cfq-iosched: drain device queue before switching to a sync queue
[safe/jmp/linux-2.6] / block / cfq-iosched.c
1 /*
2  *  CFQ, or complete fairness queueing, disk scheduler.
3  *
4  *  Based on ideas from a previously unfinished io
5  *  scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6  *
7  *  Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8  */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
15
16 /*
17  * tunables
18  */
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
30
31 /*
32  * offset from end of service tree
33  */
34 #define CFQ_IDLE_DELAY          (HZ / 5)
35
36 /*
37  * below this threshold, we consider thinktime immediate
38  */
39 #define CFQ_MIN_TT              (2)
40
41 #define CFQ_SLICE_SCALE         (5)
42 #define CFQ_HW_QUEUE_MIN        (5)
43
44 #define RQ_CIC(rq)              \
45         ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq)             (struct cfq_queue *) ((rq)->elevator_private2)
47
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
50
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
54
55 #define CFQ_PRIO_LISTS          IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq)    ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq)      ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
59 #define sample_valid(samples)   ((samples) > 80)
60
61 /*
62  * Most of our rbtree usage is for sorting with min extraction, so
63  * if we cache the leftmost node we don't have to walk down the tree
64  * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65  * move this into the elevator for the rq sorting as well.
66  */
67 struct cfq_rb_root {
68         struct rb_root rb;
69         struct rb_node *left;
70 };
71 #define CFQ_RB_ROOT     (struct cfq_rb_root) { RB_ROOT, NULL, }
72
73 /*
74  * Per process-grouping structure
75  */
76 struct cfq_queue {
77         /* reference count */
78         atomic_t ref;
79         /* various state flags, see below */
80         unsigned int flags;
81         /* parent cfq_data */
82         struct cfq_data *cfqd;
83         /* service_tree member */
84         struct rb_node rb_node;
85         /* service_tree key */
86         unsigned long rb_key;
87         /* prio tree member */
88         struct rb_node p_node;
89         /* prio tree root we belong to, if any */
90         struct rb_root *p_root;
91         /* sorted list of pending requests */
92         struct rb_root sort_list;
93         /* if fifo isn't expired, next request to serve */
94         struct request *next_rq;
95         /* requests queued in sort_list */
96         int queued[2];
97         /* currently allocated requests */
98         int allocated[2];
99         /* fifo list of requests in sort_list */
100         struct list_head fifo;
101
102         unsigned long slice_end;
103         long slice_resid;
104         unsigned int slice_dispatch;
105
106         /* pending metadata requests */
107         int meta_pending;
108         /* number of requests that are on the dispatch list or inside driver */
109         int dispatched;
110
111         /* io prio of this group */
112         unsigned short ioprio, org_ioprio;
113         unsigned short ioprio_class, org_ioprio_class;
114
115         pid_t pid;
116 };
117
118 /*
119  * Per block device queue structure
120  */
121 struct cfq_data {
122         struct request_queue *queue;
123
124         /*
125          * rr list of queues with requests and the count of them
126          */
127         struct cfq_rb_root service_tree;
128
129         /*
130          * Each priority tree is sorted by next_request position.  These
131          * trees are used when determining if two or more queues are
132          * interleaving requests (see cfq_close_cooperator).
133          */
134         struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
136         unsigned int busy_queues;
137         /*
138          * Used to track any pending rt requests so we can pre-empt current
139          * non-RT cfqq in service when this value is non-zero.
140          */
141         unsigned int busy_rt_queues;
142
143         int rq_in_driver[2];
144         int sync_flight;
145
146         /*
147          * queue-depth detection
148          */
149         int rq_queued;
150         int hw_tag;
151         int hw_tag_samples;
152         int rq_in_driver_peak;
153
154         /*
155          * idle window management
156          */
157         struct timer_list idle_slice_timer;
158         struct work_struct unplug_work;
159
160         struct cfq_queue *active_queue;
161         struct cfq_io_context *active_cic;
162
163         /*
164          * async queue for each priority case
165          */
166         struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
167         struct cfq_queue *async_idle_cfqq;
168
169         sector_t last_position;
170
171         /*
172          * tunables, see top of file
173          */
174         unsigned int cfq_quantum;
175         unsigned int cfq_fifo_expire[2];
176         unsigned int cfq_back_penalty;
177         unsigned int cfq_back_max;
178         unsigned int cfq_slice[2];
179         unsigned int cfq_slice_async_rq;
180         unsigned int cfq_slice_idle;
181
182         struct list_head cic_list;
183
184         /*
185          * Fallback dummy cfqq for extreme OOM conditions
186          */
187         struct cfq_queue oom_cfqq;
188 };
189
190 enum cfqq_state_flags {
191         CFQ_CFQQ_FLAG_on_rr = 0,        /* on round-robin busy list */
192         CFQ_CFQQ_FLAG_wait_request,     /* waiting for a request */
193         CFQ_CFQQ_FLAG_must_dispatch,    /* must be allowed a dispatch */
194         CFQ_CFQQ_FLAG_must_alloc,       /* must be allowed rq alloc */
195         CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
196         CFQ_CFQQ_FLAG_fifo_expire,      /* FIFO checked in this slice */
197         CFQ_CFQQ_FLAG_idle_window,      /* slice idling enabled */
198         CFQ_CFQQ_FLAG_prio_changed,     /* task priority has changed */
199         CFQ_CFQQ_FLAG_slice_new,        /* no requests dispatched in slice */
200         CFQ_CFQQ_FLAG_sync,             /* synchronous queue */
201         CFQ_CFQQ_FLAG_coop,             /* has done a coop jump of the queue */
202 };
203
204 #define CFQ_CFQQ_FNS(name)                                              \
205 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq)         \
206 {                                                                       \
207         (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name);                   \
208 }                                                                       \
209 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq)        \
210 {                                                                       \
211         (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name);                  \
212 }                                                                       \
213 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq)         \
214 {                                                                       \
215         return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0;      \
216 }
217
218 CFQ_CFQQ_FNS(on_rr);
219 CFQ_CFQQ_FNS(wait_request);
220 CFQ_CFQQ_FNS(must_dispatch);
221 CFQ_CFQQ_FNS(must_alloc);
222 CFQ_CFQQ_FNS(must_alloc_slice);
223 CFQ_CFQQ_FNS(fifo_expire);
224 CFQ_CFQQ_FNS(idle_window);
225 CFQ_CFQQ_FNS(prio_changed);
226 CFQ_CFQQ_FNS(slice_new);
227 CFQ_CFQQ_FNS(sync);
228 CFQ_CFQQ_FNS(coop);
229 #undef CFQ_CFQQ_FNS
230
231 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...)  \
232         blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
233 #define cfq_log(cfqd, fmt, args...)     \
234         blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
235
236 static void cfq_dispatch_insert(struct request_queue *, struct request *);
237 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
238                                        struct io_context *, gfp_t);
239 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
240                                                 struct io_context *);
241
242 static inline int rq_in_driver(struct cfq_data *cfqd)
243 {
244         return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
245 }
246
247 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
248                                             int is_sync)
249 {
250         return cic->cfqq[!!is_sync];
251 }
252
253 static inline void cic_set_cfqq(struct cfq_io_context *cic,
254                                 struct cfq_queue *cfqq, int is_sync)
255 {
256         cic->cfqq[!!is_sync] = cfqq;
257 }
258
259 /*
260  * We regard a request as SYNC, if it's either a read or has the SYNC bit
261  * set (in which case it could also be direct WRITE).
262  */
263 static inline int cfq_bio_sync(struct bio *bio)
264 {
265         if (bio_data_dir(bio) == READ || bio_sync(bio))
266                 return 1;
267
268         return 0;
269 }
270
271 /*
272  * scheduler run of queue, if there are requests pending and no one in the
273  * driver that will restart queueing
274  */
275 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
276 {
277         if (cfqd->busy_queues) {
278                 cfq_log(cfqd, "schedule dispatch");
279                 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
280         }
281 }
282
283 static int cfq_queue_empty(struct request_queue *q)
284 {
285         struct cfq_data *cfqd = q->elevator->elevator_data;
286
287         return !cfqd->busy_queues;
288 }
289
290 /*
291  * Scale schedule slice based on io priority. Use the sync time slice only
292  * if a queue is marked sync and has sync io queued. A sync queue with async
293  * io only, should not get full sync slice length.
294  */
295 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
296                                  unsigned short prio)
297 {
298         const int base_slice = cfqd->cfq_slice[sync];
299
300         WARN_ON(prio >= IOPRIO_BE_NR);
301
302         return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
303 }
304
305 static inline int
306 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
307 {
308         return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
309 }
310
311 static inline void
312 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
313 {
314         cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
315         cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
316 }
317
318 /*
319  * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
320  * isn't valid until the first request from the dispatch is activated
321  * and the slice time set.
322  */
323 static inline int cfq_slice_used(struct cfq_queue *cfqq)
324 {
325         if (cfq_cfqq_slice_new(cfqq))
326                 return 0;
327         if (time_before(jiffies, cfqq->slice_end))
328                 return 0;
329
330         return 1;
331 }
332
333 /*
334  * Lifted from AS - choose which of rq1 and rq2 that is best served now.
335  * We choose the request that is closest to the head right now. Distance
336  * behind the head is penalized and only allowed to a certain extent.
337  */
338 static struct request *
339 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
340 {
341         sector_t last, s1, s2, d1 = 0, d2 = 0;
342         unsigned long back_max;
343 #define CFQ_RQ1_WRAP    0x01 /* request 1 wraps */
344 #define CFQ_RQ2_WRAP    0x02 /* request 2 wraps */
345         unsigned wrap = 0; /* bit mask: requests behind the disk head? */
346
347         if (rq1 == NULL || rq1 == rq2)
348                 return rq2;
349         if (rq2 == NULL)
350                 return rq1;
351
352         if (rq_is_sync(rq1) && !rq_is_sync(rq2))
353                 return rq1;
354         else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
355                 return rq2;
356         if (rq_is_meta(rq1) && !rq_is_meta(rq2))
357                 return rq1;
358         else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
359                 return rq2;
360
361         s1 = blk_rq_pos(rq1);
362         s2 = blk_rq_pos(rq2);
363
364         last = cfqd->last_position;
365
366         /*
367          * by definition, 1KiB is 2 sectors
368          */
369         back_max = cfqd->cfq_back_max * 2;
370
371         /*
372          * Strict one way elevator _except_ in the case where we allow
373          * short backward seeks which are biased as twice the cost of a
374          * similar forward seek.
375          */
376         if (s1 >= last)
377                 d1 = s1 - last;
378         else if (s1 + back_max >= last)
379                 d1 = (last - s1) * cfqd->cfq_back_penalty;
380         else
381                 wrap |= CFQ_RQ1_WRAP;
382
383         if (s2 >= last)
384                 d2 = s2 - last;
385         else if (s2 + back_max >= last)
386                 d2 = (last - s2) * cfqd->cfq_back_penalty;
387         else
388                 wrap |= CFQ_RQ2_WRAP;
389
390         /* Found required data */
391
392         /*
393          * By doing switch() on the bit mask "wrap" we avoid having to
394          * check two variables for all permutations: --> faster!
395          */
396         switch (wrap) {
397         case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
398                 if (d1 < d2)
399                         return rq1;
400                 else if (d2 < d1)
401                         return rq2;
402                 else {
403                         if (s1 >= s2)
404                                 return rq1;
405                         else
406                                 return rq2;
407                 }
408
409         case CFQ_RQ2_WRAP:
410                 return rq1;
411         case CFQ_RQ1_WRAP:
412                 return rq2;
413         case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
414         default:
415                 /*
416                  * Since both rqs are wrapped,
417                  * start with the one that's further behind head
418                  * (--> only *one* back seek required),
419                  * since back seek takes more time than forward.
420                  */
421                 if (s1 <= s2)
422                         return rq1;
423                 else
424                         return rq2;
425         }
426 }
427
428 /*
429  * The below is leftmost cache rbtree addon
430  */
431 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
432 {
433         if (!root->left)
434                 root->left = rb_first(&root->rb);
435
436         if (root->left)
437                 return rb_entry(root->left, struct cfq_queue, rb_node);
438
439         return NULL;
440 }
441
442 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
443 {
444         rb_erase(n, root);
445         RB_CLEAR_NODE(n);
446 }
447
448 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
449 {
450         if (root->left == n)
451                 root->left = NULL;
452         rb_erase_init(n, &root->rb);
453 }
454
455 /*
456  * would be nice to take fifo expire time into account as well
457  */
458 static struct request *
459 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
460                   struct request *last)
461 {
462         struct rb_node *rbnext = rb_next(&last->rb_node);
463         struct rb_node *rbprev = rb_prev(&last->rb_node);
464         struct request *next = NULL, *prev = NULL;
465
466         BUG_ON(RB_EMPTY_NODE(&last->rb_node));
467
468         if (rbprev)
469                 prev = rb_entry_rq(rbprev);
470
471         if (rbnext)
472                 next = rb_entry_rq(rbnext);
473         else {
474                 rbnext = rb_first(&cfqq->sort_list);
475                 if (rbnext && rbnext != &last->rb_node)
476                         next = rb_entry_rq(rbnext);
477         }
478
479         return cfq_choose_req(cfqd, next, prev);
480 }
481
482 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
483                                       struct cfq_queue *cfqq)
484 {
485         /*
486          * just an approximation, should be ok.
487          */
488         return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
489                        cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
490 }
491
492 /*
493  * The cfqd->service_tree holds all pending cfq_queue's that have
494  * requests waiting to be processed. It is sorted in the order that
495  * we will service the queues.
496  */
497 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
498                                  int add_front)
499 {
500         struct rb_node **p, *parent;
501         struct cfq_queue *__cfqq;
502         unsigned long rb_key;
503         int left;
504
505         if (cfq_class_idle(cfqq)) {
506                 rb_key = CFQ_IDLE_DELAY;
507                 parent = rb_last(&cfqd->service_tree.rb);
508                 if (parent && parent != &cfqq->rb_node) {
509                         __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
510                         rb_key += __cfqq->rb_key;
511                 } else
512                         rb_key += jiffies;
513         } else if (!add_front) {
514                 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
515                 rb_key += cfqq->slice_resid;
516                 cfqq->slice_resid = 0;
517         } else
518                 rb_key = 0;
519
520         if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
521                 /*
522                  * same position, nothing more to do
523                  */
524                 if (rb_key == cfqq->rb_key)
525                         return;
526
527                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
528         }
529
530         left = 1;
531         parent = NULL;
532         p = &cfqd->service_tree.rb.rb_node;
533         while (*p) {
534                 struct rb_node **n;
535
536                 parent = *p;
537                 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
538
539                 /*
540                  * sort RT queues first, we always want to give
541                  * preference to them. IDLE queues goes to the back.
542                  * after that, sort on the next service time.
543                  */
544                 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
545                         n = &(*p)->rb_left;
546                 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
547                         n = &(*p)->rb_right;
548                 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
549                         n = &(*p)->rb_left;
550                 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
551                         n = &(*p)->rb_right;
552                 else if (rb_key < __cfqq->rb_key)
553                         n = &(*p)->rb_left;
554                 else
555                         n = &(*p)->rb_right;
556
557                 if (n == &(*p)->rb_right)
558                         left = 0;
559
560                 p = n;
561         }
562
563         if (left)
564                 cfqd->service_tree.left = &cfqq->rb_node;
565
566         cfqq->rb_key = rb_key;
567         rb_link_node(&cfqq->rb_node, parent, p);
568         rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
569 }
570
571 static struct cfq_queue *
572 cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
573                      sector_t sector, struct rb_node **ret_parent,
574                      struct rb_node ***rb_link)
575 {
576         struct rb_node **p, *parent;
577         struct cfq_queue *cfqq = NULL;
578
579         parent = NULL;
580         p = &root->rb_node;
581         while (*p) {
582                 struct rb_node **n;
583
584                 parent = *p;
585                 cfqq = rb_entry(parent, struct cfq_queue, p_node);
586
587                 /*
588                  * Sort strictly based on sector.  Smallest to the left,
589                  * largest to the right.
590                  */
591                 if (sector > blk_rq_pos(cfqq->next_rq))
592                         n = &(*p)->rb_right;
593                 else if (sector < blk_rq_pos(cfqq->next_rq))
594                         n = &(*p)->rb_left;
595                 else
596                         break;
597                 p = n;
598                 cfqq = NULL;
599         }
600
601         *ret_parent = parent;
602         if (rb_link)
603                 *rb_link = p;
604         return cfqq;
605 }
606
607 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
608 {
609         struct rb_node **p, *parent;
610         struct cfq_queue *__cfqq;
611
612         if (cfqq->p_root) {
613                 rb_erase(&cfqq->p_node, cfqq->p_root);
614                 cfqq->p_root = NULL;
615         }
616
617         if (cfq_class_idle(cfqq))
618                 return;
619         if (!cfqq->next_rq)
620                 return;
621
622         cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
623         __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
624                                       blk_rq_pos(cfqq->next_rq), &parent, &p);
625         if (!__cfqq) {
626                 rb_link_node(&cfqq->p_node, parent, p);
627                 rb_insert_color(&cfqq->p_node, cfqq->p_root);
628         } else
629                 cfqq->p_root = NULL;
630 }
631
632 /*
633  * Update cfqq's position in the service tree.
634  */
635 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
636 {
637         /*
638          * Resorting requires the cfqq to be on the RR list already.
639          */
640         if (cfq_cfqq_on_rr(cfqq)) {
641                 cfq_service_tree_add(cfqd, cfqq, 0);
642                 cfq_prio_tree_add(cfqd, cfqq);
643         }
644 }
645
646 /*
647  * add to busy list of queues for service, trying to be fair in ordering
648  * the pending list according to last request service
649  */
650 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
651 {
652         cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
653         BUG_ON(cfq_cfqq_on_rr(cfqq));
654         cfq_mark_cfqq_on_rr(cfqq);
655         cfqd->busy_queues++;
656         if (cfq_class_rt(cfqq))
657                 cfqd->busy_rt_queues++;
658
659         cfq_resort_rr_list(cfqd, cfqq);
660 }
661
662 /*
663  * Called when the cfqq no longer has requests pending, remove it from
664  * the service tree.
665  */
666 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
667 {
668         cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
669         BUG_ON(!cfq_cfqq_on_rr(cfqq));
670         cfq_clear_cfqq_on_rr(cfqq);
671
672         if (!RB_EMPTY_NODE(&cfqq->rb_node))
673                 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
674         if (cfqq->p_root) {
675                 rb_erase(&cfqq->p_node, cfqq->p_root);
676                 cfqq->p_root = NULL;
677         }
678
679         BUG_ON(!cfqd->busy_queues);
680         cfqd->busy_queues--;
681         if (cfq_class_rt(cfqq))
682                 cfqd->busy_rt_queues--;
683 }
684
685 /*
686  * rb tree support functions
687  */
688 static void cfq_del_rq_rb(struct request *rq)
689 {
690         struct cfq_queue *cfqq = RQ_CFQQ(rq);
691         struct cfq_data *cfqd = cfqq->cfqd;
692         const int sync = rq_is_sync(rq);
693
694         BUG_ON(!cfqq->queued[sync]);
695         cfqq->queued[sync]--;
696
697         elv_rb_del(&cfqq->sort_list, rq);
698
699         if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
700                 cfq_del_cfqq_rr(cfqd, cfqq);
701 }
702
703 static void cfq_add_rq_rb(struct request *rq)
704 {
705         struct cfq_queue *cfqq = RQ_CFQQ(rq);
706         struct cfq_data *cfqd = cfqq->cfqd;
707         struct request *__alias, *prev;
708
709         cfqq->queued[rq_is_sync(rq)]++;
710
711         /*
712          * looks a little odd, but the first insert might return an alias.
713          * if that happens, put the alias on the dispatch list
714          */
715         while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
716                 cfq_dispatch_insert(cfqd->queue, __alias);
717
718         if (!cfq_cfqq_on_rr(cfqq))
719                 cfq_add_cfqq_rr(cfqd, cfqq);
720
721         /*
722          * check if this request is a better next-serve candidate
723          */
724         prev = cfqq->next_rq;
725         cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
726
727         /*
728          * adjust priority tree position, if ->next_rq changes
729          */
730         if (prev != cfqq->next_rq)
731                 cfq_prio_tree_add(cfqd, cfqq);
732
733         BUG_ON(!cfqq->next_rq);
734 }
735
736 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
737 {
738         elv_rb_del(&cfqq->sort_list, rq);
739         cfqq->queued[rq_is_sync(rq)]--;
740         cfq_add_rq_rb(rq);
741 }
742
743 static struct request *
744 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
745 {
746         struct task_struct *tsk = current;
747         struct cfq_io_context *cic;
748         struct cfq_queue *cfqq;
749
750         cic = cfq_cic_lookup(cfqd, tsk->io_context);
751         if (!cic)
752                 return NULL;
753
754         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
755         if (cfqq) {
756                 sector_t sector = bio->bi_sector + bio_sectors(bio);
757
758                 return elv_rb_find(&cfqq->sort_list, sector);
759         }
760
761         return NULL;
762 }
763
764 static void cfq_activate_request(struct request_queue *q, struct request *rq)
765 {
766         struct cfq_data *cfqd = q->elevator->elevator_data;
767
768         cfqd->rq_in_driver[rq_is_sync(rq)]++;
769         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
770                                                 rq_in_driver(cfqd));
771
772         cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
773 }
774
775 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
776 {
777         struct cfq_data *cfqd = q->elevator->elevator_data;
778         const int sync = rq_is_sync(rq);
779
780         WARN_ON(!cfqd->rq_in_driver[sync]);
781         cfqd->rq_in_driver[sync]--;
782         cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
783                                                 rq_in_driver(cfqd));
784 }
785
786 static void cfq_remove_request(struct request *rq)
787 {
788         struct cfq_queue *cfqq = RQ_CFQQ(rq);
789
790         if (cfqq->next_rq == rq)
791                 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
792
793         list_del_init(&rq->queuelist);
794         cfq_del_rq_rb(rq);
795
796         cfqq->cfqd->rq_queued--;
797         if (rq_is_meta(rq)) {
798                 WARN_ON(!cfqq->meta_pending);
799                 cfqq->meta_pending--;
800         }
801 }
802
803 static int cfq_merge(struct request_queue *q, struct request **req,
804                      struct bio *bio)
805 {
806         struct cfq_data *cfqd = q->elevator->elevator_data;
807         struct request *__rq;
808
809         __rq = cfq_find_rq_fmerge(cfqd, bio);
810         if (__rq && elv_rq_merge_ok(__rq, bio)) {
811                 *req = __rq;
812                 return ELEVATOR_FRONT_MERGE;
813         }
814
815         return ELEVATOR_NO_MERGE;
816 }
817
818 static void cfq_merged_request(struct request_queue *q, struct request *req,
819                                int type)
820 {
821         if (type == ELEVATOR_FRONT_MERGE) {
822                 struct cfq_queue *cfqq = RQ_CFQQ(req);
823
824                 cfq_reposition_rq_rb(cfqq, req);
825         }
826 }
827
828 static void
829 cfq_merged_requests(struct request_queue *q, struct request *rq,
830                     struct request *next)
831 {
832         /*
833          * reposition in fifo if next is older than rq
834          */
835         if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
836             time_before(next->start_time, rq->start_time))
837                 list_move(&rq->queuelist, &next->queuelist);
838
839         cfq_remove_request(next);
840 }
841
842 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
843                            struct bio *bio)
844 {
845         struct cfq_data *cfqd = q->elevator->elevator_data;
846         struct cfq_io_context *cic;
847         struct cfq_queue *cfqq;
848
849         /*
850          * Disallow merge of a sync bio into an async request.
851          */
852         if (cfq_bio_sync(bio) && !rq_is_sync(rq))
853                 return 0;
854
855         /*
856          * Lookup the cfqq that this bio will be queued with. Allow
857          * merge only if rq is queued there.
858          */
859         cic = cfq_cic_lookup(cfqd, current->io_context);
860         if (!cic)
861                 return 0;
862
863         cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
864         if (cfqq == RQ_CFQQ(rq))
865                 return 1;
866
867         return 0;
868 }
869
870 static void __cfq_set_active_queue(struct cfq_data *cfqd,
871                                    struct cfq_queue *cfqq)
872 {
873         if (cfqq) {
874                 cfq_log_cfqq(cfqd, cfqq, "set_active");
875                 cfqq->slice_end = 0;
876                 cfqq->slice_dispatch = 0;
877
878                 cfq_clear_cfqq_wait_request(cfqq);
879                 cfq_clear_cfqq_must_dispatch(cfqq);
880                 cfq_clear_cfqq_must_alloc_slice(cfqq);
881                 cfq_clear_cfqq_fifo_expire(cfqq);
882                 cfq_mark_cfqq_slice_new(cfqq);
883
884                 del_timer(&cfqd->idle_slice_timer);
885         }
886
887         cfqd->active_queue = cfqq;
888 }
889
890 /*
891  * current cfqq expired its slice (or was too idle), select new one
892  */
893 static void
894 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
895                     int timed_out)
896 {
897         cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
898
899         if (cfq_cfqq_wait_request(cfqq))
900                 del_timer(&cfqd->idle_slice_timer);
901
902         cfq_clear_cfqq_wait_request(cfqq);
903
904         /*
905          * store what was left of this slice, if the queue idled/timed out
906          */
907         if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
908                 cfqq->slice_resid = cfqq->slice_end - jiffies;
909                 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
910         }
911
912         cfq_resort_rr_list(cfqd, cfqq);
913
914         if (cfqq == cfqd->active_queue)
915                 cfqd->active_queue = NULL;
916
917         if (cfqd->active_cic) {
918                 put_io_context(cfqd->active_cic->ioc);
919                 cfqd->active_cic = NULL;
920         }
921 }
922
923 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
924 {
925         struct cfq_queue *cfqq = cfqd->active_queue;
926
927         if (cfqq)
928                 __cfq_slice_expired(cfqd, cfqq, timed_out);
929 }
930
931 /*
932  * Get next queue for service. Unless we have a queue preemption,
933  * we'll simply select the first cfqq in the service tree.
934  */
935 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
936 {
937         if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
938                 return NULL;
939
940         return cfq_rb_first(&cfqd->service_tree);
941 }
942
943 /*
944  * Get and set a new active queue for service.
945  */
946 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
947                                               struct cfq_queue *cfqq)
948 {
949         if (!cfqq) {
950                 cfqq = cfq_get_next_queue(cfqd);
951                 if (cfqq)
952                         cfq_clear_cfqq_coop(cfqq);
953         }
954
955         __cfq_set_active_queue(cfqd, cfqq);
956         return cfqq;
957 }
958
959 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
960                                           struct request *rq)
961 {
962         if (blk_rq_pos(rq) >= cfqd->last_position)
963                 return blk_rq_pos(rq) - cfqd->last_position;
964         else
965                 return cfqd->last_position - blk_rq_pos(rq);
966 }
967
968 #define CIC_SEEK_THR    8 * 1024
969 #define CIC_SEEKY(cic)  ((cic)->seek_mean > CIC_SEEK_THR)
970
971 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
972 {
973         struct cfq_io_context *cic = cfqd->active_cic;
974         sector_t sdist = cic->seek_mean;
975
976         if (!sample_valid(cic->seek_samples))
977                 sdist = CIC_SEEK_THR;
978
979         return cfq_dist_from_last(cfqd, rq) <= sdist;
980 }
981
982 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
983                                     struct cfq_queue *cur_cfqq)
984 {
985         struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
986         struct rb_node *parent, *node;
987         struct cfq_queue *__cfqq;
988         sector_t sector = cfqd->last_position;
989
990         if (RB_EMPTY_ROOT(root))
991                 return NULL;
992
993         /*
994          * First, if we find a request starting at the end of the last
995          * request, choose it.
996          */
997         __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
998         if (__cfqq)
999                 return __cfqq;
1000
1001         /*
1002          * If the exact sector wasn't found, the parent of the NULL leaf
1003          * will contain the closest sector.
1004          */
1005         __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1006         if (cfq_rq_close(cfqd, __cfqq->next_rq))
1007                 return __cfqq;
1008
1009         if (blk_rq_pos(__cfqq->next_rq) < sector)
1010                 node = rb_next(&__cfqq->p_node);
1011         else
1012                 node = rb_prev(&__cfqq->p_node);
1013         if (!node)
1014                 return NULL;
1015
1016         __cfqq = rb_entry(node, struct cfq_queue, p_node);
1017         if (cfq_rq_close(cfqd, __cfqq->next_rq))
1018                 return __cfqq;
1019
1020         return NULL;
1021 }
1022
1023 /*
1024  * cfqd - obvious
1025  * cur_cfqq - passed in so that we don't decide that the current queue is
1026  *            closely cooperating with itself.
1027  *
1028  * So, basically we're assuming that that cur_cfqq has dispatched at least
1029  * one request, and that cfqd->last_position reflects a position on the disk
1030  * associated with the I/O issued by cur_cfqq.  I'm not sure this is a valid
1031  * assumption.
1032  */
1033 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1034                                               struct cfq_queue *cur_cfqq,
1035                                               int probe)
1036 {
1037         struct cfq_queue *cfqq;
1038
1039         /*
1040          * A valid cfq_io_context is necessary to compare requests against
1041          * the seek_mean of the current cfqq.
1042          */
1043         if (!cfqd->active_cic)
1044                 return NULL;
1045
1046         /*
1047          * We should notice if some of the queues are cooperating, eg
1048          * working closely on the same area of the disk. In that case,
1049          * we can group them together and don't waste time idling.
1050          */
1051         cfqq = cfqq_close(cfqd, cur_cfqq);
1052         if (!cfqq)
1053                 return NULL;
1054
1055         if (cfq_cfqq_coop(cfqq))
1056                 return NULL;
1057
1058         if (!probe)
1059                 cfq_mark_cfqq_coop(cfqq);
1060         return cfqq;
1061 }
1062
1063 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1064 {
1065         struct cfq_queue *cfqq = cfqd->active_queue;
1066         struct cfq_io_context *cic;
1067         unsigned long sl;
1068
1069         /*
1070          * SSD device without seek penalty, disable idling. But only do so
1071          * for devices that support queuing, otherwise we still have a problem
1072          * with sync vs async workloads.
1073          */
1074         if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1075                 return;
1076
1077         WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1078         WARN_ON(cfq_cfqq_slice_new(cfqq));
1079
1080         /*
1081          * idle is disabled, either manually or by past process history
1082          */
1083         if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1084                 return;
1085
1086         /*
1087          * still requests with the driver, don't idle
1088          */
1089         if (rq_in_driver(cfqd))
1090                 return;
1091
1092         /*
1093          * task has exited, don't wait
1094          */
1095         cic = cfqd->active_cic;
1096         if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1097                 return;
1098
1099         cfq_mark_cfqq_wait_request(cfqq);
1100
1101         /*
1102          * we don't want to idle for seeks, but we do want to allow
1103          * fair distribution of slice time for a process doing back-to-back
1104          * seeks. so allow a little bit of time for him to submit a new rq
1105          */
1106         sl = cfqd->cfq_slice_idle;
1107         if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1108                 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1109
1110         mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1111         cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1112 }
1113
1114 /*
1115  * Move request from internal lists to the request queue dispatch list.
1116  */
1117 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1118 {
1119         struct cfq_data *cfqd = q->elevator->elevator_data;
1120         struct cfq_queue *cfqq = RQ_CFQQ(rq);
1121
1122         cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1123
1124         cfq_remove_request(rq);
1125         cfqq->dispatched++;
1126         elv_dispatch_sort(q, rq);
1127
1128         if (cfq_cfqq_sync(cfqq))
1129                 cfqd->sync_flight++;
1130 }
1131
1132 /*
1133  * return expired entry, or NULL to just start from scratch in rbtree
1134  */
1135 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1136 {
1137         struct cfq_data *cfqd = cfqq->cfqd;
1138         struct request *rq;
1139         int fifo;
1140
1141         if (cfq_cfqq_fifo_expire(cfqq))
1142                 return NULL;
1143
1144         cfq_mark_cfqq_fifo_expire(cfqq);
1145
1146         if (list_empty(&cfqq->fifo))
1147                 return NULL;
1148
1149         fifo = cfq_cfqq_sync(cfqq);
1150         rq = rq_entry_fifo(cfqq->fifo.next);
1151
1152         if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1153                 rq = NULL;
1154
1155         cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1156         return rq;
1157 }
1158
1159 static inline int
1160 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1161 {
1162         const int base_rq = cfqd->cfq_slice_async_rq;
1163
1164         WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1165
1166         return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1167 }
1168
1169 /*
1170  * Select a queue for service. If we have a current active queue,
1171  * check whether to continue servicing it, or retrieve and set a new one.
1172  */
1173 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1174 {
1175         struct cfq_queue *cfqq, *new_cfqq = NULL;
1176
1177         cfqq = cfqd->active_queue;
1178         if (!cfqq)
1179                 goto new_queue;
1180
1181         /*
1182          * The active queue has run out of time, expire it and select new.
1183          */
1184         if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1185                 goto expire;
1186
1187         /*
1188          * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1189          * cfqq.
1190          */
1191         if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1192                 /*
1193                  * We simulate this as cfqq timed out so that it gets to bank
1194                  * the remaining of its time slice.
1195                  */
1196                 cfq_log_cfqq(cfqd, cfqq, "preempt");
1197                 cfq_slice_expired(cfqd, 1);
1198                 goto new_queue;
1199         }
1200
1201         /*
1202          * The active queue has requests and isn't expired, allow it to
1203          * dispatch.
1204          */
1205         if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1206                 goto keep_queue;
1207
1208         /*
1209          * If another queue has a request waiting within our mean seek
1210          * distance, let it run.  The expire code will check for close
1211          * cooperators and put the close queue at the front of the service
1212          * tree.
1213          */
1214         new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1215         if (new_cfqq)
1216                 goto expire;
1217
1218         /*
1219          * No requests pending. If the active queue still has requests in
1220          * flight or is idling for a new request, allow either of these
1221          * conditions to happen (or time out) before selecting a new queue.
1222          */
1223         if (timer_pending(&cfqd->idle_slice_timer) ||
1224             (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1225                 cfqq = NULL;
1226                 goto keep_queue;
1227         }
1228
1229 expire:
1230         cfq_slice_expired(cfqd, 0);
1231 new_queue:
1232         cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1233 keep_queue:
1234         return cfqq;
1235 }
1236
1237 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1238 {
1239         int dispatched = 0;
1240
1241         while (cfqq->next_rq) {
1242                 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1243                 dispatched++;
1244         }
1245
1246         BUG_ON(!list_empty(&cfqq->fifo));
1247         return dispatched;
1248 }
1249
1250 /*
1251  * Drain our current requests. Used for barriers and when switching
1252  * io schedulers on-the-fly.
1253  */
1254 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1255 {
1256         struct cfq_queue *cfqq;
1257         int dispatched = 0;
1258
1259         while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1260                 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1261
1262         cfq_slice_expired(cfqd, 0);
1263
1264         BUG_ON(cfqd->busy_queues);
1265
1266         cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1267         return dispatched;
1268 }
1269
1270 /*
1271  * Dispatch a request from cfqq, moving them to the request queue
1272  * dispatch list.
1273  */
1274 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1275 {
1276         struct request *rq;
1277
1278         BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1279
1280         /*
1281          * follow expired path, else get first next available
1282          */
1283         rq = cfq_check_fifo(cfqq);
1284         if (!rq)
1285                 rq = cfqq->next_rq;
1286
1287         /*
1288          * insert request into driver dispatch list
1289          */
1290         cfq_dispatch_insert(cfqd->queue, rq);
1291
1292         if (!cfqd->active_cic) {
1293                 struct cfq_io_context *cic = RQ_CIC(rq);
1294
1295                 atomic_long_inc(&cic->ioc->refcount);
1296                 cfqd->active_cic = cic;
1297         }
1298 }
1299
1300 /*
1301  * Find the cfqq that we need to service and move a request from that to the
1302  * dispatch list
1303  */
1304 static int cfq_dispatch_requests(struct request_queue *q, int force)
1305 {
1306         struct cfq_data *cfqd = q->elevator->elevator_data;
1307         struct cfq_queue *cfqq;
1308         unsigned int max_dispatch;
1309
1310         if (!cfqd->busy_queues)
1311                 return 0;
1312
1313         if (unlikely(force))
1314                 return cfq_forced_dispatch(cfqd);
1315
1316         cfqq = cfq_select_queue(cfqd);
1317         if (!cfqq)
1318                 return 0;
1319
1320         /*
1321          * Drain async requests before we start sync IO
1322          */
1323         if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1324                 return 0;
1325
1326         /*
1327          * If this is an async queue and we have sync IO in flight, let it wait
1328          */
1329         if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1330                 return 0;
1331
1332         max_dispatch = cfqd->cfq_quantum;
1333         if (cfq_class_idle(cfqq))
1334                 max_dispatch = 1;
1335
1336         /*
1337          * Does this cfqq already have too much IO in flight?
1338          */
1339         if (cfqq->dispatched >= max_dispatch) {
1340                 /*
1341                  * idle queue must always only have a single IO in flight
1342                  */
1343                 if (cfq_class_idle(cfqq))
1344                         return 0;
1345
1346                 /*
1347                  * We have other queues, don't allow more IO from this one
1348                  */
1349                 if (cfqd->busy_queues > 1)
1350                         return 0;
1351
1352                 /*
1353                  * we are the only queue, allow up to 4 times of 'quantum'
1354                  */
1355                 if (cfqq->dispatched >= 4 * max_dispatch)
1356                         return 0;
1357         }
1358
1359         /*
1360          * Dispatch a request from this cfqq
1361          */
1362         cfq_dispatch_request(cfqd, cfqq);
1363         cfqq->slice_dispatch++;
1364         cfq_clear_cfqq_must_dispatch(cfqq);
1365
1366         /*
1367          * expire an async queue immediately if it has used up its slice. idle
1368          * queue always expire after 1 dispatch round.
1369          */
1370         if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1371             cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1372             cfq_class_idle(cfqq))) {
1373                 cfqq->slice_end = jiffies + 1;
1374                 cfq_slice_expired(cfqd, 0);
1375         }
1376
1377         cfq_log(cfqd, "dispatched a request");
1378         return 1;
1379 }
1380
1381 /*
1382  * task holds one reference to the queue, dropped when task exits. each rq
1383  * in-flight on this queue also holds a reference, dropped when rq is freed.
1384  *
1385  * queue lock must be held here.
1386  */
1387 static void cfq_put_queue(struct cfq_queue *cfqq)
1388 {
1389         struct cfq_data *cfqd = cfqq->cfqd;
1390
1391         BUG_ON(atomic_read(&cfqq->ref) <= 0);
1392
1393         if (!atomic_dec_and_test(&cfqq->ref))
1394                 return;
1395
1396         cfq_log_cfqq(cfqd, cfqq, "put_queue");
1397         BUG_ON(rb_first(&cfqq->sort_list));
1398         BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1399         BUG_ON(cfq_cfqq_on_rr(cfqq));
1400
1401         if (unlikely(cfqd->active_queue == cfqq)) {
1402                 __cfq_slice_expired(cfqd, cfqq, 0);
1403                 cfq_schedule_dispatch(cfqd);
1404         }
1405
1406         kmem_cache_free(cfq_pool, cfqq);
1407 }
1408
1409 /*
1410  * Must always be called with the rcu_read_lock() held
1411  */
1412 static void
1413 __call_for_each_cic(struct io_context *ioc,
1414                     void (*func)(struct io_context *, struct cfq_io_context *))
1415 {
1416         struct cfq_io_context *cic;
1417         struct hlist_node *n;
1418
1419         hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1420                 func(ioc, cic);
1421 }
1422
1423 /*
1424  * Call func for each cic attached to this ioc.
1425  */
1426 static void
1427 call_for_each_cic(struct io_context *ioc,
1428                   void (*func)(struct io_context *, struct cfq_io_context *))
1429 {
1430         rcu_read_lock();
1431         __call_for_each_cic(ioc, func);
1432         rcu_read_unlock();
1433 }
1434
1435 static void cfq_cic_free_rcu(struct rcu_head *head)
1436 {
1437         struct cfq_io_context *cic;
1438
1439         cic = container_of(head, struct cfq_io_context, rcu_head);
1440
1441         kmem_cache_free(cfq_ioc_pool, cic);
1442         elv_ioc_count_dec(ioc_count);
1443
1444         if (ioc_gone) {
1445                 /*
1446                  * CFQ scheduler is exiting, grab exit lock and check
1447                  * the pending io context count. If it hits zero,
1448                  * complete ioc_gone and set it back to NULL
1449                  */
1450                 spin_lock(&ioc_gone_lock);
1451                 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1452                         complete(ioc_gone);
1453                         ioc_gone = NULL;
1454                 }
1455                 spin_unlock(&ioc_gone_lock);
1456         }
1457 }
1458
1459 static void cfq_cic_free(struct cfq_io_context *cic)
1460 {
1461         call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1462 }
1463
1464 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1465 {
1466         unsigned long flags;
1467
1468         BUG_ON(!cic->dead_key);
1469
1470         spin_lock_irqsave(&ioc->lock, flags);
1471         radix_tree_delete(&ioc->radix_root, cic->dead_key);
1472         hlist_del_rcu(&cic->cic_list);
1473         spin_unlock_irqrestore(&ioc->lock, flags);
1474
1475         cfq_cic_free(cic);
1476 }
1477
1478 /*
1479  * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1480  * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1481  * and ->trim() which is called with the task lock held
1482  */
1483 static void cfq_free_io_context(struct io_context *ioc)
1484 {
1485         /*
1486          * ioc->refcount is zero here, or we are called from elv_unregister(),
1487          * so no more cic's are allowed to be linked into this ioc.  So it
1488          * should be ok to iterate over the known list, we will see all cic's
1489          * since no new ones are added.
1490          */
1491         __call_for_each_cic(ioc, cic_free_func);
1492 }
1493
1494 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1495 {
1496         if (unlikely(cfqq == cfqd->active_queue)) {
1497                 __cfq_slice_expired(cfqd, cfqq, 0);
1498                 cfq_schedule_dispatch(cfqd);
1499         }
1500
1501         cfq_put_queue(cfqq);
1502 }
1503
1504 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1505                                          struct cfq_io_context *cic)
1506 {
1507         struct io_context *ioc = cic->ioc;
1508
1509         list_del_init(&cic->queue_list);
1510
1511         /*
1512          * Make sure key == NULL is seen for dead queues
1513          */
1514         smp_wmb();
1515         cic->dead_key = (unsigned long) cic->key;
1516         cic->key = NULL;
1517
1518         if (ioc->ioc_data == cic)
1519                 rcu_assign_pointer(ioc->ioc_data, NULL);
1520
1521         if (cic->cfqq[BLK_RW_ASYNC]) {
1522                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1523                 cic->cfqq[BLK_RW_ASYNC] = NULL;
1524         }
1525
1526         if (cic->cfqq[BLK_RW_SYNC]) {
1527                 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1528                 cic->cfqq[BLK_RW_SYNC] = NULL;
1529         }
1530 }
1531
1532 static void cfq_exit_single_io_context(struct io_context *ioc,
1533                                        struct cfq_io_context *cic)
1534 {
1535         struct cfq_data *cfqd = cic->key;
1536
1537         if (cfqd) {
1538                 struct request_queue *q = cfqd->queue;
1539                 unsigned long flags;
1540
1541                 spin_lock_irqsave(q->queue_lock, flags);
1542
1543                 /*
1544                  * Ensure we get a fresh copy of the ->key to prevent
1545                  * race between exiting task and queue
1546                  */
1547                 smp_read_barrier_depends();
1548                 if (cic->key)
1549                         __cfq_exit_single_io_context(cfqd, cic);
1550
1551                 spin_unlock_irqrestore(q->queue_lock, flags);
1552         }
1553 }
1554
1555 /*
1556  * The process that ioc belongs to has exited, we need to clean up
1557  * and put the internal structures we have that belongs to that process.
1558  */
1559 static void cfq_exit_io_context(struct io_context *ioc)
1560 {
1561         call_for_each_cic(ioc, cfq_exit_single_io_context);
1562 }
1563
1564 static struct cfq_io_context *
1565 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1566 {
1567         struct cfq_io_context *cic;
1568
1569         cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1570                                                         cfqd->queue->node);
1571         if (cic) {
1572                 cic->last_end_request = jiffies;
1573                 INIT_LIST_HEAD(&cic->queue_list);
1574                 INIT_HLIST_NODE(&cic->cic_list);
1575                 cic->dtor = cfq_free_io_context;
1576                 cic->exit = cfq_exit_io_context;
1577                 elv_ioc_count_inc(ioc_count);
1578         }
1579
1580         return cic;
1581 }
1582
1583 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1584 {
1585         struct task_struct *tsk = current;
1586         int ioprio_class;
1587
1588         if (!cfq_cfqq_prio_changed(cfqq))
1589                 return;
1590
1591         ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1592         switch (ioprio_class) {
1593         default:
1594                 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1595         case IOPRIO_CLASS_NONE:
1596                 /*
1597                  * no prio set, inherit CPU scheduling settings
1598                  */
1599                 cfqq->ioprio = task_nice_ioprio(tsk);
1600                 cfqq->ioprio_class = task_nice_ioclass(tsk);
1601                 break;
1602         case IOPRIO_CLASS_RT:
1603                 cfqq->ioprio = task_ioprio(ioc);
1604                 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1605                 break;
1606         case IOPRIO_CLASS_BE:
1607                 cfqq->ioprio = task_ioprio(ioc);
1608                 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1609                 break;
1610         case IOPRIO_CLASS_IDLE:
1611                 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1612                 cfqq->ioprio = 7;
1613                 cfq_clear_cfqq_idle_window(cfqq);
1614                 break;
1615         }
1616
1617         /*
1618          * keep track of original prio settings in case we have to temporarily
1619          * elevate the priority of this queue
1620          */
1621         cfqq->org_ioprio = cfqq->ioprio;
1622         cfqq->org_ioprio_class = cfqq->ioprio_class;
1623         cfq_clear_cfqq_prio_changed(cfqq);
1624 }
1625
1626 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1627 {
1628         struct cfq_data *cfqd = cic->key;
1629         struct cfq_queue *cfqq;
1630         unsigned long flags;
1631
1632         if (unlikely(!cfqd))
1633                 return;
1634
1635         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1636
1637         cfqq = cic->cfqq[BLK_RW_ASYNC];
1638         if (cfqq) {
1639                 struct cfq_queue *new_cfqq;
1640                 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1641                                                 GFP_ATOMIC);
1642                 if (new_cfqq) {
1643                         cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1644                         cfq_put_queue(cfqq);
1645                 }
1646         }
1647
1648         cfqq = cic->cfqq[BLK_RW_SYNC];
1649         if (cfqq)
1650                 cfq_mark_cfqq_prio_changed(cfqq);
1651
1652         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1653 }
1654
1655 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1656 {
1657         call_for_each_cic(ioc, changed_ioprio);
1658         ioc->ioprio_changed = 0;
1659 }
1660
1661 static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1662                           pid_t pid, int is_sync)
1663 {
1664         RB_CLEAR_NODE(&cfqq->rb_node);
1665         RB_CLEAR_NODE(&cfqq->p_node);
1666         INIT_LIST_HEAD(&cfqq->fifo);
1667
1668         atomic_set(&cfqq->ref, 0);
1669         cfqq->cfqd = cfqd;
1670
1671         cfq_mark_cfqq_prio_changed(cfqq);
1672
1673         if (is_sync) {
1674                 if (!cfq_class_idle(cfqq))
1675                         cfq_mark_cfqq_idle_window(cfqq);
1676                 cfq_mark_cfqq_sync(cfqq);
1677         }
1678         cfqq->pid = pid;
1679 }
1680
1681 static struct cfq_queue *
1682 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1683                      struct io_context *ioc, gfp_t gfp_mask)
1684 {
1685         struct cfq_queue *cfqq, *new_cfqq = NULL;
1686         struct cfq_io_context *cic;
1687
1688 retry:
1689         cic = cfq_cic_lookup(cfqd, ioc);
1690         /* cic always exists here */
1691         cfqq = cic_to_cfqq(cic, is_sync);
1692
1693         /*
1694          * Always try a new alloc if we fell back to the OOM cfqq
1695          * originally, since it should just be a temporary situation.
1696          */
1697         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1698                 cfqq = NULL;
1699                 if (new_cfqq) {
1700                         cfqq = new_cfqq;
1701                         new_cfqq = NULL;
1702                 } else if (gfp_mask & __GFP_WAIT) {
1703                         spin_unlock_irq(cfqd->queue->queue_lock);
1704                         new_cfqq = kmem_cache_alloc_node(cfq_pool,
1705                                         gfp_mask | __GFP_ZERO,
1706                                         cfqd->queue->node);
1707                         spin_lock_irq(cfqd->queue->queue_lock);
1708                         if (new_cfqq)
1709                                 goto retry;
1710                 } else {
1711                         cfqq = kmem_cache_alloc_node(cfq_pool,
1712                                         gfp_mask | __GFP_ZERO,
1713                                         cfqd->queue->node);
1714                 }
1715
1716                 if (cfqq) {
1717                         cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1718                         cfq_init_prio_data(cfqq, ioc);
1719                         cfq_log_cfqq(cfqd, cfqq, "alloced");
1720                 } else
1721                         cfqq = &cfqd->oom_cfqq;
1722         }
1723
1724         if (new_cfqq)
1725                 kmem_cache_free(cfq_pool, new_cfqq);
1726
1727         return cfqq;
1728 }
1729
1730 static struct cfq_queue **
1731 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1732 {
1733         switch (ioprio_class) {
1734         case IOPRIO_CLASS_RT:
1735                 return &cfqd->async_cfqq[0][ioprio];
1736         case IOPRIO_CLASS_BE:
1737                 return &cfqd->async_cfqq[1][ioprio];
1738         case IOPRIO_CLASS_IDLE:
1739                 return &cfqd->async_idle_cfqq;
1740         default:
1741                 BUG();
1742         }
1743 }
1744
1745 static struct cfq_queue *
1746 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1747               gfp_t gfp_mask)
1748 {
1749         const int ioprio = task_ioprio(ioc);
1750         const int ioprio_class = task_ioprio_class(ioc);
1751         struct cfq_queue **async_cfqq = NULL;
1752         struct cfq_queue *cfqq = NULL;
1753
1754         if (!is_sync) {
1755                 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1756                 cfqq = *async_cfqq;
1757         }
1758
1759         if (!cfqq)
1760                 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1761
1762         /*
1763          * pin the queue now that it's allocated, scheduler exit will prune it
1764          */
1765         if (!is_sync && !(*async_cfqq)) {
1766                 atomic_inc(&cfqq->ref);
1767                 *async_cfqq = cfqq;
1768         }
1769
1770         atomic_inc(&cfqq->ref);
1771         return cfqq;
1772 }
1773
1774 /*
1775  * We drop cfq io contexts lazily, so we may find a dead one.
1776  */
1777 static void
1778 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1779                   struct cfq_io_context *cic)
1780 {
1781         unsigned long flags;
1782
1783         WARN_ON(!list_empty(&cic->queue_list));
1784
1785         spin_lock_irqsave(&ioc->lock, flags);
1786
1787         BUG_ON(ioc->ioc_data == cic);
1788
1789         radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1790         hlist_del_rcu(&cic->cic_list);
1791         spin_unlock_irqrestore(&ioc->lock, flags);
1792
1793         cfq_cic_free(cic);
1794 }
1795
1796 static struct cfq_io_context *
1797 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1798 {
1799         struct cfq_io_context *cic;
1800         unsigned long flags;
1801         void *k;
1802
1803         if (unlikely(!ioc))
1804                 return NULL;
1805
1806         rcu_read_lock();
1807
1808         /*
1809          * we maintain a last-hit cache, to avoid browsing over the tree
1810          */
1811         cic = rcu_dereference(ioc->ioc_data);
1812         if (cic && cic->key == cfqd) {
1813                 rcu_read_unlock();
1814                 return cic;
1815         }
1816
1817         do {
1818                 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1819                 rcu_read_unlock();
1820                 if (!cic)
1821                         break;
1822                 /* ->key must be copied to avoid race with cfq_exit_queue() */
1823                 k = cic->key;
1824                 if (unlikely(!k)) {
1825                         cfq_drop_dead_cic(cfqd, ioc, cic);
1826                         rcu_read_lock();
1827                         continue;
1828                 }
1829
1830                 spin_lock_irqsave(&ioc->lock, flags);
1831                 rcu_assign_pointer(ioc->ioc_data, cic);
1832                 spin_unlock_irqrestore(&ioc->lock, flags);
1833                 break;
1834         } while (1);
1835
1836         return cic;
1837 }
1838
1839 /*
1840  * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1841  * the process specific cfq io context when entered from the block layer.
1842  * Also adds the cic to a per-cfqd list, used when this queue is removed.
1843  */
1844 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1845                         struct cfq_io_context *cic, gfp_t gfp_mask)
1846 {
1847         unsigned long flags;
1848         int ret;
1849
1850         ret = radix_tree_preload(gfp_mask);
1851         if (!ret) {
1852                 cic->ioc = ioc;
1853                 cic->key = cfqd;
1854
1855                 spin_lock_irqsave(&ioc->lock, flags);
1856                 ret = radix_tree_insert(&ioc->radix_root,
1857                                                 (unsigned long) cfqd, cic);
1858                 if (!ret)
1859                         hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1860                 spin_unlock_irqrestore(&ioc->lock, flags);
1861
1862                 radix_tree_preload_end();
1863
1864                 if (!ret) {
1865                         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1866                         list_add(&cic->queue_list, &cfqd->cic_list);
1867                         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1868                 }
1869         }
1870
1871         if (ret)
1872                 printk(KERN_ERR "cfq: cic link failed!\n");
1873
1874         return ret;
1875 }
1876
1877 /*
1878  * Setup general io context and cfq io context. There can be several cfq
1879  * io contexts per general io context, if this process is doing io to more
1880  * than one device managed by cfq.
1881  */
1882 static struct cfq_io_context *
1883 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1884 {
1885         struct io_context *ioc = NULL;
1886         struct cfq_io_context *cic;
1887
1888         might_sleep_if(gfp_mask & __GFP_WAIT);
1889
1890         ioc = get_io_context(gfp_mask, cfqd->queue->node);
1891         if (!ioc)
1892                 return NULL;
1893
1894         cic = cfq_cic_lookup(cfqd, ioc);
1895         if (cic)
1896                 goto out;
1897
1898         cic = cfq_alloc_io_context(cfqd, gfp_mask);
1899         if (cic == NULL)
1900                 goto err;
1901
1902         if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1903                 goto err_free;
1904
1905 out:
1906         smp_read_barrier_depends();
1907         if (unlikely(ioc->ioprio_changed))
1908                 cfq_ioc_set_ioprio(ioc);
1909
1910         return cic;
1911 err_free:
1912         cfq_cic_free(cic);
1913 err:
1914         put_io_context(ioc);
1915         return NULL;
1916 }
1917
1918 static void
1919 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1920 {
1921         unsigned long elapsed = jiffies - cic->last_end_request;
1922         unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1923
1924         cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1925         cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1926         cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1927 }
1928
1929 static void
1930 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1931                        struct request *rq)
1932 {
1933         sector_t sdist;
1934         u64 total;
1935
1936         if (!cic->last_request_pos)
1937                 sdist = 0;
1938         else if (cic->last_request_pos < blk_rq_pos(rq))
1939                 sdist = blk_rq_pos(rq) - cic->last_request_pos;
1940         else
1941                 sdist = cic->last_request_pos - blk_rq_pos(rq);
1942
1943         /*
1944          * Don't allow the seek distance to get too large from the
1945          * odd fragment, pagein, etc
1946          */
1947         if (cic->seek_samples <= 60) /* second&third seek */
1948                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1949         else
1950                 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1951
1952         cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1953         cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1954         total = cic->seek_total + (cic->seek_samples/2);
1955         do_div(total, cic->seek_samples);
1956         cic->seek_mean = (sector_t)total;
1957 }
1958
1959 /*
1960  * Disable idle window if the process thinks too long or seeks so much that
1961  * it doesn't matter
1962  */
1963 static void
1964 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1965                        struct cfq_io_context *cic)
1966 {
1967         int old_idle, enable_idle;
1968
1969         /*
1970          * Don't idle for async or idle io prio class
1971          */
1972         if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1973                 return;
1974
1975         enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1976
1977         if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1978             (cfqd->hw_tag && CIC_SEEKY(cic)))
1979                 enable_idle = 0;
1980         else if (sample_valid(cic->ttime_samples)) {
1981                 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1982                         enable_idle = 0;
1983                 else
1984                         enable_idle = 1;
1985         }
1986
1987         if (old_idle != enable_idle) {
1988                 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1989                 if (enable_idle)
1990                         cfq_mark_cfqq_idle_window(cfqq);
1991                 else
1992                         cfq_clear_cfqq_idle_window(cfqq);
1993         }
1994 }
1995
1996 /*
1997  * Check if new_cfqq should preempt the currently active queue. Return 0 for
1998  * no or if we aren't sure, a 1 will cause a preempt.
1999  */
2000 static int
2001 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
2002                    struct request *rq)
2003 {
2004         struct cfq_queue *cfqq;
2005
2006         cfqq = cfqd->active_queue;
2007         if (!cfqq)
2008                 return 0;
2009
2010         if (cfq_slice_used(cfqq))
2011                 return 1;
2012
2013         if (cfq_class_idle(new_cfqq))
2014                 return 0;
2015
2016         if (cfq_class_idle(cfqq))
2017                 return 1;
2018
2019         /*
2020          * if the new request is sync, but the currently running queue is
2021          * not, let the sync request have priority.
2022          */
2023         if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
2024                 return 1;
2025
2026         /*
2027          * So both queues are sync. Let the new request get disk time if
2028          * it's a metadata request and the current queue is doing regular IO.
2029          */
2030         if (rq_is_meta(rq) && !cfqq->meta_pending)
2031                 return 1;
2032
2033         /*
2034          * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2035          */
2036         if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2037                 return 1;
2038
2039         if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2040                 return 0;
2041
2042         /*
2043          * if this request is as-good as one we would expect from the
2044          * current cfqq, let it preempt
2045          */
2046         if (cfq_rq_close(cfqd, rq))
2047                 return 1;
2048
2049         return 0;
2050 }
2051
2052 /*
2053  * cfqq preempts the active queue. if we allowed preempt with no slice left,
2054  * let it have half of its nominal slice.
2055  */
2056 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2057 {
2058         cfq_log_cfqq(cfqd, cfqq, "preempt");
2059         cfq_slice_expired(cfqd, 1);
2060
2061         /*
2062          * Put the new queue at the front of the of the current list,
2063          * so we know that it will be selected next.
2064          */
2065         BUG_ON(!cfq_cfqq_on_rr(cfqq));
2066
2067         cfq_service_tree_add(cfqd, cfqq, 1);
2068
2069         cfqq->slice_end = 0;
2070         cfq_mark_cfqq_slice_new(cfqq);
2071 }
2072
2073 /*
2074  * Called when a new fs request (rq) is added (to cfqq). Check if there's
2075  * something we should do about it
2076  */
2077 static void
2078 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2079                 struct request *rq)
2080 {
2081         struct cfq_io_context *cic = RQ_CIC(rq);
2082
2083         cfqd->rq_queued++;
2084         if (rq_is_meta(rq))
2085                 cfqq->meta_pending++;
2086
2087         cfq_update_io_thinktime(cfqd, cic);
2088         cfq_update_io_seektime(cfqd, cic, rq);
2089         cfq_update_idle_window(cfqd, cfqq, cic);
2090
2091         cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
2092
2093         if (cfqq == cfqd->active_queue) {
2094                 /*
2095                  * Remember that we saw a request from this process, but
2096                  * don't start queuing just yet. Otherwise we risk seeing lots
2097                  * of tiny requests, because we disrupt the normal plugging
2098                  * and merging. If the request is already larger than a single
2099                  * page, let it rip immediately. For that case we assume that
2100                  * merging is already done. Ditto for a busy system that
2101                  * has other work pending, don't risk delaying until the
2102                  * idle timer unplug to continue working.
2103                  */
2104                 if (cfq_cfqq_wait_request(cfqq)) {
2105                         if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2106                             cfqd->busy_queues > 1) {
2107                                 del_timer(&cfqd->idle_slice_timer);
2108                         __blk_run_queue(cfqd->queue);
2109                         }
2110                         cfq_mark_cfqq_must_dispatch(cfqq);
2111                 }
2112         } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2113                 /*
2114                  * not the active queue - expire current slice if it is
2115                  * idle and has expired it's mean thinktime or this new queue
2116                  * has some old slice time left and is of higher priority or
2117                  * this new queue is RT and the current one is BE
2118                  */
2119                 cfq_preempt_queue(cfqd, cfqq);
2120                 __blk_run_queue(cfqd->queue);
2121         }
2122 }
2123
2124 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2125 {
2126         struct cfq_data *cfqd = q->elevator->elevator_data;
2127         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2128
2129         cfq_log_cfqq(cfqd, cfqq, "insert_request");
2130         cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2131
2132         cfq_add_rq_rb(rq);
2133
2134         list_add_tail(&rq->queuelist, &cfqq->fifo);
2135
2136         cfq_rq_enqueued(cfqd, cfqq, rq);
2137 }
2138
2139 /*
2140  * Update hw_tag based on peak queue depth over 50 samples under
2141  * sufficient load.
2142  */
2143 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2144 {
2145         if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2146                 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
2147
2148         if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2149             rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
2150                 return;
2151
2152         if (cfqd->hw_tag_samples++ < 50)
2153                 return;
2154
2155         if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2156                 cfqd->hw_tag = 1;
2157         else
2158                 cfqd->hw_tag = 0;
2159
2160         cfqd->hw_tag_samples = 0;
2161         cfqd->rq_in_driver_peak = 0;
2162 }
2163
2164 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2165 {
2166         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2167         struct cfq_data *cfqd = cfqq->cfqd;
2168         const int sync = rq_is_sync(rq);
2169         unsigned long now;
2170
2171         now = jiffies;
2172         cfq_log_cfqq(cfqd, cfqq, "complete");
2173
2174         cfq_update_hw_tag(cfqd);
2175
2176         WARN_ON(!cfqd->rq_in_driver[sync]);
2177         WARN_ON(!cfqq->dispatched);
2178         cfqd->rq_in_driver[sync]--;
2179         cfqq->dispatched--;
2180
2181         if (cfq_cfqq_sync(cfqq))
2182                 cfqd->sync_flight--;
2183
2184         if (sync)
2185                 RQ_CIC(rq)->last_end_request = now;
2186
2187         /*
2188          * If this is the active queue, check if it needs to be expired,
2189          * or if we want to idle in case it has no pending requests.
2190          */
2191         if (cfqd->active_queue == cfqq) {
2192                 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2193
2194                 if (cfq_cfqq_slice_new(cfqq)) {
2195                         cfq_set_prio_slice(cfqd, cfqq);
2196                         cfq_clear_cfqq_slice_new(cfqq);
2197                 }
2198                 /*
2199                  * If there are no requests waiting in this queue, and
2200                  * there are other queues ready to issue requests, AND
2201                  * those other queues are issuing requests within our
2202                  * mean seek distance, give them a chance to run instead
2203                  * of idling.
2204                  */
2205                 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2206                         cfq_slice_expired(cfqd, 1);
2207                 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2208                          sync && !rq_noidle(rq))
2209                         cfq_arm_slice_timer(cfqd);
2210         }
2211
2212         if (!rq_in_driver(cfqd))
2213                 cfq_schedule_dispatch(cfqd);
2214 }
2215
2216 /*
2217  * we temporarily boost lower priority queues if they are holding fs exclusive
2218  * resources. they are boosted to normal prio (CLASS_BE/4)
2219  */
2220 static void cfq_prio_boost(struct cfq_queue *cfqq)
2221 {
2222         if (has_fs_excl()) {
2223                 /*
2224                  * boost idle prio on transactions that would lock out other
2225                  * users of the filesystem
2226                  */
2227                 if (cfq_class_idle(cfqq))
2228                         cfqq->ioprio_class = IOPRIO_CLASS_BE;
2229                 if (cfqq->ioprio > IOPRIO_NORM)
2230                         cfqq->ioprio = IOPRIO_NORM;
2231         } else {
2232                 /*
2233                  * check if we need to unboost the queue
2234                  */
2235                 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2236                         cfqq->ioprio_class = cfqq->org_ioprio_class;
2237                 if (cfqq->ioprio != cfqq->org_ioprio)
2238                         cfqq->ioprio = cfqq->org_ioprio;
2239         }
2240 }
2241
2242 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2243 {
2244         if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2245             !cfq_cfqq_must_alloc_slice(cfqq)) {
2246                 cfq_mark_cfqq_must_alloc_slice(cfqq);
2247                 return ELV_MQUEUE_MUST;
2248         }
2249
2250         return ELV_MQUEUE_MAY;
2251 }
2252
2253 static int cfq_may_queue(struct request_queue *q, int rw)
2254 {
2255         struct cfq_data *cfqd = q->elevator->elevator_data;
2256         struct task_struct *tsk = current;
2257         struct cfq_io_context *cic;
2258         struct cfq_queue *cfqq;
2259
2260         /*
2261          * don't force setup of a queue from here, as a call to may_queue
2262          * does not necessarily imply that a request actually will be queued.
2263          * so just lookup a possibly existing queue, or return 'may queue'
2264          * if that fails
2265          */
2266         cic = cfq_cic_lookup(cfqd, tsk->io_context);
2267         if (!cic)
2268                 return ELV_MQUEUE_MAY;
2269
2270         cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2271         if (cfqq) {
2272                 cfq_init_prio_data(cfqq, cic->ioc);
2273                 cfq_prio_boost(cfqq);
2274
2275                 return __cfq_may_queue(cfqq);
2276         }
2277
2278         return ELV_MQUEUE_MAY;
2279 }
2280
2281 /*
2282  * queue lock held here
2283  */
2284 static void cfq_put_request(struct request *rq)
2285 {
2286         struct cfq_queue *cfqq = RQ_CFQQ(rq);
2287
2288         if (cfqq) {
2289                 const int rw = rq_data_dir(rq);
2290
2291                 BUG_ON(!cfqq->allocated[rw]);
2292                 cfqq->allocated[rw]--;
2293
2294                 put_io_context(RQ_CIC(rq)->ioc);
2295
2296                 rq->elevator_private = NULL;
2297                 rq->elevator_private2 = NULL;
2298
2299                 cfq_put_queue(cfqq);
2300         }
2301 }
2302
2303 /*
2304  * Allocate cfq data structures associated with this request.
2305  */
2306 static int
2307 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2308 {
2309         struct cfq_data *cfqd = q->elevator->elevator_data;
2310         struct cfq_io_context *cic;
2311         const int rw = rq_data_dir(rq);
2312         const int is_sync = rq_is_sync(rq);
2313         struct cfq_queue *cfqq;
2314         unsigned long flags;
2315
2316         might_sleep_if(gfp_mask & __GFP_WAIT);
2317
2318         cic = cfq_get_io_context(cfqd, gfp_mask);
2319
2320         spin_lock_irqsave(q->queue_lock, flags);
2321
2322         if (!cic)
2323                 goto queue_fail;
2324
2325         cfqq = cic_to_cfqq(cic, is_sync);
2326         if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2327                 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2328                 cic_set_cfqq(cic, cfqq, is_sync);
2329         }
2330
2331         cfqq->allocated[rw]++;
2332         cfq_clear_cfqq_must_alloc(cfqq);
2333         atomic_inc(&cfqq->ref);
2334
2335         spin_unlock_irqrestore(q->queue_lock, flags);
2336
2337         rq->elevator_private = cic;
2338         rq->elevator_private2 = cfqq;
2339         return 0;
2340
2341 queue_fail:
2342         if (cic)
2343                 put_io_context(cic->ioc);
2344
2345         cfq_schedule_dispatch(cfqd);
2346         spin_unlock_irqrestore(q->queue_lock, flags);
2347         cfq_log(cfqd, "set_request fail");
2348         return 1;
2349 }
2350
2351 static void cfq_kick_queue(struct work_struct *work)
2352 {
2353         struct cfq_data *cfqd =
2354                 container_of(work, struct cfq_data, unplug_work);
2355         struct request_queue *q = cfqd->queue;
2356
2357         spin_lock_irq(q->queue_lock);
2358         __blk_run_queue(cfqd->queue);
2359         spin_unlock_irq(q->queue_lock);
2360 }
2361
2362 /*
2363  * Timer running if the active_queue is currently idling inside its time slice
2364  */
2365 static void cfq_idle_slice_timer(unsigned long data)
2366 {
2367         struct cfq_data *cfqd = (struct cfq_data *) data;
2368         struct cfq_queue *cfqq;
2369         unsigned long flags;
2370         int timed_out = 1;
2371
2372         cfq_log(cfqd, "idle timer fired");
2373
2374         spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2375
2376         cfqq = cfqd->active_queue;
2377         if (cfqq) {
2378                 timed_out = 0;
2379
2380                 /*
2381                  * We saw a request before the queue expired, let it through
2382                  */
2383                 if (cfq_cfqq_must_dispatch(cfqq))
2384                         goto out_kick;
2385
2386                 /*
2387                  * expired
2388                  */
2389                 if (cfq_slice_used(cfqq))
2390                         goto expire;
2391
2392                 /*
2393                  * only expire and reinvoke request handler, if there are
2394                  * other queues with pending requests
2395                  */
2396                 if (!cfqd->busy_queues)
2397                         goto out_cont;
2398
2399                 /*
2400                  * not expired and it has a request pending, let it dispatch
2401                  */
2402                 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2403                         goto out_kick;
2404         }
2405 expire:
2406         cfq_slice_expired(cfqd, timed_out);
2407 out_kick:
2408         cfq_schedule_dispatch(cfqd);
2409 out_cont:
2410         spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2411 }
2412
2413 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2414 {
2415         del_timer_sync(&cfqd->idle_slice_timer);
2416         cancel_work_sync(&cfqd->unplug_work);
2417 }
2418
2419 static void cfq_put_async_queues(struct cfq_data *cfqd)
2420 {
2421         int i;
2422
2423         for (i = 0; i < IOPRIO_BE_NR; i++) {
2424                 if (cfqd->async_cfqq[0][i])
2425                         cfq_put_queue(cfqd->async_cfqq[0][i]);
2426                 if (cfqd->async_cfqq[1][i])
2427                         cfq_put_queue(cfqd->async_cfqq[1][i]);
2428         }
2429
2430         if (cfqd->async_idle_cfqq)
2431                 cfq_put_queue(cfqd->async_idle_cfqq);
2432 }
2433
2434 static void cfq_exit_queue(struct elevator_queue *e)
2435 {
2436         struct cfq_data *cfqd = e->elevator_data;
2437         struct request_queue *q = cfqd->queue;
2438
2439         cfq_shutdown_timer_wq(cfqd);
2440
2441         spin_lock_irq(q->queue_lock);
2442
2443         if (cfqd->active_queue)
2444                 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2445
2446         while (!list_empty(&cfqd->cic_list)) {
2447                 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2448                                                         struct cfq_io_context,
2449                                                         queue_list);
2450
2451                 __cfq_exit_single_io_context(cfqd, cic);
2452         }
2453
2454         cfq_put_async_queues(cfqd);
2455
2456         spin_unlock_irq(q->queue_lock);
2457
2458         cfq_shutdown_timer_wq(cfqd);
2459
2460         kfree(cfqd);
2461 }
2462
2463 static void *cfq_init_queue(struct request_queue *q)
2464 {
2465         struct cfq_data *cfqd;
2466         int i;
2467
2468         cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2469         if (!cfqd)
2470                 return NULL;
2471
2472         cfqd->service_tree = CFQ_RB_ROOT;
2473
2474         /*
2475          * Not strictly needed (since RB_ROOT just clears the node and we
2476          * zeroed cfqd on alloc), but better be safe in case someone decides
2477          * to add magic to the rb code
2478          */
2479         for (i = 0; i < CFQ_PRIO_LISTS; i++)
2480                 cfqd->prio_trees[i] = RB_ROOT;
2481
2482         /*
2483          * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2484          * Grab a permanent reference to it, so that the normal code flow
2485          * will not attempt to free it.
2486          */
2487         cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2488         atomic_inc(&cfqd->oom_cfqq.ref);
2489
2490         INIT_LIST_HEAD(&cfqd->cic_list);
2491
2492         cfqd->queue = q;
2493
2494         init_timer(&cfqd->idle_slice_timer);
2495         cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2496         cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2497
2498         INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2499
2500         cfqd->cfq_quantum = cfq_quantum;
2501         cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2502         cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2503         cfqd->cfq_back_max = cfq_back_max;
2504         cfqd->cfq_back_penalty = cfq_back_penalty;
2505         cfqd->cfq_slice[0] = cfq_slice_async;
2506         cfqd->cfq_slice[1] = cfq_slice_sync;
2507         cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2508         cfqd->cfq_slice_idle = cfq_slice_idle;
2509         cfqd->hw_tag = 1;
2510
2511         return cfqd;
2512 }
2513
2514 static void cfq_slab_kill(void)
2515 {
2516         /*
2517          * Caller already ensured that pending RCU callbacks are completed,
2518          * so we should have no busy allocations at this point.
2519          */
2520         if (cfq_pool)
2521                 kmem_cache_destroy(cfq_pool);
2522         if (cfq_ioc_pool)
2523                 kmem_cache_destroy(cfq_ioc_pool);
2524 }
2525
2526 static int __init cfq_slab_setup(void)
2527 {
2528         cfq_pool = KMEM_CACHE(cfq_queue, 0);
2529         if (!cfq_pool)
2530                 goto fail;
2531
2532         cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2533         if (!cfq_ioc_pool)
2534                 goto fail;
2535
2536         return 0;
2537 fail:
2538         cfq_slab_kill();
2539         return -ENOMEM;
2540 }
2541
2542 /*
2543  * sysfs parts below -->
2544  */
2545 static ssize_t
2546 cfq_var_show(unsigned int var, char *page)
2547 {
2548         return sprintf(page, "%d\n", var);
2549 }
2550
2551 static ssize_t
2552 cfq_var_store(unsigned int *var, const char *page, size_t count)
2553 {
2554         char *p = (char *) page;
2555
2556         *var = simple_strtoul(p, &p, 10);
2557         return count;
2558 }
2559
2560 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV)                            \
2561 static ssize_t __FUNC(struct elevator_queue *e, char *page)             \
2562 {                                                                       \
2563         struct cfq_data *cfqd = e->elevator_data;                       \
2564         unsigned int __data = __VAR;                                    \
2565         if (__CONV)                                                     \
2566                 __data = jiffies_to_msecs(__data);                      \
2567         return cfq_var_show(__data, (page));                            \
2568 }
2569 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2570 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2571 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2572 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2573 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2574 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2575 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2576 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2577 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2578 #undef SHOW_FUNCTION
2579
2580 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV)                 \
2581 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2582 {                                                                       \
2583         struct cfq_data *cfqd = e->elevator_data;                       \
2584         unsigned int __data;                                            \
2585         int ret = cfq_var_store(&__data, (page), count);                \
2586         if (__data < (MIN))                                             \
2587                 __data = (MIN);                                         \
2588         else if (__data > (MAX))                                        \
2589                 __data = (MAX);                                         \
2590         if (__CONV)                                                     \
2591                 *(__PTR) = msecs_to_jiffies(__data);                    \
2592         else                                                            \
2593                 *(__PTR) = __data;                                      \
2594         return ret;                                                     \
2595 }
2596 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2597 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2598                 UINT_MAX, 1);
2599 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2600                 UINT_MAX, 1);
2601 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2602 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2603                 UINT_MAX, 0);
2604 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2605 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2606 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2607 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2608                 UINT_MAX, 0);
2609 #undef STORE_FUNCTION
2610
2611 #define CFQ_ATTR(name) \
2612         __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2613
2614 static struct elv_fs_entry cfq_attrs[] = {
2615         CFQ_ATTR(quantum),
2616         CFQ_ATTR(fifo_expire_sync),
2617         CFQ_ATTR(fifo_expire_async),
2618         CFQ_ATTR(back_seek_max),
2619         CFQ_ATTR(back_seek_penalty),
2620         CFQ_ATTR(slice_sync),
2621         CFQ_ATTR(slice_async),
2622         CFQ_ATTR(slice_async_rq),
2623         CFQ_ATTR(slice_idle),
2624         __ATTR_NULL
2625 };
2626
2627 static struct elevator_type iosched_cfq = {
2628         .ops = {
2629                 .elevator_merge_fn =            cfq_merge,
2630                 .elevator_merged_fn =           cfq_merged_request,
2631                 .elevator_merge_req_fn =        cfq_merged_requests,
2632                 .elevator_allow_merge_fn =      cfq_allow_merge,
2633                 .elevator_dispatch_fn =         cfq_dispatch_requests,
2634                 .elevator_add_req_fn =          cfq_insert_request,
2635                 .elevator_activate_req_fn =     cfq_activate_request,
2636                 .elevator_deactivate_req_fn =   cfq_deactivate_request,
2637                 .elevator_queue_empty_fn =      cfq_queue_empty,
2638                 .elevator_completed_req_fn =    cfq_completed_request,
2639                 .elevator_former_req_fn =       elv_rb_former_request,
2640                 .elevator_latter_req_fn =       elv_rb_latter_request,
2641                 .elevator_set_req_fn =          cfq_set_request,
2642                 .elevator_put_req_fn =          cfq_put_request,
2643                 .elevator_may_queue_fn =        cfq_may_queue,
2644                 .elevator_init_fn =             cfq_init_queue,
2645                 .elevator_exit_fn =             cfq_exit_queue,
2646                 .trim =                         cfq_free_io_context,
2647         },
2648         .elevator_attrs =       cfq_attrs,
2649         .elevator_name =        "cfq",
2650         .elevator_owner =       THIS_MODULE,
2651 };
2652
2653 static int __init cfq_init(void)
2654 {
2655         /*
2656          * could be 0 on HZ < 1000 setups
2657          */
2658         if (!cfq_slice_async)
2659                 cfq_slice_async = 1;
2660         if (!cfq_slice_idle)
2661                 cfq_slice_idle = 1;
2662
2663         if (cfq_slab_setup())
2664                 return -ENOMEM;
2665
2666         elv_register(&iosched_cfq);
2667
2668         return 0;
2669 }
2670
2671 static void __exit cfq_exit(void)
2672 {
2673         DECLARE_COMPLETION_ONSTACK(all_gone);
2674         elv_unregister(&iosched_cfq);
2675         ioc_gone = &all_gone;
2676         /* ioc_gone's update must be visible before reading ioc_count */
2677         smp_wmb();
2678
2679         /*
2680          * this also protects us from entering cfq_slab_kill() with
2681          * pending RCU callbacks
2682          */
2683         if (elv_ioc_count_read(ioc_count))
2684                 wait_for_completion(&all_gone);
2685         cfq_slab_kill();
2686 }
2687
2688 module_init(cfq_init);
2689 module_exit(cfq_exit);
2690
2691 MODULE_AUTHOR("Jens Axboe");
2692 MODULE_LICENSE("GPL");
2693 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");