io_context sharing - cfq changes
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14
15 /*
16  * tunables
17  */
18 static const int cfq_quantum = 4;               /* max queue in one round of service */
19 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
20 static const int cfq_back_max = 16 * 1024;      /* maximum backwards seek, in KiB */
21 static const int cfq_back_penalty = 2;          /* penalty of a backwards seek */
22
23 static const int cfq_slice_sync = HZ / 10;
24 static int cfq_slice_async = HZ / 25;
25 static const int cfq_slice_async_rq = 2;
26 static int cfq_slice_idle = HZ / 125;
27
28 /*
29  * grace period before allowing idle class to get disk access
30  */
31 #define CFQ_IDLE_GRACE          (HZ / 10)
32
33 /*
34  * below this threshold, we consider thinktime immediate
35  */
36 #define CFQ_MIN_TT              (2)
37
38 #define CFQ_SLICE_SCALE         (5)
39
40 #define RQ_CIC(rq)              ((struct cfq_io_context*)(rq)->elevator_private)
41 #define RQ_CFQQ(rq)             ((rq)->elevator_private2)
42
43 static struct kmem_cache *cfq_pool;
44 static struct kmem_cache *cfq_ioc_pool;
45
46 static DEFINE_PER_CPU(unsigned long, ioc_count);
47 static struct completion *ioc_gone;
48
49 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
50 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
51 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
52
53 #define ASYNC                   (0)
54 #define SYNC                    (1)
55
56 #define sample_valid(samples)   ((samples) > 80)
57
58 /*
59  * Most of our rbtree usage is for sorting with min extraction, so
60  * if we cache the leftmost node we don't have to walk down the tree
61  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
62  * move this into the elevator for the rq sorting as well.
63  */
64 struct cfq_rb_root {
65         struct rb_root rb;
66         struct rb_node *left;
67 };
68 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
69
70 /*
71  * Per block device queue structure
72  */
73 struct cfq_data {
74         struct request_queue *queue;
75
76         /*
77          * rr list of queues with requests and the count of them
78          */
79         struct cfq_rb_root service_tree;
80         unsigned int busy_queues;
81
82         int rq_in_driver;
83         int sync_flight;
84         int hw_tag;
85
86         /*
87          * idle window management
88          */
89         struct timer_list idle_slice_timer;
90         struct work_struct unplug_work;
91
92         struct cfq_queue *active_queue;
93         struct cfq_io_context *active_cic;
94
95         /*
96          * async queue for each priority case
97          */
98         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
99         struct cfq_queue *async_idle_cfqq;
100
101         struct timer_list idle_class_timer;
102
103         sector_t last_position;
104         unsigned long last_end_request;
105
106         /*
107          * tunables, see top of file
108          */
109         unsigned int cfq_quantum;
110         unsigned int cfq_fifo_expire[2];
111         unsigned int cfq_back_penalty;
112         unsigned int cfq_back_max;
113         unsigned int cfq_slice[2];
114         unsigned int cfq_slice_async_rq;
115         unsigned int cfq_slice_idle;
116
117         struct list_head cic_list;
118 };
119
120 /*
121  * Per process-grouping structure
122  */
123 struct cfq_queue {
124         /* reference count */
125         atomic_t ref;
126         /* parent cfq_data */
127         struct cfq_data *cfqd;
128         /* service_tree member */
129         struct rb_node rb_node;
130         /* service_tree key */
131         unsigned long rb_key;
132         /* sorted list of pending requests */
133         struct rb_root sort_list;
134         /* if fifo isn't expired, next request to serve */
135         struct request *next_rq;
136         /* requests queued in sort_list */
137         int queued[2];
138         /* currently allocated requests */
139         int allocated[2];
140         /* pending metadata requests */
141         int meta_pending;
142         /* fifo list of requests in sort_list */
143         struct list_head fifo;
144
145         unsigned long slice_end;
146         long slice_resid;
147
148         /* number of requests that are on the dispatch list or inside driver */
149         int dispatched;
150
151         /* io prio of this group */
152         unsigned short ioprio, org_ioprio;
153         unsigned short ioprio_class, org_ioprio_class;
154
155         /* various state flags, see below */
156         unsigned int flags;
157 };
158
159 enum cfqq_state_flags {
160         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
161         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
162         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
163         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
164         CFQ_CFQQ_FLAG_must_dispatch,    /* must dispatch, even if expired */
165         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
166         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
167         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
168         CFQ_CFQQ_FLAG_queue_new,        /* queue never been serviced */
169         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
170         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
171 };
172
173 #define CFQ_CFQQ_FNS(name)                                              \
174 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
175 {                                                                       \
176         cfqq->flags |= (1 << CFQ_CFQQ_FLAG_##name);                     \
177 }                                                                       \
178 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
179 {                                                                       \
180         cfqq->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                    \
181 }                                                                       \
182 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
183 {                                                                       \
184         return (cfqq->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;        \
185 }
186
187 CFQ_CFQQ_FNS(on_rr);
188 CFQ_CFQQ_FNS(wait_request);
189 CFQ_CFQQ_FNS(must_alloc);
190 CFQ_CFQQ_FNS(must_alloc_slice);
191 CFQ_CFQQ_FNS(must_dispatch);
192 CFQ_CFQQ_FNS(fifo_expire);
193 CFQ_CFQQ_FNS(idle_window);
194 CFQ_CFQQ_FNS(prio_changed);
195 CFQ_CFQQ_FNS(queue_new);
196 CFQ_CFQQ_FNS(slice_new);
197 CFQ_CFQQ_FNS(sync);
198 #undef CFQ_CFQQ_FNS
199
200 static void cfq_dispatch_insert(struct request_queue *, struct request *);
201 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
202                                        struct io_context *, gfp_t);
203 static struct cfq_io_context *cfq_cic_rb_lookup(struct cfq_data *,
204                                                 struct io_context *);
205
206 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
207                                             int is_sync)
208 {
209         return cic->cfqq[!!is_sync];
210 }
211
212 static inline void cic_set_cfqq(struct cfq_io_context *cic,
213                                 struct cfq_queue *cfqq, int is_sync)
214 {
215         cic->cfqq[!!is_sync] = cfqq;
216 }
217
218 /*
219  * We regard a request as SYNC, if it's either a read or has the SYNC bit
220  * set (in which case it could also be direct WRITE).
221  */
222 static inline int cfq_bio_sync(struct bio *bio)
223 {
224         if (bio_data_dir(bio) == READ || bio_sync(bio))
225                 return 1;
226
227         return 0;
228 }
229
230 /*
231  * scheduler run of queue, if there are requests pending and no one in the
232  * driver that will restart queueing
233  */
234 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
235 {
236         if (cfqd->busy_queues)
237                 kblockd_schedule_work(&cfqd->unplug_work);
238 }
239
240 static int cfq_queue_empty(struct request_queue *q)
241 {
242         struct cfq_data *cfqd = q->elevator->elevator_data;
243
244         return !cfqd->busy_queues;
245 }
246
247 /*
248  * Scale schedule slice based on io priority. Use the sync time slice only
249  * if a queue is marked sync and has sync io queued. A sync queue with async
250  * io only, should not get full sync slice length.
251  */
252 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
253                                  unsigned short prio)
254 {
255         const int base_slice = cfqd->cfq_slice[sync];
256
257         WARN_ON(prio >= IOPRIO_BE_NR);
258
259         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
260 }
261
262 static inline int
263 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
264 {
265         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
266 }
267
268 static inline void
269 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
270 {
271         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
272 }
273
274 /*
275  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
276  * isn't valid until the first request from the dispatch is activated
277  * and the slice time set.
278  */
279 static inline int cfq_slice_used(struct cfq_queue *cfqq)
280 {
281         if (cfq_cfqq_slice_new(cfqq))
282                 return 0;
283         if (time_before(jiffies, cfqq->slice_end))
284                 return 0;
285
286         return 1;
287 }
288
289 /*
290  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
291  * We choose the request that is closest to the head right now. Distance
292  * behind the head is penalized and only allowed to a certain extent.
293  */
294 static struct request *
295 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
296 {
297         sector_t last, s1, s2, d1 = 0, d2 = 0;
298         unsigned long back_max;
299 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
300 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
301         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
302
303         if (rq1 == NULL || rq1 == rq2)
304                 return rq2;
305         if (rq2 == NULL)
306                 return rq1;
307
308         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
309                 return rq1;
310         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
311                 return rq2;
312         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
313                 return rq1;
314         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
315                 return rq2;
316
317         s1 = rq1->sector;
318         s2 = rq2->sector;
319
320         last = cfqd->last_position;
321
322         /*
323          * by definition, 1KiB is 2 sectors
324          */
325         back_max = cfqd->cfq_back_max * 2;
326
327         /*
328          * Strict one way elevator _except_ in the case where we allow
329          * short backward seeks which are biased as twice the cost of a
330          * similar forward seek.
331          */
332         if (s1 >= last)
333                 d1 = s1 - last;
334         else if (s1 + back_max >= last)
335                 d1 = (last - s1) * cfqd->cfq_back_penalty;
336         else
337                 wrap |= CFQ_RQ1_WRAP;
338
339         if (s2 >= last)
340                 d2 = s2 - last;
341         else if (s2 + back_max >= last)
342                 d2 = (last - s2) * cfqd->cfq_back_penalty;
343         else
344                 wrap |= CFQ_RQ2_WRAP;
345
346         /* Found required data */
347
348         /*
349          * By doing switch() on the bit mask "wrap" we avoid having to
350          * check two variables for all permutations: --> faster!
351          */
352         switch (wrap) {
353         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
354                 if (d1 < d2)
355                         return rq1;
356                 else if (d2 < d1)
357                         return rq2;
358                 else {
359                         if (s1 >= s2)
360                                 return rq1;
361                         else
362                                 return rq2;
363                 }
364
365         case CFQ_RQ2_WRAP:
366                 return rq1;
367         case CFQ_RQ1_WRAP:
368                 return rq2;
369         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
370         default:
371                 /*
372                  * Since both rqs are wrapped,
373                  * start with the one that's further behind head
374                  * (--> only *one* back seek required),
375                  * since back seek takes more time than forward.
376                  */
377                 if (s1 <= s2)
378                         return rq1;
379                 else
380                         return rq2;
381         }
382 }
383
384 /*
385  * The below is leftmost cache rbtree addon
386  */
387 static struct rb_node *cfq_rb_first(struct cfq_rb_root *root)
388 {
389         if (!root->left)
390                 root->left = rb_first(&root->rb);
391
392         return root->left;
393 }
394
395 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
396 {
397         if (root->left == n)
398                 root->left = NULL;
399
400         rb_erase(n, &root->rb);
401         RB_CLEAR_NODE(n);
402 }
403
404 /*
405  * would be nice to take fifo expire time into account as well
406  */
407 static struct request *
408 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
409                   struct request *last)
410 {
411         struct rb_node *rbnext = rb_next(&last->rb_node);
412         struct rb_node *rbprev = rb_prev(&last->rb_node);
413         struct request *next = NULL, *prev = NULL;
414
415         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
416
417         if (rbprev)
418                 prev = rb_entry_rq(rbprev);
419
420         if (rbnext)
421                 next = rb_entry_rq(rbnext);
422         else {
423                 rbnext = rb_first(&cfqq->sort_list);
424                 if (rbnext && rbnext != &last->rb_node)
425                         next = rb_entry_rq(rbnext);
426         }
427
428         return cfq_choose_req(cfqd, next, prev);
429 }
430
431 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
432                                       struct cfq_queue *cfqq)
433 {
434         /*
435          * just an approximation, should be ok.
436          */
437         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
438                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
439 }
440
441 /*
442  * The cfqd->service_tree holds all pending cfq_queue's that have
443  * requests waiting to be processed. It is sorted in the order that
444  * we will service the queues.
445  */
446 static void cfq_service_tree_add(struct cfq_data *cfqd,
447                                     struct cfq_queue *cfqq, int add_front)
448 {
449         struct rb_node **p = &cfqd->service_tree.rb.rb_node;
450         struct rb_node *parent = NULL;
451         unsigned long rb_key;
452         int left;
453
454         if (!add_front) {
455                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
456                 rb_key += cfqq->slice_resid;
457                 cfqq->slice_resid = 0;
458         } else
459                 rb_key = 0;
460
461         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
462                 /*
463                  * same position, nothing more to do
464                  */
465                 if (rb_key == cfqq->rb_key)
466                         return;
467
468                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
469         }
470
471         left = 1;
472         while (*p) {
473                 struct cfq_queue *__cfqq;
474                 struct rb_node **n;
475
476                 parent = *p;
477                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
478
479                 /*
480                  * sort RT queues first, we always want to give
481                  * preference to them. IDLE queues goes to the back.
482                  * after that, sort on the next service time.
483                  */
484                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
485                         n = &(*p)->rb_left;
486                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
487                         n = &(*p)->rb_right;
488                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
489                         n = &(*p)->rb_left;
490                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
491                         n = &(*p)->rb_right;
492                 else if (rb_key < __cfqq->rb_key)
493                         n = &(*p)->rb_left;
494                 else
495                         n = &(*p)->rb_right;
496
497                 if (n == &(*p)->rb_right)
498                         left = 0;
499
500                 p = n;
501         }
502
503         if (left)
504                 cfqd->service_tree.left = &cfqq->rb_node;
505
506         cfqq->rb_key = rb_key;
507         rb_link_node(&cfqq->rb_node, parent, p);
508         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
509 }
510
511 /*
512  * Update cfqq's position in the service tree.
513  */
514 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
515 {
516         /*
517          * Resorting requires the cfqq to be on the RR list already.
518          */
519         if (cfq_cfqq_on_rr(cfqq))
520                 cfq_service_tree_add(cfqd, cfqq, 0);
521 }
522
523 /*
524  * add to busy list of queues for service, trying to be fair in ordering
525  * the pending list according to last request service
526  */
527 static inline void
528 cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
529 {
530         BUG_ON(cfq_cfqq_on_rr(cfqq));
531         cfq_mark_cfqq_on_rr(cfqq);
532         cfqd->busy_queues++;
533
534         cfq_resort_rr_list(cfqd, cfqq);
535 }
536
537 /*
538  * Called when the cfqq no longer has requests pending, remove it from
539  * the service tree.
540  */
541 static inline void
542 cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
543 {
544         BUG_ON(!cfq_cfqq_on_rr(cfqq));
545         cfq_clear_cfqq_on_rr(cfqq);
546
547         if (!RB_EMPTY_NODE(&cfqq->rb_node))
548                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
549
550         BUG_ON(!cfqd->busy_queues);
551         cfqd->busy_queues--;
552 }
553
554 /*
555  * rb tree support functions
556  */
557 static inline void cfq_del_rq_rb(struct request *rq)
558 {
559         struct cfq_queue *cfqq = RQ_CFQQ(rq);
560         struct cfq_data *cfqd = cfqq->cfqd;
561         const int sync = rq_is_sync(rq);
562
563         BUG_ON(!cfqq->queued[sync]);
564         cfqq->queued[sync]--;
565
566         elv_rb_del(&cfqq->sort_list, rq);
567
568         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
569                 cfq_del_cfqq_rr(cfqd, cfqq);
570 }
571
572 static void cfq_add_rq_rb(struct request *rq)
573 {
574         struct cfq_queue *cfqq = RQ_CFQQ(rq);
575         struct cfq_data *cfqd = cfqq->cfqd;
576         struct request *__alias;
577
578         cfqq->queued[rq_is_sync(rq)]++;
579
580         /*
581          * looks a little odd, but the first insert might return an alias.
582          * if that happens, put the alias on the dispatch list
583          */
584         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
585                 cfq_dispatch_insert(cfqd->queue, __alias);
586
587         if (!cfq_cfqq_on_rr(cfqq))
588                 cfq_add_cfqq_rr(cfqd, cfqq);
589
590         /*
591          * check if this request is a better next-serve candidate
592          */
593         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
594         BUG_ON(!cfqq->next_rq);
595 }
596
597 static inline void
598 cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
599 {
600         elv_rb_del(&cfqq->sort_list, rq);
601         cfqq->queued[rq_is_sync(rq)]--;
602         cfq_add_rq_rb(rq);
603 }
604
605 static struct request *
606 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
607 {
608         struct task_struct *tsk = current;
609         struct cfq_io_context *cic;
610         struct cfq_queue *cfqq;
611
612         cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
613         if (!cic)
614                 return NULL;
615
616         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
617         if (cfqq) {
618                 sector_t sector = bio->bi_sector + bio_sectors(bio);
619
620                 return elv_rb_find(&cfqq->sort_list, sector);
621         }
622
623         return NULL;
624 }
625
626 static void cfq_activate_request(struct request_queue *q, struct request *rq)
627 {
628         struct cfq_data *cfqd = q->elevator->elevator_data;
629
630         cfqd->rq_in_driver++;
631
632         /*
633          * If the depth is larger 1, it really could be queueing. But lets
634          * make the mark a little higher - idling could still be good for
635          * low queueing, and a low queueing number could also just indicate
636          * a SCSI mid layer like behaviour where limit+1 is often seen.
637          */
638         if (!cfqd->hw_tag && cfqd->rq_in_driver > 4)
639                 cfqd->hw_tag = 1;
640
641         cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
642 }
643
644 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
645 {
646         struct cfq_data *cfqd = q->elevator->elevator_data;
647
648         WARN_ON(!cfqd->rq_in_driver);
649         cfqd->rq_in_driver--;
650 }
651
652 static void cfq_remove_request(struct request *rq)
653 {
654         struct cfq_queue *cfqq = RQ_CFQQ(rq);
655
656         if (cfqq->next_rq == rq)
657                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
658
659         list_del_init(&rq->queuelist);
660         cfq_del_rq_rb(rq);
661
662         if (rq_is_meta(rq)) {
663                 WARN_ON(!cfqq->meta_pending);
664                 cfqq->meta_pending--;
665         }
666 }
667
668 static int cfq_merge(struct request_queue *q, struct request **req,
669                      struct bio *bio)
670 {
671         struct cfq_data *cfqd = q->elevator->elevator_data;
672         struct request *__rq;
673
674         __rq = cfq_find_rq_fmerge(cfqd, bio);
675         if (__rq && elv_rq_merge_ok(__rq, bio)) {
676                 *req = __rq;
677                 return ELEVATOR_FRONT_MERGE;
678         }
679
680         return ELEVATOR_NO_MERGE;
681 }
682
683 static void cfq_merged_request(struct request_queue *q, struct request *req,
684                                int type)
685 {
686         if (type == ELEVATOR_FRONT_MERGE) {
687                 struct cfq_queue *cfqq = RQ_CFQQ(req);
688
689                 cfq_reposition_rq_rb(cfqq, req);
690         }
691 }
692
693 static void
694 cfq_merged_requests(struct request_queue *q, struct request *rq,
695                     struct request *next)
696 {
697         /*
698          * reposition in fifo if next is older than rq
699          */
700         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
701             time_before(next->start_time, rq->start_time))
702                 list_move(&rq->queuelist, &next->queuelist);
703
704         cfq_remove_request(next);
705 }
706
707 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
708                            struct bio *bio)
709 {
710         struct cfq_data *cfqd = q->elevator->elevator_data;
711         struct cfq_io_context *cic;
712         struct cfq_queue *cfqq;
713
714         /*
715          * Disallow merge of a sync bio into an async request.
716          */
717         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
718                 return 0;
719
720         /*
721          * Lookup the cfqq that this bio will be queued with. Allow
722          * merge only if rq is queued there.
723          */
724         cic = cfq_cic_rb_lookup(cfqd, current->io_context);
725         if (!cic)
726                 return 0;
727
728         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
729         if (cfqq == RQ_CFQQ(rq))
730                 return 1;
731
732         return 0;
733 }
734
735 static inline void
736 __cfq_set_active_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
737 {
738         if (cfqq) {
739                 /*
740                  * stop potential idle class queues waiting service
741                  */
742                 del_timer(&cfqd->idle_class_timer);
743
744                 cfqq->slice_end = 0;
745                 cfq_clear_cfqq_must_alloc_slice(cfqq);
746                 cfq_clear_cfqq_fifo_expire(cfqq);
747                 cfq_mark_cfqq_slice_new(cfqq);
748                 cfq_clear_cfqq_queue_new(cfqq);
749         }
750
751         cfqd->active_queue = cfqq;
752 }
753
754 /*
755  * current cfqq expired its slice (or was too idle), select new one
756  */
757 static void
758 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
759                     int timed_out)
760 {
761         if (cfq_cfqq_wait_request(cfqq))
762                 del_timer(&cfqd->idle_slice_timer);
763
764         cfq_clear_cfqq_must_dispatch(cfqq);
765         cfq_clear_cfqq_wait_request(cfqq);
766
767         /*
768          * store what was left of this slice, if the queue idled/timed out
769          */
770         if (timed_out && !cfq_cfqq_slice_new(cfqq))
771                 cfqq->slice_resid = cfqq->slice_end - jiffies;
772
773         cfq_resort_rr_list(cfqd, cfqq);
774
775         if (cfqq == cfqd->active_queue)
776                 cfqd->active_queue = NULL;
777
778         if (cfqd->active_cic) {
779                 put_io_context(cfqd->active_cic->ioc);
780                 cfqd->active_cic = NULL;
781         }
782 }
783
784 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
785 {
786         struct cfq_queue *cfqq = cfqd->active_queue;
787
788         if (cfqq)
789                 __cfq_slice_expired(cfqd, cfqq, timed_out);
790 }
791
792 static int start_idle_class_timer(struct cfq_data *cfqd)
793 {
794         unsigned long end = cfqd->last_end_request + CFQ_IDLE_GRACE;
795         unsigned long now = jiffies;
796
797         if (time_before(now, end) &&
798             time_after_eq(now, cfqd->last_end_request)) {
799                 mod_timer(&cfqd->idle_class_timer, end);
800                 return 1;
801         }
802
803         return 0;
804 }
805
806 /*
807  * Get next queue for service. Unless we have a queue preemption,
808  * we'll simply select the first cfqq in the service tree.
809  */
810 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
811 {
812         struct cfq_queue *cfqq;
813         struct rb_node *n;
814
815         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
816                 return NULL;
817
818         n = cfq_rb_first(&cfqd->service_tree);
819         cfqq = rb_entry(n, struct cfq_queue, rb_node);
820
821         if (cfq_class_idle(cfqq)) {
822                 /*
823                  * if we have idle queues and no rt or be queues had
824                  * pending requests, either allow immediate service if
825                  * the grace period has passed or arm the idle grace
826                  * timer
827                  */
828                 if (start_idle_class_timer(cfqd))
829                         cfqq = NULL;
830         }
831
832         return cfqq;
833 }
834
835 /*
836  * Get and set a new active queue for service.
837  */
838 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
839 {
840         struct cfq_queue *cfqq;
841
842         cfqq = cfq_get_next_queue(cfqd);
843         __cfq_set_active_queue(cfqd, cfqq);
844         return cfqq;
845 }
846
847 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
848                                           struct request *rq)
849 {
850         if (rq->sector >= cfqd->last_position)
851                 return rq->sector - cfqd->last_position;
852         else
853                 return cfqd->last_position - rq->sector;
854 }
855
856 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
857 {
858         struct cfq_io_context *cic = cfqd->active_cic;
859
860         if (!sample_valid(cic->seek_samples))
861                 return 0;
862
863         return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
864 }
865
866 static int cfq_close_cooperator(struct cfq_data *cfq_data,
867                                 struct cfq_queue *cfqq)
868 {
869         /*
870          * We should notice if some of the queues are cooperating, eg
871          * working closely on the same area of the disk. In that case,
872          * we can group them together and don't waste time idling.
873          */
874         return 0;
875 }
876
877 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
878
879 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
880 {
881         struct cfq_queue *cfqq = cfqd->active_queue;
882         struct cfq_io_context *cic;
883         unsigned long sl;
884
885         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
886         WARN_ON(cfq_cfqq_slice_new(cfqq));
887
888         /*
889          * idle is disabled, either manually or by past process history
890          */
891         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
892                 return;
893
894         /*
895          * task has exited, don't wait
896          */
897         cic = cfqd->active_cic;
898         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
899                 return;
900
901         /*
902          * See if this prio level has a good candidate
903          */
904         if (cfq_close_cooperator(cfqd, cfqq) &&
905             (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
906                 return;
907
908         cfq_mark_cfqq_must_dispatch(cfqq);
909         cfq_mark_cfqq_wait_request(cfqq);
910
911         /*
912          * we don't want to idle for seeks, but we do want to allow
913          * fair distribution of slice time for a process doing back-to-back
914          * seeks. so allow a little bit of time for him to submit a new rq
915          */
916         sl = cfqd->cfq_slice_idle;
917         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
918                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
919
920         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
921 }
922
923 /*
924  * Move request from internal lists to the request queue dispatch list.
925  */
926 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
927 {
928         struct cfq_data *cfqd = q->elevator->elevator_data;
929         struct cfq_queue *cfqq = RQ_CFQQ(rq);
930
931         cfq_remove_request(rq);
932         cfqq->dispatched++;
933         elv_dispatch_sort(q, rq);
934
935         if (cfq_cfqq_sync(cfqq))
936                 cfqd->sync_flight++;
937 }
938
939 /*
940  * return expired entry, or NULL to just start from scratch in rbtree
941  */
942 static inline struct request *cfq_check_fifo(struct cfq_queue *cfqq)
943 {
944         struct cfq_data *cfqd = cfqq->cfqd;
945         struct request *rq;
946         int fifo;
947
948         if (cfq_cfqq_fifo_expire(cfqq))
949                 return NULL;
950
951         cfq_mark_cfqq_fifo_expire(cfqq);
952
953         if (list_empty(&cfqq->fifo))
954                 return NULL;
955
956         fifo = cfq_cfqq_sync(cfqq);
957         rq = rq_entry_fifo(cfqq->fifo.next);
958
959         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
960                 return NULL;
961
962         return rq;
963 }
964
965 static inline int
966 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
967 {
968         const int base_rq = cfqd->cfq_slice_async_rq;
969
970         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
971
972         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
973 }
974
975 /*
976  * Select a queue for service. If we have a current active queue,
977  * check whether to continue servicing it, or retrieve and set a new one.
978  */
979 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
980 {
981         struct cfq_queue *cfqq;
982
983         cfqq = cfqd->active_queue;
984         if (!cfqq)
985                 goto new_queue;
986
987         /*
988          * The active queue has run out of time, expire it and select new.
989          */
990         if (cfq_slice_used(cfqq))
991                 goto expire;
992
993         /*
994          * The active queue has requests and isn't expired, allow it to
995          * dispatch.
996          */
997         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
998                 goto keep_queue;
999
1000         /*
1001          * No requests pending. If the active queue still has requests in
1002          * flight or is idling for a new request, allow either of these
1003          * conditions to happen (or time out) before selecting a new queue.
1004          */
1005         if (timer_pending(&cfqd->idle_slice_timer) ||
1006             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1007                 cfqq = NULL;
1008                 goto keep_queue;
1009         }
1010
1011 expire:
1012         cfq_slice_expired(cfqd, 0);
1013 new_queue:
1014         cfqq = cfq_set_active_queue(cfqd);
1015 keep_queue:
1016         return cfqq;
1017 }
1018
1019 /*
1020  * Dispatch some requests from cfqq, moving them to the request queue
1021  * dispatch list.
1022  */
1023 static int
1024 __cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1025                         int max_dispatch)
1026 {
1027         int dispatched = 0;
1028
1029         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1030
1031         do {
1032                 struct request *rq;
1033
1034                 /*
1035                  * follow expired path, else get first next available
1036                  */
1037                 if ((rq = cfq_check_fifo(cfqq)) == NULL)
1038                         rq = cfqq->next_rq;
1039
1040                 /*
1041                  * finally, insert request into driver dispatch list
1042                  */
1043                 cfq_dispatch_insert(cfqd->queue, rq);
1044
1045                 dispatched++;
1046
1047                 if (!cfqd->active_cic) {
1048                         atomic_inc(&RQ_CIC(rq)->ioc->refcount);
1049                         cfqd->active_cic = RQ_CIC(rq);
1050                 }
1051
1052                 if (RB_EMPTY_ROOT(&cfqq->sort_list))
1053                         break;
1054
1055         } while (dispatched < max_dispatch);
1056
1057         /*
1058          * expire an async queue immediately if it has used up its slice. idle
1059          * queue always expire after 1 dispatch round.
1060          */
1061         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1062             dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1063             cfq_class_idle(cfqq))) {
1064                 cfqq->slice_end = jiffies + 1;
1065                 cfq_slice_expired(cfqd, 0);
1066         }
1067
1068         return dispatched;
1069 }
1070
1071 static inline int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1072 {
1073         int dispatched = 0;
1074
1075         while (cfqq->next_rq) {
1076                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1077                 dispatched++;
1078         }
1079
1080         BUG_ON(!list_empty(&cfqq->fifo));
1081         return dispatched;
1082 }
1083
1084 /*
1085  * Drain our current requests. Used for barriers and when switching
1086  * io schedulers on-the-fly.
1087  */
1088 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1089 {
1090         int dispatched = 0;
1091         struct rb_node *n;
1092
1093         while ((n = cfq_rb_first(&cfqd->service_tree)) != NULL) {
1094                 struct cfq_queue *cfqq = rb_entry(n, struct cfq_queue, rb_node);
1095
1096                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1097         }
1098
1099         cfq_slice_expired(cfqd, 0);
1100
1101         BUG_ON(cfqd->busy_queues);
1102
1103         return dispatched;
1104 }
1105
1106 static int cfq_dispatch_requests(struct request_queue *q, int force)
1107 {
1108         struct cfq_data *cfqd = q->elevator->elevator_data;
1109         struct cfq_queue *cfqq;
1110         int dispatched;
1111
1112         if (!cfqd->busy_queues)
1113                 return 0;
1114
1115         if (unlikely(force))
1116                 return cfq_forced_dispatch(cfqd);
1117
1118         dispatched = 0;
1119         while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
1120                 int max_dispatch;
1121
1122                 max_dispatch = cfqd->cfq_quantum;
1123                 if (cfq_class_idle(cfqq))
1124                         max_dispatch = 1;
1125
1126                 if (cfqq->dispatched >= max_dispatch) {
1127                         if (cfqd->busy_queues > 1)
1128                                 break;
1129                         if (cfqq->dispatched >= 4 * max_dispatch)
1130                                 break;
1131                 }
1132
1133                 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1134                         break;
1135
1136                 cfq_clear_cfqq_must_dispatch(cfqq);
1137                 cfq_clear_cfqq_wait_request(cfqq);
1138                 del_timer(&cfqd->idle_slice_timer);
1139
1140                 dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
1141         }
1142
1143         return dispatched;
1144 }
1145
1146 /*
1147  * task holds one reference to the queue, dropped when task exits. each rq
1148  * in-flight on this queue also holds a reference, dropped when rq is freed.
1149  *
1150  * queue lock must be held here.
1151  */
1152 static void cfq_put_queue(struct cfq_queue *cfqq)
1153 {
1154         struct cfq_data *cfqd = cfqq->cfqd;
1155
1156         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1157
1158         if (!atomic_dec_and_test(&cfqq->ref))
1159                 return;
1160
1161         BUG_ON(rb_first(&cfqq->sort_list));
1162         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1163         BUG_ON(cfq_cfqq_on_rr(cfqq));
1164
1165         if (unlikely(cfqd->active_queue == cfqq)) {
1166                 __cfq_slice_expired(cfqd, cfqq, 0);
1167                 cfq_schedule_dispatch(cfqd);
1168         }
1169
1170         kmem_cache_free(cfq_pool, cfqq);
1171 }
1172
1173 static void cfq_free_io_context(struct io_context *ioc)
1174 {
1175         struct cfq_io_context *__cic;
1176         struct rb_node *n;
1177         int freed = 0;
1178
1179         ioc->ioc_data = NULL;
1180
1181         spin_lock(&ioc->lock);
1182
1183         while ((n = rb_first(&ioc->cic_root)) != NULL) {
1184                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1185                 rb_erase(&__cic->rb_node, &ioc->cic_root);
1186                 kmem_cache_free(cfq_ioc_pool, __cic);
1187                 freed++;
1188         }
1189
1190         elv_ioc_count_mod(ioc_count, -freed);
1191
1192         if (ioc_gone && !elv_ioc_count_read(ioc_count))
1193                 complete(ioc_gone);
1194
1195         spin_unlock(&ioc->lock);
1196 }
1197
1198 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1199 {
1200         if (unlikely(cfqq == cfqd->active_queue)) {
1201                 __cfq_slice_expired(cfqd, cfqq, 0);
1202                 cfq_schedule_dispatch(cfqd);
1203         }
1204
1205         cfq_put_queue(cfqq);
1206 }
1207
1208 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1209                                          struct cfq_io_context *cic)
1210 {
1211         list_del_init(&cic->queue_list);
1212         smp_wmb();
1213         cic->key = NULL;
1214
1215         if (cic->cfqq[ASYNC]) {
1216                 cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
1217                 cic->cfqq[ASYNC] = NULL;
1218         }
1219
1220         if (cic->cfqq[SYNC]) {
1221                 cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
1222                 cic->cfqq[SYNC] = NULL;
1223         }
1224 }
1225
1226 static void cfq_exit_single_io_context(struct cfq_io_context *cic)
1227 {
1228         struct cfq_data *cfqd = cic->key;
1229
1230         if (cfqd) {
1231                 struct request_queue *q = cfqd->queue;
1232
1233                 spin_lock_irq(q->queue_lock);
1234                 __cfq_exit_single_io_context(cfqd, cic);
1235                 spin_unlock_irq(q->queue_lock);
1236         }
1237 }
1238
1239 /*
1240  * The process that ioc belongs to has exited, we need to clean up
1241  * and put the internal structures we have that belongs to that process.
1242  */
1243 static void cfq_exit_io_context(struct io_context *ioc)
1244 {
1245         struct cfq_io_context *__cic;
1246         struct rb_node *n;
1247
1248         ioc->ioc_data = NULL;
1249
1250         spin_lock(&ioc->lock);
1251         /*
1252          * put the reference this task is holding to the various queues
1253          */
1254         n = rb_first(&ioc->cic_root);
1255         while (n != NULL) {
1256                 __cic = rb_entry(n, struct cfq_io_context, rb_node);
1257
1258                 cfq_exit_single_io_context(__cic);
1259                 n = rb_next(n);
1260         }
1261
1262         spin_unlock(&ioc->lock);
1263 }
1264
1265 static struct cfq_io_context *
1266 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1267 {
1268         struct cfq_io_context *cic;
1269
1270         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1271                                                         cfqd->queue->node);
1272         if (cic) {
1273                 cic->last_end_request = jiffies;
1274                 INIT_LIST_HEAD(&cic->queue_list);
1275                 cic->dtor = cfq_free_io_context;
1276                 cic->exit = cfq_exit_io_context;
1277                 elv_ioc_count_inc(ioc_count);
1278         }
1279
1280         return cic;
1281 }
1282
1283 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1284 {
1285         struct task_struct *tsk = current;
1286         int ioprio_class;
1287
1288         if (!cfq_cfqq_prio_changed(cfqq))
1289                 return;
1290
1291         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1292         switch (ioprio_class) {
1293                 default:
1294                         printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1295                 case IOPRIO_CLASS_NONE:
1296                         /*
1297                          * no prio set, place us in the middle of the BE classes
1298                          */
1299                         cfqq->ioprio = task_nice_ioprio(tsk);
1300                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1301                         break;
1302                 case IOPRIO_CLASS_RT:
1303                         cfqq->ioprio = task_ioprio(ioc);
1304                         cfqq->ioprio_class = IOPRIO_CLASS_RT;
1305                         break;
1306                 case IOPRIO_CLASS_BE:
1307                         cfqq->ioprio = task_ioprio(ioc);
1308                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1309                         break;
1310                 case IOPRIO_CLASS_IDLE:
1311                         cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1312                         cfqq->ioprio = 7;
1313                         cfq_clear_cfqq_idle_window(cfqq);
1314                         break;
1315         }
1316
1317         /*
1318          * keep track of original prio settings in case we have to temporarily
1319          * elevate the priority of this queue
1320          */
1321         cfqq->org_ioprio = cfqq->ioprio;
1322         cfqq->org_ioprio_class = cfqq->ioprio_class;
1323         cfq_clear_cfqq_prio_changed(cfqq);
1324 }
1325
1326 static inline void changed_ioprio(struct cfq_io_context *cic)
1327 {
1328         struct cfq_data *cfqd = cic->key;
1329         struct cfq_queue *cfqq;
1330         unsigned long flags;
1331
1332         if (unlikely(!cfqd))
1333                 return;
1334
1335         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1336
1337         cfqq = cic->cfqq[ASYNC];
1338         if (cfqq) {
1339                 struct cfq_queue *new_cfqq;
1340                 new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
1341                 if (new_cfqq) {
1342                         cic->cfqq[ASYNC] = new_cfqq;
1343                         cfq_put_queue(cfqq);
1344                 }
1345         }
1346
1347         cfqq = cic->cfqq[SYNC];
1348         if (cfqq)
1349                 cfq_mark_cfqq_prio_changed(cfqq);
1350
1351         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1352 }
1353
1354 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1355 {
1356         struct cfq_io_context *cic;
1357         struct rb_node *n;
1358
1359         spin_lock(&ioc->lock);
1360
1361         ioc->ioprio_changed = 0;
1362
1363         n = rb_first(&ioc->cic_root);
1364         while (n != NULL) {
1365                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1366
1367                 changed_ioprio(cic);
1368                 n = rb_next(n);
1369         }
1370
1371         spin_unlock(&ioc->lock);
1372 }
1373
1374 static struct cfq_queue *
1375 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1376                      struct io_context *ioc, gfp_t gfp_mask)
1377 {
1378         struct cfq_queue *cfqq, *new_cfqq = NULL;
1379         struct cfq_io_context *cic;
1380
1381 retry:
1382         cic = cfq_cic_rb_lookup(cfqd, ioc);
1383         /* cic always exists here */
1384         cfqq = cic_to_cfqq(cic, is_sync);
1385
1386         if (!cfqq) {
1387                 if (new_cfqq) {
1388                         cfqq = new_cfqq;
1389                         new_cfqq = NULL;
1390                 } else if (gfp_mask & __GFP_WAIT) {
1391                         /*
1392                          * Inform the allocator of the fact that we will
1393                          * just repeat this allocation if it fails, to allow
1394                          * the allocator to do whatever it needs to attempt to
1395                          * free memory.
1396                          */
1397                         spin_unlock_irq(cfqd->queue->queue_lock);
1398                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1399                                         gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1400                                         cfqd->queue->node);
1401                         spin_lock_irq(cfqd->queue->queue_lock);
1402                         goto retry;
1403                 } else {
1404                         cfqq = kmem_cache_alloc_node(cfq_pool,
1405                                         gfp_mask | __GFP_ZERO,
1406                                         cfqd->queue->node);
1407                         if (!cfqq)
1408                                 goto out;
1409                 }
1410
1411                 RB_CLEAR_NODE(&cfqq->rb_node);
1412                 INIT_LIST_HEAD(&cfqq->fifo);
1413
1414                 atomic_set(&cfqq->ref, 0);
1415                 cfqq->cfqd = cfqd;
1416
1417                 if (is_sync) {
1418                         cfq_mark_cfqq_idle_window(cfqq);
1419                         cfq_mark_cfqq_sync(cfqq);
1420                 }
1421
1422                 cfq_mark_cfqq_prio_changed(cfqq);
1423                 cfq_mark_cfqq_queue_new(cfqq);
1424
1425                 cfq_init_prio_data(cfqq, ioc);
1426         }
1427
1428         if (new_cfqq)
1429                 kmem_cache_free(cfq_pool, new_cfqq);
1430
1431 out:
1432         WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1433         return cfqq;
1434 }
1435
1436 static struct cfq_queue **
1437 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1438 {
1439         switch(ioprio_class) {
1440         case IOPRIO_CLASS_RT:
1441                 return &cfqd->async_cfqq[0][ioprio];
1442         case IOPRIO_CLASS_BE:
1443                 return &cfqd->async_cfqq[1][ioprio];
1444         case IOPRIO_CLASS_IDLE:
1445                 return &cfqd->async_idle_cfqq;
1446         default:
1447                 BUG();
1448         }
1449 }
1450
1451 static struct cfq_queue *
1452 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1453               gfp_t gfp_mask)
1454 {
1455         const int ioprio = task_ioprio(ioc);
1456         const int ioprio_class = task_ioprio_class(ioc);
1457         struct cfq_queue **async_cfqq = NULL;
1458         struct cfq_queue *cfqq = NULL;
1459
1460         if (!is_sync) {
1461                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1462                 cfqq = *async_cfqq;
1463         }
1464
1465         if (!cfqq) {
1466                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1467                 if (!cfqq)
1468                         return NULL;
1469         }
1470
1471         /*
1472          * pin the queue now that it's allocated, scheduler exit will prune it
1473          */
1474         if (!is_sync && !(*async_cfqq)) {
1475                 atomic_inc(&cfqq->ref);
1476                 *async_cfqq = cfqq;
1477         }
1478
1479         atomic_inc(&cfqq->ref);
1480         return cfqq;
1481 }
1482
1483 /*
1484  * We drop cfq io contexts lazily, so we may find a dead one.
1485  */
1486 static void
1487 cfq_drop_dead_cic(struct io_context *ioc, struct cfq_io_context *cic)
1488 {
1489         WARN_ON(!list_empty(&cic->queue_list));
1490
1491         if (ioc->ioc_data == cic)
1492                 ioc->ioc_data = NULL;
1493
1494         rb_erase(&cic->rb_node, &ioc->cic_root);
1495         kmem_cache_free(cfq_ioc_pool, cic);
1496         elv_ioc_count_dec(ioc_count);
1497 }
1498
1499 static struct cfq_io_context *
1500 cfq_cic_rb_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1501 {
1502         struct rb_node *n;
1503         struct cfq_io_context *cic;
1504         void *k, *key = cfqd;
1505
1506         if (unlikely(!ioc))
1507                 return NULL;
1508
1509         /*
1510          * we maintain a last-hit cache, to avoid browsing over the tree
1511          */
1512         cic = ioc->ioc_data;
1513         if (cic && cic->key == cfqd)
1514                 return cic;
1515
1516         spin_lock(&ioc->lock);
1517 restart:
1518         n = ioc->cic_root.rb_node;
1519         while (n) {
1520                 cic = rb_entry(n, struct cfq_io_context, rb_node);
1521                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1522                 k = cic->key;
1523                 if (unlikely(!k)) {
1524                         cfq_drop_dead_cic(ioc, cic);
1525                         goto restart;
1526                 }
1527
1528                 if (key < k)
1529                         n = n->rb_left;
1530                 else if (key > k)
1531                         n = n->rb_right;
1532                 else {
1533                         ioc->ioc_data = cic;
1534                         spin_unlock(&ioc->lock);
1535                         return cic;
1536                 }
1537         }
1538
1539         spin_unlock(&ioc->lock);
1540         return NULL;
1541 }
1542
1543 static inline void
1544 cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1545              struct cfq_io_context *cic)
1546 {
1547         struct rb_node **p;
1548         struct rb_node *parent;
1549         struct cfq_io_context *__cic;
1550         unsigned long flags;
1551         void *k;
1552
1553         spin_lock(&ioc->lock);
1554         cic->ioc = ioc;
1555         cic->key = cfqd;
1556
1557 restart:
1558         parent = NULL;
1559         p = &ioc->cic_root.rb_node;
1560         while (*p) {
1561                 parent = *p;
1562                 __cic = rb_entry(parent, struct cfq_io_context, rb_node);
1563                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1564                 k = __cic->key;
1565                 if (unlikely(!k)) {
1566                         cfq_drop_dead_cic(ioc, __cic);
1567                         goto restart;
1568                 }
1569
1570                 if (cic->key < k)
1571                         p = &(*p)->rb_left;
1572                 else if (cic->key > k)
1573                         p = &(*p)->rb_right;
1574                 else
1575                         BUG();
1576         }
1577
1578         rb_link_node(&cic->rb_node, parent, p);
1579         rb_insert_color(&cic->rb_node, &ioc->cic_root);
1580
1581         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1582         list_add(&cic->queue_list, &cfqd->cic_list);
1583         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1584         spin_unlock(&ioc->lock);
1585 }
1586
1587 /*
1588  * Setup general io context and cfq io context. There can be several cfq
1589  * io contexts per general io context, if this process is doing io to more
1590  * than one device managed by cfq.
1591  */
1592 static struct cfq_io_context *
1593 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1594 {
1595         struct io_context *ioc = NULL;
1596         struct cfq_io_context *cic;
1597
1598         might_sleep_if(gfp_mask & __GFP_WAIT);
1599
1600         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1601         if (!ioc)
1602                 return NULL;
1603
1604         cic = cfq_cic_rb_lookup(cfqd, ioc);
1605         if (cic)
1606                 goto out;
1607
1608         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1609         if (cic == NULL)
1610                 goto err;
1611
1612         cfq_cic_link(cfqd, ioc, cic);
1613 out:
1614         smp_read_barrier_depends();
1615         if (unlikely(ioc->ioprio_changed))
1616                 cfq_ioc_set_ioprio(ioc);
1617
1618         return cic;
1619 err:
1620         put_io_context(ioc);
1621         return NULL;
1622 }
1623
1624 static void
1625 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1626 {
1627         unsigned long elapsed = jiffies - cic->last_end_request;
1628         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1629
1630         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1631         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1632         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1633 }
1634
1635 static void
1636 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1637                        struct request *rq)
1638 {
1639         sector_t sdist;
1640         u64 total;
1641
1642         if (cic->last_request_pos < rq->sector)
1643                 sdist = rq->sector - cic->last_request_pos;
1644         else
1645                 sdist = cic->last_request_pos - rq->sector;
1646
1647         /*
1648          * Don't allow the seek distance to get too large from the
1649          * odd fragment, pagein, etc
1650          */
1651         if (cic->seek_samples <= 60) /* second&third seek */
1652                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1653         else
1654                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1655
1656         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1657         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1658         total = cic->seek_total + (cic->seek_samples/2);
1659         do_div(total, cic->seek_samples);
1660         cic->seek_mean = (sector_t)total;
1661 }
1662
1663 /*
1664  * Disable idle window if the process thinks too long or seeks so much that
1665  * it doesn't matter
1666  */
1667 static void
1668 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1669                        struct cfq_io_context *cic)
1670 {
1671         int enable_idle;
1672
1673         if (!cfq_cfqq_sync(cfqq))
1674                 return;
1675
1676         enable_idle = cfq_cfqq_idle_window(cfqq);
1677
1678         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1679             (cfqd->hw_tag && CIC_SEEKY(cic)))
1680                 enable_idle = 0;
1681         else if (sample_valid(cic->ttime_samples)) {
1682                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1683                         enable_idle = 0;
1684                 else
1685                         enable_idle = 1;
1686         }
1687
1688         if (enable_idle)
1689                 cfq_mark_cfqq_idle_window(cfqq);
1690         else
1691                 cfq_clear_cfqq_idle_window(cfqq);
1692 }
1693
1694 /*
1695  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1696  * no or if we aren't sure, a 1 will cause a preempt.
1697  */
1698 static int
1699 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1700                    struct request *rq)
1701 {
1702         struct cfq_queue *cfqq;
1703
1704         cfqq = cfqd->active_queue;
1705         if (!cfqq)
1706                 return 0;
1707
1708         if (cfq_slice_used(cfqq))
1709                 return 1;
1710
1711         if (cfq_class_idle(new_cfqq))
1712                 return 0;
1713
1714         if (cfq_class_idle(cfqq))
1715                 return 1;
1716
1717         /*
1718          * if the new request is sync, but the currently running queue is
1719          * not, let the sync request have priority.
1720          */
1721         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1722                 return 1;
1723
1724         /*
1725          * So both queues are sync. Let the new request get disk time if
1726          * it's a metadata request and the current queue is doing regular IO.
1727          */
1728         if (rq_is_meta(rq) && !cfqq->meta_pending)
1729                 return 1;
1730
1731         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
1732                 return 0;
1733
1734         /*
1735          * if this request is as-good as one we would expect from the
1736          * current cfqq, let it preempt
1737          */
1738         if (cfq_rq_close(cfqd, rq))
1739                 return 1;
1740
1741         return 0;
1742 }
1743
1744 /*
1745  * cfqq preempts the active queue. if we allowed preempt with no slice left,
1746  * let it have half of its nominal slice.
1747  */
1748 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1749 {
1750         cfq_slice_expired(cfqd, 1);
1751
1752         /*
1753          * Put the new queue at the front of the of the current list,
1754          * so we know that it will be selected next.
1755          */
1756         BUG_ON(!cfq_cfqq_on_rr(cfqq));
1757
1758         cfq_service_tree_add(cfqd, cfqq, 1);
1759
1760         cfqq->slice_end = 0;
1761         cfq_mark_cfqq_slice_new(cfqq);
1762 }
1763
1764 /*
1765  * Called when a new fs request (rq) is added (to cfqq). Check if there's
1766  * something we should do about it
1767  */
1768 static void
1769 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1770                 struct request *rq)
1771 {
1772         struct cfq_io_context *cic = RQ_CIC(rq);
1773
1774         if (rq_is_meta(rq))
1775                 cfqq->meta_pending++;
1776
1777         cfq_update_io_thinktime(cfqd, cic);
1778         cfq_update_io_seektime(cfqd, cic, rq);
1779         cfq_update_idle_window(cfqd, cfqq, cic);
1780
1781         cic->last_request_pos = rq->sector + rq->nr_sectors;
1782
1783         if (cfqq == cfqd->active_queue) {
1784                 /*
1785                  * if we are waiting for a request for this queue, let it rip
1786                  * immediately and flag that we must not expire this queue
1787                  * just now
1788                  */
1789                 if (cfq_cfqq_wait_request(cfqq)) {
1790                         cfq_mark_cfqq_must_dispatch(cfqq);
1791                         del_timer(&cfqd->idle_slice_timer);
1792                         blk_start_queueing(cfqd->queue);
1793                 }
1794         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
1795                 /*
1796                  * not the active queue - expire current slice if it is
1797                  * idle and has expired it's mean thinktime or this new queue
1798                  * has some old slice time left and is of higher priority
1799                  */
1800                 cfq_preempt_queue(cfqd, cfqq);
1801                 cfq_mark_cfqq_must_dispatch(cfqq);
1802                 blk_start_queueing(cfqd->queue);
1803         }
1804 }
1805
1806 static void cfq_insert_request(struct request_queue *q, struct request *rq)
1807 {
1808         struct cfq_data *cfqd = q->elevator->elevator_data;
1809         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1810
1811         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1812
1813         cfq_add_rq_rb(rq);
1814
1815         list_add_tail(&rq->queuelist, &cfqq->fifo);
1816
1817         cfq_rq_enqueued(cfqd, cfqq, rq);
1818 }
1819
1820 static void cfq_completed_request(struct request_queue *q, struct request *rq)
1821 {
1822         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1823         struct cfq_data *cfqd = cfqq->cfqd;
1824         const int sync = rq_is_sync(rq);
1825         unsigned long now;
1826
1827         now = jiffies;
1828
1829         WARN_ON(!cfqd->rq_in_driver);
1830         WARN_ON(!cfqq->dispatched);
1831         cfqd->rq_in_driver--;
1832         cfqq->dispatched--;
1833
1834         if (cfq_cfqq_sync(cfqq))
1835                 cfqd->sync_flight--;
1836
1837         if (!cfq_class_idle(cfqq))
1838                 cfqd->last_end_request = now;
1839
1840         if (sync)
1841                 RQ_CIC(rq)->last_end_request = now;
1842
1843         /*
1844          * If this is the active queue, check if it needs to be expired,
1845          * or if we want to idle in case it has no pending requests.
1846          */
1847         if (cfqd->active_queue == cfqq) {
1848                 if (cfq_cfqq_slice_new(cfqq)) {
1849                         cfq_set_prio_slice(cfqd, cfqq);
1850                         cfq_clear_cfqq_slice_new(cfqq);
1851                 }
1852                 if (cfq_slice_used(cfqq))
1853                         cfq_slice_expired(cfqd, 1);
1854                 else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
1855                         cfq_arm_slice_timer(cfqd);
1856         }
1857
1858         if (!cfqd->rq_in_driver)
1859                 cfq_schedule_dispatch(cfqd);
1860 }
1861
1862 /*
1863  * we temporarily boost lower priority queues if they are holding fs exclusive
1864  * resources. they are boosted to normal prio (CLASS_BE/4)
1865  */
1866 static void cfq_prio_boost(struct cfq_queue *cfqq)
1867 {
1868         if (has_fs_excl()) {
1869                 /*
1870                  * boost idle prio on transactions that would lock out other
1871                  * users of the filesystem
1872                  */
1873                 if (cfq_class_idle(cfqq))
1874                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
1875                 if (cfqq->ioprio > IOPRIO_NORM)
1876                         cfqq->ioprio = IOPRIO_NORM;
1877         } else {
1878                 /*
1879                  * check if we need to unboost the queue
1880                  */
1881                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
1882                         cfqq->ioprio_class = cfqq->org_ioprio_class;
1883                 if (cfqq->ioprio != cfqq->org_ioprio)
1884                         cfqq->ioprio = cfqq->org_ioprio;
1885         }
1886 }
1887
1888 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
1889 {
1890         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
1891             !cfq_cfqq_must_alloc_slice(cfqq)) {
1892                 cfq_mark_cfqq_must_alloc_slice(cfqq);
1893                 return ELV_MQUEUE_MUST;
1894         }
1895
1896         return ELV_MQUEUE_MAY;
1897 }
1898
1899 static int cfq_may_queue(struct request_queue *q, int rw)
1900 {
1901         struct cfq_data *cfqd = q->elevator->elevator_data;
1902         struct task_struct *tsk = current;
1903         struct cfq_io_context *cic;
1904         struct cfq_queue *cfqq;
1905
1906         /*
1907          * don't force setup of a queue from here, as a call to may_queue
1908          * does not necessarily imply that a request actually will be queued.
1909          * so just lookup a possibly existing queue, or return 'may queue'
1910          * if that fails
1911          */
1912         cic = cfq_cic_rb_lookup(cfqd, tsk->io_context);
1913         if (!cic)
1914                 return ELV_MQUEUE_MAY;
1915
1916         cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
1917         if (cfqq) {
1918                 cfq_init_prio_data(cfqq, cic->ioc);
1919                 cfq_prio_boost(cfqq);
1920
1921                 return __cfq_may_queue(cfqq);
1922         }
1923
1924         return ELV_MQUEUE_MAY;
1925 }
1926
1927 /*
1928  * queue lock held here
1929  */
1930 static void cfq_put_request(struct request *rq)
1931 {
1932         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1933
1934         if (cfqq) {
1935                 const int rw = rq_data_dir(rq);
1936
1937                 BUG_ON(!cfqq->allocated[rw]);
1938                 cfqq->allocated[rw]--;
1939
1940                 put_io_context(RQ_CIC(rq)->ioc);
1941
1942                 rq->elevator_private = NULL;
1943                 rq->elevator_private2 = NULL;
1944
1945                 cfq_put_queue(cfqq);
1946         }
1947 }
1948
1949 /*
1950  * Allocate cfq data structures associated with this request.
1951  */
1952 static int
1953 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1954 {
1955         struct cfq_data *cfqd = q->elevator->elevator_data;
1956         struct cfq_io_context *cic;
1957         const int rw = rq_data_dir(rq);
1958         const int is_sync = rq_is_sync(rq);
1959         struct cfq_queue *cfqq;
1960         unsigned long flags;
1961
1962         might_sleep_if(gfp_mask & __GFP_WAIT);
1963
1964         cic = cfq_get_io_context(cfqd, gfp_mask);
1965
1966         spin_lock_irqsave(q->queue_lock, flags);
1967
1968         if (!cic)
1969                 goto queue_fail;
1970
1971         cfqq = cic_to_cfqq(cic, is_sync);
1972         if (!cfqq) {
1973                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
1974
1975                 if (!cfqq)
1976                         goto queue_fail;
1977
1978                 cic_set_cfqq(cic, cfqq, is_sync);
1979         }
1980
1981         cfqq->allocated[rw]++;
1982         cfq_clear_cfqq_must_alloc(cfqq);
1983         atomic_inc(&cfqq->ref);
1984
1985         spin_unlock_irqrestore(q->queue_lock, flags);
1986
1987         rq->elevator_private = cic;
1988         rq->elevator_private2 = cfqq;
1989         return 0;
1990
1991 queue_fail:
1992         if (cic)
1993                 put_io_context(cic->ioc);
1994
1995         cfq_schedule_dispatch(cfqd);
1996         spin_unlock_irqrestore(q->queue_lock, flags);
1997         return 1;
1998 }
1999
2000 static void cfq_kick_queue(struct work_struct *work)
2001 {
2002         struct cfq_data *cfqd =
2003                 container_of(work, struct cfq_data, unplug_work);
2004         struct request_queue *q = cfqd->queue;
2005         unsigned long flags;
2006
2007         spin_lock_irqsave(q->queue_lock, flags);
2008         blk_start_queueing(q);
2009         spin_unlock_irqrestore(q->queue_lock, flags);
2010 }
2011
2012 /*
2013  * Timer running if the active_queue is currently idling inside its time slice
2014  */
2015 static void cfq_idle_slice_timer(unsigned long data)
2016 {
2017         struct cfq_data *cfqd = (struct cfq_data *) data;
2018         struct cfq_queue *cfqq;
2019         unsigned long flags;
2020         int timed_out = 1;
2021
2022         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2023
2024         if ((cfqq = cfqd->active_queue) != NULL) {
2025                 timed_out = 0;
2026
2027                 /*
2028                  * expired
2029                  */
2030                 if (cfq_slice_used(cfqq))
2031                         goto expire;
2032
2033                 /*
2034                  * only expire and reinvoke request handler, if there are
2035                  * other queues with pending requests
2036                  */
2037                 if (!cfqd->busy_queues)
2038                         goto out_cont;
2039
2040                 /*
2041                  * not expired and it has a request pending, let it dispatch
2042                  */
2043                 if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
2044                         cfq_mark_cfqq_must_dispatch(cfqq);
2045                         goto out_kick;
2046                 }
2047         }
2048 expire:
2049         cfq_slice_expired(cfqd, timed_out);
2050 out_kick:
2051         cfq_schedule_dispatch(cfqd);
2052 out_cont:
2053         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2054 }
2055
2056 /*
2057  * Timer running if an idle class queue is waiting for service
2058  */
2059 static void cfq_idle_class_timer(unsigned long data)
2060 {
2061         struct cfq_data *cfqd = (struct cfq_data *) data;
2062         unsigned long flags;
2063
2064         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2065
2066         /*
2067          * race with a non-idle queue, reset timer
2068          */
2069         if (!start_idle_class_timer(cfqd))
2070                 cfq_schedule_dispatch(cfqd);
2071
2072         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2073 }
2074
2075 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2076 {
2077         del_timer_sync(&cfqd->idle_slice_timer);
2078         del_timer_sync(&cfqd->idle_class_timer);
2079         kblockd_flush_work(&cfqd->unplug_work);
2080 }
2081
2082 static void cfq_put_async_queues(struct cfq_data *cfqd)
2083 {
2084         int i;
2085
2086         for (i = 0; i < IOPRIO_BE_NR; i++) {
2087                 if (cfqd->async_cfqq[0][i])
2088                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2089                 if (cfqd->async_cfqq[1][i])
2090                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2091         }
2092
2093         if (cfqd->async_idle_cfqq)
2094                 cfq_put_queue(cfqd->async_idle_cfqq);
2095 }
2096
2097 static void cfq_exit_queue(elevator_t *e)
2098 {
2099         struct cfq_data *cfqd = e->elevator_data;
2100         struct request_queue *q = cfqd->queue;
2101
2102         cfq_shutdown_timer_wq(cfqd);
2103
2104         spin_lock_irq(q->queue_lock);
2105
2106         if (cfqd->active_queue)
2107                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2108
2109         while (!list_empty(&cfqd->cic_list)) {
2110                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2111                                                         struct cfq_io_context,
2112                                                         queue_list);
2113
2114                 __cfq_exit_single_io_context(cfqd, cic);
2115         }
2116
2117         cfq_put_async_queues(cfqd);
2118
2119         spin_unlock_irq(q->queue_lock);
2120
2121         cfq_shutdown_timer_wq(cfqd);
2122
2123         kfree(cfqd);
2124 }
2125
2126 static void *cfq_init_queue(struct request_queue *q)
2127 {
2128         struct cfq_data *cfqd;
2129
2130         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2131         if (!cfqd)
2132                 return NULL;
2133
2134         cfqd->service_tree = CFQ_RB_ROOT;
2135         INIT_LIST_HEAD(&cfqd->cic_list);
2136
2137         cfqd->queue = q;
2138
2139         init_timer(&cfqd->idle_slice_timer);
2140         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2141         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2142
2143         init_timer(&cfqd->idle_class_timer);
2144         cfqd->idle_class_timer.function = cfq_idle_class_timer;
2145         cfqd->idle_class_timer.data = (unsigned long) cfqd;
2146
2147         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2148
2149         cfqd->last_end_request = jiffies;
2150         cfqd->cfq_quantum = cfq_quantum;
2151         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2152         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2153         cfqd->cfq_back_max = cfq_back_max;
2154         cfqd->cfq_back_penalty = cfq_back_penalty;
2155         cfqd->cfq_slice[0] = cfq_slice_async;
2156         cfqd->cfq_slice[1] = cfq_slice_sync;
2157         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2158         cfqd->cfq_slice_idle = cfq_slice_idle;
2159
2160         return cfqd;
2161 }
2162
2163 static void cfq_slab_kill(void)
2164 {
2165         if (cfq_pool)
2166                 kmem_cache_destroy(cfq_pool);
2167         if (cfq_ioc_pool)
2168                 kmem_cache_destroy(cfq_ioc_pool);
2169 }
2170
2171 static int __init cfq_slab_setup(void)
2172 {
2173         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2174         if (!cfq_pool)
2175                 goto fail;
2176
2177         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2178         if (!cfq_ioc_pool)
2179                 goto fail;
2180
2181         return 0;
2182 fail:
2183         cfq_slab_kill();
2184         return -ENOMEM;
2185 }
2186
2187 /*
2188  * sysfs parts below -->
2189  */
2190 static ssize_t
2191 cfq_var_show(unsigned int var, char *page)
2192 {
2193         return sprintf(page, "%d\n", var);
2194 }
2195
2196 static ssize_t
2197 cfq_var_store(unsigned int *var, const char *page, size_t count)
2198 {
2199         char *p = (char *) page;
2200
2201         *var = simple_strtoul(p, &p, 10);
2202         return count;
2203 }
2204
2205 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2206 static ssize_t __FUNC(elevator_t *e, char *page)                        \
2207 {                                                                       \
2208         struct cfq_data *cfqd = e->elevator_data;                       \
2209         unsigned int __data = __VAR;                                    \
2210         if (__CONV)                                                     \
2211                 __data = jiffies_to_msecs(__data);                      \
2212         return cfq_var_show(__data, (page));                            \
2213 }
2214 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2215 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2216 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2217 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2218 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2219 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2220 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2221 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2222 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2223 #undef SHOW_FUNCTION
2224
2225 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2226 static ssize_t __FUNC(elevator_t *e, const char *page, size_t count)    \
2227 {                                                                       \
2228         struct cfq_data *cfqd = e->elevator_data;                       \
2229         unsigned int __data;                                            \
2230         int ret = cfq_var_store(&__data, (page), count);                \
2231         if (__data < (MIN))                                             \
2232                 __data = (MIN);                                         \
2233         else if (__data > (MAX))                                        \
2234                 __data = (MAX);                                         \
2235         if (__CONV)                                                     \
2236                 *(__PTR) = msecs_to_jiffies(__data);                    \
2237         else                                                            \
2238                 *(__PTR) = __data;                                      \
2239         return ret;                                                     \
2240 }
2241 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2242 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1, UINT_MAX, 1);
2243 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1, UINT_MAX, 1);
2244 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2245 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1, UINT_MAX, 0);
2246 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2247 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2248 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2249 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1, UINT_MAX, 0);
2250 #undef STORE_FUNCTION
2251
2252 #define CFQ_ATTR(name) \
2253         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2254
2255 static struct elv_fs_entry cfq_attrs[] = {
2256         CFQ_ATTR(quantum),
2257         CFQ_ATTR(fifo_expire_sync),
2258         CFQ_ATTR(fifo_expire_async),
2259         CFQ_ATTR(back_seek_max),
2260         CFQ_ATTR(back_seek_penalty),
2261         CFQ_ATTR(slice_sync),
2262         CFQ_ATTR(slice_async),
2263         CFQ_ATTR(slice_async_rq),
2264         CFQ_ATTR(slice_idle),
2265         __ATTR_NULL
2266 };
2267
2268 static struct elevator_type iosched_cfq = {
2269         .ops = {
2270                 .elevator_merge_fn =            cfq_merge,
2271                 .elevator_merged_fn =           cfq_merged_request,
2272                 .elevator_merge_req_fn =        cfq_merged_requests,
2273                 .elevator_allow_merge_fn =      cfq_allow_merge,
2274                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2275                 .elevator_add_req_fn =          cfq_insert_request,
2276                 .elevator_activate_req_fn =     cfq_activate_request,
2277                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2278                 .elevator_queue_empty_fn =      cfq_queue_empty,
2279                 .elevator_completed_req_fn =    cfq_completed_request,
2280                 .elevator_former_req_fn =       elv_rb_former_request,
2281                 .elevator_latter_req_fn =       elv_rb_latter_request,
2282                 .elevator_set_req_fn =          cfq_set_request,
2283                 .elevator_put_req_fn =          cfq_put_request,
2284                 .elevator_may_queue_fn =        cfq_may_queue,
2285                 .elevator_init_fn =             cfq_init_queue,
2286                 .elevator_exit_fn =             cfq_exit_queue,
2287                 .trim =                         cfq_free_io_context,
2288         },
2289         .elevator_attrs =       cfq_attrs,
2290         .elevator_name =        "cfq",
2291         .elevator_owner =       THIS_MODULE,
2292 };
2293
2294 static int __init cfq_init(void)
2295 {
2296         /*
2297          * could be 0 on HZ < 1000 setups
2298          */
2299         if (!cfq_slice_async)
2300                 cfq_slice_async = 1;
2301         if (!cfq_slice_idle)
2302                 cfq_slice_idle = 1;
2303
2304         if (cfq_slab_setup())
2305                 return -ENOMEM;
2306
2307         elv_register(&iosched_cfq);
2308
2309         return 0;
2310 }
2311
2312 static void __exit cfq_exit(void)
2313 {
2314         DECLARE_COMPLETION_ONSTACK(all_gone);
2315         elv_unregister(&iosched_cfq);
2316         ioc_gone = &all_gone;
2317         /* ioc_gone's update must be visible before reading ioc_count */
2318         smp_wmb();
2319         if (elv_ioc_count_read(ioc_count))
2320                 wait_for_completion(ioc_gone);
2321         synchronize_rcu();
2322         cfq_slab_kill();
2323 }
2324
2325 module_init(cfq_init);
2326 module_exit(cfq_exit);
2327
2328 MODULE_AUTHOR("Jens Axboe");
2329 MODULE_LICENSE("GPL");
2330 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");