blkio: Implement macro to traverse each service tree in group
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/jiffies.h>
13 #include <linux/rbtree.h>
14 #include <linux/ioprio.h>
15 #include <linux/blktrace_api.h>
16
17 /*
18  * tunables
19  */
20 /* max queue in one round of service */
21 static const int cfq_quantum = 4;
22 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
23 /* maximum backwards seek, in KiB */
24 static const int cfq_back_max = 16 * 1024;
25 /* penalty of a backwards seek */
26 static const int cfq_back_penalty = 2;
27 static const int cfq_slice_sync = HZ / 10;
28 static int cfq_slice_async = HZ / 25;
29 static const int cfq_slice_async_rq = 2;
30 static int cfq_slice_idle = HZ / 125;
31 static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32 static const int cfq_hist_divisor = 4;
33
34 /*
35  * offset from end of service tree
36  */
37 #define CFQ_IDLE_DELAY          (HZ / 5)
38
39 /*
40  * below this threshold, we consider thinktime immediate
41  */
42 #define CFQ_MIN_TT              (2)
43
44 /*
45  * Allow merged cfqqs to perform this amount of seeky I/O before
46  * deciding to break the queues up again.
47  */
48 #define CFQQ_COOP_TOUT          (HZ)
49
50 #define CFQ_SLICE_SCALE         (5)
51 #define CFQ_HW_QUEUE_MIN        (5)
52
53 #define RQ_CIC(rq)              \
54         ((struct cfq_io_context *) (rq)->elevator_private)
55 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
56
57 static struct kmem_cache *cfq_pool;
58 static struct kmem_cache *cfq_ioc_pool;
59
60 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
61 static struct completion *ioc_gone;
62 static DEFINE_SPINLOCK(ioc_gone_lock);
63
64 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
68 #define sample_valid(samples)   ((samples) > 80)
69
70 /*
71  * Most of our rbtree usage is for sorting with min extraction, so
72  * if we cache the leftmost node we don't have to walk down the tree
73  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74  * move this into the elevator for the rq sorting as well.
75  */
76 struct cfq_rb_root {
77         struct rb_root rb;
78         struct rb_node *left;
79         unsigned count;
80 };
81 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
82
83 /*
84  * Per process-grouping structure
85  */
86 struct cfq_queue {
87         /* reference count */
88         atomic_t ref;
89         /* various state flags, see below */
90         unsigned int flags;
91         /* parent cfq_data */
92         struct cfq_data *cfqd;
93         /* service_tree member */
94         struct rb_node rb_node;
95         /* service_tree key */
96         unsigned long rb_key;
97         /* prio tree member */
98         struct rb_node p_node;
99         /* prio tree root we belong to, if any */
100         struct rb_root *p_root;
101         /* sorted list of pending requests */
102         struct rb_root sort_list;
103         /* if fifo isn't expired, next request to serve */
104         struct request *next_rq;
105         /* requests queued in sort_list */
106         int queued[2];
107         /* currently allocated requests */
108         int allocated[2];
109         /* fifo list of requests in sort_list */
110         struct list_head fifo;
111
112         unsigned long slice_end;
113         long slice_resid;
114         unsigned int slice_dispatch;
115
116         /* pending metadata requests */
117         int meta_pending;
118         /* number of requests that are on the dispatch list or inside driver */
119         int dispatched;
120
121         /* io prio of this group */
122         unsigned short ioprio, org_ioprio;
123         unsigned short ioprio_class, org_ioprio_class;
124
125         unsigned int seek_samples;
126         u64 seek_total;
127         sector_t seek_mean;
128         sector_t last_request_pos;
129         unsigned long seeky_start;
130
131         pid_t pid;
132
133         struct cfq_rb_root *service_tree;
134         struct cfq_queue *new_cfqq;
135         struct cfq_group *cfqg;
136 };
137
138 /*
139  * First index in the service_trees.
140  * IDLE is handled separately, so it has negative index
141  */
142 enum wl_prio_t {
143         BE_WORKLOAD = 0,
144         RT_WORKLOAD = 1,
145         IDLE_WORKLOAD = 2,
146 };
147
148 /*
149  * Second index in the service_trees.
150  */
151 enum wl_type_t {
152         ASYNC_WORKLOAD = 0,
153         SYNC_NOIDLE_WORKLOAD = 1,
154         SYNC_WORKLOAD = 2
155 };
156
157 /* This is per cgroup per device grouping structure */
158 struct cfq_group {
159         /*
160          * rr lists of queues with requests, onle rr for each priority class.
161          * Counts are embedded in the cfq_rb_root
162          */
163         struct cfq_rb_root service_trees[2][3];
164         struct cfq_rb_root service_tree_idle;
165 };
166
167 /*
168  * Per block device queue structure
169  */
170 struct cfq_data {
171         struct request_queue *queue;
172         struct cfq_group root_group;
173
174         /*
175          * The priority currently being served
176          */
177         enum wl_prio_t serving_prio;
178         enum wl_type_t serving_type;
179         unsigned long workload_expires;
180         struct cfq_group *serving_group;
181         bool noidle_tree_requires_idle;
182
183         /*
184          * Each priority tree is sorted by next_request position.  These
185          * trees are used when determining if two or more queues are
186          * interleaving requests (see cfq_close_cooperator).
187          */
188         struct rb_root prio_trees[CFQ_PRIO_LISTS];
189
190         unsigned int busy_queues;
191         unsigned int busy_queues_avg[2];
192
193         int rq_in_driver[2];
194         int sync_flight;
195
196         /*
197          * queue-depth detection
198          */
199         int rq_queued;
200         int hw_tag;
201         /*
202          * hw_tag can be
203          * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
204          *  1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
205          *  0 => no NCQ
206          */
207         int hw_tag_est_depth;
208         unsigned int hw_tag_samples;
209
210         /*
211          * idle window management
212          */
213         struct timer_list idle_slice_timer;
214         struct work_struct unplug_work;
215
216         struct cfq_queue *active_queue;
217         struct cfq_io_context *active_cic;
218
219         /*
220          * async queue for each priority case
221          */
222         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
223         struct cfq_queue *async_idle_cfqq;
224
225         sector_t last_position;
226
227         /*
228          * tunables, see top of file
229          */
230         unsigned int cfq_quantum;
231         unsigned int cfq_fifo_expire[2];
232         unsigned int cfq_back_penalty;
233         unsigned int cfq_back_max;
234         unsigned int cfq_slice[2];
235         unsigned int cfq_slice_async_rq;
236         unsigned int cfq_slice_idle;
237         unsigned int cfq_latency;
238
239         struct list_head cic_list;
240
241         /*
242          * Fallback dummy cfqq for extreme OOM conditions
243          */
244         struct cfq_queue oom_cfqq;
245
246         unsigned long last_end_sync_rq;
247 };
248
249 static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
250                                             enum wl_prio_t prio,
251                                             enum wl_type_t type,
252                                             struct cfq_data *cfqd)
253 {
254         if (prio == IDLE_WORKLOAD)
255                 return &cfqg->service_tree_idle;
256
257         return &cfqg->service_trees[prio][type];
258 }
259
260 enum cfqq_state_flags {
261         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
262         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
263         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
264         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
265         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
266         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
267         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
268         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
269         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
270         CFQ_CFQQ_FLAG_coop,             /* cfqq is shared */
271         CFQ_CFQQ_FLAG_deep,             /* sync cfqq experienced large depth */
272 };
273
274 #define CFQ_CFQQ_FNS(name)                                              \
275 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
276 {                                                                       \
277         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
278 }                                                                       \
279 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
280 {                                                                       \
281         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
282 }                                                                       \
283 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
284 {                                                                       \
285         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
286 }
287
288 CFQ_CFQQ_FNS(on_rr);
289 CFQ_CFQQ_FNS(wait_request);
290 CFQ_CFQQ_FNS(must_dispatch);
291 CFQ_CFQQ_FNS(must_alloc_slice);
292 CFQ_CFQQ_FNS(fifo_expire);
293 CFQ_CFQQ_FNS(idle_window);
294 CFQ_CFQQ_FNS(prio_changed);
295 CFQ_CFQQ_FNS(slice_new);
296 CFQ_CFQQ_FNS(sync);
297 CFQ_CFQQ_FNS(coop);
298 CFQ_CFQQ_FNS(deep);
299 #undef CFQ_CFQQ_FNS
300
301 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
302         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
303 #define cfq_log(cfqd, fmt, args...)     \
304         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
305
306 /* Traverses through cfq group service trees */
307 #define for_each_cfqg_st(cfqg, i, j, st) \
308         for (i = 0; i <= IDLE_WORKLOAD; i++) \
309                 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
310                         : &cfqg->service_tree_idle; \
311                         (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
312                         (i == IDLE_WORKLOAD && j == 0); \
313                         j++, st = i < IDLE_WORKLOAD ? \
314                         &cfqg->service_trees[i][j]: NULL) \
315
316
317 static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
318 {
319         if (cfq_class_idle(cfqq))
320                 return IDLE_WORKLOAD;
321         if (cfq_class_rt(cfqq))
322                 return RT_WORKLOAD;
323         return BE_WORKLOAD;
324 }
325
326
327 static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
328 {
329         if (!cfq_cfqq_sync(cfqq))
330                 return ASYNC_WORKLOAD;
331         if (!cfq_cfqq_idle_window(cfqq))
332                 return SYNC_NOIDLE_WORKLOAD;
333         return SYNC_WORKLOAD;
334 }
335
336 static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
337 {
338         struct cfq_group *cfqg = &cfqd->root_group;
339
340         if (wl == IDLE_WORKLOAD)
341                 return cfqg->service_tree_idle.count;
342
343         return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
344                 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
345                 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
346 }
347
348 static void cfq_dispatch_insert(struct request_queue *, struct request *);
349 static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
350                                        struct io_context *, gfp_t);
351 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
352                                                 struct io_context *);
353
354 static inline int rq_in_driver(struct cfq_data *cfqd)
355 {
356         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
357 }
358
359 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
360                                             bool is_sync)
361 {
362         return cic->cfqq[is_sync];
363 }
364
365 static inline void cic_set_cfqq(struct cfq_io_context *cic,
366                                 struct cfq_queue *cfqq, bool is_sync)
367 {
368         cic->cfqq[is_sync] = cfqq;
369 }
370
371 /*
372  * We regard a request as SYNC, if it's either a read or has the SYNC bit
373  * set (in which case it could also be direct WRITE).
374  */
375 static inline bool cfq_bio_sync(struct bio *bio)
376 {
377         return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
378 }
379
380 /*
381  * scheduler run of queue, if there are requests pending and no one in the
382  * driver that will restart queueing
383  */
384 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
385 {
386         if (cfqd->busy_queues) {
387                 cfq_log(cfqd, "schedule dispatch");
388                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
389         }
390 }
391
392 static int cfq_queue_empty(struct request_queue *q)
393 {
394         struct cfq_data *cfqd = q->elevator->elevator_data;
395
396         return !cfqd->busy_queues;
397 }
398
399 /*
400  * Scale schedule slice based on io priority. Use the sync time slice only
401  * if a queue is marked sync and has sync io queued. A sync queue with async
402  * io only, should not get full sync slice length.
403  */
404 static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
405                                  unsigned short prio)
406 {
407         const int base_slice = cfqd->cfq_slice[sync];
408
409         WARN_ON(prio >= IOPRIO_BE_NR);
410
411         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
412 }
413
414 static inline int
415 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
416 {
417         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
418 }
419
420 /*
421  * get averaged number of queues of RT/BE priority.
422  * average is updated, with a formula that gives more weight to higher numbers,
423  * to quickly follows sudden increases and decrease slowly
424  */
425
426 static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
427 {
428         unsigned min_q, max_q;
429         unsigned mult  = cfq_hist_divisor - 1;
430         unsigned round = cfq_hist_divisor / 2;
431         unsigned busy = cfq_busy_queues_wl(rt, cfqd);
432
433         min_q = min(cfqd->busy_queues_avg[rt], busy);
434         max_q = max(cfqd->busy_queues_avg[rt], busy);
435         cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
436                 cfq_hist_divisor;
437         return cfqd->busy_queues_avg[rt];
438 }
439
440 static inline void
441 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
442 {
443         unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
444         if (cfqd->cfq_latency) {
445                 /* interested queues (we consider only the ones with the same
446                  * priority class) */
447                 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
448                 unsigned sync_slice = cfqd->cfq_slice[1];
449                 unsigned expect_latency = sync_slice * iq;
450                 if (expect_latency > cfq_target_latency) {
451                         unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
452                         /* scale low_slice according to IO priority
453                          * and sync vs async */
454                         unsigned low_slice =
455                                 min(slice, base_low_slice * slice / sync_slice);
456                         /* the adapted slice value is scaled to fit all iqs
457                          * into the target latency */
458                         slice = max(slice * cfq_target_latency / expect_latency,
459                                     low_slice);
460                 }
461         }
462         cfqq->slice_end = jiffies + slice;
463         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
464 }
465
466 /*
467  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
468  * isn't valid until the first request from the dispatch is activated
469  * and the slice time set.
470  */
471 static inline bool cfq_slice_used(struct cfq_queue *cfqq)
472 {
473         if (cfq_cfqq_slice_new(cfqq))
474                 return 0;
475         if (time_before(jiffies, cfqq->slice_end))
476                 return 0;
477
478         return 1;
479 }
480
481 /*
482  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
483  * We choose the request that is closest to the head right now. Distance
484  * behind the head is penalized and only allowed to a certain extent.
485  */
486 static struct request *
487 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
488 {
489         sector_t s1, s2, d1 = 0, d2 = 0;
490         unsigned long back_max;
491 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
492 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
493         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
494
495         if (rq1 == NULL || rq1 == rq2)
496                 return rq2;
497         if (rq2 == NULL)
498                 return rq1;
499
500         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
501                 return rq1;
502         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
503                 return rq2;
504         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
505                 return rq1;
506         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
507                 return rq2;
508
509         s1 = blk_rq_pos(rq1);
510         s2 = blk_rq_pos(rq2);
511
512         /*
513          * by definition, 1KiB is 2 sectors
514          */
515         back_max = cfqd->cfq_back_max * 2;
516
517         /*
518          * Strict one way elevator _except_ in the case where we allow
519          * short backward seeks which are biased as twice the cost of a
520          * similar forward seek.
521          */
522         if (s1 >= last)
523                 d1 = s1 - last;
524         else if (s1 + back_max >= last)
525                 d1 = (last - s1) * cfqd->cfq_back_penalty;
526         else
527                 wrap |= CFQ_RQ1_WRAP;
528
529         if (s2 >= last)
530                 d2 = s2 - last;
531         else if (s2 + back_max >= last)
532                 d2 = (last - s2) * cfqd->cfq_back_penalty;
533         else
534                 wrap |= CFQ_RQ2_WRAP;
535
536         /* Found required data */
537
538         /*
539          * By doing switch() on the bit mask "wrap" we avoid having to
540          * check two variables for all permutations: --> faster!
541          */
542         switch (wrap) {
543         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
544                 if (d1 < d2)
545                         return rq1;
546                 else if (d2 < d1)
547                         return rq2;
548                 else {
549                         if (s1 >= s2)
550                                 return rq1;
551                         else
552                                 return rq2;
553                 }
554
555         case CFQ_RQ2_WRAP:
556                 return rq1;
557         case CFQ_RQ1_WRAP:
558                 return rq2;
559         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
560         default:
561                 /*
562                  * Since both rqs are wrapped,
563                  * start with the one that's further behind head
564                  * (--> only *one* back seek required),
565                  * since back seek takes more time than forward.
566                  */
567                 if (s1 <= s2)
568                         return rq1;
569                 else
570                         return rq2;
571         }
572 }
573
574 /*
575  * The below is leftmost cache rbtree addon
576  */
577 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
578 {
579         /* Service tree is empty */
580         if (!root->count)
581                 return NULL;
582
583         if (!root->left)
584                 root->left = rb_first(&root->rb);
585
586         if (root->left)
587                 return rb_entry(root->left, struct cfq_queue, rb_node);
588
589         return NULL;
590 }
591
592 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
593 {
594         rb_erase(n, root);
595         RB_CLEAR_NODE(n);
596 }
597
598 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
599 {
600         if (root->left == n)
601                 root->left = NULL;
602         rb_erase_init(n, &root->rb);
603         --root->count;
604 }
605
606 /*
607  * would be nice to take fifo expire time into account as well
608  */
609 static struct request *
610 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
611                   struct request *last)
612 {
613         struct rb_node *rbnext = rb_next(&last->rb_node);
614         struct rb_node *rbprev = rb_prev(&last->rb_node);
615         struct request *next = NULL, *prev = NULL;
616
617         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
618
619         if (rbprev)
620                 prev = rb_entry_rq(rbprev);
621
622         if (rbnext)
623                 next = rb_entry_rq(rbnext);
624         else {
625                 rbnext = rb_first(&cfqq->sort_list);
626                 if (rbnext && rbnext != &last->rb_node)
627                         next = rb_entry_rq(rbnext);
628         }
629
630         return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
631 }
632
633 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
634                                       struct cfq_queue *cfqq)
635 {
636         /*
637          * just an approximation, should be ok.
638          */
639         return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
640                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
641 }
642
643 /*
644  * The cfqd->service_trees holds all pending cfq_queue's that have
645  * requests waiting to be processed. It is sorted in the order that
646  * we will service the queues.
647  */
648 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
649                                  bool add_front)
650 {
651         struct rb_node **p, *parent;
652         struct cfq_queue *__cfqq;
653         unsigned long rb_key;
654         struct cfq_rb_root *service_tree;
655         int left;
656
657         service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
658                                                 cfqq_type(cfqq), cfqd);
659         if (cfq_class_idle(cfqq)) {
660                 rb_key = CFQ_IDLE_DELAY;
661                 parent = rb_last(&service_tree->rb);
662                 if (parent && parent != &cfqq->rb_node) {
663                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
664                         rb_key += __cfqq->rb_key;
665                 } else
666                         rb_key += jiffies;
667         } else if (!add_front) {
668                 /*
669                  * Get our rb key offset. Subtract any residual slice
670                  * value carried from last service. A negative resid
671                  * count indicates slice overrun, and this should position
672                  * the next service time further away in the tree.
673                  */
674                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
675                 rb_key -= cfqq->slice_resid;
676                 cfqq->slice_resid = 0;
677         } else {
678                 rb_key = -HZ;
679                 __cfqq = cfq_rb_first(service_tree);
680                 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
681         }
682
683         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
684                 /*
685                  * same position, nothing more to do
686                  */
687                 if (rb_key == cfqq->rb_key &&
688                     cfqq->service_tree == service_tree)
689                         return;
690
691                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
692                 cfqq->service_tree = NULL;
693         }
694
695         left = 1;
696         parent = NULL;
697         cfqq->service_tree = service_tree;
698         p = &service_tree->rb.rb_node;
699         while (*p) {
700                 struct rb_node **n;
701
702                 parent = *p;
703                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
704
705                 /*
706                  * sort by key, that represents service time.
707                  */
708                 if (time_before(rb_key, __cfqq->rb_key))
709                         n = &(*p)->rb_left;
710                 else {
711                         n = &(*p)->rb_right;
712                         left = 0;
713                 }
714
715                 p = n;
716         }
717
718         if (left)
719                 service_tree->left = &cfqq->rb_node;
720
721         cfqq->rb_key = rb_key;
722         rb_link_node(&cfqq->rb_node, parent, p);
723         rb_insert_color(&cfqq->rb_node, &service_tree->rb);
724         service_tree->count++;
725 }
726
727 static struct cfq_queue *
728 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
729                      sector_t sector, struct rb_node **ret_parent,
730                      struct rb_node ***rb_link)
731 {
732         struct rb_node **p, *parent;
733         struct cfq_queue *cfqq = NULL;
734
735         parent = NULL;
736         p = &root->rb_node;
737         while (*p) {
738                 struct rb_node **n;
739
740                 parent = *p;
741                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
742
743                 /*
744                  * Sort strictly based on sector.  Smallest to the left,
745                  * largest to the right.
746                  */
747                 if (sector > blk_rq_pos(cfqq->next_rq))
748                         n = &(*p)->rb_right;
749                 else if (sector < blk_rq_pos(cfqq->next_rq))
750                         n = &(*p)->rb_left;
751                 else
752                         break;
753                 p = n;
754                 cfqq = NULL;
755         }
756
757         *ret_parent = parent;
758         if (rb_link)
759                 *rb_link = p;
760         return cfqq;
761 }
762
763 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
764 {
765         struct rb_node **p, *parent;
766         struct cfq_queue *__cfqq;
767
768         if (cfqq->p_root) {
769                 rb_erase(&cfqq->p_node, cfqq->p_root);
770                 cfqq->p_root = NULL;
771         }
772
773         if (cfq_class_idle(cfqq))
774                 return;
775         if (!cfqq->next_rq)
776                 return;
777
778         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
779         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
780                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
781         if (!__cfqq) {
782                 rb_link_node(&cfqq->p_node, parent, p);
783                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
784         } else
785                 cfqq->p_root = NULL;
786 }
787
788 /*
789  * Update cfqq's position in the service tree.
790  */
791 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
792 {
793         /*
794          * Resorting requires the cfqq to be on the RR list already.
795          */
796         if (cfq_cfqq_on_rr(cfqq)) {
797                 cfq_service_tree_add(cfqd, cfqq, 0);
798                 cfq_prio_tree_add(cfqd, cfqq);
799         }
800 }
801
802 /*
803  * add to busy list of queues for service, trying to be fair in ordering
804  * the pending list according to last request service
805  */
806 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
807 {
808         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
809         BUG_ON(cfq_cfqq_on_rr(cfqq));
810         cfq_mark_cfqq_on_rr(cfqq);
811         cfqd->busy_queues++;
812
813         cfq_resort_rr_list(cfqd, cfqq);
814 }
815
816 /*
817  * Called when the cfqq no longer has requests pending, remove it from
818  * the service tree.
819  */
820 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
821 {
822         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
823         BUG_ON(!cfq_cfqq_on_rr(cfqq));
824         cfq_clear_cfqq_on_rr(cfqq);
825
826         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
827                 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
828                 cfqq->service_tree = NULL;
829         }
830         if (cfqq->p_root) {
831                 rb_erase(&cfqq->p_node, cfqq->p_root);
832                 cfqq->p_root = NULL;
833         }
834
835         BUG_ON(!cfqd->busy_queues);
836         cfqd->busy_queues--;
837 }
838
839 /*
840  * rb tree support functions
841  */
842 static void cfq_del_rq_rb(struct request *rq)
843 {
844         struct cfq_queue *cfqq = RQ_CFQQ(rq);
845         struct cfq_data *cfqd = cfqq->cfqd;
846         const int sync = rq_is_sync(rq);
847
848         BUG_ON(!cfqq->queued[sync]);
849         cfqq->queued[sync]--;
850
851         elv_rb_del(&cfqq->sort_list, rq);
852
853         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
854                 cfq_del_cfqq_rr(cfqd, cfqq);
855 }
856
857 static void cfq_add_rq_rb(struct request *rq)
858 {
859         struct cfq_queue *cfqq = RQ_CFQQ(rq);
860         struct cfq_data *cfqd = cfqq->cfqd;
861         struct request *__alias, *prev;
862
863         cfqq->queued[rq_is_sync(rq)]++;
864
865         /*
866          * looks a little odd, but the first insert might return an alias.
867          * if that happens, put the alias on the dispatch list
868          */
869         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
870                 cfq_dispatch_insert(cfqd->queue, __alias);
871
872         if (!cfq_cfqq_on_rr(cfqq))
873                 cfq_add_cfqq_rr(cfqd, cfqq);
874
875         /*
876          * check if this request is a better next-serve candidate
877          */
878         prev = cfqq->next_rq;
879         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
880
881         /*
882          * adjust priority tree position, if ->next_rq changes
883          */
884         if (prev != cfqq->next_rq)
885                 cfq_prio_tree_add(cfqd, cfqq);
886
887         BUG_ON(!cfqq->next_rq);
888 }
889
890 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
891 {
892         elv_rb_del(&cfqq->sort_list, rq);
893         cfqq->queued[rq_is_sync(rq)]--;
894         cfq_add_rq_rb(rq);
895 }
896
897 static struct request *
898 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
899 {
900         struct task_struct *tsk = current;
901         struct cfq_io_context *cic;
902         struct cfq_queue *cfqq;
903
904         cic = cfq_cic_lookup(cfqd, tsk->io_context);
905         if (!cic)
906                 return NULL;
907
908         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
909         if (cfqq) {
910                 sector_t sector = bio->bi_sector + bio_sectors(bio);
911
912                 return elv_rb_find(&cfqq->sort_list, sector);
913         }
914
915         return NULL;
916 }
917
918 static void cfq_activate_request(struct request_queue *q, struct request *rq)
919 {
920         struct cfq_data *cfqd = q->elevator->elevator_data;
921
922         cfqd->rq_in_driver[rq_is_sync(rq)]++;
923         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
924                                                 rq_in_driver(cfqd));
925
926         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
927 }
928
929 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
930 {
931         struct cfq_data *cfqd = q->elevator->elevator_data;
932         const int sync = rq_is_sync(rq);
933
934         WARN_ON(!cfqd->rq_in_driver[sync]);
935         cfqd->rq_in_driver[sync]--;
936         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
937                                                 rq_in_driver(cfqd));
938 }
939
940 static void cfq_remove_request(struct request *rq)
941 {
942         struct cfq_queue *cfqq = RQ_CFQQ(rq);
943
944         if (cfqq->next_rq == rq)
945                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
946
947         list_del_init(&rq->queuelist);
948         cfq_del_rq_rb(rq);
949
950         cfqq->cfqd->rq_queued--;
951         if (rq_is_meta(rq)) {
952                 WARN_ON(!cfqq->meta_pending);
953                 cfqq->meta_pending--;
954         }
955 }
956
957 static int cfq_merge(struct request_queue *q, struct request **req,
958                      struct bio *bio)
959 {
960         struct cfq_data *cfqd = q->elevator->elevator_data;
961         struct request *__rq;
962
963         __rq = cfq_find_rq_fmerge(cfqd, bio);
964         if (__rq && elv_rq_merge_ok(__rq, bio)) {
965                 *req = __rq;
966                 return ELEVATOR_FRONT_MERGE;
967         }
968
969         return ELEVATOR_NO_MERGE;
970 }
971
972 static void cfq_merged_request(struct request_queue *q, struct request *req,
973                                int type)
974 {
975         if (type == ELEVATOR_FRONT_MERGE) {
976                 struct cfq_queue *cfqq = RQ_CFQQ(req);
977
978                 cfq_reposition_rq_rb(cfqq, req);
979         }
980 }
981
982 static void
983 cfq_merged_requests(struct request_queue *q, struct request *rq,
984                     struct request *next)
985 {
986         struct cfq_queue *cfqq = RQ_CFQQ(rq);
987         /*
988          * reposition in fifo if next is older than rq
989          */
990         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
991             time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
992                 list_move(&rq->queuelist, &next->queuelist);
993                 rq_set_fifo_time(rq, rq_fifo_time(next));
994         }
995
996         if (cfqq->next_rq == next)
997                 cfqq->next_rq = rq;
998         cfq_remove_request(next);
999 }
1000
1001 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
1002                            struct bio *bio)
1003 {
1004         struct cfq_data *cfqd = q->elevator->elevator_data;
1005         struct cfq_io_context *cic;
1006         struct cfq_queue *cfqq;
1007
1008         /*
1009          * Disallow merge of a sync bio into an async request.
1010          */
1011         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
1012                 return false;
1013
1014         /*
1015          * Lookup the cfqq that this bio will be queued with. Allow
1016          * merge only if rq is queued there.
1017          */
1018         cic = cfq_cic_lookup(cfqd, current->io_context);
1019         if (!cic)
1020                 return false;
1021
1022         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
1023         return cfqq == RQ_CFQQ(rq);
1024 }
1025
1026 static void __cfq_set_active_queue(struct cfq_data *cfqd,
1027                                    struct cfq_queue *cfqq)
1028 {
1029         if (cfqq) {
1030                 cfq_log_cfqq(cfqd, cfqq, "set_active");
1031                 cfqq->slice_end = 0;
1032                 cfqq->slice_dispatch = 0;
1033
1034                 cfq_clear_cfqq_wait_request(cfqq);
1035                 cfq_clear_cfqq_must_dispatch(cfqq);
1036                 cfq_clear_cfqq_must_alloc_slice(cfqq);
1037                 cfq_clear_cfqq_fifo_expire(cfqq);
1038                 cfq_mark_cfqq_slice_new(cfqq);
1039
1040                 del_timer(&cfqd->idle_slice_timer);
1041         }
1042
1043         cfqd->active_queue = cfqq;
1044 }
1045
1046 /*
1047  * current cfqq expired its slice (or was too idle), select new one
1048  */
1049 static void
1050 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1051                     bool timed_out)
1052 {
1053         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1054
1055         if (cfq_cfqq_wait_request(cfqq))
1056                 del_timer(&cfqd->idle_slice_timer);
1057
1058         cfq_clear_cfqq_wait_request(cfqq);
1059
1060         /*
1061          * store what was left of this slice, if the queue idled/timed out
1062          */
1063         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
1064                 cfqq->slice_resid = cfqq->slice_end - jiffies;
1065                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1066         }
1067
1068         cfq_resort_rr_list(cfqd, cfqq);
1069
1070         if (cfqq == cfqd->active_queue)
1071                 cfqd->active_queue = NULL;
1072
1073         if (cfqd->active_cic) {
1074                 put_io_context(cfqd->active_cic->ioc);
1075                 cfqd->active_cic = NULL;
1076         }
1077 }
1078
1079 static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
1080 {
1081         struct cfq_queue *cfqq = cfqd->active_queue;
1082
1083         if (cfqq)
1084                 __cfq_slice_expired(cfqd, cfqq, timed_out);
1085 }
1086
1087 /*
1088  * Get next queue for service. Unless we have a queue preemption,
1089  * we'll simply select the first cfqq in the service tree.
1090  */
1091 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
1092 {
1093         struct cfq_rb_root *service_tree =
1094                 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1095                                         cfqd->serving_type, cfqd);
1096
1097         if (RB_EMPTY_ROOT(&service_tree->rb))
1098                 return NULL;
1099         return cfq_rb_first(service_tree);
1100 }
1101
1102 /*
1103  * Get and set a new active queue for service.
1104  */
1105 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1106                                               struct cfq_queue *cfqq)
1107 {
1108         if (!cfqq)
1109                 cfqq = cfq_get_next_queue(cfqd);
1110
1111         __cfq_set_active_queue(cfqd, cfqq);
1112         return cfqq;
1113 }
1114
1115 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1116                                           struct request *rq)
1117 {
1118         if (blk_rq_pos(rq) >= cfqd->last_position)
1119                 return blk_rq_pos(rq) - cfqd->last_position;
1120         else
1121                 return cfqd->last_position - blk_rq_pos(rq);
1122 }
1123
1124 #define CFQQ_SEEK_THR           8 * 1024
1125 #define CFQQ_SEEKY(cfqq)        ((cfqq)->seek_mean > CFQQ_SEEK_THR)
1126
1127 static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1128                                struct request *rq)
1129 {
1130         sector_t sdist = cfqq->seek_mean;
1131
1132         if (!sample_valid(cfqq->seek_samples))
1133                 sdist = CFQQ_SEEK_THR;
1134
1135         return cfq_dist_from_last(cfqd, rq) <= sdist;
1136 }
1137
1138 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1139                                     struct cfq_queue *cur_cfqq)
1140 {
1141         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
1142         struct rb_node *parent, *node;
1143         struct cfq_queue *__cfqq;
1144         sector_t sector = cfqd->last_position;
1145
1146         if (RB_EMPTY_ROOT(root))
1147                 return NULL;
1148
1149         /*
1150          * First, if we find a request starting at the end of the last
1151          * request, choose it.
1152          */
1153         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
1154         if (__cfqq)
1155                 return __cfqq;
1156
1157         /*
1158          * If the exact sector wasn't found, the parent of the NULL leaf
1159          * will contain the closest sector.
1160          */
1161         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1162         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1163                 return __cfqq;
1164
1165         if (blk_rq_pos(__cfqq->next_rq) < sector)
1166                 node = rb_next(&__cfqq->p_node);
1167         else
1168                 node = rb_prev(&__cfqq->p_node);
1169         if (!node)
1170                 return NULL;
1171
1172         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1173         if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
1174                 return __cfqq;
1175
1176         return NULL;
1177 }
1178
1179 /*
1180  * cfqd - obvious
1181  * cur_cfqq - passed in so that we don't decide that the current queue is
1182  *            closely cooperating with itself.
1183  *
1184  * So, basically we're assuming that that cur_cfqq has dispatched at least
1185  * one request, and that cfqd->last_position reflects a position on the disk
1186  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1187  * assumption.
1188  */
1189 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1190                                               struct cfq_queue *cur_cfqq)
1191 {
1192         struct cfq_queue *cfqq;
1193
1194         if (!cfq_cfqq_sync(cur_cfqq))
1195                 return NULL;
1196         if (CFQQ_SEEKY(cur_cfqq))
1197                 return NULL;
1198
1199         /*
1200          * We should notice if some of the queues are cooperating, eg
1201          * working closely on the same area of the disk. In that case,
1202          * we can group them together and don't waste time idling.
1203          */
1204         cfqq = cfqq_close(cfqd, cur_cfqq);
1205         if (!cfqq)
1206                 return NULL;
1207
1208         /*
1209          * It only makes sense to merge sync queues.
1210          */
1211         if (!cfq_cfqq_sync(cfqq))
1212                 return NULL;
1213         if (CFQQ_SEEKY(cfqq))
1214                 return NULL;
1215
1216         /*
1217          * Do not merge queues of different priority classes
1218          */
1219         if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1220                 return NULL;
1221
1222         return cfqq;
1223 }
1224
1225 /*
1226  * Determine whether we should enforce idle window for this queue.
1227  */
1228
1229 static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1230 {
1231         enum wl_prio_t prio = cfqq_prio(cfqq);
1232         struct cfq_rb_root *service_tree = cfqq->service_tree;
1233
1234         /* We never do for idle class queues. */
1235         if (prio == IDLE_WORKLOAD)
1236                 return false;
1237
1238         /* We do for queues that were marked with idle window flag. */
1239         if (cfq_cfqq_idle_window(cfqq))
1240                 return true;
1241
1242         /*
1243          * Otherwise, we do only if they are the last ones
1244          * in their service tree.
1245          */
1246         if (!service_tree)
1247                 service_tree = service_tree_for(cfqq->cfqg, prio,
1248                                                 cfqq_type(cfqq), cfqd);
1249
1250         if (service_tree->count == 0)
1251                 return true;
1252
1253         return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1254 }
1255
1256 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1257 {
1258         struct cfq_queue *cfqq = cfqd->active_queue;
1259         struct cfq_io_context *cic;
1260         unsigned long sl;
1261
1262         /*
1263          * SSD device without seek penalty, disable idling. But only do so
1264          * for devices that support queuing, otherwise we still have a problem
1265          * with sync vs async workloads.
1266          */
1267         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1268                 return;
1269
1270         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1271         WARN_ON(cfq_cfqq_slice_new(cfqq));
1272
1273         /*
1274          * idle is disabled, either manually or by past process history
1275          */
1276         if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
1277                 return;
1278
1279         /*
1280          * still active requests from this queue, don't idle
1281          */
1282         if (cfqq->dispatched)
1283                 return;
1284
1285         /*
1286          * task has exited, don't wait
1287          */
1288         cic = cfqd->active_cic;
1289         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1290                 return;
1291
1292         /*
1293          * If our average think time is larger than the remaining time
1294          * slice, then don't idle. This avoids overrunning the allotted
1295          * time slice.
1296          */
1297         if (sample_valid(cic->ttime_samples) &&
1298             (cfqq->slice_end - jiffies < cic->ttime_mean))
1299                 return;
1300
1301         cfq_mark_cfqq_wait_request(cfqq);
1302
1303         sl = cfqd->cfq_slice_idle;
1304
1305         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1306         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1307 }
1308
1309 /*
1310  * Move request from internal lists to the request queue dispatch list.
1311  */
1312 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1313 {
1314         struct cfq_data *cfqd = q->elevator->elevator_data;
1315         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1316
1317         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1318
1319         cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
1320         cfq_remove_request(rq);
1321         cfqq->dispatched++;
1322         elv_dispatch_sort(q, rq);
1323
1324         if (cfq_cfqq_sync(cfqq))
1325                 cfqd->sync_flight++;
1326 }
1327
1328 /*
1329  * return expired entry, or NULL to just start from scratch in rbtree
1330  */
1331 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1332 {
1333         struct request *rq = NULL;
1334
1335         if (cfq_cfqq_fifo_expire(cfqq))
1336                 return NULL;
1337
1338         cfq_mark_cfqq_fifo_expire(cfqq);
1339
1340         if (list_empty(&cfqq->fifo))
1341                 return NULL;
1342
1343         rq = rq_entry_fifo(cfqq->fifo.next);
1344         if (time_before(jiffies, rq_fifo_time(rq)))
1345                 rq = NULL;
1346
1347         cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
1348         return rq;
1349 }
1350
1351 static inline int
1352 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1353 {
1354         const int base_rq = cfqd->cfq_slice_async_rq;
1355
1356         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1357
1358         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1359 }
1360
1361 /*
1362  * Must be called with the queue_lock held.
1363  */
1364 static int cfqq_process_refs(struct cfq_queue *cfqq)
1365 {
1366         int process_refs, io_refs;
1367
1368         io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1369         process_refs = atomic_read(&cfqq->ref) - io_refs;
1370         BUG_ON(process_refs < 0);
1371         return process_refs;
1372 }
1373
1374 static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1375 {
1376         int process_refs, new_process_refs;
1377         struct cfq_queue *__cfqq;
1378
1379         /* Avoid a circular list and skip interim queue merges */
1380         while ((__cfqq = new_cfqq->new_cfqq)) {
1381                 if (__cfqq == cfqq)
1382                         return;
1383                 new_cfqq = __cfqq;
1384         }
1385
1386         process_refs = cfqq_process_refs(cfqq);
1387         /*
1388          * If the process for the cfqq has gone away, there is no
1389          * sense in merging the queues.
1390          */
1391         if (process_refs == 0)
1392                 return;
1393
1394         /*
1395          * Merge in the direction of the lesser amount of work.
1396          */
1397         new_process_refs = cfqq_process_refs(new_cfqq);
1398         if (new_process_refs >= process_refs) {
1399                 cfqq->new_cfqq = new_cfqq;
1400                 atomic_add(process_refs, &new_cfqq->ref);
1401         } else {
1402                 new_cfqq->new_cfqq = cfqq;
1403                 atomic_add(new_process_refs, &cfqq->ref);
1404         }
1405 }
1406
1407 static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1408                                 struct cfq_group *cfqg, enum wl_prio_t prio,
1409                                 bool prio_changed)
1410 {
1411         struct cfq_queue *queue;
1412         int i;
1413         bool key_valid = false;
1414         unsigned long lowest_key = 0;
1415         enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1416
1417         if (prio_changed) {
1418                 /*
1419                  * When priorities switched, we prefer starting
1420                  * from SYNC_NOIDLE (first choice), or just SYNC
1421                  * over ASYNC
1422                  */
1423                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1424                         return cur_best;
1425                 cur_best = SYNC_WORKLOAD;
1426                 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
1427                         return cur_best;
1428
1429                 return ASYNC_WORKLOAD;
1430         }
1431
1432         for (i = 0; i < 3; ++i) {
1433                 /* otherwise, select the one with lowest rb_key */
1434                 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
1435                 if (queue &&
1436                     (!key_valid || time_before(queue->rb_key, lowest_key))) {
1437                         lowest_key = queue->rb_key;
1438                         cur_best = i;
1439                         key_valid = true;
1440                 }
1441         }
1442
1443         return cur_best;
1444 }
1445
1446 static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
1447 {
1448         enum wl_prio_t previous_prio = cfqd->serving_prio;
1449         bool prio_changed;
1450         unsigned slice;
1451         unsigned count;
1452         struct cfq_rb_root *st;
1453
1454         /* Choose next priority. RT > BE > IDLE */
1455         if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1456                 cfqd->serving_prio = RT_WORKLOAD;
1457         else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1458                 cfqd->serving_prio = BE_WORKLOAD;
1459         else {
1460                 cfqd->serving_prio = IDLE_WORKLOAD;
1461                 cfqd->workload_expires = jiffies + 1;
1462                 return;
1463         }
1464
1465         /*
1466          * For RT and BE, we have to choose also the type
1467          * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1468          * expiration time
1469          */
1470         prio_changed = (cfqd->serving_prio != previous_prio);
1471         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1472                                 cfqd);
1473         count = st->count;
1474
1475         /*
1476          * If priority didn't change, check workload expiration,
1477          * and that we still have other queues ready
1478          */
1479         if (!prio_changed && count &&
1480             !time_after(jiffies, cfqd->workload_expires))
1481                 return;
1482
1483         /* otherwise select new workload type */
1484         cfqd->serving_type =
1485                 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1486         st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1487                                 cfqd);
1488         count = st->count;
1489
1490         /*
1491          * the workload slice is computed as a fraction of target latency
1492          * proportional to the number of queues in that workload, over
1493          * all the queues in the same priority class
1494          */
1495         slice = cfq_target_latency * count /
1496                 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1497                       cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1498
1499         if (cfqd->serving_type == ASYNC_WORKLOAD)
1500                 /* async workload slice is scaled down according to
1501                  * the sync/async slice ratio. */
1502                 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1503         else
1504                 /* sync workload slice is at least 2 * cfq_slice_idle */
1505                 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1506
1507         slice = max_t(unsigned, slice, CFQ_MIN_TT);
1508         cfqd->workload_expires = jiffies + slice;
1509         cfqd->noidle_tree_requires_idle = false;
1510 }
1511
1512 static void cfq_choose_cfqg(struct cfq_data *cfqd)
1513 {
1514         cfqd->serving_group = &cfqd->root_group;
1515         choose_service_tree(cfqd, &cfqd->root_group);
1516 }
1517
1518 /*
1519  * Select a queue for service. If we have a current active queue,
1520  * check whether to continue servicing it, or retrieve and set a new one.
1521  */
1522 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1523 {
1524         struct cfq_queue *cfqq, *new_cfqq = NULL;
1525
1526         cfqq = cfqd->active_queue;
1527         if (!cfqq)
1528                 goto new_queue;
1529
1530         /*
1531          * The active queue has run out of time, expire it and select new.
1532          */
1533         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1534                 goto expire;
1535
1536         /*
1537          * The active queue has requests and isn't expired, allow it to
1538          * dispatch.
1539          */
1540         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1541                 goto keep_queue;
1542
1543         /*
1544          * If another queue has a request waiting within our mean seek
1545          * distance, let it run.  The expire code will check for close
1546          * cooperators and put the close queue at the front of the service
1547          * tree.  If possible, merge the expiring queue with the new cfqq.
1548          */
1549         new_cfqq = cfq_close_cooperator(cfqd, cfqq);
1550         if (new_cfqq) {
1551                 if (!cfqq->new_cfqq)
1552                         cfq_setup_merge(cfqq, new_cfqq);
1553                 goto expire;
1554         }
1555
1556         /*
1557          * No requests pending. If the active queue still has requests in
1558          * flight or is idling for a new request, allow either of these
1559          * conditions to happen (or time out) before selecting a new queue.
1560          */
1561         if (timer_pending(&cfqd->idle_slice_timer) ||
1562             (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
1563                 cfqq = NULL;
1564                 goto keep_queue;
1565         }
1566
1567 expire:
1568         cfq_slice_expired(cfqd, 0);
1569 new_queue:
1570         /*
1571          * Current queue expired. Check if we have to switch to a new
1572          * service tree
1573          */
1574         if (!new_cfqq)
1575                 cfq_choose_cfqg(cfqd);
1576
1577         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1578 keep_queue:
1579         return cfqq;
1580 }
1581
1582 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1583 {
1584         int dispatched = 0;
1585
1586         while (cfqq->next_rq) {
1587                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1588                 dispatched++;
1589         }
1590
1591         BUG_ON(!list_empty(&cfqq->fifo));
1592         return dispatched;
1593 }
1594
1595 /*
1596  * Drain our current requests. Used for barriers and when switching
1597  * io schedulers on-the-fly.
1598  */
1599 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1600 {
1601         struct cfq_queue *cfqq;
1602         int dispatched = 0;
1603         int i, j;
1604         struct cfq_group *cfqg = &cfqd->root_group;
1605         struct cfq_rb_root *st;
1606
1607         for_each_cfqg_st(cfqg, i, j, st) {
1608                 while ((cfqq = cfq_rb_first(st)) != NULL)
1609                         dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1610         }
1611
1612         cfq_slice_expired(cfqd, 0);
1613         BUG_ON(cfqd->busy_queues);
1614
1615         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1616         return dispatched;
1617 }
1618
1619 static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1620 {
1621         unsigned int max_dispatch;
1622
1623         /*
1624          * Drain async requests before we start sync IO
1625          */
1626         if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1627                 return false;
1628
1629         /*
1630          * If this is an async queue and we have sync IO in flight, let it wait
1631          */
1632         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1633                 return false;
1634
1635         max_dispatch = cfqd->cfq_quantum;
1636         if (cfq_class_idle(cfqq))
1637                 max_dispatch = 1;
1638
1639         /*
1640          * Does this cfqq already have too much IO in flight?
1641          */
1642         if (cfqq->dispatched >= max_dispatch) {
1643                 /*
1644                  * idle queue must always only have a single IO in flight
1645                  */
1646                 if (cfq_class_idle(cfqq))
1647                         return false;
1648
1649                 /*
1650                  * We have other queues, don't allow more IO from this one
1651                  */
1652                 if (cfqd->busy_queues > 1)
1653                         return false;
1654
1655                 /*
1656                  * Sole queue user, no limit
1657                  */
1658                 max_dispatch = -1;
1659         }
1660
1661         /*
1662          * Async queues must wait a bit before being allowed dispatch.
1663          * We also ramp up the dispatch depth gradually for async IO,
1664          * based on the last sync IO we serviced
1665          */
1666         if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
1667                 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1668                 unsigned int depth;
1669
1670                 depth = last_sync / cfqd->cfq_slice[1];
1671                 if (!depth && !cfqq->dispatched)
1672                         depth = 1;
1673                 if (depth < max_dispatch)
1674                         max_dispatch = depth;
1675         }
1676
1677         /*
1678          * If we're below the current max, allow a dispatch
1679          */
1680         return cfqq->dispatched < max_dispatch;
1681 }
1682
1683 /*
1684  * Dispatch a request from cfqq, moving them to the request queue
1685  * dispatch list.
1686  */
1687 static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1688 {
1689         struct request *rq;
1690
1691         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1692
1693         if (!cfq_may_dispatch(cfqd, cfqq))
1694                 return false;
1695
1696         /*
1697          * follow expired path, else get first next available
1698          */
1699         rq = cfq_check_fifo(cfqq);
1700         if (!rq)
1701                 rq = cfqq->next_rq;
1702
1703         /*
1704          * insert request into driver dispatch list
1705          */
1706         cfq_dispatch_insert(cfqd->queue, rq);
1707
1708         if (!cfqd->active_cic) {
1709                 struct cfq_io_context *cic = RQ_CIC(rq);
1710
1711                 atomic_long_inc(&cic->ioc->refcount);
1712                 cfqd->active_cic = cic;
1713         }
1714
1715         return true;
1716 }
1717
1718 /*
1719  * Find the cfqq that we need to service and move a request from that to the
1720  * dispatch list
1721  */
1722 static int cfq_dispatch_requests(struct request_queue *q, int force)
1723 {
1724         struct cfq_data *cfqd = q->elevator->elevator_data;
1725         struct cfq_queue *cfqq;
1726
1727         if (!cfqd->busy_queues)
1728                 return 0;
1729
1730         if (unlikely(force))
1731                 return cfq_forced_dispatch(cfqd);
1732
1733         cfqq = cfq_select_queue(cfqd);
1734         if (!cfqq)
1735                 return 0;
1736
1737         /*
1738          * Dispatch a request from this cfqq, if it is allowed
1739          */
1740         if (!cfq_dispatch_request(cfqd, cfqq))
1741                 return 0;
1742
1743         cfqq->slice_dispatch++;
1744         cfq_clear_cfqq_must_dispatch(cfqq);
1745
1746         /*
1747          * expire an async queue immediately if it has used up its slice. idle
1748          * queue always expire after 1 dispatch round.
1749          */
1750         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1751             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1752             cfq_class_idle(cfqq))) {
1753                 cfqq->slice_end = jiffies + 1;
1754                 cfq_slice_expired(cfqd, 0);
1755         }
1756
1757         cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
1758         return 1;
1759 }
1760
1761 /*
1762  * task holds one reference to the queue, dropped when task exits. each rq
1763  * in-flight on this queue also holds a reference, dropped when rq is freed.
1764  *
1765  * queue lock must be held here.
1766  */
1767 static void cfq_put_queue(struct cfq_queue *cfqq)
1768 {
1769         struct cfq_data *cfqd = cfqq->cfqd;
1770
1771         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1772
1773         if (!atomic_dec_and_test(&cfqq->ref))
1774                 return;
1775
1776         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1777         BUG_ON(rb_first(&cfqq->sort_list));
1778         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1779         BUG_ON(cfq_cfqq_on_rr(cfqq));
1780
1781         if (unlikely(cfqd->active_queue == cfqq)) {
1782                 __cfq_slice_expired(cfqd, cfqq, 0);
1783                 cfq_schedule_dispatch(cfqd);
1784         }
1785
1786         kmem_cache_free(cfq_pool, cfqq);
1787 }
1788
1789 /*
1790  * Must always be called with the rcu_read_lock() held
1791  */
1792 static void
1793 __call_for_each_cic(struct io_context *ioc,
1794                     void (*func)(struct io_context *, struct cfq_io_context *))
1795 {
1796         struct cfq_io_context *cic;
1797         struct hlist_node *n;
1798
1799         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1800                 func(ioc, cic);
1801 }
1802
1803 /*
1804  * Call func for each cic attached to this ioc.
1805  */
1806 static void
1807 call_for_each_cic(struct io_context *ioc,
1808                   void (*func)(struct io_context *, struct cfq_io_context *))
1809 {
1810         rcu_read_lock();
1811         __call_for_each_cic(ioc, func);
1812         rcu_read_unlock();
1813 }
1814
1815 static void cfq_cic_free_rcu(struct rcu_head *head)
1816 {
1817         struct cfq_io_context *cic;
1818
1819         cic = container_of(head, struct cfq_io_context, rcu_head);
1820
1821         kmem_cache_free(cfq_ioc_pool, cic);
1822         elv_ioc_count_dec(cfq_ioc_count);
1823
1824         if (ioc_gone) {
1825                 /*
1826                  * CFQ scheduler is exiting, grab exit lock and check
1827                  * the pending io context count. If it hits zero,
1828                  * complete ioc_gone and set it back to NULL
1829                  */
1830                 spin_lock(&ioc_gone_lock);
1831                 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
1832                         complete(ioc_gone);
1833                         ioc_gone = NULL;
1834                 }
1835                 spin_unlock(&ioc_gone_lock);
1836         }
1837 }
1838
1839 static void cfq_cic_free(struct cfq_io_context *cic)
1840 {
1841         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1842 }
1843
1844 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1845 {
1846         unsigned long flags;
1847
1848         BUG_ON(!cic->dead_key);
1849
1850         spin_lock_irqsave(&ioc->lock, flags);
1851         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1852         hlist_del_rcu(&cic->cic_list);
1853         spin_unlock_irqrestore(&ioc->lock, flags);
1854
1855         cfq_cic_free(cic);
1856 }
1857
1858 /*
1859  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1860  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1861  * and ->trim() which is called with the task lock held
1862  */
1863 static void cfq_free_io_context(struct io_context *ioc)
1864 {
1865         /*
1866          * ioc->refcount is zero here, or we are called from elv_unregister(),
1867          * so no more cic's are allowed to be linked into this ioc.  So it
1868          * should be ok to iterate over the known list, we will see all cic's
1869          * since no new ones are added.
1870          */
1871         __call_for_each_cic(ioc, cic_free_func);
1872 }
1873
1874 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1875 {
1876         struct cfq_queue *__cfqq, *next;
1877
1878         if (unlikely(cfqq == cfqd->active_queue)) {
1879                 __cfq_slice_expired(cfqd, cfqq, 0);
1880                 cfq_schedule_dispatch(cfqd);
1881         }
1882
1883         /*
1884          * If this queue was scheduled to merge with another queue, be
1885          * sure to drop the reference taken on that queue (and others in
1886          * the merge chain).  See cfq_setup_merge and cfq_merge_cfqqs.
1887          */
1888         __cfqq = cfqq->new_cfqq;
1889         while (__cfqq) {
1890                 if (__cfqq == cfqq) {
1891                         WARN(1, "cfqq->new_cfqq loop detected\n");
1892                         break;
1893                 }
1894                 next = __cfqq->new_cfqq;
1895                 cfq_put_queue(__cfqq);
1896                 __cfqq = next;
1897         }
1898
1899         cfq_put_queue(cfqq);
1900 }
1901
1902 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1903                                          struct cfq_io_context *cic)
1904 {
1905         struct io_context *ioc = cic->ioc;
1906
1907         list_del_init(&cic->queue_list);
1908
1909         /*
1910          * Make sure key == NULL is seen for dead queues
1911          */
1912         smp_wmb();
1913         cic->dead_key = (unsigned long) cic->key;
1914         cic->key = NULL;
1915
1916         if (ioc->ioc_data == cic)
1917                 rcu_assign_pointer(ioc->ioc_data, NULL);
1918
1919         if (cic->cfqq[BLK_RW_ASYNC]) {
1920                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1921                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1922         }
1923
1924         if (cic->cfqq[BLK_RW_SYNC]) {
1925                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1926                 cic->cfqq[BLK_RW_SYNC] = NULL;
1927         }
1928 }
1929
1930 static void cfq_exit_single_io_context(struct io_context *ioc,
1931                                        struct cfq_io_context *cic)
1932 {
1933         struct cfq_data *cfqd = cic->key;
1934
1935         if (cfqd) {
1936                 struct request_queue *q = cfqd->queue;
1937                 unsigned long flags;
1938
1939                 spin_lock_irqsave(q->queue_lock, flags);
1940
1941                 /*
1942                  * Ensure we get a fresh copy of the ->key to prevent
1943                  * race between exiting task and queue
1944                  */
1945                 smp_read_barrier_depends();
1946                 if (cic->key)
1947                         __cfq_exit_single_io_context(cfqd, cic);
1948
1949                 spin_unlock_irqrestore(q->queue_lock, flags);
1950         }
1951 }
1952
1953 /*
1954  * The process that ioc belongs to has exited, we need to clean up
1955  * and put the internal structures we have that belongs to that process.
1956  */
1957 static void cfq_exit_io_context(struct io_context *ioc)
1958 {
1959         call_for_each_cic(ioc, cfq_exit_single_io_context);
1960 }
1961
1962 static struct cfq_io_context *
1963 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1964 {
1965         struct cfq_io_context *cic;
1966
1967         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1968                                                         cfqd->queue->node);
1969         if (cic) {
1970                 cic->last_end_request = jiffies;
1971                 INIT_LIST_HEAD(&cic->queue_list);
1972                 INIT_HLIST_NODE(&cic->cic_list);
1973                 cic->dtor = cfq_free_io_context;
1974                 cic->exit = cfq_exit_io_context;
1975                 elv_ioc_count_inc(cfq_ioc_count);
1976         }
1977
1978         return cic;
1979 }
1980
1981 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1982 {
1983         struct task_struct *tsk = current;
1984         int ioprio_class;
1985
1986         if (!cfq_cfqq_prio_changed(cfqq))
1987                 return;
1988
1989         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1990         switch (ioprio_class) {
1991         default:
1992                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1993         case IOPRIO_CLASS_NONE:
1994                 /*
1995                  * no prio set, inherit CPU scheduling settings
1996                  */
1997                 cfqq->ioprio = task_nice_ioprio(tsk);
1998                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1999                 break;
2000         case IOPRIO_CLASS_RT:
2001                 cfqq->ioprio = task_ioprio(ioc);
2002                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2003                 break;
2004         case IOPRIO_CLASS_BE:
2005                 cfqq->ioprio = task_ioprio(ioc);
2006                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2007                 break;
2008         case IOPRIO_CLASS_IDLE:
2009                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2010                 cfqq->ioprio = 7;
2011                 cfq_clear_cfqq_idle_window(cfqq);
2012                 break;
2013         }
2014
2015         /*
2016          * keep track of original prio settings in case we have to temporarily
2017          * elevate the priority of this queue
2018          */
2019         cfqq->org_ioprio = cfqq->ioprio;
2020         cfqq->org_ioprio_class = cfqq->ioprio_class;
2021         cfq_clear_cfqq_prio_changed(cfqq);
2022 }
2023
2024 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
2025 {
2026         struct cfq_data *cfqd = cic->key;
2027         struct cfq_queue *cfqq;
2028         unsigned long flags;
2029
2030         if (unlikely(!cfqd))
2031                 return;
2032
2033         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2034
2035         cfqq = cic->cfqq[BLK_RW_ASYNC];
2036         if (cfqq) {
2037                 struct cfq_queue *new_cfqq;
2038                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2039                                                 GFP_ATOMIC);
2040                 if (new_cfqq) {
2041                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
2042                         cfq_put_queue(cfqq);
2043                 }
2044         }
2045
2046         cfqq = cic->cfqq[BLK_RW_SYNC];
2047         if (cfqq)
2048                 cfq_mark_cfqq_prio_changed(cfqq);
2049
2050         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2051 }
2052
2053 static void cfq_ioc_set_ioprio(struct io_context *ioc)
2054 {
2055         call_for_each_cic(ioc, changed_ioprio);
2056         ioc->ioprio_changed = 0;
2057 }
2058
2059 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2060                           pid_t pid, bool is_sync)
2061 {
2062         RB_CLEAR_NODE(&cfqq->rb_node);
2063         RB_CLEAR_NODE(&cfqq->p_node);
2064         INIT_LIST_HEAD(&cfqq->fifo);
2065
2066         atomic_set(&cfqq->ref, 0);
2067         cfqq->cfqd = cfqd;
2068
2069         cfq_mark_cfqq_prio_changed(cfqq);
2070
2071         if (is_sync) {
2072                 if (!cfq_class_idle(cfqq))
2073                         cfq_mark_cfqq_idle_window(cfqq);
2074                 cfq_mark_cfqq_sync(cfqq);
2075         }
2076         cfqq->pid = pid;
2077 }
2078
2079 static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2080 {
2081         cfqq->cfqg = cfqg;
2082 }
2083
2084 static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2085 {
2086         return &cfqd->root_group;
2087 }
2088
2089 static struct cfq_queue *
2090 cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
2091                      struct io_context *ioc, gfp_t gfp_mask)
2092 {
2093         struct cfq_queue *cfqq, *new_cfqq = NULL;
2094         struct cfq_io_context *cic;
2095         struct cfq_group *cfqg;
2096
2097 retry:
2098         cfqg = cfq_get_cfqg(cfqd, 1);
2099         cic = cfq_cic_lookup(cfqd, ioc);
2100         /* cic always exists here */
2101         cfqq = cic_to_cfqq(cic, is_sync);
2102
2103         /*
2104          * Always try a new alloc if we fell back to the OOM cfqq
2105          * originally, since it should just be a temporary situation.
2106          */
2107         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2108                 cfqq = NULL;
2109                 if (new_cfqq) {
2110                         cfqq = new_cfqq;
2111                         new_cfqq = NULL;
2112                 } else if (gfp_mask & __GFP_WAIT) {
2113                         spin_unlock_irq(cfqd->queue->queue_lock);
2114                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
2115                                         gfp_mask | __GFP_ZERO,
2116                                         cfqd->queue->node);
2117                         spin_lock_irq(cfqd->queue->queue_lock);
2118                         if (new_cfqq)
2119                                 goto retry;
2120                 } else {
2121                         cfqq = kmem_cache_alloc_node(cfq_pool,
2122                                         gfp_mask | __GFP_ZERO,
2123                                         cfqd->queue->node);
2124                 }
2125
2126                 if (cfqq) {
2127                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2128                         cfq_init_prio_data(cfqq, ioc);
2129                         cfq_link_cfqq_cfqg(cfqq, cfqg);
2130                         cfq_log_cfqq(cfqd, cfqq, "alloced");
2131                 } else
2132                         cfqq = &cfqd->oom_cfqq;
2133         }
2134
2135         if (new_cfqq)
2136                 kmem_cache_free(cfq_pool, new_cfqq);
2137
2138         return cfqq;
2139 }
2140
2141 static struct cfq_queue **
2142 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2143 {
2144         switch (ioprio_class) {
2145         case IOPRIO_CLASS_RT:
2146                 return &cfqd->async_cfqq[0][ioprio];
2147         case IOPRIO_CLASS_BE:
2148                 return &cfqd->async_cfqq[1][ioprio];
2149         case IOPRIO_CLASS_IDLE:
2150                 return &cfqd->async_idle_cfqq;
2151         default:
2152                 BUG();
2153         }
2154 }
2155
2156 static struct cfq_queue *
2157 cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
2158               gfp_t gfp_mask)
2159 {
2160         const int ioprio = task_ioprio(ioc);
2161         const int ioprio_class = task_ioprio_class(ioc);
2162         struct cfq_queue **async_cfqq = NULL;
2163         struct cfq_queue *cfqq = NULL;
2164
2165         if (!is_sync) {
2166                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2167                 cfqq = *async_cfqq;
2168         }
2169
2170         if (!cfqq)
2171                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
2172
2173         /*
2174          * pin the queue now that it's allocated, scheduler exit will prune it
2175          */
2176         if (!is_sync && !(*async_cfqq)) {
2177                 atomic_inc(&cfqq->ref);
2178                 *async_cfqq = cfqq;
2179         }
2180
2181         atomic_inc(&cfqq->ref);
2182         return cfqq;
2183 }
2184
2185 /*
2186  * We drop cfq io contexts lazily, so we may find a dead one.
2187  */
2188 static void
2189 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2190                   struct cfq_io_context *cic)
2191 {
2192         unsigned long flags;
2193
2194         WARN_ON(!list_empty(&cic->queue_list));
2195
2196         spin_lock_irqsave(&ioc->lock, flags);
2197
2198         BUG_ON(ioc->ioc_data == cic);
2199
2200         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
2201         hlist_del_rcu(&cic->cic_list);
2202         spin_unlock_irqrestore(&ioc->lock, flags);
2203
2204         cfq_cic_free(cic);
2205 }
2206
2207 static struct cfq_io_context *
2208 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
2209 {
2210         struct cfq_io_context *cic;
2211         unsigned long flags;
2212         void *k;
2213
2214         if (unlikely(!ioc))
2215                 return NULL;
2216
2217         rcu_read_lock();
2218
2219         /*
2220          * we maintain a last-hit cache, to avoid browsing over the tree
2221          */
2222         cic = rcu_dereference(ioc->ioc_data);
2223         if (cic && cic->key == cfqd) {
2224                 rcu_read_unlock();
2225                 return cic;
2226         }
2227
2228         do {
2229                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2230                 rcu_read_unlock();
2231                 if (!cic)
2232                         break;
2233                 /* ->key must be copied to avoid race with cfq_exit_queue() */
2234                 k = cic->key;
2235                 if (unlikely(!k)) {
2236                         cfq_drop_dead_cic(cfqd, ioc, cic);
2237                         rcu_read_lock();
2238                         continue;
2239                 }
2240
2241                 spin_lock_irqsave(&ioc->lock, flags);
2242                 rcu_assign_pointer(ioc->ioc_data, cic);
2243                 spin_unlock_irqrestore(&ioc->lock, flags);
2244                 break;
2245         } while (1);
2246
2247         return cic;
2248 }
2249
2250 /*
2251  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2252  * the process specific cfq io context when entered from the block layer.
2253  * Also adds the cic to a per-cfqd list, used when this queue is removed.
2254  */
2255 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2256                         struct cfq_io_context *cic, gfp_t gfp_mask)
2257 {
2258         unsigned long flags;
2259         int ret;
2260
2261         ret = radix_tree_preload(gfp_mask);
2262         if (!ret) {
2263                 cic->ioc = ioc;
2264                 cic->key = cfqd;
2265
2266                 spin_lock_irqsave(&ioc->lock, flags);
2267                 ret = radix_tree_insert(&ioc->radix_root,
2268                                                 (unsigned long) cfqd, cic);
2269                 if (!ret)
2270                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
2271                 spin_unlock_irqrestore(&ioc->lock, flags);
2272
2273                 radix_tree_preload_end();
2274
2275                 if (!ret) {
2276                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2277                         list_add(&cic->queue_list, &cfqd->cic_list);
2278                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2279                 }
2280         }
2281
2282         if (ret)
2283                 printk(KERN_ERR "cfq: cic link failed!\n");
2284
2285         return ret;
2286 }
2287
2288 /*
2289  * Setup general io context and cfq io context. There can be several cfq
2290  * io contexts per general io context, if this process is doing io to more
2291  * than one device managed by cfq.
2292  */
2293 static struct cfq_io_context *
2294 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
2295 {
2296         struct io_context *ioc = NULL;
2297         struct cfq_io_context *cic;
2298
2299         might_sleep_if(gfp_mask & __GFP_WAIT);
2300
2301         ioc = get_io_context(gfp_mask, cfqd->queue->node);
2302         if (!ioc)
2303                 return NULL;
2304
2305         cic = cfq_cic_lookup(cfqd, ioc);
2306         if (cic)
2307                 goto out;
2308
2309         cic = cfq_alloc_io_context(cfqd, gfp_mask);
2310         if (cic == NULL)
2311                 goto err;
2312
2313         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2314                 goto err_free;
2315
2316 out:
2317         smp_read_barrier_depends();
2318         if (unlikely(ioc->ioprio_changed))
2319                 cfq_ioc_set_ioprio(ioc);
2320
2321         return cic;
2322 err_free:
2323         cfq_cic_free(cic);
2324 err:
2325         put_io_context(ioc);
2326         return NULL;
2327 }
2328
2329 static void
2330 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
2331 {
2332         unsigned long elapsed = jiffies - cic->last_end_request;
2333         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
2334
2335         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2336         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2337         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2338 }
2339
2340 static void
2341 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2342                        struct request *rq)
2343 {
2344         sector_t sdist;
2345         u64 total;
2346
2347         if (!cfqq->last_request_pos)
2348                 sdist = 0;
2349         else if (cfqq->last_request_pos < blk_rq_pos(rq))
2350                 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
2351         else
2352                 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
2353
2354         /*
2355          * Don't allow the seek distance to get too large from the
2356          * odd fragment, pagein, etc
2357          */
2358         if (cfqq->seek_samples <= 60) /* second&third seek */
2359                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
2360         else
2361                 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
2362
2363         cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2364         cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2365         total = cfqq->seek_total + (cfqq->seek_samples/2);
2366         do_div(total, cfqq->seek_samples);
2367         cfqq->seek_mean = (sector_t)total;
2368
2369         /*
2370          * If this cfqq is shared between multiple processes, check to
2371          * make sure that those processes are still issuing I/Os within
2372          * the mean seek distance.  If not, it may be time to break the
2373          * queues apart again.
2374          */
2375         if (cfq_cfqq_coop(cfqq)) {
2376                 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2377                         cfqq->seeky_start = jiffies;
2378                 else if (!CFQQ_SEEKY(cfqq))
2379                         cfqq->seeky_start = 0;
2380         }
2381 }
2382
2383 /*
2384  * Disable idle window if the process thinks too long or seeks so much that
2385  * it doesn't matter
2386  */
2387 static void
2388 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2389                        struct cfq_io_context *cic)
2390 {
2391         int old_idle, enable_idle;
2392
2393         /*
2394          * Don't idle for async or idle io prio class
2395          */
2396         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
2397                 return;
2398
2399         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
2400
2401         if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2402                 cfq_mark_cfqq_deep(cfqq);
2403
2404         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
2405             (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2406              && CFQQ_SEEKY(cfqq)))
2407                 enable_idle = 0;
2408         else if (sample_valid(cic->ttime_samples)) {
2409                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
2410                         enable_idle = 0;
2411                 else
2412                         enable_idle = 1;
2413         }
2414
2415         if (old_idle != enable_idle) {
2416                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2417                 if (enable_idle)
2418                         cfq_mark_cfqq_idle_window(cfqq);
2419                 else
2420                         cfq_clear_cfqq_idle_window(cfqq);
2421         }
2422 }
2423
2424 /*
2425  * Check if new_cfqq should preempt the currently active queue. Return 0 for
2426  * no or if we aren't sure, a 1 will cause a preempt.
2427  */
2428 static bool
2429 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2430                    struct request *rq)
2431 {
2432         struct cfq_queue *cfqq;
2433
2434         cfqq = cfqd->active_queue;
2435         if (!cfqq)
2436                 return false;
2437
2438         if (cfq_slice_used(cfqq))
2439                 return true;
2440
2441         if (cfq_class_idle(new_cfqq))
2442                 return false;
2443
2444         if (cfq_class_idle(cfqq))
2445                 return true;
2446
2447         if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2448             cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2449             new_cfqq->service_tree->count == 1)
2450                 return true;
2451
2452         /*
2453          * if the new request is sync, but the currently running queue is
2454          * not, let the sync request have priority.
2455          */
2456         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2457                 return true;
2458
2459         /*
2460          * So both queues are sync. Let the new request get disk time if
2461          * it's a metadata request and the current queue is doing regular IO.
2462          */
2463         if (rq_is_meta(rq) && !cfqq->meta_pending)
2464                 return true;
2465
2466         /*
2467          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2468          */
2469         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2470                 return true;
2471
2472         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2473                 return false;
2474
2475         /*
2476          * if this request is as-good as one we would expect from the
2477          * current cfqq, let it preempt
2478          */
2479         if (cfq_rq_close(cfqd, cfqq, rq))
2480                 return true;
2481
2482         return false;
2483 }
2484
2485 /*
2486  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2487  * let it have half of its nominal slice.
2488  */
2489 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2490 {
2491         cfq_log_cfqq(cfqd, cfqq, "preempt");
2492         cfq_slice_expired(cfqd, 1);
2493
2494         /*
2495          * Put the new queue at the front of the of the current list,
2496          * so we know that it will be selected next.
2497          */
2498         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2499
2500         cfq_service_tree_add(cfqd, cfqq, 1);
2501
2502         cfqq->slice_end = 0;
2503         cfq_mark_cfqq_slice_new(cfqq);
2504 }
2505
2506 /*
2507  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2508  * something we should do about it
2509  */
2510 static void
2511 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2512                 struct request *rq)
2513 {
2514         struct cfq_io_context *cic = RQ_CIC(rq);
2515
2516         cfqd->rq_queued++;
2517         if (rq_is_meta(rq))
2518                 cfqq->meta_pending++;
2519
2520         cfq_update_io_thinktime(cfqd, cic);
2521         cfq_update_io_seektime(cfqd, cfqq, rq);
2522         cfq_update_idle_window(cfqd, cfqq, cic);
2523
2524         cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2525
2526         if (cfqq == cfqd->active_queue) {
2527                 /*
2528                  * Remember that we saw a request from this process, but
2529                  * don't start queuing just yet. Otherwise we risk seeing lots
2530                  * of tiny requests, because we disrupt the normal plugging
2531                  * and merging. If the request is already larger than a single
2532                  * page, let it rip immediately. For that case we assume that
2533                  * merging is already done. Ditto for a busy system that
2534                  * has other work pending, don't risk delaying until the
2535                  * idle timer unplug to continue working.
2536                  */
2537                 if (cfq_cfqq_wait_request(cfqq)) {
2538                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2539                             cfqd->busy_queues > 1) {
2540                                 del_timer(&cfqd->idle_slice_timer);
2541                                 __blk_run_queue(cfqd->queue);
2542                         } else
2543                                 cfq_mark_cfqq_must_dispatch(cfqq);
2544                 }
2545         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2546                 /*
2547                  * not the active queue - expire current slice if it is
2548                  * idle and has expired it's mean thinktime or this new queue
2549                  * has some old slice time left and is of higher priority or
2550                  * this new queue is RT and the current one is BE
2551                  */
2552                 cfq_preempt_queue(cfqd, cfqq);
2553                 __blk_run_queue(cfqd->queue);
2554         }
2555 }
2556
2557 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2558 {
2559         struct cfq_data *cfqd = q->elevator->elevator_data;
2560         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2561
2562         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2563         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2564
2565         rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
2566         list_add_tail(&rq->queuelist, &cfqq->fifo);
2567         cfq_add_rq_rb(rq);
2568
2569         cfq_rq_enqueued(cfqd, cfqq, rq);
2570 }
2571
2572 /*
2573  * Update hw_tag based on peak queue depth over 50 samples under
2574  * sufficient load.
2575  */
2576 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2577 {
2578         struct cfq_queue *cfqq = cfqd->active_queue;
2579
2580         if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2581                 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2582
2583         if (cfqd->hw_tag == 1)
2584                 return;
2585
2586         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2587             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2588                 return;
2589
2590         /*
2591          * If active queue hasn't enough requests and can idle, cfq might not
2592          * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2593          * case
2594          */
2595         if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2596             cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2597             CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2598                 return;
2599
2600         if (cfqd->hw_tag_samples++ < 50)
2601                 return;
2602
2603         if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
2604                 cfqd->hw_tag = 1;
2605         else
2606                 cfqd->hw_tag = 0;
2607 }
2608
2609 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2610 {
2611         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2612         struct cfq_data *cfqd = cfqq->cfqd;
2613         const int sync = rq_is_sync(rq);
2614         unsigned long now;
2615
2616         now = jiffies;
2617         cfq_log_cfqq(cfqd, cfqq, "complete");
2618
2619         cfq_update_hw_tag(cfqd);
2620
2621         WARN_ON(!cfqd->rq_in_driver[sync]);
2622         WARN_ON(!cfqq->dispatched);
2623         cfqd->rq_in_driver[sync]--;
2624         cfqq->dispatched--;
2625
2626         if (cfq_cfqq_sync(cfqq))
2627                 cfqd->sync_flight--;
2628
2629         if (sync) {
2630                 RQ_CIC(rq)->last_end_request = now;
2631                 cfqd->last_end_sync_rq = now;
2632         }
2633
2634         /*
2635          * If this is the active queue, check if it needs to be expired,
2636          * or if we want to idle in case it has no pending requests.
2637          */
2638         if (cfqd->active_queue == cfqq) {
2639                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2640
2641                 if (cfq_cfqq_slice_new(cfqq)) {
2642                         cfq_set_prio_slice(cfqd, cfqq);
2643                         cfq_clear_cfqq_slice_new(cfqq);
2644                 }
2645                 /*
2646                  * Idling is not enabled on:
2647                  * - expired queues
2648                  * - idle-priority queues
2649                  * - async queues
2650                  * - queues with still some requests queued
2651                  * - when there is a close cooperator
2652                  */
2653                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2654                         cfq_slice_expired(cfqd, 1);
2655                 else if (sync && cfqq_empty &&
2656                          !cfq_close_cooperator(cfqd, cfqq)) {
2657                         cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2658                         /*
2659                          * Idling is enabled for SYNC_WORKLOAD.
2660                          * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2661                          * only if we processed at least one !rq_noidle request
2662                          */
2663                         if (cfqd->serving_type == SYNC_WORKLOAD
2664                             || cfqd->noidle_tree_requires_idle)
2665                                 cfq_arm_slice_timer(cfqd);
2666                 }
2667         }
2668
2669         if (!rq_in_driver(cfqd))
2670                 cfq_schedule_dispatch(cfqd);
2671 }
2672
2673 /*
2674  * we temporarily boost lower priority queues if they are holding fs exclusive
2675  * resources. they are boosted to normal prio (CLASS_BE/4)
2676  */
2677 static void cfq_prio_boost(struct cfq_queue *cfqq)
2678 {
2679         if (has_fs_excl()) {
2680                 /*
2681                  * boost idle prio on transactions that would lock out other
2682                  * users of the filesystem
2683                  */
2684                 if (cfq_class_idle(cfqq))
2685                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2686                 if (cfqq->ioprio > IOPRIO_NORM)
2687                         cfqq->ioprio = IOPRIO_NORM;
2688         } else {
2689                 /*
2690                  * unboost the queue (if needed)
2691                  */
2692                 cfqq->ioprio_class = cfqq->org_ioprio_class;
2693                 cfqq->ioprio = cfqq->org_ioprio;
2694         }
2695 }
2696
2697 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2698 {
2699         if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
2700                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2701                 return ELV_MQUEUE_MUST;
2702         }
2703
2704         return ELV_MQUEUE_MAY;
2705 }
2706
2707 static int cfq_may_queue(struct request_queue *q, int rw)
2708 {
2709         struct cfq_data *cfqd = q->elevator->elevator_data;
2710         struct task_struct *tsk = current;
2711         struct cfq_io_context *cic;
2712         struct cfq_queue *cfqq;
2713
2714         /*
2715          * don't force setup of a queue from here, as a call to may_queue
2716          * does not necessarily imply that a request actually will be queued.
2717          * so just lookup a possibly existing queue, or return 'may queue'
2718          * if that fails
2719          */
2720         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2721         if (!cic)
2722                 return ELV_MQUEUE_MAY;
2723
2724         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2725         if (cfqq) {
2726                 cfq_init_prio_data(cfqq, cic->ioc);
2727                 cfq_prio_boost(cfqq);
2728
2729                 return __cfq_may_queue(cfqq);
2730         }
2731
2732         return ELV_MQUEUE_MAY;
2733 }
2734
2735 /*
2736  * queue lock held here
2737  */
2738 static void cfq_put_request(struct request *rq)
2739 {
2740         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2741
2742         if (cfqq) {
2743                 const int rw = rq_data_dir(rq);
2744
2745                 BUG_ON(!cfqq->allocated[rw]);
2746                 cfqq->allocated[rw]--;
2747
2748                 put_io_context(RQ_CIC(rq)->ioc);
2749
2750                 rq->elevator_private = NULL;
2751                 rq->elevator_private2 = NULL;
2752
2753                 cfq_put_queue(cfqq);
2754         }
2755 }
2756
2757 static struct cfq_queue *
2758 cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2759                 struct cfq_queue *cfqq)
2760 {
2761         cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2762         cic_set_cfqq(cic, cfqq->new_cfqq, 1);
2763         cfq_mark_cfqq_coop(cfqq->new_cfqq);
2764         cfq_put_queue(cfqq);
2765         return cic_to_cfqq(cic, 1);
2766 }
2767
2768 static int should_split_cfqq(struct cfq_queue *cfqq)
2769 {
2770         if (cfqq->seeky_start &&
2771             time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2772                 return 1;
2773         return 0;
2774 }
2775
2776 /*
2777  * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2778  * was the last process referring to said cfqq.
2779  */
2780 static struct cfq_queue *
2781 split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2782 {
2783         if (cfqq_process_refs(cfqq) == 1) {
2784                 cfqq->seeky_start = 0;
2785                 cfqq->pid = current->pid;
2786                 cfq_clear_cfqq_coop(cfqq);
2787                 return cfqq;
2788         }
2789
2790         cic_set_cfqq(cic, NULL, 1);
2791         cfq_put_queue(cfqq);
2792         return NULL;
2793 }
2794 /*
2795  * Allocate cfq data structures associated with this request.
2796  */
2797 static int
2798 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2799 {
2800         struct cfq_data *cfqd = q->elevator->elevator_data;
2801         struct cfq_io_context *cic;
2802         const int rw = rq_data_dir(rq);
2803         const bool is_sync = rq_is_sync(rq);
2804         struct cfq_queue *cfqq;
2805         unsigned long flags;
2806
2807         might_sleep_if(gfp_mask & __GFP_WAIT);
2808
2809         cic = cfq_get_io_context(cfqd, gfp_mask);
2810
2811         spin_lock_irqsave(q->queue_lock, flags);
2812
2813         if (!cic)
2814                 goto queue_fail;
2815
2816 new_queue:
2817         cfqq = cic_to_cfqq(cic, is_sync);
2818         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2819                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2820                 cic_set_cfqq(cic, cfqq, is_sync);
2821         } else {
2822                 /*
2823                  * If the queue was seeky for too long, break it apart.
2824                  */
2825                 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2826                         cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2827                         cfqq = split_cfqq(cic, cfqq);
2828                         if (!cfqq)
2829                                 goto new_queue;
2830                 }
2831
2832                 /*
2833                  * Check to see if this queue is scheduled to merge with
2834                  * another, closely cooperating queue.  The merging of
2835                  * queues happens here as it must be done in process context.
2836                  * The reference on new_cfqq was taken in merge_cfqqs.
2837                  */
2838                 if (cfqq->new_cfqq)
2839                         cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
2840         }
2841
2842         cfqq->allocated[rw]++;
2843         atomic_inc(&cfqq->ref);
2844
2845         spin_unlock_irqrestore(q->queue_lock, flags);
2846
2847         rq->elevator_private = cic;
2848         rq->elevator_private2 = cfqq;
2849         return 0;
2850
2851 queue_fail:
2852         if (cic)
2853                 put_io_context(cic->ioc);
2854
2855         cfq_schedule_dispatch(cfqd);
2856         spin_unlock_irqrestore(q->queue_lock, flags);
2857         cfq_log(cfqd, "set_request fail");
2858         return 1;
2859 }
2860
2861 static void cfq_kick_queue(struct work_struct *work)
2862 {
2863         struct cfq_data *cfqd =
2864                 container_of(work, struct cfq_data, unplug_work);
2865         struct request_queue *q = cfqd->queue;
2866
2867         spin_lock_irq(q->queue_lock);
2868         __blk_run_queue(cfqd->queue);
2869         spin_unlock_irq(q->queue_lock);
2870 }
2871
2872 /*
2873  * Timer running if the active_queue is currently idling inside its time slice
2874  */
2875 static void cfq_idle_slice_timer(unsigned long data)
2876 {
2877         struct cfq_data *cfqd = (struct cfq_data *) data;
2878         struct cfq_queue *cfqq;
2879         unsigned long flags;
2880         int timed_out = 1;
2881
2882         cfq_log(cfqd, "idle timer fired");
2883
2884         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2885
2886         cfqq = cfqd->active_queue;
2887         if (cfqq) {
2888                 timed_out = 0;
2889
2890                 /*
2891                  * We saw a request before the queue expired, let it through
2892                  */
2893                 if (cfq_cfqq_must_dispatch(cfqq))
2894                         goto out_kick;
2895
2896                 /*
2897                  * expired
2898                  */
2899                 if (cfq_slice_used(cfqq))
2900                         goto expire;
2901
2902                 /*
2903                  * only expire and reinvoke request handler, if there are
2904                  * other queues with pending requests
2905                  */
2906                 if (!cfqd->busy_queues)
2907                         goto out_cont;
2908
2909                 /*
2910                  * not expired and it has a request pending, let it dispatch
2911                  */
2912                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2913                         goto out_kick;
2914
2915                 /*
2916                  * Queue depth flag is reset only when the idle didn't succeed
2917                  */
2918                 cfq_clear_cfqq_deep(cfqq);
2919         }
2920 expire:
2921         cfq_slice_expired(cfqd, timed_out);
2922 out_kick:
2923         cfq_schedule_dispatch(cfqd);
2924 out_cont:
2925         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2926 }
2927
2928 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2929 {
2930         del_timer_sync(&cfqd->idle_slice_timer);
2931         cancel_work_sync(&cfqd->unplug_work);
2932 }
2933
2934 static void cfq_put_async_queues(struct cfq_data *cfqd)
2935 {
2936         int i;
2937
2938         for (i = 0; i < IOPRIO_BE_NR; i++) {
2939                 if (cfqd->async_cfqq[0][i])
2940                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2941                 if (cfqd->async_cfqq[1][i])
2942                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2943         }
2944
2945         if (cfqd->async_idle_cfqq)
2946                 cfq_put_queue(cfqd->async_idle_cfqq);
2947 }
2948
2949 static void cfq_exit_queue(struct elevator_queue *e)
2950 {
2951         struct cfq_data *cfqd = e->elevator_data;
2952         struct request_queue *q = cfqd->queue;
2953
2954         cfq_shutdown_timer_wq(cfqd);
2955
2956         spin_lock_irq(q->queue_lock);
2957
2958         if (cfqd->active_queue)
2959                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2960
2961         while (!list_empty(&cfqd->cic_list)) {
2962                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2963                                                         struct cfq_io_context,
2964                                                         queue_list);
2965
2966                 __cfq_exit_single_io_context(cfqd, cic);
2967         }
2968
2969         cfq_put_async_queues(cfqd);
2970
2971         spin_unlock_irq(q->queue_lock);
2972
2973         cfq_shutdown_timer_wq(cfqd);
2974
2975         kfree(cfqd);
2976 }
2977
2978 static void *cfq_init_queue(struct request_queue *q)
2979 {
2980         struct cfq_data *cfqd;
2981         int i, j;
2982         struct cfq_group *cfqg;
2983         struct cfq_rb_root *st;
2984
2985         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2986         if (!cfqd)
2987                 return NULL;
2988
2989         /* Init root group */
2990         cfqg = &cfqd->root_group;
2991         for_each_cfqg_st(cfqg, i, j, st)
2992                 *st = CFQ_RB_ROOT;
2993
2994         /*
2995          * Not strictly needed (since RB_ROOT just clears the node and we
2996          * zeroed cfqd on alloc), but better be safe in case someone decides
2997          * to add magic to the rb code
2998          */
2999         for (i = 0; i < CFQ_PRIO_LISTS; i++)
3000                 cfqd->prio_trees[i] = RB_ROOT;
3001
3002         /*
3003          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3004          * Grab a permanent reference to it, so that the normal code flow
3005          * will not attempt to free it.
3006          */
3007         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3008         atomic_inc(&cfqd->oom_cfqq.ref);
3009         cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
3010
3011         INIT_LIST_HEAD(&cfqd->cic_list);
3012
3013         cfqd->queue = q;
3014
3015         init_timer(&cfqd->idle_slice_timer);
3016         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3017         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3018
3019         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
3020
3021         cfqd->cfq_quantum = cfq_quantum;
3022         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3023         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
3024         cfqd->cfq_back_max = cfq_back_max;
3025         cfqd->cfq_back_penalty = cfq_back_penalty;
3026         cfqd->cfq_slice[0] = cfq_slice_async;
3027         cfqd->cfq_slice[1] = cfq_slice_sync;
3028         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3029         cfqd->cfq_slice_idle = cfq_slice_idle;
3030         cfqd->cfq_latency = 1;
3031         cfqd->hw_tag = -1;
3032         cfqd->last_end_sync_rq = jiffies;
3033         return cfqd;
3034 }
3035
3036 static void cfq_slab_kill(void)
3037 {
3038         /*
3039          * Caller already ensured that pending RCU callbacks are completed,
3040          * so we should have no busy allocations at this point.
3041          */
3042         if (cfq_pool)
3043                 kmem_cache_destroy(cfq_pool);
3044         if (cfq_ioc_pool)
3045                 kmem_cache_destroy(cfq_ioc_pool);
3046 }
3047
3048 static int __init cfq_slab_setup(void)
3049 {
3050         cfq_pool = KMEM_CACHE(cfq_queue, 0);
3051         if (!cfq_pool)
3052                 goto fail;
3053
3054         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
3055         if (!cfq_ioc_pool)
3056                 goto fail;
3057
3058         return 0;
3059 fail:
3060         cfq_slab_kill();
3061         return -ENOMEM;
3062 }
3063
3064 /*
3065  * sysfs parts below -->
3066  */
3067 static ssize_t
3068 cfq_var_show(unsigned int var, char *page)
3069 {
3070         return sprintf(page, "%d\n", var);
3071 }
3072
3073 static ssize_t
3074 cfq_var_store(unsigned int *var, const char *page, size_t count)
3075 {
3076         char *p = (char *) page;
3077
3078         *var = simple_strtoul(p, &p, 10);
3079         return count;
3080 }
3081
3082 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
3083 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
3084 {                                                                       \
3085         struct cfq_data *cfqd = e->elevator_data;                       \
3086         unsigned int __data = __VAR;                                    \
3087         if (__CONV)                                                     \
3088                 __data = jiffies_to_msecs(__data);                      \
3089         return cfq_var_show(__data, (page));                            \
3090 }
3091 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
3092 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3093 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
3094 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3095 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
3096 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3097 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3098 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3099 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
3100 SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
3101 #undef SHOW_FUNCTION
3102
3103 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
3104 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
3105 {                                                                       \
3106         struct cfq_data *cfqd = e->elevator_data;                       \
3107         unsigned int __data;                                            \
3108         int ret = cfq_var_store(&__data, (page), count);                \
3109         if (__data < (MIN))                                             \
3110                 __data = (MIN);                                         \
3111         else if (__data > (MAX))                                        \
3112                 __data = (MAX);                                         \
3113         if (__CONV)                                                     \
3114                 *(__PTR) = msecs_to_jiffies(__data);                    \
3115         else                                                            \
3116                 *(__PTR) = __data;                                      \
3117         return ret;                                                     \
3118 }
3119 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
3120 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3121                 UINT_MAX, 1);
3122 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3123                 UINT_MAX, 1);
3124 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
3125 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3126                 UINT_MAX, 0);
3127 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3128 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3129 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
3130 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3131                 UINT_MAX, 0);
3132 STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
3133 #undef STORE_FUNCTION
3134
3135 #define CFQ_ATTR(name) \
3136         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3137
3138 static struct elv_fs_entry cfq_attrs[] = {
3139         CFQ_ATTR(quantum),
3140         CFQ_ATTR(fifo_expire_sync),
3141         CFQ_ATTR(fifo_expire_async),
3142         CFQ_ATTR(back_seek_max),
3143         CFQ_ATTR(back_seek_penalty),
3144         CFQ_ATTR(slice_sync),
3145         CFQ_ATTR(slice_async),
3146         CFQ_ATTR(slice_async_rq),
3147         CFQ_ATTR(slice_idle),
3148         CFQ_ATTR(low_latency),
3149         __ATTR_NULL
3150 };
3151
3152 static struct elevator_type iosched_cfq = {
3153         .ops = {
3154                 .elevator_merge_fn =            cfq_merge,
3155                 .elevator_merged_fn =           cfq_merged_request,
3156                 .elevator_merge_req_fn =        cfq_merged_requests,
3157                 .elevator_allow_merge_fn =      cfq_allow_merge,
3158                 .elevator_dispatch_fn =         cfq_dispatch_requests,
3159                 .elevator_add_req_fn =          cfq_insert_request,
3160                 .elevator_activate_req_fn =     cfq_activate_request,
3161                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
3162                 .elevator_queue_empty_fn =      cfq_queue_empty,
3163                 .elevator_completed_req_fn =    cfq_completed_request,
3164                 .elevator_former_req_fn =       elv_rb_former_request,
3165                 .elevator_latter_req_fn =       elv_rb_latter_request,
3166                 .elevator_set_req_fn =          cfq_set_request,
3167                 .elevator_put_req_fn =          cfq_put_request,
3168                 .elevator_may_queue_fn =        cfq_may_queue,
3169                 .elevator_init_fn =             cfq_init_queue,
3170                 .elevator_exit_fn =             cfq_exit_queue,
3171                 .trim =                         cfq_free_io_context,
3172         },
3173         .elevator_attrs =       cfq_attrs,
3174         .elevator_name =        "cfq",
3175         .elevator_owner =       THIS_MODULE,
3176 };
3177
3178 static int __init cfq_init(void)
3179 {
3180         /*
3181          * could be 0 on HZ < 1000 setups
3182          */
3183         if (!cfq_slice_async)
3184                 cfq_slice_async = 1;
3185         if (!cfq_slice_idle)
3186                 cfq_slice_idle = 1;
3187
3188         if (cfq_slab_setup())
3189                 return -ENOMEM;
3190
3191         elv_register(&iosched_cfq);
3192
3193         return 0;
3194 }
3195
3196 static void __exit cfq_exit(void)
3197 {
3198         DECLARE_COMPLETION_ONSTACK(all_gone);
3199         elv_unregister(&iosched_cfq);
3200         ioc_gone = &all_gone;
3201         /* ioc_gone's update must be visible before reading ioc_count */
3202         smp_wmb();
3203
3204         /*
3205          * this also protects us from entering cfq_slab_kill() with
3206          * pending RCU callbacks
3207          */
3208         if (elv_ioc_count_read(cfq_ioc_count))
3209                 wait_for_completion(&all_gone);
3210         cfq_slab_kill();
3211 }
3212
3213 module_init(cfq_init);
3214 module_exit(cfq_exit);
3215
3216 MODULE_AUTHOR("Jens Axboe");
3217 MODULE_LICENSE("GPL");
3218 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");