
1007         cfqq = cfq_set_active_queue(cfqd);
1008 keep_queue:
1009         return cfqq;
1010 }
1011
1012 /*
1013  * Dispatch some requests from cfqq, moving them to the request queue
1014  * dispatch list.
1015  */
1016 static int
1017 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1018                         int max_dispatch)
1019 {
1020         int dispatched = 0;
1021
1022         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1023
1024         do {
1025                 struct request *rq;
1026
1027                 /*
1028                  * follow expired path, else get first next available
1029                  */
1030                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1031                         rq = cfqq->next_rq;
1032
1033                 /*
1034                  * finally, insert request into driver dispatch list
1035                  */
1036                 cfq_dispatch_insert(cfqd->queue, rq);
1037
1038                 cfqd->dispatch_slice++;
1039                 dispatched++;
1040
1041                 if (!cfqd->active_cic) {
1042                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1043                         cfqd->active_cic = RQ_CIC(rq);
1044                 }
1045
1046                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1047                         break;
1048
1049         } while (dispatched < max_dispatch);
1050
1051         /*
1052          * expire an async queue immediately if it has used up its slice. idle
1053          * queue always expire after 1 dispatch round.
1054          */
1055         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1056             cfqd->dispatch_slice >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1057             cfq_class_idle(cfqq))) {
1058                 cfqq->slice_end = jiffies + 1;
1059                 cfq_slice_expired(cfqd, 0, 0);
1060         }
1061
1062         return dispatched;
1063 }
1064
1065 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1066 {
1067         int dispatched = 0;
1068
1069         while (cfqq->next_rq) {
1070                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1071                 dispatched++;
1072         }
1073
1074         BUG_ON(!list_empty(&cfqq->fifo));
1075         return dispatched;
1076 }
1077
1078 static int cfq_forced_dispatch_cfqqs(struct list_head *list)
1079 {
1080         struct cfq_queue *cfqq, *next;
1081         int dispatched;
1082
1083         dispatched = 0;
1084         list_for_each_entry_safe(cfqq, next, list, cfq_list)
1085                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1086
1087         return dispatched;
1088 }
1089
1090 /*
1091  * Drain our current requests. Used for barriers and when switching
1092  * io schedulers on-the-fly.
1093  */
1094 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1095 {
1096         int dispatched = 0;
1097         struct rb_node *n;
1098
1099         while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1100                 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1101
1102                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1103         }
1104
1105         dispatched += cfq_forced_dispatch_cfqqs(&cfqd->cur_rr);
1106
1107         cfq_slice_expired(cfqd, 0, 0);
1108
1109         BUG_ON(cfqd->busy_queues);
1110
1111         return dispatched;
1112 }
1113
1114 static int cfq_dispatch_requests(request_queue_t *q, int force)
1115 {
1116         struct cfq_data *cfqd = q->elevator->elevator_data;
1117         struct cfq_queue *cfqq;
1118         int dispatched;
1119
1120         if (!cfqd->busy_queues)
1121                 return 0;
1122
1123         if (unlikely(force))
1124                 return cfq_forced_dispatch(cfqd);
1125
1126         dispatched = 0;
1127         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1128                 int max_dispatch;
1129
1130                 if (cfqd->busy_queues > 1) {
1131                         /*
1132                          * So we have dispatched before in this round, if the
1133                          * next queue has idling enabled (must be sync), don't
1134                          * allow it service until the previous have completed.
1135                          */
1136                         if (cfqd->rq_in_driver && cfq_cfqq_idle_window(cfqq) &&
1137                             dispatched)
1138                                 break;
1139                         if (cfqq->dispatched >= cfqd->cfq_quantum)
1140                                 break;
1141                 }
1142
1143                 cfq_clear_cfqq_must_dispatch(cfqq);
1144                 cfq_clear_cfqq_wait_request(cfqq);
1145                 del_timer(&cfqd->idle_slice_timer);
1146
1147                 max_dispatch = cfqd->cfq_quantum;
1148                 if (cfq_class_idle(cfqq))
1149                         max_dispatch = 1;
1150
1151                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1152         }
1153
1154         return dispatched;
1155 }
1156
1157 /*
1158  * task holds one reference to the queue, dropped when task exits. each rq
1159  * in-flight on this queue also holds a reference, dropped when rq is freed.
1160  *
1161  * queue lock must be held here.
1162  */
1163 static void cfq_put_queue(struct cfq_queue *cfqq)
1164 {
1165         struct cfq_data *cfqd = cfqq->cfqd;
1166
1167         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1168
1169         if (!atomic_dec_and_test(&cfqq->ref))
1170                 return;
1171
1172         BUG_ON(rb_first(&cfqq->sort_list));
1173         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1174         BUG_ON(cfq_cfqq_on_rr(cfqq));
1175
1176         if (unlikely(cfqd->active_queue == cfqq)) {
1177                 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1178                 cfq_schedule_dispatch(cfqd);
1179         }
1180
1181         /*
1182          * it's on the empty list and still hashed
1183          */
1184         hlist_del(&cfqq->cfq_hash);
1185         kmem_cache_free(cfq_pool, cfqq);
1186 }
1187
1188 static struct cfq_queue *
1189 __cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned int prio,
1190                     const int hashval)
1191 {
1192         struct hlist_head *hash_list = &cfqd->cfq_hash[hashval];
1193         struct hlist_node *entry;
1194         struct cfq_queue *__cfqq;
1195
1196         hlist_for_each_entry(__cfqq, entry, hash_list, cfq_hash) {
1197                 const unsigned short __p = IOPRIO_PRIO_VALUE(__cfqq->org_ioprio_class, __cfqq->org_ioprio);
1198
1199                 if (__cfqq->key == key && (__p == prio || !prio))
1200                         return __cfqq;
1201         }
1202
1203         return NULL;
1204 }
1205
1206 static struct cfq_queue *
1207 cfq_find_cfq_hash(struct cfq_data *cfqd, unsigned int key, unsigned short prio)
1208 {
1209         return __cfq_find_cfq_hash(cfqd, key, prio, hash_long(key, CFQ_QHASH_SHIFT));
1210 }
1211
1212 static void cfq_free_io_context(struct io_context *ioc)
1213 {
1214         struct cfq_io_context *__cic;
1215         struct rb_node *n;
1216         int freed = 0;
1217
1218         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1219                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1220                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1221                 kmem_cache_free(cfq_ioc_pool, __cic);
1222                 freed++;
1223         }
1224
1225         elv_ioc_count_mod(ioc_count, -freed);
1226
1227         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1228                 complete(ioc_gone);
1229 }
1230
1231 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1232 {
1233         if (unlikely(cfqq == cfqd->active_queue)) {
1234                 __cfq_slice_expired(cfqd, cfqq, 0, 0);
1235                 cfq_schedule_dispatch(cfqd);
1236         }
1237
1238         cfq_put_queue(cfqq);
1239 }
1240
1241 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1242                                          struct cfq_io_context *cic)
1243 {
1244         list_del_init(&cic->queue_list);
1245         smp_wmb();
1246         cic->key = NULL;
1247
1248         if (cic->cfqq[ASYNC]) {
1249                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1250                 cic->cfqq[ASYNC] = NULL;
1251         }
1252
1253         if (cic->cfqq[SYNC]) {
1254                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1255                 cic->cfqq[SYNC] = NULL;
1256         }
1257 }
1258
1259 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1260 {
1261         struct cfq_data *cfqd = cic->key;
1262
1263         if (cfqd) {
1264                 request_queue_t *q = cfqd->queue;
1265
1266                 spin_lock_irq(q->queue_lock);
1267                 __cfq_exit_single_io_context(cfqd, cic);
1268                 spin_unlock_irq(q->queue_lock);
1269         }
1270 }
1271
1272 /*
1273  * The process that ioc belongs to has exited, we need to clean up
1274  * and put the internal structures we have that belongs to that process.
1275  */
1276 static void cfq_exit_io_context(struct io_context *ioc)
1277 {
1278         struct cfq_io_context *__cic;
1279         struct rb_node *n;
1280
1281         /*
1282          * put the reference this task is holding to the various queues
1283          */
1284
1285         n = rb_first(&ioc->cic_root);
1286         while (n != NULL) {
1287                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1288
1289                 cfq_exit_single_io_context(__cic);
1290                 n = rb_next(n);
1291         }
1292 }
1293
1294 static struct cfq_io_context *
1295 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1296 {
1297         struct cfq_io_context *cic;
1298
1299         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask, cfqd->queue->node);
1300         if (cic) {
1301                 memset(cic, 0, sizeof(*cic));
1302                 cic->last_end_request = jiffies;
1303                 INIT_LIST_HEAD(&cic->queue_list);
1304                 cic->dtor = cfq_free_io_context;
1305                 cic->exit = cfq_exit_io_context;
1306                 elv_ioc_count_inc(ioc_count);
1307         }
1308
1309         return cic;
1310 }
1311
1312 static void cfq_init_prio_data(struct cfq_queue *cfqq)
1313 {
1314         struct task_struct *tsk = current;
1315         int ioprio_class;
1316
1317         if (!cfq_cfqq_prio_changed(cfqq))
1318                 return;
1319
1320         ioprio_class = IOPRIO_PRIO_CLASS(tsk->ioprio);
1321         switch (ioprio_class) {
1322                 default:
1323                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1324                 case IOPRIO_CLASS_NONE:
1325                         /*
1326                          * no prio set, place us in the middle of the BE classes
1327                          */
1328                         cfqq->ioprio = task_nice_ioprio(tsk);
1329                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1330                         break;
1331                 case IOPRIO_CLASS_RT:
1332                         cfqq->ioprio = task_ioprio(tsk);
1333                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1334                         break;
1335                 case IOPRIO_CLASS_BE:
1336                         cfqq->ioprio = task_ioprio(tsk);
1337                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1338                         break;
1339                 case IOPRIO_CLASS_IDLE:
1340                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1341                         cfqq->ioprio = 7;
1342                         cfq_clear_cfqq_idle_window(cfqq);
1343                         break;
1344         }
1345
1346         /*
1347          * keep track of original prio settings in case we have to temporarily
1348          * elevate the priority of this queue
1349          */
1350         cfqq->org_ioprio = cfqq->ioprio;
1351         cfqq->org_ioprio_class = cfqq->ioprio_class;
1352         cfq_clear_cfqq_prio_changed(cfqq);
1353 }
1354
1355 static inline void changed_ioprio(struct cfq_io_context *cic)
1356 {
1357         struct cfq_data *cfqd = cic->key;
1358         struct cfq_queue *cfqq;
1359         unsigned long flags;
1360
1361         if (unlikely(!cfqd))
1362                 return;
1363
1364         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1365
1366         cfqq = cic->cfqq[ASYNC];
1367         if (cfqq) {
1368                 struct cfq_queue *new_cfqq;
1369                 new_cfqq = cfq_get_queue(cfqd, CFQ_KEY_ASYNC, cic->ioc->task,
1370                                          GFP_ATOMIC);
1371                 if (new_cfqq) {
1372                         cic->cfqq[ASYNC] = new_cfqq;
1373                         cfq_put_queue(cfqq);
1374                 }
1375         }
1376
1377         cfqq = cic->cfqq[SYNC];
1378         if (cfqq)
1379                 cfq_mark_cfqq_prio_changed(cfqq);
1380
1381         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1382 }
1383
1384 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1385 {
1386         struct cfq_io_context *cic;
1387         struct rb_node *n;
1388
1389         ioc->ioprio_changed = 0;
1390
1391         n = rb_first(&ioc->cic_root);
1392         while (n != NULL) {
1393                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1394
1395                 changed_ioprio(cic);
1396                 n = rb_next(n);
1397         }
1398 }
1399
1400 static struct cfq_queue *
1401 cfq_get_queue(struct cfq_data *cfqd, unsigned int key, struct task_struct *tsk,
1402               gfp_t gfp_mask)
1403 {
1404         const int hashval = hash_long(key, CFQ_QHASH_SHIFT);
1405         struct cfq_queue *cfqq, *new_cfqq = NULL;
1406         unsigned short ioprio;
1407
1408 retry:
1409         ioprio = tsk->ioprio;
1410         cfqq = __cfq_find_cfq_hash(cfqd, key, ioprio, hashval);
1411
1412         if (!cfqq) {
1413                 if (new_cfqq) {
1414                         cfqq = new_cfqq;
1415                         new_cfqq = NULL;
1416                 } else if (gfp_mask & __GFP_WAIT) {
1417                         /*
1418                          * Inform the allocator of the fact that we will
1419                          * just repeat this allocation if it fails, to allow
1420                          * the allocator to do whatever it needs to attempt to
1421                          * free memory.
1422                          */
1423                         spin_unlock_irq(cfqd->queue->queue_lock);
1424                         new_cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask|__GFP_NOFAIL, cfqd->queue->node);
1425                         spin_lock_irq(cfqd->queue->queue_lock);
1426                         goto retry;
1427                 } else {
1428                         cfqq = kmem_cache_alloc_node(cfq_pool, gfp_mask, cfqd->queue->node);
1429                         if (!cfqq)
1430                                 goto out;
1431                 }
1432
1433                 memset(cfqq, 0, sizeof(*cfqq));
1434
1435                 INIT_HLIST_NODE(&cfqq->cfq_hash);
1436                 INIT_LIST_HEAD(&cfqq->cfq_list);
1437                 RB_CLEAR_NODE(&cfqq->rb_node);
1438                 INIT_LIST_HEAD(&cfqq->fifo);
1439
1440                 cfqq->key = key;
1441                 hlist_add_head(&cfqq->cfq_hash, &cfqd->cfq_hash[hashval]);
1442                 atomic_set(&cfqq->ref, 0);
1443                 cfqq->cfqd = cfqd;
1444
1445                 if (key != CFQ_KEY_ASYNC)
1446                         cfq_mark_cfqq_idle_window(cfqq);
1447
1448                 cfq_mark_cfqq_prio_changed(cfqq);
1449                 cfq_mark_cfqq_queue_new(cfqq);
1450                 cfq_init_prio_data(cfqq);
1451         }
1452
1453         if (new_cfqq)
1454                 kmem_cache_free(cfq_pool, new_cfqq);
1455
1456         atomic_inc(&cfqq->ref);
1457 out:
1458         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1459         return cfqq;
1460 }
1461
1462 /*
1463  * We drop cfq io contexts lazily, so we may find a dead one.
1464  */
1465 static void
1466 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1467 {
1468         WARN_ON(!list_empty(&cic->queue_list));
1469         rb_erase(&cic->rb_node, &ioc->cic_root);
1470         kmem_cache_free(cfq_ioc_pool, cic);
1471         elv_ioc_count_dec(ioc_count);
1472 }
1473
1474 static struct cfq_io_context *
1475 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1476 {
1477         struct rb_node *n;
1478         struct cfq_io_context *cic;
1479         void *k, *key = cfqd;
1480
1481 restart:
1482         n = ioc->cic_root.rb_node;
1483         while (n) {
1484                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1485                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1486                 k = cic->key;
1487                 if (unlikely(!k)) {
1488                         cfq_drop_dead_cic(ioc, cic);
1489                         goto restart;
1490                 }
1491
1492                 if (key < k)
1493                         n = n->rb_left;
1494                 else if (key > k)
1495                         n = n->rb_right;
1496                 else
1497                         return cic;
1498         }
1499
1500         return NULL;
1501 }
1502
1503 static inline void
1504 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1505              struct cfq_io_context *cic)
1506 {
1507         struct rb_node **p;
1508         struct rb_node *parent;
1509         struct cfq_io_context *__cic;
1510         unsigned long flags;
1511         void *k;
1512
1513         cic->ioc = ioc;
1514         cic->key = cfqd;
1515
1516 restart:
1517         parent = NULL;
1518         p = &ioc->cic_root.rb_node;
1519         while (*p) {
1520                 parent = *p;
1521                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1522                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1523                 k = __cic->key;
1524                 if (unlikely(!k)) {
1525                         cfq_drop_dead_cic(ioc, __cic);
1526                         goto restart;
1527                 }
1528
1529                 if (cic->key < k)
1530                         p = &(*p)->rb_left;
1531                 else if (cic->key > k)
1532                         p = &(*p)->rb_right;
1533                 else
1534                         BUG();
1535         }
1536
1537         rb_link_node(&cic->rb_node, parent, p);
1538         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1539
1540         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1541         list_add(&cic->queue_list, &cfqd->cic_list);
1542         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1543 }
1544
1545 /*
1546  * Setup general io context and cfq io context. There can be several cfq
1547  * io contexts per general io context, if this process is doing io to more
1548  * than one device managed by cfq.
1549  */
1550 static struct cfq_io_context *
1551 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1552 {
1553         struct io_context *ioc = NULL;
1554         struct cfq_io_context *cic;
1555
1556         might_sleep_if(gfp_mask & __GFP_WAIT);
1557
1558         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1559         if (!ioc)
1560                 return NULL;
1561
1562         cic = cfq_cic_rb_lookup(cfqd, ioc);
1563         if (cic)
1564                 goto out;
1565
1566         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1567         if (cic == NULL)
1568                 goto err;
1569
1570         cfq_cic_link(cfqd, ioc, cic);
1571 out:
1572         smp_read_barrier_depends();
1573         if (unlikely(ioc->ioprio_changed))
1574                 cfq_ioc_set_ioprio(ioc);
1575
1576         return cic;
1577 err:
1578         put_io_context(ioc);
1579         return NULL;
1580 }
1581
1582 static void
1583 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1584 {
1585         unsigned long elapsed = jiffies - cic->last_end_request;
1586         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1587
1588         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1589         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1590         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1591 }
1592
1593 static void
1594 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1595                        struct request *rq)
1596 {
1597         sector_t sdist;
1598         u64 total;
1599
1600         if (cic->last_request_pos < rq->sector)
1601                 sdist = rq->sector - cic->last_request_pos;
1602         else
1603                 sdist = cic->last_request_pos - rq->sector;
1604
1605         if (!cic->seek_samples) {
1606                 cfqd->new_seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1607                 cfqd->new_seek_mean = cfqd->new_seek_total / 256;
1608         }
1609
1610         /*
1611          * Don't allow the seek distance to get too large from the
1612          * odd fragment, pagein, etc
1613          */
1614         if (cic->seek_samples <= 60) /* second&third seek */
1615                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1616         else
1617                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1618
1619         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1620         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1621         total = cic->seek_total + (cic->seek_samples/2);
1622         do_div(total, cic->seek_samples);
1623         cic->seek_mean = (sector_t)total;
1624 }
1625
1626 /*
1627  * Disable idle window if the process thinks too long or seeks so much that
1628  * it doesn't matter
1629  */
1630 static void
1631 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1632                        struct cfq_io_context *cic)
1633 {
1634         int enable_idle = cfq_cfqq_idle_window(cfqq);
1635
1636         if (!cic->ioc->task || !cfqd->cfq_slice_idle ||
1637             (cfqd->hw_tag && CIC_SEEKY(cic)))
1638                 enable_idle = 0;
1639         else if (sample_valid(cic->ttime_samples)) {
1640                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1641                         enable_idle = 0;
1642                 else
1643                         enable_idle = 1;
1644         }
1645
1646         if (enable_idle)
1647                 cfq_mark_cfqq_idle_window(cfqq);
1648         else
1649                 cfq_clear_cfqq_idle_window(cfqq);
1650 }
1651
1652 /*
1653  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1654  * no or if we aren't sure, a 1 will cause a preempt.
1655  */
1656 static int
1657 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1658                    struct request *rq)
1659 {
1660         struct cfq_queue *cfqq;
1661
1662         cfqq = cfqd->active_queue;
1663         if (!cfqq)
1664                 return 0;
1665
1666         if (cfq_slice_used(cfqq))
1667                 return 1;
1668
1669         if (cfq_class_idle(new_cfqq))
1670                 return 0;
1671
1672         if (cfq_class_idle(cfqq))
1673                 return 1;
1674
1675         /*
1676          * if the new request is sync, but the currently running queue is
1677          * not, let the sync request have priority.
1678          */
1679         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1680                 return 1;
1681
1682         /*
1683          * So both queues are sync. Let the new request get disk time if
1684          * it's a metadata request and the current queue is doing regular IO.
1685          */
1686         if (rq_is_meta(rq) && !cfqq->meta_pending)
1687                 return 1;
1688
1689         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1690                 return 0;
1691
1692         /*
1693          * if this request is as-good as one we would expect from the
1694          * current cfqq, let it preempt
1695          */
1696         if (cfq_rq_close(cfqd, rq))
1697                 return 1;
1698
1699         return 0;
1700 }
1701
1702 /*
1703  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1704  * let it have half of its nominal slice.
1705  */
1706 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1707 {
1708         cfq_slice_expired(cfqd, 1, 1);
1709
1710         /*
1711          * Put the new queue at the front of the of the current list,
1712          * so we know that it will be selected next.
1713          */
1714         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1715         list_del_init(&cfqq->cfq_list);
1716         list_add(&cfqq->cfq_list, &cfqd->cur_rr);
1717
1718         cfqq->slice_end = 0;
1719         cfq_mark_cfqq_slice_new(cfqq);
1720 }
1721
1722 /*
1723  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1724  * something we should do about it
1725  */
1726 static void
1727 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1728                 struct request *rq)
1729 {
1730         struct cfq_io_context *cic = RQ_CIC(rq);
1731
1732         if (rq_is_meta(rq))
1733                 cfqq->meta_pending++;
1734
1735         cfq_update_io_thinktime(cfqd, cic);
1736         cfq_update_io_seektime(cfqd, cic, rq);
1737         cfq_update_idle_window(cfqd, cfqq, cic);
1738
1739         cic->last_request_pos = rq->sector + rq->nr_sectors;
1740         cfqq->last_request_pos = cic->last_request_pos;
1741
1742         if (cfqq == cfqd->active_queue) {
1743                 /*
1744                  * if we are waiting for a request for this queue, let it rip
1745                  * immediately and flag that we must not expire this queue
1746                  * just now
1747                  */
1748                 if (cfq_cfqq_wait_request(cfqq)) {
1749                         cfq_mark_cfqq_must_dispatch(cfqq);
1750                         del_timer(&cfqd->idle_slice_timer);
1751                         blk_start_queueing(cfqd->queue);
1752                 }
1753         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1754                 /*
1755                  * not the active queue - expire current slice if it is
1756                  * idle and has expired it's mean thinktime or this new queue
1757                  * has some old slice time left and is of higher priority
1758                  */
1759                 cfq_preempt_queue(cfqd, cfqq);
1760                 cfq_mark_cfqq_must_dispatch(cfqq);
1761                 blk_start_queueing(cfqd->queue);
1762         }
1763 }
1764
1765 static void cfq_insert_request(request_queue_t *q, struct request *rq)
1766 {
1767         struct cfq_data *cfqd = q->elevator->elevator_data;
1768         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1769
1770         cfq_init_prio_data(cfqq);
1771
1772         cfq_add_rq_rb(rq);
1773
1774         list_add_tail(&rq->queuelist, &cfqq->fifo);
1775
1776         cfq_rq_enqueued(cfqd, cfqq, rq);
1777 }
1778
1779 static void cfq_completed_request(request_queue_t *q, struct request *rq)
1780 {
1781         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1782         struct cfq_data *cfqd = cfqq->cfqd;
1783         const int sync = rq_is_sync(rq);
1784         unsigned long now;
1785
1786         now = jiffies;
1787
1788         WARN_ON(!cfqd->rq_in_driver);
1789         WARN_ON(!cfqq->dispatched);
1790         cfqd->rq_in_driver--;
1791         cfqq->dispatched--;
1792
1793         if (!cfq_class_idle(cfqq))
1794                 cfqd->last_end_request = now;
1795
1796         if (sync)
1797                 RQ_CIC(rq)->last_end_request = now;
1798
1799         /*
1800          * If this is the active queue, check if it needs to be expired,
1801          * or if we want to idle in case it has no pending requests.
1802          */
1803         if (cfqd->active_queue == cfqq) {
1804                 if (cfq_cfqq_slice_new(cfqq)) {
1805                         cfq_set_prio_slice(cfqd, cfqq);
1806                         cfq_clear_cfqq_slice_new(cfqq);
1807                 }
1808                 if (cfq_slice_used(cfqq))
1809                         cfq_slice_expired(cfqd, 0, 1);
1810                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1811                         cfq_arm_slice_timer(cfqd);
1812         }
1813
1814         if (!cfqd->rq_in_driver)
1815                 cfq_schedule_dispatch(cfqd);
1816 }
1817
1818 /*
1819  * we temporarily boost lower priority queues if they are holding fs exclusive
1820  * resources. they are boosted to normal prio (CLASS_BE/4)
1821  */
1822 static void cfq_prio_boost(struct cfq_queue *cfqq)
1823 {
1824         if (has_fs_excl()) {
1825                 /*
1826                  * boost idle prio on transactions that would lock out other
1827                  * users of the filesystem
1828                  */
1829                 if (cfq_class_idle(cfqq))
1830                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1831                 if (cfqq->ioprio > IOPRIO_NORM)
1832                         cfqq->ioprio = IOPRIO_NORM;
1833         } else {
1834                 /*
1835                  * check if we need to unboost the queue
1836                  */
1837                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1838                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1839                 if (cfqq->ioprio != cfqq->org_ioprio)
1840                         cfqq->ioprio = cfqq->org_ioprio;
1841         }
1842 }
1843
1844 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1845 {
1846         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1847             !cfq_cfqq_must_alloc_slice(cfqq)) {
1848                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1849                 return ELV_MQUEUE_MUST;
1850         }
1851
1852         return ELV_MQUEUE_MAY;
1853 }
1854
1855 static int cfq_may_queue(request_queue_t *q, int rw)
1856 {
1857         struct cfq_data *cfqd = q->elevator->elevator_data;
1858         struct task_struct *tsk = current;
1859         struct cfq_queue *cfqq;
1860         unsigned int key;
1861
1862         key = cfq_queue_pid(tsk, rw, rw & REQ_RW_SYNC);
1863
1864         /*
1865          * don't force setup of a queue from here, as a call to may_queue
1866          * does not necessarily imply that a request actually will be queued.
1867          * so just lookup a possibly existing queue, or return 'may queue'
1868          * if that fails
1869          */
1870         cfqq = cfq_find_cfq_hash(cfqd, key, tsk->ioprio);
1871         if (cfqq) {
1872                 cfq_init_prio_data(cfqq);
1873                 cfq_prio_boost(cfqq);
1874
1875                 return __cfq_may_queue(cfqq);
1876         }
1877
1878         return ELV_MQUEUE_MAY;
1879 }
1880
1881 /*
1882  * queue lock held here
1883  */
1884 static void cfq_put_request(struct request *rq)
1885 {
1886         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1887
1888         if (cfqq) {
1889                 const int rw = rq_data_dir(rq);
1890
1891                 BUG_ON(!cfqq->allocated[rw]);
1892                 cfqq->allocated[rw]--;
1893
1894                 put_io_context(RQ_CIC(rq)->ioc);
1895
1896                 rq->elevator_private = NULL;
1897                 rq->elevator_private2 = NULL;
1898
1899                 cfq_put_queue(cfqq);
1900         }
1901 }
1902
1903 /*
1904  * Allocate cfq data structures associated with this request.
1905  */
1906 static int
1907 cfq_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
1908 {
1909         struct cfq_data *cfqd = q->elevator->elevator_data;
1910         struct task_struct *tsk = current;
1911         struct cfq_io_context *cic;
1912         const int rw = rq_data_dir(rq);
1913         const int is_sync = rq_is_sync(rq);
1914         pid_t key = cfq_queue_pid(tsk, rw, is_sync);
1915         struct cfq_queue *cfqq;
1916         unsigned long flags;
1917
1918         might_sleep_if(gfp_mask & __GFP_WAIT);
1919
1920         cic = cfq_get_io_context(cfqd, gfp_mask);
1921
1922         spin_lock_irqsave(q->queue_lock, flags);
1923
1924         if (!cic)
1925                 goto queue_fail;
1926
1927         if (!cic->cfqq[is_sync]) {
1928                 cfqq = cfq_get_queue(cfqd, key, tsk, gfp_mask);
1929                 if (!cfqq)
1930                         goto queue_fail;
1931
1932                 cic->cfqq[is_sync] = cfqq;
1933         } else
1934                 cfqq = cic->cfqq[is_sync];
1935
1936         cfqq->allocated[rw]++;
1937         cfq_clear_cfqq_must_alloc(cfqq);
1938         atomic_inc(&cfqq->ref);
1939
1940         spin_unlock_irqrestore(q->queue_lock, flags);
1941
1942         rq->elevator_private = cic;
1943         rq->elevator_private2 = cfqq;
1944         return 0;
1945
1946 queue_fail:
1947         if (cic)
1948                 put_io_context(cic->ioc);
1949
1950         cfq_schedule_dispatch(cfqd);
1951         spin_unlock_irqrestore(q->queue_lock, flags);
1952         return 1;
1953 }
1954
1955 static void cfq_kick_queue(struct work_struct *work)
1956 {
1957         struct cfq_data *cfqd =
1958                 container_of(work, struct cfq_data, unplug_work);
1959         request_queue_t *q = cfqd->queue;
1960         unsigned long flags;
1961
1962         spin_lock_irqsave(q->queue_lock, flags);
1963         blk_start_queueing(q);
1964         spin_unlock_irqrestore(q->queue_lock, flags);
1965 }
1966
1967 /*
1968  * Timer running if the active_queue is currently idling inside its time slice
1969  */
1970 static void cfq_idle_slice_timer(unsigned long data)
1971 {
1972         struct cfq_data *cfqd = (struct cfq_data *) data;
1973         struct cfq_queue *cfqq;
1974         unsigned long flags;
1975         int timed_out = 1;
1976
1977         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1978
1979         if ((cfqq = cfqd->active_queue) != NULL) {
1980                 timed_out = 0;
1981
1982                 /*
1983                  * expired
1984                  */
1985                 if (cfq_slice_used(cfqq))
1986                         goto expire;
1987
1988                 /*
1989                  * only expire and reinvoke request handler, if there are
1990                  * other queues with pending requests
1991                  */
1992                 if (!cfqd->busy_queues)
1993                         goto out_cont;
1994
1995                 /*
1996                  * not expired and it has a request pending, let it dispatch
1997                  */
1998                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
1999                         cfq_mark_cfqq_must_dispatch(cfqq);
2000                         goto out_kick;
2001                 }
2002         }
2003 expire:
2004         cfq_slice_expired(cfqd, 0, timed_out);
2005 out_kick:
2006         cfq_schedule_dispatch(cfqd);
2007 out_cont:
2008         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2009 }
2010
2011 /*
2012  * Timer running if an idle class queue is waiting for service
2013  */
2014 static void cfq_idle_class_timer(unsigned long data)
2015 {
2016         struct cfq_data *cfqd = (struct cfq_data *) data;
2017         unsigned long flags, end;
2018
2019         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2020
2021         /*
2022          * race with a non-idle queue, reset timer
2023          */
2024         end = cfqd->last_end_request + CFQ_IDLE_GRACE;
2025         if (!time_after_eq(jiffies, end))
2026                 mod_timer(&cfqd->idle_class_timer, end);
2027         else
2028                 cfq_schedule_dispatch(cfqd);
2029
2030         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2031 }
2032
2033 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2034 {
2035         del_timer_sync(&cfqd->idle_slice_timer);
2036         del_timer_sync(&cfqd->idle_class_timer);
2037         blk_sync_queue(cfqd->queue);
2038 }
2039
2040 static void cfq_exit_queue(elevator_t *e)
2041 {
2042         struct cfq_data *cfqd = e->elevator_data;
2043         request_queue_t *q = cfqd->queue;
2044
2045         cfq_shutdown_timer_wq(cfqd);
2046
2047         spin_lock_irq(q->queue_lock);
2048
2049         if (cfqd->active_queue)
2050                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0, 0);
2051
2052         while (!list_empty(&cfqd->cic_list)) {
2053                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2054                                                         struct cfq_io_context,
2055                                                         queue_list);
2056
2057                 __cfq_exit_single_io_context(cfqd, cic);
2058         }
2059
2060         spin_unlock_irq(q->queue_lock);
2061
2062         cfq_shutdown_timer_wq(cfqd);
2063
2064         kfree(cfqd->cfq_hash);
2065         kfree(cfqd);
2066 }
2067
2068 static void *cfq_init_queue(request_queue_t *q)
2069 {
2070         struct cfq_data *cfqd;
2071         int i;
2072
2073         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL, q->node);
2074         if (!cfqd)
2075                 return NULL;
2076
2077         memset(cfqd, 0, sizeof(*cfqd));
2078
2079         cfqd->service_tree = CFQ_RB_ROOT;
2080         INIT_LIST_HEAD(&cfqd->cur_rr);
2081         INIT_LIST_HEAD(&cfqd->cic_list);
2082
2083         cfqd->cfq_hash = kmalloc_node(sizeof(struct hlist_head) * CFQ_QHASH_ENTRIES, GFP_KERNEL, q->node);
2084         if (!cfqd->cfq_hash)
2085                 goto out_free;
2086
2087         for (i = 0; i < CFQ_QHASH_ENTRIES; i++)
2088                 INIT_HLIST_HEAD(&cfqd->cfq_hash[i]);
2089
2090         cfqd->queue = q;
2091
2092         init_timer(&cfqd->idle_slice_timer);
2093         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2094         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2095
2096         init_timer(&cfqd->idle_class_timer);
2097         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2098         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2099
2100         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2101
2102         cfqd->cfq_quantum = cfq_quantum;
2103         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2104         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2105         cfqd->cfq_back_max = cfq_back_max;
2106         cfqd->cfq_back_penalty = cfq_back_penalty;
2107         cfqd->cfq_slice[0] = cfq_slice_async;
2108         cfqd->cfq_slice[1] = cfq_slice_sync;
2109         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2110         cfqd->cfq_slice_idle = cfq_slice_idle;
2111
2112         return cfqd;
2113 out_free:
2114         kfree(cfqd);
2115         return NULL;
2116 }
2117
2118 static void cfq_slab_kill(void)
2119 {
2120         if (cfq_pool)
2121                 kmem_cache_destroy(cfq_pool);
2122         if (cfq_ioc_pool)
2123                 kmem_cache_destroy(cfq_ioc_pool);
2124 }
2125
2126 static int __init cfq_slab_setup(void)
2127 {
2128         cfq_pool = kmem_cache_create("cfq_pool", sizeof(struct cfq_queue), 0, 0,
2129                                         NULL, NULL);
2130         if (!cfq_pool)
2131                 goto fail;
2132
2133         cfq_ioc_pool = kmem_cache_create("cfq_ioc_pool",
2134                         sizeof(struct cfq_io_context), 0, 0, NULL, NULL);
2135         if (!cfq_ioc_pool)
2136                 goto fail;
2137
2138         return 0;
2139 fail:
2140         cfq_slab_kill();
2141         return -ENOMEM;
2142 }
2143
2144 /*
2145  * sysfs parts below -->
2146  */
2147 static ssize_t
2148 cfq_var_show(unsigned int var, char *page)
2149 {
2150         return sprintf(page, "%d\n", var);
2151 }
2152
2153 static ssize_t
2154 cfq_var_store(unsigned int *var, const char *page, size_t count)
2155 {
2156         char *p = (char *) page;
2157
2158         *var = simple_strtoul(p, &p, 10);
2159         return count;
2160 }
2161
2162 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2163 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2164 {                                                                       \
2165         struct cfq_data *cfqd = e->elevator_data;                       \
2166         unsigned int __data = __VAR;                                    \
2167         if (__CONV)                                                     \
2168                 __data = jiffies_to_msecs(__data);                      \
2169         return cfq_var_show(__data, (page));                            \
2170 }
2171 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2172 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2173 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2174 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2175 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2176 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2177 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2178 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2179 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2180 #undef SHOW_FUNCTION
2181
2182 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2183 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2184 {                                                                       \
2185         struct cfq_data *cfqd = e->elevator_data;                       \
2186         unsigned int __data;                                            \
2187         int ret = cfq_var_store(&__data, (page), count);                \
2188         if (__data < (MIN))                                             \
2189                 __data = (MIN);                                         \
2190         else if (__data > (MAX))                                        \
2191                 __data = (MAX);                                         \
2192         if (__CONV)                                                     \
2193                 *(__PTR) = msecs_to_jiffies(__data);                    \
2194         else                                                            \
2195                 *(__PTR) = __data;                                      \
2196         return ret;                                                     \
2197 }
2198 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2199 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2200 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2201 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2202 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2203 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2204 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2205 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2206 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2207 #undef STORE_FUNCTION
2208
2209 #define CFQ_ATTR(name) \
2210         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2211
2212 static struct elv_fs_entry cfq_attrs[] = {
2213         CFQ_ATTR(quantum),
2214         CFQ_ATTR(fifo_expire_sync),
2215         CFQ_ATTR(fifo_expire_async),
2216         CFQ_ATTR(back_seek_max),
2217         CFQ_ATTR(back_seek_penalty),
2218         CFQ_ATTR(slice_sync),
2219         CFQ_ATTR(slice_async),
2220         CFQ_ATTR(slice_async_rq),
2221         CFQ_ATTR(slice_idle),
2222         __ATTR_NULL
2223 };
2224
2225 static struct elevator_type iosched_cfq = {
2226         .ops = {
2227                 .elevator_merge_fn =            cfq_merge,
2228                 .elevator_merged_fn =           cfq_merged_request,
2229                 .elevator_merge_req_fn =        cfq_merged_requests,
2230                 .elevator_allow_merge_fn =      cfq_allow_merge,
2231                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2232                 .elevator_add_req_fn =          cfq_insert_request,
2233                 .elevator_activate_req_fn =     cfq_activate_request,
2234                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2235                 .elevator_queue_empty_fn =      cfq_queue_empty,
2236                 .elevator_completed_req_fn =    cfq_completed_request,
2237                 .elevator_former_req_fn =       elv_rb_former_request,
2238                 .elevator_latter_req_fn =       elv_rb_latter_request,
2239                 .elevator_set_req_fn =          cfq_set_request,
2240                 .elevator_put_req_fn =          cfq_put_request,
2241                 .elevator_may_queue_fn =        cfq_may_queue,
2242                 .elevator_init_fn =             cfq_init_queue,
2243                 .elevator_exit_fn =             cfq_exit_queue,
2244                 .trim =                         cfq_free_io_context,
2245         },
2246         .elevator_attrs =       cfq_attrs,
2247         .elevator_name =        "cfq",
2248         .elevator_owner =       THIS_MODULE,
2249 };
2250
2251 static int __init cfq_init(void)
2252 {
2253         int ret;
2254
2255         /*
2256          * could be 0 on HZ < 1000 setups
2257          */
2258         if (!cfq_slice_async)
2259                 cfq_slice_async = 1;
2260         if (!cfq_slice_idle)
2261                 cfq_slice_idle = 1;
2262
2263         if (cfq_slab_setup())
2264                 return -ENOMEM;
2265
2266         ret = elv_register(&iosched_cfq);
2267         if (ret)
2268                 cfq_slab_kill();
2269
2270         return ret;
2271 }
2272
2273 static void __exit cfq_exit(void)
2274 {
2275         DECLARE_COMPLETION_ONSTACK(all_gone);
2276         elv_unregister(&iosched_cfq);
2277         ioc_gone = &all_gone;
2278         /* ioc_gone's update must be visible before reading ioc_count */
2279         smp_wmb();
2280         if (elv_ioc_count_read(ioc_count))
2281                 wait_for_completion(ioc_gone);
2282         synchronize_rcu();
2283         cfq_slab_kill();
2284 }
2285
2286 module_init(cfq_init);
2287 module_exit(cfq_exit);
2288
2289 MODULE_AUTHOR("Jens Axboe");
2290 MODULE_LICENSE("GPL");
2291 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");